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Abstract
We examine the limits of consistency in highly available and fault-tolerant distributed storage sys-

tems. We introduce a new property—convergence—to explore the these limits in a useful manner. Like
consistency and availability, convergence formalizes a fundamental requirement of a storage system:
writes by one correct node must eventually become observable to other connected correct nodes. Using
convergence as our driving force, we make two additional contributions. First, we close the gap between
what is known to be impossible (i.e. the consistency, availability, and partition-tolerance theorem) and
known systems that are highly-available but that provide weaker consistency such as causal. Specifically,
in an asynchronous system, we show that natural causal consistency, a strengthening of causal consis-
tency that respects the real-time ordering of operations, provides a tight bound on consistency semantics
that can be enforced without compromising availability and convergence. In an asynchronous system
with Byzantine-failures, we show that it is impossible to implement many of the recently introduced
forking-based consistency semantics without sacrificing either availability or convergence. Finally, we
show that it is not necessary to compromise availability or convergence by showing that there exist
practically useful semantics that are enforceable by available, convergent, and Byzantine-fault tolerant
systems.

1 Introduction
This paper examines the limits of consistency in highly available and fault-tolerant distributed storage sys-
tems. The tradeoffs between consistency and availability [6, 24, 38] have been widely used in guiding system
design. The consistency, availability, partition-tolerance (CAP) theorem [24] is often cited as the reason why
systems designed for high availability, such as Dynamo [19] and Cassandra [13], choose to enforce the very
weak eventual consistency [56] semantics [13, 19, 56]. Conversely, the CAP theorem has guided designers
of Amazon SimpleDB [4] to renounce high availability when strong consistency is required [15].

This paper extends the current understanding of these tradeoffs in two ways. First, it strengthens the CAP
theorem by characterizing precisely the limits of consistency that can be achieved, not just what cannot be.
Second, it moves beyond the confines of omission failures and rigorously explores for the first time the
availability vs. consistency tradeoff in environments where nodes can be Byzantine. Our results can help
the designers of highly available systems like Dynamo and Cassandra understand the extent by which they
can offer stronger consistency guarantees. Similarly, in Byzantine-fault tolerant systems like Depot [41],
our results can guide the choice of consistency that can be achieved without compromising availability.

A central challenge in trying to identify the limits of achievable consistency is that consistency can be
“artificially” strengthened by ruling out certain executions. For example, the idea that something like causal
consistency is the best one can hope for without compromising availability has been around for a long time,
but a system in which reads by a node return only the writes issued by that node can be highly available
while offering a consistency that is stronger than causal. Yet, this semantic feels artificial because it fails to
deliver on an intuitively basic requirement: nodes should be able to observe another node’s writes.

We formalize this intuition by introducing a new property: convergence. Convergence addresses the
fundamental demand that writes by one correct node must eventually become observable to other connected
correct nodes. By insisting on consistency semantics that admit convergent implementations, we can rule out
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extremely strong, but trivial and practically useless consistency semantics in a principled way. Similarly,
we can use convergence to rule out useless implementations of otherwise strong and useful consistency
semantics. For example, we can use convergence to rule out an implementation of sequential consistency
that avoids propagating writes by forcing nodes to return stale writes, as long as doing so does not violate
sequential consistency.

Enforcing an explicit convergence requirement leads us to two contributions. First, in asynchronous
systems with unreliable networks we close the gap between what is known to be impossible (i.e. CAP [17,
24, 53]) and known systems that are highly-available but provide weaker consistency such as causal [2, 8,
25, 32, 39, 49, 52]. In particular, we show that no consistency stronger than natural causal consistency (NC),
a strengthening of causal consistency that respects the real-time ordering of operations, can be provided in
an always-available and one-way convergent system. An always-available system allows reads and writes
to complete regardless of which messages are lost and which nodes fail. A one-way convergent system
guarantees that if node p can receive messages from node q, then eventually p’s state reflects updates known
to q. We also show that NC consistency is achievable using an always-available and one-way convergent
implementation.

Second, in systems that can suffer Byzantine failures, we show that fork-causal consistency [40] cannot
be provided in an always-available and one-way convergent system if nodes can be Byzantine. Notice that
this result rules out always-available and one-way convergent implementations of many recently proposed
forking consistency semantics [10, 12, 36, 37, 42, 48]. In these systems, a faulty node can cause correct nodes
to become permanently partitioned in that forked correct nodes cannot observe each other’s writes. Using
this result, we argue that the design of new consistency semantics and systems should be done with an
eye for convergence. We further show that indeed, convergent and practically useful consistency semantics
(such as Depot’s FJC consistency [41]) can be provided without compromising availability or tolerance to
Byzantine faults.

In the rest of this paper, we first define the CAC (consistency, availability, and convergence) properties
(§3). Then we explore the CAC trade-offs in omission- and Byzantine-fault tolerant systems (§4 and §5).
Finally we discuss the implications of CAC theory and results (§6), summarize related work (§7), and
conclude (§8).

2 Framework and assumptions
Figure 1 illustrates the basic components of our framework. In our framework, a storage implementation,
also referred to as a node, processes an application’s request to read and write objects that are replicated
across a set of distributed storage implementations. A storage implementations uses a local-clock to obtain
the timing information and the channel to exchange messages with other storage implementations.

We assume an asynchronous system and we model this assumption in two ways. First, the channel models
a faulty network which is permitted to reorder, drop, or delay messages. Second, the storage implementation
does not have access to any global or real-time clock and each storage implementation’s local-clock can run
arbitrarily fast or slow compared to the similar local clocks at other storage implementations. Third, an input
provided by the application can take an arbitrary amount of time to reach the storage implementation and
vice-versa. Figure 1(a) shows a storage implementation with its input and output events.

In addition to asynchrony, nodes in our framework can operate in a variety of modes that we describe
next.

• No failures. In this mode, nodes do not fail. Note that the network may still drop messages sent by
nodes thereby preventing them from communicating.

• Omission failures. In this mode, nodes can fail by crashing or they may fail to send or receive one or
more messages.
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Figure 1: (a) A storage implementation and (b) a distributed storage implementation (b) constructed by
connecting several storage implementations through an asynchronous channel. Note that the asynchronous
channel also controls the operation of local clocks at the various implementations.

• Byzantine failures. In this mode, the failed nodes can behave arbitrarily [35].

Because we assume a faulty network that can drop messages, omission failures do not introduce any new
challenge. Therefore, all of our results for non-Byzantine failures apply to both omission failure and no fail-
ure modes. Unless otherwise stated, we are considering the no failure/omission failure mode. We explicitly
specify the failure mode when we consider Byzantine failures.

For ease of explanation, we abstract the environment of a storage implementation—application, chan-
nel, and local-clock—using a graph called environment graph. An environment graph precisely captures
the inputs to a particular storage implementation enabling us to compare the state of different storage im-
plementations using their respective environments. Using an environment graph, we construct the run of
a distributed storage implementation, consisting of multiple storage implementations. A run shows when
various events were issued and which responses (if any) were generated by the storage implementations. Fi-
nally, we define an execution in our framework, that we use later to describe various consistency semantics.
We expand on our framework below.

2.1 Storage implementation
A storage implementation is a deterministic I/O automaton with input events read-start (objId,uid),
write-start (objId,uid,value), clock-tick (), recv-msg (nodeId,m) and out-
put events read-complete (uid,wl), write-complete (uid), send-msg (nodeId,m)
where oId denotes the object identifier, value denotes the value being written, uid denotes unique iden-
tifier assigned by the application to each read and write operation, nodeId denotes the unique identifier of
the storage implementation, m denotes content of the message, wl denotes the writeList which is a set of
tuples of the form (uid,d) indicating that multiple values can be returned on a read [19, 41]. Reads can
also return ⊥ (the implementation returns an empty writeList), if no appropriate write is found.

As we discuss below (§3.1), allowing a read to return multiple values provides a clean way to handle log-
ically concurrent updates without making restrictive assumptions about conflict resolution. Various conflict
resolution strategies can then be layered above our implementation.

We assume that the automaton implements a classical memory system whose logical state is not changed
by reads.

We assume that an implementation orders operations and is oblivious to the actual values being written
to objects and that reads return values written by write operations. Therefore to avoid ambiguity, when
discussing the result of a read, our formalism focuses on the write operation that wrote the value that the
read returns [22].

A distributed storage implementation consists of a collection of storage implementations that communi-
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cate through an asynchronous channel. Figure 1 shows a storage implementation and a distributed storage
implementation connected through an asynchronous channel.

2.2 Application
An application issues read-start and write-start input events to a particular storage implemen-
tation and gets read-end and write-end outputs as responses. We assume that events issued by an
application are asynchronously received by the store at a later time. Similarly, events produced by the
storage implementation are received by the application at a later time.

We further assume that the workload issued by an application is not restricted in any way. Any application
can issue reads/writes to any object. However, we do assume that each application issues at most one
outstanding operation at a time. We make this assumption for simplicity but we conjecture that issuing
multiple outstanding requests will not change the fundamental tradeoffs that our results present.

2.3 Channel
The channel models the network in our framework. Because we assume an asynchronous model with an
unreliable network, messages may be dropped, reordered, or delayed for an arbitrary but finite duration by
the channel. The channel controls the behavior of the network by issuing recv-msg events to various
storage implementations and receiving send-msg events from them.

2.4 Local-clock
Each storage implementation has access to an unsynchronized local-clock. The local-clock is the only source
of timing information available to a storage implementation; the implementation does not have access to the
real-time clock. The local-clock issues clock-tick events to the implementation which can be used by
the implementation to schedule or trigger other events. We assume that the local-clocks at different node
can run arbitrarily fast or slow compared to each other.

In contrast, to reason about consistency, we assume that an oracle has access to a real-time clock which
it can use to identify the real-time(s) at which various events occur. As explained later in Section 2.6, these
real-time(s) can be used to specify the consistency condition. We assume that the real-time clock accessible
to the oracle has infinite precision. We do not care about the precision of of the local-clock as our proofs do
not rely on them.

Finally, we emphasize that storage implementations cannot see the real-time reported by the real-time
clock; they can only see their respective local-clock time. We do not guarantee any correspondence between
the local-clock time and the real-time owing to the asynchronous nature of our system.

2.5 Environment
We describe the environmental conditions (behavior of the channel, local-clocks, and applications) through
an environment graph. In particular, an environment graph specifies (1) the behavior of the local clocks by
indicating when clock-tick events are issued, (2) the behavior of the application by indicating when
read-start and write-start events are issued, and (3) the behavior of the asynchronous channel
by indicating which transmitted messages are received and when, and which are dropped.

There is an issue when specifying the behavior of a channel—we don’t know a priori when and which
messages will be sent by a storage implementation. Therefore, we label messages using a combination of
the clock-tick value and an identifier of the storage implementation that produced the message. For
example, if the channel wants to deliver the message that was produced by storage implementation p1 at
local time t1 for storage implementation p2 at local time t2, then the corresponding environment graph will
contain a send-msg-stub at p1 at local time t1 connected using a directed edge to a recv-msg-stub
at p2 at local time t2.
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Figure 2: (a) A sample environment graph and (b) a run of a causally consistent implementation constructed
using the environment graph in (a). In the environment graph, the channel allows the delivery of messages
sent from p2 to p1 at local-clock time(s) 3 and 5 as indicated by the send-msg-stub vertices. As the
corresponding recv-msg-stub vertices indicate, these messages are delivered at local-clock time(s) 4
and 6 respectively. All other messages are dropped as indicated by the lack of any other send-msg-stub
and recv-msg-stub vertices. The local-clock events in the graph depicts how the local-clocks at
different nodes can run at different speeds and may differ from the real-time clock. The environment graph
also indicates the application events: p2 issues a write operation w0 as indicated by the write-start
event and p1 issues a read operation r0 as indicated by the read-start event. All operations operate
on the same object X , which is not shown in the figure for brevity. In the corresponding run, node p2’s
write w2 completes as indicated by the write-end at local-clock time 4. p2 then sends an update to node
p1 at time 5 which p1 receives and applies. p1’s later issues a read r0 which also completes as shown by
the corresponding read-end event at local-clock time 12. Note that the unused send-msg-stub and
recv-msg-stub vertices of an environment graph are removed from the corresponding run graph.
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Figure 3: The execution corresponding to the run shown in Figure 2(b). The execution has only two vertices
corresponding to the write operation by p2 and the read operation by p1. Each of these vertices contain the
relevant details from the corresponding run vertices.

An environment graph is a directed acyclic graph with read-start, write-start, clock-tick,
send-msg-stub, and recv-msg-stub vertices. It contains edges connecting successive events at
each storage implementation and edges connecting the send of a message to its receive if the message
was successfully delivered. Thus, an environment graph provides the complete specification of inputs to a
distributed storage implementation, and the state of a distributed storage implementation is a function of the
environment graph that defines its input. Figure 2(a) illustrates a sample environment graph.

2.6 Run
Generating inputs to a distributed storage implementation using an environment graph and obtaining the
output produces a run of the distributed storage implementation. We represent a run using another di-
rected acyclic graph that is similar to an environment graph, but augmented to include write-end and
read-end vertices and send-msg and recv-msg vertices in place of send-msg-stub and recv-msg-stub
vertices. Figure 2(b) illustrates the run graph produced using a causally consistent implementation [3] and
the environment graph shown in Figure 2(a).

For vertices u and v, we use the notation u ≺ρ v to denote that there exists a path from u to v in the run
ρ. For operations u and v, we use the notation u ≺ρ v to denote that there exists a path from the end of
operation u to the start of operation v in the run ρ

2.7 Execution
We represent the application’s view of a run of distributed storage implementation using an execution. An
execution consists of a set of read and write operations. Intuitively, an execution eliminates the details of
a run that are not needed for defining consistency while retaining the essential details. An execution is
represented using a set of read and write operations that carry the following fields:

Read = (nodeId, objId, wl, uid, startTime, endTime)
Write = (nodeId, objId, value, uid, startTime, endTime)

Most of the fields above are taken from the fields of the start and end event of the corresponding operation
in the run. For example, the nodeId corresponds to the identifier of the storage implementation at which
the corresponding start and end events occur, startTime corresponds to the real-time at which the read-
start/write-start event occurs in the run.

The real-times (startTime and endTime) of an operation reflect when that operation is issued at
the application and when the operation is reported to be complete to the application respectively. Because
propagation of an application’s read/write request to the storage implementation and vice-versa can take
some positive, non-zero time depending on the scheduling and propagation delays, we require that for
each operation o, ostartT ime < ostoreStartT ime < ostoreEndT ime < oendT ime, where ostoreStartT ime and
ostoreEndT ime denote the real-time at which the request and response event are processed at the storage
implementation. These real-time assignments are useful for characterizing semantics like linearizability
where the real-time ordering of operations must be respected [29]. We require that each operation takes
positive, non-zero time to complete.
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3 Consistency, Availability, and Convergence (CAC)
We next introduce the CAC properties—consistency, availability, and convergence—using the framework
introduced in the previous section. Consistency and availability are well-studied properties. We formalize
existing intuition about these properties in a relatively standard way. For convergence, we provide a new
formalism and new definitions because it is a novel property that has not been described in prior work.

3.1 Consistency
Consistency restricts the order in which reads and writes appear to occur. Formally, a consistency semantic
is a test on an execution—if an execution e passes the test for consistency C, we say e is C-consistent.

We say that a consistency semantics Cs is stronger than another consistency semantics Cw if the set of
executions accepted by Cs is a strict subset of the set of executions accepted by Cw. We say that Cs is
equivalent to Cw if they admit the same set of executions (Cs = Cw). We say that two non-equivalent
consistency semantics are incomparable if neither of them is stronger. Intuitively, a stronger consistency
semantics permits fewer behaviors and therefore, is easier to reason about. Hence, a stronger consistency
semantics is preferable over a weaker one.

We say that an implementation I enforces a consistency semantics C if any execution e produced by I is
accepted by C regardless of the workload—the sequences of read and write operations issued by nodes—
and the environment—which messages are dropped, delayed, duplicated, and delivered and how quickly
local clocks run relative to each other and to global time.

We next define the notation that we use to formally define consistency semantics and to prove our results.

DEFINITION 3.1. Precedes. Let H be directed acyclic graph. We say that the graph H imposes a partial
order that we denote by ≺H . We say that v precedes u in graph H (denoted by v ≺H u) if there exists a
path from v to u in H .

DEFINITION 3.2. Concurrent vertices. We say two vertices u and v are concurrent in H (denoted by
v||Hu) if neither of them precedes the other in H .

Causal consistency. Causal consistency [2, 31] captures the requirement that operations that depend on
each other are observed by nodes in the same order. The following definition states this requirement for-
mally.

DEFINITION 3.3. An execution e is causally consistent if there exists a directed acyclic graph G, called a
happens before (HB) graph, containing a read/write vertex for each read/write operation in e such that G
satisfies the following consistency check:

C1 Serial ordering at each node. The ordering of operations at any node is reflected in G. Specifi-
cally, if v and v′ are vertices corresponding to operations by the same node, then v.startT ime <
v′.startT ime⇔ v ≺G v′.

C2 A read returns the latest preceding concurrent writes. For any vertex r corresponding to a read operation
of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that have not
been overwritten by another write of objId that both follows w and precedes r:

w ∈ r.wl⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

Note that our definition separates consistency from conflict resolution for dealing with conflicting, con-
current writes to the same object. Some causally consistent systems employ a conflict resolution algorithm
to pick a winner (e.g., highest-node-ID wins) or to merge conflicting writes (e.g., allowing a directory to
include all differently-named files concurrently created in the directory) [2, 8, 25, 30, 32, 39, 55]. Instead,
our definition models the fundamental causal-ordering abstraction shared by all these approaches without
attempting to impose a particular conflict resolution strategy. In our approach, logically concurrent writes
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are returned to the reader, who can then apply any standard or application-specific conflict resolver to pick
a winner, or merge concurrent writes [8, 19, 41]. This logic is encoded in an application-specific conflict-
handler layered over the consistency algorithm.

We further note that this formulation of causal consistency is incomparable with Ahamad el al’s [3]
formulation for causal consistency. Our definition separates consistency from conflict resolution because the
former orders a system’s reads and writes [1] and may identify a set of writes as logically concurrent [33]
while the latter defines how the system handles concurrent writes of the same object [30, 51, 55]. This
separation collapses many otherwise incomparable variations of causal consistency into a single consistency
semantic that exposes concurrency but does not try to resolve it. This separation makes our formulation more
flexible as it can be combined with a suitable conflict resolver to create the same behavior as Ahamad’s
causal consistency. Similarly, combined with a suitable conflict resolver, our formulation can simulate a
consistency semantics strictly stronger than Ahamad’s causal consistency by disallowing certain conflict
resolution strategies.

Finally, we emphasize that a HB graph is a hypothetical construct created after-the-fact, while performing
the consistency checks. An implementation need not maintain any data structure to store or update a HB
graph. Instead, an execution is considered C-consistent if an oracle, with the knowledge of the entire
execution, can produce a C-consistent HB graph for that execution.

