Naming and Grouping Privileges to Simplify
Security Management in Large Databases

Robert W. Baldwin

Tandem Computers
19333 Vallco Parkway
Cupertino, CA 95014

Abstract

This paper describes an extension to ANSI SQL
that simplifies security management by reducing the
complexity of the access controls on database objects, and
by providing users with the flexibility to define
administrative roles (like Auditor or Security
Administrator) that match their requirements for the
separation of duties. The benefit of simplified security
management is improved security. The main features of
this extension have been implemented in the Oracle
RDBMS and have been adopted for a future version of the
ANSI SQL standard. This paper focuses on major
concepts and issues, not syntax and implementation. The
key idea is to allow users to group and name privileges to
form named protection domains (NPDs). The Clark-
Wilson and Bell-LaPadula models are used to illustrate the
benefits and limitations of NPDs. The main conclusion is
that the naming and abstraction mechanisms provided by
NPDs can simplify security management in much the
same way that procedures can simplify programming.

Introduction

SQL relational databases [3] have become quite
popular in part because they provide a flexible method for
managing information. Unfortunately, the security
system for these RDBMSs is neither flexible nor
manageable. The result is poor operational security.
Access controls are not set as tightly as they could be. This
paper describes an extension to SQL that supports flexible
and manageable security.

CH2884-5/90/0000/0116$01.00 © 1990 IEEE

The SQL security system [6] is based on access
control lists (ACLs). Each ACL indicates which
individuals can perform each operation (e.g., select and
insert) on a named object (e.g., table or view). The current
ANSI SQL standard does not include the ability to grant
privileges to groups of individuals. Another feature of the
standard is that most operations can be granted to other
users, but some, like adding a new column to a table, can
only be performed by the object's owner. A privilege (an
operation-object pair) can be granted "with grant option",
which allows the recipient to pass that privilege on to
other users, including the possibility of allowing the other
users to further grant the privilege. A SQL data
dictionary table records who granted which privileges to
whom. Privileges are taken away from users with the
revoke statement. One option of revoke is to cascade the
removal of privileges to cover the case where the original
recipient has passed on the privileges. The rules that
govern cascading revocation are complex, and like any
complex control system chosen and fixed by vendors, only
a few customers will find that it meets their needs.

Managing and understanding a large collection
of ACLs is hard [5]. ACLs express security controls in a
low-level language that is far removed from the high-level
specification of a site's security policies. This semantic
gap between ACLs and security policies is the
fundamental source of manageability problems in large
security systems. The problems addressed in this paper
are listed below.

Difficult SQL S ity M ¢ Probl
1. Maintaining application-oriented security.
2. Reassigning security responsibilities.

3. Restricting ad hoc SQL statements.

4. Separating administrative duties.

From a security administrator's point of view,
enabling a new person to run the appropriate pieces of an
invoice application involves issuing a large number of
grant statements that correspond to the privileges
required by the application to carry out that person's job.
Notice that it is not enough to control execute access to the
application. In order to avoid duplication of software,
applications usually support several different classes of
users. This means the Security Administrator must know
which table privileges are required by each class of users
and carefully grant the correct ones to each new person.
Consider an invoice application that has two user classes:
Clerks and Supervisors. Clerks can only create invoices
whereas Supervisors can both create and modify invoices.
A single application program would support both Clerks
and Supervisors. The only way to enforce the separation
between those classes of users is to grant them different
privileges on the underlying objects. However, keeping
track of all the user classes, applications and privileges in
a large database is so hard that one site decided to
implemented a special database to manage this
information. This site found that their ACL-based security
configuration was too complex to maintain by hand.
Instead they used a database report writer to generate the
required grant and revoke statements.

Another problem with SQL security arises when
the responsibilities of the Security Administrator are
reassigned to another person. A very long procedure
must be carefully followed to make sure that ordinary
users retain their current access rights and to make sure
that no database objects are inadvertently destroyed. The
difficulty is that the ANSI SQL security model requires
that there be a chain of grantors that leads from an
object's owner to each user who can access that object. If
an intermediate grantor in that chain is removed, as
would be the case in changing the Security Administrator,
then all users that are downstream from that grantor will
lose their access. The long procedure creates alternate
chains based on the new administrator before the old
administrator is removed. There is no way to change the
“ownership" of a link in the chain without creating a new

17

link and removing the old one. This procedure is so
difficult that in practice, customers create one (and only
one) special user account that performs all the duties of
the Security Administrator. This account is never
removed so the long procedure is avoided. The security
and accountability of this approach rests solely on good
password management for that special user account.

Complex databases often have integrity
constraints that can only be enforced by applications and
this leads to application-oriented security requirements
that cannot be expressed under current SQL. These
requirements are generally of the form "this user can only
access that data if he is running one of these application
programs”. Under ANSI SQL, the set of operations a user
can perform (the user's protection domain) only depends
on the name of the user. The user's protection domain is
only changed when ACLs on objects are modified. To
satisfy application-oriented security requirements, it must
be possible for a single user to operate in different
protection domains without losing track of the true
identity of the user, which is required for auditing.
Actually, the ANSI SQL standard does not address the
issue of auditing, but many vendors provide it. Many
customers have asked for a clean way to support this kind
of security requirement.

The final trouble area addressed by the
mechanism described in this paper is how to support
administrative roles like Auditor, Database Administrator,
and Security Administrator, and Operator. Usually, two
customers have two different opinions about which
database powers should be assigned to a role. For
example, should auditors be able to delete the audit trail, or
should they be able to change the kind of actions that
generate audit records? Should the owner of a table be
able to turn off auditing for that table? Can Database
Administrators create new users? Can an Operator
shutdown the database, or should his powers be limited to
taking backup dumps? There is no consensus on these
questions. Customers want flexibility. They do not want
vendors to choose security policies for them by providing
a fixed set of administrative roles.

Key Concepts

This paper describes an extension to ANSI SQL
that solves these problems, and thus greatly improves the
operational security of relational databases. The
extension is based on the concept of a Named Protection
Domain (NPD). The idea is to allow the grouping and

naming of collections of privileges and individuals. The
concept of a protection domain was developed with the
Multics operating system [8]. It refers to the set of all
operations on objects that could be performed by a subject
(process). Along with Lampson's access matrix concept
[7], protection domains are often used to explain the
behavior of security systems. However, Multics did not
explicitly represent protection domains. They were
abstractions derived from information in ACLs. The
NPDs described in this paper are explicit representations
of a collection of privileges. They are protection domains
which are defined and named by the users of a database.
In addition, NPDs can group and name collections of
individual users including the possibility of groups of
groups. Basically, NPDs allow a site to create opaque
modular abstractions that form the basis of their security
configuration. Like procedures which can simplify
programming, NPDs can simplify security management.

The key idea is to group privileges, not
individuals. An object privilege is the right to perform
some operation on a particular object (e.g., select rows
from the employee table). This extension allows users to
build a directed acyclic graph that leads from object
privileges to users. Each node in this privilege graph can
be given a name and that node represents a named
protection domain (NPD). For example, all the object
privileges needed to run the accounts-receivable portion
of a general-ledger application can be granted to an NPD
called A_R. The job of enabling a user to perform the
accounts-receivable task is simple: just grant A_R to that
user. Alternatively, the A_R domain could be granted to
an NPD called A_R_Clerks, which also includes the
privileges to perform a number of other tasks. In this case,
when a new clerk is hired, he is granted the A_R_Clerk
domain.

