
Design and Evaluation of a Continuous Consistency Model for
Replicated Services

Haifeng Yu and Amin Vahdat
Department of Computer Science

Duke University
Durham, NC 27708

(yhf,vahdat)@cs.duke.edu

Abstract

The tradeoffs between consistency, performance,
and availability are well understood. Traditionally,
however, designers of replicated systems have been
forced to choose from either strong consistency
guarantees or none at all. This paper explores the
semantic space between traditional strong and op-
timistic consistency models for replicated services.
We argue that an important class of applications
can tolerate relaxed consistency, but benefit from
bounding the maximum rate of inconsistent access
in an application-specific manner. Thus, we de-
velop a set of metrics,Numerical Error, Order Er-
ror, andStaleness, to capture the consistency spec-
trum. We then present the design and implementa-
tion of TACT, a middleware layer that enforces arbi-
trary consistency bounds among replicas using these
metrics. Finally, we show that three replicated ap-
plications demonstrate significant semantic and per-
formance benefits from using our framework.

1 Introduction

Replicating distributed services for increased avail-
ability and performance has been a topic of con-
siderable interest for many years. Recently how-
ever, exponential increase in access to popular Web
services provides us with concrete examples of the
types of services that would benefit from replica-
tion, their requirements and semantics. One of the
primary challenges to replicating network services
is consistency across replicas. Providing strong con-
sistency (e.g., one-copy serializability [3]) imposes

performance overheads and limits system availabil-
ity. Thus, a variety of optimistic consistency mod-
els [13, 14, 15, 27] have been proposed for appli-
cations that can tolerate relaxed consistency. Such
models require less communication, resulting in im-
proved performance and availability.

Unfortunately, optimistic models typically pro-
vide no bounds on the inconsistency of the data
exported to client applications and end users. A
fundamental observation behind this work is that
there is a continuum between strong and optimistic
consistency that is semantically meaningful for a
broad range of network services. This continuum
is parameterized by the maximum distance between
a replica’s local data image and some final image
“consistent” across all replicas. For strong consis-
tency, this maximum distance is zero, while for op-
timistic consistency it is infinite. We explore the se-
mantic space in between these two extremes. For a
given workload, providing a per-replica consistency
bound allows the system to determine an expected
probability, for example, that a write operation will
conflict with a concurrent write submitted to a re-
mote replica, or that a read operation observes the
results of writes that must later be rolled back. No
such analysis can be performed for optimistic con-
sistency systems because the maximum level of in-
consistency is unbounded.

The relationship between consistency, availabil-
ity, and performance is depicted in Figure 1(a). In
moving from strong consistency to optimistic con-
sistency, application performance and availability
increases. This benefit comes at the expense of an
increasing probability that individual accesses will

1



Strong
Consistency

Optimistic
Consistency

Performance

Availability

Probability of Inconsistent Access

1 2 0
0

Curve based on
workload/network

characteristics

Performance

P
ro

ba
bi

lit
y

o
f

In
co

ns
is

te
nt

A
cc

es
s

1 2

(a) (b)

Figure 1:a) The spectrum between strong and optimistic consistency as measured by a bound on the prob-
ability of inconsistent access. b) The tradeoff between consistency, availability, and performance depends
upon application and network characteristics.

return inconsistent results, e.g., stale/dirty reads, or
conflicting writes. In our work, we allow appli-
cations to bound the maximum probability of in-
consistent access in exchange for increased perfor-
mance and availability. Figure 1(b) graphs poten-
tial improvements in application performance ver-
sus the probability of inconsistent access. Moving
to the right in the figure corresponds to increased
performance, while moving up in the figure cor-
responds to increased inconsistency. To achieve
increased performance, applications must tolerate
a corresponding increase in inconsistent accesses.
The tradeoff between performance and consistency
depends upon a number of factors, including ap-
plication workload, such as read/write ratios, prob-
ability of simultaneous writes, etc., and network
characteristics such as latency, bandwidth, and er-
ror rates. At the point labeled “1” in the consistency
spectrum in Figure 1, a modest increase in per-
formance corresponds to a relatively large increase
in inconsistency for application classes correspond-
ing to the top curve, perhaps making the tradeoff
unattractive for these applications. Conversely, at
point “2,” large performance increases are available
in exchange for a relatively small increase in incon-
sistency for applications represented by the bottom
curve.

Thus, the goals of this work are: i) to explore
the issues associated with filling the semantic, per-
formance, and availability gap between optimistic
and strong consistency models, ii) to develop a

set of metrics that allow a broad range of repli-
cated services to conveniently and quantitatively ex-
press their consistency requirements, iii) to quan-
tify the tradeoff between performance and consis-
tency for a number of sample applications, and
iv) to show the benefits of dynamically adapting
consistency bounds in response to current network,
replica, and client-request characteristics. To this
end, we present the design, implementation, and
evaluation of the TACT toolkit. TACT is a middle-
ware layer that accepts specifications of application
consistency requirements and mediates read/write
access to an underlying data store. If an operation
does not violate pre-specified consistency require-
ments, it proceeds locally (without contacting re-
mote replicas). Otherwise, the operation blocks un-
til TACT is able to synchronize with one or more
remote replicas (i.e., push or pull some subset of
local/remote updates) as determined by system con-
sistency requirements.

We propose three metrics,Numerical Error, Or-
der Error, andStaleness, to bound consistency. Nu-
merical error limits the weight of writes that can be
applied across all replicas before being propagated
to a given replica. Order error limits the number of
tentative writes that can be outstanding at any one
replica, and staleness places a real-time bound on
the delay of write propagation among replicas. To
evaluate the effectiveness of our system, we imple-
ment and deploy across the wide area three appli-
cations with a broad range of dynamically changing

2



consistency requirements using the TACT toolkit:
an airline reservation system, a distributed bulletin
board service, and load distribution front ends to
a web server. Relative to strong consistency tech-
niques, TACT improves the throughput of these ap-
plications by up to a factor of 10. Relative to weak
consistency approaches, TACT provides strong se-
mantic guarantees regarding the maximum incon-
sistency observed by individual read and write op-
erations.

