
- 2 .____.___ mm- __. .,- .5- -

Epidemic Algorithms in Replicated Databases*

(Extended Abstract)

D. Agrawal

Dept. of Computer Science

University of California

Santa Barbara, CA 93106

agrawal@cs.ucsb.edu

A. El Abbadi

Dept. of Computer Science

University of California

Santa Barbara, CA 93106

amr&s.ucsb.edu

R. C. Steinke

Dept. of Computer Science

University of California

Santa Barbara, CA 93106

steinkeQcs.ucsb.edu

Abstract 1 Introduction

We present a family of epidemic algorithms for maintain-

ing replicated data in a transactional framework. The

algorithms are based on the causal delivery of log records

where each record corresponds to one transaction instead

of one operation. The fist algorithm in this family is a

pessimistic protocol that ensures serializability and guar-

antees strict executions. Since we expect the epidemic al-

gorithms to be used in environments with low probability

of conflicts among transactions, we develop a variant of the

pessimistic algorithm in which locks are released as soon

as transactions finish their execution locally. However,

this optimistic releasing of locks introduces the possibility

of cascading aborts while ensuring serializable executions.

The last member of thii family of epidemic algorithms

is motivated from the need for asynchronous replication

solutions that are being increasingly used in commercial

systems. The protocol is optimistic in that transactions

commit as soon as they terminate locally and inconsisten-

cies are detected asynchronously as the effects of commit-

ted transactions propagate through the system.

*This research was partially supported by LANL under grant
number 6863V0016-3A, by CALTRANS under grant number
65V250A, by NASA under grant number NAGW-3888, and by the
NSF under grant numbers IRI94-11330, CDA94-21978, and CCRSS-
05807.

With the proliferation of computer networks, PCs, and

workstations, new models for workplaces are emerging.

In particular, organizations need to provide ready access

to corporate information to users who may or may not

always be connected to the database. One way to pro-

vide access to such data is through replication. However,

traditional synchronous solutions for managing replicated

data [Sto79, Tho79, Gif79] can not be used especially

in such a distributed, mobile, and disconnected environ-

ment. As the need for replication grows, several vendors

have adopted asynchronous solutions for managing repli-

cate data pBH+88, Ora]. For example, Lotus Notes uses

value-base& replication in which updates are performed

locally and a propagation mechanism is provided to apply

these updates to other replica sites. In addition, a ver-

sion number is used to detect inconsistencies. Resolution

of inconsistencies is left to the users. Although the Lotus

approach works reasonably well for single object updates

(i.e., environments such as file-systems), it fails when mul-

tiple objects are involved in a single update (i.e., transac-

tion oriented environments). In particular, more formal

mechanisms are needed for update propagation and con-

flict detection in the context of asynchronous replication.

Permission to m&e digitalkrd copies of a11 or part ofti& material for
Personal of Ch-SrOOm use is granted without fee provided that ihe cop;,
are not made or distributed for profit or commercial advantage, the copy-
Ii&t notice, the title ofthe publication and its date appear, and no& is
given kit COP&ht is by petmission ofthe ACM. Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
PODS ’ 97 Tucson Arizona USA
Copy&M 1997 ACM O-89791-910-6/97/05 ..$3.50

Asynchronous replication has been deployed success-

fully for maintaining control information in distributed

systems and computer networks. For example, name-

servers, yellow pages, server directories, etc. are main-

tained redundantly on multiple sites and updates are in-

corporated in a lazy manner FM82, WB84] through gos-

sip messages [LL86, HHW89], epidemic propagation and

anti-entropy pGH+87]. In the epidemic model, update

operations are executed locally at any single site. Later,

sites communicate to exchange up-to-date information. In

this way updates pass through the system like an infec-

tious disease, hence the name epidemic. Thus, users per-

/ -.

form updates on a single site without waiting for com-

munication, and the system can schedule communication
at a later convenient time. These algorithms rely on the
application-specific update operations being commutative
and maintain the causal ordering that exists between op-
erations.

Epidemic algorithms are designed to satisfy a level of
consistency weaker than serializability [BHG87]. Primar-
ily, they preserve the causal order of update operations.
For some applications this is suflicient for correctness.
Otherwise, designers optimistically assume that conflicts
will be rare and can be handled using application spe-
cific compensation. Epidemic techniques are useful but
are too weak for supporting transaction processing. Fun-
damentally, the goal of epidemic algorithms is to ensure
that all replicas of a single data item converge to a single
final value. For transaction processing this is insufficient
because transactions create dependencies between the val-
ues of different data items. In particular, in a database
context, the execution of a set of transactions must be
equivalent to a total order. Consider two transactions tr
and t2 that are executed concurrently at different database
sites. Furthermore, tl reads a value of an object x and up-
dates object y whereas t2 reads y and writes z. This is
a classical example of a non-serializable execution involv-
ing transactions tl and t2. Any epidemic protocol that
propagates only write operations to update the values of
objects cannot detect this inconsistency. Rabinovich et
al. @GK96] have recently proposed an epidemic algorithm
for transaction management in replicated databases. This
protocol only maintains and propagates write operations
for eventual consistency of data, hence it fails to detect
read-write conflicts and therefore allows non-serializable
executions in a transactional framework.