3.2 Availability
Availability, informally, refers to an implementation’s ability to ensure that read and write operations com-
plete. The availability of an implementation is formally defined by describing the environmental conditions
(network and local-clocks) under which all issued operations complete. An implementation I is available
under an environment graph ψ if ψ produces a available run on I . In an available run, each read-start
input event has a corresponding read-end output event and each write-start input event has a corre-
sponding write-end output event.

Now, we can compare the availability of two implementations. An implementation I is more available
than implementation I ′ if the set of environment graphs under which I is available is a strict superset of
the set of environment graphs under which I ′ is available. Intuitively, a more available implementation is
preferable over a less available one because the more available implementation can serve reads and writes
under a more diverse set of conditions.

DEFINITION 3.4. An implementation is always-available if, for any workload, all reads and writes can even-
tually complete regardless of which messages are lost and which nodes can communicate. In terms of our
environment graph abstraction, we can say that an implementation I is always available if any environment
graph can can be extended to form an available environment graph for I by adding only the clock-tick
events at each node. An implementation in which one storage implementation needs to communicate with
another before processing some read or write request is not always-available; there exist environments in
which a storage implementation cannot complete such read or write requests because it is partitioned from
others.

3.3 Convergence
Informally, convergence refers to an implementation’s ability to ensure that writes issued by one node are
observed by others. Convergence can be formally defined by describing the set of environmental conditions
(network and local clocks) under which nodes can observe each other’s writes.

We formalize convergence to better explore the fundamental tradeoff between safety (consistency) and
liveness (availability and convergence). Absent convergence conditions, both strong consistency and high
availability can be simultaneously achieved. In particular, a problem with focusing on only strong con-
sistency and high availability is that systems that fail to propagate information among nodes (i.e. are not
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convergent) may technically have very strong consistency and availability. For example, consider a gossip-
based system that provides causal consistency but restricts a node to share its updates only if it has performed
a prime number of writes. Similarly, a causally consistent system may completely eliminate communication
among its nodes so that each read of an object returns the latest write of that object by the reader. Each of
these systems offer semantics that are technically stronger than causal consistency; each also guarantees that
reads and writes are always available; yet, these semantics also feel “artificial” or less useful than causal.
Convergence allows us to formalize this intuition.

Like consistency and availability, different convergence properties of varying strength exist. We describe
some of these properties below.

Eventual consistency. A simple convergence property is eventual consistency, which is commonly de-
fined as follows: the storage system guarantees that if no new updates are made to the object, eventually
all accesses will return the last updated value [56] . This formulation defines a weak convergence property;
for example, it makes no promises about intervals in which some nodes are partitioned from others. There-
fore, an implementation may provide such eventual consistency in less robust, yet legal ways. For example,
an implementation may designate a special master node responsible for resolving conflicts and assigning a
global sequence number for ordering updates [55].

Pairwise convergence. Most systems designed for high-availability are interested in ensuring liveness (in
form of availability and convergence) despite failure of an arbitrary subset of nodes. In these systems, it
is desired that a correct connected subset of nodes are always able to attain eventual consistency among
themselves. Below, we define a strengthening of eventual consistency for such systems. The basic idea
behind this notion is simply that any pair of nodes s and d should be able to converge without requiring
communication with any other node.

DEFINITION 3.5. Pairwise converged. We say that nodes s and d have pairwise converged if s and d are in
a state in which the reads of the same object by s and d returns the same result.

Now we can say that a system ensures pairwise convergence if it ensures that s and d can become pairwise
converged through communication between s to d:

DEFINITION 3.6. Pairwise convergent. A system is pairwise convergent if for any nodes s and d, if s and
d issue no writes and receives no messages from other nodes, then eventually they will exchange a set of
messages such that receiving these messages causes s and d to become pairwise converged.

One-way convergence. To maximize liveness, we would like to say that any subset of connected nodes
should converge on a common state. For example, we want to model the anti-entropy approach used in
systems like Bayou [49] and Dynamo [19]. We therefore define one-way convergence.

The basic idea behind this notion is simply that any pair of nodes s and d should be able to converge with
two steps of one-way communication: first s sends updates to d, next d sends updates to s; henceforth, both
nodes would read the same values for all objects. To this end, we first define an intermediate state where d
has received whatever updates it needs from s. The defining property of this state is that, intuitively, once d
is in it, it suffices for d to send updates to s for d and s to converge to a common state. We now make this
intuition more precise.

DEFINITION 3.7. Semi-pairwise converged. We say that node s has semi-pairwise converged with node d if
s and d are in a state such that if they issue no writes and communicate with no other nodes, then eventually
d will send a set of messages such that if s receives these messages, then subsequent reads of the same object
by s and d will return the same result.

Now we can say that a system provides one-way convergence if it ensures that s and d can become
semi-pairwise converged through communication from s to d:

DEFINITION 3.8. One-way convergent. A system is one-way convergent if for any nodes s and d, if s issues
no writes and receives no messages, then eventually s will send a set of messages such that if d receives
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these messages, then s will have semi-pairwise converged with d.
Note that the preconditions in the above definitions may seem hard to establish, but they conform to

our goal of establishing a set of really weak convergence conditions that any practical system must satisfy.
Indeed, there exist environment graphs and runs where these preconditions are satisfied. Broadly speaking,
our intent is to argue that if a system cannot ensure convergence even in such unlikely conditions, then it is
less likely to be useful in practice.

4 CAC limits with network failures
We begin by considering environments where only network failures occur. We first introduce natural causal
consistency for this environment (§4.1). We then show that natural causal consistency is optimal for such
environments. Towards that goal, we show two key results: (1) First, we show that semantics stronger than
natural causal consistency cannot be provided by one-way convergent and always-available implementations
(§4.2), (2) Second, we show that natural causal consistency can be provided by always-available and one-
way convergent implementations.

4.1 Consistency semantics for network failures
Causal consistency is a widely used in systems where high availability is desired [8, 39, 55]. We defined
causal consistency in Section 3.1. Unfortunately, causal consistency is not quite strong enough to represent
a tight bound on consistency semantics that are enforceable by always-available and one-way convergent
implementations. In this section, we define natural causal consistency, a strengthening of causal consistency
for environments with network failures We later use natural causal consistency to establish our desired tight
bound.

Natural causal consistency. Natural causal consistency strengthens causal consistency to ensure that the
logical happens before (HB) order on operations does not violate their real-time assignment: operations
that happen later in time are not ordered before earlier operations. The following definition expresses this
constraint.

DEFINITION 4.1. An execution e is said to be naturally causally consistent if its happens before (HB) graph
satisfies the following checks (Note that the NC1 and NC2 checks are identical to the C1 and C2 checks for
causal consistency).

NC1 Serial ordering at each node. The ordering of operations at any node is reflected in G. Specifi-
cally, if v and v′ are vertices corresponding to operations by the same node, then v.startT ime <
v′.startT ime⇔ v ≺G v′.

NC2 A read returns the latest preceding concurrent writes. For any vertex r corresponding to a read oper-
ation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that have
not been overwritten by another write of objId that both follows w and precedes r:

∀r, ∀w,w ∈ r.wl ⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId =
r.objId))

NC3 Time does not travel backward. For any operations u, v: u.endT ime ≤ v.startT ime⇒ v 6≺G u.

Natural causal consistency is not a new semantics. Although we are the first to formally define natural
causal consistency, it appears that most systems that claim to enforce causal consistency actually enforce
the stronger natural causal consistency semantics, sometimes modified to support a system-specific con-
flict resolution policy [2, 8, 25, 30, 32, 39, 41, 55]. This observation should not be surprising—although a
later operation can be considered concurrent to an earlier operation in the HB graph, it would indeed be
strange for a practical implementation to order an operation that occurred later in real-time before an earlier
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(a) A causal run. Only the relevant details are shown. Message stubs and start and end vertices are
omitted.
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w2

(g) HB graph H3 (causal
and natural causal)

r1p2

p1 w1

w2

(h) HB graph H4 (causal
and natural causal)

Figure 4: (a) A causal run, its corresponding executions (b,c,d), and their corresponding causal HB graphs
(e,f,g,h). Only the relevant details are shown. All operations operate on the same object. p1 issues a write
w1 and communicates this write to p2. At a later time, p2 issues a superseding write w2 to the same object.
Finally, p2 issues a read r1 to the same object. In a causal implementation, the read can return all three
possible responses: {w1, w2}, {w1}, {w2} corresponding to three different executions (labeled as e1, e2,
and e3 respectively). Figures e-h show four different causal HB graphs (H1, H2, H3, H4) that correspond
to these three executions (both H3 and H4 correspond to e3). In contrast, an natural causal implementation
does not admit the execution e2 because H2 is not a valid natural causal HB graph—it violates the NC3
condition by ordering a later operation w2 before an earlier operation w1.
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operation. Our definition of natural causal consistency simply makes the time does not travel backward
condition explicit whereas all existing systems enforce this condition implicitly without including it in their
consistency definition.

This clear and explicit addition of the time does not travel backward condition to the causal consistency
definition has two benefits. First, following the common wisdom that stronger consistency is better, it is
useful to know the strongest consistency that an implementation is enforcing so that the application writers
can exploit this property in reducing their application’s complexity. For example, applications can use the
stronger consistency to limit the type of conflicts they need to handle.

Secondly, the stronger natural causal consistency semantics is essential to prove a tight bound as we show
later in our proof in Section 4.2. Absent this requirement, an implementation could hide logical concurrency
by transparently and undetectably resolving conflicts by imposing an unnatural order on operations in certain
scenarios. In particular, the implementation can choose to return only a subset of the logically concurrent set
of writes on a read. The NC3 condition ensures that writes that are logically concurrent should be exposed
as concurrent writes to the application so that a uniform and application-specific conflict resolution policy
can be enforced.

We illustrate the effect of NC3 condition with the help of an example. Consider the run in Figure 4(a).
p1 issues a write w1 to an object X and completes it. It then sends a message containing the write w1 to
p2 that the channel delivers. At a later time, p2 issues and completes another write w2 to the same object.
Finally, p2 issues a read r1 toX . In a causal implementation, the read can return all three possible responses:
{w1, w2}, {w1}, {w2} corresponding to three different executions (labeled as e1, e2, and e3 respectively)
as shown in Figure 4(b,c,d). Figure 4(e,f,g,h) shows four different causal HB graphs (H1, H2, H3, H4)
that correspond to these three executions (both H3 and H4 correspond to e3). In contrast, a natural causal
implementation does not admit the execution e2 because H2 is not a valid natural causal HB graph—it
violates the NC3 condition by ordering a later operation w2 before an earlier operation w1.

4.2 CAC impossibility result
Using the natural causal consistency defined above, we show in Theorem 4.2 that in an asynchronous system,
it is impossible to provide any consistency stronger than natural causal while ensuring always-availability
and one-way convergence. The theorem holds even if all nodes are assumed to be correct.

We prove this theorem by showing that we can take any system that claims to provide consistency stronger
than natural causal consistency and force-feed it a workload under which it must either (i) block reads or
writes (sacrificing always-availability); (ii) fail to propagate updates among connected nodes (sacrificing
one-way convergence); or (iii) violate natural causal (showing that it is not, in fact, stronger than natural
causal).

THEOREM 4.2. CAC-impossibility theorem. No consistency semantics stronger than natural causal con-
sistency can be enforced by a one-way convergent and always-available distributed storage implementation.

Proof. By way of contradiction, suppose a one-way convergent and always-available distributed storage
implementation, ISC , enforces a semantics SC that is stronger than natural causal consistency. Let e be a
natural causal execution that ISc does not admit. We will construct a run of ISC that produces the rejected
execution e, thereby contradicting the claim that ISC enforces SC. The proof goes through the following
stages.

In Stage 1, we use the HB graph G for e to construct a direct HB graph H for e such that H contains a
directed edge for every pair of non-local vertices (i.e. vertices at different nodes) that are connected via a
directed path in G. Note that there must exist a naturally causally HB graph G for e because e is assumed
to be naturally causally consistent.

In Stage 2, we use H to construct an augmented run ρa (and the corresponding execution ea) by issuing
operations at nodes in ISC and by controlling the behavior of the network and of the local clocks at each
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(b) A direct HB graph

Figure 5: (a) A natural causal HB graph G and (b) its corresponding direct HB graph H generated in Stage
1 of Theorem 4.2 proof. A direct edge is added from w1 to r1 in H; w1 had an indirect path to r1 in G.
For brevity, only the relevant details are shown in the HB graphs. All operations are performed on the same
object. The values in square brackets indicate the execution interval in real-time for each operation.

node. Augmented run ρa and augmented execution ea contain a few additional read operations (beyond
those present in H), called augmented reads, that we issue to inspect the state of our implementation during
the execution.

In Stage 3, we argue that the augmented execution ea is similar to the desired execution e. In particular,
we show that (1) both ea and e contain the same set of writes and ea contains all the reads present in e,
(2) reads common to ea and e will return identical responses in both these execution, and (3) operations
common to e and ea will start and end at the same real-time in both these executions.

Finally, to complete the proof, we argue that we can remove the additional reads added in Stage 2, to
obtain a run ρr that produces an execution er that we prove is identical to our desired execution e. The
argument behind this claim follows from the observation that the implementation ISC models a classical
memory system, in which the outcome of a read operation is not influenced by prior reads. Hence, removing
a few reads from ρa should not influence the outcome of remaining operations. Furthermore, because ea is
identical to the desired execution e in all the unremoved operations, removing the additional reads from ρa
must produce the desired execution e.

We next describe these stages in more detail.
Stage 1: Creating a direct HB graph for the execution e

In Stage 1, we use G, the natural causal HB graph for e, to construct H , a direct HB graph for e. The
direct HB graph H contains a directed edge connecting an operation u to an operation v whenever u and
v occur at different nodes and are connected via a directed path in G. The construction is simple and is
illustrated in Figure 5.

1. First, copy all the vertices and edges from G to H .

2. Second, for every operation v ∈ G and for each operation u ≺G v such that u and v occur at different
nodes, add a directed edge from u to v in H .

3. Finally, remove all non-local edges (i.e. edges that connect vertices at different nodes) of G from H .

COROLLARY 4.3. Direct HB graph equivalence. It is easy to see that the partial order ≺H imposed by
the graph H is the same as the partial order ≺G imposed by the graph G: H contains the same vertices as
G and two vertices u and v have a directed path between them in G iff they have a directed path between
them in H . Therefore, if G is a HB graph for the execution e, then H must also be a HB graph for e.

Stage 2: Constructing augmented run ρa and execution ea
In Stage 2, we produce the run ρa and the corresponding execution ea such that ea is similar to our

desired execution e. We produce ρa by using the graph H to issue a series of reads and writes while
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ALGORITHM 1: Algorithm for assigning real-time intervals to operations.

1 Let T be a time-sensitive topological sort of H constructed by traversing the directed HB graph H such that whenever
there is a choice between multiple vertices that can be traversed next, the vertex with smallest startT ime is chosen

2 ∆ := min∀v((v.endT ime− v.startT ime)/N,∀u:v≺T u(u.endT ime− v.startT ime)/N) where N is the total
number of vertices in G

3 for v : T do
4 v.assignedStartT ime := max(v.startT ime, prec(v).assignedEndT ime) where prec(v) denotes the

operation immediately preceding v in T
5 v.assignedEndT ime := v.assignedStartT ime+ ∆
6 tsv,1 := (v.assignedStartT ime+ v.assignedEndT ime)/2
7 for i← 2 to∞ do
8 tsv,i := (tsv,i−1 + v.assignedEndT ime)/2

controlling the network and local clocks. We issue a few additional augmented reads to inspect the state of
the implementation.

In order to produce an execution that is similar to the reference execution e, we need to ensure two
construction invariants.

Real-time(s) match invariant First, we must ensure that the real-time execution interval of a non-augmented
operation at the storage implementation falls between the application observed execution interval of
that operation in the reference execution. By enforcing this invariant and by controlling the propaga-
tion of messages, we can force (shown in Stage 4) the application observed execution interval of each
non-augmented operation in our augmented run to be identical to its corresponding execution interval
in the reference execution.

Correct writes returned invariant Second, we must ensure that the set of writes returned by a non-augmented
read is identical to the set of writes returned by the corresponding read in the reference execution.

Our construction proceeds in two phases to enforce these invariants. In the first phase, we identify the
real-time(s) at which we execute our operations so that the real-time(s) match invariant is satisfied. In the
second phase, we issue these operations by controlling the network and local-clocks. We prove in Stage 3
that our construction enforces the two invariants stated above and in Stage 4, we show that enforcing these
invariants is sufficient to prove that the reference execution e is accepted by the always-available, one-way
convergent distributed storage implementation ISC .
Phase 1 (Timestamp assignment). Phase 1 assigns the store execution interval to each operation while main-
taining the real-time(s) match invariant stated above (as proved in Lemma 4.7 below): the store execution
interval for an operation v, denoted by ( v.assignedStartTime, v.assignedEndTime), falls be-
tween its corresponding execution interval (v.startTime, v.endTime) in the reference execution e.

Algorithm 1 describes our approach to assign the real-time intervals to each operation. For simplicity,
our algorithm assigns non-overlapping real-time intervals to different operations of our execution (including
operations by different nodes). We start by constructing a time-sensitive topological sort T of graph H
such that T satisfies the following time-sensitivity property: u ≺T v ⇒ u ≺H v ∨ u.startTime ≤
v.startTime. We build such a topological sort by traversing H in a way that whenever there is a choice
of multiple vertices that can be traversed next, the vertex with smallest startTime is chosen. Its easy
to see that our traversal strategy leads to the creation of a time-sensitive topological sort of HB graph H .
Figure 6(a) shows a time-sensitive topological sort for our example scenario.

Let N denote the number of vertices in H . We first identify the length of the largest real-time interval ∆,
such that we can assign a non-overlapping real-time interval of length ∆ to each operation while maintaining
the real-time(s) match invariant. Note that because T is time-sensitive, we are guaranteed that ∆, as com-
puted in step 2 in Algorithm 1, will be positive (Lemma 4.4). We then schedule an operation at the earliest
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0, 20, 30, 35, ....39.99... 200, 220, 230, 235, ....239.99... 480, 500, 510, 515, ....519.99...240, 260, 270, 275, ....279.99...

tsw2tsw1 tsw3 tsw4

(c) Time-series

Figure 6: (a) A time-sensitive topological sort for the HB graphs shown in Figure 5, (b) its corresponding
time-assignment computed using ∆ = 40, and (c) time-series, as computed by the Algorithm 1 in Stage 2
of the proof of Theorem 4.2 proof.

time permitted by its real-time execution interval and after the previous operation has finished. Figure 6(b)
shows the assigned times for operations in our example scenario.

We ensure that an operation and all its associated events finish in no more than ∆ time. For each operation
v, we create an infinite series of increasing timestamps, denoted by tsv,i (0 < i), such that these timestamps
fall inside v’s assigned real-time interval in steps 4 and 5 in Algorithm 1. Steps 6 − 8 in Algorithm 1
show how to generate these timestamps. We denote the series of timestamps for a vertex v as tsv. We
use these timestamps to schedule all the events that we need to execute for operation v and we force the
implementation to complete operation v in its assigned real-time interval. Figure 6(c) shows the time-series
generated for operations in our example scenario.

