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Abstract To better evaluate these approaches, we first formal-

A fundamental piece of information required in intelligesor- 1€ the notion of liveness within storage. Specifically, we
age systems is thevenessof data. We formalize the notion ofidentify three useful classes of liveness (content, block,
liveness within storage, and present two classes of teabsifpr and generation liveness), and present techniques for ex-
making storage systems liveness-aware. Inetk@icit notifica- plicit and implicit tracking of each type. Because tech-
tion approach, we present robust techniques by which a file spéques for imparting liveness information are dependent
tem can impart liveness information to storage through ee'fron the characteristics of the file system, we study a range
block” command. In thémplicit detectionapproach, we show of fijje systems, including ext2, ext3 and VFAT; in doing
t_hz_it such information can be inf_erred by the storage sysfem 8o, we identify key file system properties that impact the
ficiently underneath a range of file systems, without Chamesfeasibility and complexity of such techniques.

the storage interface. We demonstrate our techniquesghrou T ; di . ith li i
a prototype implementation of secure deleting diskWe find 0 gain more direct experience with liveness-tracking

that while the explicit interface approach is desirable ugs Methods, we design, implement, and evaluate a prototype
S|mp||c|ty’ the |mp||c|t approach is easy to dep|0y and desb secure delet'ng dISﬂhat ShredS b|0CkS that have been |Og-

quick demonstration of new functionality, thus facilitagirapid ically deleted by the file system, making deleted data ir-

migration to an explicit interface. recoverable [12]. We implement secure delete due to its
extreme requirements on the type and accuracy of liveness
1 Introduction information.
“Life is pleasant. Death is peaceful. It's the transition On the surface, both explicit and implicit approaches

that's troublesome.fsaac Asimov have their obvious benefits and drawbacks. Explicit no-
tification promises simplicity of implementation but re-

Smarter storage systems need to understand whethgres broad industry consensus, while implicit detection
blocks are live or dead. Previous work has demonstragiyigests ease of deployment but at the cost of complexity.
the utility of such knowledge: dead blocks can be used@ur analysis, however, reveals more complex trade-offs.
store rotationally optimal replicas of data [33] or to pro- We find qualitatively that the explicit approach is less
vide zero-cost writes [31], and failure recovery time caromplicated to design and implement. However, while it
be reduced by restoring only live blocks [23]. may appear straightforward to modify file systems to is-

Unfortunately, liveness information is not availablgue “free block” commands, accurate notification in the
within modern storage systems, due to the narrow blogkesence of crashes entails careful integration with file
based interface between file systems and storage [5,59ftem consistency management schemes, thus noticeably
Storage systems simply observe block-level reads dndreasing complexity.
writes and thus are not aware of logical operations (suchWe also find that implicit liveness detection is feasi-
as deletes) issued by the file system. This limitation pitgle underneath a range of modern file systems; however,
cludes many storage level optimizations [12, 18, 23] asdme file system behaviors prohibit certain classes of live-
makes others less effective [31, 32, 33]. ness inference. Therefore, we identify the properties that

In this paper, we address this limitation by presentimgust hold in order to enable or simplify implicit liveness
technigues by which storage systems can be imparted witference. We also propose and implement minor modifi-
liveness information. We perform a qualitative and quagations to file systems to conform to those properties.
titative comparison of two approaches. Wahplicit no- Finally, we show that implicit liveness detection can be
tification, we augment the interface to storage with a neaccurate underneath modern asynchronous file systems;
“free block” command; file systems must be modified tour secure delete prototype utilizes implicit liveness to
properly use it. Witimplicit detectionwe develop tech- shred blocks that are inferred to be dead. By proving cor-
nigues to enable the storage system to infer liveness infaget operation of implicit secure delete, we demonstrate
mation without any change to the interface. that implicit liveness can be used in storage applications
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with extreme correctness requirements. In evaluating tteort of free space. Knowledge of block death can make
performance of implicit liveness tracking, we find that such schemes more effective.
is comparable to the explicit approach. Optimized layout: Techniques to optimize on-disk lay-
We conclude that storage systems can more easily iguit transparently within the storage system have been well
plement the explicit approach, if the interface is embadxplored. Adaptive reorganization of blocks within the
lished to support it. However, we see the implicit apisk [21] and replication of blocks in rotationally optimal
proach as a complementary instead of competitive te¢deations [33] are two examples. Knowing which blocks
nology; because industry consensus on interface chaagefree can greatly facilitate such techniques; live bdock
is at best slow-moving, implicit techniques (even if conean be collocated together to minimize seeks, or the “free”
plex) can be of use. Specifically, by deploying a particgpace corresponding to dead blocks can be used to hold
lar technology without explicit interface change, imgdlicirotational replicas.
techniques can readily demonstrate possible benefits apgsrter NVRAM caching: Buffering writes in
thus move industry rapidly towards an explicit change. NVRAM is a common optimization in storage systems.
The paper is organized as follows. We first present gr synchronous write workloads that do not benefit much
extended motivatior), followed by a taxonomy of live- from in-memory delayed writes within the file system,
ness ¢3), and a list of file system properties that impag{VRAM buffering improves performance by absorbing
techniques for imparting liveness informatiof#). We multiple overwrites to a block. However, in delete-
proceed by discussing explicit notificatiofs] and im- intensive workloads, unnecessary disk writes can still
plicit detection {6), and then describe secure deletiogiccur; in the absence of liveness information, deleted
(§7). We then describe our initial experience with implocks occupy space in NVRAM and need to be written
plicit detection under NTFS, a closed-source file syste@disk when the NVRAM fills up. From real file system
(§8). Finally, we present a discussion on the relative mefaces [20], we found that up to 25% of writes are deleted
its of the implicit and explicit approache$d), and finish afterthe typical delayed write interval of 30 seconds, and
by discussing related worki10) and concluding§1). thus will be unnecessarily written to disk. Knowledge
Appendix A includes a proof of correctness for impliciabout block death within storage removes this overhead.

secure delete. Intelligent prefetching: Modern disks perform aggres-
. . sive prefetching; when a block is read, the entire track
2 Extended Motivation in which the block resides is often prefetched [22], and
In this section, we first present examples of functionaligached in the internal disk cache. In an aged (and thus,
enabled by liveness information, and then motivate tik@gmented) file system, only a subset of blocks within a
alternative approaches for gathering such information. track may be live, and thus, caching the whole track may
result in suboptimal cache space utilization. Although
21 Utility of liveness reading in the whole track is still efficient for disk I/O,

Liveness information enables a variety of functionalitgnowledge about liveness can enable the disk to selec-
and performance enhancements within the storage ¢€ly cache only those blocks that are live.

tem. Most of these enhancements cannot be implemerft@gter recovery: Liveness information enables faster re-
at higher layers because they require low-level contievery in storage arrays. A storage system can reduce re-
available only within the storage system. construction time during disk failure by only reconstruct-
Eager writing: Workloads that are write-intensive caing blocks that are live within the file system [23].

run faster if the storage system is capableader writing  Self-securing storage: Liveness information in storage
i.e., writing to “some free block closest to the disk armtan help build intelligent security functionality in stgea
instead of the traditional in-place write [8, 31]. Howevegystems. For example, a storage level intrusion detection
in order to select the closest block, the storage systegstem (IDS) provides another perimeter of security by
needs information on which blocks are live. Existing pragnonitoring traffic, looking for suspicious access patterns
posals function well as long as there exist blocks that wesech as deletes or truncates of log files [18]; detecting
never written to; once the file system writes to a block)ese patterns requires liveness information.

the storage system cannot identify subsequent death of$iegure delete: The ability to delete data in a manner
block as a result of a delete. A disk empowered with livghat makes recovery impossible is an important compo-
ness information can be more effective at eager writingnent of data security [3, 12, 14]. Government regulations
Adaptive RAID: Information on block liveness within require strong guarantees on sensitive data being “forgot-
the storage system can also facilitate dynamic, adaptiea”, and such requirements are expected to become more
RAID schemes such as those in the HP AutoRAID syaddespread in both government and industry in the near
tem [32]; AutoRAID utilizes free space to store data ifuture [1]. Secure deletion requires low-level control on
RAID-1 layout, and migrates data to RAID-5 when it runklock placement that is available only within the storage
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system; implementing storage level secure delete requires

liveness information within the storage system. We ex--Veness Description C“”e.gtl'y,) Exﬁﬁ‘p'e
plore secure deletion further in Section 7. Coxgﬁt Bata within block po?zs X VeL:S'i'O)r/“ng

.. . . . Block Whether a block holdg No Eager write,
2.2 Acqumng liveness information valid data currently fast recovery
Despite the clear benefits of liveness information in storGeneration|  Block’s lifetime in No Secure delete,
age systems, such information is not currently available. the context of a file storage IDS
A natural question that arises is how to convey liveness in- Table 1:Forms of liveness.

fornia_tiontp_sto_rage systems. e d'$CUSS two approaChaev%iIability than traditional RAID. In this paper, we in-
explicit notificationandimplicit detection

vestigate the limits of implicit detection, by considering
2.2.1 Explicit notification applications that utilize implicit liveness informatiom &
Explicit notification involves augmenting the existingvay that directly impacts correctness.
storage interface with new “allocate block” and “free The primary concern witimplicit interface evolution
block” commands, and then modifying file systems to usethat it ties the interacting layers together. For exam-
these commands to explicitly convey liveness informatiqte, if the file system changes, the storage system will
to the storage system. The main benefit of the explicit djkely need to change as well. However, this issue may
proach is its potential simplicity; once the new interfageot be as problematic as it seems. On-disk formats evolve
is deployed, conveying liveness information is seemingjowly, for reasons of backwards compatibility. For ex-
straightforward. ample, the Linux ext2 file system, introduced in roughly
However, while appearing to be a natural way tb994, has had the same layout for its lifetime. Further, the
achieve our goal, there are a few problems with this a@xt3 journaling file system [29] is backwards compatible
proach. First, changing the interface to storage raiseigh the on-disk layout of ext2 and the new extensions
legacy issues and requires broad industry consensus. 8z¢he FreeBSD file system [6] are backwards compati-
ond, a demand for such a new interface often requifgle as well. We also have evidence that commercial stor-
agreement on the clear benefits of the interface, whichaige vendors are already willing to maintain and support
difficult to achieve without deployment of the interface software specific to a file system; for example, the EMC
a chicken-and-egg problem. Symmetrix storage system [7] comes with software that
can understand most common file systems. These trends
oint to the commercial viability of an implicit detection
proach.