In this paper we present a family of epidemic algo-
rithms for maintaining replicated data in a transactional
framework. The algorithms are based on the causal deliv-
ery of log records where each record corresponds to one
transaction instead of one operation. The first algorithm
in this family is a pessimistic protocol that ensures serial-
izability and guarantees strict executions. Since we expect
the epidemic algorithms to be used in environments with
low probability of conflicts among transactions, we de-
velop a variant of the pessimistic algorithm in which locks
are released as soon as transactions finish their execution
locally. However, this optimistic releasing of locks intro-
duces the possibility of cascading aborts while ensuring
serializable executions. The last member of this family of
epidemic algorithms is motivated from the need for ssyn-
chronous replication solutions that are being increasingly
used in commercial systems. The protocol is optimistic

in that transactions commit as soon as they terminate lo-
cally and inconsistencies are detected asynchronously as
the effects of committed transactions propagate through
the system. Resolution of inconsistencies is left to the ap-
plication, and the details of specific conflict compensation
schemes are orthogonal to the ideas of this paper.

The paper is organized as follows. In the next section,
we present the epidemic model of replication. In Section 3,
we develop an epidemic algorithm for transaction process-
ing that guarantees serializability by checking for both
read-write as well as write-write conflicts. The optimistic
variants of this algorithm are presented in Section 4. Sec-
tion 5 concludes with a discussion of our results.

2 The Epidemic Model of Replication

We consider a distributed system consisting of n sites

si, s2, “‘, S, each maintaining a copy of all items in tho
database. The communication system may be unreliable,
i.e., messages may arrive in any order, take an unbounded
amount of time to arrive, or may be lost entirely. How-
ever, we assume that the communication system ensures
that message are not corrupted. Each site performs three
kinds of operations: send operations, receive operations,
and database specific non-communication operations. An
event model [Lam781 is used to describe the system execu-
tion, (E, +), where E is a set of operations and + is tho
happened-before relation [Lam781 which is a partial order
on all operations in E. The happened-before relation is
the transitive closure of the following two conditions:

l Local Ordering Condition: Events occurring at the
same site are totally ordered.

l Global Ordering Condition: Let er be a send event and
es be the corresponding receive event then er + es.

Lamport uses the happened-before relation to define a
clock with the following property:

Ve, f E E if e + f thenTime < Time(f)

We will refer to this clock as Lamport’s clock.
Epidemic algorithms use this execution model to main-

tain replicated data such as dictionaries, name-servers,
distributed calendars, and databases [FM82, AM83, WB84,
LL86, DGH+87, HHW89, AESOa, AESOb, SA93, AM91,
RGK96, TDP+94, TTP+95]. In general, database spe-
cific operations are executed locally and they are commu-
nicated to the other database sites by using the epidemic
model of communication. The communication model is
such that it preserves the potential causality among events
captured by the happened-before relation. Minimally, if

162

two events are causally ordered their effects should be
applied in that order at all sites FM82, AM83, WB84,
LL86, DGHf87, HHW89]. Epidemic algorithms generally
are implemented using vector clocks [Mat891 or event logs
[Sch82] to ensure this property. Vector clocks are an exten-
sion of Lamport clocks [Lam781 and ensure the following
property:

Ve,f E E e + f 8 Time(e) < Time(f).

In a log based approach each site keeps a log of database
specific operations by maintaining a log record of each
event. Database sites exchange their respective logs to
keep each other informed about the operations that have
occurred on their sites. This information exchange ensures
that eventually all database replicas incorporate all the
operations that have occurred in the system. Due to the
unreliable nature of the communication medium, a record
must be included in every message until the sender knows
that the recipient of the message has received that record
[Sch82, AM83, WB84].

Wuu and Bernstein [wB84] combine the logs and vec-
tor clocks to solve the distributed dictionary problem ef-
ficiently. Each site Si keeps a two-dimensional time-table
Ti, which corresponds to the vector clocks of all sites, such
that if Z[k, j] = 21 then S; knows that Sk has received the
records of all events at Sj up to time 21 (which is the value
of Sj’s local clock). Thus, the time-table can be used to
define the following predicate for a record t corresponding
to some event:

Has&cvd(Ti, t, Sk) 3 T$c, site(t)] > Time(t),

which is referred to as the time-table property. That is, the
kth row of Z is the knowledge of SC about Sk’s knowledge
of events in the system. In Wuu and Bernstein’s algorithm
when a site Si performs an update operation it places an
event record in the log recording that operation. When Si
sends a message to Sk it includes all records t such that
Has&cvd(Ti, t, Sk) is false, and it also includes its time-
table Tie When Si receives a message from Sk it applies
the updates of all received log records and updates its
time-table in an atomic step to reflect the new information
received from Sk. When a site receives a log record it
knows that the log records of all causally preceding events
either were received in previous messages, or are included
in the same message which is referred to as the log property

which is stated as follows with respect, to a local copy of
the log Li at, site Si:

Ve,f if (e + f) A (f E L;)then e E Li.

The correctness of the algorithm can be established by
using both the log and the time-table property. A vari-

ant of the log and time-table algorithm called the two-
phase gossip protocol m89] reduces the size of the
two-dimensional time-table Corn n2 to 2. n.

