
Asynchronous Consensus and Broadcast Protocols

GABRIEL BRACHA AND SAM TOUEG

Cornell University, Ithaca, New York

Abstract. A consensus protocol enables a system of n asynchronous processes, some of which are faulty,
to reach agreement. There are two kinds of faulty processes: fail-stop processes that can only die and
malicious processes that can also send false messages. The class of asynchronous systems with fair
schedulers is defined, and consensus protocols that terminate with probability I for these systems are
investigated. With fail-stop processes, it is shown that r(n + 1)/21 correct processes are necessary and
sufficient to reach agreement. In the malicious case, it is shown that r(2n + 1)/31 correct processes are
necessary and sufficient to reach agreement. This is contrasted with an earlier result, stating that there
is no consensus protocol for the fail-stop case that always terminates within a bounded number of steps,
even if only one process can fail. The possibility of reliable broadcast (Byzantine Agreement) in
asynchronous systems is also investigated. Asynchronous Byzantine Agreement is defined, and it is
shown that I(2n + 1)/31 correct processes are necessary and sufficient to achieve it.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network, Protocols-
protocol architecture, C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F. 1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management]: Systems-distributed systems; transaction processing

General Terms: Algorithms, Reliability, Probability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, consensus problem, distributed computing, fault tolerance, impossibility proof, probabilistic
algorithms, reliability

1. Introduction
In this paper we consider protocols for reaching agreement in an unreliable
asynchronous distributed system. Numerous variations of this question appeared
in the literature. These differ in the assumed message system properties, the kind
of failures accorded to the processes, and the notion of what constitutes a solution.

In our model all the processes are fully interconnected. The message system is
reliable, though completely asynchronous, so messages can be delayed arbitrarily
long. We consider two types of faulty processes. Fail-stop processes [9] may simply
“die,” that is, stop participating in the protocol. However, there is no way to detect
the death of such a process, and distinguish between a dead process and a merely
slow one. Malicious processes [6], beside failing to send the required messages,
may also send false and contradictory messages, even according to some malevolent
plan.

Each process starts with some initial value. At the conclusion of the protocol all
the correct processes must agree on the same value. However, we are ruling out

Authors’ address: Department of Computer Science, Cornell University, 405 Upson Hall, Ithaca, NY
14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
Q 1985 ACM 0004-541 l/1000-0824 $00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985, pp. 824-840.

Asynchronous Consensus and Broadcast Protocols 825

the trivial case that the agreed value is fixed regardless of the processes’ initial
input.

This type of system (with fail-stop processors) was investigated in [3]. Fischer et
al. showed the impossibility of a consensus protocol if only one failure may occur.
However, in [3], the notion of an admissible solution is a protocol that always
terminates within a finite number of steps. In this paper we are interested in a
different kind of solution: we consider protocols that may never terminate, but this
would occur with probability 0, and the expected termination time is finite. There
are two ways to introduce probabilities on the possible executions of a protocol. In
the first approach [I], random steps are introduced in the protocol. The other
approach, and the one we adopt in this paper, is to postulate some probabilistic
behavior about the message system.

In the case of fail-stop processors, we describe a probabilistic protocol that
can withstand up to L(n - 1)/2J failures, where n is the number of processes.
We also show that there is no consensus protocol that can overcome more than
L(n - 1)/2J failures. With malicious processes, we describe a protocol that can
withstand up to L(n - 1)/3J failures. We also prove the impossibility of such a
protocol if more than L(n - 1)/3J processes may fail.

2. The Fail-Stop Case

2.1 THE MODEL. We consider an asynchronous system of n fully intercon-
nected processes. Processes communicate by sending messages via the message
system. The message system maintains for each process a message buffer of
messages sent but not yet received. It also supports the following primitives for
each process q.

send(p, m). Instantaneously place the message m in process p’s buffer.

receive(m). Remove some message from q’s buffer and return it in m, or return
the null value 0. This choice is made nondeterministically. (Returning 0, even if
the buffer is not empty, is a device to model the arbitrarily long transmission delays
incurred in a message system.)

Each process has an unbounded internal storage whose value constitutes its state.
In an atomic step of the system, a process can try to receive a message, perform an
arbitrarily long local computation, and then send a finite set of messages. The
computation and the messages sent are prescribed by the protocol, that is, a function
of the message received and the local state.

A correct process always follows the protocol until the protocol completion. A
fail-stop process may die during the execution of the protocol, that is, it may stop
participating in the protocol. The death of a process occurs without warning
messages. From our model, it is clear that such a death can not be detected by
other processes. In particular, there is no way to distinguish between a dead process
and a merely slow one.

Each process p has two distinguished memory locations, input i,, and decision
d,,. The system starts with all the processes in some initial state, all the buffers
empty, d,, undefined, and ip having some value in (0, 1). The protocol can assign
to dp a value in 10, 1). Once d,, is assigned a value v, it cannot be changed, and p is
said to have decided v.

The configuration of the system is the collection of the states and the buffers’
contents of all the processes. Let C be a configuration and S be a subset of processes.
A subconfiguration C’S is the restriction of C to the members of S. Henceforth, we

826 G. BRACHA AND S. TOUEG

reserve the notation F’ to denote any configuration where all the correct processes
have decided i, and Fii to denote any subconliguration where all the correct
processes in S have decided i.

A sequence of atomic steps is called a schedule. If the execution of a schedule d
from a configuration C results in a configuration D, we write C F D. If there is a
schedule u such that C F D, we write Cl- D; if all the processes performing atomic
steps in u belong to a subset of processes S, then we write C’S l- &, and say
that DS is reachable from Cs. The configuration D is said to be reachable if it is
reachable from some initial configuration.