The rest of this paper is organized as follows.
Section 2 describes the three network services im-
plemented in the TACT framework to motivate our
system architecture. Section 3 presents the system
model and design we adopt for our target services.
Next, Section 4 details the TACT architecture and
Section 5 evaluates the performance of our three
applications in the TACT framework. Finally, Sec-
tion 6 places our work in the context of related work
and Section 7 presents our conclusions.

2 Applications

2.1 Airline Reservations

Our first application is a simple replicated airline
reservation system that is designed to be representa-
tive of replicated E-commerce services that accept
inquiries (searches) and purchase orders on a cata-
log. In our implementation, each server maintains a
full replica of the flight information database and
accepts user reservations and inquiries about seat
availability. Consistency in this application is mea-
sured by the percentage of requests that access in-
consistent results. For example, in the face of diver-
gent replica images, a user may observe an avail-
able seat, when in fact the seat has been booked at
another replica (false positive). Or a user may see a
particular seat is booked when in fact, it is available
(false negative). Intuitively, the probability of such
events is proportional to the distance between the lo-
cal replica image and some consistent final image.

One interesting aspect of this application is that
its consistency requirements change dynamically
based on client, network, and application character-
istics. For instance, the system may wish to min-
imize the rate of inquiries/updates that observe in-
consistent intermediate states for certain preferred

clients. Requests from such clients may require a
replica to update its consistency level (by synchro-
nizing with other replicas) before processing the re-
quest or may be directed to a replica that maintains
the requisite consistency by default. As another ex-
ample, if network capacity (latency, bandwidth, er-
ror rate) among replicas is abundant, the absolute
performance/availability savings may not be suffi-
cient to outweigh the costs associated with weaker
consistency models. Finally, the desired consis-
tency level depends on individual application se-
mantics. For airline reservations, the cost of a trans-
action that must be rolled back is fairly small when
a flight is empty (one can likely find an alternate seat
on the same flight), but grows as the flight fills.

2.2 Bulletin Board

The bulletin board application is a replicated mes-
sage posting service modeled after more sophis-
ticated services such as USENET. Messages are
posted to individual replicas. Sets of updates are
propagated among replicas, ensuring that all mes-
sages are eventually distributed to all replicas. This
application is intended to be representative of in-
teractive applications that often allow concurrent
read/write access under the assumption that con-
flicts are rare or can be resolved automatically.

Desirable consistency requirements for the bul-
letin board example include maintaining causal
and/or total order among messages posted at differ-
ent replicas. With causal order, a reply to a message
will never appear before the original message at any
replica. Total order ensures that all messages ap-
pear in the same order at all replicas, allowing the
service to assign globally unique identifiers to each
message. Another interesting consistency require-
ment for interactive applications, including the bul-
letin board, is to guarantee that at any timet, no
more thank messages posted beforet are missing
from the local replica.

2.3 QoS Load Distribution

The final application implemented in our frame-
work is a load distribution mechanism that pro-
vides Quality of Service (QoS) guarantees to a set
of preferred clients. In this scenario, front-ends

3



(as in LARD [22]) accept requests on behalf of
two classes of clients, standard and preferred. The
front ends forward requests to back end servers
with the goal of reserving some pre-determined por-
tion of server capacity for preferred clients. Thus,
front ends allow a maximum number of outstand-
ing requests (assuming homogeneous requests) at
the back end servers. To determine the maximum
number of “standard” requests that should be for-
warded, each front end must communicate current
access patterns to all other front ends.

One goal of designing such a system is to mini-
mize the communication required to accurately dis-
tribute such load information among front ends.
This QoS application is intended to be representa-
tive of services that independently track the same
logical data value at multiple sites, such as a dis-
tributed sensor array, a load balancing system, or an
aggregation query. Such services are often able to
tolerate some bounded inaccuracy in the underlying
values they track (e.g., average temperature, server
load, or employee salary) in exchange for reduced
communication overhead or power consumption.

3 System Design

In this section, we first describe the basic replication
system model we assume, then describe the metrics
we provide to allow applications to bound system
consistency.

3.1 System Model

For simplicity, we refer to application data as a
data store, though the data can actually be stored
in a database, file system, persistent object, etc.
The data store is replicated in full at multiple sites.
Each replica accepts requests from users that can
be made up of multiple primitive read/write oper-
ations. TACT mediates application read/write ac-
cess to the data store. On a single replica, a read or
write is isolated from other reads or writes during
execution. Depending on the specified consistency
requirements, a replica may need to contact other
replicas before processing a particular request.

Replicas exchange updates by propagating
writes. This can take the form of gossip mes-

sages [17], anti-entropy sessions [12, 23], group
communication [4], broadcast, etc. We chose anti-
entropy exchange as our write propagation method
because of its flexibility in operating under a vari-
ety of network scenarios. Each write bears an ac-
cept stamp composed of a logical clock time [18]
and the identifier of the accepting replica. Repli-
cas deterministically order all writes based on this
accept stamp. As in Bayou [23, 27], updates are
procedures that check for conflicts with the under-
lying data store before being applied in atentative
state. A write is tentative until a replica is able to de-
termine the write’s final position in the serialization
order, at which point it becomescommittedthrough
a write commitment algorithm (described below).

Each replica maintains a logical time vector, sim-
ilar to that employed in Bayou and in Golding’s
work [12, 23, 27]. Briefly, each entry in the vector
corresponds to the latest updates seen from a par-
ticular replica. Thecoverage propertyensures that
a replica has seen all updates (remote and local) up
to the logical time corresponding to the minimum
value in its logical time vector. Anti-entropy ses-
sions update values in each replica’s logical time
vector based on the logical times/replicas of the
writes exchanged. Note that writes may have to be
reordered or rolled back before as dictated by seri-
alization order.

