
AN EFFICIENT, FAULT-TOLERANT PROTOCOL FOR REPLICATED DATA MANAGEMENT

Amr El Abbadi* Dale Skeen

Computer Science Department IBM Research Laboratory
Cornell University San Jose

FIaviu Cristian

IBM Research Laboratory
San Jose

ABSTRACT

The objective of data replication is to increase data
availability in the presence of processor and link
failures and to decrease data retrieval costs by read-
ing local or close copies of data. Moreover, concur-
rent execution of transactions on replicated data
bases must be equivalent to the serial execution of
the same transactions on non-replicated databases.

We present a pedagogical derivation of a replicated
data management protocol which meets the above
requirements. The protocol tolerates any number of
component omission and performance failures (even
when these lead to network partitioning), and han-
dles any number of (possibly simultaneous) proc-
essor and link recoveries. It implements the reading
of a logical object efficiently--by reading the near-
est, available copy. When reads outnumber writes
and failures are rare, the protocol performs better
than other known protocols.

1. INTRODUCTION

The objective of data replication in a distribut-
ed database system is to increase data availability
and decrease data access time. By data replication,

*This author’s work was partially supported by a
grant from the Sperry Corporation.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distribute-d for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TO copy
otherwise, or to republish, requires a fee and/or specific permission.

@1985 ACM O-89791-153-9/85/003/0215 $00.75

we mean maintaining several physical copies, usual-
ly at distinct locations, of a single logical data base
object. A replica control protocol is responsible for
coordinating physical accesses to the copies of a
logical data object so that they behave like a single
copy insofar as users can tell [BGb]. Such a proto-
col translates a logical write of a data object x into
a set of physical writes on copies of x, and trans-
lates a logical read of x into a set of reads on one or
more physical copies of x. To really increase data
availability, a replica control protocol must be
tolerant of commonly occurring system component
failures. To minimize the overhead caused by repli-
cation, the protocol should minimize the number of
physical accesses required for implementing one
logical access.

This paper presents a replica control protocol
tolerant of a large class of failures, including: proc-
essor and communication link crashes, partitioning
of the communications network, lost messages, and
slow responding processors and communication
links. Any number of (possibly simultaneous) proc-
essor and link recoveries is also handled. The major
strength of the protocol is that it implements the
reading of a logical object very efficiently: a read of
a logical object, when permitted, is accomplished by
accessing only the nearest, available physical copy
of the object. Since reads outnumber writes in most
applications, this strategy is expected to reduce the
total cost of accessing replicated data objects.

Our protocol belongs to a class of protocols
that adapt to detected failures and recoveries. An
integral part of the protocol is a subprotocol that
maintains at each processor in the system an ap-
proximate view of the current communication topol-
ogy. This view can be used to optimize the transla-

215

tion of logical data accesses performed by transac-
tions into physical data accesses.

The protocol compares favorably with other
proposed replica control protocols. It tolerates the
same fault classes as majority voting [T] and quo-
rum consensus [G], and does so with fewer accesses
to copies, assuming that read requests outnumber
write requests and that fault occurrences are rare
events. It also tolerates the same fault classes as the
“missing write” protocol [ES], but, unlike that pro-
tocol, uses a “read-one” rule for reading logical data
objects even in the presence of failures. Our proto-
col is also simpler than the “missing write” protocol.
In particular, it does not require the extra logging of
transaction information that is required by that
protocol when failures occur.

2. FAILURE ASSUMPTIONS

System components (processors, links) can fail
in many ways, from occasional processor crashes
and lost messages to Byzantine failures, where com-
ponents may act in arbitrary, even malicious, ways.
We wish to consider those component failures that
have a reasonable chance of occurring in practical
systems and that can be handled by algorithms of
moderate complexity and cost. The most general
failure classes satisfying this criteria are omission
failures and performance failures [CASD].

An omission failure occurs when a component
never responds to a service request. Typical exam-
ples of such failures include processor crashes, occa-
sional message losses due to transmission errors or
overflowing buffers, ,and communication link
crashes. A performance failure occurs when a system
component fails to respond to a service request
within the time limit specified for the delivery of
that service. Occasional message delays caused by
overloaded processors and nettork congestion are
examples of performance faults. An important sub-
class of omission and performance failures is the
class of partition failures. A partition failure divides
a system into two or more disjoint sets of processors,
where no member of one set can communicate in a
timely manner with a member of another set. Our
objective is to design a replica control protocol that
is tolerant of any number of omission and perform-
ance failures.

3. SYSTEM MODEL

A distributed system consists of a finite set of
processors, P={1,2 ,..., n1, connected by a communi-
cation network. In the absence of failures the net-
work provides the service of routing messages be-
tween any two processors. Processors or links may
fail, leading to an inability to communicate within
reasonable delays. Failed processors and links can
recover spontaneously or because of system mainte-
nance. Thus, the system of processors that can
communicate with each other is a dynamically evolv-
ing system.

In the following discussion, we will not be
concerned with the details of the physical intercon-
nection of the processors (e.g. a point-to-point ver-
sus a bus-oriented interconnection) or with the de-
tailed behavior of the message routing algorithm.
Instead, we need only consider whether two proc-
essors are capable of communicating through mes-
sages. We model the current can-communicate rela-
tion between processors by a communication graph.
The nodes of the graph represent processors, and a
undirected edge between two nodes a,beP indicates
that if a and b send messages to each other, these are
received within a specified time limit. We call a
connected component of a communication graph a
communication cluster. A communication clique is a
communication cluster which is totally connected,
that is, there is an edge in the communication graph
between every pair of processors in the cluster. In
the absence of failures, a communication graph is a
single clique. The crash of a processor p results in a
graph that contains a trivial cluster consisting of the
single node p. A partition failure results in a graph
containing two or more clusters.

We do not assume that the can-communicate
relation is transitive. Thus, it is possible that a and
b can communicate, and b and c can communicate,
but a and c cannot communicate. (Note that if the
can-communicate relation is transitive, then all
communications clusters are cliques.) In a system in
which failure occurrences lead quickly to the estab-
lishment of new communication routes, which avoid
the failed system components, communication clus-
ters can be expected to be cliques most of the time.

For the purpose of adapting to changes in the
communication topology. each processor maintains a

216

local “view” of the can-communicate relation.
Each processor’s view is that processor’s current
eslimate of the set of processors with which it be-
lieves that communication is possible. The function

view: P + g(P)
(where 9(P) denotes the powerset of P) gives the
current view of each processor p E P.