We postulate an agent, the scheduler, that will determine the next atomic step
in the execution. Probabilistic assumptions on the behavior of the scheduler provide
us with a probability measure on the space of all possible schedules. In this paper
we are interested in the class offair schedulers, as defined in Section 2.3.

A k-resilient consensus protocol is a protocol that satisfies the following prop-
erties, provided that no more than k processes are faulty:

(1) Bivalence. If all the processes are correct, both F” and F’ configurations are
reachable.

(2) Consistency. There is no reachable configuration where correct processes
decide different values.

(3) Convergence. For any initial configuration, lim,,,Pr[a correct process has
not decided within t steps] = 0.

Note that, from the consistency and the convergence properties of k-resilient
protocols, if Cs l- Fji, then C l- F’.

2.2 A LOWER BOUND ON THE NUMBER OF CORRECT PROCESSES. The
possibility of undetectable deaths during the execution of the protocol implies that,
at any stage of the protocol, processes will have to act relying only on partial
information about the state of the system. This is formalized by the following
lemma.

LEMMA 1. With a k-resilient consensus protocol, for any reachable con3gura-
tion C, and for any subset S of processes that contains at least n - k correct
processes, either C’S I- F$ or CS I- FL.

PROOF. Let C be a reachable configuration, S be a subset of processes that
contains at least n - k correct processes, and 3 be the complement of S (i.e., the
set of processes that are not in S). Note that 1 Sl I k. Assume first that all the
processes in s are fail-stop. Suppose that, after reaching configuration C, all the
processes in Sdie without sending warning messages. This results in a configuration
C’. We have Ci = C.. From the consistency and the convergence properties of the
k-resilient protocol, we must have Ci l- F$ or C& l- Fk. Since Ch = Cs, and since
the death of processes in 3 cannot be detected, we have C’S l- F$ or C’S l- Fk. This
must also hold even if there are correct processes in s. 0

Let C be a configuration, and S a subset of processes as in Lemma 1. If both
Cs l- Fg and Cs I- Fk, then Cs is bivalent. If CS l- F$ or C’S l- FL, but not both,
then Cs is univalent (0-valent or l-valent, accordingly).

LEMMA 2 [31. For k 2 1, any k-resilient consensus protocol has a bivalent initial
configuration.

PROOF. Suppose all the processes are correct. Initial configurations differ only
by the processes’ input values. Two initial configurations differing by the input

Asynchronous Consensus and Broadcast Protocols 827

value of only one process are adjacent. Assume, for contradiction, there is a
k-resilient protocol such that any initial configuration is either 0-valent or 1-valent.
By the bivalence property of the protocol, there must be one of each. Therefore,
there must be two adjacent initial configurations, I0 and I’, that are 0-valent and
I-valent, respectively. These configurations differ only by the input value of some
process p. Therefore, Z s = Is, where S includes all the processes except p. From
Lemma 1, either Z”, l- F$ or Z% I- FL. If Z$ l- F$, then Zg I- F$, and therefore we
have I’ l-F’. But I’ is I-valent, a contradiction. A similar contradiction is obtained
if we assume I$ l- Fk. 0

THEOREM 1. There is no [n/21-resilient consensus protocolfor thefail-stop case.

PROOF. Assume there is such a protocol, and consider a system in which all the
processes are correct. Let C be any reachable configuration, S be any subset of
processes of size Ln/2J, and S be the complement of S. We claim that C’s and C’s
are either both 0-valent or both I-valent.

From Lemma 1, since the protocol is [n/21-resilient and 1 S 1, 1 S 1 L n - [n/21,
we have CS l- Fi and CT l- Fh, for some decision values i and j. Suppose that
there exists two schedules a0 and cl such that Cs p F$ and Cs P F& (or vice-versa).
Then we can apply the schedule u = a0 . uI to configuration C, and this results in
a configuration where processes in S decide 0, and processes in S decide 1 (or vice-
versa). This contradicts the consistency of the protocol, and our claim is proved.

By Lemma 2, there is a bivalent initial configuration I. From our claim, without
loss of generality, both Z, and Zg are 1-valent. Let u be a schedule such that
Z F F”. We denote by I’ the configuration reached from Z after the first t steps in
u. Note that I0 = Z and I’“’ = F”. Clearly, both IF’ and Zg’ are 0-valent. Let t be
the smallest index such that both Ifs and I$ are 0-valent. Note that t > 0. From our
initial claim, and the minimality oft, both I$-’ and IF’ must be 1-valent.

Let p be the process that performs the atomic step s such that I’-’ p I’. Suppose
p belongs to S, and therefore Z <’ l- Ii. Since Ii is 0-valent, we have Zfr l- F$. Then
we must have IL’ l- Ft. But I<’ is I-valent, and this is a contradiction. We obtain
a similar contradiction if we assume that p belongs to S. q

Note that the proof of the theorem holds for any type of protocol, even a
probabilistic or a nondeterministic one.

2.3 FAIR SCHEDULERS. Protocols for asynchronous systems can be viewed as
consisting of rounds. While in round t, a process sends messages to every other
process, and waits until it receives n - k messages sent by distinct processes in
round t. The process then changes its state, and starts round t + 1. The new state
is a function of the old state and the messages received in round t. Processes cannot
wait for more than n - k messages since there is always the possibility that all k
faulty processes do not send any messages in round t.

Define R(q, p, t) to be the event that p receives a message from q in round t.
The progress of the system depends on the joint probability distribution of the
R(q, p, t) events, which is determined by the scheduler.

A scheduler is fair if the following conditions hold:

(1) For any processes, p and q, and round t, there is a positive constant 6 such that
WR(q, P, 01 > e.

(2) For any distinct processes r, p, and q, and round t, the events R(q, r, t) and
R(q, p, t) are independent.