LEMMA 4.4. Delta positive. Let T be the time-sensitive topological sort of the natural causal HB graph H
with N vertices.
∆ := min∀v((v.endT ime − v.startT ime)/N,∀u:v≺Tu(u.endT ime − v.startT ime)/N) is a positive
value.

Proof. If ∆ is chosen from the first term in the min function, then ∆ must be positive and non-zero from
the assumption that each operation takes positive, non-zero time to complete. Next we consider the case
in which ∆ is chosen from the second term in the min function. From the time-sensitivity property of the
topological sort T , we have: v ≺T u ⇒ v ≺H u ∨ v.startT ime < u.startT ime. We will show that
if v ≺T u then u.endT ime − v.startT ime would be positive. Consider two cases. If v ≺H u, then
u.endT ime − v.startT ime would be positive from the time does not travel backward property of natural
causal consistency. Alternatively, if v.startT ime < u.startT ime, then v.startT ime < u.endT ime
would be positive again because u.endT ime > u.startT ime. Hence, ∆ must be a positive value.

LEMMA 4.5. Timestamps ordered. Timestamps produced by Algorithm 1 for a time-sensitive topological
sort T , satisfy the following property: u ≺T v ∨ (u = v ∧ i < j)⇒ tsu,i < tsv,j .

Proof. Let u1, u2, ..., uk be the topological sort T . From Step 4 and from knowing that ∆ > 0, we get the
following ordering property: u1.assignedStartT ime < u1.assignedEndT ime ≤ u2.assignedStartT ime <
u2.assignedEndT ime ≤ ... ≤ uk.assignedStartT ime < uk.assignedEndT ime. From Step 6 − 8 in
Algorithm 1, we observe that the timestamps tsv for a vertex v must be monotonically increasing and should
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Figure 7: Schedule of operations and message exchanges generated by Phase 2 of Stage 2 of the proof of
Theorem 4.2 proof for our example scenario. Thick arrows indicate the one-way convergent messages sent
from one node to another. An operations execution interval is denoted by thick lines.

be confined between v.assignedStartT ime and v.assignedEndT ime. Combining the ordering property
with this observation about tsv, we get our desired result.

LEMMA 4.6. AssignedStartTime progression. For every v, v.assignedStartT ime = u.startT ime+ j ·
∆, where j is a non-negative integer smaller than k, the position of v in the topological sort T , and u is
either equal to v or u ≺T v.

Proof. We show this result by induction on the value of k. When k = 1, the result follows trivially. Let the
result be true for k = m. We next show that the result is also true for k = m+ 1. Consider two cases on the
execution of max function in Step 4 in Algorithm 1. If v.startT ime was chosen in the max function, then
the desired result follows immediately. If prec(v).assignedEndT ime was chosen in the max function,
then by induction, prec(v).assignedStartT ime = u.startT ime + j ·∆, where j < m and u will either
equal to prec(v) or u ≺T prec(v). Therefore, prec(v).assignedEndT ime = u.startT ime+ j ·∆, where
j < (m + 1) and u ≺T v. Since we have prec(v).assignedEndT ime = v.assignedStartT ime, the
desired result follows in this case too.

LEMMA 4.7. Assigned time inequality. For any operation v, we must have v.startT ime ≤ v.assignedStartT ime <
v.assignedEndT ime ≤ v.endT ime.
Proof. Its easy to see that v.startT ime ≤ v.assignedStartT ime from the Step 4 in Algorithm 1. From
Lemma 4.4, it follows that v.assignedStartT ime < v.assignedEndT ime.

We next show that v.assignedEndT ime ≤ v.endT ime. We know from Lemma 4.6 that v.assignedStartT ime =
u.startT ime + j · ∆, where j is a non-negative integer smaller than k, the position of v in the topologi-
cal sort T , and u is either equal to v or u ≺T v. From Step 5 in Algorithm 1, we get v.assignedEndT ime =
u.startT ime+j·∆, where 0 < j ≤ k. Now, k ≤ N , so using this we get the inequality: v.assignedEndT ime ≤
u.startT ime+N ·∆. We know that ∆ ≤ (v.endT ime−u.startT ime)/N from Step 2 in Algorithm 1. Us-
ing this value of ∆ in our inequality, we get: v.assignedEndT ime ≤ v.endT ime, our desired result.

Phase 2 (Issuing operations to produce the augmented execution ea). Now we issue operations based on T
to produce the augmented execution ea. Let v iterate over T . We start by resetting our real-time clock to 0.
For each vertex v at a node pv:

1. Wait until the real-time clock reads tsv1 ; because timestamps of successive vertices in T are mono-
tonically increasing (Lemma 4.5), this Step does not block indefinitely. Now, we perform the events
described below (i.e. read-start, write-start, clock-tick, recv-msg, send-msg,
read-complete, and write-complete) at consecutive timestamps from tsv.
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2. For each non-local incoming edge to v from a write w to object o, do the following: (a) deliver the
messages that were sent when the outgoing edges of vertex w were processed (see Step 4 below) and
(b) add an additional read ro to object o at node pv and wait until this read finishes.

3. Perform v’s operation at node pv. Wait until the operation completes. (Because ISC is always avail-
able, the operation must eventually complete).

4. For each outgoing edge to vertex v′ at node pv′ , perform the following Steps: wait until pv sends
the set of messages Mpv ,pv′ that are sufficient to bring d into a semi-pairwise converged state with s.
From the one-way convergence requirement, pv must eventually send such messages. Buffer Mpv ,pv′

for delivery in Step (1) when v′, the end point of this outgoing edge is processed.

Let ρa be the run produced by the above construction and let ea be the corresponding execution. Let ψa
denote the environment graph that models the input events generated by the above algorithm. ψa contains
vertices for read-start, write-start, and clock-tick events and we add send-msg-stub
and recv-msg-stub vertices for the send and receive of each message in the above execution. We draw
edges connecting consecutive events at a given node and edges that connect the send of a message to its
corresponding receive.
Stage 3: Augmented execution ea is similar to the reference execution e

In this stage of the proof, we argue that the augmented execution ea constructed above is similar to the
reference execution e by showing that ea satisfies the three requirements of similarity: (1) both ea and e
contain the same set of writes and ea contains all the reads present in e, (2) reads common to ea and e will
return identical responses in both these execution, and (3) operations common to e and ea will start and
end at the same real-time in both these executions. Its easy to see that all the operations that are present in
reference execution e must also be present in augmented execution ea (requirement 1) since we issued each
of these operations in our construction.

We then prove other requirements for similarity. In particular, we show that writes that precede an opera-
tion in G must precede that operation in any happens before graph Ga for ea. Similarly, due to the real-time
constraint, concurrent writes returned on a read in e cannot be ordered in Ga. Using these observations, we
can show that unaugmented reads in ea must return the same set of writes in both e and ea (requirement
2). We then show that by controlling the network and local-clocks, we can force unaugmented operations to
start and end at the same real time in both the augmented and reference executions (requirement 3).

We start by showing a very basic requirement for deterministic execution: writes precede the reads that
return them. Intuitively, there must be a causal path (containing message transfers and local state) from the
write to the read that returns that write. The following lemma formalizes this intuition.

LEMMA 4.8. Writes must have a communication path to the reads that return them. In augmented
execution ea, a write w appears in the writeList wl of a read r only if w precedes r in the run ρa. (w ∈
r.wl⇒ w ≺ρa r.)

Proof. Since an implementation can only read values produced by writes, there must exist a communication
path from pw after the issue of write w to pr prior to the issue of read r. Therefore, we must have w ≺ρa
r.

LEMMA 4.9. Precedence in the run implies precedence in the HB graph. Consider two non-augmented
vertices u and v. u precedes v in run ρa only if u precedes v in G.

Proof. Follows from construction Stage 2: a path from u to v can exist only if u ≺G v.

We next show a key property of one-way convergent natural causal implementations that we use later
to argue that dependent writes in our reference HB graph must remain dependent in any natural causal HB
graph for our augmented run.
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LEMMA 4.10. Reads return preceding writes in absence of superseding writes. Let ν be a run of a
naturally causally-consistent implementation. Let w be a write to an object o and r be a read to o such that
pw is semi-pairwise converged with pr in ν. If there does not exist another write w′ that precedes r and
succeeds w in ν (i.e. 6 ∃w′ : w ≺ν w′ ≺ν r), then we must have w ∈ r.wl.
Proof. Consider a prefix νpre of ν that consists of only the events and edges that have a path to the start of
r or w in ν. Now extend this prefix to form ν ′ as described next. (1) Add clock-tick events to ensure
termination of r using the availability requirement of ISC . (2) Wait until pr sends messages to force pw into
a pairwise converged state and deliver these messages at pw. Because pw is semi-pairwise converged with
pr in ν and our implementation is one-way convergent, pr must eventually send such messages. (3) Add a
read r′ at pw to the object that r is reading. (4) Finally, add clock-tick events to ensure termination of
r′. From the one-way convergence requirement, we must have r′.wl = r.wl.

It suffices to show that w ∈ r′.wl. Suppose, for the sake of contradiction, that w 6∈ r′.wl. We now make
the following sequence of claims.

Claim 1. There exists a write w′ such that (a) w ≺J w′ ≺J r′ in any natural causal HB graph J for ν ′

and (b) w′||ν′w. We note that in any natural causal HB graph J for ν ′, we must have w ≺J r′ (From
NC1—both r′ and w occur at the same node and w was completed first). So, w /∈ r′.wl implies that
from NC2, there exists a write w′ to object o such that w ≺J w′ ≺J r′ (Claim 1a) and w′ ∈ r′.wl.
But reads r and r′ must return identical response, therefore, we must have w′ ∈ r.wl. Applying
Lemma 4.8 to w′ ∈ r.wl, we get that w′ ≺ν′ r. We know that from our assumption that there does
not exist any write w′ such that w ≺ν w′ ≺ν r. Because ν ′ does not contain any new writes or
any new paths between existing writes, it follows that there does not exist any write w′ such that
w ≺ν′ w′ ≺ν′ r.

Consider cases on the precedence of w and w′ in ν. w ≺ν w′ would imply w ≺ν w′ ≺ν r contradict-
ing our assumption that there does not exist any write w′ that precedes r and succeeds w. w′ ≺ν w
is ruled out by the claim that w ≺J w′ where J satisfies NC3 condition of natural causal HB graphs.
Therefore , w′ must be concurrent to w in ν and ν ′ (Claim 1b).

Claim 2. There exists a run ν ′′ such that (a) in ν ′′, w starts after w′ finishes, and (b) ν ′′ is indistinguishable
to the implementation from the run ν ′. If w and w′ are concurrent in ν ′, we can construct a run ν ′′ in
which w starts after w′ finishes as follows: add |w′.endT ime−w.startT ime| to all the vertices that
are reachable from the w’s write-start vertex in ν ′ (Claim 2a). Because these timestamps are
not visible to the implementation, ν ′′ is indistinguishable to the implementation from ν ′ (Claim 2b).

These two claims together create a contradiction as follows. The run ν ′′ is indistinguishable to the im-
plementation from the run ν ′. Hence, the run ν ′′ should still satisfy Claim 1a. In addition, the run ν ′′ also
satisfies Claim 2a. But, Claim 1a (w ≺J w′ ≺J r′) and Claim 2a (w starts after w′ finishes) cannot be
simultaneously satisfied by a run of a natural causal-consistent implementation owing to the NC3 condition
(time does not travel backwards). By contradiction, our assumption that w 6∈ r′.wl must be wrong. Hence,
we must have w ∈ r′.wl. Furthermore, because r and r′ were issued in a pairwise converged state, we have
r.wl = r′.wl. Hence, w ∈ r.wl in the run ν ′′ and in run ν ′.

We next claim that w ∈ r.wl even in the run ν. The argument behind this claim relies on the deterministic
nature of our implementation. In particular, we argue that when r is issued, node pr receives that same set
of messages and observes the same set of events in the run ν ′ as it observes in the run ν. Therefore, the
response of the implementation to the read r in both these runs should be identical. Hence, w ∈ r.wl in run
ν.

Next, we apply the lemma proved above along directed paths from a write w to a read r in our augmented
run ρa such that the r and w satisfy the following condition: there does not exist a write that supersedes
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Figure 8: (a) A set of write-rooted and max-write paths and (b) a set of augmented reads on max-write paths
and their result. Figure (a) shows a set of write-rooted paths: w1 ≺H w2, w1 ≺H r1, w2 ≺H r1, and
w3 ≺H r1. Only paths w1 ≺H w2, w2 ≺H r1, and w3 ≺H r1 are max-write paths. As Figure (b) illustrates
and Lemma 4.13 proves, the augmented reads on such max-write paths return the preceding write on that
path. Augmented read ra1 must include the write w1 in its writeList. Similarly, the augmented read ra3
must include the write w2 in its writeList. On the other hand, for a non-max-write path w1 ≺H r1, ra3 is
not guaranteed to include w1 in its writeList and indeed, r1’s writeList does not include w1 in our
illustration.

w and precedes r in the run ρa. To identify such reads and writes, we first define write-rooted paths and
max-write paths.

DEFINITION 4.11. Write-rooted path. We say that a path v1 ≺G v2 ≺G ... ≺G vk is write-rooted if
whenever pvm 6= pvm+1 , pvm is a write operation.

DEFINITION 4.12. Max-write path. We say that a write-rooted path is the max-write path for vertices u
and v in graph G, if it contains the maximum number of non-terminal writes among all the write-rooted
paths from u to v in G.

LEMMA 4.13. Write dependencies are preserved in the augmented HB graph. If a write w precedes
an operation u in e’s HB graph G then w precedes u in any HB graph Ga for the augmented execution ea.
(w ≺G u⇒ w ≺Ga u)

Proof. From Corollary 4.3, w precedes u in G implies that w must precede u in H , the direct HB graph
constructed using G. Let Pmax denote the max-write path from w to u in H . There must exist one such
write-rooted path because while converting a general HB graph into a direct HB graph in Stage 1, we must
have created at least one such write-rooted path by adding an edge from the write w to the vertex u.

We complete the remainder of this proof by using mathematical induction on the number of writes in
the max-write path (Pmax) from w to u. We first consider the base case where the number of non-terminal
writes in Pmax is 0. If w and u occur on the same node, then the claim follows from NC1. Consider the
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case when pw 6= pu. In this case, H must have a direct edge from w to u from construction in Stage 1.
Processing this edge from w to u in Stage 2 involved performing one-way convergence from pw to pu and
inserting before u, an augmented read rf at pu to the object that w was writing.

Consider the run ν constructed after adding the augmented read rf . It contains a write w and a read rf
such that pw has semi-pairwise converged with prf (Stage 2, Phase 2, Step 2a). Furthermore, both the read
rf and write w are operating on the same object o (Stage 2, Phase 2, Step 2b). Finally, because the path
from w to u was a max-write path with no non-terminal writes, it follows that there does not exist a write w′

such that w ≺H w′ ≺H u (from definition of max-write). Applying Lemma 4.9, we get that there does not
exist a write w′ such that w ≺ν w′ ≺ν rf . Now we can apply Lemma 4.10 to get that w ∈ rf .wl.

From NC2, we must have w ≺Ga rf and from NC1, we have rf ≺Ga u, it follows by transitivity that
w ≺Ga u.

After completing the base case, we now prove the induction Step. Suppose that our lemma holds true
for max-write paths containing up to k(≥ 0) non-terminal writes. We show that the lemma must also hold
for max-write paths with k + 1 non-terminal writes. Consider the last non-terminal write wl on the max-
write path. We note that a max-write path with k + 1 non-terminal writes must consist of max-write path
with k vertices ending at wl and a max-write path with 0 non-terminal vertices from wl to u. Now, from
mathematical inducting, we must have w ≺Ga wl and wl ≺Ga u. Using transitivity of ≺Ga relation, we get
our desired result: w ≺Ga u. Therefore, by induction, Lemma 4.13 is true.

Now we show that if a read appears in both e and ea, then it must return identical responses in both these
executions.

LEMMA 4.14. Common reads return identical responses. For every read r ∈ e with writeList wl in e
and wla in ea, wl = wla

Proof. Consider the following two cases:
Case 1: w ∈ wla ∧ w 6∈ wl: From Lemma 4.8 and Lemma 4.9, w ∈ wla ⇒ w ≺G r, so for r to not return
w there must exist a w′ such that w ≺G w′ ∧ w′ ≺G r. But from Lemma 4.13 , w ≺G w′ ∧ w′ ≺G r ⇒
w ≺Ga w′ ∧ w′ ≺Ga r so r.wla could not include w (from NC2). Contradiction.
Case 2: w ∈ wl ∧ w 6∈ wla: From NC2, w ≺G r, and from Lemma 4.13, w ≺Ga r. So, from NC2, for r to
not return w in ea, there must exist w′ such that r returns w′ in Ga and w ≺Ga w′. From Case 1, we know
that w′ ∈ wl. Combining these two observations, it must be the case that w||Gw′ (w is concurrent to w′ in
G) whereas w ≺Ga w′.

As in the proof of Lemma 4.10, because w and w′ are concurrent in G, they must be concurrent in ρa
from construction. Hence, as before, we can construct a different environment graph ρ′a in which w starts
after w′ finishes in real-time. Because the implementation does not have access to real-time, it must produce
identical responses in both ρa and ρ′a. In particular, the write lists wla and wl′a returned respectively by read
r in ρa and ρ′a must be identical. However this cannot be, since by NC3 we cannot have w ≺G′a w′ in any
HB graph G′a for the execution for the run ρ′a. Contradiction.

LEMMA 4.15. Feasible real-time assignment. For each operation v in the run ρa, ψa, v.startT ime <
v.storeStartT ime < v.storeEndT ime < v.endT ime.

Proof. We know that v.assignedStartT ime < v.assignedEndT ime from Step 5 in Algorithm 4.4
and from knowing that ∆ > 0 (Lemma 4.4). Combing this observation with Step 6 in Algorithm 1,
we get that tsv,1 > v.assignedStartT ime. From construction in Phase 2 of Stage 2, we know that
v.storeStartT ime = tsv,1. Combining them, we get v.assignedStartT ime < v.storeStartT ime.

Its easy to see that v.storeEndtime < v.assignedEndT ime because we create an infinite series of
timestamps between v.assignedStartT ime and v.assignedEndT ime (Step 6− 8, Algorithm 1), and we
force the implementation to finish v before moving on to the timestamps beyond v.assignedEndT ime
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(we only advance timestamps in construction Step 1, in Stage 2). Of these infinite timestamps, only a finite
number will be used to perform the operation v. Hence, we get v.storeEndT ime < v.assignedEndT ime.

Combining the inequalities above, we get: v.assignedStartT ime < v.storeStartT ime < v.storeEndT ime <
v.assignedEndT ime. Combining this result with Lemma 4.7, we get our desired result.