3 Epidemic Transactions for Replicated Databases

There are two elements of a replicated database that are
not fully supported by current epidemic techniques.

l Transactional integrity: Transactions can have more
than one operation, and these operations must be
executed atomically.

l Correctness: Replicated databases must enforce one-
copy serializability [BHG87].

In this section, we develop an algorithm that incorporates
transactions into the epidemic framework.

3.1 From causality to serializability

Our system model is based on the epidemic model with
the following extensions. Each site is assumed to have a
local concurrency control mechanism that ensures serial-
izability. We assume that each site uses strict two phase
locking (2PL) to execute transactions. Transactions exe-
cute their read and write operations using local copies of
the data. At termination, the operations of a transactions
are stored in the log as a single record and disseminated to
other sites. Since no global synchronization is performed
during transaction execution it is possible for two dif&r-
ent database sites to execute coticting operations. In
the context of databases with read and write operations
on objects, two operations conflict if they originate from
different transactions, both are on the same object, and
at least one of them is a write operation.

To enforce serializability we note that all transactions
are already partially ordered by the happened-before re-
lation because of the log property. -In particular, the log
property ensures that if two transactions are causally re-
lated then their relative order of execution will be the same
at all sites. On the other hand, epidemic algorithms lack
the mechanism to deal with conflicting concurrent oper-
ations. Most of the applications used in the context of
epidemic algorithms circumvent this problem by only per-
mitting commutative operations on the database. For ex-
ample, in the distributed dictionary problem, even though
two insert operations are potentially con%cting (ii they
insert the same item), they are forced to be commutative
by associating a unique identifier (based on site and time
information).

In order to adapt the epidemic model of communica-
tion to transactions, we need to devise mechanisms to deal

163

_.__A e--_-- ..----I __.- -;’ :. - ‘*-_ I-

with the problem of conflicting operations of concurrent

transactions. There are two different approaches to han-
dle this problem which can be classified as a pessimistic
approach or an optimistic approach. In the pessimistic
approach, we ensure that transactions can execute con-
currently as long as they do not have any conflicting op-
erations. In the optimistic approach, we detect if concur-
rent transactions executed conflicting operations. Conflict
resolution is left to the application or to the user. For
example, Oracle 7 provides a choice of twelve reconcilia-
tion rules to merge conflicting updates on replicated data

[GHOS96, Ora].
We define conflicting transactions to be two or more

transactions that are concurrent and have conflicting oper-
ations. In order to detect conflicting transactions we need
to deal with two issues related to transactions. First, the
read and write sets of all transactions at all sites must be
identified. Second, for a given transaction the set of con-
current transactions must be determined. Since the read
and write sets are needed to determine conflicts among
transactions that executed concurrently, they can be easily
constructed locally as transactions execute on a site. De-
termining the set of concurrent transactions is more com-
plex since for a given transaction there can be potentially
conflicting transactions anywhere in the network. As-
certaining this information through explicit syncbroniza-
tion will be prohibitively expensive. Furthermore, simple
timestamping of transactions based on Lamport clocks is
not sufficient since Lamport clock based timestamps guar-
antee order only when there is a causal relationship among
transactions. These timestamps do not provide suflicient
information to determine if two transactions are concur-
rent. Vector clocks, on the other hand, have the property
that two timestamps based on vector clocks are ordered if
and only if the corresponding events (transactions in our
case) are causally related. Thus, the vector clock based
timestamps of concurrent events (equivalently, transac-
tions) are incomparable. Hence, we use the vector clock
for identifying conflicting transactions asynchronously.

3.2 A naive epidemic algorithm for transaction process-

ing

We first present an algorithm that corresponds to a read
one copy, write all copies replication scheme using epi-
demic techniques for communication. When initiated, a
transaction t executes on a single site Si. It acquires
appropriate read and write locks, writes values to the
database, and pm-commits. At pre-commit time t ac-
quires a timestamp using the vector clock of Si which is
the ith row of the S&s time-table, i.e., Z[i,*], with the

164

ith component incremented by one. This timestamp as-

signment ensures that t dominates all those transactions
that have already pm-committed on Si regardless of wham
they were initiated. In this way t can differentiate concur-
rent transactions from those that causally preceded it. A
pm-commit record oft is then inserted in the copy of the
event log at Si containing the following information:

1. The site at which t executed, denoted, Site(t) = .!7c8

2. The timestamp assigned tot, denotedTS(t) = T[i, *I,

3. The read set oft, RS(t), and write set oft, wS(t).
Note that TVS(t) includes the values written by t,

After inserting the pm-commit record, t releases all its
read locks and maintains its write locks as would be done
as part of any atomic commit protocol.

