
COPPE Systems Engineering

Federal University of Rio de Janeiro

Rio de Janeiro, Brazil 21945-970

Abstract

Hiding Communication Latency and

Coherence Overhead in Software DSMS *

R. Bianchini, L. I. Kontothanassis t, R. pinto,

M. De Maria, M. Abud, and C. L. Amorim

In this paper we propose the use of a PCI-based pro-
grammable protocol controller for hiding communication and
coherence overheads in software DSMS. Our protocol con-

troller provides three different types of overhead tolerance:
a) moving basic communication and coherence tasks away
from computation processors; b) prefetching of cliffs; and c)
generating and applying cliffs with hardware assistance. We
evaluate the isolated and combined impact of these features
on the performance of TreadMarks. We also compare per-
formance against two versions of the Shrimp-based AURC
protocol. Using detailed execution-driven simulations of a
16-node network of workstations, we show that the great-
est performance benefits provided by our protocol controller
come from our hardware-supported cliffs. Reducing the bur-
den of communication and coherence transactions on the
computation processor is also beneficial but to a smaller ex-
tent. Prefetching is not always profitable. Our results show
that our protocol controller can improve running time per-
formance by up to 50% for TreadMarks, which means that it
can double the TreadMarks speedups. The overlapping im-
plementation of TreadMarks performs as well or better than
AURC for $ of our 6 applications. We conclude that the
simple hardware support we propose allows for the imple-
mentation of high-performance software DSMS at low cost.
Based on this conclusion, we are building the NCPZ parallel
system at COPPE/UFRJ.

*C. L. Amorim is currently a visiting professor at the University
of Rochester. This work was supported in part by FINEP /Brazil
grant no. 56/94/0399/00, CNPq/Brazil, NSF Institutional Infras-
tructure grant no. CDA-8822724, and ONR research grant no.
NOO014-92-J-1801 (in conjunction with the DARPA Research in

Information Science and Technology – High Performance Com-
puting, Software Science and Technology Program, ARPA Order

no. 8930).

Permission to make digitahhard copy of part or all of this work for personal
or classroom usa is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and noti~ is given that
copying is by permission of ACM, km. To copy otherwise, to republish, tD
post on servers, or to redistribute to lists, requires prior speoific permission
and/or a fee.

ASPLOS Vll 10/96 MA, USA
GI 1996 ACM 0-89791 -767-7/964001 O...$3.5O

tl)epartment of computer Science

University of Rochester

Rochester, New York 14627

1 Introduction

Software distributed shared-memory systems (DSMS) pro-
vide programmers with the illusion of shared memory on top

of message-passing hardware, These systems provide a low-
cost alternative for shared-memory computing, since they can
be built with standard workstations and operating systems.
However, several applications running on software DSMS suf-
fer high communication and coherence-induced overheads
that limit performance.

In this paper we propose the use of a PCI-based pro-
grammable protocol controller for hiding or tolerating these
communication and coherence overheads. In our system each
protocol controller is associated with a single computation
processor and provides three different types of overhead tol-
erance: a) moving basic communication and coherence tasks,
such as cliff generation and application, away from comput a-
tion processors; b) prefetching of encodings of modifications
made to pages (also called “cliffs”); and c) generating and

. .
applying dlffs with hardware assist ante. In this paper we
evaluate the isolated and combined impact of these features
on the performance of TreadMarks [14].

The performance of the overlapping versions of Tread-
Marks is also compared to two versions of AURC, a software
DSM based on automatic updates and optimized pair-wise
sharing, as afforded by the Shrimp network interface [4]. Au-
tomatic updates are another form of overlapping overheads
and useful computation, and can be used to obviate the need
for cliffs. In the presence of pair-wise sharing, automatic up-
dates can also reduce the number of times pages must be
fetched. Both automatic-update-based DSMS we implement
include these two optimizations, while one of them also im-
plements prefetching.

Using detailed execution-driven simulations of a 16-node

network of workstations, we show that the greatest perfor-

mance benefits provided by our protocol controller come from

generating and applying cliffs with hardware assistance. Re-

ducing the burden of communication and coherence trans-

actions on the computation processor is also profitable but

improvemen~ts are not as significant and consistent as with

our hardware-supported cliffs. Prefetching is not always ben-
eficial, as it may increase synchronization latency and inter-
processor interference more than reduce communication over-

198

head. Our results also show that our protocol controller can
improve running time performance by up to about 5070 for
TreadMarks, which means that it can double the TreadMarks

speedups. The overlapping implementation of TreadMarks
performs as well or better than AURC for 5 of our 6 applica-
tions. In addition, we find that network and memory param-
eters have an important role in this comparison; a network
with low bandwidth or a high messaging overhead can hurt
AURC severely, while memories with low bandwidth and/or
high latency can degrade the performance of our overlapping

TreadMarks implementations significantly.

In contrast with previous approaches that provide a
shared-memory abstraction with custom, highly-integrated
support for cache coherence [19, 1, 18, 21], our design builds
mainly upon off-the-shelf workstation parts and low-cost
commercial networks. In contrast with systems that main-
tain cache coherence entirely in software [23] or with hard-
ware support [17, 22], our system does not stress the commu-
nication medium and therefore is appropriate e for low-cost,
PCI-based networks exhibiting relatively high latency and
low bandwidth. Thus, we conclude that our design provides
a low-cost, quick-design-time alternative for shared-memory
computing.