Lemma 4.14 shows that the reads common to ea and e return identical set of writes. Lemma 4.15 shows
that by controlling the delivery of application events to the storage implementation and vice-versa, we can
ensure that the store execution time-interval of an unaugmented operation in ea falls between its execution
interval in e. Therefore, by controlling the delivery of these events between the application layer and the
storage implementation layer, we can ensure that the execution interval of unaugmented operations in ea is
identical to their execution interval in e. Recall that controlling the delay between the application observed
startTime of an operation, which is reported in th execution, and the store observed storeStartTime
is possible because we assume that these layers communicate asynchronously (Section 2.7). Similarly, we
can also control the delay between the store observed storeEndTime for an operation and the application
observed endTime for an operation.

So far, we have shown that the augmented execution ea matches the reference execution e. We next show
how we can construct an execution er that is identical to the reference execution e.
Stage 4: ISC accepts the execution e.

In this stage, we complete our proof by showing that the always-available, and one-way convergent
distributed storage implementation ISC accepts the execution e. In stages 1 through 3, we showed a con-
struction to produce an augmented execution ea that is similar to our desired reference execution e. We next
show the construction to produce a run ρr that produces an execution er that is identical to the reference
execution e.

We construct the run ρr by eliminating the augmented reads from ρa that we added in Stage 2. Because
our implementation is assumed to be classical and hence not influenced by reads, ρr should produce an
execution er that must be identical to e: (1) the executions er and e contain the same set of operations, (2)
reads common to both these executions return the same response in both e and er, and (3) operations start
and end at the same real-time in both the executions e and er. Therefore, Theorem 4.2 holds.

In this section, we showed that consistency semantics stronger than natural causal consistency cannot be
enforced by an always-available and one-way convergent implementation. The key idea that made this result
possible is our use of one-way convergence as a requirement on the implementations that we consider. In
the next section, we prove that natural causal consistency is indeed achievable by one-way convergent and
always-available implementations. Both these results together complete the proof for our claim that natural
causal consistency provides a tight bound on consistency semantics that are enforceable by always-available
and one-way convergent implementations.

4.3 Natural causal consistency is enforceable by an always-available and one-way conver-
gent implementation

We next show that natural causal consistency can be enforced using an always-available and one-way con-
vergent implementation. This result is trivial because, as argued earlier, many existing systems such as
Bayou [55] and PRACTI [8] provide natural causal consistency. However, for completeness, Theorem 4.16
proves this result. Because the proof for environments without Byzantine nodes follows from the proof for
environments with Byzantine nodes, we avoid presenting the complete proof here. Instead, Theorem 4.16
derives its result from Theorem 5.39.

THEOREM 4.16. Natural causal consistency can be enforced by an always-available and one-way conver-
gent implementation.

Proof. Follows from Theorem 5.39 (proved later) which shows that view-fork-join-causal (VFJC) consis-

21



tency can be provided using an always-available and one-way convergent implementation and from noting
that in absence of Byzantine nodes, the VFJC consistency reduces to natural causal consistency.

5 CAC limits with Byzantine failures
The previous section considered only network failures. In this section, we consider a Byzantine failure
model. We introduce fork-causal (FC) consistency, fork-join-causal (FJC) consistency, and view-fork-join-
causal (VFJC) consistency semantics for Byzantine failure environments that require high availability. We
then show that fork-causal consistency and stronger consistency semantics cannot be implemented without
sacrificing availability or convergence. Finally, we show that VFJC consistency can be enforced by a one-
way convergent and always-available implementation.

5.1 Consistency semantics for Byzantine failures
In this section, we introduce a number of consistency semantics that are designed for a environments that
must ensure high availability despite the potential presence of Byzantine participants. We start by defining
fork-causal consistency, inspired by SUNDR’s [36] fork-linearizable consistency, for environments that de-
sire high availability. We find that while fork-causal consistency fulfills our availability goals, it does not
guarantee convergence. Therefore, we further weaken fork-causal consistency to define Depot’s fork-join-
causal consistency designed for environments desiring both convergence and high availability. Finally, in
an attempt to find the strongest achievable consistency semantics that still fulfills our convergence and avail-
ability goals, we define view-fork-join-causal consistency, a strengthening of fork-join-causal consistency,
which limits the set of forks that faulty nodes can introduce.

Fork-causal consistency. Fork-causal consistency ensures that each correct node sees a causally consis-
tent subset of the global execution. Such a consistency semantics is appealing because applications designed
for causal consistency will continue to be safe under fork-causal consistency. Fork-causal consistency main-
tains the key property of causal consistency: reads return the most recent concurrent writes, while weakening
the other properties to account for Byzantine faulty nodes as described below.

DEFINITION 5.1. An execution e is fork-causally consistent (FC-consistent) if there exists a directed acyclic
graph G, called a HB (happens before) graph, containing vertices for operations by correct nodes and
vertices for write operations by faulty nodes that were returned on reads by correct nodes, such that G
satisfies the following consistency check.

FC1 Serial ordering of operations by correct nodes. The operations of a correct node are totally ordered
in G. This total ordering of operations by a correct node p must be consistent with the real-time at
which these operations were issued by p. Specifically, if p is a correct node and v and v′ are vertices
corresponding to operations by p, then v.startT ime < v′.startT ime⇔ v ≺G v′.

FC2 A read returns the latest preceding concurrent writes. For any vertex r corresponding to a read
operation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that
have not been overwritten by another write of objId that both follows w and precedes r:

∀r, ∀w,w ∈ r.wl ⇔ (w ≺G r ∧ w.objId = r.objId) ∧ ( 6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId =
r.objId))

FC3 Serial ordering of each node’s operations that are observed by a correct node. An operation u is said
to be observed by a correct node p in G if either p executes u or if p executes an operation v such
that u ≺G v. For any operation o by a correct node and for all operations u1 and u2 by a node p,
u1 ≺G o ∧ u2 ≺G o⇒ u1 ≺G u2 ∨ u2 ≺G u1.

As the name suggests, fork-causal consistency induces forks that we define next.
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DEFINITION 5.2. Fault-tree. A fault-tree for a faulty node f is a directed tree consisting of operations by
f .

DEFINITION 5.3. Fork. In a fault-tree for a faulty node, we call a directed path from the root to a leaf, a
fork. The total set of forks induced by a faulty node is the union of the set of forks induced by each of its
fault-trees.

OBSERVATION 5.4. Fork-causal fault-tree creation property. For each faulty node in a fork-causally
consistent execution e, the fork-causal HB graph for e induces a set of fault-trees over the operations of f
that are observed by some correct node.

The fault-tree creation property states that the operations of a faulty node f that are observed by correct
nodes in a fork-causal HB graph can be made to form a set of fault-trees. To construct the fault-tree set for
a faulty node, we first identify the vertices that need to be included in the tree—i.e. the operations of f that
are observed by some correct node. Next, we connect these vertices using the HB graph as follows. For each
vertex u, v that are selected in the first step, we add an edge from u to v if u precedes v in the HB graph.
The resulting graph is a fault-tree for the given fork-causal HB graph.

The fault-tree creation property follows directly from the FC3 property of fork-causal consistency as two
branches of a fault tree, a.k.a. forks, never join in a fork-causal HB graph. Indeed, such joined branches
would violate the FC3 property—serial ordering for each node’s operations that are observed by a correct
node. More concretely, for two branches to join, there must be an operation v with two parents v1 and
v2 such that v1 and v2 are concurrent. Furthermore, v must be observed by some correct node (say p)—
precondition for this property. But, v1 and v2 are also observed by p (because of the definition of observed)
contradicting the FC3 property. Therefore, from FC3, all FC HB graphs must satisfy the fault-tree creation
property.
Comparison with causal consistency. Causal consistency enforces conditions that are analogous to those
enforced by FC consistency, but it requires them to hold for operations issued by all nodes, not just correct
ones. In particular, while FC consistency imposes the serial ordering constraint on only the operations by
correct nodes, causal consistency imposes this constraint on all operations. In addition, because faulty nodes
can behave arbitrarily, fork-causal consistency makes no guarantees about the results of reads issued at faulty
nodes.

Figure 9(a) shows a run that is fork-causally consistent but not causally consistent. In this example, node
f is faulty and produces four writes w0, w1, w2, and w3. Node p1 observes w0, w1, and w2 but not w3, and
node p2 observes w0, w1, and w3 but not w2. Figure 9(b) shows the corresponding execution. As Figure 9(c)
illustrates, we can produce an edge assignment and observer graph that passes all tests for FC consistency
by dispensing with the serial ordering constraint at the faulty node. Conversely, it is impossible to produce
an edge assignment to produce an observer graph G′ that passes the causal consistency checks.

Figure 10(a) shows the fault-tree for node f and Figure 10(b,c) shows the corresponding forks. Note that
in fork-causal consistency, no correct node can observe more than one fork.

Fork-join-causal consistency. Unfortunately, as we prove later (Section 5.2), a fundamental limitation
of the existing forking-based consistency semantics [10, 12, 36, 37, 42, 48] is that they compromise con-
vergence by preventing forked nodes from observing each other’s updates. Fork-causal consistency also
relies on forking to handle Byzantine failures. Hence, it also suffers from the same limitation. The De-
pot system [41] overcomes this limitation by permitting forks to be joined to enforce a slightly weaker,
but convergent, fork-join-causal consistency as its correctness requirement. We next define fork-join-causal
consistency.

DEFINITION 5.5. An execution e is fork-join-causally consistent (FJC-consistent) if there exists a directed
acyclic graph G, called a HB (happens before) graph, containing a vertex for every operation by a correct
node and a vertex for every write operation by a faulty node that is returned on a read by a correct node,
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Figure 9: Illustration of fork-causal consistency and its comparison with fork-causal consistency. (a) A run
with a faulty node f that issues two non-serial writes w2 and w3, (b) the corresponding execution, and (c)
a fork-causal happens before graph for this execution. The figures show only the relevant fields of various
vertices for brevity. In the run, the faulty node f issues non-serial writes w2 and w3 and exposes these
writes to correct nodes p1 and p2 respectively. There is no causally consistent happens before graph for this
execution because in the execution w2 and w3 are not serially ordered according to any possible history of
node f—p1 observed w2 without observing w3 and p2 observe w3 without observing w2. The HB graph is
fork-causally consistent because fork-causal consistency does not require total ordering of faulty node f ’s
operations.
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such that G satisfies the following consistency check.

FJC1 Serial ordering of operations by correct nodes. The operations of a correct node are totally ordered
in G. This total ordering of operations by a correct node p must be consistent with the real-time
at which these operations were issued by p. Specifically, if v and v′ are operations by the p, then
v.startT ime < v′.startT ime⇔ v ≺G v′.

FJC2 A read return the latest preceding concurrent writes. For any vertex r corresponding to a read oper-
ation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that have
not been overwritten by another write of objId that both follows w and precedes r:

∀r, ∀w,w ∈ r.wl ⇔ (w ≺G r ∧ w.objId = r.objId) ∧ ( 6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId =
r.objId))

Comparison with fork-causal consistency. Fork-join-causal consistency weakens fork-causal consistency
by eliminating the FC3 condition to ensure convergence. The FC3 condition requires that operations by
any node seen by each correct node must be serially ordered. Hence, correct nodes that have seen non-serial
writes by the same faulty node cannot observe each other’s operations without violating FC3. By eliminating
the FC3 requirement, FJC consistency permits such forked correct nodes to join these forks at the cost of
observing concurrent forked writes by a faulty node, a behavior not possible in fork-causal consistency. FJC
implementations, such as Depot, expose such forked writes as multiple concurrent writes by different virtual
nodes that correspond to the same faulty node.

Figure 11 illustrates this difference. Figure 11 extends the scenario illustrated in Figure 9. The faulty
node f issues writes w0, w1, w2 and w3 and exposes w0, w1, and w2 to p0 and w0, w1, and w3 to p1 thereby
forking correct nodes p1 and p2. Later, p1 and p2 communicate and exchange forked writes w2 and w3

such that both p1 and p2 observe both the forks, a phenomenon prohibited by fork-causal consistency. This
joining of forks enables p1 and p2 to converge to a common state in which reads to identical objects return
identical responses. No fork-causal happens before graph exists for this execution because in any such
happens before graph, both w2 and w3 must be concurrent and yet be observed by correct nodes p1 and p2;
a violation of the FC3 condition of fork-causal consistency. FJC omits the FC3 condition for faulty nodes
and hence admits a happens before graph in which writes w2 and w3 by the faulty node f can be concurrent
and yet be observed by correct nodes p1 and p2.

View-fork-join-causal consistency. We designed view-fork-join-causal consistency with the goal of iden-
tifying the strongest, always-available, and one-way convergent consistency semantics that can be achieved
in presence of Byzantine participants. While we fail to show a tight bound, VFJC consistency provides
an effective and useful lower bound on the strength of consistency semantics that can be achieved in such
environments. As we show later (Section 5.2), neither causal consistency nor fork-causal consistency is
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(c) Fork-join-causal HB graph

Figure 11: Illustration of fork-join-causal consistency and its comparison with fork-causal consistency. (a)
A run with a faulty node f that issues two non-serial writes w2 and w3, (b) the corresponding execution,
and (c) a fork-join-causal happens before graph for this execution. The figures show only the relevant fields
of various vertices for brevity. In the run, the faulty node f issues non-serial writes w2 and w3 and exposes
these writes to correct nodes p1 and p2 respectively. Later, p1 and p2 exchange forked writes w2 and w3.
There is no fork-causally consistent happens before graph for this execution because in the execution w2 and
w3 are observed by both the correct nodes p1 and p2 violating the FC3 condition of fork-causal consistency.
The HB graph is fork-join-causally consistent because fork-join-causal consistency does not require total
ordering of faulty node f ’s operations that are observed by a correct node.
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achievable in such environments. Furthermore, Depot has shown that FJC consistency is indeed achievable.
VFJC consistency further tightens the gap between Depot’s FJC consistency that permits nodes to converge,
and fork-causal, causal, and natural causal consistency that are stronger but not achievable.

Like FJC consistency, VFJC consistency permits forks to be joined, thereby allowing convergent imple-
mentations. However, unlike Depot’s FJC consistency, which admits an unbounded number of forks, VFJC
consistency limits the set of forks that are admitted in an execution to only those that are unavoidable without
compromising liveness. This restriction on the set of admitted forks effectively forces VFJC implementa-
tions to force the eviction of faulty nodes and limit the damage such nodes can cause in an execution.

To describe the checks for limiting the set of admissible forks, we use a set of view vertices in addition
to the read and write vertices in a VFJC HB graph. In addition, VFJC consistency includes natural causal
consistency’s time does not travel backward requirement and fork-causal consistency’s fault-tree creation
property. We next define VFJC consistency and then contrast VFJC consistency with FJC consistency. We
first define a few terms to simplify the description of VFJC consistency checks.

DEFINITION 5.6. Non-local edge. Two vertices v1 and v2 are said to be connected through a non-local
directed edge from v1 to v2 if v1 and v2 correspond to operations occurring at different nodes, v1 precedes
v2, and there does not exist a vertex u such that v1 precedes u and u precedes v2.

DEFINITION 5.7. Local edge. Two vertices v1 and v2 are said to be connected through a local directed
edge from v1 to v2 if v1 and v2 correspond to operations by the same node p, v1 precedes v2, and there does
not exist a vertex u corresponding to an operation by p such that v1 precedes u and u precedes v2.

DEFINITION 5.8. Edge. Two vertices v1 and v2 are said to be connected through a directed edge from v1
to v2 (denoted by v1 → v2) iff v1 and v2 are connected through either a local or a non-local directed edge.

DEFINITION 5.9. Projection of a vertex v in a graph G. The projection Gv of a vertex v in graph G
consists of the subgraph rooted at v with all the vertices v′ : v′ ≺G v ∨ v′ = v and edges connecting these
vertices.

DEFINITION 5.10. Correct node in a subgraph. We say that a node p is correct in a graph H if all the
vertices of node p in graph H are totally ordered. In a happens before graph, these vertices may include
read, write, or view vertices.

DEFINITION 5.11. An execution e is view-fork-join-causally consistent (VFJC-consistent) if there exists a
directed acyclic graph G, called a HB (happens before) graph, containing a vertex for every operation by a
correct node, a vertex for every write operation by a faulty node that is returned on a read by a correct node,
and a set of view vertices to restrict the set of admitted forks, such that G satisfies the consistency checks
enumerated below.

VFJC1 Serial ordering of operations by correct nodes. All vertices of a correct node are totally ordered in
G. This total ordering of vertices of a correct node p must be consistent with the real-time at which
the corresponding operations were issued by p. Specifically, if v and v′ are operations by the p, then
v.startT ime < v′.startT ime⇔ v ≺G v′.

VFJC2 A read return the latest preceding concurrent writes. For any vertex r corresponding to a read
operation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that
have not been overwritten by another write of objId that both follows w and precedes r:

∀r, ∀w,w ∈ r.wl ⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId =
r.objId))

VFJC3 Sharing with correct nodes. If there exists an edge from a vertex v1 at node p1 to a vertex v2 at
node p2 then both p1 and p2 are correct in the projection Gv2 .

VFJC4 Time does not travel backward. For any read/write operations u, v by correct nodes:
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(c) Fork-join-causal but not view-fork-join-causal HB graph

Figure 12: Illustration of view-fork-join-causal consistency and its comparison with fork-join-causal consis-
tency. (a) A run with a faulty node f that issues three non-serial writesw2,w3, andw4, (b) the corresponding
execution, and (c) a fork-join-causal happens before graph for this execution. The figures show only the rel-
evant fields of various vertices for brevity. In the run, the faulty node f first issues two non-serial writes
w2 and w3 and exposes these writes to nodes p1 and p2 respectively. Subsequently, f issues another write
w4 concurrent to w2 and w3 and exposes it to p1. There is no view-fork-join-causally consistent happens
before graph for this execution because node p1 has accepted two forks from the faulty node f ; in a VFJC-
consistent execution, correct nodes only accept forks from nodes that are known to be correct. The HB
graph is fork-causally consistent because fork-join-causal consistency does not restrict the set of forks that
are accepted by correct nodes.
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u.endT ime < v.startT ime⇒ v 6≺G u.

Next, we make the following observation about VFJC HB graphs.

OBSERVATION 5.12. VFJC Fault-tree creation property. For each faulty node in a view-fork-join-causally
consistent execution e, the VFJC HB graph for e induces a set of fault-trees over the operations of f that
are observed by some correct node. This property follows directly from the acyclic nature of a HB graph
and the sharing with correct nodes property (VFJC3) of VFJC HB graphs—a non-tree graph would violate
the VFJC3 property of VFJC consistency.

Comparison with fork-join-causal consistency. VJFC consistency strengthens FJC consistency with the
goal of providing a tighter bound for achievable, always-available, and one-way convergent consistency
semantics in environments with Byzantine participants. As explained earlier, VFJC consistency admits a
limited set of unavoidable forks, in contrast to the unbounded number of forks admitted by FJC consistency.
Intuitively, the VFJC3 property—sharing with correct nodes—ensures that the correct nodes only share
information with nodes that appear to be correct. Though this check does not guarantee that a correct node
never receives updates from a faulty node, it gets close. In particular, the VFJC3 property ensures that
in an always-available and one-way convergent (or pairwise convergent) implementation, if a correct node
p1 accepts updates from a faulty node f in an execution e then, p1 cannot distinguish e from some other
execution e′ in which f is correct. We use this intuition to prove a bound on the number of forks that VFJC
consistency admits (Theorem 5.49 in Section 5.4).

