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Abstract 1 Introduction 

We present a family of epidemic algorithms for maintain- 

ing replicated data in a transactional framework. The 

algorithms are based on the causal delivery of log records 

where each record corresponds to one transaction instead 

of one operation. The fist algorithm in this family is a 

pessimistic protocol that ensures serializability and guar- 

antees strict executions. Since we expect the epidemic al- 

gorithms to be used in environments with low probability 

of conflicts among transactions, we develop a variant of the 

pessimistic algorithm in which locks are released as soon 

as transactions finish their execution locally. However, 

this optimistic releasing of locks introduces the possibility 

of cascading aborts while ensuring serializable executions. 

The last member of thii family of epidemic algorithms 

is motivated from the need for asynchronous replication 

solutions that are being increasingly used in commercial 

systems. The protocol is optimistic in that transactions 

commit as soon as they terminate locally and inconsisten- 

cies are detected asynchronously as the effects of commit- 

ted transactions propagate through the system. 

*This research was partially supported by LANL under grant 
number 6863V0016-3A, by CALTRANS under grant number 
65V250A, by NASA under grant number NAGW-3888, and by the 
NSF under grant numbers IRI94-11330, CDA94-21978, and CCRSS- 
05807. 

With the proliferation of computer networks, PCs, and 

workstations, new models for workplaces are emerging. 

In particular, organizations need to provide ready access 

to corporate information to users who may or may not 

always be connected to the database. One way to pro- 

vide access to such data is through replication. However, 

traditional synchronous solutions for managing replicated 

data [Sto79, Tho79, Gif79] can not be used especially 

in such a distributed, mobile, and disconnected environ- 

ment. As the need for replication grows, several vendors 

have adopted asynchronous solutions for managing repli- 

cate data pBH+88, Ora]. For example, Lotus Notes uses 

value-base& replication in which updates are performed 

locally and a propagation mechanism is provided to apply 

these updates to other replica sites. In addition, a ver- 

sion number is used to detect inconsistencies. Resolution 

of inconsistencies is left to the users. Although the Lotus 

approach works reasonably well for single object updates 

(i.e., environments such as file-systems), it fails when mul- 

tiple objects are involved in a single update (i.e., transac- 

tion oriented environments). In particular, more formal 

mechanisms are needed for update propagation and con- 

flict detection in the context of asynchronous replication. 
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Asynchronous replication has been deployed success- 

fully for maintaining control information in distributed 

systems and computer networks. For example, name- 

servers, yellow pages, server directories, etc. are main- 

tained redundantly on multiple sites and updates are in- 

corporated in a lazy manner FM82, WB84] through gos- 

sip messages [LL86, HHW89], epidemic propagation and 

anti-entropy pGH+87]. In the epidemic model, update 

operations are executed locally at any single site. Later, 

sites communicate to exchange up-to-date information. In 

this way updates pass through the system like an infec- 

tious disease, hence the name epidemic. Thus, users per- 
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form updates on a single site without waiting for com- 

munication, and the system can schedule communication 
at a later convenient time. These algorithms rely on the 
application-specific update operations being commutative 
and maintain the causal ordering that exists between op- 
erations. 

Epidemic algorithms are designed to satisfy a level of 
consistency weaker than serializability [BHG87]. Primar- 
ily, they preserve the causal order of update operations. 
For some applications this is suflicient for correctness. 
Otherwise, designers optimistically assume that conflicts 
will be rare and can be handled using application spe- 
cific compensation. Epidemic techniques are useful but 
are too weak for supporting transaction processing. Fun- 
damentally, the goal of epidemic algorithms is to ensure 
that all replicas of a single data item converge to a single 
final value. For transaction processing this is insufficient 
because transactions create dependencies between the val- 
ues of different data items. In particular, in a database 
context, the execution of a set of transactions must be 
equivalent to a total order. Consider two transactions tr 
and t2 that are executed concurrently at different database 
sites. Furthermore, tl reads a value of an object x and up- 
dates object y whereas t2 reads y and writes z. This is 
a classical example of a non-serializable execution involv- 
ing transactions tl and t2. Any epidemic protocol that 
propagates only write operations to update the values of 
objects cannot detect this inconsistency. Rabinovich et 
al. @GK96] have recently proposed an epidemic algorithm 
for transaction management in replicated databases. This 
protocol only maintains and propagates write operations 
for eventual consistency of data, hence it fails to detect 
read-write conflicts and therefore allows non-serializable 
executions in a transactional framework. 