At any given time only one NPD is active.
Activation has the effect of enabling all the privileges that
are in the subtree rooted by the activated NPD. That is,
although only one NPD is active, some collection of NPDs
will be enabled. Notice that the user cannot enable an
arbitrary collection of NPDs. The enabled NPDs must
always form a subtree in the privilege graph. This
restriction makes it easier for security administrators to
understand the possible behaviors of the security system.
It is easy to determine which privileges can be enabled at
the same time, and thus easy to make sure that there are
no conflicts between the privileges themselves. This
design also makes it possible to express separation of
duties policies that help prevent fraud by prohibiting
certain privileges from being active simultaneously. The
security administrators can choose the size and

118

complexity of each protection domain. These domains
can be small to conform to the principle of least privilege,
or large to make the security system transparent.

A database privilege is one of the super-user
privileges like being able to perform crash recover, or
being able to read any table. NPDs can group together
and name collections of database privileges to form
administrative roles. Although most customers are
satisfied with the SQL controls on data operations (e.g.,
select and insert operations), there is little consensus on
the administrative controls. Some customers want to
allow the owners of tables to be able to determine which
events generate security audit records, while others want
to restrict that power to a special Auditor role. Even
among customers who want an Auditor role, there is
disagreement about whether the Auditor should have the
power to delete the audit trail (presumably after archiving
it). Customers want the flexibility to define their own
administrative roles. NPDs can give them that flexibility.
Each site can define a set of administrative roles that
dovetail with their system of human controls outside of
the computer.

This paper argues that a security system which is
based on grouping privileges is easier to manage than one
based on grouping individuals. Privilege groups can
represent the abstractions that are found in high-level
security policies. In fact, groups of users are a degenerate
case of this mechanism. The resulting security system is
easier to manage because there is a smaller semantic gap
between the high-level security policy and the
abstractions used to express that policy to the security
system.

The bulk of the concepts described here have
been implemented in the Oracle DBMS and the basic
features of NPDs have been accepted for a future version
of the ANSI SQL standard. In both places the term "Role"
is used to refer to a Named Protection Domain. However,
"Role” is an over-used term, so to avoid confusion with
other concepts, this paper uses the acronym "NPD". The
relationships between NPDs, roles, groups and access
classes are discussed at the end of the paper.

Outline of Paper

NPDs will first be discussed in the context of
grouping the privileges for objects. The issues of naming,
controlling and activating NPDs are the same for both
object privileges and database privileges. A wide range of

administrative roles can be built with NPDs, so the second
portion of the paper discusses how various customer
requirements can be supported by grouping low-level
database privileges with NPDs. The last two sections
describe how NPDs can be used to support the Clark-
Wilson model and the Bell-LaPadula model.

Grouping Object Privileges and
Individuals

This section describes how NPDs are used to
group object privileges and individuals to improve the
manageability of the security system. A later section
describes how the same mechanism can group database
privileges to form flexible administrative roles.

NPD Privilege Graph

In ANSI SQL, object privileges are directly
granted to individual users. An object privilege is the right
to perform a specified operation on a particular table or
view. The operations include the normal data
modification operations (select and insert) plus the data
definition operations on existing objects (altering a table
definition to add a new column). Operations that are not
based on existing objects (creating a new table) are
discussed in the section on database privileges. The NPD
extension to SQL allows an object privilege to be granted
to an NPD, which in turn may be granted to other NPDs
before being granted to a user. However, as discussed in
the section on NPD administration, the with-grant-option
for a privilege cannot be given to an NPD. As shown in
the figure below, all the object privileges needed to
perform the accounts-receivable task (perhaps a dozen
different privileges on various tables) can be granted to an
NPD with the name Accounts_Receivable, which can then
be granted to any user who needs to perform that task. In
addition, the site's security policy might have a notion of
an account supervisor who can handle both payable and
receivable accounts, so both the Accounts_Receivable
NPD and an NPD called Accounts_Payable would be
granted to an NPD with the name Accounts_Supervisor.
The supervisor's NPD can be used to create fraudulent
transactions, so it should only be given to employees who
are trusted (or at least carefully watched). As discussed in
the section on NPD activation, it is also possible to add a
constraint that prevents a supervisor from activating both
of the sub-NPDs at the same time.

119

Obiect Privil
N i p ion D .
Update on Users
Profit_Center| i Accounts. .
. Elise
Receivable
Select from L9
Invoice Accounts__
- Supervisor Bob
Insert into
Budget)
Payable Leila
Update on /
Cost_Center
mpl ivil raph

Basically, object privileges can be granted to
NPDs, which can then be granted to another NPD (loops
are not allowed) or to a user. The SQL grant statement is
extended to handle the composite privileges represented
by NPDs in addition to the primitive object privileges that
it currently supports. Each NPD could be said to contain a
collection of object privileges and other NPDs. When an
NPD is granted to a user, that user can exercise all the
object privileges that are directly or indirectly contained in
that NPD.

NPDs define a directed acyclic graph, called the
privilege graph, leading from object privileges to
individual users. Each node of the privilege graph can be
named and thus serve as a mnemonic for the collection of
privileges it represents. A careful choice of groupings and
names can greatly simplify security management. Of
course, as with procedures in programming languages, a
poor choice of abstractions can make things very
confusing. One design strategy is to create an NPD for
each task performed by each DBMS application. This
strategy produces a finer granularity of control than
simply restricting who can execute each application. To
simplify application development, DBMS applications
often support different classes of users and each class is
only allowed to perform a subset of all the possible tasks
(this is particularly true for applications involved in on-
line transaction processing). The NPD-per-task approach
can handle such applications. To allow someone to
perform a particular task: grant them the corresponding
NPD. Similarly, determining the set of tasks that a user
can perform is easy. Revoking an NPD from a user will
remove that user's ability to perform the corresponding
task. This strategy simplifies the security management of
applications.

In practice both the NPDs and the applications
must be carefully designed to make security management
this easy. The design becomes difficult when the various
tasks require overlapping privileges. Explicitly granting
the NPDs for two different tasks may implicitly provide
the privileges required to perform a third task. This
situation can be recognized by examining the NPD
privilege graph, but avoiding the problem may not be
possible without redesigning the tasks.

NPDs can also be used to group individuals. If
every user who is an order entry clerk has been granted
the NPD, OE_Clerk, then granting a privilege to
OE_Clerk enables all order entry clerks to use that
privilege. This provides the same functionality as user
groups in traditional operating systems. In addition,
NPDs can create groups of groups of individuals. The
figure below shows a privilege graph that allows the
group of users named OE_Clerk to perform the
application task of creating new orders via the
Order_Create NPD. All clerks are grouped into an NPD
called Clerks and they have been granted the NPD that
enables them to review orders. The privilege graph
embodies the security policy that all four clerks can
review orders, but only two of them can create new
orders. The NPD mechanism has the power to group both
privileges and individuals in a unified way.