While TACT’s implementation of anti-entropy is
not particularly novel, a primary aspect of our work
is determining when and with whom to perform
anti-entropy in order to guarantee a minimum level
of consistency. Replicas may propagate writes to
other replicas at any time throughvoluntary anti-
entropy. However, we are more concerned with
write propagation required for maintaining a de-
sired level of consistency, calledcompulsory anti-
entropy. Compulsory anti-entropy is necessary for
the correctness of the system, while voluntary anti-
entropy only affects performance.

3.2 A Continuous Consistency Model

In our consistency model, applications specify their
desired level of consistency onconits. A conit is a
physical or logical unit of consistency, defined by
the application. For example, in the airline reserva-
tion application, individual flights or blocks of seats

4



on a flight may be defined as a conit. An interest-
ing issue beyond the scope of this paper is setting
the granularity of conits. The required per-conit
accounting overhead (described below) argues for
coarse conit granularity. Conversely, coarse-grained
conits may introduce issues of false sharing as up-
dates to one data item in a conit may reduce per-
formance/availability for accesses to logically unre-
lated data items in the same conit.

We quantify consistency continuously along a
three-dimensional vector:consistency = (Numeri-
cal Error, Order Error, Staleness). Numerical Er-
ror bounds the discrepancy between the value of the
conit relative to its value in the “final image”. For
applications that maintain numerical records, the se-
mantics of this metric are straightforward. For other
applications, however, application-specific weights
(defaulting to one) can be assigned to individual
writes, making it more important to propagate cer-
tain writes over others.Order Error measures the
difference between the order that updates are ap-
plied to the local replica relative to their ordering
in the eventual “final image”.Stalenessbounds the
difference between the current time and the accep-
tance time of the oldest write on a conit not seen lo-
cally. Our algorithms for efficiently bounding these
three metrics are described in Section 3.3. In Sec-
tion 5, we demonstrate how three applications em-
ploy these metrics to capture their consistency re-
quirements.

Figure 2 illustrates the definition of order and nu-
merical error in a simple example. Two replicas,
A andB, accept updates on a conit containing two
data items,x and y. The logical time vector for
A is (24; 5). The coverage property implies that
all writes in its log with logical time less than or
equal to five are committed (indicated by the shaded
box), leaving three tentative writes. Similarly, the
logical time vector forB is (0; 17), meaning that
both writes in its log are tentative. Order error
bounds the maximum number of tentative writes
at a replica, i.e., the maximum number of writes
that may have to be reordered or rolled back be-
cause of activity at other replicas. In general, a
lower bound on order error implies a lower prob-
ability that a read will observe an inconsistent inter-
mediate state. In this example, ifA0s order error
is bound to three,A must invoke the write com-

mitment algorithm—performing compulsory anti-
entropy to pull any necessary updates fromB to re-
duce its number of tentative writes—before accept-
ing any new writes.

Figure 2 also depicts the role of numerical er-
ror. Numerical error is the weight of all updates
applied to a conit atall replicas not seen by the lo-
cal replica. Thus,A has not seen one update (with
a weight of one) in this example, whileB has not
seen three updates (with a weight of five). Note that
order error can be relaxed or tightened using only
local information. Bounding numerical error, on the
other hand, relies upon the cooperation of all repli-
cas. Thus, dynamically changing numerical error
bounds requires the execution of a consensus algo-
rithm.

One benefit of our model is that conit consis-
tency can be bound on a per-replica basis. For
example, one site may have poor network connec-
tivity and limited processing power, making more
relaxed consistency bounds appropriate for that
replica. Conversely, it may be cheap (from a per-
formance and availability stand point) to enforce
stronger consistency at a replica with faster links
and higher processing capacity. One interesting as-
pect of this model is that it potentially allows the
system to route client requests to replicas with ap-
propriate consistency bounds on a per-request basis.
For instance, in the airline reservation application,
requests from “preferred” clients may be directed
to a replica that maintains higher consistency levels
(reducing the probability of an inconsistent access).

When all three metrics are bound to zero, our
continuous consistency model reaches the strong
consistency extreme of the spectrum, which is se-
rializability [3] and external consistency [11, 1]. If
no bounds are set for any of the metrics, there will
be no consistency guarantees similar to optimistic
consistency systems. In moving from strong to op-
timistic consistency, applications bound the maxi-
mum logical “distance” between the local replica
image and the (unknown) consistent image that con-
tains all writes in serial order. This distance corre-
sponds directly to the percentage chance that a read
will observe inconsistent results or that a write will
introduce a conflict. Based on our experience with
TACT, we believe that the above metrics allow a
broad range of applications to conveniently express

5



Replica A Replica B

(23, A): y+= 3

(14, A): x += 1

(10, A): y += 1

(5, B): x += 2

(16, B): y += 1

(5, B): x += 2

Conit:
x = 2
y = 1

Conit:
x = 3
y = 4

“Push” to bound
Numerical Error

“Pull” to bound
Order Error

Logical Time Vector: (0, 17)
Order Error: 2
Numerical Error: 3 (5)

Logical Time Vector: (24, 5)
Order Error: 3
Numerical Error: 1 (1)

Figure 2: Example scenario for bounding order error and numerical error with two replicas.

their consistency requirements. Of course, the exact
set of metrics is orthogonal to our goal of export-
ing a flexible, continuous, and dynamically tunable
spectrum of consistency models to replicated ser-
vices.

3.3 Bounding Consistency Metrics

Given the above model for propagating writes
among replicas, we now describe in turn our al-
gorithms for bounding numerical error, order error,
and staleness. For brevity, we have made the details
and correctness proofs for our numerical error algo-
rithms available separately [29]. We present a brief
overview here.