2.2.2 Implicit detection

Implicit detection is intended to solve the bootstrappi

problem in explicit interface evolution. In this approach,

the storage system monitors block-level reads and wri@s | jveness in Storage: A Taxonomy

issued by the file system from underneath an uandiﬁﬁ%ving discussed the utility of liveness information

interfa_lce and infers Iivene;s information implicitly, id_e ithin a storage System, we now present a taxonomy of

ally with no change to the file system above. Th_e 'mp“%\'lfvie forms of liveness information that are relevant to stor-

approach thus enables demonstration of benefits due 10 a

proposed interface change, thereby making it an evo

tionary step towards an eventual interface modification.
Previous work onsemantically-smartstorage sys- 3.1  Granularity of liveness

tems [2, 23, 24] has explored implicit detection of varpepending on the specific storage-level enhancement that

ous forms of file system information from within the storgjjizes liveness information, the logical unit of liverses

age system, for various storage-level enhancements. {0 tracked can vary. We identify three granularities

degree of accuracy required from the implicit detectiag \hich liveness information is meaningful and useful:

techniques in each case depends on the nature of the@pient, block and generation. A summary is presented in
plication using that information. In X-RAY [2], the stor-tgpje 1.

age system utilizes implicit information on file accesses

to implement an exclusive storage array cache; inac&i1.1 Content liveness

rate information in X-RAY simply reduces the potentiaContent liveness is the simplest form of liveness. The unit
performance gain. In D-GRAID [23], the storage sy®f liveness is the actual data in the context of a given
tem utilizes implicit information on the file a block be-block; thus, “death” at this granularity occurs on every
longs to, in order to place blocks in a fault-isolated faslverwrite of a block. When a block is overwritten with
ion, thus improving the availability of the storage systemew data, the storage system can infer that the old con-
under multiple disk failures; inaccurate information in Dtents are dead. An approximate form of content liveness is
GRAID leads to poor fault isolation, but does not impaceadily available in existing storage systems, and has been
correctness because the array still exhibits strictlydbetexplored in previous work; for example, Warg al’s

Such liveness information can be classified along
ree dimensionggranularity, accuracy andtimeliness
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virtual log disk frees the past location of a block wheih is acceptable to miss certain intermediate generation
the block is overwritten with new contents [31]. Trackdeaths of a block as long as the latest generation death
ing liveness at this granularity is also useful in on-disif the block is known.

versioning, as seen in self-securing storage systems [ . . . .
However, to be completely accurate, the storage syst?ég _T'mel'r,'ess O_f mfo_rmatlon o ]
also needs to know when a block is freed within the filEn€ third and final axis of liveness is timeliness, which
system, since the contents stored in that block are gégdines the time between a death occurring within the file

even without it being overwritten. system and the disk learning of the death. In the explicit
. notification approach, if the file system delays “free” no-
3.1.2 Block liveness tifications (similar to delayed writes), there will be a time

Block liveness tracks whether a given disk block currentlyig before the disk learns of a block or generation death.
contains valid datd,e., data that is accessible through thgimilarly, in the implicit approach, the periodicity with
file system. The unit of interest in this case is the “colvhich the file system writes metadata blocks imposes a
tainer” instead of the “contents”. Block liveness is thBound on the timeliness of the liveness information in-
granularity required for many applications such as intgkrred. In many applications, such as eager writing and
ligent caching, prefetching, and eager writing. For egelete-aware caching, this delayed knowledge of liveness
ample, in deciding whether to propagate a block from acceptable, as long as the information has not changed
NVRAM to disk, the storage system just needs to know the meantime. However, in certain applications such

whether the block is live at this granularity. This fornas secure delete, timely detection may provide stronger
of liveness information cannot be tracked in traditionguarantees.

storage systems because the storage system is unaware of _. )
which blocks the file system thinks are live. However,4 File System Properties
weak form of this liveness can be tracked; a block thBbth explicit and implicit methods for imparting liveness
was never written to can be inferred to be dead. information to storage are dependent on the characteris-
I tics of the file system using the storage system. We there-
3.1.3 Generation liveness . . .

. . : o ore study the range of techniques required for such live-
The generation of a disk block is the lifetime of the bloc& A : . .

ness notification (or detection) by experimenting under-

n the context of a certain file. Thus, by death O.f a geneidath three different file systems: ext2, ext3, and VFAT.
tion, we mean that a block that was written to disk (at Ieﬁ

once) in the context of a certain file becomes either frﬁ e have also experimented with NTFS, butonly on a lim-

or is reallocated to a different file. Tracking generationSd scale due to lack of source code access; our NTFS

: . . erience is described in Section 8. Given that ext2 has
liveness ensures that the disk can detect every logical fi .
WO modes of operation (synchronous and asynchronous
system delete of a block whose contents had reached djs :
. ) fmodes) and ext3 has three modes (writeback, ordered, and
in the context of the deleted file. An example of a stor: .~ . o
. : ) ;- -~ ~“data journaling modes), all with different update behav-
age level functionality that requires generation liverisss. . . '
. : : iors, we believe these form a rich set of file systems.
secure delete, since it needs to track not just whether : o . .
e first begin with a brief background on the various

block is live, but also whether it contained data that bg- : . X
' ) . . ile systems and then outline some high level behavioral
Ionggd tp afile generanon thatis no Io_nger aI|v_e. AnOtheFopertieS of a file system that are relevant in the context
application that requires generation liveness |nforrmat|§f liveness information. In the next two sections, we dis-
is storage-based intrusion detection. Generation livenes L . o
. L ¢Uss how these properties influence different techniques
cannot be tracked in existing storage systems.

for storage-level liveness tracking.

3.2 Accuracy of liveness information 41
The second dimension of liveness is accuracy, by Whigfu

we refer to the degree of trust the disk can place in t &n on the various file systems we study. We discuss both

I|vene_ss mformauon available to It Ina_ccuracy n I'.VeRctay on-disk data structures and the update behavior.
ness information can lead the disk into either overestimat-

ing or underestimating the set of live entities (blocks é.1.1 Common properties

generations). The degree of accuracy required varies witle begin with some properties common to all the file sys-
the specific storage application. For example, in deletems we consider, from the viewpoint of liveness tracking.
squashing NVRAM, it is acceptable for the storage syAt a basic level, all file systems track at least two kinds
tem to slightly overestimate the set of live blocks, sinad on-disk metadata: a structure that tracks allocation of
it is only a performance issue and not a correctness issolecks €.g, bitmap, freelist), and index structures.d,

on the other hand, underestimating the set of live block®des) that map each logical file to groups of blocks.

is catastrophic since the disk would lose valid data. Sim-A common aspect of the update behavior of all mod-
ilarly, in generation liveness detection for secure deletrn file systems issynchrony When a data or metadata

File system background
this subsection, we provide some background informa-
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block is updated, the contents of the block are notimmedi-

[8]

ately flushed to disk, but instead, buffered in memory for = 2| g :‘%
a certain intervali(e., thedelayed write interval Blocks sldlzlalala
that have been “dirty” longer than the delayed write in-  Property g|d|s|d|d|d
terval are periodically flushed to disk. The order in which ~ Reuse ordering x x [ x ] ox

such delayed writes are committed can be potentially arbj- Block exclusivity X
. . Generation marking X | x X | x | x
trary, although certain file systems enforce ordering con- pgjete suppression wlx x| x| x| x
straints [10]. Consistent metadata x | x| x
Data-metadata coupling X

4.1.2 Linux ext2 _ ] _
The ext2 file system is an intellectual descendant of thgole 2: File system properties, The table summarizes the
Berkeley Fast File System (FFS) [16]. The disk is Spl\llfarlous properties exhibited by each of the file systemsway.st
into a set ofblock groupsakin to cylinder groups in FFS, b, one can look in entry of the FAT to find the next block
each of which contains inode and data blocks. The allogsi-the file, and so forth. An entry can also hold an end-
tion status (live or dead) of data blocks is tracked through-file marker or a setting that indicates the block is free.
bitmap blocks Most information about a file, includingUnlike UNIx file systems, where most information about
size and block pointers, is found in the file's inode. Tafile is found in its inode, a VFAT file system spreads this
accommodate large files, a few pointers in the inode poinformation across the FAT itself and the directory entries
to indirect blocks which in turn contain block pointers. the FAT is used to track which blocks belong to the file,
While committing delayed writes, ext2 enforces no owhereas the directory entry contains information like size
dering whatsoever; crash recovery therefore requires reype information and a pointer to the start block of the file.
ning a tool likefsck to restore metadata integrity (datssimilar to ext2, VFAT does not preserve any ordering in
inconsistency may still persist). Ext2 also has a syits delayed updates.
chronous mode of operation where metadata updates are
synchronously flushed to disk, similar to early FFS [16]4.2  Properties