Users
Mara
Bill

- Denise
Colleen

Order_
Review
G ing individual ith NPD

Managing Changes to the Security
Configuration

A very important feature of NPDs is that they
can be used to clearly separate security management into
three activities: 1) defining collections of object privileges
that match abstract tasks in the site's security policy, 2)
defining classes of users according to the jobs they
perform (as opposed to grouping users by their
administrative departments), and 3) defining which
classes of users can perform each task. Partitioning these

120

three kinds of grouping simplifies the routine
maintenance of the security configuration. For example,
when a person changes jobs, the security administrator
just grants and revokes a few NPDs to match the person's
new job description. Some of the NPDs granted to that
person will not need to be changed; for example, there
could be an NPD called FT Employee that is granted to
all users who are full time employees. Notice that the
administrator can respond to the job change without
worrying about numerous select and insert privileges on
tables and views. Another common change is to add a
new application program or a new feature to an existing
application. Such a change can be accomplished by
granting a few new privileges to an existing NPD, or
perhaps creating a new NPD and granting it to an existing
NPD that defines some class of users. In both cases, the
change can be made using just local knowledge. There is
no need to review all the privileges required by all the
applications.

\ f i Iministrati
1. Grouping privileges into application tasks
2. Grouping individuals into classes of users
3. Assigning tasks to user classes

From the point of view of assurance, NPDs help
auditors understand why some privilege has been
granted. The privilege graph is an explicit representation
of the reason that each privilege is granted to each user.
For example, under ANSI SQL it would be quite hard to
figure out why somebody has select access to the
Hire_Date column of the Employee table, whereas a
privilege graph could show how that operation was
grouped together with others as part of an application
that determines vesting in a corporate retirement account.
The privilege graph clearly shows that the user needs to
access the hiring date information in order to run the
retirement report application. ANSI SQL has a table
which indicates who granted each privilege, but not why.
The NPD privilege graph, which would be visible as a
SQL table, answers the why question. The NPDs
represent abstractions in the site's security policy and thus
they make the security configuration easier to understand,
verify, or modify.

Controlling NPDs

So far we've discussed how NPDs simplify the
allocation and management of access controls, and that
leads to the question of how the NPDs themselves are
controlled. How are they named? Who can create them?
Who owns them? Who can grant an NPD to a user? Who
can grant a privilege to an NPD?

Naming and Ownership of NPDs

There are two choices for naming entities in a
SQL database. A name can be global to the whole
database as are usernames and schema names (schemas
are similar OS file directories), or a name can be local toa
schema. To simplify the syntax of the grant and revoke
statements, NPDs are given global names chosen from the
same name-space as usernames. One advantage of this
choice is that NPD names do not need to be preceded by a
type indicator (a keyword like "ROLE"). The main reason
for chosing global names is to make NPDs independent of
the existence of any user (or schema). One of the goals of
this mechanism is to reduce the security impact of adding
or removing users. If the name of an NPD depended on
the existence of a user, then removing that user would
have the undesirable side-effect of causing a major
change to the NPD privilege graph.

Although NPDs look like usernames, an NPD
cannot own any object. NPDs cannot be used to solve the
ownership problem of tables that logically belong to an
application. For example, the collection of tables, views
and indices used by the MIS applications are often owned
by a mythical person with the username MIS. According
to ANSI SQL, there are some operations that can only be
performed by the owner of an object (e.g., dropping
(remove) it, or altering its definition). When these
operations need to be performed, some real individual
must login as the mythical user MIS, and that leads to a
loss of accountability. Any person who knew the MIS
password could have been responsible for the actions that
took place during a questionable session. Security systems
should be designed to eliminate the need for multiple
people to know the password for a single account.

A better solution is to avoid having privileges that
cannot be granted. No operations should be restricted to
just the owner of an object. It should be possible for

121

individuals who are operating under their true user
identities to perform any of the operations required to
maintain or upgrade application tables. If nothing else,
databases should support a course-grain “owner" access
mode. As part of installing the application, this owner
access mode would be granted to the users who will be
responsible for maintaining the application. If the
database also supports NPDs, one could grant the "owner"
access mode to an NPD which is eventually granted to
some set of users. However, the NPD would not own the
table. Removing the NPD would not cause the table to be
removed. With fine-grained controls, one NPD might
contain the privilege to add columns to a table, while
another NPD might have the privilege to drop (remove)
the table. NPDs do not own objects.

Administration of NPDs

Granting an NPD to a user makes it possible for
that user to exercise all the privileges directly or indirectly
granted to that NPD. Clearly, this operation must be
restricted to authorized users. In this design, a user is
authorized to grant an NPD to other users or NPDs if that
user has been granted the NPD “with admin option". The
syntax for this is similar to the grant with-grant-option
statement in current SQL, but the semantics are quite
different in order to avoid the complexities of cascading
revoke and inherited grant privileges. Many SQL
customers have complained that cascading revoke is too
hard to understand and that it does not help them solve
their security management problems. The key difference
between the with-admin and with-grant options is that
removing an administrator does not cause a cascading
change to the NPD privilege graph. If the ex-
administrator has granted an NPD to other users or
NPDs, those authorizations remain in effect after the NPD
has been revoked from the ex-administrator.

Granting an NPD, N1, to a user, Ul, makes it
possible for user Ul to exercise all the privileges contained
in the NPD N1. In the figure below this includes the two
object privileges P1 and P2. If the with-admin-option was
included in the grant, then Ul can also build new arcs
(shown as dashed lines) in the NPD privilege graph. Ul
could grant N1 to another user U2, which would build an
arc from N1 to U2, or grant N1 to a second NPD N2,
which would build an arc from N1 to N2. The NPD N2
would then contain all the privileges that were granted to
N1 (P1 and P2) plus the ones it already contained (P3 and
P4). However, Ul could not grant N2 to U2 because U1l
does not have the with-admin privilege on N2.

with admin

han

ible with min option
When an object privilege is granted to an NPD,
the with-grant-option cannot be included. The main
reason for this restriction is to further decouple NPDs
from the complexities of cascading grants and revokes.
Customers have difficulty understanding the implications
of the with-grant-option and they find cascading revoke
to be confusing, useless or down right dangerous. NPDs
have simpler administrative semantics that are easy to

understand and use.

The with-admin-option for an NPD can be
granted to other NPDs. This is a debatable design decision
because it introduces a large variety of ways to build
confusing security configurations. This decision is
consistent with the behavior of other object privileges.
The "admin” option can be treated as an operation on the
NPD object. Granting and revoking the admin option
would be like granting or revoking select access on a table.
The major benefit of this feature is that NPDs can be used
to define a class of users who are responsible for
maintaining a portion of the NPD privilege graph. For
example, an NPD called MIS_Security could be granted
the with-admin-option on all the NPDs that are part of the
MIS applications. This would make it easy to designate a
new person to administer the security of MIS applications:
grant him the MIS_Security NPD. Even though the with-
admin-option does not have cascading effects, it is still
possible to create a tangled system of administration with
this feature. In practice, the with-admin-option should
only be granted directly to users or NPDs that represent
the classes of users who control the security configuration.