The first algorithm,Split-weight AE, employs a
“push” approach to bound absolute numerical error.
Eachserveri maintains two local variablesx and
y for serverj ; j 6= i. Intuitively, the variablex is
the total weights of negatively-weighed writes that
serveri accepts but has not been seen byserverj.
serveri has only conservative knowledge (called its
view) of what writesserverj has seen. The vari-
ablex is updated whenserveri accepts a new write
with a negative weight or whenserveri’s view is
advanced. Similarly, the variabley records the to-
tal weight of positively-weighted writes. Suppose
the absolute error bound onserverj is �j . In other
words, we want to ensure thatjVfinal � Vj j � �j,
whereVfinal is the consistent value andVj is the
value onserverj . To achieve this,serveri makes
sure that at all times,x � ��j=(n � 1) andy �

�j=(n � 1), wheren is the total number of servers
in the system. This may requireserveri to push
writes toserverj before accepting a new write.

Split-Weight AE is pessimistic in the sense that
serveri may propagate writes toserverj when not
actually necessary. For example, the algorithm does
not consider the case where negative weights and
positive weights may offset each other. We de-
veloped another algorithm,Compound-Weight AE,
to address this limitation at the cost of increased
space overhead. However, simulations indicate that
potential performance improvements do not justify
the additional computational complexity and space
overhead [29].

A third algorithm, Inductive RE, provides an ef-
ficient mechanism for bounding the relative error
in numerical records. A naive approach would re-
quire a consensus algorithm to be run to determine a
new absolute error bound each timeVfinal changes.
Our approach avoids this cost by conservatively re-
lying upon local information as follows. We observe
that the current valueVi on anyserveri was prop-
erly bounded before the invocation of the algorithm
and is an approximation ofVfinal. Soserveri may
useVi as an approximate norm to bound relative
error for other servers. Suppose the relative error
bound forserverj is 
j, that is, we want to ensure
j1� Vj=Vfinalj � 
j , equivalent tojVfinal � Vj j �


j � Vfinal.
For serveri, we know thatVfinal � Vi � �
i �

Vfinal, where 
i is the relative error bound for
serveri, which transforms toVfinal � Vi=(1 + 
i).

6



Using this information to substitute forVfinal on the
right side in the inequality in the last paragraph pro-
duces:

jVfinal � Vj j � 
j �
Vi

1 + 
i

Thus, to bound relative error,serveri only needs
to recursively apply Split-Weight AE using
j �
Vi=(1 + 
i) as�j . Note that while this approach
greatly increases performance by eliminating the
need to run a consensus algorithm among replicas, it
behaves conservatively (bounding values more than
strictly necessary) when relative error is high as will
be shown in our evaluation of these algorithms in
Section 5.

To bound order error on a per-conit basis, a
replica first checks the number of tentative writes in
its write log. If this number exceeds the order error
limit, the replica invokes a write commitment algo-
rithm to reduce the number of tentative writes in its
write log. This algorithm operates as follows. The
replica pulls writes from other replicas by perform-
ing compulsory anti-entropy sessions to advance its
logical time vector, allowing it to commit some set
of its tentative writes. In doing so, the replica en-
sures that it remains within a specified order error
bound before accepting new tentative writes.

To bound the staleness of a replica, each server
maintains areal time vector. This vector is similar
to the logical time vector, except that real time in-
stead of logical time is used. A similar coverage
property is preserved between the writes a server
has seen and the real time vector. If A’s real time
vector entry corresponding to B ist, then A has
seen all writes accepted by B before real timet. To
bound staleness withinl, a server checks whether
current time � t < l holds for each entry in the
real time vector. (We assume that server clocks
are loosely synchronized.) If the inequality does
not hold for some entries, the server performs com-
pulsory anti-entropy session with the corresponding
servers, pulling writes from them, and advances the
real time vector. This pull approach may appear to
be less efficient than a push approach because of
unnecessary polling when no updates are available.
However, a push approach cannot bound staleness if

there is no upper limit on network delay or process-
ing time.

4 System Architecture

The current prototype of TACT is implemented in
Java 1.2 using RMI for communication (e.g., for ac-
cepting read/write requests and for write propaga-
tion). TACT replicas are multi-threaded, thus if one
write incurs compulsory write propagation, it will
not block writes on other conits. We implemented
a simple custom database for storing and retrieving
data values, though our design and implementation
is compatible with a variety of storage mechanisms.

Each TACT replica maintains a write log, and
allows redo and undo on the write log. It is also
responsible for all anti-entropy sessions with re-
mote replicas. The system supports parallel anti-
entropy sessions with multiple replicas, which can
improve performance significantly for compulsory
anti-entropy across the wide area. For increased
efficiency, we also implement a one-round anti-
entropy push. With standard anti-entropy, before a
replica pushes writes to another replica, it first ob-
tains the target replica’s logical time vector to deter-
mine which writes to propagate. However, we found
that this two-round protocol can add considerable
overhead across the wide area, especially at stronger
consistency levels (where the pushing replica has a
fairly good notion of the writes seen by the target
replica). Thus, we allow replicas to push writes us-
ing their local view as a hint, reducing two rounds
of communication to one round at the cost of possi-
bly propagating unnecessary writes. While the cur-
rent implementation uses this one round protocol by
default, dynamically switching between the variants
based on the consistency level would be ideal.

TACT replicas also implement a consistency
manager responsible for bounding numerical error,
order error and staleness. The variables needed by
the Split-Weight AE and Inductive RE algorithms
are maintained in hash tables to reduce space over-
head and enable the system to potentially scale to
thousands of conits.

In bounding numerical error, a replica may need
to push a write to other replicas before the write can
return, e.g., if a write has a weight that is larger

7



than another replica’s absolute error upper bound.
There are two possible approaches for addressing
this. One approach is a one-round protocol where
the local site applies the write, propagates it to
the necessary remote replicas, awaits acknowledg-
ments, and finally returns. This one-round protocol
is appropriate for applications where writes are in-
terchangeable such as resource accounting/load bal-
ancing. For other applications, such as the airline
reservation example, a reservation itself observes a
consistency level (the probability it conflicts with
another reservation submitted elsewhere). In such
a case, a stronger two-round protocol is required
where the replica first acquires remote data locks,
pushes the write to remote replicas, and then returns
after receiving all acknowledgments. Such a two-
round protocol ensures the numerical error observed
by a write is within bound at the time the update is
submitted.