A replicated database consists of a set of logi-
cal data objects L. Each logical object 1eL is im-
plemented by a nonempty set of physical data ob-
jects (the copies of I) that are stored at different
processors. The copy of 1 stored at processor p is
denoted by 1,. The function

copies: L + B(P)
gives for each logical object 1 the set of processors
that possess physical copies of 1.

Transactions issue read and write operations on
logical objects. A replicated data management protocol
is responsible for implementing logical operations
(as they occur in transactions) in terms of physical
operations on copies. For a protocol to be correct,
the database system must exhibit the same external-
ly observable behavior as a system executing trans-
actions serially in a nonreplicated database system
[TGGL]. This property is known as one-copy
serializability [BGb].

One popular approach for designing a replicat-
ed data management protocol is to decompose the
algorithm into two parts: a replica control protocol
that translates each logical operation into one or
more physical operations, and a concurrency control
protocol that synchronizes the execution of physical
operations [BGb]. The concurrency control proto-
col ensures that an execution of the translated
transactions (in which logical access operations are
replaced by physical operations) is serializable, that
is, equivalent to some serial execution. But the con-
currency control protocol does not ensure one-copy
serializability, since it knows nothing about logical
objects, (It may, for example, permit two distinct
transactions to update in parallel different copies of
the same logical object.) Given this, the replica con-
trol protocol ensures that transaction execution is
one-copy serializable.

The term event is used to denote a primitive
atomic action in the system. Among other things,
we consider the reading and writing of physical ob-

jects and the sending and receiving of messages to
be events. An execution of a set of transactions is
finite set of events partially ordered by the
happens-before relation studied in [L]. We assume
that the set of events restricted to a given processor
is totally ordered by the happens-before relation.
That is to say, if e and f are events occurring at the
same processor, then either e happens-before f or f
happens-before e. Consequently, the operations
executed on a given physical object are totally or-
dered. An execution is serial if its set of events is
totally ordered by the happens-before relation, and
if, for every pair of transactions Tt and T,. either
all physical data operations of Tt happen-before all
physical operations of T,, or vice versa.

4. REPLICA CONTROL

Following the decomposition outlined above,
we now derive a protocol for correctly managing
replicated data in the presence of any number of
omission and performance failures. In this section,
the emphasis is on giving the properties a replica
control protocol should possess and on showing that
any implementation exhibiting these properties sat-
isfies our correctness criteria. In the next section,
we describe in some detail one protocol and show
that it exhibits the desired properties.

Ideally, we would like to design a replica con-
trol protocol that can be combined with any correct
concurrency control protocol. However, this seems
to be difficult to achieve given our performance
objectives. Consequently, we will restrict the class
of allowable concurrency control protocols to those
ensuring a stronger property known as conflict-
preserving serializability [H]. Two physical opera-
tions conflict if they operate on the same physical
object and at least one of them is a write. An exec-
ution E of a set of transactions T is conflict-
preserving (CP) serializable if there exists an equiv-
alent serial execution ES of T that preserves the
order of execution of conflicting operations (i.e. if
opl and op2 are conflicting physical operations and
opl happens-before op2 in E, then opl happens-
before op2 in ES) [H]. Henceforth in our discus-
sion, we will assume the existence of a concurrency
control protocol ensuring that

(Al) The execution of any set of transactions
(viewed as a set of physical operations) is
conflict-preserving serializable.

Practically speaking, restricting the class of concur-
rency control protocols to those enforcing CP-
serializability is inconsequential, since all published,
general-purpose concurrency control protocols are
members of this class. This includes two-phase
locking [EGLT], optimistic concurrency control
[KR], timestamp ordering [BSR], and all distributed
protocols surveyed by Bernstein and Goodman
[BGa].

Our performance objective is to provide cheap
read access while offering a high level of data avail-
ability. In order to understand better what is at-
tainable, let us first consider a “clean” failure envi-
ronment in which two simplifying assumptions hold.
The first assumption is that the can-communicate
relation is transitive:

(A2) All communication clusters are cliques.

The second assumption (unrealistically) posits that
changes in the communication topology (resulting
from failures and recoveries) are instantly detected
by all affected processors.

(A3) The view of each processor contains only itself
and processors adjacent to it in the current
communication graph.

Thus, from A2 and A3 we can conclude that the
views of processors in the same communication
cluster are equal and the views of processors in dif-
ferent clusters are disjoin?.

Given the above assumptions, the following
rules can be used to control access to logical objects.
When processor p executes an operation (either a
read or a write) on a logical object 1, it first checks
whether a (possibly weighted) majority of the copies
of 1 reside on processors in its local view. If not, it
aborts the operation. Otherwise, for a read, it reads
the nearest copy which resides on a processor in its
view; and for a write, it writes all copies on proc-
essors in its view.

When integrated with an appropriate cluster
initialization protocol, which ensures that all copies
of a logical object accessible in a newly established

cluster have the most up-to-date value assigned to
that object, the above rules can form the basis of a
correct replica control protocol. The “majority
rule” ensures that only one cluster can access a logi-
cal object at a time, and the “read-one/write-all
rule” ensures that the copies of an object in a clus-
ter act as a single copy. Together, these rules ensure
that all executions are one-copy serializable.

The above rules are simple, intuitive, and en-
sure a high level of data availability, provided the
communication information maintained by the proc-
essors is uccurute. Unfortunately, the correctness of
the rules depends heavily on assumptions A2 and
A3. If either is relaxed, non-one-copy-serializable
executions can result.

Example 1. Figure 1 gives a possible communica-
tion graph for three processors when assumption
(A2) is relaxed. The graph indicates that processors
A and B are no longer able to communicate due to,
for example, failures that have occurred. during a
run of the algorithm that establishes the routing
between A and B. Both processors however are able
to communicate with C, and C with them.