. The update behavior of the file system has a direct influ-
4.1.3 Linux ext3 . S X
. : . . ' ence on the techniques through which liveness informa-
The ext3 file system is a journaling file system that .
. : ion can be imparted to the storage system. Based on our
evolved from ext2, and uses the same basic on-disk struc- . . . ; .
. : experience with the aforementioned file systems, we iden-
tures. Ext3 ensures metadata consistency by Wr|te-ah{e

logging of metadata updates, thus avoiding the need .@ h|gh-|eve|.f||e system properties that are relevar_lt o
) liveness tracking. Table 2 summarizes these properties.
perform an fsck-like scan after a crash. Ext3 employ

. S . euse ordering: If the file system guarantees that it will
coarse-grained model of transactions; all operations PSOt reuse disk blocks until the freed status of the block
formed during a certaiepochare grouped into a single

transaction. When ext3 decides to commit the transé%'—g’ bitmaps or other metadata that pointed to the block)
. . : . . r?aches disk, the file system exhibri#sise orderingThis
tion, it takes an in-memory copy-on-write snapshot 0

dirty metadata blocks that belonged to that transactic?r{operty is necessary (but not sufficient) to ensure data in-

subsequent updates to any of those metadata blocks regglrt't.y; n th_e absence of this property, a file COUlq end
in a new in-memory copy. up with partial contents from some other deleted file af-

Ext3 supports three modes of operation. orered ter a crash, even in a journaling file system. While VFAT

data mode, ext3 ensures that before a transaction cogfrnl-d the asynchronous mode of ext2 do not have reuse or-

mits, all data blocks dirtied in that transaction are wri ering, all three modes of ext3, and ext2 in synchronous

ten to disk. Indata journalingmode, ext3 journals datamOde’ exhibit reuse ordering.

blocks together with metadata. Both these modes ens%t%(:k exclusivity: Block exclusivityequires that for ev-

data integrity after a crash. The third modita write- ery disk block, there is at most one dirty copy of the block

back does not order data writes; data integrity is not guakp- the fllel syst:m catchle. Il(t alsto requwets that th; ft'let Sﬁ
anteed in this mode. em employ adequate locking to prevent any update to the

in-memory copy while the dirty copy is being written to
41.4 VFAT disk. This property holds for certain file systems such as
The VFAT file system descends from the world of PE€xt2 and VFAT. However, ext3 does not conform to this
operating systems. In this paper, we consider the Linpsoperty. Because of its snapshot-based journaling, there
implementation of VFAT. VFAT operations are centereciin be two dirty copies of the same metadata block, one
around thdile allocation table (FAT,which contains an for the “previous” transaction being committed and the
entry for each allocatable block in the file system. Thesgher for the current transaction.
entries are used to locate the blocks of a file, in a linke@eneration marking: Thegeneration markingroperty
list fashion. For example, if a file's first block is at addresgquires that the file system track reuse of file pointer ob-
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jects €.g, inodes) with version numbers. Both the ext2 To simplify file system implementation, the file system
and ext3 file systems conform to this property; when ahould not be concerned about what form of liveness a
inode is deleted and reused for a different file, the veararticular disk functionality requires. In our approadteg t
sion number of the inode is incremented. VFAT does nfile system invokes thér ee command for every logi-
exhibit this property. cal delete. On receiving far ee command for a block,
Delete suppression: A basic optimization found in mostthe disk marks the block dead in its internal allocation
file systems is to suppress writes of deleted blocks. Aliructure é.g, a bitmap), and on ar i t e, it marks the

file systems we discuss obey this property for data blocksrresponding block live. The responsibility for mapping
VFAT does not obey this property for directory blocks. thesef r ee commands to the appropriate form of liveness
Consistent metadata: This property indicates whetherinformation lies with the disk. For example, if the disk
the file system conveys a consistent metadata state tortheds to track generation deaths, it will only be interested
storage system. All journaling file systems exhibit tha af r ee command to a block that it thinks is live (as
consistent metadata property; transaction boundariesnidicated by its internal bitmaps); a redundéanee to a
their on-disk log implicitly convey this information. Ext2block that is already free within the disk (which happens
and VFAT do not exhibit this property. if the block is deleted before being written to disk) will
Data-metadata coupling:  Data-metadata coupling not be viewed as a generation death. For correct opera-
builds on the consistent metadata property, and it requities, the file system should guarantee that it will not write
the notion of consistency to be extended also to da#lock to disk without a prior allocation; if ther i t e it-
blocks. In other words, a file system conforming to thigelf is treated as an implicitl | ocat e, this guarantee is
property conveys a consistent metadata state together withsame as théelete suppressioproperty. Awr i t e to

the set of data blocks that were dirtied in the context affreed block without an allocation will result in incorrect
that transaction. Among the file systems we consider, oignclusion of generation liveness within the disk. Note
ext3 in data journaling mode conforms to this property. that after & r ee is issued for a block, the disk can safely

e e - . use that block, possibly erasing its contents.
5 Explicit Liveness Notification

We now proceed to the techniques for imparting var-2  Timeliness off r ee notification

ious forms of liveness information to storage System%nothel' important issue that arises in explicit notificatio

In this section, we discuss thexplicit notificationap- Of af r ee is whenthe file system issues the notification.

proach, where we assume that speaihl ocat e and One option ismmediate notificationwhere the file sys-

f r ee commands are added to SCSI. As an optimizatide@m issues a “free” immediately when a block gets deleted

we obviate the need for an expliat | ocat e command in memory. Unfortunately, this solution can result in loss

by treating ar i t e to a previously freed block as an im-Of data integrity in certain crash scenarios. For example,

plicit al | ocat e. Although modifying file systems toif & crash occurs immediately after the ee notification

use this interface may seem trivial, we find that supportiifief @ block B but before the metadata indicating the corre-

thef r ee command has ramifications in the consistengponding delete reaches disk, the disk considers bidck

management of the file system under crashes. as dead, while upon recovery the file system views block
We have modified the Linux ext2 and ext3 file systerd8 as live since the delete never reached disk. Since a live

to use thisf r ee command to communicate liveness infile now contains a freed block, this scenario is a violation

formation; we discuss the issues therein. Thee com- 0f data integrity. While such violations are acceptable in

mand is implemented as #@rttl to a pseudo-device driver file systems such as ext2 which already have weak data in-

which serves as our enhanced disk prototype. tegrity guarantees, file systems that preserve data ittegri
_ L (such as ext3) need ttelaynotification until the effect of
5.1 Granularity of f r ee notification the delete reaches disk.

One issue that arises with explicit notification is the ex- Delayed notification requires the file system to conform
act semantics of thér ee command, given the variousto the reuse orderingproperty; otherwise, if the block
granularities of liveness outlined in Section 3. For exars reused (and becomes live within the file system) be-
ple, if only block liveness or content liveness needs to fere the effect of the previous delete reaches disk, the
tracked, the file system can be lazy about initiafimgee delayedf r ee command would need to be suppressed,
commands (thus suppressingee to blocks that are sub-which means the disk would miss a generation death.
sequently reused). For generation liveness, the file system

needs to notify the disk of every delete of a block whoss3 Orphan allocations

contents reached disk in the context of the deleted fil&nally, explicit notification needs to handle the casermf
However, given multiple intermediate layers of bufferingghan allocationswhere the file system considers a block
the file system may not know exactly whether the contemtsad while the disk considers it live. Assume that a block
of a block reached disk in the context of a certain file. is newly allocated to a file and is written to disk in the con-
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text of that file. If a crash occurs at this point (but beforl® Implicit Liveness Detection

the metadata indicating the allocation is written to disk this section, we analyze various issues in implicit detec
the disk would assume that the block is live, but on restagbn of liveness from within the storage system. Implicit
the file system views the block as dead. Since the on-djglgness inference requires the storage system to have se-
contents of the block belong to a file that is no longer exyantic understanding [24] of the on-disk format of the
tant in the file system, the block has suffered a generatiga system running above, coupled with careful observa-
death, but the disk does not know of this. Titreee no- tjon of file system traffic. Because implicit liveness de-
tification mechanism should enable accurate tracking attion is file system dependent, we discuss the feasibility
liveness despite orphan allocations. Handling orphan ghq generality of implicit liveness detection by consider-
locations is file system specific, as we describe below. jng three different file systems: ext2, ext3, and VFAT. In
Section 8, we discuss our initial experience with implicit
5.4 Explicit notification in ext2 detection under_neath the Windows NTFS file system.
As mentioned above, because ext2 does not provide datAmong the different forms of liveness we address, we

integrity guarantees on a crash, the notification ofdeleﬁerfy consider the granularity and accuracy axes men-

can be immediate: thus ext2 invokes theee com- oned in Section 3. Along the accuracy axis, we con-

. : sideraccurateand approximateinferences; thepproxi-
mand synchronously whenever a block is freed in mem-_ . . .
: . . i . mateinstance refers to a striclver-estimatef the set of

ory. Dealing with orphan allocations in ext2 requires a i L .
[ive entities. On the timeliness axis, we address the more

relatively simple but expensive operation; upon recover . .
- . . L ommon (and complex) case of lack of timely informa-
the fsck utility conservatively issués ee notificationsto .~ | }
. o . tion; under most modern file systems that delay metadata
every block that is currently dead within the file system. L . :
updates, timeliness is not guaranteed. With guarantees of
o S timeliness €.g, under a synchronously mounted file sys-
5.5 Explicit notification in ext3 tem), implicit inference of liveness is trivial [24].