In this paper we present a family of epidemic algo- 
rithms for maintaining replicated data in a transactional 
framework. The algorithms are based on the causal deliv- 
ery of log records where each record corresponds to one 
transaction instead of one operation. The first algorithm 
in this family is a pessimistic protocol that ensures serial- 
izability and guarantees strict executions. Since we expect 
the epidemic algorithms to be used in environments with 
low probability of conflicts among transactions, we de- 
velop a variant of the pessimistic algorithm in which locks 
are released as soon as transactions finish their execution 
locally. However, this optimistic releasing of locks intro- 
duces the possibility of cascading aborts while ensuring 
serializable executions. The last member of this family of 
epidemic algorithms is motivated from the need for ssyn- 
chronous replication solutions that are being increasingly 
used in commercial systems. The protocol is optimistic 

in that transactions commit as soon as they terminate lo- 
cally and inconsistencies are detected asynchronously as 
the effects of committed transactions propagate through 
the system. Resolution of inconsistencies is left to the ap- 
plication, and the details of specific conflict compensation 
schemes are orthogonal to the ideas of this paper. 

The paper is organized as follows. In the next section, 
we present the epidemic model of replication. In Section 3, 
we develop an epidemic algorithm for transaction process- 
ing that guarantees serializability by checking for both 
read-write as well as write-write conflicts. The optimistic 
variants of this algorithm are presented in Section 4. Sec- 
tion 5 concludes with a discussion of our results. 

2 The Epidemic Model of Replication 

We consider a distributed system consisting of n sites 

si, s2, “‘, S, each maintaining a copy of all items in tho 
database. The communication system may be unreliable, 
i.e., messages may arrive in any order, take an unbounded 
amount of time to arrive, or may be lost entirely. How- 
ever, we assume that the communication system ensures 
that message are not corrupted. Each site performs three 
kinds of operations: send operations, receive operations, 
and database specific non-communication operations. An 
event model [Lam781 is used to describe the system execu- 
tion, (E, +), where E is a set of operations and + is tho 
happened-before relation [Lam781 which is a partial order 
on all operations in E. The happened-before relation is 
the transitive closure of the following two conditions: 

l Local Ordering Condition: Events occurring at the 
same site are totally ordered. 

l Global Ordering Condition: Let er be a send event and 
es be the corresponding receive event then er + es. 

Lamport uses the happened-before relation to define a 
clock with the following property: 

Ve, f E E if e + f thenTime < Time(f) 

We will refer to this clock as Lamport’s clock. 
Epidemic algorithms use this execution model to main- 

tain replicated data such as dictionaries, name-servers, 
distributed calendars, and databases [FM82, AM83, WB84, 
LL86, DGH+87, HHW89, AESOa, AESOb, SA93, AM91, 
RGK96, TDP+94, TTP+95]. In general, database spe- 
cific operations are executed locally and they are commu- 
nicated to the other database sites by using the epidemic 
model of communication. The communication model is 
such that it preserves the potential causality among events 
captured by the happened-before relation. Minimally, if 
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two events are causally ordered their effects should be 
applied in that order at all sites FM82, AM83, WB84, 
LL86, DGHf87, HHW89]. Epidemic algorithms generally 
are implemented using vector clocks [Mat891 or event logs 
[Sch82] to ensure this property. Vector clocks are an exten- 
sion of Lamport clocks [Lam781 and ensure the following 
property: 

Ve,f E E e + f 8 Time(e) < Time(f). 

In a log based approach each site keeps a log of database 
specific operations by maintaining a log record of each 
event. Database sites exchange their respective logs to 
keep each other informed about the operations that have 
occurred on their sites. This information exchange ensures 
that eventually all database replicas incorporate all the 
operations that have occurred in the system. Due to the 
unreliable nature of the communication medium, a record 
must be included in every message until the sender knows 
that the recipient of the message has received that record 
[Sch82, AM83, WB84]. 

