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ABSTRACT 

The objective of data replication is to increase data 
availability in the presence of processor and link 
failures and to decrease data retrieval costs by read- 
ing local or close copies of data. Moreover, concur- 
rent execution of transactions on replicated data 
bases must be equivalent to the serial execution of 
the same transactions on non-replicated databases. 

We present a pedagogical derivation of a replicated 
data management protocol which meets the above 
requirements. The protocol tolerates any number of 
component omission and performance failures (even 
when these lead to network partitioning), and han- 
dles any number of (possibly simultaneous) proc- 
essor and link recoveries. It implements the reading 
of a logical object efficiently--by reading the near- 
est, available copy. When reads outnumber writes 
and failures are rare, the protocol performs better 
than other known protocols. 

1. INTRODUCTION 

The objective of data replication in a distribut- 
ed database system is to increase data availability 
and decrease data access time. By data replication, 
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we mean maintaining several physical copies, usual- 
ly at distinct locations, of a single logical data base 
object. A replica control protocol is responsible for 
coordinating physical accesses to the copies of a 
logical data object so that they behave like a single 
copy insofar as users can tell [BGb]. Such a proto- 
col translates a logical write of a data object x into 
a set of physical writes on copies of x, and trans- 
lates a logical read of x into a set of reads on one or 
more physical copies of x. To really increase data 
availability, a replica control protocol must be 
tolerant of commonly occurring system component 
failures. To minimize the overhead caused by repli- 
cation, the protocol should minimize the number of 
physical accesses required for implementing one 
logical access. 

This paper presents a replica control protocol 
tolerant of a large class of failures, including: proc- 
essor and communication link crashes, partitioning 
of the communications network, lost messages, and 
slow responding processors and communication 
links. Any number of (possibly simultaneous) proc- 
essor and link recoveries is also handled. The major 
strength of the protocol is that it implements the 
reading of a logical object very efficiently: a read of 
a logical object, when permitted, is accomplished by 
accessing only the nearest, available physical copy 
of the object. Since reads outnumber writes in most 
applications, this strategy is expected to reduce the 
total cost of accessing replicated data objects. 

Our protocol belongs to a class of protocols 
that adapt to detected failures and recoveries. An 
integral part of the protocol is a subprotocol that 
maintains at each processor in the system an ap- 
proximate view of the current communication topol- 
ogy. This view can be used to optimize the transla- 
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tion of logical data accesses performed by transac- 
tions into physical data accesses. 

The protocol compares favorably with other 
proposed replica control protocols. It tolerates the 
same fault classes as majority voting [T] and quo- 
rum consensus [G], and does so with fewer accesses 
to copies, assuming that read requests outnumber 
write requests and that fault occurrences are rare 
events. It also tolerates the same fault classes as the 
“missing write” protocol [ES], but, unlike that pro- 
tocol, uses a “read-one” rule for reading logical data 
objects even in the presence of failures. Our proto- 
col is also simpler than the “missing write” protocol. 
In particular, it does not require the extra logging of 
transaction information that is required by that 
protocol when failures occur. 

2. FAILURE ASSUMPTIONS 

System components (processors, links) can fail 
in many ways, from occasional processor crashes 
and lost messages to Byzantine failures, where com- 
ponents may act in arbitrary, even malicious, ways. 
We wish to consider those component failures that 
have a reasonable chance of occurring in practical 
systems and that can be handled by algorithms of 
moderate complexity and cost. The most general 
failure classes satisfying this criteria are omission 
failures and performance failures [CASD]. 

An omission failure occurs when a component 
never responds to a service request. Typical exam- 
ples of such failures include processor crashes, occa- 
sional message losses due to transmission errors or 
overflowing buffers, ,and communication link 
crashes. A performance failure occurs when a system 
component fails to respond to a service request 
within the time limit specified for the delivery of 
that service. Occasional message delays caused by 
overloaded processors and nettork congestion are 
examples of performance faults. An important sub- 
class of omission and performance failures is the 
class of partition failures. A partition failure divides 
a system into two or more disjoint sets of processors, 
where no member of one set can communicate in a 
timely manner with a member of another set. Our 
objective is to design a replica control protocol that 
is tolerant of any number of omission and perform- 
ance failures. 

3. SYSTEM MODEL 

A distributed system consists of a finite set of 
processors, P={1,2 ,..., n1, connected by a communi- 
cation network. In the absence of failures the net- 
work provides the service of routing messages be- 
tween any two processors. Processors or links may 
fail, leading to an inability to communicate within 
reasonable delays. Failed processors and links can 
recover spontaneously or because of system mainte- 
nance. Thus, the system of processors that can 
communicate with each other is a dynamically evolv- 
ing system. 

In the following discussion, we will not be 
concerned with the details of the physical intercon- 
nection of the processors (e.g. a point-to-point ver- 
sus a bus-oriented interconnection) or with the de- 
tailed behavior of the message routing algorithm. 
Instead, we need only consider whether two proc- 
essors are capable of communicating through mes- 
sages. We model the current can-communicate rela- 
tion between processors by a communication graph. 
The nodes of the graph represent processors, and a 
undirected edge between two nodes a,beP indicates 
that if a and b send messages to each other, these are 
received within a specified time limit. We call a 
connected component of a communication graph a 
communication cluster. A communication clique is a 
communication cluster which is totally connected, 
that is, there is an edge in the communication graph 
between every pair of processors in the cluster. In 
the absence of failures, a communication graph is a 
single clique. The crash of a processor p results in a 
graph that contains a trivial cluster consisting of the 
single node p. A partition failure results in a graph 
containing two or more clusters. 

We do not assume that the can-communicate 
relation is transitive. Thus, it is possible that a and 
b can communicate, and b and c can communicate, 
but a and c cannot communicate. (Note that if the 
can-communicate relation is transitive, then all 
communications clusters are cliques.) In a system in 
which failure occurrences lead quickly to the estab- 
lishment of new communication routes, which avoid 
the failed system components, communication clus- 
ters can be expected to be cliques most of the time. 

For the purpose of adapting to changes in the 
communication topology. each processor maintains a 

216 



local “view” of the can-communicate relation. 
Each processor’s view is that processor’s current 
eslimate of the set of processors with which it be- 
lieves that communication is possible. The function 

view: P + g(P) 
(where 9(P) denotes the powerset of P) gives the 
current view of each processor p E P. 

