Studying search networks with SIL

Brian F. Cooper and Hector Garcia-Molina

Department of Computer Science
Stanford University

{cooperb,hector}@db.stanford.edu

Abstract

We present a general model, called the
Search/Index Link (SIL) model, for studying
peer-to-peer search networks. This model allows
us to analyze and visualize existing network ar-
chitectures. Tt also allows us to discover novel
architectures that have desirable properties. Fi-
nally, it can be used as a starting point for de-

veloping new network construction techniques.

1 Introduction

The recent explosion in popularity of peer-to-
peer search networks has sparked great interest
in the problem of designing “good” networks.
Although P2P systems hold the promise of har-
nessing large numbers of distributed resources,
so far it has been difficult to achieve scalability.
Similarly, the autonomy of peers and redundancy
of links should enhance fault tolerance, and yet
many networks are vulnerable if failures occur at
the wrong place in the network.

Our approach to dealing with these issues
is to construct a general model, called the
Search/Index Link (SIL) model, for studying al-
ternative architectures for peer-to-peer search
networks. The SII. model is useful for visualiz-
ing as well as analyzing existing search networks
in terms of scalability, fault tolerance and other
metrics. However, the simplicity and generality
of the model also makes it useful for discover-
ing new types of networks that have desirable
properties. Using the SIL model, we can exam-
ine the inherent properties of an existing or new
network topology, and tune the basic architec-
ture for a given goal, such as reduced load. We

have also begun to use the insights gained from
the SIL model to study “ad hoc, self-supervising
networks,” or networks where nodes simply make
and break links at will, and the networks evolves
and becomes increasingly efficient over time.

The focus of the SIL model is on flooding-
based networks (such as Gnutella or supern-
ode networks), and not necessarily routing-based
networks (such as distributed hash tables or
DHTs [11, 10]). Although DHTs have signif-
icant advantages in many situations, we feel
that the potential of flooding-based networks
has not been fully realized, and that there are
still many interesting research questions about
flooding networks. SIL is an attempt to see
what else is possible with flooding networks, be-
yond what has been developed so far. More-
over, flooding networks seem especially adept at
content-discovery, in contrast to DHTs, whose
main strength is in file location once a name is
known (as pointed out in [10]. Finally, flood-
ing networks continue to have huge popularity
and wide deployment; on a typical day, Kazaa
supports several million simultaneous users, and
allows them to search for hundreds of millions of
files and multiple petabytes of data. Optimizing
such widely used systems continues to be an im-
portant research challenge. Although we could
generalize SIL to model DHTs as well, the sim-
plicity of the model as it is now gives us great
power to describe and analyze P2P search net-
works.

In this position paper, we describe the SIL
model, illustrate its usefulness for discovering
novel topologies and developing network con-
struction techniques, and discuss interesting re-
search challenges.



2 The Link

model

Search /Index

A primary goal of a peer-to-peer search network
is to allow member peers to search for and re-
trieve content stored at other peers. Searching
is usually accomplished by sending queries to
peers, and these peers respond with search re-
sults if they have content matching the query.
Often, indexing is employed to enhance scala-
bility and efficiency. Indexing can be used to
allow a single peer to answer queries for multi-
ple other peers without the need for those other
peers to process the queries themselves. Index-
ing can also improve availability, since a peer can
be searched even if it is temporarily unreachable.

The Search/Index Link (SIL) model general-
izes the basic techniques of querying and index-
ing in a search network. SIL models a peer-to-
peer search network overlay as a set of nodes
in a graph with specialized links connecting the
nodes. There are four kinds of directed links in
the model:

o A forwarding search link (FSL) carries search
messages from peer X to peer Y. Peer Y
processes the query and also forwards it on
outgoing FSLs. FSLs can be graphically rep-
resented as X —Y.

o A non-forwarding search link (NSL) carries
search messages from peer X to peer Y. Peer
Y processes the query but does not forward
it. NSLs are represented as X—Y.

o A forwarding index link (FIL) carries index
updates from peer X to peer Y. These in-
dex updates inform Y about new, modified or
deleted content at peer X. Peer Y integrates
the index updates into its own index, and also
forwards the updates on outoing FILs. FILs
are represented as X:--->Y.

o A non-forwarding index link carries index up-
dates from X to Y. Peer Y should add the
updates to its own index but does not for-
ward them. NILs are represented as X-->Y.