Wuu and Bernstein [wB84] combine the logs and vec- 
tor clocks to solve the distributed dictionary problem ef- 
ficiently. Each site Si keeps a two-dimensional time-table 
Ti, which corresponds to the vector clocks of all sites, such 
that if Z[k, j] = 21 then S; knows that Sk has received the 
records of all events at Sj up to time 21 (which is the value 
of Sj’s local clock). Thus, the time-table can be used to 
define the following predicate for a record t corresponding 
to some event: 

Has&cvd(Ti, t, Sk) 3 T$c, site(t)] > Time(t), 

which is referred to as the time-table property. That is, the 
kth row of Z is the knowledge of SC about Sk’s knowledge 
of events in the system. In Wuu and Bernstein’s algorithm 
when a site Si performs an update operation it places an 
event record in the log recording that operation. When Si 
sends a message to Sk it includes all records t such that 
Has&cvd(Ti, t, Sk) is false, and it also includes its time- 
table Tie When Si receives a message from Sk it applies 
the updates of all received log records and updates its 
time-table in an atomic step to reflect the new information 
received from Sk. When a site receives a log record it 
knows that the log records of all causally preceding events 
either were received in previous messages, or are included 
in the same message which is referred to as the log property 

which is stated as follows with respect, to a local copy of 
the log Li at, site Si: 

Ve,f if (e + f) A (f E L;)then e E Li. 

The correctness of the algorithm can be established by 
using both the log and the time-table property. A vari- 

ant of the log and time-table algorithm called the two- 
phase gossip protocol m89] reduces the size of the 
two-dimensional time-table Corn n2 to 2. n. 

3 Epidemic Transactions for Replicated Databases 

There are two elements of a replicated database that are 
not fully supported by current epidemic techniques. 

l Transactional integrity: Transactions can have more 
than one operation, and these operations must be 
executed atomically. 

l Correctness: Replicated databases must enforce one- 
copy serializability [BHG87]. 

In this section, we develop an algorithm that incorporates 
transactions into the epidemic framework. 

3.1 From causality to serializability 

Our system model is based on the epidemic model with 
the following extensions. Each site is assumed to have a 
local concurrency control mechanism that ensures serial- 
izability. We assume that each site uses strict two phase 
locking (2PL) to execute transactions. Transactions exe- 
cute their read and write operations using local copies of 
the data. At termination, the operations of a transactions 
are stored in the log as a single record and disseminated to 
other sites. Since no global synchronization is performed 
during transaction execution it is possible for two dif&r- 
ent database sites to execute coticting operations. In 
the context of databases with read and write operations 
on objects, two operations conflict if they originate from 
different transactions, both are on the same object, and 
at least one of them is a write operation. 

To enforce serializability we note that all transactions 
are already partially ordered by the happened-before re- 
lation because of the log property. -In particular, the log 
property ensures that if two transactions are causally re- 
lated then their relative order of execution will be the same 
at all sites. On the other hand, epidemic algorithms lack 
the mechanism to deal with conflicting concurrent oper- 
ations. Most of the applications used in the context of 
epidemic algorithms circumvent this problem by only per- 
mitting commutative operations on the database. For ex- 
ample, in the distributed dictionary problem, even though 
two insert operations are potentially con%cting (ii they 
insert the same item), they are forced to be commutative 
by associating a unique identifier (based on site and time 
information). 

In order to adapt the epidemic model of communica- 
tion to transactions, we need to devise mechanisms to deal 
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with the problem of conflicting operations of concurrent 

transactions. There are two different approaches to han- 
dle this problem which can be classified as a pessimistic 
approach or an optimistic approach. In the pessimistic 
approach, we ensure that transactions can execute con- 
currently as long as they do not have any conflicting op- 
erations. In the optimistic approach, we detect if concur- 
rent transactions executed conflicting operations. Conflict 
resolution is left to the application or to the user. For 
example, Oracle 7 provides a choice of twelve reconcilia- 
tion rules to merge conflicting updates on replicated data 

[GHOS96, Ora]. 
We define conflicting transactions to be two or more 

transactions that are concurrent and have conflicting oper- 
ations. In order to detect conflicting transactions we need 
to deal with two issues related to transactions. First, the 
read and write sets of all transactions at all sites must be 
identified. Second, for a given transaction the set of con- 
current transactions must be determined. Since the read 
and write sets are needed to determine conflicts among 
transactions that executed concurrently, they can be easily 
constructed locally as transactions execute on a site. De- 
termining the set of concurrent transactions is more com- 
plex since for a given transaction there can be potentially 
conflicting transactions anywhere in the network. As- 
certaining this information through explicit syncbroniza- 
tion will be prohibitively expensive. Furthermore, simple 
timestamping of transactions based on Lamport clocks is 
not sufficient since Lamport clock based timestamps guar- 
antee order only when there is a causal relationship among 
transactions. These timestamps do not provide suflicient 
information to determine if two transactions are concur- 
rent. Vector clocks, on the other hand, have the property 
that two timestamps based on vector clocks are ordered if 
and only if the corresponding events (transactions in our 
case) are causally related. Thus, the vector clock based 
timestamps of concurrent events (equivalently, transac- 
tions) are incomparable. Hence, we use the vector clock 
for identifying conflicting transactions asynchronously. 