The basic idea of this algorithm is to execute a transac-
tion locally and commit the transaction globally by using
the epidemic communication model. During the commit-
ment phase, when other sites learn about the pre-commit
request on behalf of a transaction they must first check if
there exist any conflicting transactions and then incorpo-
rate the updates oft. This is done as follows. When site
Sj receives a log record of t as part of an epidemic mes-
sage, it identifies in its copy of the log if there exists any
transaction t’ that has not yet committed and satisfies the
following two conditions:

l TS(t’) is incomparable to Z’S(t) (denoted TS(1’) <>
T’S(t)) which indicates that t’ executed concurrently
with t.

l The intersections of M(t) and WS(t’), WS(t) and
WS(t’), or TVS(t) and RS(t’) is nonempty. This
indicates that t and t’ execute conflicting operations,

If there exists such a transaction t’, then t and t’ are
aborted at Sj. An abort record is inserted on behalf of
these transactions in the copy of the event log at Sj, and
all of their locks are released. Otherwise, Sj obtains write
locks locally on behalf of t and applies the updates of t
to the local copy of the database. Then it appends the
record to the local log, and updates the local copy of the
time-table to reflect the receipt of t. Finally, Sj inserts
another precommit record oft in the log.

As the epidemic process evolves, eventually a site will
have enough information.to terminate transaction t. If it
receives an abort record of t in an epidemic message it
simply aborts t by releasing all its write locks and restor-
ing the before-images of all the affected objects, On tho

other hand, if the site has pm-commit records from all the
sites in the network, t is committed and its write lock5 are

released. The commitment model used in this protocol is
very similar to the decentralized atomic commitment pro-
tocol [BHG87, Ske82]. The correctness of the algorithm
depends on the following facts. Each site provides local
serializability such that causal order is reflected in the log
record timestamps. If two concurrent transactions arrive
at the same site that fact can be detected when the sec-
ond transaction to arrive checks the log. After a transac-
tion pre-commits on a site no new concurrent transactions
can be initiated on that site by the nature of causality. A
transaction must pre-commit on all sites including the ini-
tiating sites of any concurrent transactions before it can
be committed. Concurrency is a necessary condition for
conflict. Therefore, if conflicting transactions exist they
will be detected by the logs before a transaction can pre-
commit on all sites. By aborting all conflicting trensac-
tions the algorithm guarantees one-copy-serializabihty.

3.3 The Pessimistic Epidemic Algorithm

In its initial formulation, the above algorithm creates a
large number of log records that must be stored and trans-
mitted to other sites. For each transaction, each site in-
serts a precommit or an abort record in the log which
results in n records per committed transaction. By ex-
ploiting the properties of the two-dimensional time-table,
the number of records per transaction can be reduced from
n to 1. A site initiating a transaction inserts a pre-commit
record in the log and communicates it to other sites via
epidemic messages. Other sites also insert an explicit pre-
commit or abort records to acknowledge the receipt of
the original pm-commit record. However, the time-table
encodes enough information to carry these acknowledge-
ments implicitly through the timing information rather
than explicitly through the log records.

When HasRecvd(T;, t,&) is true, site Si knows that
site Sk has received t. This means that Sk has pre-committed
or aborted t, and Si has received the time-table informa-
tion in a message which causally succeeded the pre-commit
or abort of t at Sk. In the above protocol, Si must have
therefore received the pre-commit or abort record inserted
at Sk by thii time. Hence, pre-commits can be deduced
from the timing information and the lack of an explicit
abort record. In thii formulation, only aborts need to be
explicitly acknowledged. When Vk HusRecvd(T;, t, Sk) is

true and Si has not received an abort record for t then t
can be committed at S; and the corresponding record oft
is garbage collected from the local log, Li.

In fact, we now demonstrate that explicit abort records
are also not required. An abort record for t is inserted in
the log at Sk if there exists a conflicting transaction t’

in Lk. When at the initiator oft, Si, HasRecd(Ti,t, k)

holds, t”s log record must also be in Li. Since t and t’
are concurrent and originated at different sites, t’ was in-
serted and processed at Si after t pre-committed. There-
fore when t’ is processed at Si, it will induce the abort
of t at Si. Thus, the abort record of t at Sk indicating
that t was aborted due to t’ at Sk is redundant since that
fact has already been learned by the initiator site oft. We
can extend this argument to any site in the network since
the epidemic protocol uniformly disperses the information
in the network. As a result only one record, the initial
pre-commit record, needs to be created for each trans-
action. The propagation of that record and the return
propagation of time-table information will detect conflict-
ing transactions in its path. We include a field, denoted
aborted in the pre-commit record as an optimization. If
a pm-commit record of a transaction t arrives at site Sj
and Sj aborts t on account of a conflicting transaction
t’, the aborted flag of t is set. Subsequently, when Sj
forwards the pre-commit record of t to Sk, Sk uses the
flag to avoid pm-committing t locally. However, t is still
processed against the log at Sk to ensure any conflicting
transactions with respect to t are aborted at Sk.

We define the following predicates using the informa-
tion that is included in the log and the time-table of every
site. The first predicate holds when t should be aborted:

3 E Li 1 TS(t) <> TS(t’)

A
RS(t) n WS(t’) # 8

Aborted(t, Si) G v

-i i-

H%(t) n WS(t’) # 0

v
WS(t) fl RS(t’) # 0

Similarly, we define another predicate which holds when a
transaction successfully commits at a site. This predicate
is defined as follows:

[

Vk Z[k, Site(t)] 2 TS(t)
Commit(t, Si) E A

lAborted(t, Si) I

The resulting epidemic algorithm to execute transactions
on a replicated database is shown in Figures 2 and 3. Fig-
ure 2 illustrate the handling of transaction execution lo-
cally at a site. Although the algorithm is illustrated by
using read and write sets, it can be easily modified so that
the read set and write sets are constructed incrementally
as the execution of a transaction proceeds. The interaction
of a transaction with the epidemic algorithm occurs when
the transaction pre-commits (i.e., makes its writes recov-
erable at SC) and inserts a pre-commit record in the log.