Under this model, there are two basic types
of activity: indexing and searching. Peers con-
struct indexes over their own content to assist
in answering searches. These indexes may be in-

verted lists of words, sets of metadata or simply
alist of filenames. When a peer receives a search,
that peer searches its index for matching docu-
ments and returns any matches as search results.
Whenever a peer A updates its own index, it
should also send those index updates along out-
going index links. The peers that receive these
updates will effectively have a copy of A’s index,
and can perform searches over A’s content just as
well as A can. Note that these peers do not store
a replica of A’s content, but only index entries
that aid in searching that content. For example,
imagine a peer B that has a copy of A’s index.
When B receives a search message, B processes
that search over its own content as well as over
A’s index, and returns search results for matches
at either A or B.

We say that a node X searches a node Y
directly by sending searches to Y, or that X
searches Y indirectly, by sending searches to a
node Z that has a copy of Y’s index. The total
number of nodes that X can search directly or
indirectly is X’s coverage.

The SIL model can be used to describe a va-
riety of existing peer-to-peer search networks.
For example, a supernode network can be rep-
resented using FSLs and NILs, as shown in Fig-
ure la. Supernodes (the central nodes in the
figure) are connected using FSLs (=). Non-
supernodes (“normal nodes”) are connected to
supernodes using one FSL and one NIL (--->).
Then, supernodes have a copy of the indexes of
normal nodes, and when a normal node generates
a search, it is forwarded to all of the supernodes.

Another example is a network of peers that
construct and forward index updates to other
peers. Global indexing servers collect and store
all of the updates, and peers can search for
archived content at the indexing servers. Such
a network is shown in Figure 1b. As the figure
shows, updates flow along FILs (-:->) between
nodes and to the central index servers. Peers
can search the index server, and these searches
are carried by NSLs (—>). The global index-
ing topology is similar to the Usenet structure,
where updates flow around the network and cen-
tralized servers (such as DejaNews, now known
as Google Groups) retain the updates and an-



(a)

Not all links shown

()

Figure 1: Networks represented using the SIL model: (a) supernodes, (b) Usenet and (c) parallel

search clusters

swer queries.

3 Discovering topologies

The SIL model is useful for visualizing existing
topologies and network organizations. However,
the model’s simplicity and generality also allows
us to use it to suggest and study new and novel
topologies. Using the same link types that form
the basic building blocks of existing networks
(such as supernodes), we can construct networks
that have different and desirable properties.

One novel topology that we have found using
SIL is called parallel search clusters. An example
is shown in Figure lc. In this architecture, peers
are organized into search clusters of FSLs, sim-
ilar to the Gnutella pure search network. Sep-
arate clusters are joined by index links, either
FILs or NILs. Figure 1c shows three clusters,
with NILs connecting cluster 1 to the other clus-
ters. This graph would also have outgoing NILs
from clusters 2 and 3, but we have omitted them
for clarity. If the nodes in a cluster collectively
have indexes for all the nodes outside the clus-
ter, full coverage can be achieved even though
nodes only directly search other nodes in their
own cluster.

A parallel search cluster network has sev-
eral advantages when compared to other net-
work topologies. For example, in a cluster net-
work, the processing required to answer queries

is shared among all the nodes in the network. In
contrast, in a supernode network, each supern-
ode must process all of the queries in the net-
work, and may become overloaded. If there are
few or no nodes with very high capacity, then a
supernode network is simply not feasible. Even if
some nodes have much higher capacity than oth-
ers, a parallel cluster network offers more flexi-
bility by allowing nodes to contribute whatever
they can. In a supernode network, a node either
handles all searches or no searches.

Another advantage of parallel cluster networks
is that they can be tuned depending on the load
in the network. For example, index updates
might occur much more frequently than searches.
Then, the network should be constructed with a
few large clusters, so that there are relatively
fewer index links and thus fewer indexes to be
updated. Moreover, if clusters are larger, each
node is responsible for fewer indexes, and the
load on individual nodes is further reduced. On
the other hand, if there are many more searches
than updates, the network should be constructed
as a large number of small clusters. In this case,
each node only has to handle searches from a
few nodes and the search load on each node is
reduced. Thus, we can change the number of
clusters to minimize total load on nodes. Su-
pernode networks are less flexible. If searches
comprise the bulk of the load, we cannot increase
or decrease the number of supernodes to spread



the search load, since every supernode handles
all searches regardless of how many supernodes
there are.