In addition to limiting the set of admissible forks, VFJC consistency includes the time does not travel
backward requirement of natural causal consistency to ensure that the precede relation does not violate the
real-time assignment of operations issued by correct nodes.

Figure 12 illustrates this difference. Figure 12 extends the scenario illustrated in Figure 9 to form a run
which is FJC-consistent but not VFJC-consistent. Like before, the faulty node f issues writes w0, w1, w2,
and w3 and exposes w0, w1, and w2 to p0 and w0, w1, and w3 to p1 thereby forking nodes p1 and p2. Later,
the faulty node f creates another fork by issuing another write w4 and sending it to p1. In a FJC consistent
execution, p1 can accept this new write because FJC consistency does not preclude accepting multiple forks
from a known faulty node. Later, read r4 by node p1 returns writes w2 and w4, from two different forks
of the faulty node f . In contrast, the VFJC3 condition of VFJC consistency prohibits the correct node p1

from directly accepting two forks from the faulty node f . Therefore, no VFJC happens before graph for this
execution can exist.

Note that this situation can be easily avoided. The correct node p1 can be configured to not accept new
updates from a known faulty node and as soon as node p1 sees the write w4 concurrent to other writes from
node f , it can infer that f is faulty and reject write w4 coming directly from the faulty node f .

A more complicated situation can arise when node p1 is also faulty and colludes with the faulty node f .
In this case p1 can accept both the forks, knowing that they are from the faulty node f and can later try
to expose these forks to the correct node p2. In a FJC consistent execution, p2 can accept both the forks
leading to an execution where a faulty node has colluded with another faulty node to expose 3 forks to a
correct node.

In contrast, in a VFJC consistent execution, the correct node p2 cannot accept 3 forks in presence of just 2
faulty nodes. VFJC consistency admits only the unavoidable set of forks and is able to minimize the number
of forks observed by correct nodes in a given execution. In a VFJC-consistent execution, p1 will have to
produce proof that it accepted both the forks without knowing that f was faulty and p1 cannot produce
such a proof because p1 must have realized that f is faulty when p1 was accepting the second fork. More
concretely, no VFJC consistent happens before graph can exist for this run. We present the argument for this
claim next. For the read r5 to return bothw4 andw2, there must be path fromw4 to r5. The existence of such
a path implies that there must be a fault-edge from w4 to either p1 or to p2. Let v be the vertex at which such
an edge terminates. This fault-edge connecting w4 to p1 (or p2) must violate the VFJC3 condition (sharing
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with correct nodes) because f must be faulty in the projection of v, the other end point of this fault-edge.
Hence, no VFJC consistency HB graph can exist for this run.

Note that the run shown in Figure 11 is both FJC consistent and VFJC consistent because in that run, all
edges satisfy the VFJC3 condition.

5.2 CAC Byzantine impossibility results
In this section, we show impossibility results for environments with Byzantine nodes. We start by showing
that causal consistency is not achievable using an always-available and pairwise convergent implementation
if Byzantine failures can happen (Theorem 5.13). We then strengthen our impossibility result by showing
that fork-causal consistency, a weakening of causal consistency designed for environments with Byzan-
tine faulty nodes, is also not achievable using an always-available and pairwise convergent implementation
(Theorem 5.14). Note that because pairwise convergence is less convergent than one-way convergence, by
showing that no pairwise convergent implementation can provide a certain consistency, we also implicitly
prove that no one-way convergent implementation can provide our desired consistency.

THEOREM 5.13. Causal not achievable. Causal consistency and stronger semantics are not enforce-
able using an always-available and pairwise convergent distributed storage implementation if nodes can
be Byzantine.

Proof. Let S be a consistency semantics which is at least as strong as causal consistency. Suppose, for
the sake of contradiction, that an always-available and pairwise convergent implementation IS enforces S.
Consider an execution of three nodes p1, p2, and f . Nodes p1 and p2 are correct and node f is faulty. In
particular, f simulates the actions of two correct nodes, f1 and f2, both with the identity of f . Execute the
following sequence of operations. Assume that the network drops any messages not described below.

1. Issue a write wa to an object a at f1 and let it complete. Similarly, issue a write wb to an object b at
f2 and let it complete.

2. Now, let f1 become pairwise converged with p1 by permitting sufficient exchange of messages be-
tween p1 and f1. Similarly, let f2 become pairwise converged with p2.

3. Issue reads ra,p1 followed by rb,p1 at p1 and corresponding reads ra,f1 , and rb,f1 at f1. Similarly, issue
reads rb,p2 and ra,p2 in that order at p2 and corresponding reads rb,f2 and ra,f2 at f2.

We argue that the read ra,p1 at p1 must return the write wa and the read rb,p1 at p1 must return⊥. Because
the faulty node f is behaving like a correct node f1 in its interactions with p1, the execution involving
the correct node p1 and the faulty node f1 is indistinguishable to the implementation from an execution
involving two correct nodes (p1 and f1). Therefore, we can apply the serial ordering for operations by
correct nodes on the correct node f1’s reads to argue that the read ra,f1 must return wa and the read rb,f1
must return ⊥. Furthermore, because the reads were issued after p1 and f1 were pairwise converged, the
reads ra,p1 and rb,p1 should return the same set of writes as the reads ra,f1 and rb,f1 respectively. Hence, the
read ra,p1 at p1 must return the write wa and the read rb,p1 at p1 must return ⊥. Similarly, we can argue that
the read rb,p2 at p2 must return wb and the read ra,p2 must return ⊥.

We argue that no causal HB graph exists for this execution. For the sake of contradiction, assume that
a causal HB graph G exists. Both writes w1 and w2 were issued by the same node f and therefore, from
the serial ordering at each node (C1) requirement, either w1 precedes w2 in G or vice-versa. Suppose
that w1 precedes w2 in G. In our execution, p2 has observed w1 without observing w2—its read rb,p2
returned w2 but a later read ra,p2 returned ⊥—violating the reads return the latest preceding concurrent
writes (C2) requirement of causal consistency. Similarly, w2 preceding w1 is not possible either. Hence, by
contradiction, no causal HB graph for this execution can exist and hence, no always-available and pairwise
convergent implementation can enforce causal consistency or stronger semantics if nodes can be Byzantine.
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Next, we strengthen our impossibility result by showing that fork-causal consistency, a weakening of
causal consistency designed for environments with Byzantine nodes, is also not enforceable using always-
available and pairwise convergent implementations. Because fork-causal consistency is weaker than many
of the recently proposed forking based consistency semantics [10, 11] designed to tolerate Byzantine nodes,
this result establishes that none of these semantics can be enforced without compromising either convergence
or availability.

THEOREM 5.14. Fork-causal not achievable. Fork-causal consistency and stronger semantics are not
enforceable using an always-available and pairwise convergent distributed storage implementation.

Proof. Let S be a consistency semantics which is at least as strong as fork-causal consistency. Suppose, for
the sake of contradiction, that an always-available and pairwise convergent implementation IS enforces S.
Consider an execution of three nodes p1, p2, and f . Nodes p1 and p2 are correct and node f is faulty. In
particular, f simulates the actions of two correct nodes, f1 and f2, both with the identity of f . Execute the
following sequence of operations. Assume that the network drops any messages not described below.

1. Issue a write wa to an object a at f1 and let it complete. Similarly, issue a write wb to an object b at
f2 and let it complete.

2. Now, let f1 become pairwise converged with p1 by permitting sufficient exchange of messages be-
tween p1 and f1. Similarly, let f2 become pairwise converged with p2.

3. Issue reads ra,p1 followed by rb,p1 at p1 and corresponding reads ra,f1 , and rb,f1 at f1. Similarly, issue
reads rb,p2 and ra,p2 in that order at p2 and corresponding reads rb,f2 and ra,f2 at f2.

We first argue that the read ra,p1 at p1 must return the write wa and the read rb,p1 at p1 must return ⊥.
Because the faulty node f is behaving like a correct node f1 in its interactions with p1, the execution involv-
ing the correct node p1 and the faulty node f1 is indistinguishable to the implementation from an execution
involving two correct nodes (p1 and f1). Therefore, we can apply the serial ordering for operations by
correct nodes on the correct node f1’s reads to argue that the read ra,f1 must return wa and the read rb,f1
must return ⊥. Furthermore, because the reads were issued after p1 and f1 were pairwise converged, the
reads ra,p1 and rb,p1 should return the same set of writes as the reads ra,f1 and rb,f1 respectively. Hence, the
read ra,p1 at p1 must return the write wa and the read rb,p1 at p1 must return ⊥. Similarly, we can argue that
the read rb,p2 at p2 must return wb and the read ra,p2 must return ⊥.

We claim that the implementation cannot enforce pairwise convergence between p1 and p2 in this state.
The primary reason behind this claim is that correct nodes p1 and p2 have observed inconsistent histories
that cannot be reconciled without requiring them to observe the concurrent writes w1 and w2 issued by the
same node f : a violation of the serial ordering for operations seen by correct node property that must be
enforced by fork-causal consistency and stronger semantics.

We prove our claim by arguing that no fork-causal HB graph exists for this execution. For the sake of
contradiction, assume that the implementation IS can attain pairwise convergence. Let p1 and p2 exchange
enough messages to become pairwise converged. Issue reads r′a,p1 and r′a,p2 to object a at p1 and p2 respec-
tively and let these reads finish. Consider the admissible HB graphs for this execution. We argue that in any
fork-causal HB graph for this execution, wa and wb must be shown as concurrent. Graphs that order these
writes (w1 ≺ w2 or w2 ≺ w1) will not be admissible because p1 has observed w1 without observing w2—its
reads returned w1 but not w2, while p2 has observed w2 without observing w1—its reads returned w2 but
not w1.

Now consider the response returned to reads r′a,p1 and r′a,p2 . From one way convergence requirement,
both these reads must return the same answer. Furthermore, because only one write wa has been issued to
object a, the reads can either return wa or ⊥.

If these reads returns ⊥, then no fork-causal HB graph can satisfy the reads return the most recent
concurrent write property (FC2) at correct node p1 because a later read r′a,p1 by p1 is returning an answer
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than is older than that returned by an earlier read ra,p1 by p1. Conversely, if the reads return wa, then
from FC2, we must have wa ≺ ra,p2 . Hence, no fork-causal HB graph can satisfy the serial ordering for
operations seen by correct node at correct node p2 because p2 has observed concurrent operations wa and
wb from the faulty node f .

Although for simplicity we state the above result in the context of always available, one-way-convergent
implementations, the limit is more restrictive. A similar result holds for implementations that allow oper-
ations under quorums that are not guaranteed to overlap in at least one correct node. We call such quo-
rum systems disjoint quorum systems. Note that any two quorums are allowed to overlap as long as all
the overlapping nodes are allowed to be faulty. Such systems include implementations of forking seman-
tics [10, 12, 36, 37, 42, 48], where a potentially faulty server forms the quorum, BFT replicated state ma-
chines, which allow smaller quorums [37, 54], and decentralized systems like Depot [41] and Bayou [49],
which allow disconnected operations.

For such disjoint quorum systems, we define a weaker availability guarantee, called disjoint-quorum-
availability. In particular, we say that an implementation is disjoint-quorum-available under a quorum Q
of servers, if every operation performed by a correct client c eventually completes if every node p ∈ Q is
correct and nodes in Q ∪ c can communicate with each other. Similarly, we define a weaker convergence
guarantee, called disjoint-quorum-convergence, where if a quorum of servers and a set of correct clients
can exchange messages, they should be able to converge to a common state where reads return identical
response at converged clients. In addition, disjoint-quorum-convergence requires that correct clients should
be able to attain eventual consistency.

Now we can show the following theorem:

THEOREM 5.15. Fork-causal and stronger consistency semantics are not achievable in a disjoint-quorum-
convergent and disjoint-quorum-available distributed storage implementation subject to Byzantine node
failures.

Proof. (Sketch) Consider two elements Q1, Q2 of the disjoint quorum system. Consider an execution in
which each node s ∈ Q1 ∩ Q2 is faulty and simulates the behavior of two nodes s1 and s2. Now, we
consider three clients p1, p2, and f where client f is faulty and simulates the behavior of two correct clients:
f1 and f2 in quorums Q1 and Q2 respectively. Now, as before, we perform write operations at f1 and f2 and
use disjoint-quorum-availability to ensure their completion. Next, we force f1 to attain quorum-convergence
with p1 using quorum Q1 and similarly force f2 to attain quorum-convergence with p2 using quorum Q2.
Finally, we issue reads at p1 and p2 and force these reads to complete using disjoint-quorum-availability.
To complete the proof, we argue, as in the proof of Theorem 5.14, that this system cannot attain eventual
consistency because correct nodes p1 and p2 have observed inconsistent writes.

While all these results concern environments with faulty clients, our results can easily be extended en-
vironments where clients are assumed to be correct. In such environments, we can prove the following
result.

THEOREM 5.16. Fork-linearizability is not achievable in an eventually consistent and disjoint-quorum-
available distributed storage implementation subject to Byzantine server failures.

Proof. Consider two elements Q1, Q2 of the disjoint quorum system. Consider an execution in which each
node s ∈ Q1∩Q2 is faulty and simulates the behavior of two nodes s1 and s2. Now, we consider two clients
p1 and p2 access quorums Q1 and Q2 respectively. Drop all the messages sent from nodes in Q1 to nodes
in Q2 or vice-versa for the entirety of this execution. Furthermore, we only permit p1 to communicate with
nodes in Q1 and p2 to communicate with nodes in Q2 respectively. Let p1 issue a write w to an object o
using the quorum Q1. From the quorum-availability requirement, w should eventually complete. Now, let
p2 issue a read r to the object o using the quorum Q2 and let the r complete.
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We argue that the read r cannot return the write w because p2 is not aware of w and to p2, the execution
is indistinguishable from another execution where the write w was not issued. Since, no other writes were
issued during the execution, r must return ⊥.

To complete the proof, we argue that this system cannot attain eventual consistency without compro-
mising fork-linearizability [46] as no forking tree can be constructed for this execution. For the sake of
contradiction, assume that the system can attain eventual consistency. We issue reads r1 and r2 at clients
p1 and p2 respectively in the eventually consistent state and let these operations complete. Consider the
happens before (HB) ordering on the forking group containing the client p1.

We argue that w must precede r1 in the HB order as w completed before r1 begin and both w and r1 are
issued by the same client. Since, no other writes were issued in this execution, r1 must returnw. Because the
system is an eventually consistent state, r2 must also returnw. From the requirements of fork-linearizability,
w must precede r2 in the HB relation. Furthermore, fork-linearizability requires that all operations that
happened before r2 must be totally ordered in an order consistent with their real-time. Therefore, w, r2, r
must be totally ordered in an order consistent with their real-time order: w, r, r2. Unfortunately, for this HB
order to be acceptable for this execution, r must have returned w. But r returned ⊥.

Therefore, by contradiction, no fork-linearizable HB order for this execution can exist and the system
cannot be both fork-linearizable and eventually consistent.

Forking vs. convergence. The Byzantine CAC theorem and the follow-up results motivate the need for
convergence by showing that existing forking semantics [10, 12, 36, 37, 42, 48] cannot be enforced by avail-
able and convergent implementations. The implementations of these forking semantics restrict misbehavior
by clients or servers to forking: showing divergent histories to different nodes. Using the notion of forking,
these implementations can provide greater fault-tolerance than traditional approaches [14, 16, 26, 28, 43].
Unfortunately, because existing semantics permit fork-detection but not fork-repair, they compromise con-
vergence and have limited usefulness in practical settings. This conflict between convergence and forking in
existing forking semantics prompts the question: do there exist useful forking based consistency semantics
that can be enforced by convergent and available implementations?

We argue that indeed, there exist practically useful semantics that can be enforced by always-available,
one-way convergent, and Byzantine-fault tolerant implementations. Depot’s fork-join-causal (FJC) consis-
tency [41] is an example of such semantics. FJC consistency departs from existing forking semantics by
allowing correct clients to join forks, that is, to incorporate the divergence into a sensible history, allowing
them to ensure convergence in the face of faults. Specifically, a correct node regards a fork as logically
concurrent updates by two virtual nodes. At that point, correct nodes can handle forking by faulty nodes
using the same techniques [9, 20, 30, 51, 55] that they need anyway to handle a better understood problem:
logically concurrent updates during disconnected operation.

In the next section, we provide a one-way convergent, and always-available implementation for VFJC
consistency.