Because ext3 guarantees data integrity in its ordered .

data journaling moded,r ee notification in ext3 has to%]i ) Conte_nt Ilveness ) )
be delayed until the effect of the corresponding delé% discussed in Sec'uqn 3, when the d.'Sk ob.serves awrite
reaches disk. In other words, the notification has to be g4.N€W contents to a live data block, it can infer that the
layed until the transaction that performed the delete cofff€Vvious contents stored in that block has suffered a con-

mits. Therefore, we record an in-memory list of bIocl{?m deat_h. However, t(.) be. compIeFer accurate,_ content
that were deleted as part of a transaction, and issie® iveness inference requires information on block liveness

notifications for all those blocks when the transacticg 2 Block liveness

°°”.‘m'ts- Since ext3 already COF‘TOf”?S tp the reUSe @iock liveness information enables a storage system to
dering property, such delayed not|f|cf':1t|on IS feaS|bI§. know whether a given block contains valid data at any
However, a crash could occur during the invocation gfyen time. To track block liveness, the storage system
the free commandsi(e., immediately after the com-yqnitors updates to structures tracking allocation. 12 ext
mit of the transaction); therefore, theeee operations 4nq ext3, there are specific data bitmap blocks which con-
should be redo-able on recovery. For this purpose, we alg§) thjs information: in VFAT this information is embed-
log speciaf r ee records in the journal which are then regeq in the FAT itself, as each entry in the FAT indicates
played on recovery, as part of the delete transaction. \yhether or not the corresponding block is free. Thus,
During recovery, since there can be multiple commifyhen the file system writes an allocation structure, the
ted transactions which will need to be propagated to thetbrage system examines each entry and concludes that
on-disk locations, a block deleted in a transaction coulge relevant block is either dead or live.
have been reallocated in a subsequent committed transa@ecause allocation bitmaps are buffered in the file sys-
tion. Thus, we cannotreplay all loggéd ee commands. tem and written out periodically, the liveness information
Given our guarantee of completing &lt ee commands that the storage system has is often stale, and does not
for a transaction before committing the next transactiofccount for new allocations (or deletes) that occurred dur-
we should only replay r ee commands for the last suc-ing the interval. Table 3 depicts a time line of operations
cessfully committed transaction in the log (and not for aRyhich leads to an incorrect inference by the storage sys-
earlier committed transactions that are replayed). tem. The bitmap block/ tracking the liveness of3
To deal with orphan allocations, we log block numbers written in the first step indicatingg is dead. Subse-
of data blocks that are about to be written, before they ayeently,B is allocated to a new filé, and written to disk
actually written to disk. On recovery, ext3 can isueee while Mg (now indicatingB as live) is still buffered in
commands to the set of orphan data blocks that were pagmory. At this point, the disk wrongly believes that
of the uncommitted transaction. is dead while the on-disk contents Bfare actually valid.



Appears in the Sixth Symposium on Operating Systems Deasibimgplementation (OSDI '04)

Operation | In-memory On-disk Operation In-memory On-disk

Initial Mp = B free Initial Mp = Balloc B live

M p write to disk B free I, - B L - B

I, alloc I — B B write to disk B written
Mp = B alloc 1, delete Mp = B free

B write to disk B written I alloc I — B

Liveness belief B live B free Mp = Balloc

Table 3: Naive block liveness detection. The table depicts a mﬂt:égﬁzfs K (Missed gen.Bdltle\;h)

time line of events that leads to an incorrect liveness @éfee. ) ) )
This problem is solved by the shadow bitmap technique. Table 4: Missed generation death under block livenessThe

table shows a scenario to illustrate that simply trackingdi
To address this inaccuracy, the disk trackshadow liveness is insufficient to track generation deaths.

copyof the bitmaps internally [23]; whenever the file sys- . . '
tem writes a bitmap block, the disk updates its shadow':Or accuracy, block liveness also requires the file Sys-
copy with the copy written. In addition, whenever a dat rlntto conform_ to (‘;he del?tﬁ fduppres_tsmr} prlg)lpelr(t)(/j, i
block is written to disk, the disk pro-actively sets the co _et? € Tu?r?r??r? |0fr_1| oestno 01d, atlhwrljle oka l.OC ocejs
responding bit in its shadow bitmap copy to indicate th ptimply that Ine Tile System VIews the block as five, an
the block is live. In the above example, the write Bf thus th_e shadow b't”_‘ap techmqge wil 0\_/erest|mate the
leads the disk to believe thatis live, thus preventingtheSet of live blocks until the n_ext b"”?ap wrl.te. From Ta-
incorrect conclusion from being drawn. ble 2, ext2, VFAT, and ext3 in data journaling mode thus
readily facilitate block liveness detection.
6.2.1 File system properties for block liveness . .
The shadow bitmap technique tracks block liveness 5@-3 G_ene_ratlon I_|veness )
curately only underneath file systems that obey either f€neration liveness is a stronger form of liveness than
block exclusivity or data-metadata coupling property. Plock liveness, and hence builds upon the same shadow
Block exclusivity guarantees that when a bitmap bb&tmap technique. Wlth generation I|veness_, the goal is to
is written, it reflects the current liveness state of the rdi0d: ]‘,or each on-disk block, whether a particular “gener-
evant blocks. If the file system tracks multiple snapshdtdon” of data €.g, that corresponding to a particular file)
of the bitmap block€.g, ext3), it could write an old ver- stored in that block is dead. Thus, block liveness is a spe-
sion of a bitmap block\/ (indicating B is dead) after a cial case of generation liveness; a block is dead if thetlates
subsequent allocation and write Bf The disk would thus generation that was stored in it is dead. Conversely, block
wrongly infer thatB is dead while in fact the on-disk conJliveness information is not sufficient to detect generation
tents of B are valid, since it belongs to a newer snapshgt{eness becaus_e a_block currently live could_ have_ stored
such uncertainty complicates block liveness inference. & d€ad generation in the past. Table 4 depicts this case.
If the file system does not exhibit block exclusivityB!ock B initially stores a generation of inodg, and the

block liveness tracking requires the file system to exhitsi{Sk thinks that block3 is live. I, is then deleted, freeing

data-metadata coupling.e. to group metadata blocksUP B, andB is immediately reallocated to a different file
- . WhenM g is written the next timeB continues to be

(e.g, bitmaps) with the actual data block contents in X ) ; i
single consistent group; file systems typically enford@arked live. Thus, the disk missed the generation death

such consistent groups through transactions. By obsdty5 that occurred between these two bitmap writes.
ing transaction boundaries, the disk can then reacquire§ 1 Generation liveness under reuse ordering

temporal information that was lost due to lack of blockihough tracking generation liveness is in general more

exclusivity. For example, in ext3 data journaling mode, @ jienging, a file system that follows the reuse ordering
transaction would contain the newly allocated data bloch?operty makes it simple to track. With reuse ordering,

together with the bitmap blocks indicating the allocatiofefore a block is reused in a different file, the deleted

as part of one consistent group. Thus, at the commit poigilys of the block reaches disk. In the above example,
the disk conclusively infers liveness state from the stateguore B is reused inZ,, the bitmap blockM 5 will be

the bitmap blocks in that transaction. Since data Writes\}{f?itten, and thus the disk can detect thadis dead. In

the actual in-place locations occur only after the Corrgye hresence of reuse ordering, tracking block liveness ac-
sponding transaction commits, the disk is guaranteed thafately implies accurate tracking of generation liveness

until the next transaction commit, all blocks marked deggj|o systems such as ext3 that conform to reuse ordering,

in the previous transaction will remain dead. In the as s tacilitateaccuratetracking of generation liveness.
sence of data-metadata coupling, a newly allocated data

block could reach its in-place location before the corré-3.2 Generation liveness without reuse ordering
sponding transaction commits, and thus will become likdnderneath file systems such as ext2 or VFAT that do not
in the disk before the disk detects it. exhibit the reuse ordering property, tracking generation
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liveness requires the disk to look for more detailed in- _
formation. Specifically, the disk needs to monitor writes=Veness type | __Properties :
data obiects that link blocks together into a sin IBIockAm,,.ow Block exclusivity or Data-metadata coupling
to r_neta_ a | . : _g ) g %IockAccumte [ Block approz ] + Delete suppression
logical file (such as the inode and indirect blocks in ext2Generation ..oz [ BIock 4 pprox ] + Generation marking
the directory and FAT entries in VFAT). The disk needs toGenerationccurate | [ BloCKaccurate ] + Reuse ordering
explicitly track the “generation” a block belongs to. Fofaple 5: FS properties for implicit liveness detection.
example, when an inode is written, the disk records thabyroz indicates the set of live entities is over-estimated.
the block pointers belong to the specific inode.

