
An Empirical Study of a Wide-Area
Distributed File System

MI RJANA SPASOJEVIC

Transarc Corporation

and

M. SATYANARAYANAN

Carnegie Mellon University

The evolution of the Andrew File System (AFS) into a wide-area distributed file system has
encouraged collaboration and information dissemination on a much broader scale than ever
before. We examine AFS as a provider of wide-area file services to over 100 organizations
around the world. We discuss usage characteristics of AFS derived from empirical measure-
ments of the system. Our observations indicate that AFS provides robust and efficient data
access in its current configuration, thus confirming its viability as a design point for wide-area
distributed file systems,

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Manage-
ment--distributed file systems; D.4.8 [Operating Systems]: Performance—measurements

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Andrew, Internet, scalability, usage, wide area, World
Wide Web

1. INTRODUCTION

Over the last decade, distributed file systems such as AFS and NFS in the
Unix world, and Netware and LanManager in the MS-DOS world, have
risen to prominence. Today, virtually every organization with a large

This research was funded by the Advanced Research Projects Agency, under contract
MDA972-90-C-O036, ARPA order number 7312. The views and conclusions expressed in this
article are those of the authors and do not represent the official position of ARPA, Transarc
Corporation, or Carnegie Mellon University. Mirjana Spasojevic is currently afllliated with
Hewlett-Packard Labs, Palo Alto, Calif.
Authors’ address: M. Spasojevic, Hewlett-Packard Labs, MS 1U13, 1501 Page Mill Road, Palo
Alto, CA 94304; email: mirjanaG3hpl.hp.tom; M. Satyanarayanan, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213; email: satya@cs.cmu.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.
@ 1996 ACM 0734-207119610500-0200 $03.50

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996, Pages 200-222

A Wide-Area Distributed File System Q 201

collection of personal machines uses such a system. The stunning success of
the distributed-file-system paradigm is attributable to three factors.

First, a distributed file system simplifies the separation of administrative
concerns from usage concerns. Users work on tasks directly relevant to
them on their personal machines. Incidental but essential tasks such as
backup, disaster recovery, and expansion of disk capacity are handled by a
professional staff who focus primarily on the servers.

Second, the use of a distributed file system simplifies the sharing of data
within a user community. Such sharing can arise in two forms: by a user
accessing files from different machines and by one user accessing the tiles
of another user. The ability to easily access one’s files from any machine
enhances a user’s mobility within his or her organization. Although the
accessing of someone else’s files is not a frequent event (a fact confirmed by
many previous studies [Baker et al. 1991; Ousterhout et al. 1985]), ease of
access once the need arises is perceived as a major benefit by users. In
other words, while sharing may be rare, the payoff of being able to share
easily is very high. In this respect a distributed file system is like a
telephone system: although a given individual only tends to call a tiny
fraction of all telephone numbers, the latent ability to effortlessly reach
any other telephone in the world is viewed as a major asset of the system.

Third, transparency is preserved from the users’ and applications’ points
of view. Applications do not have to be modified to use a distributed file
system. Because a distributed file system looks just like a local file system,
a user does not have to learn a completely new set of commands or new
methods of file usage.

The designs of modern distributed file systems reflect these observations.
They use a client-server model, offer location transparency, rely on caching
to exploit locality, provide fairly weak consistency semantics relative to
databases, and support programming and user interfaces that are close to
those of a local file system. The success and widespread usage of these
systems confirm the appropriateness of these design choices.

But this success engenders a new question: “Is the distributed-file-
system paradigm sustainable at very large scale?” In other words, how well
can a very large distributed file system meet the goals of simplifying
system administration, supporting effective sharing of data, and preserving
transparency? Growth brings many problems with it [Satyanarayanan
19921: the level of trust between users is lowered; failures tend to be more
frequent; administrative coordination is more difficult; performance is
degraded. Overall, mechanisms that work well at small scale tend to
function less effectively as a system grows. Given these concerns, how large
can a distributed file system get before it proves too unwieldy to be
effective?

In this article, we provide one data point toward answering this question
by reporting on the usage characteristics of AFS, the largest currently
deployed instance of a distributed file system. Originally intended as a
solution to the computing needs of the Carnegie Mellon University, AFS
has expanded to unite about 1000 servers and 20,000 clients in 10 countries

ACM ‘rransactlons on Computer Systems, Vol 14, NO 2. May 1996

202 ● M. Spasojevic and M. Satyanarayanan

into a single file name space. We estimate that more than 100,000 users
use this system worldwide. In geographic span as well as in number of
users and machines, AFS is the largest distributed file system that has
ever been built and put to serious use.

Our study confirms that the distributed-file-system paradigm is indeed
being effectively supported at the current scale of AFS. The measurements
show that cache hit rates are above 96% and that servers are inaccessible
only a few minutes per day. Even though most of data access (by volume)
occurs within the boundaries of a single organization, the percentages of
references to remote files is significant. Further, our data do not expose any
obvious impediments to further growth of the system. While asymptotic
limits to growth are inevitable, they do not appear to be just around the
corner.

2. BACKGROUND

2.1 Design

The rationale, detailed design, and evolution of AFS have been well
documented in previous papers [Howard et al. 1988; Morris et al. 1986;
Satyanarayanan 1985; 1989; 1990; Spector and Kazar 19891. In this sec-
tion, we provide just enough detail of the current version of AFS (AFS-3) to
make the rest of the article understandable.

Using a set of trusted servers, AFS presents a location-transparent Unix
file name space to clients. Files and directories are cached on the local
disks of clients using a consistency mechanism based on callbacks [Kazar
1988]. Directories are cached in their entirety, while files are cached in
64KB chunks. All updates to a file are propagated to its server upon close.
Directory modifications are propagated immediately.

Backup, disk quota enforcement, and most other administrative opera-
tions in AFS operate on volumes [Sidebotham 1986]. A volume is a set of
files and directories located on one server and forming a partial subtree of
the shared name space. A typical installation has one volume per user, one
or more volumes per project, and a number of volumes containing system
software. The distribution of these volumes across servers is an administra-
tive decision. Volumes that are frequently read but rarely modified (such as
system binaries) may have read-only replicas at multiple servers to en-
hance availability and to evenly distribute server load.

AFS uses an access list mechanism for protection. The granularity of
protection is an entire directory rather than individual files. Users may be
members of groups, and access lists may specify rights for users and
groups. Authentication relies on Kerberos [Steiner et al. 1988].

AFS supports multiple administrative cells, each with its own servers,
clients, system administrators, and users. Each cell is a completely auton-
omous environment. But a federation of cells can cooperate in presenting
users with a uniform, seamless file name space. The ability to decompose a

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

A Wide-Area Distributed File System ● 203

distributed system into cells simplifies delegation of administrative respon-
sibility [Spector and Kazar 19891.

As originally designed, AFS was intended for a LAN. However, the RPC
protocol currently used in AFS has been designed to perform well both on
LANs as well as on wide-area networks. In conjunction with the cell
mechanism, this has made possible shared access to a common, worldwide
file system distributed over nodes in many countries.