5.3 VFJC is enforceable by an always-available and one-way convergent implementation
Theorem 5.14 rules out implementations of fork-causal consistency and stronger semantics that can be im-
plemented by an always-available, one-way or pairwise convergent implementations. We next answer the
question: What consistency can be provided using an always-available and one-way or pairwise convergent
implementation? In Section 5.1, we introduced view-fork-join-causal (VFJC) consistency that we believe is
close to the strongest enforceable semantics using an always-available, and one-way convergent implemen-
tation in an environment with Byzantine nodes. In this section, we show that VFJC is enforceable using an
always-available and one-way convergent implementation. We show this result by construction by providing
an implementation that enforces VFJC and is always-available and one-way convergent. Note that because,
every one-way convergent implementation is also pairwise convergent, it follows that VFJC consistency can
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1 Messages
2 Update := {NodeID nodeID , OID oid , Value value ,
3 S e t 〈Hash〉 prevUpdate}σnodeID

4 / / prevUpdate i s a s e t c o n t a i n i n g ha sh es
5 / / o f u p d a t e s t h a t were s u p e r s e d e d by u

7 S t a t e ( a t each node p )
8 S t a t e := {Set〈Hash〉lastWrites , Update lastLocalWrite ,
9 HashMap{oid, 〈Hash〉}store , Map{Hash, Update}log ,

10 NodeID myNodeID , S e t 〈NodeID〉 nodes , (Kp,Ku)}

12 / / lastWrites : S e t s t o r i n g t h e hash o f
13 / / l a s t u n s u p e r s e d e d non l o c a l u p d a t e s
14 / / lastLocalWrite : l a s t l o c a l u pda t e
15 / / store : Map s t o r i n g t h e s e t o f most
16 / / r e c e n t up da t e ha sh es f o r e v e r y o b j e c t o i d
17 / / log : map o f u p d a t e s r e c e i v e d i n d e x e d
18 / / by t h e i r ha sh es
19 / / (Kp,Ku) : RSA key p a i r f o r s i g n i n g

21 MyState := l o c a l s t a t e

23 Methods
24 synchronized f u n c t i o n read ( OID oid ) :
25 re turn MyState.store{oid}

27 synchronized f u n c t i o n write ( OID oid , Value value ) :
28 w r i t e I n t (MyState , oid , value )
29 c r e a t e V i e w (MyState )

31 f u n c t i o n writeInt ( S t a t e s , OID oid , Value value ) :
32 c r e a t e a new s i g n e d u p d a t e u such t h a t
33 u.prevUpdates := s.LastWrites ∪ s.LastLocalWrite
34 u.oid := oid
35 u.value := value
36 u.nodeID := myNodeID
37 re turn i n t A p p l y (s , u )

39 f u n c t i o n send ( ) :
40 whi le ( t rue )
41 synchronized
42 Let T be a l i s t o f a l l u p d a t e s s o r t e d
43 i n an o r d e r i n which t h e y were added
44 to MyState.Log
45 foreach p ∈MyState.nodes send T to p
46 s l e e p 30

48 synchronized f u n c t i o n pktApply ( S e t 〈Update〉pkt ) :
49 i f (pkt c o n t a i n s on ly view u p d a t e s )
50 re turn f a l s e
51 S t a t e t e s t S t a t e = MyState . copy ( )
52 i f ( i n t P k t A p p l y ( testState, pkt )
53 i n t P k t A p p l y (MyState, pkt )
54 e l s e re turn f a l s e
55 re turn true

57 f u n c t i o n intPktApply ( S t a t e s , S e t 〈Update〉pkt ) :
58 s t a t u s = t rue
59 foreach w ∈ pkt
60 s t a t u s = s t a t u s ∧ i n t A p p l y (s, w )
61 s t a t u s = s t a t u s ∧ l a s t W r i t e V i e w s (s )
62 i f ( s t a t u s ∧ c r e a t e V i e w (s ) )
63 re turn true
64 e l s e re turn f a l s e

66 f u n c t i o n lastWritesViews ( S t a t e s )
67 / / r e t u r n t r u e i f a l l t h e u p d a t e s i n
68 / / s t a t e . l a s t W r i t e s are v iew u p d a t e s

70 f u n c t i o n intApply ( S t a t e s , Update u ) :
71 i f ( s . l o g . c o n t a i n s K e y ( Hash (u ) ) )
72 re turn true
73 e l s e i f ( v e r i f y (s, u ) )
74 / / up da t e s t a t e
75 foreach l ∈ s.lastWrites
76 i f ( p r e c (s, l, u ) )
77 s.lastWrites := s.lastWrites− {l}
78 i f (u.nodeID = s.myNodeID )
79 s.LastLocalWrite := u
80 e l s e
81 s.lastWrites := s.lastWrites ∪ {u}
82 s . l o g {Hash(w)} = u
83 foreach l ∈ s.Store[u.oid]
84 i f ( p r e c (s, l, u ) )
85 s.Store{u.oid} := s.Store{u.oid} − {l}
86 s.Store{u.oid} := s.Store{u.oid} ∪ {u}
87 e l s e
88 re turn f a l s e

90 f u n c t i o n verify ( S t a t e s , Update u ) :
91 re turn s i g n e d (u.nodeID, u ) ∧
92 h i s t o r y L o c a l (s, u ) ∧
93 n o F a u l t y C h i l d (s, u )

95 / / r e t u r n s i f t h e h i s t o r y o f u i s p r e s e n t
96 / / i n l o c a l h i s t o r y o f s t a t e s
97 f u n c t i o n historyLocal ( S t a t e s , Update u ) :
98 foreach v ∈ u.prevUpdates
99 i f (s.log.containsKey(Hash(v)) )

100 re turn f a l s e
101 re turn true

103 / / r e t u r n s f a l s e i f none o f t h e immed ia t e
104 / / c h i l d or c r e a t o r o f w i s f a u l t y
105 f u n c t i o n noFaultyChild ( S t a t e s , Update u ) :
106 i f (u.nodeID 6∈ getFaulty(s, u) )
107 foreach c ∈ u.prevUpdates
108 i f (c.nodeID ∈ getFaulty(s, u) )
109 re turn true
110 re turn f a l s e

112 f u n c t i o n getFaulty ( S t a t e s , Update u ) :
113 / / r e t u r n t h e s e t o f n o d e I d s t h a t have
114 / / c o n c u r r e n t u p d a t e s t h a t p r e c e d e u
115 / / i n S t a t e s

117 / / r e t u r n s t r u e i f u o c c u r s i n h i s t o r y o f v
118 f u n c t i o n prec ( S t a t e s , Update u , Update v ) :
119 i f (v = ⊥ ) re turn f a l s e
120 foreach Hw ∈ v.prevUpdates
121 w = s . l o g {Hw}
122 i f (u = w)
123 re turn true
124 e l s e i f ( p r e c (s, u, w) )
125 re turn true
126 re turn f a l s e

128 / / c r e a t e s a v iew
129 f u n c t i o n createView ( S t a t e s ) :
130 re turn w r i t e I n t (s , VIEW, VIEW)

Figure 13: A VFJC-consistent implementation.

34



also be implemented by an always-available and pairwise convergent implementation.

5.3.1 VFJC protocol

This protocol is based on three key ideas which are oriented towards ensuring the desired properties of
always-availability, one-way convergence, and VFJC consistency. For always-availability, we require each
node to maintain enough state so that it can serve reads of arbitrary objects without needing to contact other
nodes. Similarly, a node should also be able to perform a write without consulting other nodes. For one-way
convergence, a node should be able to receive messages from other correct nodes such that processing these
messages makes the receiver aware of all the operations that the sender is aware of. Finally, to ensure VFJC
consistency, we must ensure that each message carries enough information to guard against faulty nodes and
correct nodes must stop communicating with nodes that are deemed to be faulty.

Figure 13 describes our VFJC implementation. For simplicity of the existentiality proof, the implemen-
tation described here is inefficient. Depot shows an efficient implementation of a similar protocol.

At the core of our VFJC protocol is the standard log-exchange protocol similar to the one used in
Bayou [49], PRACTI [8], or Depot where each write produces an update with an object identifier and
the object value (lines 27-37). In addition, each update contains a representation of its history to determine
precedence of updates. Our implementation makes this history tamper-evident by signing each update and
attaching to each update u, a cryptographic hash of the most recent update(s) that u supersedes (line 33).
When computed recursively, the cryptographic hash of this recent update set is sufficient to encode the entire
history on which an update purports to depend.

Each node also maintains a store (line 9) with the most recent update(s) to each object (lines 83-86) and a
log (line 9) that stores all the updates that the node has received or created (line 82). On a read of an object
o, the node returns the most recent update(s) to o from its local store without requiring any communication
(lines 24-25). Conversely, on a write, an update is created and added to the local store and the local log at the
issuing node (lines 27-29). Our implementation is able to ensure availability because in our implementation,
correct nodes do not need to communicate with other nodes to complete reads or writes.

Nodes periodically exchange updates from their local logs; newly received updates are appended to the
local log and then used to update the local store of a node, replacing any old updates that precede the new
update (lines 48-55). Each node in our implementation periodically sends its log to all other nodes to ensure
one-way convergence (lines 39-46).

Our protocol includes a number of mechanisms to safeguard against Byzantine faulty nodes (lines 90-93).
First, correct nodes check the received updates against their local history to prevent omission and reordering
(lines 97-101) and to detect concurrent updates from the same node, a.k.a. forks (lines 111-114). Second,
nodes that produce forks are considered to be faulty (lines 111-114) and correct nodes stop communicat-
ing directly with such nodes (line 93). Third, nodes ensure that updates created by known faulty nodes
are not accepted unless some other potentially correct node has accepted them without knowing that they
were created by a faulty node (line 61). This relaxation of update checks (compared to existing fork-X proto-
cols [10, 12, 36, 37, 42, 48]) allows forked correct nodes to join forks and ensure one-way convergence in our
protocol. Conceptually, a node joins a fork by treating forked writes by a faulty node as concurrent writes
by different virtual correct nodes [41]. This approach is appealing because we can reduce the problem of
Byzantine faults to the well-studied problem of handling concurrency and conflicts in optimistic consistency
systems [9, 20, 27, 30, 51, 55]. Finally, to bound the number of forks, a node issues a view update when it
receives updates from another node. Intuitively, a view update is a proof issued by a node that none of the
updates it accepted were issued by known faulty nodes (line 29).

We next prove that our implementation ensures the CAC properties—Consistency (VFJC consistency),
availability (always-availability), and convergence (one-way convergence). We prove this claim by showing
that any run of our implementation in Figure 13 is VFJC-consistent. Let ρ be a run of our implementation
and e be the corresponding execution. Recall that an execution e consists of a set of read and write operations
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with a few additional fields associated with each operation. Each write operation includes the nodeId,
objId, value, startTime, and endTime fields. The startTime and endTime are chosen
using the real-time when the operations start and end. Likewise, each read operation includes the nodeId,
objId, writeList, startTime, and endTime fields.

We prove that the execution e is VJFC-consistent by describing the construction to produce a VFJC HB
graph for e. We first define a precede relation (≺) on the read and write operations in e (§5.3.2). We use
this partial order to prove that our implementation is (1) consistent (§5.3.4, Lemma 5.39)—by constructing
a VFJC HB graph , always-available (§5.3.5, Lemma 5.34)—by showing that operations do not block,
and one-way convergent (§5.3.6, Lemma 5.38)—by showing that connected nodes can exchange updates
(Lemma 5.37) and nodes with identical updates return identical responses on reads (Lemma 5.36).

5.3.2 Defining a VFJC HB graph and precede relation

We define a HB graph by defining a precede (≺) relation. Recall that VFJC HB graph contains vertices,
called views, in addition to the vertices for read and write operations. So, we first describe the process of
creating these view vertices from a run of our implementation. A view vertex (also referred to as a view
operation) corresponds to an invocation of the createView function in our execution and contains only
the nodeId field. We use the term vertices and operations interchangeably in our discussion.

We next define a set of accepted operations that will be included in the BFJC HB graph. As per the
requirement for VFJC consistency, we must ensure that all the operations by correct nodes are part of our
HB graph. In addition, we must ensure that writes by faulty nodes that have been returned by some read are
also included in the HB graph. Definition 5.17 describes the set of accepted operations precisely.

DEFINITION 5.17. A write operation w (or a view operation v) is accepted by a correct node p if p has
added the corresponding update w (or v) to the log at its local state. Note that we make a distinction
between when an update is added to the copy of the log (e.g. line 52) vs when the update is added to the
actual log (e.g. line 53). Also note that a node directly adds the updates it has created to the actual log
(lines 28− 29). A read operation r is accepted by a correct node p if r is issued by p.

Intuitively, our goal in defining the HB graph is to capture the data flow in an execution by identifying
the operations that precede a given operation. We use two techniques to accomplish this goal. First, we
use the history of a write or a view to determine the set of write and view operations that precede it. As
indicated in pseudocode line 3, each update has a prevUpdates field that contains hashes of all immediately
superseded updates. This field can be used to compute all the superseded updates using recursion as shown
in Definition 5.18.

However, reads do not have a corresponding update. Hence, to order reads with respect to writes, views,
and other reads, we define an accept time for each node p and each operation u in our system. Intuitively,
the accept time tsp,u indicates at which the node p completes processing of operation u. Using the accept
time, we can order reads after all previously accepted operations. We next define the history of an operation
and the accept time of accepted operations for each operation-node pair.

DEFINITION 5.18. For an update u, define history of u (denoted by Hu) as a set of updates such that ∀v ∈
Hu∃w1, w2, ..., wk : H(v) ∈ w1.prevUpdates,H(w1) ∈ w2.prevUpdates, ...,H(wk) ∈ v.prevUpdates.
H(u) denotes the cryptographic hash of update u.

DEFINITION 5.19. The accept time for an operation v that is accepted by a correct node p is denoted by
tsp,v, and is defined as follows:

• For a read r issued by a correct node p, tsp,r indicates the real time when the monitor lock was
acquired in Step 24 (get method call) at p.

• For a write or view w accepted by a correct node p, tsp,w indicates the real time when the intApply
method was called to add w to p’s log.
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• For all other operation-node tuples (v, p), tsp,v is undefined.

Recall that nodes issue at most one outstanding request in our model (§2). Hence, we have the following
corollaries that will prove useful in our proof later.

COROLLARY 5.20. For a read or write operation u, u.startT ime < tspu,u < u.endT ime (Recall that pu
denotes the node at which the operation u was issued).

COROLLARY 5.21. For operations u, v issued at the same correct node p, u.startT ime < v.startT ime⇔
tsp,u < tsp,v.

After having defined the set of operations that will be included in the HB graph and the ordering relations
(accept time and history) that we will use to define our precedes relation, we next define our precede relation
in two steps. First, we define a PRED set for each operation in our execution. Then, using these PRED
sets, we define the precede relation as the transitive closure of the set containment relation on PRED sets.

DEFINITION 5.22. The set PREDv for an operation v accepted by a correct node is defined as follows:

1. If v is a write/view operation accepted by some correct node then PREDv includes all u : H(u) ∈
v.prevUpdates.

2. If v is a read operation issued by a correct node p, then PREDv includes all operations u accepted
by p such that tsp,u < tsp,v.

3. If v is a write operation issued by a correct node p, then PREDv includes all read operations u
accepted by p such that tsp,u < tsp,v.

4. For any other operation u, PREDu = φ.

We denote u ∈ PREDv as u ≺PRED v.

DEFINITION 5.23. Define u precedes v (u ≺ v) if

1. u ≺PRED v, or

2. u ≺PRED w and w ≺ v.

Given the definition of our precedence relation (Definition 5.23) and our PRED sets (Definition 5.22),
it is easy to see the corollary stated below. Intuitively, this corollary states that each directed path from a
read r at a node p to a non-local operation o at a node q( 6= p) must go through a write w at p. We use this
corollary in our proof below to eliminate reads from paths in our HB graph. The paths without reads are
based solely on the history of updates (Definition 5.22) and hence easier to analyze; the history of an update
is verified by a correct node before accepting it.

COROLLARY 5.24. Writes follow reads in any directed path. Consider a directed path r ≺PRED
u1 ≺PRED ... ≺PRED uk. pr 6= puk ⇒ ∃l : 1 ≤ l < k ∧ pul = pr ∧ ul is a write/view operation.

5.3.3 Properties of our precedence relation

We now prove a number of properties of our precedence relation that we use later to prove the safety and
liveness properties of our implementation. We start by showing that our precedence relation is acyclic, a key
requirement for a VFJC HB graph.

LEMMA 5.25. The precedence relation (≺) is acyclic.

Proof. For the sake of contradiction, assume that a path C exists with a cycle: u1 ≺PRED u2 ≺PRED
... ≺PRED uk ≺PRED u1. First consider the case when C has no reads. Without loss of generality,
assume that u1 was accepted first by a correct node p. But for u1 to be accepted by a correct node p, the
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historyLocal check should have passed for u1. However, for the historyLocal check to pass, p’s log must
contain uk, contradicting the assumption that u1 was accepted first.

Now consider a cycle with at least one read ui. We show that such a cycle is not possible either. First,
we note that pui must be correct because the PRED set for reads by faulty nodes is empty. We further note
that pui must have accepted ui−1 (from the definition of the PRED set for reads). We now split this cycle
into the maximum number of sub-paths C1, C2, ..., Cl such that

1. Each sub-path starts and ends at an operation issued by some correct node.

2. No operation by a correct node is present inside any sub-path (i.e. operations that are not end-points
of a sub-path must be issued by faulty nodes).

3. Each sub-path ends at an operation at which the next sub-path begins.

Suppose the above procedure produces l sub-paths. Because the cycle C contains a read, it must contain
at least two operations that are issued by a correct node (from Corollary 5.24, a read must be followed by
a write by the same node). Hence, our sub-path construction is feasible and it must produce at least two
sub-paths (l ≥ 2).

From the definition of PRED (Definition 5.22[2]), each sub-path of length greater than 2 must contain
only write/view operations at all positions except, perhaps, the last position. The internal operations must
be writes/views as they must be issued by faulty nodes as per the sub-path construction constraint 2. The
first operation cannot be a read because it is included in the PRED set of an operation by a faulty node;
reads are only included in the PRED set of operations by correct nodes.

Let sk, ek denote the starting and end vertices of a sub-path Ck. Now, we make the following two claims
about the accept time(s) of operations in these sub-paths that together show that a cycle with one or more
read operations is not possible:

LEMMA 5.26. Accept times within a sub-path are in an increasing order. For each sub-path Ck, we
show that pek accepts sk and ek, and tspek ,sk < tspek ,ek .

Proof. The proof for this lemma is as follows. There are four types of sub-paths: r ≺PRED r, r ≺PRED w,
and w ≺PRED w ≺PRED ... ≺PRED w, w ≺PRED w ≺PRED w ≺PRED ... ≺PRED r, (from the
construction of sub-paths), where w denotes a view/write operation and r denotes a read operation. In the
first two cases, the desired result follows from the definition of PRED and from the fact that the PRED
set of reads is only non-empty for reads issued by correct nodes.

Next, consider a sub-path Ck of the third type: w1 ≺PRED w2 ≺PRED ... ≺PRED wi. We must
have w1 ∈ w2.prevUpdates, w2 ∈ w3.prevUpdates, ..., wi−1 ∈ wi.prevUpdates from the definition of
PRED for writes. Now, for the historyLocal (Step 97) check to pass, w1 must have been accepted by pk
prior to accepting w2. Similarly w2 must have been accepted before w3 and so on. Therefore, we must have
tspek ,w1 < tspek ,w2 < ... < tspek ,wi . Hence, we get our desired result.

Finally, consider the last type of sub-path: w ≺PRED w1 ≺PRED ...wk ≺PRED r. If this sub-path
contains only two elements, w and r, then the desired result follows from the definition of PRED for reads.
If the sub-path contains more than two elements, then tspr,wk < tspr,r, from the definition of PRED. And,
tspr,w < tspr,w1 < ... < tspr,wk following the argument similar to the third case: each write/view must
have been accepted before the prior write/view. Combining these, we get our desired result.

LEMMA 5.27. Accept times across sub-paths are in a non-decreasing order. For consecutive sub-paths,
Ck, Ck+1, tspek ,ek ≤ tspek+1

,sk+1
.

Proof. We start by noting that ek = sk+1—requirement 3 in the sub-path construction. If pek = pek+1

then the above claim follows trivially as tspek ,ek = tspek+1
,sk+1

. If pek 6= pek+1
then ek cannot be a

read operation from Corollary 5.24. Hence ek must be a view/write operation. In this case, we must have
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tspek ,ek < tspek+1
,ek as it will take some finite time for ek to propagate from the issuing node pek to the

receiving node pek+1
.

Combining Lemma 5.26 and Lemma 5.27, we get that tspe1 ,s1 < tspe1 ,e1 ≤ tspe2 ,s2 < tspe2 ,e2 ≤ ... ≤
tspel ,sl < tspel ,el ≤ tspe1 ,s1 . Since l ≥ 2, the above real time assignment is not feasible and hence, by
contradiction, no cycles with one or more read can exist. Combining this result with the argument earlier
that cycles without reads are not possible, we get that no cycles can exist in our HB graph built using the
precede relation.

We next show updates performed by correct nodes supersede all prior updates accepted by that correct
node. This lemma will help us in proving the serial ordering at correct nodes and reads return the latest
preceding concurrent writes requirements of VFJC consistency.