With this extra knowledge about the file to which eadplicit approaches. We first describe implicit secure delete
block belongs, the disk can identify generation deaths '[gydetail, and then briefly discuss explicit secure delete.
looking for changes in ownershipFor example, in Ta-  There are two primary reasons why we chose secure
ble 4, if the disk tracked thaB belongs tal;, then even- deletion as our case study. First, secure delete requires
tually whenl, is written, the disk will observe a change offacking of generation liveness, which is the most chal-
ownership, becausk owns a block thaf; owned in the lenging to track. Second, secure delete uses the liveness
past; the disk can thus conclude that a generation deigfprmation in a context where correctness is paramount.
must have occurred in between. A false positive in detecting a delete would lead to irrevo-

A further complication arises when instead of beir@able deletion of valid data, while a false negative would
reused inl», B is reused again id;, now representing result in the long-term recoverability of deleted data (a vi
a new file. Again, sinceB now belongs to a new gen_olation of secure deletion guarantees). Compared to pre-
eration of;, this scenario has to be detected as a geious work [24] which functioned only under a simplistic
eration death, but the ownership change monitor wo#gSumption of a synchronously mounted file system, we
miss it. To detect this case, we require the file systemdgmonstrate that accurate inference of liveness is feasibl
track reuse of inodes.¢., the generation marking prop_underneath a variety of modern file system behaviors.
erty). Ext2 already maintains such a version number, andour implicit secure deletion prototype is called FADED
thus enables detection of these cases of generation defhEile-Aware Data-Erasing Disk); FADED works under-
With version numbers, the disk now tracks for each blogieath three different file systems: ext2, VFAT, and ext3.
the “generation” it belonged to (the generation numbBgcause of its complete lack of ordering guarantees, ext2
is a combination of the inode number and the versidfiesented the most challenges. Specifically, since ext2
number). When the disk then observes an inode writtd@i€s not have the reuse ordering property, detecting gen-
with an incremented version number, it concludes that gfiation liveness requires tracking generation infornmatio
blocks that belonged to the previous version of the ino#éthin the disk, as described in Section 6.3. We there-
should have incurred a generation death. We call this teépre mainly focus on the implementation of FADED un-
niquegeneration change monitoring derneath ext2, and finally discuss some key differences in

Finally, it is pertinent to note that the generation livedur implementation for other file systems.
ness detection through generation change monitorin%is

only approximate Let us assume that the disk observeés1 Goals of FADED
that block B belongs to generatiort’;, and at a later The desired behavior of FADED is as follows: for every

time observes thaB belongs to a different generaticty. block that reaches the disk in the context of a certain file F,
Through generation change monitoring, the disk can cdhe delete of file F should trigger a secure overwiiite. (
clude that there was a generation deatBdahat occurred shred of the block. This behavior corresponds to the no-
in between. However, the disk cannot know exabibyv tion of generation livenesdefined in Section 3. Ahred
manygeneration deaths occurred in the relevant perid@volves multiple overwrites to the block with specific pat-
For example, after being freed frofi;, B could have terns so as to erase remnant magnetic effects of past lay-
been allocated t6/5, freed fromG; and then reallocateders (that could otherwise be recovered through techniques
to G, but the disk never sa®; owning B due to delayed Such as magnetic scanning tunneling microscopy [12]).
write of G5. However, as we show in our case study, thiBecent work suggests that two such overwrites are suf-
weaker form of generation liveness is still quite useful. ficient to ensure non-recoverability in modern disks [14].

A summary of the file system properties required for Traditionally, secure deletion is implemented within the
various forms of implicit liveness inference is presentdide system [3, 25, 26]; however, such implementations

in Table 5. are unreliable given modern storage systems. First, for
. high security, overwrites need to bé-trackwrites (.e.,
7 Case StUdy- Secure Delete writes straggling physical track boundaries), which ex-

To demonstrate our techniques for imparting livenessternal erase programs.g, the file system) cannot per-
storage, we present the design, implementation, and efatm [13]. Further, if the storage system buffers writes in
uation of asecure deleting disknder both explicit and im- NVRAM [32], multiple overwrites done by the file system
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may be collapsed into a single write to the physical distem for another file, the new, valid data will be written
making the overwrites ineffective. Finally, in the presen@ventually {.e., within the delayed write interval of the
of block migration [7, 32] within the storage system, afile system). When FADED receives this new write, it
overwrite by the file system will only overwrite the currenbuffers the write, and before writing the new data to disk,
block location; stray copies of deleted data could remalPADED performs a shred of the concerned block once
Thus, the storage system is the proper locale to implemagsin; this time, FADED knows that it need not restore
secure deletion. the old data, because it has the more recent contents of
Note that FADED operates at the granularity of an ethe block. To identify which writes to treat in this special
tire volume; there is no control over which individual filesnanner, FADED tracks the list of blocks that were sub-
are shredded. However, this limitation can be dealt wijected to a conservative overwrite insaspicious blocks
by storing “sensitive” files in a separate volume on whidfst, and a write to a block in this list will be committed

the secure delete functionality is enabled. only after a secure overwrite of the block; after the sec-
) _ ond overwrite, the block is removed from the suspicious
7.2 Basic operation list. Note that the suspicious list needs to be stored persis

As discussed in Section 6.3, FADED monitors writes tently, perhaps in NVRAM, in order to survive crashes.
inode and indirect blocks and tracks the inode generatiorSecond, if the block is not reused by the file system im-
to which each block belongs. It augments this informationediately, then FADED is guaranteed to observe a bitmap
with the block liveness information it collects through theeset for the corresponding block, which will be flagged as
shadow bitmap technique. Note that since ext2 obeys thblock death by the block liveness detector. Since block
block exclusivity and delete suppression properties,lbloliveness tracking is reliable, FADED can now shred the
liveness detection is reliable. Thus, when a block deathbi®ck again, destroying the old data. Thus, in both cases
detected, FADED can safely shred that block. of wrongful restore of old data, FADED is guaranteed to
Onthe other hand, if FADED detects a generation deaght another opportunity to make up for the error.
Fhrough the owners_hlp change or generation chqnge MONs 5 =ost of conservatism
itors (.e., the block is live according to the block livenes
module), FADED cannot simply shred the block, becau
FADED does not know if the current contents of the blo

belong to the generation that was deleted, or to a new gen- data restored after the conservative overwrite was the
eration that was subsequently allocated the same blcg vative overwnte w

due to block reuse. If the current contents of the blo% or new data, because FADED has no information to

are valid, a shredding of the block would be catastrophi r)d it at that stage. Because of this uncertainty, even
. ) 1T the data restored were the new data (and hence need
We deal with such uncertainty through a conservative . . .
. . . not be overwritten again), a subsequent write of the block
approach to generation-death inference. By being conser: .
X .11 the context of the same file would lead to a redundant
vative, we convert an apparent correctness problem into

i . _shredding of the block. Here we see one example of the
a performance problenige., we may end up performing .
) . .~ performance cost FADED pays to circumvent the lack of
more overwrites than required. Fundamental to this &p-

. . . . erfect information.
proach is the notion of eonservative overwrite

§eonservative overwrites come with a performance cost;
very conservative overwrite results in the concerned
ck being treated as “suspicious”, regardless of whether

7.3 Coverage of deletes
TJn the previous subsection, we showed that for all genera-
tion deaths detected, FADED ensures that the appropriate

intact. Thus, even if FADED does not know whether block version is overwritten, without compromising valid

; . . ata. However, for FADED to achieve its goals, these de-
subsequent valid write occurred after a predicted 9englziion techniques must tifficientto identify all cases
ation death, a conservative overwrite on bldgkwill be

safe: it can never shred valid data. To perform a Conser?égeletes at the file system level that need to be shredded.
tive overwrite of block3, FADED reads the bloc into this section, we show that FADED can indeed detect all

. deletes, but requires two minor modifications to ext2.
non-volatile RAM, then performs a normal secure over-

write of the block with the specific pattern, and ultimately.3.1  Undetectable deletes
restores the original data back into blaBk Because of the weak properties of ext2, certain deletes can
The problem with a conservative overwrite is that ibe missed by FADED. We present the two specific situ-
the block contents that are restored after the conservatitions where identification of deletes is impossible, and
overwrite are in fact the old data (which had to be shrethen propose minor changes to ext2 to fix those scenarios.
ded), the conservative overwrite was ineffective. In thisle truncates: The generation change monitor assumes
case, FADED can be guaranteed to observe one of tthat the version number of the inode is incremented when
things. First, if the block had been reused by the file sythe inode is reused. However, the version number in ext2

7.2.1 Conservative overwrites
A conservative overwrite of blockB erases past layers o
data on the block, but leaves the current content® of

10
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Operation | In-memory On-disk Operation In-memory On-disk
Initial I, —» BInd |, — BInd Initial B free B free

I delete B free I, alloc I, - B
I> alloc Io — B B write to disk B written

B write to disk I, — BInd I, delete B free

(wrong type) I5 alloc I, — B
i » L I> write to disk I» — B
Table 6: Misclassified indirect block. The table shows a (Missed delete of3)

scenario where a normal data block is misclassified as art indi

rect block. BT indicates thatB is treated as an indirect block. 12Ple 7: Missed delete due to an orphan write. The table
Reuse ordering for indirect blocks prevents this problem. illustrates how a delete can be missed if an orphan block s no

treated carefully. BlockB, initially free, is allocated tol; in
is 0n|y incremented on a Comp|ete delete and reuse; pafe.mory. Beford is written to disk,B is written. I; is then
tial truncates do not affect the version number. Thus ifdgleted andB reallocated tol>. Whenl is written, FADED
block is freed due to a partial truncate and is reassigniepld associaté with I> and would miss the overwrite &f.