3.2 A naive epidemic algorithm for transaction process- 

ing 

We first present an algorithm that corresponds to a read 
one copy, write all copies replication scheme using epi- 
demic techniques for communication. When initiated, a 
transaction t executes on a single site Si. It acquires 
appropriate read and write locks, writes values to the 
database, and pm-commits. At pre-commit time t ac- 
quires a timestamp using the vector clock of Si which is 
the ith row of the S&s time-table, i.e., Z[i,*], with the 
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ith component incremented by one. This timestamp as- 

signment ensures that t dominates all those transactions 
that have already pm-committed on Si regardless of wham 
they were initiated. In this way t can differentiate concur- 
rent transactions from those that causally preceded it. A 
pm-commit record oft is then inserted in the copy of the 
event log at Si containing the following information: 

1. The site at which t executed, denoted, Site(t) = .!7c8 

2. The timestamp assigned tot, denotedTS(t) = T[i, *I, 

3. The read set oft, RS(t), and write set oft, wS(t). 
Note that TVS(t) includes the values written by t, 

After inserting the pm-commit record, t releases all its 
read locks and maintains its write locks as would be done 
as part of any atomic commit protocol. 

The basic idea of this algorithm is to execute a transac- 
tion locally and commit the transaction globally by using 
the epidemic communication model. During the commit- 
ment phase, when other sites learn about the pre-commit 
request on behalf of a transaction they must first check if 
there exist any conflicting transactions and then incorpo- 
rate the updates oft. This is done as follows. When site 
Sj receives a log record of t as part of an epidemic mes- 
sage, it identifies in its copy of the log if there exists any 
transaction t’ that has not yet committed and satisfies the 
following two conditions: 

l TS(t’) is incomparable to Z’S(t) (denoted TS(1’) <> 
T’S(t)) which indicates that t’ executed concurrently 
with t. 

l The intersections of M(t) and WS(t’), WS(t) and 
WS(t’), or TVS(t) and RS(t’) is nonempty. This 
indicates that t and t’ execute conflicting operations, 

If there exists such a transaction t’, then t and t’ are 
aborted at Sj. An abort record is inserted on behalf of 
these transactions in the copy of the event log at Sj, and 
all of their locks are released. Otherwise, Sj obtains write 
locks locally on behalf of t and applies the updates of t 
to the local copy of the database. Then it appends the 
record to the local log, and updates the local copy of the 
time-table to reflect the receipt of t. Finally, Sj inserts 
another precommit record oft in the log. 

As the epidemic process evolves, eventually a site will 
have enough information.to terminate transaction t. If it 
receives an abort record of t in an epidemic message it 
simply aborts t by releasing all its write locks and restor- 
ing the before-images of all the affected objects, On tho 

other hand, if the site has pm-commit records from all the 
sites in the network, t is committed and its write lock5 are 



released. The commitment model used in this protocol is 
very similar to the decentralized atomic commitment pro- 
tocol [BHG87, Ske82]. The correctness of the algorithm 
depends on the following facts. Each site provides local 
serializability such that causal order is reflected in the log 
record timestamps. If two concurrent transactions arrive 
at the same site that fact can be detected when the sec- 
ond transaction to arrive checks the log. After a transac- 
tion pre-commits on a site no new concurrent transactions 
can be initiated on that site by the nature of causality. A 
transaction must pre-commit on all sites including the ini- 
tiating sites of any concurrent transactions before it can 
be committed. Concurrency is a necessary condition for 
conflict. Therefore, if conflicting transactions exist they 
will be detected by the logs before a transaction can pre- 
commit on all sites. By aborting all conflicting trensac- 
tions the algorithm guarantees one-copy-serializabihty. 