5 Experience and Evaluation

Given the description of our system architecture, we
now discuss our experience in building the three ap-
plications described in Section 2 using the TACT
infrastructure. The experiments below focus on
TACT’s ability to bound numerical and order er-
ror. While implemented in our prototype, we do not
present experiments addressing staleness for brevity
and because bounding staleness is well-studied,
e.g., in the context of Web proxy caching [9].

5.1 Bulletin Board

In this application, a conit is defined over all mes-
sages in a particular bulletin board. Each posted
message is assigned a numerical weight one one,
implying that all messages are equally important
(message-specific weights are also supported by our
model). Thus, absolute numerical error is the num-
ber of messages posted to different replicas that a
reader of a bulletin board may not observe, while
order error is the number of messages that may be
out of order.

For our evaluation of the bulletin board appli-
cation, we deployed replicas at three sites across
the wide area: Duke University (733 Mhz Pentium

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Po
st

in
g 

M
es

sa
ge

 L
at

en
cy

(m
s)

Inconsistency (Absolute Error Bound)

Conventional Implementation
TACT (Order Error=0)
TACT (Order Error=2)

TACT (Order Error=10)
TACT (Order Error=Infinity)

Figure 3: Average latency for posting messages to
a replicated bulletin board as a function of consis-
tency guarantees.

III/Solaris 2.8), University of Utah (350 Mhz Pen-
tium II/FreeBSD 3.4) and University of California,
Berkeley (167 Mhz Ultra I/Solaris 2.7). All data
is collected on otherwise unloaded systems. Each
submitted message is assigned a numerical weight
of one (all messages are considered equally impor-
tant).

We conduct a number of experiments to explore
the behavior of the system at different points in
the consistency spectrum. Figure 3 plots the aver-
age latency for a client at Duke to post 200 mes-
sages as a function of the numerical error bound on
the x-axis. For comparison, we also plot the aver-
age latency for a conventional implementation us-
ing a two-phase update protocol. For each write,
this protocol first acquires necessary remote data
locks, then propagates the update to all remote repli-
cas. The figure shows how applications are able
to continuously trade performance for consistency.
As the numerical error bound increases, average la-
tency decreases. Increasing allowable order error
similarly produces a corresponding decrease in av-
erage latency. Relative to the conventional imple-
mentation, allowing each replica to have up to 20
unseen messages and leaving order error unbounded
reduces average latency by a factor of 10.

One interesting aspect of Figure 3 is that TACT
performs worse than the standard two-phase update
protocol at the strong consistency end of the spec-
trum. To investigate this overhead, Figure 4 sum-

8



0

50

100

150

200

250

300

350

400

Conventional TACT (OE=0) TACT (OE=2) TACT
(OE=10)

TACT
(OE=Infinity)

O
ve

rh
ea

d 
(m

s)
Misc Overhead

Bound Order Error

Acquire Datalocks

Push Writes

Figure 4: Breakdown of the overhead of posting a
message under a number of scenarios.

marizes the performance overheads associated with
writes using TACT at four points in the consistency
spectrum (varying order error with numerical error
set to zero) in comparison to the conventional two-
phase update protocol. All five configurations in-
cur approximately 130ms to sequentially (required
to avoid deadlock) acquire data locks from two re-
mote replicas and 80ms to push writes to these repli-
cas in parallel. Since the cost of remote process-
ing is negligible, this overhead comes largely from
wide-area latency. Compared to the conventional
implementation, TACT with zero numerical error
and zero order error (i.e., same consistency level)
incurs about 83% more overhead. This additional
overhead stems from the additional 140ms to bound
order error. This is an interesting side effect associ-
ated with our implementation. Our design decom-
poses consistency into two orthogonal components
(numerical error and order error) that are bound us-
ing two separate operations, doubling the number
of wide-area round trip times. When order error
and numerical error are both zero, TACT should
combine the push and pull of write operations into
a single step as a performance optimization, as is
logically done by the conventional implementation.
A preliminary implementation of this optimization
shows that TACT’s overhead (at strong consistency)
drops from 367ms to about 217ms, within 8% of the
conventional approach.

5.2 Airline Reservation System

We now evaluate our implementation of the sim-
ple airline reservation system using TACT. Once
again, we deployed three reservation replicas at
Duke, Utah and Berkeley. We considered reserva-
tion requests for a single flight with 400 seats. Each
client reservation request is for a randomly chosen
seat on the flight. If a tentative reservation conflicts
with a request at another replica, a merge procedure
attempts to reserve a second seat on the same flight.
If no seats are available, the reservation is discarded.
A conit is defined over all seats on the flight, with an
initial value of 400. Each reservation carries a nu-
merical weight of -1. As reservations come in, the
value of the conit is the number of available seats in
each replica’s data store.

An interesting aspect of this application is
TACT’s ability to limit the percentage of conflicting
reservations by bounding maximum relative error
on the application’s estimate of available seats. For
a reservation accepted by one replica, the probabil-
ity that it conflicts with another (unseen) reservation
is U=V , whereU is the number of unseen reserva-
tions, andV is the number of unbooked seats as seen
by the local replica. SupposeVfinal is the accurate
count of unbooked seats, such thatVfinal = V �U .
Thus, the rate of conflicting reservations,R, equals
1 � Vfinal=V . If 
 bounds the maximum numer-
ical error then�
 � 1 � V=Vfinal. Thus, the
rate of conflicting reservations,R is specified by
R � 1 � 1=(1 + 
). However, for two repli-
cas, one of two conflicting reservations is still hon-
ored. So the observed conflicting rate should be
Robserved � (1� 1=(1 + 
))=2.

We conduct the following experiment to verify
that an application can limit the rate of inconsis-
tent access by simply bounding the relative numeri-
cal error. For this application, it is important to use
relative rather than absolute error because the num-
ber of available seats changes over time, i.e., the
maximum number of unseen reservations must be
reduced to maintain a fixed probability of inconsis-
tent access as a flight fills up. Figure 5 plots the
measured conflicting reservation rate and the com-
puted upper bound (Robserved determined above) as
a function of relative numerical error. Order error
and staleness are not bounded in these experiments.