8:!8 G. BRACHA AND S. TOUEG

In particular, these conditions guarantee that, for any round k, there is a constant
probability p that all processes receive n - k messages from the same set of correct
processes.

2.4 AN L(n - l)/%RESILIENT CONSENSUS PROTOCOL. In this section we
describe a k-resilient consensus protocol for a system with a fair scheduler, and
k= 1,2,...,L(n- 1)/2J. The protocol consists of rounds as in Section 2.3. Both
the state of a process and the messages exchanged consist of a phase number, a
binary value, and a cardinality. In each phase, a process first sends a message with
its, state to all the processes, then it waits for messages. When a process receives
n - k messages, it considers the sets of messages with value 0 and value 1,
respectively. A message with value i and cardinality greater than n/2 will be called
a witness for i. If a process receives a witness for i it changes its value to i (we prove
later that no process can receive a witness for both values). Otherwise, it changes
its value to the value i with the largest message set. In both cases, it also changes
its cardinality to the size of the message set with value i, and then it starts a new
phase. A process decides i if it receives more than k witnesses for value i. This
indicates that there are enough witnesses for that value in the message system to
force the rest of the processes to reach the same decision.

THEOREM 2. For any k, 0 5 k 5 L(n - 1)/2J, the protocol described in Figure
1 is a k-resilient consensus protocol for the fail-stop case.

PROOF. We need the following few definitions. Each execution of the protocol
outer loop is called a phase. A process is in phase t if at the beginning of this phase
its variable phaseno has the value t. A message (witness for i) whose phaseno field
is equal to t is called a t-message (t-witness for i). A process p decides in phase t if
it sets the decision variable d, while its phaseno variable is equal to t. The value of
the variable var of process p, when p is at the beginning of phase t, is denoted by
varb.

We prove the theorem by showing the protocol’s consistency, deadlock-freedom,
convergence, and bivalence, in the presence of up to k faulty processors.

Consistency. Let t be the smallest phase in which a process decides. We claim
that, for any processes p and q, we cannot have both witness-count(O); > 0 and
witness-count(1): > 0. Suppose for some i, witness-count(i); > 0. Then process p,
in phase t - 1, must have received from some process r a (t - I)-witness for i. So
r must have received, in phase t - 2, more than n/2 (t - 2)-messages with value i.
Therefore, if both witness-count(O); > 0 and witness-count(l): > 0, since
there are at most n processors, there must be a least one processor that sent
(t - 2)-messages with both values. This is impossible in the protocol described
in Figure 1, and the claim is proved. From this claim and the description
of the protocol, it is now easy to check that a process can never have both
witness-count(O) and witness-count(1) greater than 0 in the same phase.

Let t be the smallest phase in which a process decides, let us say process p decides
0 in phase t. We prove that no other process q can decide 1.

Since p decides 0 in phase t, we have witness-count(O); > k. From our claim,
we cannot have witness-count(1): > k. Therefore, if q decides in phase t, it also
decides 0.

We now show that all the t-messages sent are of the form (t, 0, cardinality). Since
witness-count(O)j, > k, process p receives more than k(t - I)-witnesses for 0.
Consider a process r that sends a t message. Process r must have received IZ - k
(t - I)-messages, and one of them must be a (t - l)-witness for 0. Then process r

Asynchronous Consensus and Broadcast Protocols 829

process p : k-consensus
value: integer init
curdinality:integer init(1)
phaseno: integer init(0)
witness-count: array[O.. I] of integer init(0)
message-count: array[O.. l] of integer init(0)
msg: record of

phaseno: integer
value: integer
curdinality: integer

while (witness-count(O) 5 k and witness-count(1) 5 k)
message-count := witness-count := 0
for all q, 1 s q 5 n, send(q, (phaseno, value, curdinulity))
while (message-count(O) + message-count(1) < n - k)

receive(msg)
case

(msg.phuseno = phaseno):
begin

message-count(msg.vulue) := message-count(msg.vulue) + 1
if msg.curdinulity > n/2
then witness-count(msg.vulue) := witness-count(msg.vulue) + 1

end
(msg.phuseno > phaseno):

send(p, msg)
end

if there is i such that witness-count(i) > 0
then value := i
else if message-count(1) > message-count(O)

then value := 1
else value := 0

curdinulity := message-count(vulue)
phuseno := phaseno + 1

end
let i be such that witness-count(i) > k
d, := i
for all q, 1 5 q 5 n,

begin
send(q, (phaseno, value, n - k))
send(q, (phuseno + 1, value, n - k))

end

FIG. 1. A k-resilient consensus protocol for the fail-stop case.

increments witness-count(O) in phase t - 1. From our initial claim, process r sets
its value to 0 in phase t - 1, and it sends (t, 0, cardinality) messages in phase t.

Consider a process q that decides in phase t + 1. From the above remark, all the
t-messages received by q have value 0, and therefore q must decide 0.

We now prove that all the (t + l)-messages sent are of the form (t + 1, 0,
n - k). Consider a process r that sends (t + I)-messages. From the description of
the protocol in Figure 1, we see that if r decides in phase t, the (t + I)-messages it
sends are of the form (t + 1, 0, n - k). If r does not decide in phase t, it must have
received n - k t-messages in phase t. We already proved that all the t-messages
have value 0. So, in phase t, process r sets its value to 0 and its cardinality to
n - k. Therefore, it sends (t + 1, 0, II - k) messages in phase t + 1.

A process r that reaches phase t + 2 must have received n - k (t + I)-messages.
From our remark above, all the (t + 1)-messages are witnesses for 0, and therefore
r decides 0 in phase t + 2.

830 G. BRACHA AND S. TOUEG

Since any process that reaches phase t + 2 decides 0, no process can ever be in
a phase higher than t + 2, and no process can decide 1.