3.3 The Pessimistic Epidemic Algorithm 

In its initial formulation, the above algorithm creates a 
large number of log records that must be stored and trans- 
mitted to other sites. For each transaction, each site in- 
serts a precommit or an abort record in the log which 
results in n records per committed transaction. By ex- 
ploiting the properties of the two-dimensional time-table, 
the number of records per transaction can be reduced from 
n to 1. A site initiating a transaction inserts a pre-commit 
record in the log and communicates it to other sites via 
epidemic messages. Other sites also insert an explicit pre- 
commit or abort records to acknowledge the receipt of 
the original pm-commit record. However, the time-table 
encodes enough information to carry these acknowledge- 
ments implicitly through the timing information rather 
than explicitly through the log records. 

When HasRecvd(T;, t,&) is true, site Si knows that 
site Sk has received t. This means that Sk has pre-committed 
or aborted t, and Si has received the time-table informa- 
tion in a message which causally succeeded the pre-commit 
or abort of t at Sk. In the above protocol, Si must have 
therefore received the pre-commit or abort record inserted 
at Sk by thii time. Hence, pre-commits can be deduced 
from the timing information and the lack of an explicit 
abort record. In thii formulation, only aborts need to be 
explicitly acknowledged. When Vk HusRecvd(T;, t, Sk) is 

true and Si has not received an abort record for t then t 
can be committed at S; and the corresponding record oft 
is garbage collected from the local log, Li. 

In fact, we now demonstrate that explicit abort records 
are also not required. An abort record for t is inserted in 
the log at Sk if there exists a conflicting transaction t’ 

in Lk. When at the initiator oft, Si, HasRecd(Ti,t, k) 

holds, t”s log record must also be in Li. Since t and t’ 
are concurrent and originated at different sites, t’ was in- 
serted and processed at Si after t pre-committed. There- 
fore when t’ is processed at Si, it will induce the abort 
of t at Si. Thus, the abort record of t at Sk indicating 
that t was aborted due to t’ at Sk is redundant since that 
fact has already been learned by the initiator site oft. We 
can extend this argument to any site in the network since 
the epidemic protocol uniformly disperses the information 
in the network. As a result only one record, the initial 
pre-commit record, needs to be created for each trans- 
action. The propagation of that record and the return 
propagation of time-table information will detect conflict- 
ing transactions in its path. We include a field, denoted 
aborted in the pre-commit record as an optimization. If 
a pm-commit record of a transaction t arrives at site Sj 
and Sj aborts t on account of a conflicting transaction 
t’, the aborted flag of t is set. Subsequently, when Sj 
forwards the pre-commit record of t to Sk, Sk uses the 
flag to avoid pm-committing t locally. However, t is still 
processed against the log at Sk to ensure any conflicting 
transactions with respect to t are aborted at Sk. 

We define the following predicates using the informa- 
tion that is included in the log and the time-table of every 
site. The first predicate holds when t should be aborted: 

3 E Li 1 TS(t) <> TS(t’) 

A 
RS(t) n WS(t’) # 8 

Aborted(t, Si) G v 

-i i- 

H%(t) n WS(t’) # 0 

v 
WS(t) fl RS(t’) # 0 

Similarly, we define another predicate which holds when a 
transaction successfully commits at a site. This predicate 
is defined as follows: 

[ 

Vk Z[k, Site(t)] 2 TS(t) 
Commit(t, Si) E A 

lAborted(t, Si) I 

The resulting epidemic algorithm to execute transactions 
on a replicated database is shown in Figures 2 and 3. Fig- 
ure 2 illustrate the handling of transaction execution lo- 
cally at a site. Although the algorithm is illustrated by 
using read and write sets, it can be easily modified so that 
the read set and write sets are constructed incrementally 
as the execution of a transaction proceeds. The interaction 
of a transaction with the epidemic algorithm occurs when 
the transaction pre-commits (i.e., makes its writes recov- 
erable at SC) and inserts a pre-commit record in the log. 
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Both Ti and Li are updated in a critical section to ensure 
atomicity of updates to these two data-structures by local 
concurrent transactions. After pre-committing, the trans- 
action can release all the read locks it obtained, however, 

write locks are retained until the transaction terminates. 
The data structure used to store pre-commit records ap- 
pears in Figure 1. 

Figure 3 illustrates the communication model used by 
the epidemic algorithm to execute transactions at a partic- 
ular site Si. The send function is used by site Si to dissem- 
inate the pre-commit records of local transactions as well 
as remote transactions about which Si has become aware 
of through message propagation. Periodically, Si sends 
part of its log to the other sites with its two-dimensional 
time-table. The frequency of propagation as well as the 
destination to which messages are sent are application de- 
pendent and can be tuned appropriately. When Si sends a 
message to Sk it does not send any records that Si knows 
that Sk already knows about by employing the HasR.ecud 
predicate. 