9



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10

R
es

er
va

tio
n 

C
on

fl
ic

tin
g 

R
at

e

Inconsistency (Relative Error Bound)

Computed Upper Bound
Measured Rate

Figure 5: Percentage of conflicting reservations as a
function of the bound on numerical error.

The experiments are performed with two replicas on
a LAN at Duke, each attempting to make 250 reser-
vations with the results averaged across four runs.
The observed conflict rate is below the computed
bound, demonstrating that numerical error can be
used to bound conflicting access as shown by our
analysis. Note that as the bound on relative error
is relaxed, the discrepancy between the two curves
gradually increases because of conservativeness in-
herent in the design of our Inductive RE algorithm
(i.e., at relaxed consistency our algorithm performs
more write propagation than necessary). As de-
scribed in Section 3, this conservativeness greatly
improves performance by allowing each replica to
bound relative error using only local information.

Other consistency semantics in this application
may be expressed using order error or staleness. For
example, the system may wish to limit the percent-
age of queries that access an inconsistent image, i.e.,
see a reservation for a block of seats that must later
be rolled back because of conflict with a single-seat
reservation at another replica. Such consistency se-
mantics can be enforced by properly bounding the
limit on order error (a performance analysis is omit-
ted for brevity).

The latency and throughput measurements, sum-
marized in Figures 6 and 7 for airline reservations
are similar to the bulletin board application de-
scribed above. The experiments are run on the same
wide-area configuration as the bulletin board. The
latency is the average observed by a single Duke

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

R
es

er
va

tio
n 

L
at

en
cy

(m
s)

Inconsistency (Relative Error Bound)

Conventional Implementation
TACT (Order Error=0)
TACT (Order Error=2)

TACT (Order Error=10)
TACT (Order Error=Infinity)

Figure 6: Average latency for making a reservation
as a function of consistency guarantees.

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

re
se

rv
at

io
ns

/s
ec

)

Inconsistency (Relative Error Bound)

Conventional Implementation
TACT (Order Error=0)
TACT (Order Error=2)

TACT (Order Error=Infinity)

Figure 7: Update throughput for airline reservations
as a function of consistency guarantees.

client making 400 reservations. For throughput, we
once again run two client threads at each of the
replica sites, with each thread requesting 67 (ran-
dom) seats in a tight loop. We also plot the applica-
tion’s performance using a two-phase update pro-
tocol, showing the same trends as the results for
the bulletin board application. As consistency is
gradually relaxed, TACT achieves increasing per-
formance by reducing the amount of required wide-
area communication.

5.3 Quality of Service for Web Servers

For our final application, we demonstrate how
TACT’s numerical error bound can be used to accu-
rately enforce quality of service (QoS) guarantees

10



Configuration Consistency
Messages

Relative Error=0 300
Relative Error=0.3 46
Relative Error=0.5 30
Relative Error=1 16
No QoS Guarantee 0

Table 1: The tradeoff between TACT-enforced nu-
merical error and communication overhead.

among web servers distributed across the wide area.
Recall that a number of front-end machines forward
requests on behalf of both standard and preferred
clients to back end servers. In our implementation,
we use TACT to dynamically trade communication
overhead in exchange for accuracy in measuring to-
tal resources consumed for standard clients. For
simplicity, all our experiments are run on a local-
area network at Duke on seven 733 Pentium III’s
running Solaris 2.8. Three front ends (each run-
ning on a separate machine) generate requests in a
round robin fashion to three back end servers run-
ning Apache 1.3.12. The front ends estimate the
total resource consumption for standard clients as
the total number of outstanding standard requests on
the back ends. This value also serves as the defini-
tion of a conit for this application. Front ends in-
crease this value upon forwarding a request from a
standard client and decrease it when the request re-
turns. The increase is a write with numerical weight
of 1 and the decrease is a write with weight of -
1. If this value exceeds a pre-determined resource
consumption limit, front ends will not forward new
standard client requests until resource consumption
drops below this limit. The relative error of each
front end’s estimate of standard client resource con-
sumption captures this application’s consistency se-
mantics — each front end is guaranteed that its es-
timate of resource consumption is accurate within
a fixed bound. Note that this load balancing appli-
cation is not concerned with order error (writes are
interchangeable) or staleness (no need to synchro-
nize if the mix of requests does not change).

For our experiments, the three front end ma-
chines generate an increasing number of requests
from standard clients. As a whole, the system would

0

500

1000

1500

2000

2500

3000

3500

4000

4500

50 100 150 200 250O
bs

er
ve

d 
L

at
en

cy
 b

y 
Pr

ef
er

re
d 

C
lie

nt
(m

s)

Experiment Time (seconds)

QoS Target
Relative Error=0

Relative Error=0.3
Relative Error=0.5

Relative Error=1
No Qos Guarantee

Figure 8: The average latency seen by a preferred
client as a function of time.

like to bound the number of standard clients mak-
ing requests to 150. A fourth machine, representing
a preferred client, periodically polls a random back
end for latency. Each of the three front ends starts
a new standard client every two seconds which then
continuously requests the same dynamically gener-
ated web page requiring 10ms of computation time.
If all front ends had exact knowledge of the state
of the entire system, each front end would start a
total of 50 standard clients. However, depending
on the bound placed on numerical error, front ends
may in fact start more than this number (up to 130
in the experiment described below). For simplicity,
no standard clients are torn down even if the sys-
tem learns that too many (i.e., more than 150) are
present in aggregate. Ideally, this aggregate num-
ber would oscillate around 150 with the amplitude
of the oscillation being determined by the relative
numerical bound.