to the same file, FADED misses the generation death. Ahpact on performance, since indirect blocks tend to be a
though such areuse after a partial truncate could be argyggl; small fraction of the set of data blocks.
as a logical overwrite of the file (and thus, notlelet9, practicality of the changes: The two changes dis-
we adopt the more complex (and conservative) interpreggrssed above are minimal and non-intrusive; the changes
tion of treating it as a delete. together required modification of 12 lines of code in ext2.
To handle such deletes, we propose a small changeviereover, they are required only because of the weak or-
ext2; instead of incrementing the version number on a iering guarantees of ext2. In file systems such as ext3
allocation of the inode, we increment it on every trurwhich exhibit reuse ordering, these changes are not re-
cate. Alternatively, we could introduce a separate fietired. Our study of ext2 is aimed as a limit study of the
to the inode that tracks this version information. This isfainimal set of file system properties required to reliably
non-intrusive change, but is effective at providing th&dismplement secure deletion at the disk.
with the requisite information. This technique could re- _
sultin extra overwrites in the rare case of partial trungatd -3-2 Orphan allocations
but correctness is guaranteed because the “spurious” olf@Rlicit block liveness tracking in FADED already ad-
writes would be conservative and would leave data inta@f€SS€s the orphan allocation issue discussedl $3;
Reuse of indirect blocks: A more subtle problem arisesWhen ext2 recovers aftera .crash, the f.SCk utility ert_es QUt
due to the presence of indirect pointer blocks. IndireRCOPY Of gll bitmap blocks; the block liveness monitor in
blocks share the data region of the file system with ottfé?‘DED will thus detect death of those orphan allocations.

user data blocks; thus the file system can reuse a normal3 Orphan writes

user data block as an indirect block and vice versa. In thge to arbitrary ordering in ext2, FADED can observe a
presence of suctlynamic typingthe disk cannot reliably write to a newly allocated data block before it observes the
identify an indirect block [23]. corresponding owning inode. Suotphan writesneed to
The only way FADED can identify a blocl8 as an be treated carefully because if the owning inode is deleted
indirect block is when it observes an inofigthat contains before being written to disk, FADED will never know that
B in its indirect pointer field. FADED then records thehe block once belonged to that inode. If the block is
fact that B is an indirect block. However, when it latereused in another inode, FADED would miss overwriting
observes a write t&, FADED cannot be certain that thethe concerned block which was written in the context of
contents indeed are those of the indirect block, becausehis old inode. Table 7 depicts such a scenario.
the meanwhilel; could have been deleted, afticould  One way to address this problem is defer orphan
have been reused as a user data block in a different ingttsck writes until FADED observes an owning inode [23],
I>. This scenario is illustrated in Table 6. a potentially memory-intensive solution. Instead, we use
Thus, FADED cannot trust the block pointers in a suthe suspicious block list used in conservative overwrites
pected indirect block; this uncertainty can lead to misstaml also track orphan blocks. When FADED observes a
deletes in certain cases. To prevent this occurrence, a datige to an orphan blocl, it marks B suspicious; when
block should never be misclassified as an indirect blocksubsequentwrite arrivesi# the old contents are shred-
To ensure this, before the file system allocates, and imnded. Thus, if the inode owning the block is deleted before
diately after the file system frees an indirect bldgk*?, reaching disk, the next write of the block in the context
the concerned data bitmap blotks:~. should be flushed of the new file will trigger the shred. If the block is not
to disk, so that the disk will know that the block was freedeused, the bitmap reset will indicate the delete.
Note that this is a weak form of reuse ordering only for in- This technique results in a redundant secure overwrite
direct blocks. As we show later, this change has very littmytime an orphaned block is overwritten by the file sys-

11
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oo B rapping T allocated directory blocks contain a pointer to the start
iveness change block of a file; the FAT chains the start block to the other
monitor monitor

blocks of the file. Thus, detecting deletes reliably under-

wL neath unmodified VFAT is impossible. We therefore in-
[ “Shadov b’ii{n’ap;;”"”" \HH \H troduced an additional field to a VFAT directory entry that
L Delayed overwrites /| Persistent tracks a globally uniqugeneration numberThe genera-

| data

Eaan A tion number gets incremented on every create and delete

_Suspicious st in the file system, and a newly created file is assigned
i S T S S thread

the current value of generation number. With this small
Figure 1:Key components of FADED. monitor accurately detects all deletes of interest.

change (29 lines of code) to VFAT, the generation change

tem in the context of the same file, again a cost we pay 6.2 FADED for ext3

conservatism. Note that this overhead is incurred only tBfhce ext3 exhibits reuse ordering, tracking generation
first time an orphan block is overwritten. liveness in ext3 is the same as tracking block liveness.
However, since ext3 does not obey the block exclusivity

With these techniques, we can prove that for every bloe[‘(operty, tracking b.|OCk Iiyeness accure}tely is impossibl
B that is deleted by the file system after it has reachgﬁcept in the data journaling mode which has the useful

disk, FADED always overwrites the deleted contents poperty of data-metadata coupling. For the order.ed and
B. The proof is presented in Appendix A. writeback modes, we had to make a small change: when

a metadata transaction is logged, we also made ext3 log
7.4 Delayed overwrites a list of data blocks that were allocated in the transaction.

Multiple overwrites of the same block cause additiondhis change (95 lines of code), coupled with the reuse or-
disk 1/Os that can hurt performance if incurred on the crering property, enables accurate tracking of deletes.
ical path. For better performance, FADED delays ovey e Explicit secure delete

writes until idle time in the workload [11] (or option-

- - ; have also built secure deletion under the explicit no-
ally, until up ton minutes of detection). Thus, wheneveWe . o .
‘ b fom ) chanon framework. We modified the ext2 and ext3 file

FADED decides to shred a block, it just queues it; a lo . : )
priority thread services this queue if FADED had not Ogys_tems_ o notify th‘? disk of every Ip_glce_ll delete (as de-
cribed in§5). The file system modifications accounted

served useful foreground traffic for more than a certain 14 and 260 lines of code respectively. Upon receiving
ration. Delayed overwrites help FADED to present writ e ) . '
Y ’ g fae notification, the disk decides to shred the block. How-

to the disk in a better, sequential ordering, besides imilar to FADED. the disk del " il
ducing the impact on foreground performance. Delayir_(? er, similarto FAUED, the diSk delays overwrites unti
e time to minimize impact on foreground performance.

also reduces the number of overwrites if the same blocK
deleted multiple times. The notion of conservative ovep- 7  Evaluation

writes is crucial to delaying overwrites arbitrarily, eVell, this section. we evaluate our implicit and explicit im-
after the block that had to be overwritten is written in th ementations,of secure delete. The enhanced disk is im-
cont_ext of a new file. Note that if immediate shredding Eemented as a pseudo-device driver in the Linux 2.4 ker-
required, the user needs to performync. nel; the driver observes the same information as a hard-
A summary of the key dqta structures and componeqsre prototype, but suffers contention for CPU and mem-
of FADED is presented in Figure 1. ory from the host. We use a 2.4 GHz Pentium-4 with 1 GB
7.5 FADED for other file systems RAM and a 10K RPM IBM 9LZX disk. Due to space con-
We have also implemented FADED underneath other f§&raints, we provide results only for the ext2 version.
systems, and in each case, validated our implementat'&oP 1 Correctness and accurac
with the same testing methodology as will be described t t wheth EADED i Iy tation detected all
Section 7.7. However, due to space constraints, we 0 &I est whether our implementation detected a

point to the key differences we observed relative to ext2. etes of interest, we mstrgmept the file system to log
every delete, and correlate it with the log of writes and

7.5.1 FADED for VFAT overwrites by FADED, to capture cases of unnecessary
Like ext2, VFAT also does not conform to reuse ordeor missed overwrites. We tested our system on various
ing, so FADED needs to track generation informatiomorkloads with this technique, including a few busy hours
for each block in order to detect deletes. One key dffom the HP file system traces [19]. Table 8 presents the
ference in VFAT compared to ext2 is that there are mesults of this study on the trace hdiir00 of 11,/30/00.
pre-allocated, uniquely addressable “inodes”, and conseln this experiment, we ran FADED under four versions
qguently, no “version” information as well. Dynamicallyof Linux ext2. In the first, marked “No changes”, a default

7.3.4 Guaranteed detection of deletes
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Config Delete  Overwrite  Excess Miss Run-time (s)

No changes 76948 68700 11393 854 System Implicit Explicit

Indirect 76948 68289 10414 28 PostMark HP Trace | HP Trace

Version 76948 69560 11820 0 Default 166.8 200.0 195.0

Both 76948 67826 9610 0 SecureDelete 177.7 209.6 195.5
Table 8: Correctness and accuracy. The table shows the gggﬂ::gz:gg gg:g gggg igg:i

number of overwrites performed by the FADED under various )
configurations of ext2. The columns (in order) indicate thenn  12Ple 10:Foreground impact: Postmark and HP trace. The

ber of blocks deleted within the file system, the total nump&n-times for Postmark and the HP trace are shown for FADED,
of logical overwrites performed by FADED, the number of u¥ith 2, 4 and 6 overwrite passes. For comparison, the ruretim
necessary overwrites, and the number of overwrites misgedoh €xplicit secure delete on the HP Trace is also shown. Post-
FADED. Note that deletes that occurred before the corregporinark was configured with 40K files and 40K transactions.

ing data write do not require an overwrite. . . . . .
ical path of every disk operation. We quantify the impact

Config Reads  Writes  Run-time(s) of this extra processing required at FADED on foreground
Nochanges 394971 234664 195.0 performance. Since our software prototype competes for
Version 394931 234648 195.5 .