218

We thus have: view(A)=(A,C3, view(B)=(B,C) and
view(C)={A,B,C). Let each processor contain a
copy of a logical data object x initialized to 0. As-
suming that all copies are weighted equally, each
processor will consider x to be accessible, since each
has a majority of the copies in its view. Now, let A
and then B execute a transaction that increments x
by 1. Based on its own view, processor A reads its
local copy of x and updates both C’s copy and its
own. Similarly, B reads its local copy of x (which
still contains 0) and updates both C’s copy and its
own. Observe that after two successive increments,
all copies of x contain 1. Clearly, the execution of
these transactions is not one-copy serializable. 0

Example 2. Consider an initially partitioned sys-
tem that undergoes re-partitioning as shown in Fig-
ure 2.
Two processors (B and D) detect the occurrence of
the new partition immediately and update their

Figure 2.

views. The other two processors (A and C) do not

detect it until later. Table 1 shows the intermediate

system state after the view updates in B and D and

before the updates in A and C.

old view
--_-----_-

_ A A,B
B A,B
C C,D
D C,D

new view

A,B
B,C
CD
A,D

TABLE 1

Assume that, while the views are inconsistent, each

processor p executes a transaction Tu. Table 2 gives

the transaction executed at each processor, and also

the data objects stored there. The superscripts on

the objects denote “weights”.

copies transactions
______________ _-_____-_____---___--------

A a2,b
B b2,c
C c2,d
D d2,a

TA: read(b),write(a)
TB: read(c),write(b)
Tc: read(d),write(c)
TD: read(a),write(d)

TABLE 2

Consider the execution of TA at processor A. Since

Bcview(A), A can read its local copy of b. Since

A’s copy of a has weight 2, A can update it, and,

furthermore, A will not attempt to update D’s copy

since Dtview(A). Hence, in the execution of the

transaction, A accesses its local copies only. The

execution of transactions T,, TC, and T, proceed

similarly, with each process modifying only its local

copies. The result is serializable but not one-copy

serializable. 0

As example 1 illustrates, the correctness of the

simple replica control protocol critically depends on

the property that no two processors with different

views be able to access a common set of copies. Ex-

ample 2 illustrates that even in a well-behaved com-

munication network, where transitivity of the can-

communicate relation is assured, processors can not

independently and asynchronously update their

views.

The principal idea in our replica control proto-

col is to use the majority and the read/write rules

mentioned above, but to circumvent the anomalies

illustrated in examples 1 and 2 by placing appropri-

ate restrictions on when and how processors may

update their views. Toward this goal, we introduce

the notion of a virtual partition. Roughly speaking,

a virfual partition is a set of communicating proc-

essors that have agreed on a common view and on a

common way to test for membership in the parti-

tion. For the purposes of transaction processing,

only processors that are assigned to the same virtual

partition may communicate. Hence, a virtual parti-

tion can be considered a type of “abstract” commu-

nication cluster where processors join and depart in

a disciplined manner and communication is limited

by mutual consent. In contrast, in a real communi-

cation cluster processors join and depart abruptly

(and often inopportunely) because of failures and

recoveries. It is desirable, of course, for virtual

partitions to approximate the real communication

capabilities of a system.

The common view of the members in a virtual

partition represents a shared estimation of the set of

processors with which communication is believed

possible. When a processor detects an inconsistency

between its view and the can-communicate relation

(by not receiving an expected message or by receiv-

ing a message from a processor not in its view), it

can unilaterally depart from its current virtual par-

tition. (Since the departing processor may no longer

be able to communicate with the other members of

its virtual partition, it should be able to depart au-

tonomously, without communicating with any other

processor.) After departing, the processor can in-

voke a protocol to establish a new virtual partition.

This protocol, which is part of the replica control

protocol, creates a new virtual partition, assigns a

set of processors to the partition, and updates those

processors’ views. An objective of the protocol is

for the new virtual partition to correspond to a

maximal set of communicating processors. Howev-

er, since failures and recoveries can occur during

the execution of the view update protocol, it is pos-
sible that a virtual partition resulting from a proto-
col execution only partially achieves this objective.

We identify virtual partitions by unique identi-
fiers, and we denote the set of virtual partition iden-
tifiers by V. At any time, a processor is assigned to
at most one virtual partition. The instantaneous
assignment of processors to virtual partitions is giv-
en by the partial function

vp: P + v,
where vp is not defined for a processor p if p is not
assigned to any virtual partition. We use the total
function

defview: P + (true,false)
to characterize the domain of VP. That is,
defview(p) is true if p is currently assigned to some
virtual partition, and is false otherwise.

In order to ensure that the simple “read-
one/write-all” rules achieve one-copy serializability,
we require the following properties from any proto-
col managing processor’s views and their assignment
to virtual partitions. Letting p and q denote arbi-
trary processors, the first two properties are

(Sl) View consistency: If defview(p)&defview(q)
and vp(p)=vp(q), then view(p)=view(q).

(S2) Reflexivity: If defview(p) then p E view(p)

Property Sl states the requirement that processors
assigned to the same virtual partition have the same
view. With a slight abuse of notation, we let
view(v) denote the view common to all members of
virtual partition v. Property S2 enforces the re-
quirement that every processor should be able to
communicate with itself. From Sl and S2, one can
infer that the view of a processor (when defined) is
a superset of the processors in its virtual partition,
and thereby, a superset of the processors with which
it may communicate in order to process transac-
tions.

The final property restricts the way a processor
may join a new virtual partition. Let p denote any
processor and let Y and w denote arbitrary virtual
partitions. Let join(p,v) denote the event where p
changes its local state to indicate that it is currently
assigned to v. Similarly, let depurt(p,v) denote the
event of p changing its local state to indicate that it

is no longer assigned to v. Join and departure
events, in addition to physical read and write
events, are recorded in the execution of transac-
tions. The function

members: V + B(P)
yields for each virtual partition v the set of proc-
essors that were at some point in their past (but not
necessarily contemporaneously) assigned to v. The
third property is

(S3) Serializability of virtual partitions: For any
execution E produced by the replicated data
management protocol, the set of virtual parti-
tion identifiers occurring in E can be totally
ordered by a relation << which satisfies the
condition:

if v<< w and p~(members(v) TV view(w)), then
depart(p,v) happens-before join(q, w) for any
q E members(w).

Loosely speaking, this property says that before any
processor may join a new partition w, every proc-
essor p in view(w) must first depart from its current
virtual partition. Note that the property does not
require p to eventually join w. S3 prevents anoma-
lies of the type illustrated in Example 2, where a
processor (B) detects changes in the can-
communicate relation, adopts a new view, and be-
gins processing transactions before another proc-
essor (C) in the same communication cluster detects
the changes. Any ordering over the virtual parti-
tions occurring in a given execution that satisfies
condition S3 is called a legal creation order for the
virtual partitions. In general, there will be many
legal creation orders for a given execution.