2.2 Evolution

AFS was conceived in 1983 at Carnegie Mellon University with the goal of
serving the campus community and spanning at least 5000 workstations.
The design and implementation went through three major revisions: AFS-1
in 1984, AFS-2 in 1986, and AFS-3 in 1989. After 1989, responsibility for
further development of AFS was transferred to Transarc Corporation. As of
early 1989 there were four cells on the CMU campus with a total of 30 file
servers and 1000 clients. In addition, remote cells were operating experi-
mentally at MIT and the University of Michigan. This initial experience
gave strong indications that AFS was appropriate for wide-area, shared file
access.

In 1990 the Advanced Research Projects Agency (ARPA) awarded
Transarc a contract to deploy and evaluate a file system to be shared by 40
to 50 Internet sites in the U.S. By mid-1991 there were 14 organizations
included in the study. At the time of writing this article (November 1994)
more than 130 organizations were part of this wide-area distributed file
system. 1

The wide-area nature of AFS is clearly visible from Figure 1, which
shows the cells visible at the topmost level of AFS. All these directories, as
well as the trees beneath them, are accessible via normal Unix file
operations to any client anywhere in the system.

3. EVALUATION METHODOLOGY

Our goal in conducting this empirical study was to understand how
effective various AFS mechanisms were in a large-scale, wide-area context.
In this section we discuss our considerations in developing a measurement
strategy, and then we briefly describe the data collection mechanism. We
complete the section by characterizing the duration of our data collection
and the size of the user community involved.

3.1 Considerations

One of the primary requirements in monitoring a system is minimal impact
of instrumentation on the users and the system. The data collection should
not significantly degrade the performance and availability of the system;

‘There are more than 500 organizations worldwide that use AFS. However, many of these
organizations do not have direct access to the Internet, and consequently their cells are not
part of the wide-area file system which we discuss in this article.

ACM Transactions on Computer Systems, V.1 14, No 2, May 1996.

204 ● M. Spasojevic and M. Satyanarayanan

es. Uizoma. tdll
cs. brown. sdu

bu odu

~.caltech. edu

au. adu

Utdr*m . cm da
club . CC. emu.●du

c*. cmu.9du

theme. cmu.●du

cs.emu.adu

wa. emu. adu

● a . all . ●du
aci. emu.odu

Cs ..9ACornell

UC. CO~*ll odn

)yaphics . cornmll . OdU
thwry . corlmll . dU

kiawit . dutmonth adn

northst ar . du-tmuth.C&l
af-i. scri. fcu. odu

iwtat* .du

UC~ idiMa.●du
isi . adu

al.fnull. mit. .du
athuu . tit . MIU

rel-eng. atham. mit. tdu
media-lab . nit. ●du

not. mit. .du
sipb mit●du
SOUp. mit . ●du

watch .mit . ,du

neat edn

●OS ncsll . edn
Ild.odu

nsf -c*ntcra. ●dn
pitt da

pnc . till

hwm. psc. cdu
pslt . till

ros.-hulman. O&I
I-pi . edu

dm.g.attiord. adn
ir. Stanford. odu

slat. stanford..du
●C, . ucdwis ●du

(a) educational cells in the US

adm. Com ctp. ●*. itm. com truuarc. com

bstus . Corn locus . Com prc . lmi9Js . Cm
Carda . Com mtxinu. Com stars .recton .unimym. com

Pub. nma.hp. com Vfl. puamax. com .grmnd.cantrti. org
pale-alto. hpl. hp. com ●tus. com cioain. org

pitt #burgh. itm. com tmloa . Com dementia. org

Ull .gOT
fml . g07
inel . gov

jrc. flind9rs. 02.au
glade. yorku. ca

writ-r. yorkn. ca
afm .huml-y . ibm. corn

d!z . ch

zurich. ibm. ch
lrz-mumnchan. dt

ipp-gcchi~ . mpg. da

qa-garching q)g. da
hrxona. th-darmtadt. de

(b) commercial cells in the US

mpC uchicqo . ●du
Ucop .adu

ni.d.odu
Wn.d.dn

nmich. du
Citi. uaicb. bds

math .laa. nmich. tiu
lsa. mich. du

du?. med.ttmich.du
,ph . umich du

Cti.uac. odu
Utah edn

cs. utab. mdn

es. wash@ton . edu

dc*. osf. org
gx. osf .org

ri. omf .org
ap*ng. oaf. org

KL*r#c. @v pppl . go? nrlfsl, nrl. nwy. mil

ah. nih . gov sac . gov ●C. not
ctd ornl .gov cmf. nrl. nmy. mil

(c) goverment cells in the US

tu-chtmaitz . da

ml-f roiburg. do
urz. uni-h*idclhrg. do

uni-hohanboim. da
rhrk, uni-kl. d-

gmo. ur+i-kodn . da
matao umi-kooln.da

lTZ uni-kodn. de

ihf . uni-ntuttgut . do

mathmat ik uni-stuttgut d-

rus .nni-stuttgart .do
lTS-Cip .UUi-ttnttgut do
zdvpool . nni-tuabig , da

in2ps.tr

Cupnr. it

pi.infn.it
cc. koio. ac. jp

mfc. koio. mc. jp
titach. ac. jp

●tl. go.jp

rwcp. or. jp
hcpafmi.h-p .not
remearch. ●c. org

othcra. cha.lmorm. cc

nada. kth. m

bcc. ac. nk

~guna . crtnfiold. mc .uk

athana. ox. ac .uk

ibm. nk

(d) cells outside the US

Fig, 1. A snapshot of cells visible from a typical AFS client. This figure shows the cells visible
from a typical client in the system on November 1, 1994. The listing above was obtained by
doing an “IS /afs” and then sorting the output according to the domain. As the figure shows,
there were 59 educational cells, 22 commercial cells, 11 governmental cells, and 39 cells
outside the United States at the time of the snapshot.

otherwise users will alter their behavior to circumvent these deficiencies.
The scale of the system and our desire to study it over a long period of time
complicate the logistics of data collection considerably. It is practically
infeasible to require extensive cooperation of users or system administra-
tors at many different cells to assist in the data collection. Hence we
decided that our instrumentation should not require any regular adminis-
trative effort by the sites being monitored. But, the system administrator of

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

A Wide-Area Distributed File System . 205

WIDE-AREA NEIWORK LINK

DATACOLLECKIR

CLIENT

f >)

FILE

SSRVER
< /

CLIENT
)

CSNTRAL
REPOSITORY

CLIENT
1

Fig. 2. Instrumentation for data collection,

a cell could turn off data gathering if that cell did not wish to participate in
the study.

Instrumentation of a system like AFS requires advance planning. The
instrumentation has to follow the standard software release cycle. For a
commercial system like AFS, there is usually a period of at least six months
between two successive versions. Consequently, there is a considerable
time lag in seeing the effect of changes to the data collection tools.

A significant factor in our design was the need to balance the level of
detail of event recording with providing adequate privacy and limiting data
volume. Hence, many of our statistics report on aggregate behavior of the
system rather than, for example, per-file operations.

3.2 Data Collection Mechanism

Our measurements were performed via the xstat data collection facility
(Transarc 19911. The AFS code was instrumented to allow collection of

extended statistics concerning the operation of servers and clients. These

statistics could be obtained remotely via an RPC call from any AFS client

or server at any time.