LEMMA 5.28. New updates supersede older ones. Let w1 be a write/view operation accepted by a correct
node p, and w2 be a write/view operation issued by p. Then, tsp,w1 < tsp,w2 ⇒ w1 ∈ Hw2 .

Proof. If w1 ∈ w2.prevUpdates, then the desired result follows. Now, consider the case when w1 6∈
w2.prevUpdates. p had accepted w1 when it issued w2 and hence w1 must have been added to the last-
Writes. So, for v to be removed from lastWrites, p must have applied a series of updates v1, v2, ..., vl such
that w1 ∈ v1.prevUpdates, v1 ∈ v2.prevUpdates, ..., vl ∈ w2.prevUpdates. Hence, w1 ∈ Hw2 .

Our next lemma show that our precedence relation respects the serial ordering requirement of VFJC
consistency.

LEMMA 5.29. Serial ordering at correct nodes. If pv = pv′ and pv is correct, then tspv ,v < tspv ,v′ ⇔
v ≺ v′.
Proof. “if”. tspv ,v < tspv ,v′ ⇒ v ≺ v′. Recall that we assume that no outstanding operations are issued
at any node (Section 2). If either v or v′ is a read, then the desired result follows from Definition 5.22[2,3].
Otherwise if both v and v′ are non-reads then tspv ,v < tspv ,v′ ⇒ v ∈ Hv′ ⇒ v ≺ v′ (using Lemma 5.28
and Definition 5.22[1]).
“only if”. tspv ,v < tspv ,v′ ⇐ v ≺ v′. Both v and v′ are performed by the same correct node and we know
that operations performed by a node have non-overlapping execution times in our execution. Therefore we
must have either tspv ,v < tspv ,v′ or tspv ,v′ < tspv ,v. If tspv ,v < tspv ,v′ then the desired follows. If not,
then by the “if” part shown above, we must have v′ ≺ v. Combining v′ ≺ v with v ≺ v′, we get that our
precedence relation must be cyclic violating Lemma 5.25. Therefore, by contradiction, this scenario is not
possible.

LEMMA 5.30. Precedes implies containment in history. Let w2 be a write/view operations accepted by a
correct node p, then w1 ≺ w2 ⇒ w1 ∈ Hw2 .

Proof. Consider the path with fewest reads: w1 ≺PRED u1 ∧ u1 ≺PRED u2 ∧ ...uk ≺PRED w2. If the
operations in this path are writes then Lemma 5.30 follows from the definition of history (Definition 5.18)
and the definition of PRED for writes (Definition5.22[1]).

In the remaining part of this proof, we will show by contradiction that there must exist a path with no
reads. Suppose, for the sake of contradiction, assume that the path with fewest reads has m(> 0) reads. Let
ul be one of the reads. Using Corollary 5.24, there must exist a later write uj such that puj = pul = p, where
p is correct (only reads from correct nodes are included in the definition ofPRED) and tsp,ul < tsp,uj (from
serial ordering at correct nodes—Lemma 5.29). Now, consider the following two cases on ul−1.

ul−1 is a read. In this case, pul−1
= p because only local reads are included in the PRED set for reads.

Furthermore, we must also have ul−1 ≺PRED uj from the definition of PRED for writes. Now
we can construct an alternative path from w1 to w2 that does not have the read ul: w1 ≺PRED
u1 ∧ u1 ≺PRED u2 ∧ ... ∧ ul−1 ≺PRED uj ∧ ...uk ≺PRED w2. This path will have one less read
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than the earlier path because we have removed the read ul, contradicting the assumption that our path
has fewest reads.

ul−1 is not a read. In this case, we must have ul−1 ∈ Huj (from Lemma 5.28). From the definition of
PRED (Definition 5.22[1]) and precedes (Definition 5.23), it follows that we must have a set of writes
v1...vm such that ul−1 ≺PRED v1 ≺PRED ... ≺PRED vm ≺PRED uj . Again, we can construct an
alternative path from w1 to w2 with at least one less read than the earlier path, contradicting the
assumption that our path has fewest reads.

Hence, by contradiction, it must be the case that the path with fewest reads has no reads in which case our
desired result follows.

LEMMA 5.31. Correct nodes accept operations in ≺ order. If w is a write/view and v is an operation
accepted by a correct node p, then w ≺ v ⇒ tsp,w < tsp,v.

Proof. By induction on the number of reads in the path Cmin with the fewest reads: w ≺PRED u1 ≺PRED
u2 ≺PRED ... ≺PRED uk ≺PRED v. If all the operations are writes (base case), then Lemma 5.31 is true
because of the historyLocal check in the verify function in the pseudocode: p will only accept v when it has
already accepted uk, and p will only accept uk when it has already accepted uk−1 and so on. Hence, p must
have accepted w before v which gives us our desired result.

Suppose the lemma holds true for up to m reads by induction hypothesis. Consider the case when the
path with fewest reads has m+ 1 reads. We examine two cases.

Case 1: v is a read. If the number of elements in the path is two, the result follows from the definition of
PRED for reads. If the number of elements is more than two, we have uk ∈ PREDv. Because v is
a read operation, it follows from the definition of PRED for reads that tsp,uk < tsp,v. We also have
w ≺ uk with one less read in the path. Hence, from the induction hypothesis, we have tsp,w < tsp,uk .
Combining these two results, we get our desired result.

Case 2: v is not a read. From Lemma 5.30, we get that there must exist writes u1...um such thatw ≺PRED
u1 ≺PRED ... ≺PRED um ≺PRED v giving a path with no reads. Hence, from the induction
hypothesis, we have tsp,w < tsp,uk .

Combining these cases, we get our desired result.

5.3.4 Consistency

We next prove that our protocol enforces VFJC consistency by showing that any execution of our protocol
can be mapped to a VFJC HB graph.

LEMMA 5.32. VFJC consistency lemma. Every execution of the pseudocode in Figure 13 is VFJC
consistent.

Proof. Let e be an arbitrary execution of the pseudocode in Figure 13. We next describe the construction of
a VFJC HB graph for e. Consider the graph G constructed using the precedence relation as follows:

1. G contains vertices for all operations accepted by some correct node. In particular,G contains vertices
for all operations issued by a correct node and writes/views by faulty nodes that have been accepted
by some correct node.

2. G contains a directed edge from a vertex u to v if u→ v.

We make the following observation about our constructed graph G.
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OBSERVATION 5.33. It is easy to see that for any two vertices u and v, u ≺G v ⇔ u ≺ v. We do
not introduce paths between vertices that do not have paths and likewise, we do not disrupt connectivity
between vertices that were connected in the precedence relation. Given this equivalence, we use u precedes
v (u ≺ v) to imply that u precedes v in the HB graph G (u ≺G v) and vice-versa.

Now, we need to show that the resulting graph is acyclic and upholds the conditions of a VFJC HB graph.

G is acyclic. Follows from Lemma 5.25 which showed that the precedence relation is acyclic and from
Observation 5.33.

Serial ordering for operations by correct nodes. If v.nodeID = v′.nodeID and nodeIDv is cor-
rect, then v.startT ime < v′.startT ime ⇔ v ≺G v′. Let p = nodeIDv = nodeIDv′ . Now, from
Corollary 5.20, we know that v.endT ime < v′.startT ime ⇒ tsp,v < tsp,v′ . Furthermore, because our
implementation issues at most one request at a time, it follows that tsp,v < tsp,v′ ⇒ v.startT ime <
v′.startT ime. Combining these results, we get the following temporal equivalence property: tsp,v <
tsp,v′ ⇔ v.startT ime < v′.startT ime.

Now, combining Lemma 5.29 with Observation 5.33, we get the following serial ordering property based
on accept times: tsp,v < tsp,v′ ⇔ v ≺G v′. Combing this serial ordering property with the temporal
equivalence property derived in the previous paragraph, we get our desired serial ordering property based
on the startT ime(s) of operations.

Reads return the latest preceding concurrent writes. For any vertex r corresponding to a read operation
of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that have not been
overwritten by another write of objId that both follows w and precedes r:
w ∈ r.wl⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

“if”. w ∈ r.wl⇒ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : w ≺G w′ ≺G r ∧ w′.objId = r.objId.

First, we will prove that w precedes r and w updates the object with id objId. A correct node p issues
a read r to object id objId that returns a set wl of writes. Reads to an object id oId, return the value of
the store map for key oId (line 25). We make two observations. First, w must be a write to the object
id objId because only writes to object id objId are added to the store map entry for objId (line 86).
Second, w ∈ r.wl implies that w must have been accepted by p before it issued r (i.e. tsp,w < tsp,r);
writes are first added to the log and then to the store (as described in the applyInt function) and the
monitor lock must be released before processing a subsequent read r. From the definition of PRED
for reads (Definition 5.22[2]), tsp,w < tsp,r ⇒ w ≺PRED r. From the definition of precede, we have
w ≺ r and hence, w ≺G r.

Next, we will show that there does not exist another write w′ to the object Id objId such that w
precedes w′ and w′ precedes r. Suppose, for the sake of contradiction, there exists w′ such that
w ≺G w′ ≺G r. From Observation 5.33 we must have w ≺ w′ ≺ r and from Lemma 5.31, w′

should have been accepted by p after it has accepted w but before it issued r. Furthermore, w ≺
w′ ⇒ w ∈ Hw′ from Lemma 5.30. Hence the prec invocation at line 84 must have returned true.
Therefore, by pseudocode line 85, p would have removed w from the store map entry for object id
objId on accepting w′ and would not have returned w on read r contradicting the assumption that w
was returned on the read r. Hence, by contradiction, this case is true.

“only if”. w ∈ wl ⇐ w ≺G r∧ 6 ∃w′ : w ≺G w′ ≺G r. For the sake of contradiction assume that the read
r’s writeList wl does not include the write w. Let p be the correct node that issued r. w ≺G r implies
w ≺ r (Observation 5.33), which in turn implies that, from Lemma 5.31, p received w before issuing
read r. Therefore, by the pseudocode Step 86, w must have been added to the store map with the key
as objId. Suppose that a subsequent writew′, accepted by p, removesw from the store at pseudocode
line 86. For this removal, we must have w.objId = objId and the prec invocation at line 85 must
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have returned true. Therefore, by the PRED construction for writes/views (Definition 5.22[1]), we
must have w ≺ w′ and hence w ≺G w′. Also, by construction (Definition 5.22[2]), w′ ≺ r and
hence w′ ≺G r. But the precondition in our desired result precludes such a write w′. Therefore, by
contradiction, the read r must have returned the write w.

Sharing with correct nodes. If there exists an edge from a vertex v1 at p1 to a vertex v2 at p2 then both p1

and p2 are correct in the projection of vertex v2. Recall that a node p is correct in the projection of a vertex
v if vertices of node p in the subgraph Gv are totally ordered.

We first show that p1 must be correct in the view of vertex v2. Suppose, for the sake of contradiction, that
p1 is faulty in the view of vertex v2. p1 cannot be a correct node because a correct node must be correct in
the projection of all vertices—V FJC1 requirement of the VFJC consistency. Recall that only writes and
views from faulty nodes are included in the HB graph. Therefore, v1 must be a write or a view vertex. Now,
consider the following two cases:

1. v2 is a view/write operation: We claim that we must have v1 ∈ v2.prevUpdates; otherwise there
exists some other write/view operation v such that v1 ≺ v ≺ v2 violating the assumption that v1 and
v2 are connected through an edge. Now, consider when a correct node p accepted v2. p must have
checked that nodes that issued updates in v2.prevUpdates are correct in the projection of v2 from the
check in noFaultyChild function. Therefore, none of the updates in v2.prevUpdates can be from a
node that is faulty in the projection of v2.

2. v2 is a read operation: p2 must be correct because we do not include read operations by faulty nodes.
Since, p2 is correct and p1 is faulty, they can only be connected by a non-local edge. Now, consider
when v1 was accepted by p2. After processing the packet that contains v1, p2 must have performed
a view operation v (From Step 62) and hence v1 ≺ v (from Lemma 5.28). The read v2 must be
performed after the view operation completes. Hence, we must have that v ≺ v2 (from the definition
of PRED for reads). Combining these two observations, we must have v1 ≺ v ≺ v2, contradicting
the assumption that v1 and v2 are connected through a non-local edge.

Next, we show that p2 must be correct in the view of vertex v1. Again, for the sake of contradiction,
assume that p2 is faulty. As in the previous case, p2 must be a faulty node for this contradiction to be true;
correct nodes are correct in all views. So, v2 must be a write/view operation from our construction of HB
graph. Furthermore, if p2 is faulty in the view of v1, it must also be faulty in the view of vertex v2; subgraph
Gv2 is a superset of the subgraphGv1 . Now, we argue that v2 cannot be accepted by any correct node (owing
to line 106), contradicting the assumption that v2 is included in the HB graph.

5.3.5 Availability

We next show that our implementation is always-available for operations issued by correct nodes. To do
so, we show that all invocations of read and write methods in our pseudocode complete successfully. The
intuition behind this claim is that our protocol does not force nodes to communicate with other nodes to
complete an operation: reads can be completed by just reading the local state while writes require both
reading and writing the local state. Therefore, operations by correct nodes must complete. Lemma 5.34
formalizes this intuition.

LEMMA 5.34. VFJC availability theorem. The pseudocode in Figure 13 is always-available for reads and
writes by correct nodes.

Proof. We first observe that invocations of the write and read methods do not require any communication
with other nodes before returning in our implementation described in Figure 13. Hence, a node does not
have to block waiting for a message from another node. Furthermore, because nodes perform a bounded
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number of operations while holding the shared lock, they must release the lock in a finite and bounded
amount of time. This argument suffices for reads because as per our definition of accept (Definition 5.19),
all reads created by a correct node are accepted. We need to show one additional property for writes: the
update corresponding to a write and the view update created after applying the write will be accepted by the
issuing correct node.

We first claim that the lastWrites set at a correct node is always empty after the lock is released in our
pseudocode. The proof for this claim is as follows. Initially, the lastWrites set must be empty. After a
successful invocation of the write method, it will again be empty as the new view update (line 29) will
supersede all previous entries. Similarly, after a successful packet receipt, the lastWrites set will again be
empty as the new view update (line 62) will supersede all previous entries.

Next we claim that the new write update and the following view update created on a write method
invocation will be successfully applied. (1) The historyLocal check (line 92) will pass as the prevUpdates
is assigned from lastWrites and lastLocalWrites; both these sets contain updates that have already been
accepted. (2) The noFaultyChild check (line 93) will pass because the only update in the prevUpdates is
from the correct node that is creating the update children. (3) Finally, the signed check (line 91) will pass
because a correct node will correctly sign the update. Hence, the update and the view update will both be
accepted and applied to the log, ensuring that subsequent reads return the values written by these writes.

5.3.6 Convergence

Finally, we show that our implementation is one-way convergent. We designed our protocol to permit any
pair of correct connected nodes to exchange updates. Furthermore, in our protocol, different correct nodes
use the same prec relation to decide precedence. The former property ensures that correct connected nodes
will receive the same set of updates while the latter ensures that nodes that have received identical set of
updates will return identical responses on reads.

Our proof roughly corresponds to the intuition above. We first show that nodes that have observed iden-
tical set of updates will return identical responses on reads of identical objects (Lemma 5.36). Next, we
show that any pair of correct connected nodes can achieve a state where they have observed identical set
of updates (Lemma 5.37). Combining these results, we get that any pair of correct connected nodes can
achieve one-way convergence (Lemma 5.38).

LEMMA 5.35. Identical updates imply identical precedence. Let e be an execution in which correct nodes
p and q have accepted identical updates. Let p and q issue reads rp and rq respectively to an object o. For
a view/write operation u, u precedes rq iff u precedes rp.

Proof. We first prove the “only if” part of this lemma. u ≺ rq implies tsq,u < tsq,rq (Using Lemma 5.31:
correct nodes accept operations in ≺ order). tsq,u < tsq,rq ⇒ tsp,u < tsp,rp (from the assumption that they
have accepted identical updates when they issued rp and rq respectively). tsp,u < tsp,rp ⇒ u ≺ rp from the
definition of the PRED set for reads (Definition 5.22[2]). Similarly, we can prove the “if” part.

LEMMA 5.36. Identical updates imply identical responses. Correct nodes p and q that have accepted
identical updates, return identical responses on reads of the same object. (w ∈ rp.writeList ⇔ w ∈
rq.writeList).

Proof. Let e be an execution in which correct nodes p and q have accepted identical updates. Now, let p and
q issue reads rp and rq respectively to an object o. We first prove the “only if” part of this lemma.

Suppose, for the sake of contradiction, that w ∈ rp.writeList ∧ w 6∈ rq.writeList. We know from
VFJC2, that w ≺ rq and using Lemma 5.35, we get that w ≺ rp. So, for rp to not return w, there must exist
a write w′ to object o such that w ≺ w′ ≺ rp (from VFJC2—reads return the latest preceding concurrent
writes) . Again using Lemma 5.35, we get that w′ ≺ rq. But this contradicts VFJC2 for the read rq
performed by the correct node q: there exists a write w′ such that w ≺ w′ ≺ rq and yet, the read rq to object
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o returned w. Therefore, by contradiction, no such w′ can exist and all the writes in rp.writeList must also
be present in the rq.writeList. Similarly, we can prove the “if” part of this lemma and obtain our desired
result.

LEMMA 5.37. Correct connected nodes accumulate updates. A correct node q processes an update
packet T from a correct node p that generated the packet T when it has accepted updates Up. We claim
Up ⊆ Uq after q processes the packet T irrespective of whether T was accepted or rejected by q.

Proof. Let Upre be the set of updates that q has accepted prior to receiving T . If Up ⊆ Upre then the desired
result follows as updates are never removed from a node’s log.

Consider the case when Up 6⊆ Upre. Its easy to see that the desired condition (Up ⊆ Uq) must become true
if the packet is successfully applied; all the updates in Up will be added to Uq, thereby forcing the desired
condition. We next show that the packet must indeed be successfully applied. By way of contradiction,
consider the reasons for rejection of the packet T .

An update fails the verify check (line 73) in the intApply function (line 60). Let u be the first update (if
any) that fails the verify check in the intApply function. p is a correct node and it accepted the update u.
Therefore, u must have a valid signature that the correct node q should also be able to verify. Hence,
the signed check must pass (line 91). The historyLocal check (line 92) must also be satisfied for
the following reason. When p accepted u, its log included all updates included in the prevUpdates
set of u. Hence, all these updates must be present in the list T . Furthermore, all updates in the
prevUpdates set of u must be ordered before u in T ; p accepted these updates prior to accepting u
and T is sorted based on the accept time of updates. Finally, because u is the first rejected update, it
follows that all updates in the prevUpdates set of u were accepted and added to the log. Therefore,
the historyLocal check cannot fail for u. The noFaultyChild check (line 93) must also pass because
u’s children (updates whose hashes are included in u.prevUpdates) must be correct in the projection
of u as otherwise, the correct node p would have rejected u. Hence, by contradiction, no such update
u can exist.