Comparing requirements Sl-S3 to requirements
A2-A3, we find that the former ones are considera-
bly weaker than the latter. A3 requires that
processors’ views reflect the current can-
communicate relation. Sl-S3, on the other hand, do
not imply any relationship between the processors’
views and the can-communicate relation. A3 im-
plies that a processor will always know the members
of its communication cluster. In general, a proc-
essor will never know the set of processors in its
virtual partition (but it will know a superset--the
processors in its view). Under Sl-S3, the views of
processors in different virtual partitions may over-
lap; whereas, under A2, the views of processors in
different clusters must be disjoint. Finally and most

220

significantly, requirements Sl-S3 are attainable un-
der realistic failure assumptions (see $5). Require-
ments A2-A3 are not.

The intuitive replica control rules mentioned
previously for the “clean” failure environment can
now be reformulated in terms of the weaker notion
of a virfual partition. The first four rules are

(Rl). Majority rule. A logical object 1 is accessible
from a processor p assigned to a virtual parti-
tion only if a (possibly weighted) majority of
copies of 1 reside on processors in view(p).

(R2) Read rule. Processor p implements the logical
read of 1 by checking if 1 is accessible from it
and, if so, sending a physical read request to
any processor qeview(p) ncopy(1). (If q does
not respond, then the physical read can be re-
tried at another processor or the logical read
can be aborted.)

(R3) Write rule. Processor p implements the logi-
cal write of 1 by checking if 1 is accessible from
it and, if so, sending physical write requests to
all processors q cview(p) ncopies(1) which are
accessible and have copies of 1. (If any physi-
cal write request can not be honored, the logi-
cal write is aborted).

(R4) All physical operations carried out on account
of a transaction t must be executed by proc-
essors of the same virtual partition v. In this
case we say that t executes in v.

Rules Rl-R3 are straightforward interpretations of
the simple replica control rules. Rule R4 expresses
the communication restriction that is placed on vir-
tual partitions. In particular, a processor p accepts
a physical access request from processor q only if p
and q are assigned to the same virtual partition (that
is, if defview(p) and VP(P) E vp(q)). Observe that
R4 requires a transaction to be aborted if any of the
processors executing it joins a new partition. (In
$6, we will discuss an optimization that avoids this
most of the time.)

The final rule concerns propagating the up-to-
date values of logical objects to copies on processors
that were previously in different partitions.

(R5) Partition initialization rule. Let p be a proc-
essor that has joined a new virtual partition v,
and let I,, be a copy of a logical object 1 that is
accessible in v. The first operation on II., must
be either a write of lp performed on behalf of a
transaction executing in v, or a recovet(lp) oper-
ation that writes into Ip the most recent value of
1 written by a transaction executing in some
virtual partition u such that u<cv for any le-
gal creation order < <.

Stated less formally, R5 says that before copy 1, can
be read in partition v, it must contain the most re-
cent value assigned to 1 in the current partition or in
a previous partition. Note that the desired value of
1 can be found at one of the processors in view(v)
because a majority of l’s copies must reside at proc-
essors in view(v) for 1 to be accessible in v (by Rl),
and a majority of l’s copies is written by each logi-
cal write of 1 (by R3).

The above properties can be used to design a
correct replica control protocol.

Theorem 1. &et R be a replica control proto-
col obeying properties Sl-S3 and Rl-RS and let
C be a concurrency control protocols that en-
sures CP-serializability of physical operations.
Any execution of transactions produced by R
and C is one-copy serializability.

The proof of this theorem, which uses notions intro-
duced in [BGb], is given in [ESC]. The proof actu-
ally proves a stronger result.

Theorem 1’. Let R and C be protocols as
above. For every execution E produced by R
and C, and every legal creation order << over
the virtual partitions in E, there exists a serial
execution Eg, equivalent to E, with the proper-
ty: if v<<w, then alI kanractions executing in v
occur in Es before any transaction executing in w.

Hence, with regard to serializability, we can consid-
er transactions to execute in an order consistent
with a creation order of virtual partitions. That is
to say, for an execution with a creation order <<, if
transaction tl executes in v and transaction t2 exec-
utes in w and v<<w, then we can consider tl to
“execute before” t 2.

221

Although a replica control protocol satisfying
Sl-S3 and Rl-R5 produces only one-copy serializa-
ble executions, the executions may exhibit a curious
and, for some applications, undesirable property.
Specifically, transactions may not read the most
up-to-date (in real time) copies of logical objects.
This can occur because views of different virtual
partitions that exist simultaneously can overlap.
Consequently, the same logical object can be simul-
taneously accessible in these partitions. Note that
only one of these partitions will be able to write the
object, since a logical write requires a majority of
the copies to reside on processors actually in the
same partition; however, the other partitions will be
able to read the object and, therefore, will be able to
read out of date values. This phenomena is not de-
tectable by applications executing transactions
since, by design, applications can not send messages
across partition boundaries. However, this could be
detected by a user that moves from a processor in
one partition to a processor in another.

The capability of a processor to read stale data
indicates that the processor’s view no longer accu-
rately reflects the can-communicate relation. This
situation arises most often when a processor is slow
to detect the occurrence of a failure. For most sys-
tems, such situations can be expected to be short-
lived. If desired, a distributed systems can periodi-
cally send probe messages in order to bound the
staleness of the data (the next section discusses
probing in more detail). Nonetheless, there appears
to be no practical way to completely eliminate the
reading of stale data when using the majority and
read/write rules.

5. THE REPLICA CONTROL PROTOCOL

We now describe a replica control protocol
satisfying the properties presented in the previous
section. In the design of the protocol we have as-
sumed that the can-communicate relation will be
transitive most of the time, although the correctness
of the protocol does not depend on this. We have
also chosen to emphasize clarity over performance.
Consequently, for any real implementation, a num-
ber of significant optimizations are possible. We
discuss some of these in the next section.

The replica control prOtOCO1 consists Of two
simpler protocols:

1) the virtual partition management protocol, which
assigns processors to virtual partitions and ensures
that all copies of a logical object which are acces-
sible in a newly formed partition have the most
up-to-date values,

2) the logical read/write protocol that controls logi-
cal object accessibility and translates the logical
operations issued by transactions into physical
read/write operations.