Deadlock-freedom. Since processes wait for each other’s messages, the protocol
might be exposed to deadlocks. We prove that the protocol is deadlock free.

Suppose, for contradiction, the protocol runs into a deadlock. Let D be the set
of deadlocked processes. Each process q in D is deadlocked in phase tq. Let
t0 = minqEO 4, t and p E D be a process that is deadlocked in phase to. Let S be a set
of n - k correct processes. There are two possible cases.

(1) No process in S decides in a phase t, t 5 to - 2. By the minimality of to,
every process in S either decides in phase to - 1 or to, or it reaches phase to without
deciding, in either case it sends to-messages to all the processes. Therefore, there
will be at least n - k to-messages in p’s buffer, and p cannot be deadlocked in
phase to; this is a contradiction.

(2) Some process decides in phase t, t 5 to - 2. Let t be the smallest phase in
which a process decides. In the proof of the protocol consistency, we showed that
no process can ever be in a phase greater than t + 2. We also proved that every
process that reaches phase t + 2 decides. Note that p is deadlocked in phase
to 2 t + 2. This is a contradiction, and the proof of deadlock-freedom is complete.

Convergence. Let S be a set of n - k correct processes. Suppose no process in
S decides in a phase t, t < to. We prove that there is a fixed 0 such that, with
probability greater than 8, all the processes in S decide in phase to + 2.

Since there are no deadlocks, every process in S will reach phase to. Note that,
for t = to, to + 1, and to + 2, from our assumption of a fair scheduler, there is a
positive constant p such that, with probability greater than p, every process in S
receives in phase t the set of n - k t-messages sent by all the processes in S in
phase t. In other words, with probability greater than 8 = p3, for three consecutive
phases all the processes in S exchange messages exclusively among themselves,
oblivious to the rest of the system. It is clear from the protocol that, if this happens,
then all the processes in S decide in phase to + 2.

Bivalence. If all the processes start with the same input value, all the correct
processes decide that value within two steps. 0

Note that the protocol computes an “approximation” of the majority of the
initial input values. If more than (n + k)/2 processes start with the same input
value, every correct process decides that value in just three phases. If no input
value appears in more than (n + k)/2 processes, then the consensus value reached
is not known a priori.

3. The Malicious Case

3.1 THE MODEL. In this section, we investigate a stronger failure behavior of
the processes. A malicious process can send false and contradictory messages (even
according to some malicious design), can fail to send messages, and can change its
internal state to any other state.

However, the message system must provide a way for correct processes to verify
the identity of the sender of each message. Otherwise, one malicious process can
impersonate the whole system, leading the correct processes to conflicting decisions.

The rest of the model is as described in Section 2.1 with the following additional
definitions. A schedule is legal if all its steps are according to the protocol. A

Asynchronous Consensus and Broadcast Protocols 831

configuration C is legally reachable if it is reachable by a legal schedule. Hencefarth,
we reserve the notation I- to denote only transitions by legal schedules.

3.2 A LOWER BOUND ON THE NUMBER OF CORRECT PROCESSES

LEMMA 3. With a k-resilient consensus protocol, for any reachable configura-
tion C, and for any subset S of processes that contains at least n - k correct
processes, either Cs t- Fi or CS t- Fi by some legal schedule.

PROOF. The malicious processes can behave just like fail-stop processes and
die. The proof follows from this observation and the proof of Lemma 1. q

THEOREM 3. There is no rn/31-resilient consensus protocol for the malicious
case.

PROOF. Suppose there is a rn/31-resilient protocol. Let S and T be subsets of
processes of size L2n/3J such that 1 T U S 1 = n. Note that 1 T n S 1 5 n/3. Let C
be a legally reachable configuration. All the malicious processes have followed the
protocol so far. If they continue to follow the protocol, then there is no way in
which they differ from correct processes. Therefore, by Lemma 3, C’S I- Fi and
CT I- F$, for some decision values i and j.

We claim that C’S and CT are either both 0-valent, or both I-valent. Suppose not,
then, without loss of generality, there are legal schedules uo and cl such that
C’S F Fg and CT F Fk. Suppose that all the processes in T n S are malicious. The
following schedule is possible. From C, by schedule a~, we first reach a configuration
where all the correct processes in S decide 0. Then, the malicious processes in
S n T change their state and their buffers’ contents back to what they were in C,
resulting in some configuration C’. The only difference between C$- and Cr is that
in C$ the buffers of the processes in T may have additional messages (that were
added during the execution of ao). Since Cr eL Fk, the procecses in T can now
follow the legal schedule uI from configuration C’, until all the correct processes
in T decide 1. This schedule violates the consistency of the protocol, and our claim
is proven.

The rest of the proof follows closely the last part of the proof of Theorem 1. Let
Z be the bivalent initial configuration guaranteed by Lemma 2. From our claim,
without loss of generality, both Is and IT are 1-valent. Let u be a legal schedule
such that I F p. We denote by I’ the configuration reached from Z after the first t
steps in u. Clearly, both Zg’ and Zk’ are 0-valent. Let t be the smallest index such
that both Zi and I$ are 0-valent. Note that t > 0. From our initial claim, and the
minimality oft, both Zg’ and Z’,-’ must be 1-valent.