A replicated database consists of a set of logi- 
cal data objects L. Each logical object 1eL is im- 
plemented by a nonempty set of physical data ob- 
jects (the copies of I) that are stored at different 
processors. The copy of 1 stored at processor p is 
denoted by 1,. The function 

copies: L + B(P) 
gives for each logical object 1 the set of processors 
that possess physical copies of 1. 

Transactions issue read and write operations on 
logical objects. A replicated data management protocol 
is responsible for implementing logical operations 
(as they occur in transactions) in terms of physical 
operations on copies. For a protocol to be correct, 
the database system must exhibit the same external- 
ly observable behavior as a system executing trans- 
actions serially in a nonreplicated database system 
[TGGL]. This property is known as one-copy 
serializability [BGb]. 

One popular approach for designing a replicat- 
ed data management protocol is to decompose the 
algorithm into two parts: a replica control protocol 
that translates each logical operation into one or 
more physical operations, and a concurrency control 
protocol that synchronizes the execution of physical 
operations [BGb]. The concurrency control proto- 
col ensures that an execution of the translated 
transactions (in which logical access operations are 
replaced by physical operations) is serializable, that 
is, equivalent to some serial execution. But the con- 
currency control protocol does not ensure one-copy 
serializability, since it knows nothing about logical 
objects, (It may, for example, permit two distinct 
transactions to update in parallel different copies of 
the same logical object.) Given this, the replica con- 
trol protocol ensures that transaction execution is 
one-copy serializable. 

The term event is used to denote a primitive 
atomic action in the system. Among other things, 
we consider the reading and writing of physical ob- 

jects and the sending and receiving of messages to 
be events. An execution of a set of transactions is 
finite set of events partially ordered by the 
happens-before relation studied in [L]. We assume 
that the set of events restricted to a given processor 
is totally ordered by the happens-before relation. 
That is to say, if e and f are events occurring at the 
same processor, then either e happens-before f or f 
happens-before e. Consequently, the operations 
executed on a given physical object are totally or- 
dered. An execution is serial if its set of events is 
totally ordered by the happens-before relation, and 
if, for every pair of transactions Tt and T,. either 
all physical data operations of Tt happen-before all 
physical operations of T,, or vice versa. 

4. REPLICA CONTROL 

Following the decomposition outlined above, 
we now derive a protocol for correctly managing 
replicated data in the presence of any number of 
omission and performance failures. In this section, 
the emphasis is on giving the properties a replica 
control protocol should possess and on showing that 
any implementation exhibiting these properties sat- 
isfies our correctness criteria. In the next section, 
we describe in some detail one protocol and show 
that it exhibits the desired properties. 

Ideally, we would like to design a replica con- 
trol protocol that can be combined with any correct 
concurrency control protocol. However, this seems 
to be difficult to achieve given our performance 
objectives. Consequently, we will restrict the class 
of allowable concurrency control protocols to those 
ensuring a stronger property known as conflict- 
preserving serializability [H]. Two physical opera- 
tions conflict if they operate on the same physical 
object and at least one of them is a write. An exec- 
ution E of a set of transactions T is conflict- 
preserving (CP) serializable if there exists an equiv- 
alent serial execution ES of T that preserves the 
order of execution of conflicting operations (i.e. if 
opl and op2 are conflicting physical operations and 
opl happens-before op2 in E, then opl happens- 
before op2 in ES) [H]. Henceforth in our discus- 
sion, we will assume the existence of a concurrency 
control protocol ensuring that 



(Al) The execution of any set of transactions 
(viewed as a set of physical operations) is 
conflict-preserving serializable. 

Practically speaking, restricting the class of concur- 
rency control protocols to those enforcing CP- 
serializability is inconsequential, since all published, 
general-purpose concurrency control protocols are 
members of this class. This includes two-phase 
locking [EGLT], optimistic concurrency control 
[KR], timestamp ordering [BSR], and all distributed 
protocols surveyed by Bernstein and Goodman 
[BGa]. 

Our performance objective is to provide cheap 
read access while offering a high level of data avail- 
ability. In order to understand better what is at- 
tainable, let us first consider a “clean” failure envi- 
ronment in which two simplifying assumptions hold. 
The first assumption is that the can-communicate 
relation is transitive: 

(A2) All communication clusters are cliques. 

The second assumption (unrealistically) posits that 
changes in the communication topology (resulting 
from failures and recoveries) are instantly detected 
by all affected processors. 

(A3) The view of each processor contains only itself 
and processors adjacent to it in the current 
communication graph. 

Thus, from A2 and A3 we can conclude that the 
views of processors in the same communication 
cluster are equal and the views of processors in dif- 
ferent clusters are disjoin?. 

Given the above assumptions, the following 
rules can be used to control access to logical objects. 
When processor p executes an operation (either a 
read or a write) on a logical object 1, it first checks 
whether a (possibly weighted) majority of the copies 
of 1 reside on processors in its local view. If not, it 
aborts the operation. Otherwise, for a read, it reads 
the nearest copy which resides on a processor in its 
view; and for a write, it writes all copies on proc- 
essors in its view. 

When integrated with an appropriate cluster 
initialization protocol, which ensures that all copies 
of a logical object accessible in a newly established 

cluster have the most up-to-date value assigned to 
that object, the above rules can form the basis of a 
correct replica control protocol. The “majority 
rule” ensures that only one cluster can access a logi- 
cal object at a time, and the “read-one/write-all 
rule” ensures that the copies of an object in a clus- 
ter act as a single copy. Together, these rules ensure 
that all executions are one-copy serializable. 

The above rules are simple, intuitive, and en- 
sure a high level of data availability, provided the 
communication information maintained by the proc- 
essors is uccurute. Unfortunately, the correctness of 
the rules depends heavily on assumptions A2 and 
A3. If either is relaxed, non-one-copy-serializable 
executions can result. 