Requirements Sl-S3, which constrain the be-
havior of a virtual partition management protocol,
and rules Rl-RS are sufficient for ensuring one-
copy serializability. Nevertheless Sl-S3 is not by
itself a satisfactory specification for a useful virtual
partition management protocol, since it does not
require that the assignment of processors to virtual
partitions mirror the current communication capa-
bilities of a system. In fact, a trivial protocol that
never assigns any processor to a virtual partition, or
that constantly assigns each processor to its own
virtual partition satisfies the specification Sl-S3.
Clearly, the availability of logical objects is influ-
enced by how closely the views of the processors of
a virtual partition mirror the current can-
communicate relation. If a processor excludes from
its view a processor with which it can communicate,
then some logical objects will unnecessarily be
deemed inaccessible by rule Rl. If, on the hand, a
processor p includes in its view a processor q with
which it can not communicate, then p will not be be
able to write logical objects with copies on q
(because of the write-all rule).

To ensure high logical data availability, we
introduce a supplementary heness constraint on the
discrepancy between processor views and reality.
Let us say that a failure or recovery affects a proc-
essor if it causes in the communication graph the
deletion or addition of an edge that is incident to
the processor. A failure or recovery affects a set of
processors if it affects any processor in the set. The
liveness constraint is

(Ll) Let C be a nontrivial clique in the communi-
cation graph existing at time t. There exists a
constant A such that, if no failures or recover-
ies affecting C occur during the time interval
[t,t+A], then at t+A the view of each processor
in C contains all processors in C.

333

The replica control protocol is implemented at
each processor by several concurrent tasks that
communicate through shared variables. Figure 3
gives the main task, which declares the shared varia-
bles and schedules the tasks of the virtual partition
management protocol and the read/write protocol,
in that order.

1 main task Replica-Control-Protocol;

2 type vp-id = record n: integer; p: P; end;

3 shared vur cur-id, max-id: vp-id init (0,myid);
4 assigned: Boolean inir true;
5 lview: ser of P inir {myid);
6 locked: set of L inir (3;
1 local: ser of L;

8 schedule(Monitor-VP-Creations);
9 schedule(Send-Probes,Monitoi-Probes);
10 schedule(Physical-Access);
11 scheduZe(Logical-Read,Logical-Write);

Figure 3.

A virtual partition identifier (a “vp-id”; see
line 2) consists of a sequence number and a proc-
essor identifier. Virtual partition identifiers are
totally ordered by the relation “<“:

(idt.p<idz.p).

The shared variable “assigned” is true on a
processor p if p is currently assigned to a virtual
partition, and is false otherwise. (In what follows,
“assignedI,” denotes the “assigned” variable on proc-
essor p.) The variable “cur-idP” stores the identifier
of the virtual partition to which p was last assigned.
Thus, when “assignedP” is true, “cur-idI,” contains
the identifier of the virtual partition to which p is
assigned. The “max-idI,” variable records the largest
partition identifier seen so far by processor p, and
“lviewp” records the local view of p. The variable
“locked” contains the set of logical objects whose
physical copies must be assigned the same (most
up-to-date) values after a new virtual partition is
created. If a logical object 1cL is in lockedn, 1 can-
not be accessed on processor p. The variable
“loca$” contains the set of objects that have copies
at p. The relation between the concrete variables
“assigned,” “lview,” and “cur-id” and the abstract

The process of virtual partition creation re-
quires three phases. In the first phase, a processor
that detects the change in communication capabili-
ties, say s, computes an identifier v for a new virtu-
al partition that it will attempt to establish. The
identifier v is greater than all sequence numbers
seen so far by s, and is guaranteed to be globally
unique. Processor s then sends an invitation to join
the new virtual partition identified v to all proc-
essors in P. A processor q accepts the invitation
only if it has not already received another invitation
to join a higher numbered partition. After accepting
or initiating an invitation and before committing
itself to a virtual partition, a processor is not as-
signed to any virtual partition.

223

In the second phase, the initiator s defines the
view of the new partition.v as being the set A of all
accepting processors from which it has heard, and it
sends the new view to all processors in A. Upon
receiving the new view A, an accepting processor q
assigns itself to the virtual partition v (and updates
its view to A) only if it has not, in the meantime,
accepted an invitation to join a higher numbered
virtual partition. Hence, at the end of the second
phase, only a subset of the processors in A might
actually be assigned to the virtual partition v they
have accepted to join at an earlier moment.

functions “defview”, “view” and “VP” introduced in
94 is:

defview(p) =assignedu
assignedP + (VP(P) =cur-id& & (view(p) =lview$.

The meaning of the “schedule(T1,...,Tk)” primitive
is “for every T E IT l,...,Tk], if task T is currently
inactive start an execution of T, otherwise do noth-
ing. ”

The virtual partition management protocol, the
first of the two major components of the replica
control protocol, enforces the liveness constraint
(Ll), the restrictions Sl through S3, and the parti-
tion initialization rule (RS). The timely detection
of changes in communication capability, needed to
elrforce the liveness constraint, is accomplished
through periodic probe messages. When a change in
communication capability is detected, the creation
of a new virtual partition is attempted.

The third phase starts after a processor is as-
signed to a new virtual partition. The purpose of
this phase is to ensure that all physical copies of a
logical object accessible in a newly formed virtual
partition have the most up-to-date value before they
are made accessible to transactions.

Observe that the above process handles the
case where several processors in the same cluster
simultaneously attempt to establish new partitions.
In the absence of additional failures, only the proc-
essor generating the highest numbered partition
identifier will succeed.

Let us now examine in some detail the tasks
implementing virtual partition creation. The proc-
ess is initiated by calling a procedure “Create-new-
VP” (Figure 4). This procedure first checks to see
if the processor knows of an ongoing virtual parti-
tion creation (line 2). If so (i.e., “assigned” equals
false), then partition creation is not attempted. Oth-
erwise, the procedure departs from the current vir-
tual partition (line 3), computes a new virtual parti-
tion identifier, composed from the successor of the
largest sequence number seen so far and the local
processor name obtained by invoking the predefined
function “myid” (line 4), and then schedules the
task “Create-VP” (line 5). which actually controls
the execution of the first two phases of the virtual
partition management protocol. The symbols “c”
and ‘I>” are used to delimit critical sections, which
provide mutual exclusion on accesses to shared vari-
ables.

1 procedure Create-new-VP;

2 <if assigned
3 then assignedtfalse;
4 max-id+(max-id.n+l,myid);
5 schedule(Create-VP(max-id))
6 fi;>

Figure 4.