A central data collection machine, located at Transarc, polled and ob-

tained data from each participating machine once a day. The collected data

was formatted and inserted into a relational database for postprocessing.

The database provided a scalable tool for storing and manipulating large

quantities of data. Figure 2 shows the structure of our data collection

mechanism.

Not requiring the active cooperation of remote cells complicated the

process of discovering which clients and servers should be contacted for

data collection. Our solution to this problem was to run a discovery process
once every few weeks. This process queried the Domain Name Service at

ACM Transactions on Computer Systems, Vol 14, No ‘2, May 1996

206 ● M. Spasojevic and M. Satyanarayanan

each cell to obtain a list of registered 1P addresses. This list was then
probed to discover new AFS clients and servers in that cell.

Our evaluation of AFS was based on data from clients and servers,
collected over two 12-week periods. We supplemented it by circulating a
questionnaire on various aspects of AFS to a sample of users and compared
their responses to the measured data. This corroboration with anecdotal
information served as a sanity check on our measurements.

One’s confidence in the answers of an evaluation can be classified into
four levels based on the origin of the information: intrinsic (direct exami-
nation of the system design), empirical (raw measurements), eviderztiary
(inferences based on raw data), and anecdotal (information requiring user
judgment). In this taxonomy, our primary information is empirical and
evidentiary while our secondary information is anecdotal.

3.3 Coverage

The first round of measurements was conducted during a 12-week data
collection period from mid-May to mid-August, 1993. Our data spanned 50
file servers and 300 clients from 12 cells in 7 states. Preliminary results
from this collection were presented in an earlier paper [Spasojevic and
Satyanarayanan 1994].

The data collection code was refined and extended based on the insights
gained in this preliminary study. The second round of measurements
widened coverage to 70 file servers and over 900 clients from 14 cells. These
measurements were conducted during another 12-week data collection period,
from mid-October, 1993, to mid-January, 1994. In this article we present the
results from the second set of measurements. We point out differences, when
appropriate, between the preliminary and current observations.

4. OBSERVATIONS AND ANALYSIS

In this section we present and analyze data collected during the study. We
begin by examining storage capacity and volume activity. We then discuss
the nature of client-server interaction, including RPC traffic and bulk data
transfers. Next, we explore cache performance and availability, two key
parameters of any distributed system. Finally, we examine the extent to
which AFS is used for collaboration and information dissemination.

4.1 AFS Data Profile

How much data does the wide-area file system contain? Figure 3 shows a
snapshot of the data stored at 10 cells. These cells contained 70 file servers,
housing about 32,000 volumes and constituting over 200GB of data. The
data shows that although 52% of the volumes belong to individual users,
they contain only 19% (41GB) of the data. The default quota on volumes in
AFS is 5MB, which might explain why so many user volumes are rather
small. Approximately 30% of the data (65GB) belongs to backup volumes.
Only 2% of the volumes are read-only replicas, and they contain only 4% of
the data. The remaining 25% of the volumes correspond to system binaries

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

A Wide-Area Distributed File System . 207

Volume type Total number Total size (GB) Average size (MB/vol)

User 16,622 (52%) 41 (19%) 2.5

Backup 6,654 (21%) 65 (30%) 9.8
Readonly 648 (2%) 9 (4%) 13.4

Other 8,171 (25%) 103 (47%) 12,6
ALL 32,095 (100%) 217 (100%) 6.8

Fig. 3 Storage capacities of 10 cells. This table is based on the volumes housed by 70 servers
at 10 sites. The volume types were deduced from the volume names.

and data, bulletin boards, and other miscellaneous data. Together, these
volumes contain almost half of the total data.

Extrapolating from this evidence, we estimate that the whole wide-area
file system contains more than 400,000 volumes with 3–4TB of data. It is
interesting to note that although the average volume size is only 6.8 MB,
the raw data indicate that some volumes contain more than 1.5GB of data.
In other words, volumes span a wide range of sizes, but tend to be skewed
toward the low end (Figure 4).

A related but distinct question pertains to how many of these volumes
are in active use every day. To answer this question, we recorded the
number of volumes that registered at least one read or write operation
during the day. We also recorded sizes of these volumes. Our measure-
ments indicate that every day approximately 407G of the volumes register at
least one read or write operation. Those volumes comprise approximately
50% of the data (Figure 5).

We also tracked individual volume access patterns. Based on the ob-
served patterns, we computed a hazard rate which represents the probabil-
ity that a volume will be referenced on a particular day, assuming that the
last reference was x days ago (Figure 6). Our data show a very high hazard
rate of 80% on day 1. In other words, if a volume was accessed yesterday,
there is 807c chance that it will be accessed again today. The hazard rate
drops sharply to around 40% on day 2 and continues to slowly decrease
thereafter. This indicates the existence of a set of “hot” volumes which are
accessed daily.

Earlier studies of file lifetimes and access patterns by Smith [1981a;
1981b] have found that for a file migration algorithm it is useful to use the
time since last reference, the file size, the type of file, and the file age.
Direct comparison of the results of those studies with our observations
of volume access patterns is not entirely appropriate, because of the
substantial difference in data granularity—our measurements are per-
volume whereas the earlier measurements are per-file. However, we
tested the hypothesis that “time since last reference” is an important
factor for a volume migration strategy. We built a simulation model in
which an entire volume is migrated, if it has not been referenced for at
least three days. Our simulation shows that more than 90% of requests
are satisfied by the online volumes. This leads us to believe that Smith’s
work on file migration may in fact be applicable to volume migration
also.

ACM Transactmns on Computer Systems, Vol 14, No 2, May 1996.

208 ● M. Spasojevic and M. Satyanarayanan

20, I

15

% 10
of volume9

5

0-
0 10 20 40 50

volume size (MB3)0

Fig. 4. Volume size distributions. This graph is based on the same data as in Figure 3. It
shows the distribution of volume sizes for volumes up to 50 MB.

I 1 I I I I I I
I

60
t

40
%

of volumes
20

0 1

0

60

40
%

of data
20

0 I

o

10

1

10

20 30 40 50
day

(a) daily accessed volumes

I I

Ill
30

r

60

I

40 50

i
70

-

60

Ill
-’-1

Bt
70 80

day

(b) size of daily accemed volumes

Fig. 5. Volume activity on a daily basis. The graph in part (a) shows the percentage of
volumes that were accessed on a particular day during the 12-week data collection
period. The graph in part (b) shows the percentage of active-volume sizes with respect to
the total data.

A file migration system based on AFS has been built and used at the

Pittsburgh Supercomputing Center [Goldick et al. 1995]. Unfortunately, we

ACM Transactions on Computer Systems, Vol. 14, No, 2, May 1996.

A Wide-Area Distributed File System . 209

80 -

60 -
hazard rate

(%) 40 -

20 -

0 I 1 1)

o 5 10 15 20 25
days since last reference

Fig. 6 Volume hazard rates, The inputs for this graph were the observed lengths of intervals
between two consecutive access operations for active volumes. The length of intervals is
expressed in whole days. The minimum interval is one day for a volume that has been
accessed on two conserutii,e days. Based on the distribution of these intervals, the hazard rate

represents the probability that a volume will be accessed today when the last access was x
days ago

could not validate our simulation using empirical data from this system
because it migrates individual files rather than entire volumes.