We have conducted simulation studies to
quantify these advantages. In our simulations,
we constructed networks that followed the par-
allel cluster model, and compared them to su-
pernode networks and pure search networks (e.g.
Gnutella). The full details of our experiments
are outside the scope of this position paper; see
[3]. As an example, we evaluated the load on
nodes in parallel cluster networks versus supern-
ode networks and pure search networks (such as
Gnutella). The maximum load on a node in a
cluster network was significantly lower (by up to
a factor of 7) than the maximum load on a node
in a supernode or pure search network. At the
same time, the average load on a node in a cluster
network was comparable to the average load on
a node in a supernode network. In other words,
the high load on supernodes was avoided without
significantly overloading the average node in the
network. These results illustrate that the SIL
model is useful for identifying networks that are
more effective in some cases than existing archi-
tectures.

4 Research challenges

The SIL model also provides a framework for ex-
amining a variety of interesting research prob-
lems in the area of studying and optimizing
search networks.

4.1 Topological properties

One research challenge is to identify “desirable”
properties of search networks, so that we can dis-
cover topologies and build networks that exhibit
these properties. We can use SIL as a method
for expressing and studying these properties.
Consider, for example, the problem of mini-
mizing the load on peers in the system. One
cause of load is redundancy, which we define
as peers performing work that is duplicated by
other peers in the system. A peer A may try to
shed load by replicating its index to peer B, so
that B can answer queries over A’s content with-

(b)

Figure 2: Features that cause redundancy: a.
one-index-cycle, b. search fork

out requiring processing on the part of A. How-
ever, if A still receives and processes queries that
are also being answered by B, then A is doing
unnecessary, redundant work. We can specify a
general property of SIL graphs as follows:

o Redundancy exists in a SIL graph if a link can
be removed without reducing query coverage.

In other words, if a link is carrying messages to
A, and A need not process these messages in
order to ensure that the query is answered, then
there is redundancy.

We can make this property more concrete by
identifying topological features of SIL graphs
that lead to redundancy. One feature that causes
redundancy is a specific type of cycle called a
one-indez-cycle: a node A has an index link to
another node B, and B has a search path to
A. An example is shown in Figure 2a. This
construct leads to redundant processing, since
B will answer queries over A’s index, and yet
these queries will be forwarded to A who will also
answer them over A’s index. More formally, a
one-index-cycle fits our definition of redundancy
because at least one link in the cycle can be re-
moved without affecting coverage: the index link
from A to B.

Another feature that causes search/index re-
dundancy is a search fork: a node C' has a search
link to A and a search path to B that does not
include A, and there is an index path from A to
B. An example is shown in Figure 2b. Again, A
will process any searches from €' unnecessarily,
since B can process the queries for A. The re-
dundant link in this example is the link C'—A.
We specify that there is a search path from C'
to B that does not include A because if the only
path from C' to B included A there would be
no link that could be removed without reducing
coverage.



Research is needed to identify other graph
properties that enhance the efficiency of search
networks. Search forks and one-index-cycles can
be avoided when constructing supernode net-
works, and yet supernodes can still become over-
loaded as the network grows. By analyzing the
strengths and weaknesses of various network ar-
chitectures, we can elucidate desirable or unde-
sirable graph properties, and apply them when
constructing networks.

In summary, there is the challenge of defin-
ing desirable properties (like redundancy), and
the challenge of identifying the topological fea-
tures (e.g., no one-index cycles and no search
forks) that embody those properties. Knowing
the properties and features will make it easier to
construct “good” SIL networks.

4.2 Dynamic search networks

In the discussion so far, we have assumed that
graphs are static. In order to properly model
real peer-to-peer networks, we must also repre-
sent the process of nodes joining and leaving.
Such dynamic networks can easily be modeled by
SIL: adding a new node and links to the graph
represents a peer joining, while removing a node
and all of its incoming and outgoing links repre-
sents a node leaving.

However, a dynamic network presents an in-
teresting research question: when a node joins,
what connections should it make? The tradi-
tional approach is to pick a particular architec-
ture (such as supernodes or parallel search clus-
ters) and force nodes to join in such a way as
to preserve that architecture. A different and
novel approach is to allow a node to join in any
way it likes, creating links as appropriate, as long
as it does not introduce undesirable topological
features. For example, we might specify that a
node could join a network as long as it does not
introduce a one-index-cycle or a search fork. If
a node could verify that adding a link did not
create one of those features, then it could join
the network in an ad hoc way while preserving
desirable properties such as efficiency or fault tol-
erance. Nodes could form whatever connections
they needed without damaging the efficiency of
the network, and the network would evolve and

adapt to best meet the needs of member nodes
and changing load conditions.