Figure 8 depicts latency observed by the pre-
ferred client as a function of elapsed time (corre-
sponding to the total number of standard clients
making requests). At time 260, each front end
has tried to start up to 130 standard clients. The
curves show the average latency observed by the
preferred client for different bounds on numerical
error. For comparison purposes, we also show the
latency (1745ms) of a preferred client when there
are 150 outstanding standard client requests. In the
first curve, labeled “Relative Error=0,” the system
maintains strong consistency. Therefore, the front

11



ends are able to enforce the resource limit strictly.
The curve corresponding to a relative error of 0 flat-
tens at 100 seconds (when three front ends have cre-
ated a total of 150 standard clients) with latency
very close to the ideal of 1745ms. As the bound
on relative error is relaxed to 0.3, 0.5, and 1, the
resource consumption limit for standard clients is
more loosely enforced. The curve “NoQoS” plots
the latency where no resource policy is enforced.
Similar to the airline reservation application, the
discrepancy between the relative error upper bound
of 1 and the “NoQos” curve once again stems from
the conservativeness of the Inductive RE algorithm.

Table 1 quantifies the tradeoff between numerical
error and communication overhead. Clearly, front
ends can maintain near-perfect information about
the load generated from other replicas at the cost
of sending one message to all peers for each event
that takes place. This is the case when numerical er-
ror is enforced at zero by TACT: Each replica sends
50 messages to each of two remote replicas (for a
total of 300) corresponding to the number of logical
events that take place during the experiment. Once
each front end starts 50 standard clients, strong con-
sistency ensures that no further messages are neces-
sary. Of course, such accuracy is typically not re-
quired by this application. Table 1 shows that com-
munication overhead drops rapidly in exchange for
some loss of accuracy. Note that the drop off will
be more dramatic as the number of replicas is in-
creased.

6 Related Work

The tradeoff between consistency and perfor-
mance/availability is well understood [6, 7]. Many
systems have been built at the two extremes of the
consistency spectrum. Traditional replicated trans-
actional databases use strong consistency (one-copy
serializability [3]) as a correctness criterion. At the
other end of the spectrum are optimistic systems
such as Bayou [27, 23], Ficus [13], Rumer [14]
and Coda [15]. In these systems, higher avail-
ability/performance is explicitly favored over strong
consistency. Besides Bayou, none of the above sys-
tems provide support for different consistency lev-
els. Bayou provides session guarantees [8, 26] to

ensure that clients switching from one replica to an-
other view a self-consistent version of the underly-
ing database. However, session guarantees do not
provide any guarantees regarding the consistency
level of a particular replica.

A number of efforts attempt to numerically cap-
ture application consistency requirements. How-
ever, these techniques typically exploit the consis-
tency semantics of a particular application class, ab-
stracting its consistency requirements along a single
dimension. The proposed consistency metrics can
all be expressed within our model by constraining a
subset of numerical error, order error, and staleness.
Krishnakumar and Bernstein [16] propose the con-
cept of an “N-ignorant” system, where a transaction
runs in parallel with at most N conflicting transac-
tions. By setting absolute numerical error bound to
N and by assigning unit weights to writes, TACT
demonstrates behavior similar to an “N-ignorant”
system. Timed consistency [28] and delta consis-
tency [25] address the lack of timing in traditional
consistency models such as sequential consistency.
These timed models can be readily expressed us-
ing our staleness metric. Pu et al. [24] measure the
“mutual inconsistency” observed by multiple reads
in a query transaction, achieving an effect simi-
lar to bounding order error in our model. Quasi-
copy caching [2] proposes four “coherency condi-
tions,” delay condition, frequency condition, arith-
metic condition and version condition appropriate
for read-only caching. TACT, on the other hand,
is designed for more general read/write replication.
Two recent efforts [5, 21] use metrics related to
numerical error and staleness to measure database
freshness. However, these systems do not provide
mechanisms to bound data consistency using the
proposed metrics. Finally, Olston and Widom [20]
address tunable performance/precision tradeoffs in
the context of aggregation queries over numerical
database records. In summary, relative to these ef-
forts, our three-dimensional consistency model al-
lows a wide range of services to dynamically ex-
press their consistency semantics based on applica-
tion, network, and client-specific characteristics.

In fluid replication [19], clients are allowed to dy-
namically create service replicas to improve perfor-
mance. Their study on when and where to create
a service replica is complementary to our study on

12



tunable consistency issues among replicas. Sim-
ilar to Ladin’s system [17], fluid replication sup-
ports three consistency levels: last-writer, optimistic
and pessimistic. Our work focuses on capturing the
spectrum between optimistic and pessimistic con-
sistency models. Varying the frequency of recon-
ciliation in fluid replication allows applications to
adjust the strength of the last-writer and optimistic
models. Bounding staleness in TACT has similar ef-
fects. However, as motivated earlier, staleness alone
does not fully capture application-specific consis-
tency requirements.

Fox and Brewer [10] argue that strong consis-
tency and one-copy availability cannot be achieved
simultaneously in the presence of network parti-
tions. In the context of the Inktomi search engine,
they show how to trade harvest for yield. Harvest
measures the fraction of the data reflected in the re-
sponse, while yield is the probability of completing
a request. In TACT, we concentrate on consistency
among service replicas, but a similar “harvest” con-
cept can also be defined using our consistency met-
rics. For example, bounding numerical error has
similar effects as guaranteeing a particular harvest.

7 Conclusions

Traditionally, designers of replicated systems have
been forced to choose between strong consistency,
with its associated performance overheads, and op-
timistic consistency, with no guarantees regarding
the probability of conflicting writes or stale reads.
In this paper, we explore the space in between these
two extremes. We present a continuous consis-
tency model where application designers can bound
the maximum distance between the local data im-
age and some final consistent state. This space
is parameterized by three metrics,Numerical Er-
ror, Order Error, and Staleness. We show how
TACT, a middleware layer that enforces consistency
bounds among replicas, allows applications to dy-
namically trade consistency for performance based
on current service, network, and request character-
istics. A performance evaluation of three replicated
applications, an airline reservation system, a bul-
letin board, and a load balancing web service, im-
plemented using TACT demonstrates significant se-

mantic and performance benefits relative to tradi-
tional approaches.