4.2 Client-Server Interaction Profile

How do AFS clients and servers interact? The answer to this question is
important because knowledge of the relative distribution of file system RPC
calls helps characterize a normal system and identifies the commonest
calls. This, in turn, allows performance tuning to be focused. Figure 7 lists
the client-server RPC calls with short descriptions.

Both servers and clients have been instrumented to record the informa-
tion regarding these calls. They keep statistics about the total number of
calls, the number of successful calls, and the average time of execution of
successful calls {with the standard deviation). During our study, statistics
were collected from 50 file servers and 900 clients on a typical day,

4.2.1 RPC Calls Obser[ed by Servers. Over 680 million calls were
observed during the data collection period. About 937[of these were
successful. Figure 8 summarizes the detailed statistics of calls accounting
for at least 1% of the total calls.

The most frequent call is Fetch_Status. We conjecture that many of these
calls are generated by users listing directories in parts of the file name
space that they do not have cached. The significant number of unsuccessful
calls (9,2(; I suggests that these directories belong to protected areas of the
file name space. It is interesting to note that despite caching, the number of
Fetch_Data calls is considerably higher than the number of Store_Data
calls.

The average times of execution of RPC calls account only for the time
servers spend in servicing these calls and do not include network latency.
Different software and hardware server configurations, as well as varia-
tions in server loads, result in significant variance of RPC execution times.

A(’M TransactIons on Computer Systems, Vol. 14, No ‘2, .May 1996

210 ● M. Spasojevic and M. Satyanarayanan

Fet chData
FetchACL

Fetch3t atus
StoreData
StoreACL

StoreStatus
RersoveYile
Createlile

Renasre
Symlink

Link
MakeDir

RemoveDir
Set Lock

Sxtendlock
SaleaseLock
GiveUp.Call

Get .Vol_Inf o
Get -VolEAatus
Set _Vo13tatus

Get -Time
Bulk~tatus

Returns data of the specified file or directory and places a callback on it.
Returns the content of the specified tile’s or directory’s access control list.
Returns the status of the specified file or dkwtory and places a callback on it.
Stores data of the specified file or directory and updates the callback.
Storea the content of the specified file’s or dkectory’s access control list.
Storea the status of tbe specified file or directory and updates the callback.
Deletes the specified file.
Creates a new file and places a callback on it.
Changes the name of a file or directory.
Creates a symbolic link to a file or directory.
Creates a hard link to a file.
Creates a new dkctory.
Deletes the specified directory which must be empty.
Locks the specified file or directory.
Extends a lock on the specitied file or directory.
Unlocks the specified file or directory.
Specifies a file that a cache manager has flushed from its cache.
Returns the name(s) of servers that store the specified volume.
Returns the status information about the specified volume.
ModMea status information on the specified volume.
Synchronizes the workstation clock and checks if servers are alive.
Same aa FetchStatus but for a Iist of files or dkect.ories.

Fig. 7. Client-server RPC calls

RPc calf 7 #of calls (% err.) Avg ms (ad.)
1. FatchData 8.: 57,399,455 (0.4) 240 (878)
2. Fet chJR.atus 73.5 500,176,483 (9.2) 20 (426)
3. StoreData 3.5 23,664,981 (0.9) 113 (398)
4. StoreStaturi 4.6 31,595,893 (0.5) 3 (110)
5. Ramovelile 1.3 9,130,978 (0.9) 52 (218)
6. Create-File 1.5 10,274,032 (17.8) 32 (389)
7. GiveUpXall 1.4 9,408,889 (0.0) 1 (40)
8. Get -Time 3.9 26,376,447 (0.0) 6 (198)
ALL 100.0 680,284,501 (7.14) nJa

100%

50%

L
12345678

RPc cdl

Fig. 8, Average distribution of RPC calls observed by servers. This figure presents statistics
for RPC calls that account for at least 1’% of the total calls. The numbers presented correspond
to the percentage of a given call in the total number of RPC calls, the number of calls (with the
percentage of unsuccessful calls), and the average time of execution of successful calls (with
the standard deviation). The average times of execution account only for the time servers
spend in servicing these calls. The results were averaged over all servers and all data collected
during the 12-week data collection period. The graph on the right side is a graphical
representation of the second column in the table.

Both Fetch_Data and Store_Data calls take considerably longer than other
operations. This is to be expected, since they involve disk 1/0. The GiveUP
_Call is the call that takes the least amount of time on average. It involves
only updating the server’s internal callback structure.

Although Fetch_ACL call is not shown in Figure 8, our raw data showed
that it takes considerably more time on average than Fetch_Status call

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

A Wide-Area Distributed File System G 211

Percentage of Calls
week Fetch D Fetch.S StoreD Store_S Remove_F Createl GiveUp.C Get.T

1 9.0 77.3 3.2 1.5 0.9 1.3 1.3 4.0
2 7,6 79,7 2.9 1.5 1.1 1.2 1.5 2.8
. 1 . . I -,” - ,-.” .“ , .,.
J I 6..3 I (5. (I La I 1,0 I 1.U I 1.2 I 1.4 I 3.4

41 8.7 76.6 3.3 1.8 1.1 1.4 1.3 4.0
51 8.9 I 765 I 3.4 I 19 I 10 I 14 I 12 I 41t , , 1 ! -.. ! ---

6 9.8 72.9 3.9 2.1“- ;:6 1.8 1.5 ‘“-4.5
7 7,3 76.2 3.6 1,9 1.2 1.5 1.4 5.3
8 9.4 67,7 4.6 6.9 1.7 2.0 1.1 4.6
9 10.0 74.8 3.3 1.9 1.0 1.3 1.1 4.9

10 7,0 75.2 3,0 5.0 1.3 1.3 2.0 3.4
4

11 6.0 62.7 3.5 17.2 2.1 1.7 1.5 3.0
12 I 8,5 60.7 4.4 14.7 2.4 2.1 1.3 3.4

all I 8.4% 73.5% 3.5% 4.6% 1.3% 1.:% 1.4% 3.9%

Flg 9 \Veekl~ RP(’ call distributions ohservc,d by servers This table is based on the same
r;t~i ciat:; as the tahl(> in Figure H. [t indicates \veekly avcra~es (in percentages), rather than
averaginx ticr(Iss all $veeks

[140ms vs. 20ms I. This surprised US, since Fetch_ Status returns access list
information. This apparent anomaly was explained when inspection of the
AFS code showed that the implementation of Fetch_ACL contains a call to a
protection server, while the implementation of Fetch_ Status does not. The
same is true for the Store_ACL and Store_ Status pair of calls,

Analysis of RPC calls on a weekly basis confirms that their distribution is
stable over time. Figure 9 presents data that show only two significant
deviations from the general profile shown in Figure 8. The anomalies are
the very high number of Store_ Status calls during weeks 11 and 12.

We discovered that more than 90% of Store_ Status calls during these two
weeks were concentrated on one file server at Transarc. The high number
of Store_ Status calls on this file server was also accompanied by a higher-
than-average number of Store_Data calls. Further investigation revealed
that this server contains many volumes occasionally updated with new
software, thus explaining the unusual distribution of calls.