165

-.- - &.l_ --.--_-- ;.. ’ -

Both Ti and Li are updated in a critical section to ensure
atomicity of updates to these two data-structures by local
concurrent transactions. After pre-committing, the trans-
action can release all the read locks it obtained, however,

write locks are retained until the transaction terminates.
The data structure used to store pre-commit records ap-
pears in Figure 1.

Figure 3 illustrates the communication model used by
the epidemic algorithm to execute transactions at a partic-
ular site Si. The send function is used by site Si to dissem-
inate the pre-commit records of local transactions as well
as remote transactions about which Si has become aware
of through message propagation. Periodically, Si sends
part of its log to the other sites with its two-dimensional
time-table. The frequency of propagation as well as the
destination to which messages are sent are application de-
pendent and can be tuned appropriately. When Si sends a
message to Sk it does not send any records that Si knows
that Sk already knows about by employing the HasR.ecud
predicate.

The receive procedure is the most interesting. Trans-
actions are processed one at a time in the order of the re-
ceived log. The receiving site first checks if it already has
the pre-commit record for transaction t. This can be done
simply by checking whether HasRed(Ti, t, Si) is true. If
the site has not already received the record then it must
check against concurrent transactions in the log for con-
flicting operations. Si determines if there are concurrent
conflicting transactions in its log. All such transactions
as well as t are aborted in this case. The newly received
transaction has its record marked as aborted and its up-
dates are not applied, but its record is inserted into the
log and the time-table is updated to show that it has been
received. This is necessary to propagate the knowledge of
the conflict to other sites. If there are no prior conflicting
transactions, Si acquires write locks oft to update the ap-
propriate objects locally. If there are any on-going local
transactions that hold conflicting locks, such transactions
are aborted and t is granted the locks. This is referred
to in the figure as function ForceWriteLocks. However,
there could be causally preceding global transactions that
hold conflicting locks. ForceWriteLocks, in this case, en-

queues t’s lock request. Since on-going local transactions
will causally follow t, we only need to abort them if such
transactions are reading or writing objects that must have
been written by t. This is the reason why t only needs to
obtain its write locks at Si but does not need read locks.
Finally, Si updates the appropriate data items, increases
the value of T<[i,Site(t)] to reflect the fact that t is now
known to Si, appends t to log Li, pre-commits. After
all records are processed the procedure updates the other

rows of the time-table. Next, the pre-commit record8 in Li

are checked to determine if they can be committed locally
by using the Commit predicate. Finally, all log records
of committed or aborted transactions that are known to
all other sites are garbage-collected from Li. The proof of
correctness of the algorithm appears in [Ste97].

An interesting aspect of the above algorithm is that it
does not require distributed deadlock detection. To see
that this is true note that if transaction t is waiting for
a lock held by transaction t’ then t’ + t. It is impos-
sible for t’ and t to be concurrent because they would

both have been aborted when t checked the log before
attempting to acquire locks. t + t’ is impossible be-
cause this violates causal message delivery. Also, t’ can-
not be a local transaction because it would be aborted
by procedure ForceWriteLocks. Waits for dependencies
between pre-committed transactions must be a subgraph
of the happened-before relation which is acyclic, and pre-
committed transactions cannot wait on local transactions.
Therefore, pre-committed transactions cannot be involved
in deadlock. Any transaction holding locks on more than
one site must be pre-committed, and therefore any cy-
cles in the global waits-for graph must involve only local
transactions at a single site.

4 Increasing the Optimism of Epidemic Transactions

In this section, we use the basic epidemic algorithm for
processing transactions in databases and introduce two
modifications that will increase the asynchrony and con-
currency among epidemic transactions. We first observe
that the basic epidemic algorithm holds all write locks
globally until the pre-commit record of a transaction is
known to have been disseminated to all sites in the system.
This is done to ensure that other transactions do not read
uncommitted data. Since we are assuming a low-conflict
environment, this may not be a significant problem. How-
ever, given this assumption we can relax this requirement
by avoiding the necessity of holding locks till transaction
termination. This algorithm still ensures both serializabil-
ity and recoverability [Had88]. We then use this modified
algorithm to develop a more radical version of the epi-
demic algorithm which is more in line with contemporary
approaches that are being used commercially to deal with
replication (KBH+88, Ora]. In this approach transactions
are optimistically committed as soon as they terminate at
the initiating site. Epidemic propagation is primarily used
to disseminate the effects of these committed transactions
to other sites so that the replicated data becomes mutu-
ally consistent. In addition, this mechanism is used to

detect conflicting transactions and such transactions are

166

type Transaction =

record

RS : setof DataObjedType;
ws : setof DataObjectType;

values : setof DataType;

site : SiteId;

time : array [1.-n] of TimeType;

aborted : flag;

end

Figure I: A Transaction Record

Persistent data:

clocki E TimeType INITIALIZED TO 0;