Example 1. Figure 1 gives a possible communica- 
tion graph for three processors when assumption 
(A2) is relaxed. The graph indicates that processors 
A and B are no longer able to communicate due to, 
for example, failures that have occurred. during a 
run of the algorithm that establishes the routing 
between A and B. Both processors however are able 
to communicate with C, and C with them. 
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We thus have: view(A)=(A,C3, view(B)=(B,C) and 
view(C)={A,B,C). Let each processor contain a 
copy of a logical data object x initialized to 0. As- 
suming that all copies are weighted equally, each 
processor will consider x to be accessible, since each 
has a majority of the copies in its view. Now, let A 
and then B execute a transaction that increments x 
by 1. Based on its own view, processor A reads its 
local copy of x and updates both C’s copy and its 
own. Similarly, B reads its local copy of x (which 
still contains 0) and updates both C’s copy and its 
own. Observe that after two successive increments, 
all copies of x contain 1. Clearly, the execution of 
these transactions is not one-copy serializable. 0 

Example 2. Consider an initially partitioned sys- 
tem that undergoes re-partitioning as shown in Fig- 
ure 2. 
Two processors (B and D) detect the occurrence of 
the new partition immediately and update their 



Figure 2. 

views. The other two processors (A and C) do not 

detect it until later. Table 1 shows the intermediate 

system state after the view updates in B and D and 

before the updates in A and C. 

old view 
--_-----_- 

_ A A,B 
B A,B 
C C,D 
D C,D 

new view 
________ 

A,B 
B,C 
CD 
A,D 

TABLE 1 

Assume that, while the views are inconsistent, each 

processor p executes a transaction Tu. Table 2 gives 

the transaction executed at each processor, and also 

the data objects stored there. The superscripts on 

the objects denote “weights”. 

copies transactions 
______________ _-_____-_____---___-------- 

A a2,b 
B b2,c 
C c2,d 
D d2,a 

TA: read(b),write(a) 
TB: read(c),write(b) 
Tc: read(d),write(c) 
TD: read(a),write(d) 

TABLE 2 

Consider the execution of TA at processor A. Since 

Bcview(A), A can read its local copy of b. Since 

A’s copy of a has weight 2, A can update it, and, 

furthermore, A will not attempt to update D’s copy 

since Dtview(A). Hence, in the execution of the 

transaction, A accesses its local copies only. The 

execution of transactions T,, TC, and T, proceed 

similarly, with each process modifying only its local 

copies. The result is serializable but not one-copy 

serializable. 0 

As example 1 illustrates, the correctness of the 

simple replica control protocol critically depends on 

the property that no two processors with different 

views be able to access a common set of copies. Ex- 

ample 2 illustrates that even in a well-behaved com- 

munication network, where transitivity of the can- 

communicate relation is assured, processors can not 

independently and asynchronously update their 

views. 

The principal idea in our replica control proto- 

col is to use the majority and the read/write rules 

mentioned above, but to circumvent the anomalies 

illustrated in examples 1 and 2 by placing appropri- 

ate restrictions on when and how processors may 

update their views. Toward this goal, we introduce 

the notion of a virtual partition. Roughly speaking, 

a virfual partition is a set of communicating proc- 

essors that have agreed on a common view and on a 

common way to test for membership in the parti- 

tion. For the purposes of transaction processing, 

only processors that are assigned to the same virtual 

partition may communicate. Hence, a virtual parti- 

tion can be considered a type of “abstract” commu- 

nication cluster where processors join and depart in 

a disciplined manner and communication is limited 

by mutual consent. In contrast, in a real communi- 

cation cluster processors join and depart abruptly 

(and often inopportunely) because of failures and 

recoveries. It is desirable, of course, for virtual 

partitions to approximate the real communication 

capabilities of a system. 

The common view of the members in a virtual 

partition represents a shared estimation of the set of 

processors with which communication is believed 

possible. When a processor detects an inconsistency 

between its view and the can-communicate relation 

(by not receiving an expected message or by receiv- 

ing a message from a processor not in its view), it 

can unilaterally depart from its current virtual par- 

tition. (Since the departing processor may no longer 

be able to communicate with the other members of 

its virtual partition, it should be able to depart au- 

tonomously, without communicating with any other 

processor.) After departing, the processor can in- 

voke a protocol to establish a new virtual partition. 

This protocol, which is part of the replica control 

protocol, creates a new virtual partition, assigns a 

set of processors to the partition, and updates those 

processors’ views. An objective of the protocol is 

for the new virtual partition to correspond to a 

maximal set of communicating processors. Howev- 

er, since failures and recoveries can occur during 



the execution of the view update protocol, it is pos- 
sible that a virtual partition resulting from a proto- 
col execution only partially achieves this objective. 

We identify virtual partitions by unique identi- 
fiers, and we denote the set of virtual partition iden- 
tifiers by V. At any time, a processor is assigned to 
at most one virtual partition. The instantaneous 
assignment of processors to virtual partitions is giv- 
en by the partial function 

vp: P + v, 
where vp is not defined for a processor p if p is not 
assigned to any virtual partition. We use the total 
function 

defview: P + (true,false) 
to characterize the domain of VP. That is, 
defview(p) is true if p is currently assigned to some 
virtual partition, and is false otherwise. 

In order to ensure that the simple “read- 
one/write-all” rules achieve one-copy serializability, 
we require the following properties from any proto- 
col managing processor’s views and their assignment 
to virtual partitions. Letting p and q denote arbi- 
trary processors, the first two properties are 

(Sl) View consistency: If defview(p)&defview(q) 
and vp(p)=vp(q), then view(p)=view(q). 

(S2) Reflexivity: If defview(p) then p E view(p) 

Property Sl states the requirement that processors 
assigned to the same virtual partition have the same 
view. With a slight abuse of notation, we let 
view(v) denote the view common to all members of 
virtual partition v. Property S2 enforces the re- 
quirement that every processor should be able to 
communicate with itself. From Sl and S2, one can 
infer that the view of a processor (when defined) is 
a superset of the processors in its virtual partition, 
and thereby, a superset of the processors with which 
it may communicate in order to process transac- 
tions. 