When an NPD is created (see below for control of
creation), the user who created it is automatically given
admin authority over that NPD, and thus can designate
other administrators for the NPD. The creator does not
own the NPD. NPDs do not have owners. In fact, the
creator's admin authority can be removed. The horn-lock

122

problem of controlling an NPD when nobody has admin
authority for it is solved by the usual recourse to an all
powerful super-user (hopefully the password
management of this account is good), or by restoring the
system to a previous state from backup information.

Creating and Dropping NPDs

Different sites will have different policies about
who can create and drop (remove) NPDs because they
have different policies about how the security
configuration is designed, setup and maintained. To allow
flexibility, the Oracle implementation defined a database
privilege that enables a user to create or drop NPDs. As
discussed in the section on administrative roles, database
privileges like this one can be granted to users and NPDs.
The decision to make a single database privilege control
both the create and drop operations on all NPDs is
consistent with the current practice of using a single
privilege to control both creating and dropping users.
Consistency is important because usernames and NPD
names are drawn from the same name-space. Further
experience with NPDs is needed to determine whether a
finer granularity of control is necessary.

One possible enhancement to the controls on
NPDs is to restrict who can grant a privilege to an NPD.
This is called the grant-to operation. Granting a privilege
to an NPD changes the meaning of the NPD. For
example, one does not expect the Accounts_Receivable
NPD to include the ability to select salary information out
of the employee table. The person who set up the
Accounts_Receivable NPD had good reasons for choosing
the set of privileges it contains, and that person may want
to prevent others from modifying its contents. This is
particularly true when NPDs are being used to represent
military access classes (discussed below), which are
supposed to have fixed, well defined meanings.

The question of whether to control the grant-to
operation revolves around a fundamental conflict
between the desires of the administrators of an NPD and
the rights of the owners of tables. SQL security is based
on the discretion of object owners. Owners should be able
to both grant and revoke object privileges wherever they
want, and by extension this includes NPDs. A table owner
would be surprised if he grants a privilege to an NPD and
then finds out he cannot revoke it because he no longer
has the required grant-to privilege. In the interest of
consistency with SQL, Oracle's implementation of NPDs
does not require a separate "grant-to” authority. Anyone

who has with-grant authority on an object privilege or
with-admin authority on an NPD privilege, can grant or
revoke it to any NPD or user in the database. Customer
experience will indicate whether further controls are
needed.

NPD activation

So far we've shown how NPDs are used to define
collections of privileges out of primitive object privileges
and composite NPD privileges. We've also described how
NPDs are created and controlled. This section discusses
how to determine which NPDs will govern the access
control decisions during a a particular database session.

The issue is how to determine the effective
protection domain when a user has been granted multiple,
perhaps overlapping, NPDs. What is the set of all
operations that he is allowed to perform? The obvious
choices are: all NPDs accessible to the user are active,
only one NPD is active, or a specified subset of NPDs is
active. Requiring that all NPDs are active makes the
security system transparent to the user and thus more
convenient, but the principal of least privilege argues
against this choice. The desire for application-oriented
security argues for activating just one NPD, and the desire
for flexibility suggests that users should be allowed to
enable arbitrary collections of NPDs. The actual choice is
a combination of all three possibilities.

In this design only one NPD can be activated at a
time, but if that NPD contains other NPDs, those NPDs
are also enabled. The user can then exercise all the
privileges that are directly granted to any of the enabled
NPDs including the NPD that was activated. Basically,
activating an NPD corresponds to enabling a subtree in
the NPD privilege graph. In the figure below, the Mara
has activated N4, which enables the NPDs N2, N3, and
N4. This in turn enables the object privileges P2 through
P4. A mechanistic way to think of this is to associate with
each DBMS session a block of security information that
lists the NPDs that have been enabled. A user is allowed to
perform an operation on some object if the corresponding
ACL includes one of the enabled NPDs. The set of enabled
NPDs includes the activated NPD and any NPD that has
been directly or indirectly granted to the activated NPD.

123

Enabled Object Privileges

Activation of NPD

One unifying aspect of NPDs is that the set of
object privileges that are directly granted to the user (e,
not granted through an intervening NPD) can be viewed
as privileges that are granted to an NPD with the same
name as the user's name. In current SQL, a user can
perform an operation if his username appears in the ACL
for that operation. With this extension, an operation is
allowed if either the username or the name of one of the
eriabled NPDs appears on the appropriate ACL.

In the full NPD security model, privileges directly
granted to a user can be enabled or disabled just like NPDs
(this was not included in the Oracle implementation).
There is a pseudo NPD called "UserPrivs" that represents
all of the user's direct privileges. If the NPD UserPrivs
has been granted (directly or indirectly) to the activated
NPD, then the list of enabled NPDs which are checked
against ACLs will include the username. That is, enabling
the pseudo NPD named UserPrivs, enables the privileges
that have been directly granted to the user. This unifying
trick is another reason that NPDs and usernames are
chosen from the same name-space.

The resulting security model is flexible enough to
support simple confinement policies. Such policies try to
stop the wholesale copying of information by preventing
a user who has read access to sensitive information from
making a private copy of it. Of course, these kinds of
policies have their limitations. A user may be able to
display the sensitive information on a terminal and record
it from there. However, customers who are aware of the
limitations still ask for mechanisms that would help with
confinement policies. Clearly such a restriction would not
be possible if the user can exercise his normal ability to
insert into a table that he owns. On the other hand, private
copies are sometimes exactly what is desired, so the

security system must be able to enable both the NPD
privileges and the direct user privileges. In this design,
each NPD indicates whether the direct privileges are
enabled based on whether that NPD has been granted the
pseudo NPD UserPriv. If UserPriv is not enabled, then
only the list of enabled NPDs is checked when searching
an ACL. The user's name is not checked, so the privileges
that have been directly granted to the user are not
available. This strategy allows the designer of the NPD
privilege graph to choose which protection domains will
include the privileges that are directly granted to users.

Restricting NPD Activation

An important restriction on NPDs is that only
certain ones can be activated. Only activatable NPDs can
serve as the tops of enabled subtrees in the NPD privilege
graph.

The motivation for only allowing certain subtrees
to be activated is the desire to create well-behaved opaque
modular abstractions in the security configuration. A
well-behaved security abstraction corresponds to some
task that is meaningful to users. For example, consider
two NPDs that represent creating invoices and checking
customer mailing information respectively. Neither one
of these NPDs should be enabled by itself. These
"internal” NPDs are always combined with others to form
meaningful tasks like taking orders from customers or
packing shipments at a warehouse. Without security
abstractions that are well-defined and well-behaved, a
security administrator must do a lot of work to make sure
that application programs do not encounter unexpected
security errors.

All NPDs have a boolean attribute, called
Activatable, that is initialized when the NPD is created.
This attribute can be modified later with an Alter
statement by any user who has been granted the admin
option on that NPD. In order to activate an NPD, first the
user must have been granted the NPD (either directly or
indirectly), and second the Activatable attribute of the
NPD must be true. This attribute is not checked for any of
the NPDs that are indirectly enabled by the activated
NPD. In terms of the NPD privilege graph, this rule
means that the root of the subtree being enabled must be
activatable and there must be a path from the root NPD to
the user.