References

[1] Atul Adya, Robert Gruber, Barbara Liskov, and
Umesh Maheshwari. Efficient Optimistic Concur-
rency Control Using Loosely Synchronized Clocks.
In Proceedings of the ACM SIGMOD Conference
on Management of Data, May 1995.

[2] Rafael Alonso, Daniel Barbara, and Hector Garcia-
Molina. Data Caching Issues in an Information
Retrieval System.ACM Transactions on Database
Systems, September 1990.

[3] Phil Bernstein and Nathan Goodman. The Failure
and Recovery Problem for Replicated Distributed
Databases.ACM Transactions on Database Sys-
tems, December 1984.

[4] Ken P. Birman. The Proecss Group Appraoch to
Reliable Distributed Computing.Communications
of the ACM, 36(12):36–53, 1993.

[5] Junghoo Cho and Hector Garcia-Molina. Synchro-
nizing a Database to Improve Freshness. Technical
report, Stanford University, Computer Science De-
partment, 1999.http://www-db.stanford.
edu/pub/papers/cho-synch.ps .

[6] Brian Coan, Brian Oki, and Elliot Kolodner. Lim-
itations on Database Availability When Networks
Partition. InProceedings of the 5th ACM Sympo-
sium on Principle of Distributed Computing, pages
187–194, August 1986.

[7] Susan Davidson, Hector Garcia-Molina, and Dale
Skeen. Consistency in Partitioned Networks.Com-
puting Survey, 17(3), 1985.

[8] W. Keith Edwards, Elizabeth Mynatt, Karin Pe-
tersen, Mike Spreitzer, Douglas Terry, and Mar-
vin Theimer. Designing and implementing asyn-
chronous collaborative applications with bayou. In
Proceedings of 10th ACM Symposium on User In-
terface Software and Technology, October 1997.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2068, January 1997.

[10] Armando Fox and Eric Brewer. Harvest, Yield,
and Scalable Tolerant Systems. InProceedings of
HOTOS-VII, March 1999.

[11] D. K. Gifford. Information Storage in a Decentral-
ized Computer System. Technical Report CSL-81-
8, Xerox PARC, 1983.

13



[12] R. A. Golding. A Weak-Consistency Architecture
for Distributed Information Services.Computing
Systems, 5(4):379–405, Fall 1992.

[13] R. Guy, J. Heidemann, W. Mak, T. Page Jr.,
G. Popek, and D. Rothmeier. Implementation of
the Ficus Replicated File System. InProceedings
Summer USENIX Conference, June 1990.

[14] R. G. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma,
and G. J. Popek. Rumor: Mobile Data Access
Through Optimistic Peer-to-Peer Replication. In
Proceedings of the 17th International Conference
on Conceptual Modeling (ER’98), November 1998.

[15] James J. Kistler and M. Satyanarayanan. Discon-
nected Operation in the Coda File System.ACM
Transactions on Computer Systems, 10(1):3–25,
February 1992.

[16] Narayanan Krishnakumar and Arthur Bernstein.
Bounded Ignorance: A Technique for Increasing
Concurrency in a Replicated System.ACM Trans-
actions on Database Systems, 19(4), December
1994.

[17] R. Ladin, B. Liskov, L. Shirira, and S. Ghe-
mawat. Providing Availability Using Lazy Repli-
cation. ACM Transactions on Computer Systems,
10(4):360–391, 1992.

[18] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System.Communications
of the ACM, 21(7):558–565, July 1978.

[19] Brian Noble, Ben Fleis, and Minkyong Kim. A
Case for Fluid Replication. InProceedings of the
1999 Network Storage Symposium (Netstore), Oc-
tober 1999.

[20] Chris Olston and Jennifer Widom. Bounded
Aggregation: Offering a Precision-Performance
Tradeoff in Replicated Systems. Technical re-
port, Computer Science Department, Stanford Uni-
versity, 1999. http://www-db.stanford.
edu/pub/papers/trapp-ag.ps .

[21] Esther Pacitti, Eric Simon, and Rubens Melo. Im-
proving Data Freshness in Lazy Master Schemes.
In Proceedings of the 18th IEEE International Con-
ference on Distributed Computing Systems, May
1998.

[22] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael
Svendsen, Peter Druschel, Willy Zwaenepoel, and
Erich Nahum. Locality-Aware Request Distribu-
tion in Cluster-based Network Servers. InEighth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, October 1998.

[23] Karin Petersen, Mike Spreitzer, Douglas Terry,
Marvin Theimer, and Alan Demers. Flexible Up-
date Propagation for Weakly Consistent Replica-
tion. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP-16), pages
288–301, October 1997.

[24] Calton Pu and Avraham Leff. Epsilon-
Serializability. Technical Report CUCS-054-90,
Columbia University, 1991.

[25] Aman Singla, Umakishore Ramachandran, and Jes-
sica Hodgins. Temporal Notions of Synchroniza-
tion and Consistency in Beehive. InProceedings
of the 9th ACM Symposium on Parallel Algorithms
and Architectures, June 1997.

[26] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch. Session Guarantees for
Weekly Consistent Replicated Data. InProceed-
ings 3rd International Conference on Parallel and
Distributed Information System, September 1994.

[27] Douglas B. Terry, Marvin M. Theimer, Karin Pe-
tersen, Alan J. Demers, Mike J. Spreitzer, and
Carl H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage
System. InProceedings of the Fifteenth ACM Sym-
posium on Operating Systems Principles, pages
172–183, December 1995.

[28] Francisco Torres-Rojas, Mustaque Ahamad, and
Michel Raynal. Timed Consistency for Shared Dis-
tributed Objects. InProceedings of the 18th ACM
Symposium on Principle of Distributed Computing,
May 1999.

[29] Haifeng Yu and Amin Vahdat. Efficient Numer-
ical Error Bounding for Replicated Network Ser-
vices. Technical report, Duke University, 2000.
Available from http://www.cs.duke.edu/
˜vahdat/ps/tacttr.pdf .

14