With this data. one can loosely characterize a normally running system

as one with a very high number (above 60%) of Fetch_ Status calls, and

smaller, but still significant, number of Fetch_Data calls (about 8C4). (lther

frequent calls in such a system include Store_ Data, Store_ Status, and
Get_Time.

4.2.2 RPC Calls Generated b,v Plient.s. The set of machines from which
we were collecting data did not represent a “closed system, ” i.e., there was
no guarantee that participating servers and clients were contacting only
each other. Thus, the number of calls observed by file servers does not
match the number of calls generated by clients, Nevertheless, it is interest-
ing to compare these two profiles. Figures 10 and 11 summarize the data
collected from clients.

There were over- 570 million calls, out of which 96.2’; were successful.
Again. Fetch_Status calls dominate. But the relative percentage of these

AC’M Transactions on (’omput,,v S.v.t,,ms. \’[)1 14, N() 2, May 1996

212 ● M. Spasojevic and M. Satyanarayanan

100%

50%

L
123456789

RFc call

Fig. 10. Average distribution of RPC calls generated by clients. This figure presents statis-
tics for RPC calls that account for at least 1% of the total calls. The numbers presented
correspond to the percentage of a given call in the total number of RPC calls, the number of
calls (with the percentage of unsuccessful calls), and the average time of execution of
successful calls (with the standard deviation). The results were averaged over all servers and
all data collected during the 12-week data collection period. The graph on the right side is a
graphical representation of thesecond column in the table.

1=week
1

FetchD
15.7

I P.rr.ntawe of (%lls I

i--i t

15.5

- ------ -- -. .—-
] FetcbS I StoreD I Store_S] fiemove~ j CreateJ GlveUp-C Get-VS Get-T
I 62.4 I 5.1 I 2.2 I 1.2 I 1.7 1.7 2.1 5.5

OZ.* I a.u I L.L I 1.3 I 1.8 1.9 2.1 4.8

I 66.1 4.3 1.9 1.1 1.6 1.7 2.1 4.7
62.8 I 5.1 I 2.0 I 1.5 I 1.8 1.6 2.1 5.0

1

5 15.5 63.3 4.8 2.3 1.2 1.7 1.7 2,0 5.1
6 15.3 63.6 4.8 1.8 1.3 1.8 1.8 2.3 5.0
7 13.1 63.0 5.0 1.9 2.0 2,1 1.9 2.7 5.8
8 15.0 63.7 4.9 2.1 1.4 1.9 1.8 2.3 4.8
9 14.1 66.9 4.4 1.8 1.2 1.5 1.6 1.7 5.0

10 14.0 64.8 3.8 1.7 1,5 1.6 1.9 2.3 5.3
11 14.5 66.2 3.5 1.4 1.0 1.4 2.3 2.3 5.0
12 15.0 65.7 3.8 1.7 1.1 1.6 1.7 1.9 5.1

d] 14,9% 64.2% 4.6% 1.9% 1.3% 1.7% 1.8% 2.1% 5.170

Fig, 11. Weekly RPC call distributions observed by clients. This table is based on the same
raw data as the table in Figure 10. It indicates weekly averages (in percentages), rather than
averaging across all weeks

calls was slightly lower than that reported in Figure 8 for servers. At the
same time, the relative percentage of Fetch_Data calls was significantly
higher.

The other significant difference between the two profiles is that in the
client’s case Get_Vol_Status call represents more than 2’% of the total calls.
We found that this anomaly is not typical and that it was confined to
clients in only one cell.

The observed average times of execution of RPC calls account for both the
time servers spend in servicing these calls and the network latency.
Different software and hardware configurations of both servers and clients,
as well as variations in loads and network congestion, result in significant
variance of RPC execution times. However, on average, execution of an
RPC call took about 100ms longer on a client than on a server.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

A Wide-Area Distributed File System ● 213

128 B-l KB

lKB-8KB

8KB-16KB

16 KB -32 KB

32 KB -128 KB

Servers
Fetched (%)

28

5

34

5

3

24

2

390 MB

Stored (%)

35

11

18

6

4

24

1

143 MB

Clients

Fetched (’%)

20

6

34

6
4

29
1

33 MB

Stored (%)

16

15

26

8

8

27
1

7 MB

F1’g. 12 F]le transfer size distribution. This table represents distribution {~ftran.sfi, rr{,d data
chunk SIZCJSas observed hy scr>rers and clients over the 12-~veek data collection per]{jd

4.2.3 ~rruses of RP~ Failures. As noted in the previous section, nearly
3.8”; of the calls generated by clients failed. We were curious about the
nature of these failures, since they may have been symptomatic of underly-
ing performance or reliability problems. To study this, we instrumented
AFS clients to keep track of failed RPC calls. Errors were divided into
several categories: server problems, network problems, protection problems
(insufficient authorization or expired authorization tickets), volume prob-
lems, occurrences of a busy volume (e.g., when a volume is moved to
another server), and errors of unknown cause.

(lur data showed that the majority of failed calls, 89 CA,were Fetch_ Status
calls. Most of them, 93.8~, failed because of protection errors. We hypoth-
esize that there are periodic jobs on some machines that attempt to
traverse the AFS tree and fail when they encounter a protected part of the
tree. Another plausible explanation is continuous execution of some back-
ground daemons [e.g., xbiff~ which always produce a failed call after the
authorization ticket’s expiration. A significant number of unsuccessful
calls, 10%, failed for unknown reasons.

4.2.4 Bttlk-Tralzsfi’r Profile. Statistics concerning file transfers were
recorded by both file servers and clients. AFS performs partial file caching,
so the numbers reported here show transfers on a per-chunk basis, rather
than on a per-file basis. The exceptions are directories which are cached in
their entirety. Chunk size is 64KB by default, but may be changed on a
per-client basis.

The collected statistics are summarized in Figure 12. Our data indicate
that the most frequently fetched chunks are in the range 1– PiKB. These
correspond to entire files or directories. This result is consistent with many
earlier studies of file size distributions which have reported small average
file size 10usterhout et al. 1985; Satyanarayanan 19811.

The distribution of data transfers on file servers and clients is roughly
similar. The results from Section 4.1 indicate that the amount of data
housed by active volumes is about 1.5GB per file server. Figure 12 shows
that only about 25ck of this data (390 MB) is actually fetched hy clients.
Compared to the preliminary set of measurements, the results of the
current round show much higher data traffic rates.

~r,~ Transactlans on Computer Syst~ms, L’(II 14, (N,, 2. May 1996

214 ● M. Spasojevic and M. Satyanarayanan

data file status information

1~ ~ 100 ~

99 99

98 98
% %

97 97

96 96

95 95
10 30 50 70 10 30 50 70

day day

(a) combined cache hit ratio for native and foreign tile references

data file status information
I I I 1 I I I I

20 - 20 -

15 - 15 -

% %
10 r 10 -

5 - 5 -

0 0
10 30 50 70 10 30 50 70

day day

(b) fraction of references to files in foreign cells

Fig. 13. Cache performance and reference mixes. This flgare shows the observed cache hit
ratios and relative proportion of native-cell and foreign-cell references over the data collection
period. The gaps in histograms on several days correspond to missing data due to problems
with the data collection machine,

4.3 Performance and Reliability

4.3.1 Cache Performance. Cache hit ratio is a critical factor in deter-
mining the overall performance of a system like AFS. Caching is especially
valuable in masking the long latencies typical of wide-area networks. To
study this aspect of AFS, we instrumented clients to keep statistics on
cache hit rates and on the percentages of references made to native and
foreign cells (Figure 13). Since the AFS file cache is split into a cache for
data and a cache for status information, our statistics were kept separately
for these two categories.