The receive procedure is the most interesting. Trans- 
actions are processed one at a time in the order of the re- 
ceived log. The receiving site first checks if it already has 
the pre-commit record for transaction t. This can be done 
simply by checking whether HasRed(Ti, t, Si) is true. If 
the site has not already received the record then it must 
check against concurrent transactions in the log for con- 
flicting operations. Si determines if there are concurrent 
conflicting transactions in its log. All such transactions 
as well as t are aborted in this case. The newly received 
transaction has its record marked as aborted and its up- 
dates are not applied, but its record is inserted into the 
log and the time-table is updated to show that it has been 
received. This is necessary to propagate the knowledge of 
the conflict to other sites. If there are no prior conflicting 
transactions, Si acquires write locks oft to update the ap- 
propriate objects locally. If there are any on-going local 
transactions that hold conflicting locks, such transactions 
are aborted and t is granted the locks. This is referred 
to in the figure as function ForceWriteLocks. However, 
there could be causally preceding global transactions that 
hold conflicting locks. ForceWriteLocks, in this case, en- 

queues t’s lock request. Since on-going local transactions 
will causally follow t, we only need to abort them if such 
transactions are reading or writing objects that must have 
been written by t. This is the reason why t only needs to 
obtain its write locks at Si but does not need read locks. 
Finally, Si updates the appropriate data items, increases 
the value of T<[i,Site(t)] to reflect the fact that t is now 
known to Si, appends t to log Li, pre-commits. After 
all records are processed the procedure updates the other 

rows of the time-table. Next, the pre-commit record8 in Li 

are checked to determine if they can be committed locally 
by using the Commit predicate. Finally, all log records 
of committed or aborted transactions that are known to 
all other sites are garbage-collected from Li. The proof of 
correctness of the algorithm appears in [Ste97]. 

An interesting aspect of the above algorithm is that it 
does not require distributed deadlock detection. To see 
that this is true note that if transaction t is waiting for 
a lock held by transaction t’ then t’ + t. It is impos- 
sible for t’ and t to be concurrent because they would 

both have been aborted when t checked the log before 
attempting to acquire locks. t + t’ is impossible be- 
cause this violates causal message delivery. Also, t’ can- 
not be a local transaction because it would be aborted 
by procedure ForceWriteLocks. Waits for dependencies 
between pre-committed transactions must be a subgraph 
of the happened-before relation which is acyclic, and pre- 
committed transactions cannot wait on local transactions. 
Therefore, pre-committed transactions cannot be involved 
in deadlock. Any transaction holding locks on more than 
one site must be pre-committed, and therefore any cy- 
cles in the global waits-for graph must involve only local 
transactions at a single site. 

4 Increasing the Optimism of Epidemic Transactions 

In this section, we use the basic epidemic algorithm for 
processing transactions in databases and introduce two 
modifications that will increase the asynchrony and con- 
currency among epidemic transactions. We first observe 
that the basic epidemic algorithm holds all write locks 
globally until the pre-commit record of a transaction is 
known to have been disseminated to all sites in the system. 
This is done to ensure that other transactions do not read 
uncommitted data. Since we are assuming a low-conflict 
environment, this may not be a significant problem. How- 
ever, given this assumption we can relax this requirement 
by avoiding the necessity of holding locks till transaction 
termination. This algorithm still ensures both serializabil- 
ity and recoverability [Had88]. We then use this modified 
algorithm to develop a more radical version of the epi- 
demic algorithm which is more in line with contemporary 
approaches that are being used commercially to deal with 
replication (KBH+88, Ora]. In this approach transactions 
are optimistically committed as soon as they terminate at 
the initiating site. Epidemic propagation is primarily used 
to disseminate the effects of these committed transactions 
to other sites so that the replicated data becomes mutu- 
ally consistent. In addition, this mechanism is used to 

detect conflicting transactions and such transactions are 
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type Transaction = 

record 

RS : setof DataObjedType; 
ws : setof DataObjectType; 

values : setof DataType; 

site : SiteId; 

time : array [1.-n] of TimeType; 

aborted : flag; 

end 

Figure I: A Transaction Record 

Persistent data: 

clocki E TimeType INITIALIZED TO 0; 