The final property restricts the way a processor 
may join a new virtual partition. Let p denote any 
processor and let Y and w denote arbitrary virtual 
partitions. Let join(p,v) denote the event where p 
changes its local state to indicate that it is currently 
assigned to v. Similarly, let depurt(p,v) denote the 
event of p changing its local state to indicate that it 

is no longer assigned to v. Join and departure 
events, in addition to physical read and write 
events, are recorded in the execution of transac- 
tions. The function 

members: V + B(P) 
yields for each virtual partition v the set of proc- 
essors that were at some point in their past (but not 
necessarily contemporaneously) assigned to v. The 
third property is 

(S3) Serializability of virtual partitions: For any 
execution E produced by the replicated data 
management protocol, the set of virtual parti- 
tion identifiers occurring in E can be totally 
ordered by a relation << which satisfies the 
condition: 

if v<< w and p~(members(v) TV view(w)), then 
depart(p,v) happens-before join(q, w) for any 
q E members(w). 

Loosely speaking, this property says that before any 
processor may join a new partition w, every proc- 
essor p in view(w) must first depart from its current 
virtual partition. Note that the property does not 
require p to eventually join w. S3 prevents anoma- 
lies of the type illustrated in Example 2, where a 
processor (B) detects changes in the can- 
communicate relation, adopts a new view, and be- 
gins processing transactions before another proc- 
essor (C) in the same communication cluster detects 
the changes. Any ordering over the virtual parti- 
tions occurring in a given execution that satisfies 
condition S3 is called a legal creation order for the 
virtual partitions. In general, there will be many 
legal creation orders for a given execution. 

Comparing requirements Sl-S3 to requirements 
A2-A3, we find that the former ones are considera- 
bly weaker than the latter. A3 requires that 
processors’ views reflect the current can- 
communicate relation. Sl-S3, on the other hand, do 
not imply any relationship between the processors’ 
views and the can-communicate relation. A3 im- 
plies that a processor will always know the members 
of its communication cluster. In general, a proc- 
essor will never know the set of processors in its 
virtual partition (but it will know a superset--the 
processors in its view). Under Sl-S3, the views of 
processors in different virtual partitions may over- 
lap; whereas, under A2, the views of processors in 
different clusters must be disjoint. Finally and most 
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significantly, requirements Sl-S3 are attainable un- 
der realistic failure assumptions (see $5). Require- 
ments A2-A3 are not. 

The intuitive replica control rules mentioned 
previously for the “clean” failure environment can 
now be reformulated in terms of the weaker notion 
of a virfual partition. The first four rules are 

(Rl). Majority rule. A logical object 1 is accessible 
from a processor p assigned to a virtual parti- 
tion only if a (possibly weighted) majority of 
copies of 1 reside on processors in view(p). 

(R2) Read rule. Processor p implements the logical 
read of 1 by checking if 1 is accessible from it 
and, if so, sending a physical read request to 
any processor qeview(p) ncopy(1). (If q does 
not respond, then the physical read can be re- 
tried at another processor or the logical read 
can be aborted.) 

(R3) Write rule. Processor p implements the logi- 
cal write of 1 by checking if 1 is accessible from 
it and, if so, sending physical write requests to 
all processors q cview(p) ncopies(1) which are 
accessible and have copies of 1. (If any physi- 
cal write request can not be honored, the logi- 
cal write is aborted). 

(R4) All physical operations carried out on account 
of a transaction t must be executed by proc- 
essors of the same virtual partition v. In this 
case we say that t executes in v. 

Rules Rl-R3 are straightforward interpretations of 
the simple replica control rules. Rule R4 expresses 
the communication restriction that is placed on vir- 
tual partitions. In particular, a processor p accepts 
a physical access request from processor q only if p 
and q are assigned to the same virtual partition (that 
is, if defview(p) and VP(P) E vp(q)). Observe that 
R4 requires a transaction to be aborted if any of the 
processors executing it joins a new partition. (In 
$6, we will discuss an optimization that avoids this 
most of the time.) 

The final rule concerns propagating the up-to- 
date values of logical objects to copies on processors 
that were previously in different partitions. 

(R5) Partition initialization rule. Let p be a proc- 
essor that has joined a new virtual partition v, 
and let I,, be a copy of a logical object 1 that is 
accessible in v. The first operation on II., must 
be either a write of lp performed on behalf of a 
transaction executing in v, or a recovet(lp) oper- 
ation that writes into Ip the most recent value of 
1 written by a transaction executing in some 
virtual partition u such that u<cv for any le- 
gal creation order < <. 

Stated less formally, R5 says that before copy 1, can 
be read in partition v, it must contain the most re- 
cent value assigned to 1 in the current partition or in 
a previous partition. Note that the desired value of 
1 can be found at one of the processors in view(v) 
because a majority of l’s copies must reside at proc- 
essors in view(v) for 1 to be accessible in v (by Rl), 
and a majority of l’s copies is written by each logi- 
cal write of 1 (by R3). 

The above properties can be used to design a 
correct replica control protocol. 

Theorem 1. &et R be a replica control proto- 
col obeying properties Sl-S3 and Rl-RS and let 
C be a concurrency control protocols that en- 
sures CP-serializability of physical operations. 
Any execution of transactions produced by R 
and C is one-copy serializability. 

The proof of this theorem, which uses notions intro- 
duced in [BGb], is given in [ESC]. The proof actu- 
ally proves a stronger result. 

Theorem 1’. Let R and C be protocols as 
above. For every execution E produced by R 
and C, and every legal creation order << over 
the virtual partitions in E, there exists a serial 
execution Eg, equivalent to E, with the proper- 
ty: if v<<w, then alI kanractions executing in v 
occur in Es before any transaction executing in w. 

Hence, with regard to serializability, we can consid- 
er transactions to execute in an order consistent 
with a creation order of virtual partitions. That is 
to say, for an execution with a creation order <<, if 
transaction tl executes in v and transaction t2 exec- 
utes in w and v<<w, then we can consider tl to 
“execute before” t 2. 
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Although a replica control protocol satisfying 
Sl-S3 and Rl-R5 produces only one-copy serializa- 
ble executions, the executions may exhibit a curious 
and, for some applications, undesirable property. 
Specifically, transactions may not read the most 
up-to-date (in real time) copies of logical objects. 
This can occur because views of different virtual 
partitions that exist simultaneously can overlap. 
Consequently, the same logical object can be simul- 
taneously accessible in these partitions. Note that 
only one of these partitions will be able to write the 
object, since a logical write requires a majority of 
the copies to reside on processors actually in the 
same partition; however, the other partitions will be 
able to read the object and, therefore, will be able to 
read out of date values. This phenomena is not de- 
tectable by applications executing transactions 
since, by design, applications can not send messages 
across partition boundaries. However, this could be 
detected by a user that moves from a processor in 
one partition to a processor in another. 