Let p be the process that performs the atomic step s such that I’-’ 6 I’. Assume
that p belongs to S. We have ZS t- F$, and therefore Z5’ I- F$. However, Zc’ is
1 -valent, and this is a contradiction. We obtain a similar contradiction if we assume
that p belongs to T. Cl

3.3 A L(n - 1)/31-RESILIENT CONSENSUS PROTOCOL. In this section, we pre-
sent a k-resilient consensus protocol for a system with a fair scheduler and
k= 1,2,..., L(n - 1)/31 malicious processes. The state of a process consists of a
phase number, and a binary value. As in Section 2.3, the protocol consists of phases
in which processes send each other their states. In order to overcome misleading
messages from the malicious processes, the state information is sent in the following
manner. There are two types of messages: initial and echo. A process sends to all
the processes an initial message with its name and its state. Upon receiving an

832 G. BRACHA AND S. TOUEG

initial message, every process echoes it back to all the processes. Process p, at phase
t, accepts a message with value i from process q if it receives more than (n + k)/2
messages of the form (echo, q, i, t).

In each phase, a process first sends (through the procedure described above) its
state to all the processes, and waits until it accepts messages from rr - k processes.
Then, it changes its value to the majority of the values of the accepted messages.
A process decides i if it accepts more than (n + k)/2 messages with value i. We
prove that, once a process decides i, thereafter all the other correct processes will
have value i.

In the protocol described in Figure 2, processes do not exit the protocol after
they decide. This was done for notational convenience only, and can be avoided
in the following manner: When process p decides i, it sends to all the processes the
message (initial, p, i, a) and echoes of the form (echo, q, i, *) for all q’s. These last
messages are special, and whenever a process receives them, it sends them back to
itself. Once a correct process has decided i, all the correct processes will have value
i. Therefore, this procedure will have the same effect as the actual participation of
p in the protocol.

THEOREM 4. For any k, 0 5 k 5 L(n - 1)/31, the protocol described in Figure
2 is a k-resilient consensus protocol for the malicious case.

PROOF. We show the protocol’s deadlock-freedom, consistency, convergence,
and bivalence, in the presence of up to k faulty processes. We use the same notation
and definitions as in the proof of Theorem 2.

Deadlock-freedom. We have to prove that it is always possible for a process to
accept n - k messages. Consider a correct process p in phase t, where t is the
smallest phase among correct processes in the system. At least n - k correct
processes are in phase t or in a higher phase. Let q be such a process. Process q has
already sent a (initial, q, V, t) message to all the other processes. Since there are at
least n - k correct processes, p’s buffer will receive at least n - k (echo, q, v, t)
messages. Since n - k > (n + k)/2, then p, at phase t, eventually accepts this
message with value v from q. Therefore, p accepts yt - k messages from correct
processes, and p proceeds to the next phase.

Consistency. Consider any two processes p and q, at some phase t. We claim
that, if p and q accept a message from some process r, then these messages must
have the same value. Suppose not; then at phase t, p accepts a message with value
0 from r and q accepts a message with value 1 from r. Then more than (n + k)/2
processes sent (echo, r, 0, t) messages to p, and more than (n + k)/2 processes
echoed (echo, r, 1, t) messages to q. Therefore, more than k processes have sent
both (echo, r, 0, t) and (echo, r, 1, t). Since there are at most k malicious processes,
then at least one correct process has sent both (echo, r, 0, t) and (echo, r, 1, t).
From the description of the protocol, correct processes cannot do that, and, hence,
a contradiction.

Let t be the smallest phase in which a correct process decides. Let us say process
p decides 0 in phase t. Process p must have accepted messages with value 0 from a
set S of more than (n + k)/2 processes. By deadlock-freedom, any other correct
process q will accept, at phase t, messages from n - k processes. Therefore, it must
accept messages from more than (n + k)/2 - k = (n - k)/2 processes in S. By our
claim, the value of the messages accepted by q from processes in S must be 0. So
q accepts more than (n - k)/2 messages with value 0, and it changes its value to 0.

At phase t + 1, all the correct processes will have value 0. Note that it takes at
least (n - k)/2 messages with value 1 to change the value of a correct process to 1.

Asynchronous Consensus and Broadcast Protocols 833

process p : k-consensus

value: integer init
phaseno: integer init(0)
message-count: array[O.. 1] of integer init(0)
echo-count: array[1 ..n : 0.. I] of integer init(0)
msg : record of

type: (initial, echo)
from : integer
value: integer
phaseno : integer

while(true)
message-count := 0
echo-count := 0

for all q, 1 5 q 5 n, send(q, (initial, p, value, phaseno))
while(message-count(O) + message-count(1) < n - k)

receive(msg)
if it is the first message received from the sender

with these values of msg.type, msg.from and msg.phaseno then
case

(msg.type = initial):
for all q, 1 5 q 5 n, send(q, (echo, msg.from, msg.value, msg.phasno))

(msgtype = echo and msg.phasno = phasno):
begin

echo-count(msg.from, msg.value) := echo-count(msg.from, msg.value) + 1
if echo-count(msg.from, msg.value) = (n + k)/2 + 1
then message-count(msg.value) := message-count(msg.value) + 1

end
(msgtype = echo and msg.phaseno > phaseno):

send(P, msg)
end

end
if message-count(1) > message-count(O)
then value := 1
else value := 0
if there is i such that message-count(i) > (n + k)/2

then d, := i
phaseno := phaseno + 1

end

FIG. 2. A k-resilient consensus protocol for the malicious case.

Since there are only k < n/3 malicious processes, and k < (n - k)/2, this can never
happen. Therefore, from phase t on, all the correct processes will have value 0 and
they can not decide 1.

Convergence. Let S be a set of correct processes that have not decided yet.
Suppose no process in S decides in a phase t, t < to. We prove that there is a fixed
0 such that, with probability greater than 8, all the processes in S decide in phase
to+ 1.

Since there are no deadlocks, every process in S reaches phase to. From our
assumptions on the system behavior, there is ~9 such that in phases to and to + 1 the
following happens with probability greater than 0. At phase to, every process in S
accepts messages from the same set of y1 - k processes. At phase to + 1, every
process in S accepts messages only from correct processes. It is clear from the
protocol that all the processes in S decide in phase to + 2.