The “Create-VP” task (Figure 5) sends an invi-
tation to join the partition identified “new-id” to all
processors (line 3) and records in “A” the identity
of all processors that accept to join the new virtual
partition (lines 4-13). The 6 parameter in line 5 is
an upper bound on the message transmission delay
between any two processors. After waiting long
enough to receive all responses, and after verifying

that no invitation to join a higher numbered virtual
partition has been received in the meantime (line
14), a commit message is sent to all accepting proc-
essors (lines 15-17). the variable “locked” is initial-
ized to the set of all logical objects accessible in
view “A” and which have local copies, the task
“Update-Copies-in-View” is scheduled, and “Create-
VP” ends. The Boolean function (line 18)

accessible: L x S(P) + {true,false),
is true for some logical object IEL and subset ASP
if a (weighted) majority of copies of 1 reside on
processors in A.

1 rusk Create-VP(in new-id: vp-id);

2 wzr A: set of P; S: Timer; r: P; v: vp-id;

3 for each pep-{myid) do
4 send(p,“newvp”,new-id);
5 S.set(26); A+Imyid);
6 cycle
7 select from
8 receive(“OK”,v,r) -c if v=new-id
9 then A+A u{r3 fi;
10 q
11 Stimeout + exit loop;
12 end select
13 endcycle;
14 <if new-id=max-id
15 then cur-id+max-id; lview+A; assignedctrue;
16 for each p c P-Imyid) do
17 send(p,“commit”,cur-id,A);
18 locked+{1 11 cL&accessible(l,lview)&l E local];
19 schedule(Update-Copies-in-View);
20 fi;>

Figure 5.

The task responsible for generating responses
to invitations to join new virtual partitions is
“Monitor-VP-Creations” (Figure 6). This task ac-
cepts invitations to join new virtual partitions
which are higher numbered than the greatest virtual
partition identifier ever seen (lines 5-10). In order
to avoid an indefinite waiting for a commit message,
a timer “T” is set for a duration of 36, sufficient for
the initiator to compute a view (26) and send it to
all accepting processors (6). After accepting an
invitation to join a new virtual partition “v”, if no
other higher numbered invitations are received and a
timely commit message for the virtual partition “v”
is received, a processor commits itself to “v” (lines
12-20). If no timely commit message is received

224

1 task Monitor-VP-Creations;

2 var A: set of P; T: Timer; v: vp-id;

3 cycle
4 select from
5 receive(“newvp”.v) -,
6 <if max-id<v
7 then max-id+v; assignedcfalse;
8 send(v.p,ack,v,myid);
9 T.set(36);
10 fi>
11 Cl
12 receive(“commit”,v,A) -+
13 <if v=max-id
14 then cur-id+max-id; lview+A;
15 assignedctrue;
16 locked+{1 11 EL& elocal&
17 accessible(l,lview)];
18 schedule(Update-Copies-in-View);
19 T.reset;
20 fi>
21 0
22 T.timeout *
23 <max-id+(max-id.n+l,myid);
24 schedule(Create-VP(max-id)) >
25 end select
26 endcycle;

Figure 6.

(either because the message notifying the acceptance
to join was lost, or the initiator has failed, or the
commit message was lost) an attempt to form a new
virtual partition is started (lines 22-24).

The periodic probing process is implemented in
two tasks. During each probe period (of length m),
the “Send-probes” task (Figure 7) of a processor p
sends message probes to all other processors. Proc-
essor p then waits to receive acknowledgements
from all processors in its partition (lines 13-20).
After the maximum roundtrip message time (26) has
elapsed, p compares the set of acknowledging proc-
essors to its current view (line 21). Any discrepan-
cy detection triggers the creation of a new virtual
partition.

The “Monitor-Probes” task (see Figure 8) for
processor p, processes the probe messages received
from other processors. A probe message with a par-
tition identifier equal to p’s current identifier is
acknowledged; one with an identifier less than p’s is

ignored, because the message may be an old message
that was delayed in transmission; and one with an
identifier greater than p’s identifier triggers the cre-
ation of a new virtual partition, because the receipt
of such a message unambiguously demonstrates the
capability of communication between processors in
different virtual partitions.

1 task Send-Probes;

2 cunst P: time; %period of probing%

3 var T: timer; R: set of P;
5 n: integer init 0; %probe sequence no. %
6 m: integer; q: P;

7 cycle
8 <if assigned
9 then for each p eP-{myid]
10 do send(“probe”,myid,cur-id,n) >;
11 T. set(26) ;
12 R+ {myid];
13 cycle
14 select from
15 receive(“ack”,q,m) -*
16 if m=n then R + Ru{q)
17 a
18 T.timeout + e&t loop;
19 endselect
20 endcycle
21 <if (assigned) & (Rflview)
22 then Create-New-VP fi>;
23 n + n+l;
24 wait(v-26) ;
25 else wait(u) >
26 fi;
27 endcycle;

Figure 7.

1 task Monitor-Probes;

2 cycle receive(“probe”,q,v,m);
3 <if assigned
4 then if v=cur-id -, send(q,“ack”,myid,m);
5 El
6 v<cur-id -t skip;
7 Cl
8 cur-id<v -t Create-New-VP;
9 fi
10 fi>;
11 endcycle;

Figure 8.

225

The implementation given for the tasks Send-
Probes, Monitor-Probes, Create-VP, and Monitor-
VP-Creations satisfies the requirements Sl through
S3. Satisfaction of requirement Sl is ensured from
the use of a single processor, the initiator, to deter-
mine the view of a virtual partition. Satisfaction of
requirement S2 is easy to verify. Satisfaction of
requirement S3 follows from the fact that the rela-
tion < defined over virtual partition identifiers is
indeed a legal creation order.

The implementation also satisfies the liveness
condition (Ll) when the parameter A is set to rr+88.
This value is computed as follows. After a clique C
forms, it may take 36 time units for all ongoing in-
stances of “Create-VP” to finish. It may take an-
other v time units for the processors in C to send
probes, and an additional 26 to receive the acknowl-
edgements. The results of probing may cause addi-
tional invocations of “Create-VP”, and these will
take 36 to complete. Now if no failures or recover-
ies affecting C occur during any of this, then within
4~+8& time units all processors in C have committed
to the invocation of “Create-VP” generating the
highest virtual partition identifier.