The capability of a processor to read stale data 
indicates that the processor’s view no longer accu- 
rately reflects the can-communicate relation. This 
situation arises most often when a processor is slow 
to detect the occurrence of a failure. For most sys- 
tems, such situations can be expected to be short- 
lived. If desired, a distributed systems can periodi- 
cally send probe messages in order to bound the 
staleness of the data (the next section discusses 
probing in more detail). Nonetheless, there appears 
to be no practical way to completely eliminate the 
reading of stale data when using the majority and 
read/write rules. 

5. THE REPLICA CONTROL PROTOCOL 

We now describe a replica control protocol 
satisfying the properties presented in the previous 
section. In the design of the protocol we have as- 
sumed that the can-communicate relation will be 
transitive most of the time, although the correctness 
of the protocol does not depend on this. We have 
also chosen to emphasize clarity over performance. 
Consequently, for any real implementation, a num- 
ber of significant optimizations are possible. We 
discuss some of these in the next section. 

The replica control prOtOCO1 consists Of two 
simpler protocols: 

1) the virtual partition management protocol, which 
assigns processors to virtual partitions and ensures 
that all copies of a logical object which are acces- 
sible in a newly formed partition have the most 
up-to-date values, 

2) the logical read/write protocol that controls logi- 
cal object accessibility and translates the logical 
operations issued by transactions into physical 
read/write operations. 

Requirements Sl-S3, which constrain the be- 
havior of a virtual partition management protocol, 
and rules Rl-RS are sufficient for ensuring one- 
copy serializability. Nevertheless Sl-S3 is not by 
itself a satisfactory specification for a useful virtual 
partition management protocol, since it does not 
require that the assignment of processors to virtual 
partitions mirror the current communication capa- 
bilities of a system. In fact, a trivial protocol that 
never assigns any processor to a virtual partition, or 
that constantly assigns each processor to its own 
virtual partition satisfies the specification Sl-S3. 
Clearly, the availability of logical objects is influ- 
enced by how closely the views of the processors of 
a virtual partition mirror the current can- 
communicate relation. If a processor excludes from 
its view a processor with which it can communicate, 
then some logical objects will unnecessarily be 
deemed inaccessible by rule Rl. If, on the hand, a 
processor p includes in its view a processor q with 
which it can not communicate, then p will not be be 
able to write logical objects with copies on q 
(because of the write-all rule). 

To ensure high logical data availability, we 
introduce a supplementary heness constraint on the 
discrepancy between processor views and reality. 
Let us say that a failure or recovery affects a proc- 
essor if it causes in the communication graph the 
deletion or addition of an edge that is incident to 
the processor. A failure or recovery affects a set of 
processors if it affects any processor in the set. The 
liveness constraint is 

(Ll) Let C be a nontrivial clique in the communi- 
cation graph existing at time t. There exists a 
constant A such that, if no failures or recover- 
ies affecting C occur during the time interval 
[t,t+A], then at t+A the view of each processor 
in C contains all processors in C. 
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The replica control protocol is implemented at 
each processor by several concurrent tasks that 
communicate through shared variables. Figure 3 
gives the main task, which declares the shared varia- 
bles and schedules the tasks of the virtual partition 
management protocol and the read/write protocol, 
in that order. 

1 main task Replica-Control-Protocol; 

2 type vp-id = record n: integer; p: P; end; 

3 shared vur cur-id, max-id: vp-id init (0,myid); 
4 assigned: Boolean inir true; 
5 lview: ser of P inir {myid); 
6 locked: set of L inir (3; 
1 local: ser of L; 

8 schedule(Monitor-VP-Creations); 
9 schedule(Send-Probes,Monitoi-Probes); 
10 schedule(Physical-Access); 
11 scheduZe(Logical-Read,Logical-Write); 

Figure 3. 

A virtual partition identifier (a “vp-id”; see 
line 2) consists of a sequence number and a proc- 
essor identifier. Virtual partition identifiers are 
totally ordered by the relation “<“: 

(idt.p<idz.p). 

The shared variable “assigned” is true on a 
processor p if p is currently assigned to a virtual 
partition, and is false otherwise. (In what follows, 
“assignedI,” denotes the “assigned” variable on proc- 
essor p.) The variable “cur-idP” stores the identifier 
of the virtual partition to which p was last assigned. 
Thus, when “assignedP” is true, “cur-idI,” contains 
the identifier of the virtual partition to which p is 
assigned. The “max-idI,” variable records the largest 
partition identifier seen so far by processor p, and 
“lviewp” records the local view of p. The variable 
“locked” contains the set of logical objects whose 
physical copies must be assigned the same (most 
up-to-date) values after a new virtual partition is 
created. If a logical object 1cL is in lockedn, 1 can- 
not be accessed on processor p. The variable 
“loca$” contains the set of objects that have copies 
at p. The relation between the concrete variables 
“assigned,” “lview,” and “cur-id” and the abstract 

The process of virtual partition creation re- 
quires three phases. In the first phase, a processor 
that detects the change in communication capabili- 
ties, say s, computes an identifier v for a new virtu- 
al partition that it will attempt to establish. The 
identifier v is greater than all sequence numbers 
seen so far by s, and is guaranteed to be globally 
unique. Processor s then sends an invitation to join 
the new virtual partition identified v to all proc- 
essors in P. A processor q accepts the invitation 
only if it has not already received another invitation 
to join a higher numbered partition. After accepting 
or initiating an invitation and before committing 
itself to a virtual partition, a processor is not as- 
signed to any virtual partition. 
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In the second phase, the initiator s defines the 
view of the new partition.v as being the set A of all 
accepting processors from which it has heard, and it 
sends the new view to all processors in A. Upon 
receiving the new view A, an accepting processor q 
assigns itself to the virtual partition v (and updates 
its view to A) only if it has not, in the meantime, 
accepted an invitation to join a higher numbered 
virtual partition. Hence, at the end of the second 
phase, only a subset of the processors in A might 
actually be assigned to the virtual partition v they 
have accepted to join at an earlier moment. 

functions “defview”, “view” and “VP” introduced in 
94 is: 

defview(p) =assignedu 
assignedP + (VP(P) =cur-id& & (view(p) =lview$. 