Bivalence. If all the processes start with the same input value, within two phases
all the correct processes decide that value. Cl

834 G. BRACHA AND S. TOUEG

Note that if k < n/5, once a correct process decides, all the other processes
also decide within one phase. As in the fail-stop case, this protocol computes
an “approximation” of the majority of the initial input values. If more than
(n + k)/2 correct processes start with the same input value, every process decides
that value in just two phases.

4. Performance Analysis
In this section, we bound the expected number of phases required to reach
agreement in the protocol of Figure 2. Since the protocol of Figure 2 is an
L(n - 1)/3Jresilient consensus protocol for malicious processes, it is also an
L(n - 1)/3 J-resilient consensus protocol for fail-stop processes. We analyze its
performance with both types of processes. The expected running time of failure-
free executions is analyzed in Section 4.1, and of executions with failures in Section
4.2.

4.1 FAILURE-FREE EXECUTIONS. In this section, we analyze the expected num-
ber of rounds to reach agreement if no failure occurs. We can describe the execution
of the protocol as a Markov chain P with states 0, . . . , ~1. The system is at state i
if i processes have value 1. For k = n/3, we get the following transition probabilities:

Pij =
0

; w$(l - wJ”-j,

where

Wi= 1
m,;;f r)

2n/3a>n/3 (2n;3) *

The absorbing states are 0, . . . , n/3 - 1 and 2n/3 + 1, . . . , n.
Let Ej be the expected absorption time from state j. It is clear that E,,,2 I

E n/2+1 2 *** L Ez~,~+, = 0 and E,,p L EnpI 2 . . . z En,3-1 = 0. This gives us a
simple intuitive notion of the “distance” of a state from the absorbing states. We
can use it to modify our matrix in a way that will increase the expected absorption
time. The closer the state is to the center of the matrix, the further it is away
from the absorbing states. Therefore, if for i < j < n/2 and I< n/2, we decrease
Pn/2*t,n/2*j and mcrease Pnp~~,n/2ei, the resulting matrix will describe a Markov
chain with slower convergence rate. As a particular instance of this procedure, we
can “identify” one state as another and substitute state n/2 f j’s row with state
n/2 + i’s row.

We partition the states of the following five groups:

A=
N

0,-- 1
3 I

,

2n
I Y.q-’

n . I

Asynchronous Consensus and Broadcast Protocols 835
-

We identify all B’s state with state n/2) - (IJn/2) - 1, all C’s states with state
n/2, and all D’s with state (n/2) + (1 $ n/2) + 1. Having done that, we can collapse
each group to a single state, by adding all the columns in a group to a single
column and eliminating the multiple rows. This leaves us with a 5 x 5 matrix M.

In order to compute M’s entries, we use the following approximation: Let the
random variable Ben,,,) be the sum of n Bernoulli trials with success probability p,
andj 2 np. We approximate B’s distribution by the normal distribution, that is,

where

a(x) = & jm e-12j2dt. s (2)

In state n/2 processes can decide 0 or 1 with equal probability, that is, the
expected number of the processes that decide l(0) in the next phase is n/2.

M C,C = C Pn/2,j = 1 - 2@(0.
jEC

By setting Mc,~ = 0 we can just decrease the expected absorption time, which
leaves us with MC.B = a(1).

In order to compute row B’s entries, we need a bound on w,/~-~J;;/~-~, the
probability of choosing 1 in state n/2 - l&/2 - 1. If we increase that probability,
the resulting matrix will have a higher absorption time.

Given a population of n items, b of them are special, and a random sample of
size r. Let the random variable HG (n.b,rJ be the number of special items in the
sample. HG(,Q,~) has the hypergeometric distribution. By (I),

w,/~-IJ;;/~-~ = Pr HG(n,n~2-~~/2-1.2n/3) > f 1 .

The hypergeometric distribution is more dense around its mean than the binomial
distribution. Therefore,

%/24&/2-l < Pr B(2n/3,(n/2-1J;j/2-l)/n >+B(G. I).

If we pick 1 such that @(J2/3 . 1) = l/3,

(4)

In order to make a transition from B to C, more than n/2 - 1&/2 - 1 processes
have to change their value to 1, therefore

M B,C = j~C~nj2-l&/2-l.j- (5)

Using (2), we get

MB,C 5 @
n/2-

(6)

836

and, using (2) again,

G. BRACHA AND S.TOUEG

MB,,4 = C Pn/2-l&/2-lj > @CO) = t- (7)
Ozj>n/3

.Because of the symmetry of (I), and of our partition we know that MB,A = MD,E
and MB,c = M,,c. we are interested in the absorption time to any absorbing state,
and do not care to which one. Therefore, we can collapse state A and E. In the
resulting matrix, B and D have exactly the same transition probabilities, and we
can collapse them together too. Again, we can decrease probabilities of transition
to AE and increase probabilities of transition to C. Thus, yielding the following
matrix R:

c

BD

AE

Let us denote the leading 2 x 2 submatrix of R by Q. Let N= (I - Q)-‘. By [4],
the expected absorption time from a state in R is given by the sum of the
corresponding row in N. Thus

and

and the sum of N’s first row is

29(Z) + l/2 + @((hi + 31)/A)

W)
(10)

After substituting the value of 1, the expected number of phases is 3.6.

4.2 EXECUTIONS WITH FAILURES. We analyze the expected number of rounds
to reach agreement in the protocol of Figure 2. As in the previous section, we
model the execution of the protocol by a Markov chain M, with states 0, . . . ,
n .- k. The system is in state i if i correct processes have value 1. The absorbing
states are 0, . . . , ((n - 3k)/2) - 1 and ((n + k)/2) + 1, . . . , y1 - k. However, we
modify the Markov chain model, since the failures are not governed by the
probabilities of P.