Ti : array [l..n, l..n] of TimeType INITIALIZED TO 0;

Li : setof TTansadion INITIALIZED TO 0;

Transaction(R.S, WS, f(x)):

begin

GetReadLocks(RS);

values := fbd WI);
GetWriteLocks(WS);

WriteVuZues(WS, VUZUeS);

begin mutex

Ti[i, i] := + + clock;;

L; := Li U {(RS, WS,values,i,Z[i, *I));
Pre-Commit;

end mutex

ReleaseReadLocks(RS);

end;

Figure 2: The Pessimistic Epidemic Algorithm for Executing Transactions at I$

167

_ ----- --__A --II- -L-_- . . t L -

Send(m) to Nk :
begin

NP := {tit E Li A THasRecvd(T& t, Nk)};
send (NP,Tf) to Nk;

end;

Receive(m) from Nk :

begin

tet 772 = (Npk,Tk);

foreach {tit E NPk A lHasRecvd(Z& t, Ni)} do

begin mutex

if {Eli!’ E Lilt’.i!ime <> t.time A (t’.WS fl t.WS # ij5V
t’.WS f~ t.RS # q% V t’.RS f~ t.WS # 4))) then

Abort(t);

Abort(t’);

t.aborted = true;

t’.aborted = true;

else if (+.aborted) then

ForceWriteLocks(t.WS);

WriteVaZzLes(t.WS, t.vaZue.9);
endif

Ti[i, t.node] := t.time[t.node];

Li := Li U (t};
if (+.aborted)

Pre-Commit(t);

endif

end mutex

endfor

begin mutex

VK, J Ti[K, J] := maz(Ti[K, J],Tk[& 4);

foreach t E Li do

if Commit(t, N<) then Commit(t); then

endfor;

Li := {tit E Li A 3jlTHasRead(Z, t, Nj)};

end mutex

end;

Figure 3: Epidemic propagation of transaction records from other nodes to Ni

168

reported to the application level for manual or automatic
compensation which is application dependent.

4.1 Optimistic Releasing of Locks

The sole purpose of holding write locks after pm-commit
time is to confine the effects of a transaction abort to the
transaction itself. Write locks are held until commitment
to avoid cascading aborts and to ensure strict execution of
transactions. In order to ensure that aborting a transac-
tion does not influence previously committed transactions,
we must require that for every transaction t that commits,
its commit follows the commit of every other transaction
from which t read. Such executions are called recozTer-
able (RC). Recoverability, however, does not guarantee
freedom from cascading aborts. Cascading aborts can be
prevented by requiring that every transaction reads com-
mitted values. Executions that satisfy this requirement
are said to ovoid cascading aborts (ACA). Finally, an exe-
cution is called strict (ST) if all read and write operations
are executed on committed values [Had88, BHG87].

Thus if we modify the epidemic algorithm so that write
locks are reIeased at pm-commit, we can still guarantee
serializability as well as recoverability. However, releasing
locks early exposes uncommitted values to other trans-
actions Thus for recoverability, if a transaction t reads
from an uncommitted transaction t’, t can commit only
if t’ has committed. For a transaction t, any transaction
that it read from must have causally preceded it. There-
fore, any site which could pm-commit t must have received
and either pm-committed or aborted all causally preced-
ing transactions. For the initiating site of t this is true
by the definition of causality. For all other sites this is
true by causal message delivery. The epidemic algorithm
has to be modified such that if t aborts at a site then
it must abort all transactions that read from t and are in
the log. Furthermore, if t has read from a transaction that
has been aborted at S’i, then t must be aborted. Thii is
accomplished by including an additional field in the log
record, referred to as readfrom, for transaction t which
contains the identity of all transactions from which t read
from. For t to commit it must have pm-committed on all
sites. This implies that all transactions from which t read
from are also pm-committed on all sites and thus have also
committed. This is a sufficient condition for recoverability.

In traditional databases, ACA executions are desirable
because cascading aborts may result in lower through-
put in the system. However for applications that will use
epidemic style of transaction processing, conflicts among
transactions are expected to be rare. Thus, the concern
that exists in traditional database settings is not very rele-

vant here. By releasing locks early, the epidemic algorithm
introduces the vulnerability to cascading aborts but we ex-
pect them to be rare resulting in insignificant impact on
the performance. On the other hand, by releasing locks
early, unnecessary blocking due to locks held during dis-
semination of pm-commit of transactions is eliminated.
Although locks are released at pre-commit, transactions
commitment is still as before, i.e., a transaction can com-

mit only after it has been pm-committed successfully at
all sites in the network. Hence, transaction execution re-
mains serializable and correctness is not compromised.