One simplification of this scheme is to say that
users can only activate the NPDs that are directly granted

124

to them. This avoids the need to store a flag attribute and
the corresponding syntax to initialize, view and modify it.
Unfortunately, this simplification, which was included in
the Oracle implementation of NPDs, interferes with the
ability of security administrators to manage fine-grain
user classes or detailed tasks. This point is illustrated in
the next two figures. As discussed earlier, using NPDs to
define user classes independently of the privileges
required by applications can simplify the routine
maintenance of the security configuration. If user classes
exist with this simplification, a user must enable all the
applications granted to a class at the same time. As
illustrated below, this would mean that clerks would have
to enable all the privileges of both the accounts-receivable
and the accounts-payable tasks. This is a violation of the
principle of least privilege.

Named P ion Domai

Accounts_ Elise
Receivable
Bob
*
Accounts_ Leil
Payable etla

Flag controlling NPD activatability

To avoid this violation, the privilege graph
would have to be set up as shown below. The graph is
more complex because the information about the user
class for clerks is missing. This simplification makes it
difficult to manage user classes. By making the directly
granted NPDs special, this simplification forces the
natural privilege graph to be flattened with a resulting
loss of information and increase in complexity.

Accounts_
Receivable

Bob

Accounts_
Payable

= Leila

raph with

iavabili

The restriction that only some NPDs can be
activated also arises from the desire for reuseable security
abstractions. A modular abstraction can be included in
many places even though it is never directly exposed to a
user. The invoice creation NPD mentioned above is a
good example. It would be granted to several different
NPDs since creating invoices would be part of several
application tasks. Whether an NPD can be activated is like
the difference between an internal and external
procedure. It indicates whether the abstraction is visible
to the next level.

Part of making an NPD opaque is hiding the set
of NPDs that it contains. That hiding would not occur if a
user could activate any NPD that has been indirectly
granted to him. The person who designed the relevant
part of the privilege graph had a reason for grouping
together the particular collection of NPDs. They
represented a set of privileges that should be enabled at
the same time. The activatable flag enforces the hiding of
an NPD's internal structure.

The decision to only allow one NPD to be
activated was chosen for several reasons. This choice
allows the designers of the NPD graph to conveniently
control all the possible protection domains that any user
session can be in. A user can only be in one of the domains
defined by the activatable NPDs. The alternative of
letting each user choose the set of activated NPDs, leads to
a combinatorial explosion in the number of effective
protection domains. The number of combinations of
NPDs makes it hard to understand the possible behavior
of the security system. The activate-one approach also
avoids the problem of defining compatible and non-
compatible NPDs. Using the NPD graph it is easy to
determine which NPDs might be enabled at the same time
and detect incompatibilities. For example a site could
have a policy that the Accounts_Receivable NPD may not
be enabled at the same time as the Accounts_Payable
NPD because that creates too many possibilities for fraud.
A quick check of the privilege graph could determine
whether this policy could be violated. The price of easy
analysis is reduced flexibility.

Only one NPD is active at any time, so how is that
NPD picked? The activated NPD can be chosen explicitly
using a SQL statement or implicitly as part of invoking a
database application. Linking NPD activation to the
invocation of applications leads to a major improvement
in application-oriented security. Implicit activation makes
the security system transparent and thus easier to use.
One option is to prevent a user from explicitly chosing the

125

active NPD (using a database privilege discussed later).
This option supports security requirements that prevent
users from accessing a particular table unless he is
running a trusted application.

Correctly supporting this requirement involves
cooperation between the OS and DBMS security systems.
The OS must control which applications the user can
execute (including the ability to create new applications)
and the DBMS must control the protection domain for
each application. This strategy can even create multiple
environments for executing interactive (ad hoc) SQL
statements. A single interactive SQL interpreter can be
given several names by the OS, and the activated NPD
would depend on the name used to invoke the interpreter.
This kind of NPD would grant the user the appropriate
query and update access without enabling him to modify
crucial tables in ad hoc ways.

The details of the linkage between applications
and NPDs is operating system specific, but it can be based
on the name of the application program or on OS security
information. For example, the DBMS could have a table
that maps username and program name pairs into an
NPD name. Alternatively, there could be a mapping
between OS security tokens (like Unix group names or
RACF role names) and NPD names. Some DBMSs, like
Oracle, already provide this sort of token translation for
usernames between a DBMS session and an OS login
session.

The ability to set or change the active NPD is
controlled by a database privilege which may or may not
be granted to the user. At the beginning of a session, the
pseudo NPD UserPrivs is active. This means that the user
can exercise all object and database privileges that have
been directly granted to him, possibly including the
database privilege required to activate NPDs. Notice that
there is no deactivate statement for NPDs. If a user wants
to turn off some NPD, he must pick a new one (which
might be UserPrivs).

Performance and Implementation
Issues

This extension should lead to an overall decrease
in the amount of storage used by the DBMS security
system. Although additional space is needed to keep track
of the NPDs and the NPD privilege graph, less space will
be needed to store the ACLs for each database object.

ACLs will be smaller because a single NPD would
otherwise be represented by a large list of individual
users. A large database will have more tables and views
than it has NPDs, so the savings due to smaller ACLs will
outweigh the space used by the NPDs.

The amount of time needed to make an access
check may also decrease. Current SQL access checking
scans the whole ACL looking for a single value (the ID of
the user). A pre-sorted ACL can be used to avoid a linear
search. In contrast, this extension requires scanning the
whole ACL looking for a list of IDs that correspond to the
enabled NPDs (and possibly the user's ID). Again, pre-
sorting the ACL and the list of NPDs reduces the scanning
time. The NPD access check would be slower if the ACLs
were the same size as they are currently. However, an
ACL based on NPDs is likely to be much shorter than an
ACL based on individual users. The result is likely to be an
overall decrease in the access checking time for large
databases.

The most expensive operation associated with
NPDs will be traversing the NPD privilege graph when
an NPD is activated. Activating an NPD will be a
common operation on sites with a strong policy for least-
privilege. This operation involves disk I/O to fetch the
NPD graph and CPU time to compute the enabled subtree.
A good way to minimize this cost is to only examine the
graph when a user logs in. When the session starts, all the
accessible NPDs can be computed and cached. The
cached portion of the graph would record the grant
relationship between NPDs as well as the Activatable
attribute. Several data structures exist that compactly
represent a directed acyclic graph such as this. The
currently enabled NPDs would be flagged and sorted. As
long as this information is cached, activating an NPD
would be relatively inexpensive. The down side of this
performance-oriented strategy is that changes to the NPD
privilege graph only influence new database sessions.
They would not affect existing sessions unless the system
included a mechanism to flush or update the cached
security information.

Grouping Database Privileges

When NPDs are used to group object privileges
and individual users, the result is a security configuration
that is easy to understand and maintain. This section
describes how NPDs can create flexible administrative

126

roles and manage the assignment of these roles to
individuals.