We first consider the case of malicious processes. After any state transition of
the system, the malicious processes can set their value arbitrarily. The worst that
the malicious processes can do is to shift the system to the “further” state from the
absorbing states by balancing the number of l- and O-messages. This gives us the

Asynchronous Consensus and Broadcast Protocols

following transition probabilities:

837

M@-kY2b.j =
P n/2*(i-k)j i L k,
pn,2j i < k, (11)

where Pi,j is as in Section 4.1.
Starting from the balanced state (n - k)/2, the probability of making a transition

to an absorbing state is given by

c M(n-k)/2J = 2@(j). (12)
Osj<(n-3k)/2

(n+k)/2<jan-k

Therefore, the expected number of transitions to an absorbing state is bounded by
l/(2+(1)). Therefore, for k = O(A), the expected absorption time is constant.
However, for k = O(n), the expected absorption time is O(2”).

Fail-stop processes cannot shift the state of the system as the malicious processes
do. However, after each transition, if the system is biased toward some value v,
fail-stop processes that have v as a value can die, thus creating a balanced system
with less processes. The number of processes needed to reset a system from a biased
state (B’s and D’s states) to a balanced one is O(h). Since there are only O(n)
fail-stop processes and they can die only once, only O(&) transitions can be
balanced in this manner. From then on, the system behaves as in the failure-free
case. Therefore, the expected absorption time is O(A).

5. Asynchronous Byzantine Agreement
A major problem in distributed systems is ensuring reliable broadcasts, commonly
known as Byzantine Agreement [6], Unanimity [2], or Interactive Consistency [7].
All previous treatments of Byzantine Agreement deal with a synchronous system
of n processes, where up to k processes can be malicious. Some specially designated
process is a transmitter that sends a value. to all the rest of the processes. A
Byzantine Agreement is achieved if the following holds:

(1) All correct processes agree on the same value.
(2) If the transmitter is correct, all the correct processes agree on its value.

Implicit is also the requirement that the whole system can be viewed to be in
one of the following states: “before broadcast,” “ executing the agreement protocol,”
and “after broadcast.” Thus, queries about the transmitted value can be handled
in a consistent manner by any correct process.

When considering asynchronous systems, we can no longer hold such a view of
the system. Some correct processes can proceed with the protocol and reach
agreement while others may not yet be aware that the protocol has begun. Even if
a process receives a message from the transmitter or from other processes, it may
be insufficient to start up the process on the protocol. Some threshold of activity
is necessary to start up a process, a threshold that guarantees that all the other
correct processes will also start the protocol and will agree on the same value.

The following two scenarios illustrate the necessity of such a scheme.

(1) The transmitter is malicious. At time to it sends to k processes O-messages,
to a different set of k processes l-messages, and none to the rest. All these messages
are received at time tl . After that, the transmitter stops participating in the protocol.
If we regard this as a sufficient condition to start up a Byzantine Agreement
protocol, then the system can proceed and agree, let us say on 1, at time t2.

838 G. BRACHA AND S. TOUEG

(2) The transmitter is correct and sends O-messages to all the processes. At time
tl, the same k correct processes as in scenario I receive these O-messages. Also, k
malicious processes receive O-messages, but they treat them as if they were l-
messages. Any other messages from the transmitter will be received only at a time
later than t2. Consider the system during the interval [t,, t2]. The processes’ view
of the system is the same as in scenario 1, and therefore they can simulate it and
agree on 1 at time t2, thus violating requirement 2 of the Byzantine Agreement.

There are two ways to overcome this phenomenon. We can restrict the behavior
of a malicious transmitter (it will be enough to force it to send 2k + 1 messages
with the same value). Another way, the one we adopt, is to regard certain views of
the system as insufficient to start the protocol. Processes may not start, unless
presented with a view that guarantees starting up and agreement of all the correct
processes.

We say that an asynchronous Byzantine Agreement is achieved if the following
holds:

(1) If the transmitter is correct, all the correct processes decide on its value.
(2) If the transmitter is malicious, then either no correct process will decide or

they will all decide on the same value.

5.1 A LOWERBOUNDONTHENUMBEROFCORRECTPROCESSES

THEOREM 5. It is impossible to achieve asynchronous Byzantine Agreement
with k I n/3.

PROOF. Suppose it is possible; since k L n/3, we can partition the processes to
three disjoint sets, A, B and C, of size k or less. Let the transmitter be in A and
consider the following scenarios:

(1) The processes in A and B are correct, and the transmitter sends O-messages.
The processes in C are malicious, and they do not send any messages during the
protocol. Since the transmitter is correct, the processes in A and B will agree on 0
within some time t.

(2) Only the transmitter is malicious. It sends O-messages to processes in A and
B, and l-messages to processes in C. Also, messages from C are delayed for a
period longer than t before they are received. The processes in A and B have the
same view of the system as in scenario 1, and therefore can agree on 0 at time t.

In a similar fashion we can construct scenario 3 with the following properties:

(3) Only the transmitter is malicious. It sends l-messages to A and C, and
O-messages to B. Messages from B are delayed for a period longer than t ‘. At time
t ’ the processes in A and C agree on 1.