After a processor is assigned to a new virtual
partition, it has to make sure that all physical copies
accessible in the new virtual partition possess the
most recent value assigned to the logical object they
represent (rule R5). To determine the most recent
value of a logical object, we will make use of the
fact that the relation < is a legal creation order.
From this and Theorem l’, it follows that the most
recent write operation on a logical object 1 is execu-
ted in the highest numbered virtual partition among
those partitions containing logical writes to 1.

For the purpose of identifying the value prod-
uced by the most recent write of 1, each processor
stores with its local copy of 1 the virtual partition
identifier associated with the latest logical write of
1. On each processor p, the partial functions
(suitably initialized)

value: L 3 Value,
date: L -+ V,

The task “Update-Copies-in-View” for proc-
essor p (see Figure 9) brings all accessible copies
up-to-date (see requirement R5). Recall that the
local copies of accessible logical objects are locked
by the virtual partition creation process prior to
invoking this task. For each locked logical object 1
that has a copy on p (line 7) the most recent value
“val” assigned to some physical copy of 1 is re-
trieved (lines 8-14). This value is assigned to the
local copy of 1 and the copy is unlocked, assuming
that p has not joined a new partition since this task
was initiated (lines 15-17). The assignment of the
most update value to p’s copies of logical objects is
done in parallel (this is the meaning intended for the
construct “for each p EP cobegin . . . coend”). The
exception handling notation of [C] is used in line 12
to specify the action to be executed when expected
messages fail to be received.

yield the value and the most recent assignment date
for the logical objects stored on p. Thus, value(l)
denotes the value of the local copy of the logical .
object 1 and date(l) denotes the virtual partition

identifier (or logical date) current when the local
copy of 1 was last updated.

1 task Update-Copies-in-View;

2 vat old-id: vp-id;

3 old-id+cur-id;
4 for each 1 clocked
5 cobegin
6 var R: set of P; val: Value; d: vp-id init (0,O);
7 <R+copies(l) nlview>;
8 for each p E R
9 cobegin
10 var d,: vp-id; vp: Value;
11 send(p,“read”,I,cur-id);
12 receive(p,l,vp,dp)

[no-response: Create-new-VP; exit task];
13 if d<dp then d+dp; val+vp fi;
14 coend;
15 <if assigned & old-id=cur-id
16 then value(l)+val; date(l)+d fi;
17 locked+locked-{I);>
18 coend;

Figure 9.

The tasks responsible for enforcing rules Rl-
R3 are given in Figures 10-12. The tasks Logical-
Read and Logical-Write signal an “abort” exception
when a logical object 1, which has to be read or
written by a transaction, is inaccessible on the proc-
essor on which the transaction runs. In such a case
the transaction has to be aborted.

226

1 task Logical-Read(in 1: L, out val: Value)[abort];

2 <if assigned & accessible(l,lview)
3 then p+nearest(copies(l) nlview);
4 send(p,“read”,l.cur-id);
5 receive(p,l,val,d)

[no-response: Create-new-VP; signal abort];
6 else signal abort;>

Figure 10.

1 task Logical-Writetin 1: L,val: Value)[abort];

2varA:setofP;

3 <if assigned & accessible(l,lview)
4 then P+copies(l) nlview;
5 for each pep
6 cobegin
7 send(p,“write”,l,val,cur-id);
8 receive(p,l,ack)

[no-response: Create-new-VP; signal abort];
9 coend
10 else signal abort;>

Figure 11.

1 task Physical-Access;

2 cycle
3 select from
4 receive(p,“read”,l,v) +

wait until (Itlocked);
5 <if assigned & v=cur-id
6 then send(p,l,value(l),date(l)) fi>;
7 cl
8 receive(p,“write”,l,val,v) +

wait until (1 plocked);
9 <if assigned & v=cur-id
10 rhen value(l)+val; date(l)+cur-id;
11 send(p,l,ack);
12 fi>;
13 endselect
14 endcycle;

Figure 12.

6. OPTIMIZATIONS

The partition initialization protocol sketched
in the previous section can be improved in several
ways. This section suggests ways of improving its
efficiency in an environment containing a large
number of processors and large data objects. We
also discuss a modification to rule R4 that reduces

the number of aborted transactions when two-phase
locking is used as the underlying concurrency con-
trol protocol.

Rule RS requires that a processor p upon join-
ing virtual partition v bring its copy of an accessible
object 1 “up-to-date” by reading a copy of 1 with the
largest date less than v. In the simple implementa-
tion given, p finds this copy by reading all copies on
processors in its view. However, p can optimize its
search for an up-to-date copy by making use of the
recent partition assignment history of each proc-
essor in view(p). Let previous,(q) denote the largest
virtual partition less than v that q was a member of.
The optimized search strategy is for p to consider
the processors in view(p) in decreasing order of
their previous, values. The desired up-to-date value
of 1 is found at a processor q such that:
(1) previous,(q) = max{previousv(r) I r Eview(p)

& 1 was accessible in previous,(r)]
Now, if processor p satisfies the role of q in the
above condition, then p holds an up-to-date copy of
1 and no initialization for lp is necessary.

The values of previous,(q) for all qeview(v)
can be collected by the initiator in the first phase of
the protocol creating v, and this set of values can be
distributed to all members of v in the second phase
of the protocol at no extra cost in messages or time.

The scenario where a subset of the members of
a virtual partition, say v, splits off and forms a new
virtual partition w is of practical importance be-
cause it occurs frequently. (It occurs, for example,
when some members of v detect the failure of anoth-
er member of v.) In such a scenario, all members of
w contain the up-to-date copies of all accessible
objects. Consequently, no initialization is required.
This special case can be detected using the values of
previous,, specifically, in this case previous,(p) =v
for every p that is a member of w.

In the partition initialization protocol of $5, a
copy is brought up-to-date by reading another copy,
in its entirety. If the object is large, a more economi-
cal approach is to apply to the out-of-date copy all
of the writes that it missed. This, however, requires
an efficient procedure for specifying and extracting
the values of the missed writes.

Specification of the missing writes is made easy
by applying Theorem 1’. Consider a copy of 1 with
date v and on a processor currently assigned to par-
tition w. Roughly speaking, Theorem 1’ tells us that
the copy missed the writes of transactions executing
in virtual partitions with identifiers greater than v
and less than or equal to w. Thus, this out-of-date
copy can be brought up-to-date efficiently if the
system can support a query on an arbitrary copy of
the form: rerrieve (the v&es of) all physical wrires on
copy c by any trunsucrion executing in u such thut
v<u<_w. Such queries can be supported by labelling
the records of objects with “dates” in the same way
that copies are currently labelled with dates, or by
keeping a database log [GMBLLPPT] of all writes
and their associated “dates.”