The meaning of the “schedule(T1,...,Tk)” primitive 
is “for every T E IT l,...,Tk], if task T is currently 
inactive start an execution of T, otherwise do noth- 
ing. ” 

The virtual partition management protocol, the 
first of the two major components of the replica 
control protocol, enforces the liveness constraint 
(Ll), the restrictions Sl through S3, and the parti- 
tion initialization rule (RS). The timely detection 
of changes in communication capability, needed to 
elrforce the liveness constraint, is accomplished 
through periodic probe messages. When a change in 
communication capability is detected, the creation 
of a new virtual partition is attempted. 



The third phase starts after a processor is as- 
signed to a new virtual partition. The purpose of 
this phase is to ensure that all physical copies of a 
logical object accessible in a newly formed virtual 
partition have the most up-to-date value before they 
are made accessible to transactions. 

Observe that the above process handles the 
case where several processors in the same cluster 
simultaneously attempt to establish new partitions. 
In the absence of additional failures, only the proc- 
essor generating the highest numbered partition 
identifier will succeed. 

Let us now examine in some detail the tasks 
implementing virtual partition creation. The proc- 
ess is initiated by calling a procedure “Create-new- 
VP” (Figure 4). This procedure first checks to see 
if the processor knows of an ongoing virtual parti- 
tion creation (line 2). If so (i.e., “assigned” equals 
false), then partition creation is not attempted. Oth- 
erwise, the procedure departs from the current vir- 
tual partition (line 3), computes a new virtual parti- 
tion identifier, composed from the successor of the 
largest sequence number seen so far and the local 
processor name obtained by invoking the predefined 
function “myid” (line 4), and then schedules the 
task “Create-VP” (line 5). which actually controls 
the execution of the first two phases of the virtual 
partition management protocol. The symbols “c” 
and ‘I>” are used to delimit critical sections, which 
provide mutual exclusion on accesses to shared vari- 
ables. 

1 procedure Create-new-VP; 

2 <if assigned 
3 then assignedtfalse; 
4 max-id+(max-id.n+l,myid); 
5 schedule( Create-VP(max-id)) 
6 fi;> 

Figure 4. 

The “Create-VP” task (Figure 5) sends an invi- 
tation to join the partition identified “new-id” to all 
processors (line 3) and records in “A” the identity 
of all processors that accept to join the new virtual 
partition (lines 4-13). The 6 parameter in line 5 is 
an upper bound on the message transmission delay 
between any two processors. After waiting long 
enough to receive all responses, and after verifying 

that no invitation to join a higher numbered virtual 
partition has been received in the meantime (line 
14), a commit message is sent to all accepting proc- 
essors (lines 15-17). the variable “locked” is initial- 
ized to the set of all logical objects accessible in 
view “A” and which have local copies, the task 
“Update-Copies-in-View” is scheduled, and “Create- 
VP” ends. The Boolean function (line 18) 

accessible: L x S(P) + {true,false), 
is true for some logical object IEL and subset ASP 
if a (weighted) majority of copies of 1 reside on 
processors in A. 

1 rusk Create-VP(in new-id: vp-id); 

2 wzr A: set of P; S: Timer; r: P; v: vp-id; 

3 for each pep-{myid) do 
4 send(p,“newvp”,new-id); 
5 S.set(26); A+Imyid); 
6 cycle 
7 select from 
8 receive(“OK”,v,r) -c if v=new-id 
9 then A+A u{r3 fi; 
10 q 
11 Stimeout + exit loop; 
12 end select 
13 endcycle; 
14 <if new-id=max-id 
15 then cur-id+max-id; lview+A; assignedctrue; 
16 for each p c P-Imyid) do 
17 send(p,“commit”,cur-id,A); 
18 locked+{1 11 cL&accessible(l,lview)&l E local]; 
19 schedule(Update-Copies-in-View); 
20 fi;> 

Figure 5. 

The task responsible for generating responses 
to invitations to join new virtual partitions is 
“Monitor-VP-Creations” (Figure 6). This task ac- 
cepts invitations to join new virtual partitions 
which are higher numbered than the greatest virtual 
partition identifier ever seen (lines 5-10). In order 
to avoid an indefinite waiting for a commit message, 
a timer “T” is set for a duration of 36, sufficient for 
the initiator to compute a view (26) and send it to 
all accepting processors (6). After accepting an 
invitation to join a new virtual partition “v”, if no 
other higher numbered invitations are received and a 
timely commit message for the virtual partition “v” 
is received, a processor commits itself to “v” (lines 
12-20). If no timely commit message is received 
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1 task Monitor-VP-Creations; 

2 var A: set of P; T: Timer; v: vp-id; 

3 cycle 
4 select from 
5 receive(“newvp”.v) -, 
6 <if max-id<v 
7 then max-id+v; assignedcfalse; 
8 send(v.p,ack,v,myid); 
9 T.set(36); 
10 fi> 
11 Cl 
12 receive(“commit”,v,A) -+ 
13 <if v=max-id 
14 then cur-id+max-id; lview+A; 
15 assignedctrue; 
16 locked+{1 11 EL& elocal& 
17 accessible(l,lview)]; 
18 schedule(Update-Copies-in-View); 
19 T.reset; 
20 fi> 
21 0 
22 T.timeout * 
23 <max-id+(max-id.n+l,myid); 
24 schedule( Create-VP(max-id)) > 
25 end select 
26 endcycle; 

Figure 6. 

(either because the message notifying the acceptance 
to join was lost, or the initiator has failed, or the 
commit message was lost) an attempt to form a new 
virtual partition is started (lines 22-24). 

The periodic probing process is implemented in 
two tasks. During each probe period (of length m), 
the “Send-probes” task (Figure 7) of a processor p 
sends message probes to all other processors. Proc- 
essor p then waits to receive acknowledgements 
from all processors in its partition (lines 13-20). 
After the maximum roundtrip message time (26) has 
elapsed, p compares the set of acknowledging proc- 
essors to its current view (line 21). Any discrepan- 
cy detection triggers the creation of a new virtual 
partition. 