The key idea behind this flexibility is to separate
and explicitly name all the low-level database privileges so
they can be grouped and named using NPDs.
Administrative roles can then be created using the same
modularity and abstraction methods that are used for
object privileges. For example, the database privilege that
allows read access to all objects (a kind of super-user
access) and the database privilege that allows shutting
down the databases could be two of the database
privileges that are grouped together to form the Database
Administrator role. The plethora of low-level database
privileges provides flexibility while the NPD grouping
mechanism provides understandability and usability. In
practice, a vendor would ship the database with a number
of pre-defined administrative roles. These roles would
simplify the installation and initial use of the DBMS and
would meet the needs of many customers. However, sites
that need the flexibility can create administrative roles
that exactly match the separation of duties requirements
of their security policy.

Administrative roles

The mechanics of using NPDs as administrative
roles are exactly the same as NPDs used for object
privileges. The same mechanisms are used to define,
name, control, and activate administrative NPDs. To
simplify the control of administrative NPDs, two
constraints are enforced. The main constraint is that
primitive database privileges and primitive object
privileges cannot be granted to the same NPD. The two
kinds of privileges can only be mixed indirectly through
intervening NPDs. The other constraint is that database
privileges cannot be directly granted to a user. These
constraints make it easier to control the grouping of
database privileges. A great deal of thought must be done
to build a reasonable collection of database privileges, but
once that has happened, the resulting administrative NPD
can be granted with the admin option to several people
who can pass it on without needing to consider internal
database issues.

The kinds of administrative roles that can be
created with NPDs are determined by the particular set of
database privileges that can be named separately. A full
list of the database privileges for the Oracle database is
beyond the scope of this paper. Instead, this section
illustrates the kinds of database privileges that can be

identified and shows how they support customer security
requirements.

One good way to choose database privileges is to
create one for each kind of SQL statement. There could be
a database privilege that allows the execution of the
Create Table statement that would be separate from the
privilege for the Create View or Create Index statements.
In some database environments ordinary users are not
allowed to create their own tables. This restriction could
be enforced by not including the Create Table database
privilege in the administrative NPD that is granted to
ordinary users. This is a more uniform solution than
using quotas to control table creation. A more security
relevant example would be to have separate database
privileges that control the Create NPD and Create User
statements. These might or might not be granted to the
same administrative role. One of the critical database
privileges is the one that allows granting a database
privilege to an NPD. Any user who can enable this
privilege can do anything because he can grant himself an
all powerful administrative role.

If there are database privileges that control the
data modification statements in SQL (e.g., select and
update), then there must be an administrative role that is
granted to ordinary users. The NPD for this user-role
would enable the execution of the basic statements like
select and update. A user would only be allowed to select
from a table if he had the database privilege for the select
statement and he had specific authorization (via an ACL)
to select from that table. The user-role NPD could be
directly granted to the user or there could be several user-
type roles that are granted to the various NPDs that the
users can activate. For example, one way to control write
access in an application that allows a user to enter
arbitrary SQL statements is to make sure that the
activated NPD does not include the database privileges
for the insert, update, or delete statements. It would only
contain the ability to execute select statements. Many
customers have requested a read-only SQL interpreter
and this feature of administrative NPDs can meet that
request.

127

Read_Only_
User

inistrati 1

The details of session initialization influence the
choice of database privileges that are granted to a user.
After a user has authenticated himself, the pseudo NPD
called UserPrivs is activated. This enables all object
privileges directly granted to the user and it enables all
purely administrative NPDs that are directly granted to
the user (this behavior is another reason why object and
database privileges cannot be directly mixed). For
example if a group of database privileges is granted to the
NPD, Trusted_User, and that NPD is granted to Alice,
then when Alice logs in, all those database privileges will
be activated. Presumably the Trusted_User NPD includes
the privilege to execute the SQL statement that changes
the active NPD. If not, Alice would be unable to change
her protection domain either by herself or via a trusted
application.

It may be desirable to control who can grant
object privileges to users or to NPDs using a database
privilege like the one that controls the granting of
database privileges. This decision is debatable because it
touches on an existing part of the ANSI SQL security
model. That model allows any user who has the with-
grant-option on a privilege to grant that privilege to
anyone else and by extension this includes NPDs.
Furthermore, the ANSI model embodies the belief that the
owner of an object has an inalienable right to hand out
access to that object to any user, and by extension, to any
NPD. Some customers subscribe to a different bill of
rights. They believe that the user who can hand out
access rights to an object should not be the same as the
person who can modify the object's definition (e.g.,
change an integrity constraint on the table). These
customers want to enforce strong separation of duties

policies in order to reduce the possibilities for fraud or
significant error.

A number of database privileges are needed to
support the separation of duties policies that have been
requested by DBMS users. For example, who can change
the audit options for a table? That is, who can determine
which operation will generate audit trail entries? The
SQL model says that the owner of a table controls it and
by extension this would include setting the audit options
(actually, the ANSI SQL standard does not address
auditing issues). Some prudent security administrators
believe that the owner of a table is the last person they
should trust to decide what gets audited. They argue that
the audit trail is a global resource that should be controlled
centrally. A database privilege that governs the changing
of audit settings (of any object) can allow a great deal of
flexibility. This privilege could be granted to the security
administrators and to particular table owners. It does not
have to be an all or nothing option switch.

Another way to determine possible database
privileges is to look at all the operations that are available
to the database's super-user (a vendor specific concept).
These operations can be separated into classes that might
be granted separately. For example, the Oracle super-
user (called DBA) has the power to read and modify all
database objects. Some sites may want to give the read-
everything power to Auditors without giving them write-
everything authority. The rule of thumb is that if it can be
separated, someone will want it separated. Notice that
there is no harm in dividing privileges too finely (though
some clever programming might be needed to get the
desired performance) because it is always possible to
create an NPD that fixes excessive subdivisions.
However, there is no way to fix privileges that are too
coarse.

Control of startup and crash recovery

The final issue to discuss is how to manage
database privileges when the database is not fully
operational. For example, what information is checked to
determine whether someone is authorized to startup a
database? The authorization cannot be based on
information in the database because that information is
not available until the database is started. What about
crash recovery and other situations which require actions
that are not associated with a particular database session?
What privileges can be associated with a session that is not
logged in? The issue is how to determine which database

128

privileges are enabled under these unusual circumstances.
Enabling all privileges is not an acceptable solution to
many customers, particularly for database startup. Often
relatively untrusted people are allowed to restart a
database, and those people should not be given full access
to the DBMS.

The solution proposed here is to link a piece of the
security system of the underlying operating system to
pre-defined administrative NPDs. In much the same way
that NPD activation can be tied to the execution of an
application program, the transitional state used to start the
database can be tied to a predefined administrative NPD.
One of the first things that happens when a transitional
state is entered is for the database to call an OS specific
routine that determines which NPD to activate. The OS
uses its own authentication and authorization
mechanisms to pick the appropriate NPD (if any). The
database will trust the resulting answer and activate the
corresponding pre-defined NPD. The mapping between
the names of pre-defined NPDs and the related tokens in
the OS security system (e.g., Unix user groups or RACF
application roles) is made by the OS specific routine. The
NPD must be pre-defined because the data dictionary
might not be available to lookup customer defined NPDs.