One unfortunate consequence of rule R4 is that
whenever a processor p joins a new partition, all
ongoing transactions that have accessed a copy on p
must be aborted. This can be very costly and should
be avoided, if possible. It is not easy, though, to
find a weaker version of R4--one requiring fewer
abortions--without restricting the concurrency con-
trol protocol. On the other hand, if a particular
concurrency control protocol is assumed, a weaker
version of R4 can often be found.

Consider, for example, an implementation us-
ing a distributed version of two-phase locking
[EGLT]. Assume that copies (rather than objects)
are locked and that locks are held until the end of a
transaction. In such a system, a transaction can be
allowed to execute in a sef of virtual partitions VT,
without compromising one-copy serializability, if
the following conditions hold:

(1)

(21

(3)

The set of logical objects referenced by T is
accessible in every virtual partition in VT.
The set of processors holding copies that were
physically read or written by T are contained
in the view of every virtual partition in VT.
The recover operation (see R5) does not read a
copy that is locked for writing.

7. DISCUSSION

We have presented a replica control protocol
based on the intuitive ideas that (1) a communica-
tion cluster can access a logical object if it contains
a (weighted) majority of the object’s copies and (2)
logical operations are translated into physical opera-

tions on the copies within a cluster using the “read-
one/write-all” rule. Although the basic ideas of the
protocol are simple conceptually, its correct imple-
mentation is quite subtle because we did not assume
that failures are “clean.” In addition to providing
high fault-tolerance, the proposed protocol imple-
ments logical reads very efficiently.

The novelty of our protocol lies in the fact that
the virtual partition management subprotocol makes
a large class of failures (namely omission and per-
formance failures) look like “clean” communica-
tion failures that partition the network. As a result,
protocols that have been designed for partition fail-
ures can be used in conjunction with our virtual
partition management protocol in a more general
and realistic processing environment. For example,
many proposed data management schemes (e.g.
[BGRCK, D, SW]) for partitioned systems require
partition detection and, furthermore, assume A2 and
A3. Generally, these schemes require nothing
stronger than properties Sl throygh S3. Therefore,
these schemes can use the virtual partition manage-
ment protocol to “detect” virtual partitions and
operate on them as if they were real partitions.

ACKNOWLEDGMENTS

We would like to thank She1 Finkelstein, Jim Gray,
Bruce Lindsay, and Irv Traiger for a number of use-
f ul comments.

REFERENCES

[BGa] Bernstein, P., and Goodman, N.,
“Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13, 2, (June
1981) 185-222.

[BGb] Bernstein, P., and Goodman, N., “The Fail-
ure and Recovery Problem for Replicated Data-
bases,” Proc. 2nd ACM Symp. on Print. of Dis-
tributed Computing, Montreal, Quebec, August
1983, 114-122.

[BGRCK] Blaustein, B.T., Garcia-Molina, H., Ries,
D.R., Chilenskas, R.M., and Kaufman, C.W.,
“Maintaining Replicated Databases Even in the
Presence of Network Partitions,” EASCON,
1983.

[BSR] Bernstein, P., Shipman, D., and Rothnie, Jr.,
J .I “Concurrency Control in a System for Dis-

228

[Cl

tributed Databases (SDD-I),” ACM Transactions
on Database Systems 5, 1 (March 1980), 18-51.

Cristian, F., “Correct and Robust Programs,”
IEEE Trans. on Software Engineering SE-l 0, 2
(March 1984), 163-174.

[CASD] Cristian F., Aghili H., Strong R., and Dolev
D. “Fault-Tolerant Atomic Broadcasts: from
Simple Message Diffusion to Byzantine Agree-
ment,” Tech. Report, IBM Research San Jose,
1984.

[Dl Davidson, S., “Optimism and Consistency in
Partitioned Distributed Database Systems,”
ACM Transactions on Database Systems 9, 3
(September 1984), 456-482.

[ES] Eager, D., and Sevcik, K., “Achieving Robust-
ness in Distributed Data Base Systems,” Trans-
actions on Database Systems 8, 3 (September 83),
354-381.

[EGLT] Eswaran, K., Gray, J., Lorie, R., and Traig-
er, I., “The Notions of Consistency and Predi-
cate Locks in a Database System,” Comm. of the
ACM 19, 11 (November 1976), 624-633.

[ESC] El Abbadi, A., Skeen, D., and Cristian, F.,
“An Efficient, Fault-Tolerant Protocol for
Replicated Data Management,” Tech. Report,
IBM Research San Jose, 1985.

[G] Gifford, D., “Weighted Voting for Replicated
Data,” Proc. of the 7th Symposium on Operating
Systems Principles Dec. 1979.

[GMBLLPPT] Gray, J., McJones, P., Blasgen, M.,
Lindsay, B.. Lorie, R., Price, T., Putzulo, F.,
and Traiger, I., “The Recovery Manager of the
System R Database Manager,” ACM Computing
Surveys 13, 2 (June 1981). 223-242.

[H] Hadzilacos, V., “Issues of Fault Tolerance in
Concurrent Computations,” Tech. Report ll-
84, Harvard University, Center for Research in
Computing Technology, Cambridge, Massachu-
setts (June 1984).

[KR] Kung, H., and Robinson, J., “On Optimistic
Methods for Concurrency Control,” ACM
Transactions on Database Systems 6, 2 (June
1982), 213-226.

[L] Lamport, L., “Time, Clocks, and the Ordering
of Events in a Distributed System,” Comm. of
the ACM 21, 7, (July 1978) 558-565.

[SW] Skeen, D., and Wright, D., “Increasing Avail-
abilty in Partitioned Database Systems”. Proc.
3rd ACM Symp. on Print. of Database Systems,
Waterloo, Canada, April 1984, 290-299. TR
83-581 Dept. of Computer Science, Cornell
University, Ithaca NY 14853.

[TGGL] Traiger, I.L., Gray, J.N., Galtieri, C.A.,
and Lindsay, B.G., “Transactions and Consist-
ency in Distributed Database Systems,” Trans-
actions on Database Systems Vol. 7, 3 (September
1982), 323-342.

[T] Thomas, R.H., “A Majority Consensus Ap-
proach to Concurrency Control for Multiple
Copy Data Bases,” ACM Transactions on Data-
base Systems 4, 2 (June 1979) 180-209.

220