Our data indicate that the average cache hit ratio is over 98% for data
and over 9690 for status information. The percentage of references to files
in foreign cells was around 5% for data and 8~0 for status information. The
exceptions occurred on several days when the recorded percentages to
foreign data were as high as 20%. This anomaly turned out to be a result of

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996,

A Wide-Area Distributed File System . 215

Type of outage Fraction of time Time (rein/day)
Servers in the same cell 0.07- 0.82% 1.0- 11.9
Servers in foreign cells 0.02- 0.72% 0.3 -10.4

Fig. 14 Average inconvenience time for clients, This table shows observed average inconve-
nience times for clients over the 12-week data collection period. The lower side of the range
represents the case when for each client all daily failures occur simultaneously. The higher
side of the range represents the case when daily failures do not overlap.

just one client accessing an unusually high number of remote files. When
this client was excluded from the study, the percentage of references to
foreign data dropped to less than 5% on these days. We statistically
analyzed the possibility of foreign-cell references causing much lower cache
hit ratios. Our analysis indicated that there was no such correlation.

4.3.2 Frequency of File Server Failures. Interruption of file service in a
wide-area file system is a potential obstacle to providing transparency. One
way of measuring file server downtimes is to have file servers record
downtimes themselves and report them to the data collection agents.
However, in our view, a much more important picture is the one that client
machines have about the file servers’ availability. Thus, we instrumented
clients to record outages. A particular file server’s downtime was ob-
served only by the clients that could not access particular data from that
file server (because of the server’s failure and/or network problems).
Such an approach weights failures by clients’ interest in the files
affected; in other words, the inaccessibility of a heavily used file
contributes more to the metric than the inaccessibility of a lightly used
file. Figure 14 reports average inconvenience time, which is the time
during which a client cannot communicate with at least one file server
that it needs to access.

Downtime incident statistics were collected from 800 clients on an
average day. During the 12-week data collection period, the number of
observed server downtime incidents was 20,763 for servers in the same cell
and 2929 for servers in foreign cells. (Figure 15). It should be noted that a
particular server’s outage can be reported multiple times if observed by
multiple clients. Also, on an average day only about 307(of the clients
accessed data in foreign cells and thus were able to observe server down-
times in foreign cells. According to the numbers collected, on average, a
client observes a server outage every three days for the local cell and every
12 days for the foreign cell, under the assumption that all clients are
equally observant (active). The duration of more than half the outages is
less than 10 minutes. Since this is shorter than the recovery time for a
typical server, we conjecture that many of these short outages are really
due to transient network failures.

4.4 Sharing in AFS

The existence of cross-cell file access in AFS is borne out by the data
presented in Figure 13(b). That figure showed that the percentage of

ACM Transactions on Computer Systems, V.} 14, No 2, May 1996

216 ● M. Spasojevic and M. Satyanarayanan

I Serversin I Serversin
Downtimedurations the samecell foreigncells
0 min -10 min I 12,021 (58.0%) I 1,944 (66.4%)
10 min -30 min 6,013 (29.0%) 503 (17.2%)

30 min -1 hr 1,317 (6.4%) 114 (3.9%)
lhr-2hr 563 (2.7%) 81 (2.8%)

2hr-4hr 212 (1.0%) 118 (4.0%)

4hr-8hr 288 (1.4%) 66 (2.2%)

>8hr 349 (1.7%) 103 (3.5%)
TOTAL I 20,763 (100.0%) \2,929 (100.0%)

Fig. 15. Distributionof tile serveroutage durations.This table shows durationsof file server
failures as observed by clients over the 12-week collection period.

references to the files in foreign cells was up to 5$?0for data and up to 8% for
status information during the 12-week data collection period. Although 5~o
may not seem like much, it is significant because cells represent organiza-
tional boundaries, and most users tend to access data within their own
organizations.

Figure 16 represents a histogram of the number of different cells con-
tacted by each client during the 12-week period. The table shows that
nearly 90% of the clients referenced data in at least one foreign cell while
6% of the clients referenced data in all available cells. Further, examina-
tion of the raw data shows that, on average, 30V0 of the clients referenced
foreign data each day.

We also repeated the study originally reported by Kistler and Saty-
anarayanan [1992] on the extent of sequential write sharing on directories
and files. Every time a user modified an AFS directory or file, the user’s
identity was compared to that of the user who made the previous modifica-
tion. Our data, showing that 99. 1% of all directory modifications were by
the previous writer, are consistent with Kistler and Satyanarayanan’s
observations. Unfortunately, we are not able to report on write sharing on
files due to a bug in the data collection tools.

5. CORROBORATION WITH ANECDOTAL EVIDENCE

To complement the quantitative data obtained by instrumentation, we
constructed a questionnaire that touched upon a diverse set of issues. The
purpose of the questionnaire was to elicit user perceptions as well as to
obtain a profile of AFS usage. The topics of interest to us included
characterization of the user community, extent of usage of native and
foreign cells, and degree of collaboration within and across cells. We were
also interested in obtaining user perceptions of performance and reliability
of AFS for accessing native and foreign cells. Finally, we were interested in
the value and adequacy of various AFS mechanisms such as access control
lists, read-only replication, and data mobility.

The questionnaire was distributed in two ways: first, by posting on
several Netnews bboards; second, by direct mailing to AFS contacts in
different cells. We received about 100 responses from 50 cells. A detailed

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

A Wide-Area Distributed File System c 217

Cells contacted % of clients
21 100
>2 89
>3 78
>4 64
>5 29
~ 10 22
> 20 13
>50 7
>70 6

Fig. 16. Client contacts with cells, This table shows the percentage of clients that contacted a
given number of cells during the 12-week data collection period.

discussion on the results of this questionnaire is presented in our prelimi-

nary study [Spasojevic and Satyanarayanan 1994]. Here we summarize the
most important findings.

The AFS user community consists of a number of academic, government,
and commercial sites. Consequently, AFS users tend to have a very diverse
background. However, responses to our questionnaire came from a techni-
cally sophisticated group of respondents. Most of them (8 lYo) are serious
programmers, and two-thirds of them rate their knowledge of AFS to be at
an advanced or expert level. Close to 95% had experience with other
distributed file systems, usually NFS. This renders their assessments of
AFS quality more credible, but also leaves unanswered the question of how
naive users view AFS.

The majority of users are satisfied with AFS performance when accessing
both local and remote data. Compared to other distributed systems they
have used, 73% of respondents feel that AFS provides comparable or better
performance. However, nearly two-thirds of them also rate performance
and reliability as aspects of AFS that have sometimes been unsatisfactory
and that should be further improved.

Users tend to notice file server failures less frequently than what the
empirical evidence indicates. Most of the respondents do not experience
failures more than once a month. However, users perceive failures as
lasting on average 30 minutes, which is much longer than an average
server outage according to the empirical data in Section 4.3.2. This sug-
gests that users notice only long-lasting failures which significantly affect
their work.