4.2 Optimistic Commitment of Epidemic Transactions

Recently, several commercial systems have become inter-
ested in replication solutions primarily for supporting dis-
tributed, mobile, and disconnected users. In the context
of these applications, the synchronous approach for man-
aging replicated data (i.e., read-one write-all or quorum
protocol [Tho79, Gif79]) is considered too expensive and
not applicable in some cases (e.g., for disconnected opera-
tions). Instead, asynchronous replication techniques based
on optimistically executing and committing transactions
locally is advocated. In the presence of replicated data it
is not enough to commit transactions locally rather mech-
anisms are needed to asynchronously apply the effects of
committed transactions to other replica sites. In addition,
these mechanisms should also be able to detect inconsis-
tent or conflicting executions. For example, Lotus Notes
uses value-based propagation of files to replica sites and
uses version numbers to detect inconsistencies. Although
this approach is adequate for single file operations it fails
in the context of transactions that access multiple data
objects. Rabinovich et al. [RGK96] proposed adopting
transactions in the context of epidemic algorithms, which
are asynchronous solutions for managing replicated data.
As pointed out before, the protocol fails to capture inter-
transaction dependencies resulting from read-write con-
flicts.

In this section, we use the epidemic model for trensac-
tion processing to introduce the notion of optimistic com-
mitment of transactions. In the previous protocol transac-
tions completed execution locally and delayed the commit-
ment until they are aware that their pre-commit has been
processed at all sites in the network (and hence all their ef-
fects have been incorporated on all replicas). In contrast,
the optimistic epidemic algorithm commits a transaction
locally with the optimistic assumption that no conflict will
arise as the commit record of this transaction disseminates
through the network. If a conflict occurs, the epidemic al-
gorithm detects it and reports it to the application level

i

169

-_- __-A. L .I ------ JL. .’ -

for conflict resolution.
We now briefly describe the changes that are needed

to modify the epidemic algorithm to optimistically commit
transactions early. In the case of transaction execution of
Figure 2, the main change is that instead of inserting a
pm-commit record a transaction executes as if it is a cen-
tralized database and hence inserts a commit record and
release all its locks. The receive procedure for optimistic
operation appears in Figure 4. The significant difference is
that transactions are committed at the time they were pre-
committed in the conservative algorithm, and as a result
cannot be aborted. The abort flag is renamed inconf Ii&
and when conflict is detected the algorithm raises an ex-
ception by calling ResolveConf lict. The values written by
the transaction must be applied to the database whether
or not the transaction is in conflict because those values
are already committed at other sites.

Existing databases such as Oracle have developed ap-
plication dependent reconciliation rules for conflict resolu-
tion [Oral. Additionally, there are meta-rule paradigms to
specify which rules to apply and in what order if more than
one rule is applicable. For example, Jagadish, Mendelzon,
and Mumick [JMM96] describe a meta-rule language and
inference procedures to determine if a particular set of
meta-rules is unambiguous. Using these two techniques it
should be possible to create an automated conflict reso-
lution procedure. Specific compensation rules and meta-
rules would be application dependent and such issues are
orthogonal to the ideas in this paper.

5 Conclusion

Many techniques are currently available to support weak
consistency of replicated data. These systems process up-
dates as individual operations, or copy updated values of
individual data items. This makes them insufficient for
use in applications with transaction-based semantics. We
have developed a family of epidemic algorithms that prop-
agates updates as whole transactions. This allows sites to
maintain the atomicity of transactions ‘as well as detect
non-serializable executions. The algorithms can be used
in a conservative manner that prevents non-serializable
executions, or in an optimistic manner that merely de-
tects non-serializable executions for application specific
compensation.

References

[AE9Oa] D. Agrawal and A. El Abbadi. Integrat-
ing Security with Fault-tolerant Distributed

[AESOb]

[AM831

[AM911

[BHG87]

Databases. The Computer Journa!, 33(1):71-
78, February 1990.

D. Agrawal and A. El Abbadi. Storage Ef-
ficient Replicated Databases. IEEE Trans.

actions on Knowledge and Data Engineering,

2(3):342-352, September 1990.

J. E. Alchin and M. S. McKendry. Synchro-
nization and Recovery of Actions. In Proceed-

ings of the Second ACM Symposium on Prin-
ciples of Distributed Computing, pages 31-44,

August 1983.

D. Agrawal and A. Malpani. Efficient Dis-
semination of Information in Computer Nct-
works. The Computer Journd, 34(6):634-641,

December 1991.

P. A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in

Database Systems. Addison Wesley, Reading,
Massachusetts, 1987.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry. Epidemic Algorithms for
Replicated Database Maintenance. In Proceed-

ings of the Sixth ACM Symposium on Pn’n-

cipZes of Distributed Computing, pages 1-12,
August 1987.

[FM821 M. J. Fischer and A. Michael. Sacrificing Seri-
alizability to Attain High Availability of Data
in an Unreliable Network. In Proceedings of
the First ACM Symposium on Principles of
Database Systems, pages 70-75, May 1982,

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha.
The Dangers of Replication. In Proceedings of

the 1996 ACM SIGMOD International Con-

ference on Management of Data, pages 173-
182, June 1996.

[Gif79] D. K. GiiIord. Weighted Voting for Replicated
Data. In Proceedings of the Seventh ACM

Symposium on Operating Systems Principles,

pages 159-159, December 1979.

[Had881 V. Hadzilacos. A Theory of Reliability in

Database Systems. Journal of the ACM,

35(1):121-145, January 1988.