Both 304899 235031 200.0 CPU and memory resources with the host, these are worst

case estimates of the overheads.
Table 9: Impact of FS changes on performance. The per- .
formance of the various file system configurations under & bus We run the Postmark file system benchmark [15] and

hour of the HP Trace is shown. For each configuration, we shdf¥e HP trace on a file system running on top of FADED.
the number of blocks read and written, and the trace run-timePostmark is a metadata intensive small-file benchmark,
] ) and thus heavily exercises the inferencing mechanisms of
ext2 file system was used. In “Indirect’, we used ex2ADED. To arrive at a pessimistic estimate, we perform
modified to obey reuse ordering for indirect blocks. 1§gync at the end of each phase of Postmark, causing all
“Version”, we used ext2 modified to increment the inodgsk writes to complete and account that time in our re-
version number on every fruncate, and the “Both” cogyjts. Note that we do not wait for completion of delayed

figuration represents both changes (the correct file systg@awrites. Thus, the numbers indicate the performance
implementation required for FADED). The third columiyerceived by the foreground task.

gives a measure of the _extra Wo_rk FADED does in OrFjerTabIe 10 compares the performance of FADED both
to cope with inaccurate information. The last column in-

dicates the number of missed overwrites: in a correct Swifh a default disk and with explicit secure delete. From
' u . VETWTITES, 1 Yre table, we can see that even for 4 or 6 overwrite passes,
tem, the fourth column should be zero.

. . . foreground performance is not affected much. Extra CPU
We can see that the cost of inaccuracy is quite r

i . Pfocessing within FADED causes only about 4 to 7%
sonable; F’.A‘I.DED performs roughly 14% more OVerwritqs, o performance compared to the modified file system
than the minimal amount. Also note that without the vef,

. e : " ““tunning on a normal disk. The explicit implementation
sion number modification to ext, .FADED mdet_—ed m'ss%serforms better because it does not incur the overhead of
a few deletes. The reason no missed overwrites are

) L _ N : iNference. Further, it does not require the file system mod-
porte(_JI for the Ver§|on C?’Pf'g.““"‘_“o“ is the rarity of th?fications reported in Table 9 (this corresponds to the “No
case involving a misclassified indirect block. changes” row in Table 9). Note that we do not model the
7.7.2 Performance impact of FS changes cost of sending dr ee command across the SCSI bus;
We next evaluate the performance impact of the twius the overheads in the explicit case are optimistic.
changes we made to ext2, by running the same HP trggR time required: We now quantify the cost
on diﬁerent VeI’SiOI’lS Of ext2. Ta.ble 9 ShOWS the resultﬁ. performing overwrites for shredding. W|th micro_
As can be seen, even with both changes, the performaggfchmarks, we verified that the overwrites obtained near
reduction is only about 2% and the number of blocks wrigaquential bandwidth due to their delayed, ordered issue.
ten is marginally higher due to synchronous bitmap writgge also found that when block reuse occurs within the file
for indirect block reuse ord_ering. We thus conclude thgystem (resulting in multiple deletes to the same block),
the changes are quite practical. delaying overwrites significantly reduces overwrite traf-
7.7.3 Performance of secure delete fic. We omit these results due to space constraints.

We now explore the foreground performance of implicit We next explore the time required for overwrites. First,
and explicit secure delete, and the cost of overwrites. we use the same Postmark configuration as above, but
Foreground performance impact: Tracking block and measure the time for the benchmark to complete includ-
generation liveness requires FADED to perform extra primg delayed overwrites. Since Postmark deletes all files at
cessing. This cost of reverse engineering directly impatit® end of its run, we face a worst case scenario where the
application performance because it is incurred on the cetire working set of the benchmark has to be overwrit-
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general difficulty of using implicit techniques underneath

Run-time with overwrites () closed-source file systems; one can never be certain that

System Implicit Explicit N i i
PostMark  HP Trace | HP Trace the file system conformg to certain properties unless those
Default 166.8 200.0 195.0 are guaranteed by the file system vendor. In the absence
geCUfege:ei ggg-i ggé-g gig-g of such guarantees, the utility of implicit techniques is
ecurebele . . . e F H H
SecureDelete o 5943 261 limited to optimizations that can afford to be occasionally

“wrong” in their implicit inference.

Tablg 11:1dle time requirement. The table shows the total o, experience with NTFS also points to the utility of
[;Z‘ét'rrgeocr’tfeg’v; 33322”;22]‘5; Itifostmfarﬁ :nld thg HP tra_c;e. TBRaracterizing the precise set of file system properties re-

P pietion ot all delayed overvente quired for various forms of liveness inference. This set of
ten, accounting for the large overwrite times reported properties now constitutes a minimal “interface” for com-
Table 11. In the HP-trace, the overwrite times are momgunication between file system and storage vendors. For
reasonable. Since most blocks deleted in the HP tramemple, if NTFS confirmed its conformance to the block
are then reused in subsequent writes, most of the owexelusivity and delete suppression properties, the séorag
writes performed here are conservative. This accousystem could safely implement aggressive optimizations
for the steep increase from 0 to 2 overwrite passes, in that rely on its implicit inference.
implicit case. The explicit implementation incurs 8-13% : :
lower overwrite times compared to FADED because it h&s Discussion
perfect information on deletes, and thus avoids extra ovBtthis section, we reflect on the lessons learned from our

writes incurred due to conservatism. case study to refine our comparison on the strengths and
.. . weaknesses of the explicit and implicit approaches.
8 Implicit Detection Under NTFS The ideal scenario for the implicit approach is where

In this section, we present our experience building sughanges are required only in the storage system and notin
port for implicit liveness detection underneath the Wirthe file system or the interface. However, in practice, ac-
dows NTFS file system. The main challenge we facedrate liveness detection requires certain file system-prop
underneath NTFS was the absence of source code forehiges, which means the file system needs to be modified
file system. While the basic on-disk format of NTFS ii it does not conform to those requisite properties. In the
known [27], details of its update semantics and journalifigce of such changes to both the storage system and the
behavior are not publicly available. As a result, our infile system, it might appear that the implicit approach is
plementation currently tracks only block liveness whichot much more pragmatic than the explicit approach of
requires only knowledge of the on-disk layout; generati@manging the interface also. There are two main reasons
liveness tracking could be implemented if the details wfhy we believe the implicit approach is still useful.
NTFS journaling mechanism were known. First, file system changes are not required if the file sys-
The fundamental piece of metadata in NTFS is the Masm already conforms to the requisite properties. For ex-
ter File Table (MFT); each record in the MFT containgmple, many file systems (e.g. ext2, VFAT, ext3-data jour-
information about a unique file. Every piece of metadataling, and perhaps NTFS) are already amenable to block
in NTFS is treated as a regular file; file 0 is the MFT itiveness detection without any change to the file system.
self, file 2 is the recovery log, and so on. The allocatiorhe ext3 file system in data journaling mode already con-
status of all blocks in the volume is maintained in a fillorms to the properties required for generation liveness
called the cluster bitmap, which is similar to the blocHetection. Clearly, in such cases, the implicit approach
bitmap tracked by ext2. On block allocations and delenables non-intrusive deployment of functionality.
tions, NTFS regularly writes out modified bitmap blocks. Second, we believe that modifying the file system to
Our prototype implementation runs as a device driveonform to a set of well-defined properties is more gen-
in Linux, similar to the setup described earlier for otheral than modifying the file system (and the interface) to
file systems. The virtual disk on which we interpose nvey a specific piece of information. Although we have
exported as a logical disk to a virtual machine instance difcussed the file system properties from the viewpoint of
Windows XP running over VMware Workstation [30]. Tamplicit liveness detection, some of the properties enable
track block liveness, our implementation uses the sameher information to be inferred; for example, the associ-
shadow bitmap technique mentioned in Section 6.2. Btion between a block and its owning inode (required for
detailed empirical observation under long-running workertain applications such as file-aware layout [23]) can be
loads, we found that NTFS did not exhibit any violatiotracked accurately if the file system obeys the reuse or-
of the block exclusivity and delete suppression propertigsring or the consistent metadata properties. Our ultimate
mentioned in Section 4.2; however, due to the absergmal is to arrive at a set of properties that enable a wide
of source code, we cannot assert that NER8ayscon- variety of information to be tracked implicitly, thus out-
forms to these properties. This limitation points to thieing how file systems may need to be designed to enable
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such transparent extension within the storage system.lid Conclusion

contrast, the approach of changing the interface requires Interface As system layers evolve

introducing a new interface every time a different piece of change over time, interfaces be-

information is required. Exrl"cit tween layers become ob-

10 Related Work solet_e or sub-(_)ptimal, ne-
. . L : cessitating their evolution.

The need for liveness information in storage systems has FleSisen \Ve have presented two ap-

been recognized in previous work. In most existing pro-
posals, an interface to communicate liveness is a part of
more radical set of changes to the existing storage intétg% or"
face. For example, logical disks have a list-based interfac bedding liveness informa-

to storage which includes a command to “delete’f a blp?ilén into storage. A qualitative summary of the complex-
from alist[4]. More recent \_/vork suggests an Objeptfl,”ﬁ?y of the two approaches along various axes is presented
interface to storage [17], which moves the rgsponS|M|t| the figure. We have shown that the explicit approach,
_Of low-level StF’rage manggement Sl_JCh as liveness tr lile appearing straightforward, entails a fair amount of
ing from the file system into the drives th“emsell\./es. ,'fﬂe system change in practice, besides requiring some
contrast to such wide-scale changes, our “explicit nOtiftsinima| support from the storage system. Despite these
catlc_)n approach for 'mpa”'”g liveness is much_l_ess "Bictors, the explicit approach results in simpler systems
trusive on the large *?Ody of file systems that utilize thgan e implicit case. The main strength of the implicit
existing block-based interface to storage. . approach is that it permits demonstration of functionality
There has also been work on implementing SMartgithout changes to the interface, thus enabling seamless