Users confirm that the wide-area aspects of AFS are indeed valuable. In
comparison to other collaboration tools (phone calls, surface mail, electronic
mail, fax, bboards, FTP, other file systems) AFS was rated as the second-
best tool, only after electronic mail. In their local cell, over 60% of the users
tend to read or modify files that do not belong to them.

The extent of the cross-cell traffic (Section 4.3.1) is corroborated by
reports of users accessing materials in other cells. About 80% of respon-
dents possess accounts fauthentication identities in foreign cells, and 38% of
them participate in joint projects with people from different cells.

ACM Transactions on Computer Systems, Vol 14, No. 2, May 1996.

218 ● M. Spasojevic and M. Satyanarayanan

6. RELATIONSHIP BETWEEN AFS AND THE WEB

Over the last several years, the World Wide Web [Berners-Lee et al. 19941
has emerged as the dominant wide-area information service on the Inter-
net. Although other examples of such services exist (such as Archie
[Emtage and Deutsch 19921, Gopher [McCahill 19921, and, of course, AFS),
none has demonstrated the popularity or growth rate of the Web. Since this
growth shows no signs of leveling, it is fair to ask whether AFS will soon be
rendered obsolete.

Our answer, as elaborated in the following sections, is that the Web and
AFS have sufficiently different design characteristics that they are not
really in competition. Rather, they represent complementary technologies
that can be used in conjunction very effectively.

6.1 Comparison of Characteristics

6.1.1 Interface Level. AFS supports an application programming inter-
face (API) and is primarily intended for use by programs. Consistent with
the Unix heritage of AFS, the user interface is only of secondary impor-
tance. In contrast, the Web interface is primarily a graphical user interface
(GUI) for humans, The ease of use of the Web by novice users has, in fact,
been a major reason for its success. While it is possible to write programs
that parse and interpret Web pages, this is not the intended use of the Web
and is unlikely to be efficient.

6.1.2 Targeted Access versus Browsing. AFS assumes that the path
names of objects to be accessed are known with accuracy. The only aids to
search are the mnemonic significance of path names and the directory
organization. Consistent with the Unix file system model, AFS directories
offer no auxiliary annotation to help in browsing. While AFS’ location
transparency hides server names, its hierarchical name space inevitably
reflects some aspects of administrative and organizational structure,

In contrast, a Web page is assumed to merely be the starting point of an
exploration. The ability to mix annotational information with pointers to
other Web pages greatly simplifies browsing. These pointers are often
to pages in different administrative and organizational domains. Thus, a
Web URL can be viewed as a fuzzy pointer, whose dereferencing can result
in widely varying targets, depending on context.

6.1.3 Workload Characteristics. The different usage models of AFS and
the Web result in substantial differences in client and server workload
characteristics in the two systems. As shown earlier in this article, AFS
references exhibit substantial temporal locality. This makes caching at
clients useful. In contrast, Web references from a client tend to exhibit poor
locality; this renders conventional client caching futile [Dharap and Bow-
man 1995].

On the other hand, there is substantial collective temporal locality in the
Web references of an organization. In other words, Web documents that are
accessed by one user in an organization are likely to also be accessed by

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

A Wide-Area Distributed File System . 219

other users in that organization. Hence a shared cache at an intermediate

node can be valuable. In contrast, intermediate caches have been shown to

be of little value in AFS [Muntz and ~oneyman 1992j.

Finally, AFS allows remote objects to be updated by clients. Hence AFS

server workloads include both read and write traffic. ln contrast, Web

pages are read-only objects. While the use of forms allows users to enter
new data, the modicum of updatability this provides hardly compares with
the full-fledged support for updates in AFS.

6.1.4 Scalability. Concern for scalability has pervaded the design of AFS
from its very beginning [Satyanarayanan et al. 1985]. The evolution of AFS
has consistently paid attention to the impact of large scale on performance,
security, and system administration [Satyanarayanan 1992]. This concern is
apparent in many aspects of the design of AFS:

—the use of callback-based caching [Howard et al. 1988] to minimize server
and network load while offering a close approximation to the Unix
consistency model,

—the use of Lolumes for ease of system administration [Sidebotham 1986],

—careful attention to security, including the use of access control lists, the
ability to define groups of users, end-to-end authentication, and a model
of limited trust [Satyanarayanan 19891, and

—the decomposition of the system into independent cells to support organi-
zational autonomy,

In contrast, scalability has been an afterthought in the evolution of the

Web. Only in the light of the Web’s popularity has attention been focused
on issues such as authentication, access control, and reduction of network
and server load. Unfortunately, the need to be backward compatible with
existing Web browsers and servers makes this a diftlcult task. It remains to
be seen how successful attempts to retrofit scalability into the Web will be.

6.1.5 Heterogeneity. AFS is closely tied to the Unix file system model.
Only late in its evolution were efforts made to provide cross-platform
support. In contrast, the Web is platform neutral, and browsers became
available for most platforms early in its evolution. The ability to access the
Web from virtually any client played a significant role in its rise to
prominence.

6.2 Combining AFS with the Web

The complementary design characteristics of the Web and AFS suggest the
possibility of combining their strengths in a composite system. Indeed, a
number of such systems are in use today.

For example, a recent paper [Katz et al. 1994] describes the use of AFS as
the shared back end for a collection of Web servers at the National Center
for Supercomputing Applications (NCSA). Combined with a customized
DNS name resolver, the use of AFS enables the collection of Web servers to
masquerade as a single, large, extensible, virtual Web server. The paper

ACM Transactions on Computer Systems. Vol. 14, No 2, May 1996.

220 ● M. Spasojevic and M. Satyanarayanan

reports that both performance and availability of the Web site have
improved as a direct result of this approach.

Transarc and Carnegie Mellon University are two other examples of
organizations that use AFS to store Web data. In both cases, a small
number of Web servers provide access to Web data stored in AFS. Users
create and update Web documents from any AFS client. Since these clients
do not run Web servers, their identity is not part of the URLS. This
preserves the ability to add or delete AFS clients and servers with minimal
administrative overhead.

At Transarc, Web clients have been modified to determine if a URL refers
to a document in AFS. If so, it is accessed directly through AFS. For
example, the URL

http: //www.transarc. com/afs/transarc .com/public/www/index. html

is effectively translated into the URL

file:/afs/transarc .com/public/www/index. html

by a Web client [Spasojevic et al. 19941.
The setup at Carnegie Mellon pays additional attention to issues of

security. Web servers are authenticated to AFS as special users and can
only access files in those directories with appropriate ACLS. This gives
users fine-grain control over which AFS documents are visible via the Web.
The default protection is such that Web access is prohibited.

7. CONCLUSION

Our goals in conducting this study were to observe wide-area AFS usage
and to characterize its profile. We were also interested in determining how
well AFS worked at the current scale of the system and to see if any
imminent limits to its further growth were apparent.

The qualitative and quantitative data that we have presented confirm
that AFS provides robust and efficient distributed file access in its present
worldwide configuration. The caching mechanism is able to satisfy most of
the file references from the clients’ local caches. Even though file server
and network outages can be disruptive for particular users, our observa-
tions show that prolonged server inaccessibility is rare. Our data show no
obvious bottlenecks that might preclude further growth of the system.