-891 A. A. Heddaya, M. Hsu, and W. E, Weihl,
Two Phase Gossip: Managing Distributed

Receive(m) from & :

begin

let m = (Sk,Tk) j

foreach (tli! E Sk A ~HUSIkZJd(Ti, t, Si)} do

begin mutex

if (3’ E Li(t’.time <> t&me A (t’.WS n t.WS # 4V

t’.WS n t.RS # C/J v t’.RS n t.WS # I#)} then

ResolueConf licit(t);
ResolveConf lict(t’);
t.inconf lict = true;

t’.inconflict = true;

endif

if (3’ E Lilt’ E t.readf r’om A t’.incunf lid = true) then

ResoZveConf Zict(t);

t.inconf lid = true;

endif

FoxeWriteLocks(t.WS);

WriteValues(t.WS, t.vaZues);

Commit(t);

Ti[i, t.site] := t.time[t.site];

Li := LiU {t);

end mutex

endfor

begin mutex

VK, J Z[K, 53 := mUZ(Ti[K, J],!i?k[K, 4);

Li := {tit E Li A 3j14TasRe~d(Tiy t, Sj)};

end mutex

end;

Figure 4: The receive procedure for optimistic operation for Si

171

Event Histories. Information Sciences: An

International Jounzal, 49(1,2,3):35-57, Octo-
ber/November/December 1989. Special issue
on Databases.

[JMM96] H. V. Jagadish, A. 0. Mendelzon, and I. S.
Mumick. Managing Conflicts between Rules.
In Proceeedings of the 1996 ACM Symposium

on Principles of Database Systems, pages 192-
201, 1996.

[KBH+SS] L. Kawell, S. Beckhardt, T. Halvorsen,

[Lam781

[LLS6]

[Mat891

IOral

@GK96]

[SA93]

[SchS2]

R. Ozie, and I. Greif. Replicated Docu-

ment Management in a Group Communica-
tion System. In Proceedings of the 2nd Con-

ference on Computer Supported Cooperative

work, September 1988.

L. Lamport. Time, Clocks, and the Ordering
of Events in a Distributed System. Communi-
cations of the ACM, 21(7):558-565, July 1978.

B. Liskov and R. Ladin. Highly Available Ser-
vices in Distributed Systems. In Proceedings

of the Fifth ACM Symposium on Principles of

Distributed Computing, pages 29-39, August
1986.

F. Mattern. Time and global states of dis-
tributed systems. In Proceedings of the 1988
International Workshop on Parallel and Dis-

tributed Algorithms, Bonus, fiance. North
Holland, 1989.

Oracle. Oracle7 Server Distributed Sys-

tems: Replicated Data. http: //www. oracle.
corn /products /oracle7 /server /whitepapers
/replication /html /index.

M. Rabinovich, N. H. Gehani, and
A, Kononov. Scalable update propagation in
epidemic replicated databases. In Proceedings

of the International Conference on Extending

Data Base Technology, pages 207-222, 1996.

0. T. Satyanarayanan and D. Agrawal. Ef-
ficient Execution of Read-Only Transactions

in Replicated Multiversion Databases. IEEE

5Yansactions on Knowledge and Data Engi-

neeting, 5(5):859-871, October 1993.

F. B. Schneider. Synchronization in Dis-
tributed Programs. ACM Transactions

on Programming Languages and Systems,

4(2):125-148, April 1982.

[SkeS2]

[Ste97]

[St0791

D. Skeen. Non-blocking commit protocols, In
Proceedings of the ACM SIGMOD Conference

on Management of Data, pages 133-147, Juno
1982.

Robert C. Steinke. Epidemic Transactions for
Replicated Databases. Master’s thesis, Univer-
sity of California at Santa Barbara, Depart-
ment of Computer Science, UCSB, Santa Bar-
bara, CA 93106, 1997. In preparation.

M. Stonebraker. Concurrency Control and
Consistency in Multiple Copies of Data in
Distributed INGRES. IEEE !i’?ansactions

on Software Engineering, 3(3):188-194, May
1979.

[TDP+94] M. Theimer, A. J. Demers, K. Petersen,
M. Spreitzer, and C. H. Hauser. Dealing with
tentative data values in disconnected work
groups. In Proceedings of the Workshop on

Mobile Compuiing Systems abd ApplicaGons,

pages 192-195, 1994.

[Tho79] R. H. Thomas. A Majority Consensus Ap-
proach to Concurrency Control for Multi-
ple Copy Databases. ACM !&ansaction on

Database Systems, 4(2):180-209, June 1979.

[TTP+95] D. B. Terry, M. M. Theimer, K. Petersen,
A. J. Demers, M. Spreitzer, and C. H. Hauser.
Managing update conflicts in Bayou, a weakly
connected replicated storage system. In PTO-
ceedings of the Fifteenth ACM Symposium on

Operating Systems Principles, pages 172-183,
1995.

mS4] G. T. Wuu and A. J. Bernstein. Efficient So-
lutions to the Replicated Log and Dictionary
Problems. In Proceedings of 2he Third ACM

Symposium on Principles of Distributed Com-

puting, pages 233-242, August 1984.

172

-- ___