These pre-defined NPDs could either be setup by
the vendor with a compiled-in table or defined by the
customer as part of installing the database software. In
either case the definition of these pre-defined NPDs (i.e.,
the set of database privileges they enable) must be
available whether or not the data dictionary is available.
These definitions must also be bound to the database
software with high integrity, since anyone who can
change these definitions can acquire full access to the
database.

This solution gives customers the flexibility they
need to define the powers available to a person who
controls the database during a transitional state. Each
customer can set up their OS security system to activate
the appropriate pre-defined NPD and thus enforce their
desired security policy.

The concepts and issues associated with NPDs
and the privilege graph have been explained, and various
examples have shown how these mechanisms can solve
the difficult problems of SQL security management. The
next two sections describe the relationship between the
NPD security model and two existing security models
(Clark-Wilson and Bell-LaPadula). Examining how the
NPD model can represent those models sheds light on all
three models.

Supporting the Clark-Wilson Model

The Clark-Wilson model [2] has pieces that exist
both inside and outside the scope of a database system.
For example, Integrity Verification Procedures (IVPs) and
the certification of Transformation Procedures (TPs) are
external to a DBMS. This section describes how NPDs
can be used to represent and manage the access control
triples in the CW model.

A CW triple specifies that an individual user may
perform a specific application operation (Transformation
Procedure, TP) on a particular data object (Constrained
Data Item, CDI). NPDs can represent the three
components of a CW triple and the NPD privilege graph
can represent a large collection of triples in a manageable
form. Basically, the arcs in the privilege graph represent
the triples, while individuals nodes in the graph (NPDs)
represent the components.

In its most specific form, the user component of a
CW triple identifies a single user, but in this form triples
suffer from many of the same problems as ACLs. If the
underlying security policies calls for a group of
individuals who have identical access requirements (e.g.,
they are all order entry clerks for the same department)
then this situation would be represented by a collection of
nearly identical triples. Adding or removing clerks would
involve all the difficulties that are found in maintaining a
large list of nearly identical ACL entries. NPDs can
simplify this security management problem by explicitly
representing a class of users. The class name would
appear in the triple, not the individual user names. This
simplifies the security administrator's job by allowing him
to manage user classes separately from the allocation of
access rights.

CW triples control application-level operations
(TPs). A TP can be represented by an NPD that contains
all the object privileges needed to perform the TP. For
example, a TP that selects rows from one table and inserts
rows in a second table could be represented by an NPD
that contains the appropriate select and insert privileges.
Notice that the NPD does not provide any guarantees that
the TP performs the correct calculations. That aspect of
the CW model is beyond the scope of the DBMS. Instead,
the NPD guarantees that when it is active, the TP may
only select rows from the first table and insert rows into
the second table. In this case the security system is being

129

used to provide a correctness check much like run-time
bounds checking on array references.

The CDIs of the CW model are data abstractions
that could consist of several tables and views in a DBMS.
An NPD can represent a CDI by containing all the
relevant object privileges on those tables and views. This
collection of privileges would most likely be a subset of the
full privileges for those objects. For example, the ability to
rename a table would probably not be included in the
NPD that represented the CDI because none of the TPs
that operate on that CDI perform the rename operation.
There may be a second NPD used for control operations
that includes the rename privilege, but it would not be
granted to most of the TPs operating on the CDIL
Alternatively, if a DBMS can express specific denial of
privileges (e.g., granting a No-Select privilege to a user or
NPD) then more restrictive NPDs can be built out of
lower-level NPDs that represent the full access rights toa
CDI. The main point is that NPDs provide a convenient
way to group and name the primitive operations that
make up a CDI. Nodes in the NPD privilege graph can
explicitly represent CDIs.

We have described how NPDs can represent
each component of a CW triple (user, TP and CDI), so
now the question is how to represent the triple itself. How
is the relationship between the three components
enforced? The answer is that the triples are represented
by the arcs in the NPD privilege graph and that
enforcement is done by the linkage between the
invocation of applications and the activation of NPDs.
For example a CW triple that allows Maureen to run the
Budget Report TP on the Current Month CDI could be
represented by an NPD privilege graph like the one
shown below. The middle level arcs in the NPD privilege
graph represent collections of CW triples. The arcs from
B_Report and Cur_Month to the NPD Cur_B_Report
represent the binding between a TP and a CDI. The arc
from Cur_B_Report to Exec_Staff represents a collection
of individual CW triples, one for each user who in a
member of the executive staff.

Object
Privileges . i

Named Protection Domains User
Maureen

CCur_B_Report)—PCStaﬁf

Tripl ith NPD

The Budget Report TP uses several privileges
that are independent of the particular month that it
operates on. These privileges, which might include the
ability to select department names from the department
number table, are grouped together to form an NPD
called B_Report. This NPD represents the general
operation of the TP. The specific operation of producing a
current budget report is represented by the
Cur_B_Report NPD which is granted the privileges of
both the B_Report NPD and the Cur_Month NPD, which
represents the CDI for this triple. The Cur_Month NPD is
granted the appropriate select access on the tables and
views that hold information about the current month.
Thus the Cur_B_Report NPD represents the pairing of a
TP with a CDI. The final component of the triple, the user,
could be represented by an arc from Cur_B_Report to
Alice. However, a structured approach to the design of
the security configuration would be to explicitly represent
the reason that Alice is allowed to produce current budget
reports. For example, Alice might be a member of the
executive staff and like all other staff members she is
allowed to analyze current data. The NPD Exec_Staff
represents this class of users. The arc from
Cur_B_Report to Exec_Staff expresses a high-level policy
that would otherwise be represented implicitly by a
collection of CW triples, one for each member of the
executive staff. Once again, NPDs are being used to
directly represent a high-level security policy and thus
improve the manageability of the security configuration.

Supporting the Bell and LaPadula
Model

By themselves, NPDs cannot support the full Bell
and LaPadula (BLP) security model. For example, this

130

design does not include any labelling of newly created
tables. Furthermore, the controls would have to be at the
level of whole tables or whole columns, not individual
rows or elements, because the underlying object privileges
provided by SQL are at that level of granularity.
However, it is interesting to look at the relationship
between NPDs and BLP access classes and to consider the
problem of information flow control.

An access class (e.g. Secret: Nato-Crypto)
represents a collection of read and write privileges. If a
subject's clearance (trustworthiness plus need-to-know
requirements) dominates the classification of an access
class (sensitivity plus topic labels), then the subject can
read all the objects that are labeled with that access class.
This is a form of privilege grouping. The subject is
granted a collection of read privileges because he has been
granted a particular clearance. A similar relationship
exists for write access. When viewed this way, the
grouping of privileges that exist in a particular BLP
configuration can be translated into a matching NPD
privilege graph.

The dynamics of the NPD and BLP models are
different. The NPD graph must explicitly represent all the
access classes that exist (or will exist), whereas the BLP
model can dynamically create a new access class by
combining existing category labels in new ways. This
problem would not be encountered often because creating
new objects (tables or views) is rare in most DBMS
applications. When a new table is needed, a security
administrator can add it and its new access class (if any)
to the privilege graph. Another limitation is that all the
objects that fit a particular access class must be named in
the NPD graph. There are no labels which can be
dynamically read from objects. The object's name
determines its class. These restrictions mean that any
specific BLP configuration can be represented, though
small changes to the configuration (even creating a new
object for an existing access class) require that the security
administrator be involved. NPDs do not improve the
manageability of BLP based security configurations.