The “Monitor-Probes” task (see Figure 8) for 
processor p, processes the probe messages received 
from other processors. A probe message with a par- 
tition identifier equal to p’s current identifier is 
acknowledged; one with an identifier less than p’s is 

ignored, because the message may be an old message 
that was delayed in transmission; and one with an 
identifier greater than p’s identifier triggers the cre- 
ation of a new virtual partition, because the receipt 
of such a message unambiguously demonstrates the 
capability of communication between processors in 
different virtual partitions. 

1 task Send-Probes; 

2 cunst P: time; %period of probing% 

3 var T: timer; R: set of P; 
5 n: integer init 0; %probe sequence no. % 
6 m: integer; q: P; 

7 cycle 
8 <if assigned 
9 then for each p eP-{myid] 
10 do send(“probe”,myid,cur-id,n) >; 
11 T. set(26) ; 
12 R+ {myid]; 
13 cycle 
14 select from 
15 receive(“ack”,q,m) -* 
16 if m=n then R + Ru{q) 
17 a 
18 T.timeout + e&t loop; 
19 endselect 
20 endcycle 
21 <if (assigned) & (Rflview) 
22 then Create-New-VP fi>; 
23 n + n+l; 
24 wait( v-26) ; 
25 else wait(u) > 
26 fi; 
27 endcycle; 

Figure 7. 

1 task Monitor-Probes; 

2 cycle receive(“probe”,q,v,m); 
3 <if assigned 
4 then if v=cur-id -, send(q,“ack”,myid,m); 
5 El 
6 v<cur-id -t skip; 
7 Cl 
8 cur-id<v -t Create-New-VP; 
9 fi 
10 fi>; 
11 endcycle; 

Figure 8. 
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The implementation given for the tasks Send- 
Probes, Monitor-Probes, Create-VP, and Monitor- 
VP-Creations satisfies the requirements Sl through 
S3. Satisfaction of requirement Sl is ensured from 
the use of a single processor, the initiator, to deter- 
mine the view of a virtual partition. Satisfaction of 
requirement S2 is easy to verify. Satisfaction of 
requirement S3 follows from the fact that the rela- 
tion < defined over virtual partition identifiers is 
indeed a legal creation order. 

The implementation also satisfies the liveness 
condition (Ll) when the parameter A is set to rr+88. 
This value is computed as follows. After a clique C 
forms, it may take 36 time units for all ongoing in- 
stances of “Create-VP” to finish. It may take an- 
other v time units for the processors in C to send 
probes, and an additional 26 to receive the acknowl- 
edgements. The results of probing may cause addi- 
tional invocations of “Create-VP”, and these will 
take 36 to complete. Now if no failures or recover- 
ies affecting C occur during any of this, then within 
4~+8& time units all processors in C have committed 
to the invocation of “Create-VP” generating the 
highest virtual partition identifier. 

After a processor is assigned to a new virtual 
partition, it has to make sure that all physical copies 
accessible in the new virtual partition possess the 
most recent value assigned to the logical object they 
represent (rule R5). To determine the most recent 
value of a logical object, we will make use of the 
fact that the relation < is a legal creation order. 
From this and Theorem l’, it follows that the most 
recent write operation on a logical object 1 is execu- 
ted in the highest numbered virtual partition among 
those partitions containing logical writes to 1. 

For the purpose of identifying the value prod- 
uced by the most recent write of 1, each processor 
stores with its local copy of 1 the virtual partition 
identifier associated with the latest logical write of 
1. On each processor p, the partial functions 
(suitably initialized) 

value: L 3 Value, 
date: L -+ V, 

The task “Update-Copies-in-View” for proc- 
essor p (see Figure 9) brings all accessible copies 
up-to-date (see requirement R5). Recall that the 
local copies of accessible logical objects are locked 
by the virtual partition creation process prior to 
invoking this task. For each locked logical object 1 
that has a copy on p (line 7) the most recent value 
“val” assigned to some physical copy of 1 is re- 
trieved (lines 8-14). This value is assigned to the 
local copy of 1 and the copy is unlocked, assuming 
that p has not joined a new partition since this task 
was initiated (lines 15-17). The assignment of the 
most update value to p’s copies of logical objects is 
done in parallel (this is the meaning intended for the 
construct “for each p EP cobegin . . . coend”). The 
exception handling notation of [C] is used in line 12 
to specify the action to be executed when expected 
messages fail to be received. 

yield the value and the most recent assignment date 
for the logical objects stored on p. Thus, value(l) 
denotes the value of the local copy of the logical . 
object 1 and date(l) denotes the virtual partition 

identifier (or logical date) current when the local 
copy of 1 was last updated. 

1 task Update-Copies-in-View; 

2 vat old-id: vp-id; 

3 old-id+cur-id; 
4 for each 1 clocked 
5 cobegin 
6 var R: set of P; val: Value; d: vp-id init (0,O); 
7 <R+copies(l) nlview>; 
8 for each p E R 
9 cobegin 
10 var d,: vp-id; vp: Value; 
11 send(p,“read”,I,cur-id); 
12 receive(p,l,vp,dp) 

[no-response: Create-new-VP; exit task]; 
13 if d<dp then d+dp; val+vp fi; 
14 coend; 
15 <if assigned & old-id=cur-id 
16 then value(l)+val; date(l)+d fi; 
17 locked+locked-{I);> 
18 coend; 

Figure 9. 

The tasks responsible for enforcing rules Rl- 
R3 are given in Figures 10-12. The tasks Logical- 
Read and Logical-Write signal an “abort” exception 
when a logical object 1, which has to be read or 
written by a transaction, is inaccessible on the proc- 
essor on which the transaction runs. In such a case 
the transaction has to be aborted. 
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1 task Logical-Read(in 1: L, out val: Value)[abort]; 

2 <if assigned & accessible(l,lview) 
3 then p+nearest(copies(l) nlview); 
4 send(p,“read”,l.cur-id); 
5 receive(p,l,val,d) 

[no-response: Create-new-VP; signal abort]; 
6 else signal abort;> 

Figure 10. 