The lastWriteViews check fails at Step 61. We next show that this is not possible. We first claim that each
correct node satisfies the following last-write-view invariant: at each correct node r, there must exist
a view update v such that for all updates v( 6= u) in r’s log, prec(u, v) = true. The argument behind
this claim is as follows. If the last operation executed at r was a write, then the result follows from
pseudocode Step 29 and the availability requirement that the view operation will not be rejected. If the
last operation was a successful packet application (pktApply—line 48), then the result follows from
pseudocode Step 60. Reads and failed packet applications do not result in any state change and hence
do not affect the validity of the last-write-view invariant. Therefore, the last-write-view invariant must
hold true.

Now we argue that the lastWriteViews check must pass. Consider when q processes p’s packet: the
lastUpdate will consist of a view update from the correct node p and (optionally) a view update from
q. Hence, the lastWriteView check at node q must pass as the lastWrite set and lastLocalWrite set
will together contain at most two updates from p and q, both of which will be view updates from the
last-write-view invariant.

The intApply check (line 70) invoked from the createV iew method (line 62) fails. We show that the in-
tApply check invoked from the line 62 at the correct node q for the application of packet T must
succeed. Let v be the new view update created in the invocation of the createV iew method. From
line 33, v’s prevUpdates set will contain updates from the lastWrite set and the lastLocalWrite. As
argued above, the lastWrite set and the lastLocalWrite set at q will together contain at most two view
updates from p and q. Hence the noFaultyChild check must pass for v as both p and q are correct.
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Similarly, the historyLocal check must also pass because all the updates in prevUpdates set of the new
view operation have already been applied to log. Finally, the signed check must also pass because the
view update will be properly signed by the correct node q who creates the update.

LEMMA 5.38. VFJC convergence theorem. The pseudocode listing 1 is one-way convergent.

Proof. Lemma 5.37 shows that by two one-way transfers of update packets, any two correct connected
nodes can reach a state where both of them have identical set of updates in their logs. Lemma 5.36 shows
that correct nodes that have accepted identical updates will return identical responses on reads. Intuitively,
we can combine these two lemmas to argue that our system is one-way convergent because it can force
two correct connected nodes to attain a converged state, in which reads to identical objects return identical
responses, by using two one-way transfers of update packets. We next make this intuition precise.

In particular, we argue that by one one-way transfer of updates from p to q, two correct connected nodes p
and q can reach an intermediate state with the following property. In this intermediate state, q will eventually
send an update packet to p such that after applying q’s packet, both p and q will have accepted an identical
set of updates and hence will return identical responses on reads of identical objects (from Lemma 5.36).
Therefore, the intermediate state must be a semi-pairwise converged state for p and q and our implementation
must be one-way convergent.

5.3.7 CAC achievability with Byzantine participants

THEOREM 5.39. Byzantine CAC achievability theorem. View fork join causal (VFJC) consistency can
be enforced by an always-available and one-way convergent implementation in presence of Byzantine faulty
participants.

Proof. Consider the implementation described by the pseudocode in Figure 13. Lemma 5.38 shows that the
implementation is one-way convergent, Lemma 5.34 shows that the implementation is always-available, and
Lemma 5.39 shows that the implementation admits VFJC consistent executions. Furthermore, the imple-
mentation admits Byzantine faulty participants. Combining these results, we get that VFJC is enforceable
by an always-available, one-way convergent implementation in presence of Byzantine participants.

The following corollary follows from knowing that in absence of Byzantine nodes, VFJC consistency
reduces to natural causal consistency.

COROLLARY 5.40. CAC achievability. Natural causal consistency can be enforced by an always-available
and one-way convergent implementation if all failures are omission failures.

Next we note that a one-way convergent implementation is also pairwise convergent. Therefore, the
following corollaries follows.

COROLLARY 5.41. Pairwise Byzantine CAC achievability. View fork join causal (VFJC) consistency can
be enforced by an always-available and pairwise convergent implementation in presence of Byzantine faulty
participants.

COROLLARY 5.42. Pairwise CAC achievability. Natural causal consistency can be enforced by an always-
available and pairwise convergent implementation if all failures are omission failures.

5.4 Bounding forks in VFJC consistency
In this section, we show that VFJC consistency can bound the number of forks, in addition to the set of
forks, that are admitted in an execution. Our proof exploits the properties of the VFJC HB graph to identify
a bound on the number of forks that correct nodes can observe.
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We first define precisely what it means for a correct node to observe a fork. Recall that a fork is a directed
path from a root of the fault-tree to the leaf and the fault-tree is derived from the HB graph. We next define
a few terms that help simplify the description of our proof.

DEFINITION 5.43. Observing a fork. A fork f is said to be observed by a correct node p if p has observed
a vertex v that belongs to the fork f such that v does not belong to any other fork.

DEFINITION 5.44. Disconnected HB graph. A HB graph in which there are no outgoing edges originating
at correct nodes is called a disconnected HB graph. Note that in a disconnected HB graph, no path exists
from a vertex at a correct node to another vertex at some other correct node.

DEFINITION 5.45. Maximally-forked HB graph. A HB graph that has the maximum number of forks for
a given number of correct and faulty nodes is called a maximally-forked HB graph.

We next derive a few lemmas to aid the derivation of our upper bound. We start by showing that it is suffi-
cient to limit our search for maximally-forked HB graphs to disconnected HB graphs because there exists a
disconnected HB graph that is maximally-forked (Lemma 5.46). We then argue that in a maximally-forked
HB graph, correct nodes must observe independent forks (Lemma 5.47). Finally, we derive a recursion on
the fork bound of HB graphs by showing that a maximally-forked HB graph with one correct node consists
of subgraph that are also maximally forked (Lemma 5.48). Using this recursion, we derive our fork-bound
theorem for VFJC consistency (Theorem 5.49).

LEMMA 5.46. There exists a maximally-forked and disconnected HB graph. For any number of correct
and faulty nodes, there exists a maximally-forked and disconnected HB graph.

Proof. Consider an arbitrary HB graph that is maximally-forked. Now remove the outgoing edges from
the correct nodes to construct a disconnected HB graph. It is easy to see that this transformation does not
reduce the number of forks observed by correct nodes. The number of forks is defined by the total number of
branches of faulty nodes observed by all correct nodes taken together. While this transformation may affect
the number of forks observed by a particular correct node, it does not affect the overall set of forks observed
by all correct nodes taken together; the path from the faulty node that created a fork to the first correct node
that observed that fork is still preserved. Note that the resulting graph is disconnected by construction and
maximally-forked from the argument presented above. Hence the desired result.

We next derive the upper bound on the number of forks that can be observed by correct nodes in a VFJC
execution. Let MaxFork(c, f) denotes the maximum number of distinct forks (from any faulty node)
observed by correct nodes in any execution of a system with c correct nodes and f Byzantine faulty nodes.

LEMMA 5.47. Correct nodes observe independent forks in a maximally-forked HB graph. MaxFork(c, f) ≤
c·MaxFork(1, f).

Proof. We know from Lemma 5.46 that there exists a disconnected HB graph for each combination of
correct and faulty nodes that is maximally-forked. So, we focus our attention on disconnected HB graphs
in this proof. Let G be a disconnected HB graph that is maximally-forked for c correct and f faulty nodes.
We now make two observations. First, becauseG is maximally-forked, no two correct nodes should observe
the same fork; exposing the same fork to multiple correct node does not add to the total number of forks.
Second, because the HB graph is disconnected, to each correct node it appears like a HB graph for 1 correct
node and f faulty node.

Combining these observations, we make two claims. First, each correct node p will observe at most
MaxFork(1, f) forks with f faulty nodes. Second, because forks produced for different correct nodes
must be different in a maximally-forked HB graph, we can have a maximum of c ·MaxFork(1, f) forks
in a maximally-forked HB graph with c correct nodes and f Byzantine faulty nodes. Hence, the desired
result.
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LEMMA 5.48. MaxFork recursion lemma for VFJC HB graph. MaxFork(1, f) ≤ 2·MaxFork(1, f−
1) + 1.

Proof. Let G be a maximally-forked, disconnected, and VFJC-consistent HB graph. Let u be the last
operation from a faulty node that was observed by the lone correct node p. Let v be the earliest vertex at p
such that u→ v. Let Gv denote the projection of the graph G such that Gv contains all vertices w : w ≺G v
and all edges connecting these vertices. Since p is the only correct node in G, and u is the last operation
accepted by p in G, we know that (1) pu must be correct in v (Definition 5.11[VFJC3]), (2) all operations
by pu in G must be totally ordered and precede u.

Observe that Gv looks like a HB graph with 2 correct nodes and f − 1 faulty nodes. Hence, from
Lemma 5.47, the maximum number of forks that these two correct nodes can observe in such a HB graph is
2·MaxFork(1, f − 1). It follows that that maximum number of forks from the f − 1 faulty nodes that the
correct node p can observe must also be bounded by 2·MaxFork(1, f − 1). Finally, note that p observes a
fork from pu, without recognizing it as a fork yet, in addition to the 2·MaxFork(1, f − 1) forks that it did
recognize. Combining these observations, the maximum number of forks that a correct node can observe in
presence of f Byzantine faulty nodes is 2·MaxFork(1, f − 1) + 1.

THEOREM 5.49. VFJC bounds forks. In a VFJC HB graph for f faulty nodes and c correct nodes, at most
c · (2f − 1) distinct forks can be observed by correct nodes.

Proof. From Lemma 5.48, we have MaxFork(1, f) = 2·MaxFork(1, f − 1) + 1. Solving this recursive
relation using the base case of MaxFork(1, 1) = 1, we get MaxFork(1, f) ≤ 2f − 1. Combining this
with the result of Lemma 5.47, we get MaxFork(c, f) ≤ c· (2f − 1).

6 Discussion
We started this research with the goal of strengthening the CAP theorem to prove the conjecture that causal
consistency is the strongest semantics achievable with high availability. We also wanted to prove a similar
bound using fork-join-causal consistency for environments with Byzantine nodes. Ultimately, our final
results differ from our intended results in several ways that we discuss below.

• Why did we introduce the CAC formulation instead of using the CAP formulation? Why did we intro-
duce an explicit convergence requirement and why did we omit the partition-tolerance requirement?

• Why causal consistency is not the strongest achievable consistency? Why did we introduce natural
causal consistency?

• Why did we use one-way convergence instead of two-way convergence or eventual consistency?

• Why do we not have a tight bound for environments with Byzantine failures?

We now discuss the key insight behind these differences and sketch a few interesting questions that are
open for further research.

Why CAC and not CAP? The CAP result talks about consistency, availability, and partition-resilience.
Why do we instead talk about the CAC properties? We discuss a few aspects that motivated this divergence
from the CAP result.

First, the CAP (consistency, availability, partition-resilience) formulation mixes properties (consistency
and availability) with the system model (network reliability assumptions). In our formulation, we decouple
the model from the properties so that we can separately consider bounds on properties achievable under both
omission and Byzantine failure models.

Furthermore, in our formulation, always availability corresponds to the AP (availability despite partitions)
properties in the CAP formulation.
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Figure 14: A causal execution (a) and its corresponding HB graph (b). Note that no NC-consistent HB graph for this
execution exists as the implementation has picked an earlier (in global time) write as the winner.

Second, we explicitly add convergence to the availability and consistency properties in our tradeoff.
Convergence property is the key innovation of this work and we need convergence to explore a wide range
of consistency semantics in a useful manner. The CAP theorem does not explicitly consider convergence
because it is concerned with linearizability as its consistency requirement and linearizability embeds a strong
convergence requirement; completed operations become immediately visible to all subsequent reads. In
contrast, even slightly weaker consistency semantics such as sequential consistency can be implemented in a
non-convergent way by returning stale responses on reads. The need for an explicit convergence requirement
becomes even more apparent when we examine weaker semantics like causal consistency.

Finally, we note a key similarity between CAP and CAC tradeoffs: both these results assume an arbitrary
workload. Both CAP and CAC results can be strengthened, if workload can be restricted. For example, one
can indeed provide strong consistency despite network partitions if objects are partitioned among nodes and
a node is only permitted to issue reads and writes to objects in its partition.
Open questions. There are strong consistency semantics that are incomparable with linearizability but
that seem “unnatural” [22] (e.g., always return the original value of an object regardless of what writes
occur.) Perhaps convergence provides a principled way to prefer some strong semantics over others? Is
linearizability the strongest semantic for some natural convergence requirement?

As the CAP theorem indicates, different system models yield different tradeoffs; a CAC-M framework
would generalize CAC by exposing the model as a parameter. CAP and this paper showed consistency-
availability tradeoffs for an unreliable network with Byzantine and omission failures. What other bounds
on consistency exist under different availability requirements (e.g., wait, lock, or obstruction freedom),
convergence requirements (e.g., two-way convergent or eventually consistent), or environment models? For
example, we conjecture that weak fork-linearizability [10] is the strongest consistency semantics that can be
enforced with a Byzantine faulty server if wait-freedom is desired when the server is correct.

Why is causal not the strongest? Here we illustrate the happens before graph for an execution that is
causal but not natural causal. As before, only the relevant details are shown for brevity. An implementation
could produce this execution by, for example, deciding that a write by the node with the lowest nodeID
dominates other causally-concurrent updates.

The technical strengthening of natural causal consistency is needed to ensure that the proof works out.
However, we find that the conjecture that causal consistency is the strongest achievable consistency seman-
tics is still right in its spirit. natural causal consistency is a natural strengthening of causal consistency which
is implemented by all the practical systems that we are aware of [8, 39, 41, 55] and we see no obvious rea-
son why an implementation would prefer to implement causal consistency over the stronger natural causal
consistency semantics.
Open questions: Are there other natural strengthening of causal that are incomparable with natural causal
but still highly available and usefully convergent? Is there a way to characterize different families of
strengthening into some design space of metrics or tradeoffs?

Why one-way convergence? The weaker pairwise convergence property requires a pair of nodes to con-
verge only when bidirectional communication is possible.

We focused on one-way convergence because it is needed in theory and useful in practice. In our the-
ory, natural causal is not the strongest always-available consistency semantics under pairwise convergence
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because nodes could conspire to impose order among logically-concurrent updates while exchanging those
updates. In practice, one-way convergence captures the spirit of anti-entropy protocols [8, 19, 49]. Although
most implementations use bidirectional communication, the communication from the update-receiver to the
update-sender is just a (significant) performance optimization used to avoid redundant transfers of updates
already known to the receiver. One-way convergence is also important in protocols that transmit updates via
delay tolerant networks [20, 49, 57].
Open questions: How do the CAC tradeoffs vary as we weaken convergence requirements? Although
we know that we can strengthen consistency if we only require pairwise convergence, so far we have only
identified “artificial” and not-obviously-useful variations. Are there useful, stronger consistency guarantees
that can be provided with weaker, but still useful, convergence requirements?

Why no tight bound for Byzantine? We would have liked to show that VFJC consistency, which mini-
mizes the number of forks admitted in an execution, is the strongest available and convergent semantics in
the presence of Byzantine nodes. Unfortunately, this conjecture is false—an implementation can enforce
technically stronger, albeit unnatural, consistency semantics that disallow certain VFJC consistent execu-
tions.

For example, consider a VFJC consistent execution e in which a faulty node f issues two logically
concurrent writes w1 and w2 to an object o. Consider an implementation I which is derived from an always-
available and one-way convergent implementation for VFJC consistency IV FJC . I behaves like IV FJC
in all the executions except for the execution e described above. For execution e, I suppresses the actual
concurrency and pretends that one of the writes (say w1) precedes the other (say w2). Such an execution, in
which the faulty node issues two serial writes w1 and w2 is already admitted by both IV FJC and I . Because
e is admitted by VFJC consistency, I can enforce a slightly stronger, VFJC-limited consistency, using a
highly available and one-way convergent implementation— I has the same availability or convergence of as
IV FJC .

Fortunately, in the absence of Byzantine nodes, we can use the C3 constraint of natural causal consis-
tency to rule out such strengthenings by arguing that the implementation must respect the real-time order of
operations issued by correct nodes. Unfortunately, we cannot apply a similar argument for operations issued
by Byzantine nodes as these operations do not have a well defined startTime or endTime. Therefore,
we cannot construct a similar proof for environments with Byzantine nodes.
Open questions. Do useful strengthenings of VFJC consistency exist? Is there a tight bound for a strongest
(hopefully useful!) consistency semantic that can be achieved with high availability and useful convergence?

7 Related work
Several prior efforts have explored the limits of consistency when other properties are desired. The CAP
tension between consistency and availability in systems with unreliable networks is well known [17, 24,
53]. Similarly, there is a fundamental tension between strong consistency and performance [38]. Frigo
defined the weakest “reasonable” memory model by imposing specific constraints, such as constructability,
nondeterminism confinement, and classicality [23]. Frigo also noted the problem of defining “trivial yet
strong” semantics that we address by using convergence properties [23].

To ensure availability, many systems have implemented causal consistency and weaker semantics with
various conflict resolution policies [2, 8, 18, 19, 25, 49, 50, 52]. To avoid picking a winner among different
conflict resolution policies, we follow some previous systems [8, 19, 41, 50] and permit a read to return a set
of concurrent writes.

As noted above, most systems that claim to implement causal consistency actually implement stronger
semantics (e.g. NC). Lloyd et al. [39] explicitly note that their system’s causal+ semantics are stronger
than causal consistency. In particular, these semantics enforce a variation of causal consistency in which
writes to each key are totally ordered. This natural strengthening has been implemented by a number of
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past systems [7, 47] by, for example, associating a Lamport clock [33] with each write and then imposing a
highest-accept-stamp-wins conflict resolution policy.

Traditionally, Byzantine faults have been addressed using quorums [44, 45], sometimes within state ma-
chine replication systems [5, 14, 26]. For sufficiently large quorums, traditional semantics such as regular,
safe, or atomic registers [34] or linearizability [29] can be enforced, while weaker forking consistency vari-
ations can be enforced on smaller quorums or even individual machines [10, 12, 36, 37, 42, 48]. Whereas
traditional semantics are unavailable when quorums are unresponsive, many forking semantics allow faulty
nodes to introduce permanent partitions among correct nodes [41]. In this paper, we show that this problem
is fundamental to these semantics.

Cachin et al. [10, 11] expose the tradeoff between consistency and availability in forking semantics by
showing that neither fork-sequential consistency [48], nor fork-* linearizable consistency [37] can be en-
forced by a wait-free implementation using a Byzantine faulty server.

Eventual propagation [21] requires all the nodes to observe all the updates but, unlike convergence, does
not demand different nodes to order updates or converge to a common state.

8 Conclusion
This paper examines the tradeoff between consistency and availability in fault-tolerant distributed systems.
In environments with network failures, we strengthen the CAP theorem to show that natural causal consis-
tency, a strengthening of causal consistency that respects the real-time ordering of operations, is the strongest
semantics achievable while retaining strong liveness guarantees. Similarly, we show that in the Byzantine
failure model, fork-causal [41] or stronger semantics cannot be implemented without compromising live-
ness. The key to both these results is the use of convergence as a liveness requirement. Convergence
precludes uninteresting semantics that gain their strength by disallowing nodes from observing each other’s
writes. Finally, we show the existence of consistency semantics that are enforceable by convergent and
always-available implementations in both omission- and Byzantine-failure prone environments.
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