Ti : array [l..n, l..n] of TimeType INITIALIZED TO 0; 

Li : setof TTansadion INITIALIZED TO 0; 

Transaction(R.S, WS, f(x)): 

begin 

GetReadLocks(RS); 

values := fbd WI); 
GetWriteLocks(WS); 

WriteVuZues(WS, VUZUeS); 

begin mutex 

Ti[i, i] := + + clock;; 

L; := Li U {(RS, WS,values,i,Z[i, *I)); 
Pre-Commit; 

end mutex 

ReleaseReadLocks(RS); 

end; 

Figure 2: The Pessimistic Epidemic Algorithm for Executing Transactions at I$ 
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Send(m) to Nk : 
begin 

NP := {tit E Li A THasRecvd(T& t, Nk)}; 
send (NP,Tf) to Nk; 

end; 

Receive(m) from Nk : 

begin 

tet 772 = (Npk,Tk); 

foreach {tit E NPk A lHasRecvd(Z& t, Ni)} do 

begin mutex 

if {Eli!’ E Lilt’.i!ime <> t.time A (t’.WS fl t.WS # ij5V 
t’.WS f~ t.RS # q% V t’.RS f~ t.WS # 4))) then 

Abort(t); 

Abort(t’); 

t.aborted = true; 

t’.aborted = true; 

else if (+.aborted) then 

ForceWriteLocks(t.WS); 

WriteVaZzLes(t.WS, t.vaZue.9); 
endif 

Ti[i, t.node] := t.time[t.node]; 

Li := Li U (t}; 
if (+.aborted) 

Pre-Commit(t); 

endif 

end mutex 

endfor 

begin mutex 

VK, J Ti[K, J] := maz(Ti[K, J],Tk[& 4); 

foreach t E Li do 

if Commit(t, N<) then Commit(t); then 

endfor; 

Li := {tit E Li A 3jlTHasRead(Z, t, Nj)}; 

end mutex 

end; 

Figure 3: Epidemic propagation of transaction records from other nodes to Ni 
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reported to the application level for manual or automatic 
compensation which is application dependent. 

4.1 Optimistic Releasing of Locks 

The sole purpose of holding write locks after pm-commit 
time is to confine the effects of a transaction abort to the 
transaction itself. Write locks are held until commitment 
to avoid cascading aborts and to ensure strict execution of 
transactions. In order to ensure that aborting a transac- 
tion does not influence previously committed transactions, 
we must require that for every transaction t that commits, 
its commit follows the commit of every other transaction 
from which t read. Such executions are called recozTer- 
able (RC). Recoverability, however, does not guarantee 
freedom from cascading aborts. Cascading aborts can be 
prevented by requiring that every transaction reads com- 
mitted values. Executions that satisfy this requirement 
are said to ovoid cascading aborts (ACA). Finally, an exe- 
cution is called strict (ST) if all read and write operations 
are executed on committed values [Had88, BHG87]. 

Thus if we modify the epidemic algorithm so that write 
locks are reIeased at pm-commit, we can still guarantee 
serializability as well as recoverability. However, releasing 
locks early exposes uncommitted values to other trans- 
actions Thus for recoverability, if a transaction t reads 
from an uncommitted transaction t’, t can commit only 
if t’ has committed. For a transaction t, any transaction 
that it read from must have causally preceded it. There- 
fore, any site which could pm-commit t must have received 
and either pm-committed or aborted all causally preced- 
ing transactions. For the initiating site of t this is true 
by the definition of causality. For all other sites this is 
true by causal message delivery. The epidemic algorithm 
has to be modified such that if t aborts at a site then 
it must abort all transactions that read from t and are in 
the log. Furthermore, if t has read from a transaction that 
has been aborted at S’i, then t must be aborted. Thii is 
accomplished by including an additional field in the log 
record, referred to as readfrom, for transaction t which 
contains the identity of all transactions from which t read 
from. For t to commit it must have pm-committed on all 
sites. This implies that all transactions from which t read 
from are also pm-committed on all sites and thus have also 
committed. This is a sufficient condition for recoverability. 