1 task Logical-Writetin 1: L,val: Value)[abort]; 

2varA:setofP; 

3 <if assigned & accessible(l,lview) 
4 then P+copies(l) nlview; 
5 for each pep 
6 cobegin 
7 send(p,“write”,l,val,cur-id); 
8 receive(p,l,ack) 

[no-response: Create-new-VP; signal abort]; 
9 coend 
10 else signal abort;> 

Figure 11. 

1 task Physical-Access; 

2 cycle 
3 select from 
4 receive(p,“read”,l,v) + 

wait until (Itlocked); 
5 <if assigned & v=cur-id 
6 then send(p,l,value(l),date(l)) fi>; 
7 cl 
8 receive(p,“write”,l,val,v) + 

wait until (1 plocked); 
9 <if assigned & v=cur-id 
10 rhen value(l)+val; date(l)+cur-id; 
11 send(p,l,ack); 
12 fi>; 
13 endselect 
14 endcycle; 

Figure 12. 

6. OPTIMIZATIONS 

The partition initialization protocol sketched 
in the previous section can be improved in several 
ways. This section suggests ways of improving its 
efficiency in an environment containing a large 
number of processors and large data objects. We 
also discuss a modification to rule R4 that reduces 

the number of aborted transactions when two-phase 
locking is used as the underlying concurrency con- 
trol protocol. 

Rule RS requires that a processor p upon join- 
ing virtual partition v bring its copy of an accessible 
object 1 “up-to-date” by reading a copy of 1 with the 
largest date less than v. In the simple implementa- 
tion given, p finds this copy by reading all copies on 
processors in its view. However, p can optimize its 
search for an up-to-date copy by making use of the 
recent partition assignment history of each proc- 
essor in view(p). Let previous,(q) denote the largest 
virtual partition less than v that q was a member of. 
The optimized search strategy is for p to consider 
the processors in view(p) in decreasing order of 
their previous, values. The desired up-to-date value 
of 1 is found at a processor q such that: 
(1) previous,(q) = max{previousv(r) I r Eview(p) 

& 1 was accessible in previous,(r)] 
Now, if processor p satisfies the role of q in the 
above condition, then p holds an up-to-date copy of 
1 and no initialization for lp is necessary. 

The values of previous,(q) for all qeview(v) 
can be collected by the initiator in the first phase of 
the protocol creating v, and this set of values can be 
distributed to all members of v in the second phase 
of the protocol at no extra cost in messages or time. 

The scenario where a subset of the members of 
a virtual partition, say v, splits off and forms a new 
virtual partition w is of practical importance be- 
cause it occurs frequently. (It occurs, for example, 
when some members of v detect the failure of anoth- 
er member of v.) In such a scenario, all members of 
w contain the up-to-date copies of all accessible 
objects. Consequently, no initialization is required. 
This special case can be detected using the values of 
previous,, specifically, in this case previous,(p) =v 
for every p that is a member of w. 

In the partition initialization protocol of $5, a 
copy is brought up-to-date by reading another copy, 
in its entirety. If the object is large, a more economi- 
cal approach is to apply to the out-of-date copy all 
of the writes that it missed. This, however, requires 
an efficient procedure for specifying and extracting 
the values of the missed writes. 



Specification of the missing writes is made easy 
by applying Theorem 1’. Consider a copy of 1 with 
date v and on a processor currently assigned to par- 
tition w. Roughly speaking, Theorem 1’ tells us that 
the copy missed the writes of transactions executing 
in virtual partitions with identifiers greater than v 
and less than or equal to w. Thus, this out-of-date 
copy can be brought up-to-date efficiently if the 
system can support a query on an arbitrary copy of 
the form: rerrieve (the v&es of) all physical wrires on 
copy c by any trunsucrion executing in u such thut 
v<u<_w. Such queries can be supported by labelling 
the records of objects with “dates” in the same way 
that copies are currently labelled with dates, or by 
keeping a database log [GMBLLPPT] of all writes 
and their associated “dates.” 

One unfortunate consequence of rule R4 is that 
whenever a processor p joins a new partition, all 
ongoing transactions that have accessed a copy on p 
must be aborted. This can be very costly and should 
be avoided, if possible. It is not easy, though, to 
find a weaker version of R4--one requiring fewer 
abortions--without restricting the concurrency con- 
trol protocol. On the other hand, if a particular 
concurrency control protocol is assumed, a weaker 
version of R4 can often be found. 

Consider, for example, an implementation us- 
ing a distributed version of two-phase locking 
[EGLT]. Assume that copies (rather than objects) 
are locked and that locks are held until the end of a 
transaction. In such a system, a transaction can be 
allowed to execute in a sef of virtual partitions VT, 
without compromising one-copy serializability, if 
the following conditions hold: 

(1) 

(21 

(3) 

The set of logical objects referenced by T is 
accessible in every virtual partition in VT. 
The set of processors holding copies that were 
physically read or written by T are contained 
in the view of every virtual partition in VT. 
The recover operation (see R5) does not read a 
copy that is locked for writing. 

7. DISCUSSION 

We have presented a replica control protocol 
based on the intuitive ideas that (1) a communica- 
tion cluster can access a logical object if it contains 
a (weighted) majority of the object’s copies and (2) 
logical operations are translated into physical opera- 

tions on the copies within a cluster using the “read- 
one/write-all” rule. Although the basic ideas of the 
protocol are simple conceptually, its correct imple- 
mentation is quite subtle because we did not assume 
that failures are “clean.” In addition to providing 
high fault-tolerance, the proposed protocol imple- 
ments logical reads very efficiently. 

The novelty of our protocol lies in the fact that 
the virtual partition management subprotocol makes 
a large class of failures (namely omission and per- 
formance failures) look like “clean” communica- 
tion failures that partition the network. As a result, 
protocols that have been designed for partition fail- 
ures can be used in conjunction with our virtual 
partition management protocol in a more general 
and realistic processing environment. For example, 
many proposed data management schemes (e.g. 
[BGRCK, D, SW]) for partitioned systems require 
partition detection and, furthermore, assume A2 and 
A3. Generally, these schemes require nothing 
stronger than properties Sl throygh S3. Therefore, 
these schemes can use the virtual partition manage- 
ment protocol to “detect” virtual partitions and 
operate on them as if they were real partitions. 
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