within a sfcora.ge. system without interface change, S""EJE'eploymentwhile catalyzing rapid interface evolution.
lar to our implicit approach. Some of these systems uti-
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AutoRAID requires information on free space to decidge thank Nitin Agrawal, John Bent, Timothy Denehy, Todd
the amount of data that can be stored in RAID-1 [32]pnes, James Nugent, Florentina Popovici, and Vinod Yeg-
AUtoRAID infers that blocks that have not been writteneswaran for their helpful comments. We also thank Mendel
ever, are dead. This inference is a weak form of livene3gsenblum for his excellent shepherding, the anonymous re-
because once a block is written, subsequent deletes ¢4fyers for their thoughtful feedback, and Gordon Hughes fo
not be detected. Other systems such as the programmgﬁlélsefm comments on secure delete. This work is sponsored
: P : NSF CCR-0092840, CCR-0133456, CCR-0098274, NGS-
disk [31] make similar inferences. The existence of theg ' ’ '
[31] - . . o 03670, ITR-0086044, ITR-0325267, IBM and EMC.
proposals indicates that liveness information is impdrtan
in §t_orage sy_stems, a}nd yet systemat_|c t_echmques for Rteferences
quiring such information have been missing. [1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Most related to the implicit techniques in this work is . SatBab_’“‘SQS- 'ﬁgth VLD‘EAZ%QZ-m A G AacD .
H : H . balravasunaaram, . olvathanu, A. C. Arpacl-Dussean
our previous work on Semam'ca"y'smart dIS_kS [24]. “{ R. H. Arpaci-Dusseau.  X-RAY: A Non-Invasive Exclusive
that work, we presented techniques by which a block- Caching Mechanism for RAIDs. IlSCA '04 2004.
based storage system can infer file system level inform§s 2 Bauer alrsgglésl-;gyamha-ASecur%&alta Deletion foukiRile
tion and implemented a set of case studies such as track- >YStems: ecurityAugust 2001. o
. . . i W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The LogicakDi
aligned extents, journaling, and secure delete. However, a'New Approach to Improving File Systems. 8OSP '931993.
all correctness-sensitive case studies implementedithergs] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dass
required the file system to be synchronously mounted; un- st'dEg,{ﬂg( Sfe :”formgtA'Og Ga%gzsmrage Protocol Stacks.
. . e . onterey, , June .
_der _synphronous file systems, implicit information traCk'[6] I. Dowse and D. Malone. Recent Filesystem Optimisations
ing is trivial. Our more recent work on D-GRAID [23] FreeBSD. IFFREENIX June 2002.
considered asynchronous file systems, but the layolit EMS; Corphcztraﬁli?n- Symmetrixz%gtzerprise Information féige
mechanisms of D-GRAID did not depend on accuracy fo ysiems. NEp:IWwWw.eme. com, - i
. . . [8] R.M. English and A. A. Stepanov. Loge: A Self-Organizibgsk
correctness; it was acceptable in D-GRAID to get predic-" controller. INUSENIX Jan. 1992.
tions wrong. Also, fast recovery in D-GRAID utilized [9] G. R. Ganger. Blurring the Line Between Oses and Storage D
block livenes§a much easier property to track than gener- ‘éCES-GTR SCSMC'\QU&ACi'Ol_‘lkGE ,DAe(; 2(:01- 4V N Pa
. . I . - . K. Ganger, M. K. MCKusICK, C. A. Soules, an . N.
ation “.Veness).under specific assumptions on .ﬂle syst Updates: A Solution to the Metadata Update Problem in File Sy
behavior. In this work, we go beyond our previous work tems.ACM TOC$18(2), May 2000.

by generalizing our techniques for inference underneatil R. A. Golding, P. Bosch, C. Staelin, T. Sullivan, and Jikes.

proaches for interface evo-
lution: explicit and im-
plicit, in the context of em-

Implicit

Hippocecati

In

. o : Idl is not sloth. INSENIX Wint 201-212, 1995.
wide range of realistic file system behaviors, and dem 512-] eness 1S not slo inmerpages
strating that storage-level functionality where correst

is paramount, can utilize this information reliably. [13]

15

P. Gutmann. Secure Deletion of Data from Magnetic anlidSo
State Memory. IJSENIX SecurityJuly 1996.

G. Hughes. Personal communication, 2004.



[14]
[15]
[16]
[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]
[27]
(28]

Appears in the Sixth Symposium on Operating Systems Deasibimgplementation (OSDI '04)

G. Hughes and T. Coughlin. Secure Erase of Disk DriveaDatwritten to disk, and the disk will immediately know of the

IDEMA Insight Magazine, 2002.

J. Katcher. PostMark: A New File System Benchmark. NgtA
TR-3022, October 1997.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Adt
File System for UNIX.TOCS 2(3), Aug. 1984.

M. Mesnier, G. R. Ganger, and E. Riedel. Object-Basentdgie.
IEEE Communications Magaziné1(8), August 2003.

A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Gargsand
G. Ganger. Storage-based Intrusion Detection: Watchinga§é
Activity For Suspicious Behavior. INSENIX Security2003.

E. Riedel, M. Kallahalla, and R. Swaminathan. A Framewfor
Evaluating Storage System Security. A&ST '02 2002.

D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparisbfrile
System Workloads. I/SENIX '0Q 2000.

C. Ruemmler and J. Wilkes. Disk Shuffling. Technical Bep
HPL-91-156, HP Laboratories, 1991.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Gangerack-
aligned Extents: Matching Access Patterns to Disk Driver@txa
teristics. INFAST ’'02 January 2002.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau RnH.
Arpaci-Dusseau. Improving Storage System AvailabilityhaiD-
GRAID. In FAST '04 Mar. 2004.

M. Sivathanu, V. Prabhakaran, F. |. Popovici, T. E. DenéA. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semanticatigss
Disk Systems. IFFAST '03 2003.

SourceForge. SRM: Secure File Deletion for POSIX Syste
http://srm.sourceforge.net, 2003.
SourceForge. Wipe:
http://wipe.sourceforge.net, 2003.
SourceForge. The Linux NTFS Project. http:/linufsmgf.net/,
2004.

J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Ssuland
G. R. Ganger. Self-Securing Storage: Protecting Data infiZom
mised Systems. I®SDI 2000 2000.

Secure  File Deletion

delete through the block liveness module, and thus over-
write B.
Case 2:Block B is reused
Let us now consider the case whétés reused in inode
I>. There are three possibilities in this caagthe point of
receiving the write of3, the disk either think#3 belongs
to Iy, or it thinks B is free, or thatB belongs to some
other inodel,,.
Case 2aDisk thinksI; — B
If the disk knew thatl; — B, the disk would have
tracked the previous version numberlgf Thus, when it
eventually observes a write &7, (which it will, since By
is dirtied because of the version number increment), the
disk will note that the version number 6f has increased,
and thus would overwrite all blocks that it thought be-
longed toly, which in this case include8. ThusB would
be overwritten, perhaps restoring a newer value. As dis-
cussed in Section 7.2, even if this was a conservative over-
write, the old contents are guaranteed to be shredded.
Case 2b:Disk thinksB is free
If the disk thinksB is free, it would trea3 as an orphan
block when it is written, and mark it suspicious. Conse-
qguently, whenB is written again in the context of the new
inodels, the old contents aB will be shredded.
Case 2cDisk thinksI, — B
To believe thatl,, — B, the disk should have observed
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or after B was allocated td; by the file system.
Case 2c-i:I, — B beforel; — B

If the disk observed, — B beforeit was allocated
to I, and still thinksI, — B when B is written in the
context of/;, it means the disk never saly — B. How-
ever, in this case, block was clearly deleted fron, at
some time in the past in order to be allocatedto This
would have led to the version number bf increment-
ing, and thus when the disk obserndgswritten again, it

We now prove that the techniques in FADED for extWOU'd perform an overwrite oB3 since it thinksB used
guarantee shredding of all deletes of blocks whose cé@.belong tol;.
tents reached disk.

When a delete of an inodg occurs within ext2, a set

Case 2c-ii:l, — B after[; — B
If this occurs, it meang, was written to disk owning

of blocks are freed from a file; this results in an incremeft after B was deleted from/; but beforeB is written.
of the version number of;, and the reset of relevant bitdn this case,B will only be written in the context of,
in the data bitmap block pertaining to the freed blockghichis still live, so it does not have to be overwritten. As
Let us consider one such blodkthat is freed. Let us as-diSCUSSGd in Section 42, this holds because of the block
sume thatB had already been written to disk in the corfXclusivity property of ext2.
text of I;. If B had not been written to disk, the disk does Note that the case of a block being deleted from a file
not need to perform any overwrite, so we do not consic@id then quickly reallocated to the same file is just a spe-
that case. Let the bitmap block containing the status @@l case ofCase 2¢ with I, = I,,.
B be Mg, and letB; be the block containing the inode Thus, in all cases where a block was written to disk in
I,. Now, there are two possib”ities: eith&ris reused by the context of a certain file, the delete of the block from
the file systembefore M is written to disk, orB is not the file will lead to a shred of the deleted contents. [
reused until the write oM 5.
. Case 1:,B|0Ck B not reused_ . Lif indirect block detection was uncertain, the disk can vglgrihink

If B is not reused immediately to a different file, the, . B because of a corrupt “pointer” in a false indirect block; fler

bitmap block Mg, which is dirtied, will be eventually system change for reuse ordering in indirect blocks previs case.
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