Now we can combine scenarios 2 and 3 to yield a contradiction:

(4) The processes in A are malicious, the processes in B and C are correct.
The processes in A send messages to processes in B as in scenario 2, and to proc-
esses in C as in scenario 3. All messages between processes in B and processes in
C are delayed for a period longer than max(t, t’). In this scenario, at time
max(t, t’), the processes in B will agree on 0 and the processes in C will agree
on 1, a contradiction. 0

5.2 AN ASYNCHRONOUS BYZANTINE AGREEMENT PROTOCOL. There are three
types of messages in the protocol: initial, echo, and ready. The protocol starts with

Asynchronous Consensus and Broadcast Protocols

msg-count: array of [types: 0.. l] of integer
msg: record of type: (initial, echo, ready)
value: integer

while(there is no i such that
msg-count(initia1, i) 2 1 or
msg-count(echo, i) > (n + k)/2 or
msgxount(ready, i) 2 k + 1)

receive(msg)
if it is theJrst message received from the sender
with these values ofmsg.type, msg.from
then msg-count(msg.type, msg.value) = msg-count(msg.type, msg.value) + 1

end
for all q, send(echo, i)

while(there is no i such that
msg-count(echo, i) > (n + k)/2 or
msg-count(ready, i) z k + 1)

receive(msg)
if it is thejrst message receivedfrom the sender
with these values of msg.type, msg.from
then msg-count(msg.type, msg.value) = msg-count(msg.type, msg.value) + 1

end
for all q, send(ready. i)

while(there is no i such that
msg-count(ready, i) 2 2k + 1)

receive(msg)
if it is the first message receivedfrom the sender
with these values of msg.type, msg.from
then msg-count(msg.type, msg.value) = msg-count(msg.type, msg.value) + 1

end
decide i

FIG. 3. An asynchronous Byzantine Agreement protocol.

839

the transmitter sending initial messages. Then processes report to each other the
value they received via (echo, v) messages. If more than (n + k)/2 (echo, v) messages
are received by a process, it announces it with (ready, v) messages. If a process
receives 2k + 1 ready messages of the same value, it decides that value.

THEOREM 6. The protocol in Figure 3 achieves Asynchronous Byzantine Agree-
ment for k = 1, . . . , L(n - 1)/3J malicious processes.

PROOF. We have to show that if some correct process p decides some value,
then all the correct processes also decide the same value, and that if the transmitter
is correct then they all decide on the transmitter’s value.

First, we claim that no two correct processes p and q can send ready mes-
sages with different values. Suppose this is possible, then p received more than
(n + k)/2 (echo, 1) messages, or a (ready, 1) message from a correct process.
Similarly, q received more than (n + k)/2 (echo, 0) messages, or a (ready, 0)
message from a correct process. In either case, some two correct processes, s and t,
received more than (n + k)/2 (echo, 0) messages, and more than (n + k)/2 (echo,
1) messages, respectively. Therefore, some correct process r must have sent both
(echo, 1) and (echo, 0) messages. But this is impossible for a correct process. Since
decision requires 2k + 1 ready messages with the same value, it is also clear that
no two correct processes can decide different values.

Suppose p decides i, then p received 2k + 1 (ready, i) messages. At least k + 1
of them were sent by correct processes. Therefore, every correct process will also

840 G. BRACHA AND S. TOUEG

receive at least k + 1 (ready, i) messages, and will send its (ready, i) message. Thus,
at least n - k processes will send (ready, i) messages. Therefore, every correct
process will receive at least 2k + 1 (ready, i) messages and will decide i.

It is clear that if the transmitter is correct, then all the correct processes will
decide on its value. Cl

6. Conclusion
We investigated probabilistic consensus protocols for asynchronous systems with
fair schedulers. For a system with fail-stop processors, we showed that f(n + 1)/21
correct processes are necessary and sufficient for achieving consensus. For a system
with malicious processes, we showed that r(2n + 1)/31 correct processes are
necessary and suffkient for achieving consensus.

Probabilistic consensus protocols are also investigated in [11. The protocols are
similar to those given in this paper, but randomization is incorporated in the
protocol itself. They have an exponential expected termination time in the fail-
stop case, and, in the malicious case, they can overcome up to n/5 malicious
processes.

These are other examples of problems [5, 81 that do not have a deterministic
algorithm, but have probabilistic algorithms that terminate with probability 1.
From our analysis in Section 4, it seems that these probabilistic consensus protocols
provide a viable solution.

REFERENCES

I. BEN-OR, M. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed Computing (Montreal,
Ont., Canada, Aug.). ACM, New York, 1983, pp. 27-30.

2. DOLEV, D. Unanimity in an unknown and unreliable environment. In Proceedings ofthe 22nd
AnnualSymposium on Foundations of Computer Science(Nashville, Tenn., Oct.). IEEE, New York,
1981, pp. 159-168.

3. FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed consensus with
one faulty process. J. ACM 32, 2 (Apr. 1985), 374-382.

4. ISAACSON, D. L., AND MADSEN, R. W. Markov Chains Theory and Practice. Wiley, New York.
1976, pp. 89-100.

5. ITAI, A. AND RODEH, M. Symmetry breaking in distributive networks. In Proceedings ofthe 22nd
Annual Symposium on Foundation of Computer Science (Nashville, Tenn. Oct.), IEEE, New York,
1981, pp. 150-158.

6. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine Generals problem. ACM Trans. Prog.
Lang. Syst. 4, 3, (July 1982), 382-40 1.

7. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults. J. ACM
27,2, (April 1980), 228-234.

8. RABIN, M., AND LEHMANN, D. On the advantages offree choice: A symmetric and fully distributed
solution to the dining philosophers problem. In Proceedings of the 8th ACM Symposium on the
Principles of Programming Languages (Williamsburg, Va. Jan. 26-28). ACM, New York, 1981,
pp. 133-138.

9. SCHLICHTING, R. D., AND SCHNEIDER, F. B. Fail-stop processes: An approach to designing fault-
tolerant computing systems. ACM Trans. Comput. Syst. 1, 3 (Aug. 1983), 222-238.

RECEIVED APRIL 1984; REVISED APRIL 1985; ACCEPTED JUNE 1985

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985