AFS’ divide-and-conquer technique of using semiautonomous cells for
spanning widely disparate organizations has proven to be invaluable. By
providing considerable flexibility in security and storage management
policies, the cell mechanism reduces the psychological barrier to entry of
new organizations. As a consequence, growth in AFS over time has not just
been in the number of nodes in each cell, but also in the total number of
cells.

In summary, this article provides conclusive evidence that AFS is a
viable design point in the space of wide-area distributed file system
designs. We are convinced that any alternative design must preserve the

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

A Wide-Area Distributed File System ● 221

aggressive caching policies, careful attention to security, and support for

autonomous administration that are the hallmarks of AFS’ approach. The
absence of any of these features will be fatal in an attempt to build a file
system that uses a wide-area network and spans many organizations.

ACKNOWLEDGMENTS

The xstat data collection facility was designed and implemented by
Ed Zayas. Contributions to the evaluation methodology for wide-area
distributed file systems were made by Bob Sidebotham, Alfred Spector,
and Ed Zayas. Anne Jane Gray provided assistance in organizing this
project. Comments by Maria Ebling, Mike Kazar, Jay Kistler, Qi Lu, Lily
Mummert, and the anonymous referees were most helpful in improving the
presentation.

REFERENCES

B.WKH, M. G., HARTMAN, J. H., K[”PFER, M, D,, SHIRRIFF, K. W,, AND Ot;STERHOUT, J. K.
1991 Measurements of a distributed file system. In Proceedings of the I.’lth ACM Sympo-
,slum on Operating Sy,stem Principles (Pacific Grove, Calif., Oct.). ACM, New York.

B~R~R~s-LitE, T., (’AI. i.MIT. R., LI-OTONEN, A., FRYSTYK NIELSEN, H., .4No SECRET, A.
1994. The World-Wide Web. Comrnun. ACM ,?7, 8 (Aug.).

Dti.m.%1’. (‘. ANI) BOWMAN, M. 1995, Preliminary analysis of wide-area access traces. Penn
State Tech. Rep. CSE-95-(J30, Penn State Univ., University Park, Pa.

EhllAtiE. A. ,ANII DELITS(’H, P. 1992. Archie: An electronic directory service for the Internet.
In [~,senI.,-(’conference Proceedings (Winter). USENIX Assoc., Berkeley, Cal if.

(%11. I)Ic K. .J S., BENNINGER, K,, KIRBY, C., MAHER, C., ANII ZLTMIWH,B. 1995. Multi-resident
AFS An ad,enture In mass storage, In Usenix Conference Proceedings (Winter) USENIX
Assoc., Berkeley, CaJif.

HON’ARI).J. H.. KAZ.4R, M. L., MENEES, S. G., NICHOLS. D. A., SATYAXARAYANAN, M., SIDEBOTHAM,

R. N., .Asn WEST, M. J. 1988. Scale and performance in a distributed file system. ACM
Tron.s C’{)mpa(. Sy.s(, 6. 1 (Feb. ~,

KATZ. E. D., BIITL~~. M., Awl) MCGRATH, R. 1994. A scalable HTTP server: The NCSA
prototype. (’{)mpaf, NetM. ISDN Syst. 27, (Sept.).

K.\zA~. M L. 1988. Synchronization and caching issues in the Andrew File System. In
[Iscnl.y (’conference Proceedings (Winter). USENIX Assoc., Berkeley, Cal if.

KIST1.ER, J. ASU SATyA.WAH,}~ANAX.M. 1992. Disconnected operation in the Coda File System.
A(’M Trans. C’omput .Yyst. 10, 1 (Feb.).

M[(’itil[.i., Ivl. 1992. The Internet Gopher protocol: A distributed server information sys-
tem (’onneXi{Jns 6, ‘i (.July).

MORRIS, ,J. H.. S,\TY.\N.iIi,\YAXAN,M., CONNER, M. H., HOWARD,J. H.. ROSENTJIAL, D. S., AND
SMlmt. F D. 1986. Andrew: A distributed personal computing environment Commun.
ACM 29, 3 {Mar.).

MI TNTZ. D ASI) HONEYMN, P. 1992. Multi-level caching in distributed file systems. In
1‘sen t.,- (’onfirence Proceedings (Winter). USENIX Assoc., Berkeley, Calif.

OITSTWOitNTT, J., DA COSTA, H., HARRISON, D., KUNZE, J,, KUPFER, M., ANn TH{MPSON, J.
1985. A trace-driven analysis of the 4.2BSD tiJe system. In Proceedings of the 10th ACM
.Syniposl vm ,,n Operating S.vstem Principles (Dec.). ACM, New York.

S,AI’yA.NARAyANA~,M, 1981. A study af tile sizes and functional lifetimes. In Proceedings of
th(> #th A(’M Symposium 0)7 Operating System Principles. ACM, New York.

SAT~:\~,~so\~,\xr\~,M. 1989. Integrating security in a large distributed system. ACM Trans.
(’ompu(. S,VS(. 7, 3 (Aug.).

SAT~,\N.ARA~A~AN,M, 1990. ScaJable, secure, and highly available distributed tile access.
IEEE (’ompuf. 23, 5 (May).

ACM Transactions on Computer Systems, V(,I 14. No. 2. May 1996

222 ● M. Spasojevic and M. Satyanarayanan

SATYANARAYANAN,M. 1992, The influence of scale on distributed file system design. IEEE
Trans. Softw. Eng. 18, 1 (Jan.).

SATYANARAYANAN,M., HOWARD, J. H., NICHOLS, D. N., SIDEBOTHAM,R. N., SPECTOR,A. Z., AND
WEST, M. J. 1985. The ITC distributed file system: Principles and design. In Proceedings
of the I(Mz ACM Symposium on Operating System Principles (Dec.). ACM, New York.

SIDEBOTHAM,R. N, 1986, Volumes:The Andrew File System data structuringprimitive. In
European Unix User Group Conference Proceedings (Aug.). EUUC Secretariat, Herts, U.K.

SMITH, A. J. 1981a. Analysis of long term file reference patterns for application to file
migration algorithms. IEEE Trans. Softw. Eng. SE-7, 4 (July).

SMITH, A. J. 1981b. Long term file migration algorithms, C!ommun. ACM 24, 8 (Aug.).
SPASOJEVIC, M. AND SATYANARAYANAN,M. 1994. A usage profile and evaluation of a wide-

area distributed file system. In Usenix Conference Proceedings (Winter). USENIX Assoc.,
Berkeley, Calif.

SPECTOR,A. Z. AND KAZAR, M. L. 1989. Wide area file service and the AFS experimental
system. Unix Rev. 7, 3 (Mar.).

STEINER, J. G., NEUMAN, C., AND SCHILLER,J. 1. 1988. Kerberos: An authentication service
for open network systems. In Usenix Conference Proceedings (Winter). USENIX Assoc.,
Berkeley, Calif.

TRANSARC. 1991. AFS 3.1 programmer’s reference manual. FS-00-D180, Transarc Corp.,
Pittsburgh, Pa. Oct.

Received December 1994; revised January 1996; accepted February 1996

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