NPDs can support mandatory control that
cannot be changed at the discretion of ordinary users. In
the BLP model an ordinary user cannot choose what he
has access to, and likewise with NPDs, a user cannot
choose which NPDs are granted to him. The
administration of the security configuration can be
segregated from ordinary users. These non-discretionary
controls can even extend to the owners of tables. As
mentioned earlier, an owner of a table can only grant
access to that table if he has already been granted the

database privilege that allows him to execute the grant
statement. Thus an NPD based security system could be
set up to enforce a policy where all access rights are
managed by an explicit set of security administrators.
Ordinary users and even table owners would not be
authorized to modify the security configuration by
granting or revoking access to their tables.

Perhaps the most important feature of BLP is its
ability to control information flow. It can guarantee that
copies of information are protected just like the original.
This is a very strong confinement property. The UserPriv
NPD can help confine the flow of information, but only at
the expense of restricting where copies can be made. For
example, to control the flow of salary information, all the
NPDs that grant read access to salaries must also control
where the user may write when that access is enabled.
Controlling write means controlling the insert, update and
even delete operations on existing tables and controlling
the creation of new tables. It is not necessary to forbid
these operations, but any place where salary information
could be written must be as well protected as the original
salary information. Thus the whole burden of preventing
undesired information flows is on the designer of the NPD
privilege graph and the DBMS tables. The security
system does not provide on-the-fly enforcement.

NPDs provide some of the characteristics of the
BLP model, but they cannot fully support that model by
themselves. Like access classes, NPDs provide a way to
group and name collections of access rights. The NPD
privilege graph and the allocation of database privileges
provides a non-discretionary way to manage security and
it is flexible enough to represent a variety of global
security policies. The BLP global policy, which is based on
the dominance relation, can be represented using two
NPDs per access class (read and write access are
separated). The major weakness of an NPD based
implementation of BLP is the lack of explicit labels to solve
the information flow problem. The NPD privilege graph
can be analyzed to make sure that there are no undesirable
information flows, but such flows cannot be prevented
automatically.

Summary

This paper has described a simple extension to
ANSI SQL that greatly improves the manageability and
flexibility of DBMS security. The key idea is to allow the
grouping and naming of privileges to form Named

131

Protection Domains, NPDs. NPDs are an explicit
representation of the protection domain concept [8] that is
often used to explain the behavior of security systems that
are based on access control lists. By allowing NPDs to be
granted to users and to other NPDs, high-level
abstractions can be formed that simplify the allocation of
privileges to users. NPDs can even group users into
classes according to the tasks they perform. The grant
relationship between NPDs creates a directed acyclic
graph that leads from low-level privileges to users. The
privilege graph explicitly represents the reason why a
privilege is granted to a user. Knowing the reason or
purpose of an authorization makes it easier to understand,
modify or verify the security policy that the database is
enforcing.

NPDs can create flexible administrative roles.
Two sites can support two different policies regarding the
privileges available to auditors. These administrative
roles are collections of low-level database privileges (like
the ability to archive the audit trail, or the ability to change
the kinds of events that generate an audit trail entry). The
privilege grouping powers of NPDs can be used to define
such collections. Each site can define collections of
database privileges that form meaningful administrative
duties and give these collections mnemonic names. This
flexibility leads to higher operational security because
each site can express its true security policy. The system
of controls that exists outside of the computer can be dove-
tailed to the controls inside the database. There are no
gaps due to the problem of forcing the external controls to
match the internal controls chosen by a DBMS vendor.

NPDs do not have the ownership and cascading
change problems of the current ANSI SQL grant-revoke
model. The administration of NPDs is completely
separated from the allocation and grouping of privileges.
The person in charge of security can be changed without
the need for a complicated procedure of re-granting
privileges. This solution avoids the loss of individual
accountability that happens when a single account is
shared by several people to do security management.
There is no with-grant-option for NPDs and the with-
grant-option on an object privilege cannot be granted to
an NPD, so changes made to the NPD privilege graph do
not cascade. Revoking an NPD only causes one localized
change. This makes security management less difficult
and less dangerous.

The activation model for NPDs allows a user to
choose his effective protection domain, but the choice
must be made from a limited set defined by the security
administrators. Only one NPD can be activated at a time,

but the activation process enables the privileges of all the
NPDs that are contained in the activated one. This is a
cross between a restrictive security system that only
allows a user to be in one group, and an open system that
allows the user to enable an arbitrary set of groups. With
NPDs, the security administrators choose which sets of
NPDs correspond to meaningful protection domains.
These sets are represented by subtrees in the NPD
privilege graph and the roots of these subtrees are
specially marked NPDs. Only the marked NPDs can be
activated.

NPDs can solve application-oriented security
problems if the invocation of programs is linked to the
activation of NPDs. The set of privileges needed to run an
application can be grouped together into an NPD, and
those privileges get enabled when (and perhaps only
when) the application program is invoked. This feature
allows a site to enforce complex integrity constraints
using trusted applications. The set of privileges available
to a user when he executes ad hoc SQL statements can
also be carefully controlled so he cannot violated the
integrity constraints enforced by the trusted applications.
The security system limits what can be done by the ad hoc
statements by limiting which NPDs can be activated by
these statements.

NPDs provide a general way to create named
abstractions in a security system. Just as procedures can
simplify programming, NPDs can simplify security
management.

Acknowledgements

Several people at the Oracle Corporation helped
turn the author's ideas into a commercial product: Ken
Jacobs, Andy Larson, Bill Maimone, Mark Moore, Gordon
Smith, and Linda Vetter.

132

References

1. Bell,D.E and LaPadula,L.J. "Secure Computer Systems:
Mathematical Foundations", MTR-2547, Vol 2, MITRE
Corp., Bedford MA, November 1973.

2. Clark,D.D. and Wilson,D.R., "A Comparison of
Commercial and Military Computer Security Policies”,
Proc. 1987 IEEE Symposium on Security and Privacy,
April 1987.

3. Date,C.J., "An Introduction to Database Systems", Vol.
1, Addison-Wesley, Reading MA, 1986.

4. Department of Defense Computer Security Center,
"Trusted Computer System Evaluation Criteria”, DOD
5200.28-STD, December 1985.

5. Downs,D.D., RubJ.R., Kung, K.C., and Jordan,C.S.,
"Issues in Discretionary Access Control", Proc. IEEE
Symposium on Security and Privacy, 1985.

6. Griffiths,P.P. and Wade,B.W., "An Authorization
Mechanism for a Relational Database System", ACM
TODS vol. 1, no. 3, September 1976.

7. Lampson, B.W., "Protection”, Proc. Fifth Princeton
Symposium on Information Sciences and Systems, March
1971. Reprinted in Operating Systems Review vol. 8, no.
1, January 1974.

8. Saltzer,J.H. and Schroeder,M.D., "The Protection of
Information in Computer Systems"”, Proc. of IEEE vol. 63,
no. 9, September 1975.