In traditional databases, ACA executions are desirable 
because cascading aborts may result in lower through- 
put in the system. However for applications that will use 
epidemic style of transaction processing, conflicts among 
transactions are expected to be rare. Thus, the concern 
that exists in traditional database settings is not very rele- 

vant here. By releasing locks early, the epidemic algorithm 
introduces the vulnerability to cascading aborts but we ex- 
pect them to be rare resulting in insignificant impact on 
the performance. On the other hand, by releasing locks 
early, unnecessary blocking due to locks held during dis- 
semination of pm-commit of transactions is eliminated. 
Although locks are released at pre-commit, transactions 
commitment is still as before, i.e., a transaction can com- 

mit only after it has been pm-committed successfully at 
all sites in the network. Hence, transaction execution re- 
mains serializable and correctness is not compromised. 

4.2 Optimistic Commitment of Epidemic Transactions 

Recently, several commercial systems have become inter- 
ested in replication solutions primarily for supporting dis- 
tributed, mobile, and disconnected users. In the context 
of these applications, the synchronous approach for man- 
aging replicated data (i.e., read-one write-all or quorum 
protocol [Tho79, Gif79]) is considered too expensive and 
not applicable in some cases (e.g., for disconnected opera- 
tions). Instead, asynchronous replication techniques based 
on optimistically executing and committing transactions 
locally is advocated. In the presence of replicated data it 
is not enough to commit transactions locally rather mech- 
anisms are needed to asynchronously apply the effects of 
committed transactions to other replica sites. In addition, 
these mechanisms should also be able to detect inconsis- 
tent or conflicting executions. For example, Lotus Notes 
uses value-based propagation of files to replica sites and 
uses version numbers to detect inconsistencies. Although 
this approach is adequate for single file operations it fails 
in the context of transactions that access multiple data 
objects. Rabinovich et al. [RGK96] proposed adopting 
transactions in the context of epidemic algorithms, which 
are asynchronous solutions for managing replicated data. 
As pointed out before, the protocol fails to capture inter- 
transaction dependencies resulting from read-write con- 
flicts. 

In this section, we use the epidemic model for trensac- 
tion processing to introduce the notion of optimistic com- 
mitment of transactions. In the previous protocol transac- 
tions completed execution locally and delayed the commit- 
ment until they are aware that their pre-commit has been 
processed at all sites in the network (and hence all their ef- 
fects have been incorporated on all replicas). In contrast, 
the optimistic epidemic algorithm commits a transaction 
locally with the optimistic assumption that no conflict will 
arise as the commit record of this transaction disseminates 
through the network. If a conflict occurs, the epidemic al- 
gorithm detects it and reports it to the application level 

i 

169 



-_- __-A. L .I ------ JL. .’ - 

for conflict resolution. 
We now briefly describe the changes that are needed 

to modify the epidemic algorithm to optimistically commit 
transactions early. In the case of transaction execution of 
Figure 2, the main change is that instead of inserting a 
pm-commit record a transaction executes as if it is a cen- 
tralized database and hence inserts a commit record and 
release all its locks. The receive procedure for optimistic 
operation appears in Figure 4. The significant difference is 
that transactions are committed at the time they were pre- 
committed in the conservative algorithm, and as a result 
cannot be aborted. The abort flag is renamed inconf Ii& 
and when conflict is detected the algorithm raises an ex- 
ception by calling ResolveConf lict. The values written by 
the transaction must be applied to the database whether 
or not the transaction is in conflict because those values 
are already committed at other sites. 

Existing databases such as Oracle have developed ap- 
plication dependent reconciliation rules for conflict resolu- 
tion [Oral. Additionally, there are meta-rule paradigms to 
specify which rules to apply and in what order if more than 
one rule is applicable. For example, Jagadish, Mendelzon, 
and Mumick [JMM96] describe a meta-rule language and 
inference procedures to determine if a particular set of 
meta-rules is unambiguous. Using these two techniques it 
should be possible to create an automated conflict reso- 
lution procedure. Specific compensation rules and meta- 
rules would be application dependent and such issues are 
orthogonal to the ideas in this paper. 

5 Conclusion 

Many techniques are currently available to support weak 
consistency of replicated data. These systems process up- 
dates as individual operations, or copy updated values of 
individual data items. This makes them insufficient for 
use in applications with transaction-based semantics. We 
have developed a family of epidemic algorithms that prop- 
agates updates as whole transactions. This allows sites to 
maintain the atomicity of transactions ‘as well as detect 
non-serializable executions. The algorithms can be used 
in a conservative manner that prevents non-serializable 
executions, or in an optimistic manner that merely de- 
tects non-serializable executions for application specific 
compensation. 
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