If a dynamic network is not tied to a spe-
cific topology, then the topology can more easily
change over time depending on the needs of the
network. For example, we have begun to study
ways for overloaded nodes to shed load by sim-
ply disconnecting from some of their neighbors.
These neighbors would then reconnect to other,
less loaded nodes, spreading the work around the
network more evenly. Moreover, a node may find
that it is overloaded with search messages, and
drop only search links. Then, neighbors would
be encouraged to replace those search links with
index links. In this way, the nature of the net-
work would change from search-centric to index-
centric as a reflection of the current load condi-
tions.

SIL provides a framework for trying out dif-
ferent ad hoc graph-construction methods and
examining their effects. We have examined sev-
eral techniques, and our results are described in
more detail in [2]. Our experiments indicate that
ad hoc methods can be effective in many situa-
tions in significantly improving the efficiency of
the network.

5 Related work

Optimization of peer-to-peer search networks is a
hot topic among distributed systems researchers.
Some investigators are examining techniques for
more effective searching of existing networks, for
example using random walk searches [7]. Oth-
ers have examined how to build better versions
of existing networks [12, 9], how to “fix-up” an
inefficient network [8], or how to better index an
existing network [4]. The SIL model is an at-
tempt to provide a framework for generalizing
these approaches. Complementary to the SIL
model is work that explicitly models the loca-
tion of content, such as systems that attempt to
replicate content in the most effective way [1].
It may be useful to extend our model to model
content as well as nodes and links.

Another current research trend is to focus
on networks that allow users to locate objects
by name instead instead of by content. Such



networks are typically designed as distributed
hash tables (DHT) and several DHT architec-
tures have been proposed [11, 10]. There are
still interesting research questions in the space
of flooding-based networks, and as discussed in
Section 1, the advantages of DHTs do not mean
that we should not study SIL. Yet another focus
of many investigators is designing networks for
privacy, security or anonymity (such as SOS [6]
or FreeHaven [5]). Our focus on content discov-
ery is complementary to these approaches.

6 Conclusion

The SIL model is a general mechanism for de-
scribing the topology and properties of peer-to-
peer search networks. It is useful as:

e A framework for evaluating networks in
terms of metrics such as efficiency or fault
tolerance.

e A tool for discovering new and interesting
network architectures.

o A mechanism for defining and studying de-
sirable topological properties of networks.

e A platform for studying new ways of con-
structing and maintaining dynamic networks.

References

[1] E. Cohen and S. Shenker. Replication
strategies in unstructured peer-to-peer net-
works. In Proc. SIGCOMM, August 2002.

[2] B.F. Cooper and H. Garcia-Molina. Ad
hoc, self-supervising peer-to-peer search
networks, 2003. Technical Report.

[3] B.F. Cooper and H. Garcia-Molina. Sil:
Modeling and measuring scalable peer-to-
peer search networks, 2003. Technical Re-
port.

[4] A. Crespo and H. Garcia-Molina. Routing
indices for peer-to-peer systems. In Proc.
Int’l Conf. on Distributed Computing Sys-
tems (ICDCS), July 2002.

[5] R. Dingledine, M.J. Freedman, and D. Mol-

nar. The FreeHaven Project: Distributed

[11]

[12]

anonymous storage service. In Proc. of the
Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

A. Keromytis, V. Misra, and D. Rubenstein.
SOS: Secure overlay services. In Proc. SIG-

COMM, Aug. 2002.

Q. Lv, P. Cao, E. Cohen, K. Li, and
S. Shenker.
structured peer-to-peer networks. In Proc.
of ACM International Conference on Super-
computing (1CS°02), June 2002.

Search and replication in un-

Q. Lv, S. Ratnasamy, and S. Shenker. Can
heterogeneity make gnutella scalable? In
Proc. of the 1st Int’l Workshop on Peer to
Peer Systems (IPTPS), March 2002.

G. Pandurangan, P. Raghavan, and E. Up-
fal. Building low-diameter P2P networks.
In Proc. IEFFE Symposium on Foundations
of Computer Science, 2001.

S. Ratnasamy, P. Francis, M. Handley,
R. Karp, and S. Shenker. A scalable
content-addressable network. In Proc. SIG-
COMM, Aug. 2001.

I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for in-
ternet applications. In Proc. SIGCOMM,
Aug. 2001.

B. Yang and H. Garcia-Molina. Designing a
super-peer network. In Proc. ICDF, March
2003.