Based on this conclusion, we are building the NCP2 par-
allel system at COPPE/UFRJ. In fact, the architecture we
study in this paper resembles the first version of our system,
NCP2., in which the protocol controller is not completely de-
coupled from the rest of the workstation hardware. In our
second prototype (which is currently under design), the pro-
tocol controller card will provide the same functionality as
in the NCPQ.9 but will only connect to the PCI bus, thus
becoming virtually platform-independent.

In summary, this paper makes the following contributions.

● It proposes the design and implementation of simple
hardware to hide communication and coherence over-
heads in software DSMS.

● It proposes extensions to TreadMarks that take advan-
tage of the new hardware and evaluates the extensions’
impact on performance.

● It presents an evaluation of standard TreadMarks in the
presence of a runtime-based prefetching strategy. In ad-
dition, it presents the first evaluation of the combination
of automatic updates, optimized pairwise sharing, and
page prefetching.

● It evaluates the sensitivity of both the overlapping
Tread Marks and AURC to several architectural param-
eters, including network and memory bandwidths.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the main characteristics of software DSMS
and their sources of overhead. Section 3 describes the hard-
ware of our controller and how software DSMS can take ad-
vantage of it. Section 4 presents our methodology and ap-
plication workload. Experimental results are presented in
section 5. Section 6 summarizes the related work. Finally,
section 7 summarizes our findings and concludes the paper.

2 Overheads in SW DSMS

Several software DSMS use virtual memory protection bits to
enforce coherence at the page level, In order to minimize the
impact of false sharing, these DS Ms seek to enforce memory
consistency only at synchronization points, and allow multi-
ple processors to write the same page concurrently [6].

TreadMarks is an example of a system that enforces con-
sistency lazily. In TreadM arks, page invahdat ion happens
at lock acquire points, while the modifications (cliffs) to an
invalidated page are collected from previous writers at the
time of the first access (fault) to the page. The modifications
that the faulting processor must collect are determined by
dividing the execution in intervaLs associated with synchro-
nization operations and computing a vector timestarnp for
each of the intervals. A synchronization operation initiates
a new interval. The vector timestamp describes a partial
order between the intervaJs of diflerent processors. Before
the acquiring processor can continue execution, the cliffs of
intervals with smaJler vector timestamps than the acquiring
processor’s current vector timeStarUlp must be collected. The
previous lock holder is responsible for comparing the acquir-
ing processor’s current vector timestamp with its own vector
timestamp and sending back write notices, which indicate
that a page has been modified in a particular interval. When
a page fault occurs, the faulting processor consults its list
of write notices to find out the cliffs it needs to bring the
page up-to-date. It then requests the corresponding cliffs and
waits for them to be (generated and) sent back. After receiv-
ing all the cliffs requested, the faulting processor can then

apply them in turn to its outdated copy of the page. A more
detailed description of TreadMarks can be found in [15].

The main overheads in software DSMS are related to com-
munication lat encies and coherence actions. Communication
latencies cause processor stalls that degrade system perfor-
mance. Coherence actions (cliff generation and application,
twin generation, and directory manipulation) can also neg-,
atively affect overall performance, since they accomplish no
useful work and are in the critical path of the computation.
The impact of communication ancl coherence overheads is
magnified by the fact that remote processors are involved in
all of the corresponding transactions.

To demonstrate the extent of the overhead problem, con-

sider figures 1 and 21. Figure I presents the speedups
achieved by our applications under the non-overlapping ver-
sion of TreadMarks. The figure shows that our applications
exhibit a broad range of speedups; from the unacceptable
performance of Ocean to the reascmably good speedups of
TSP.

Figure 2 presents a detailed view of the running time
performance of our applications under the non-overlapping
TreadMarks on 16 processors. The bars in the figure show
normalized execution time broken down into busy time, data
fetch latency, synchronization time, IPC overhead, and other
overheads. The latter category is comprised by TLB miss
latency, write buffer stall time, interrupt time, and the most
significant of these overheads, cache miss latency. The busy
time represents the amount of useful work performed by the

1The details of the simulation and application characteristics

that led to these figures will be presented in section 4.

199

10
TSP +

Em3d —

8 -
Water +
Radix -0--

Barnes --+---
Ocean -Q--- 1

6 -

4 -

..,...,,..+.,...................................

2 - .,,.=...-..-....--.-..-..11

o~
2 4 6 8 10 12 14 16

Number of processors

Figure 1: Application Speedups under TreadMarks

DSM.

computation processor. Data fetch latency is a combination
of coherence processing time and network latencies involved
in fet thing pages and cliffs as a result of page faults. Syn-
chroniz at ion time represents the delays involved in waiting at
barriers and lock acquires/releases, including the overhead of
interval and write notice processing. IPC overhead accounts
for the time the computation processor spends servicing re-
quests coming from remote processors. The number on top of
each bar represents the amount of time each processor spends
on cliff-related operations (twinning and cliff generation and

application) as a percentage of its execution time.

This figure shows that Tread Marks suffers severe dat a fetch
and synchronization overheads. IPC overheads are not as
significant since they are often hidden by data fetch and syn-
chronizeation latencies. However, 1PC overheads gain impor-
tance when prefetching is used. The amount of time each
processor spends on cliff-related operations is also significant;
these operations can take more than 2090 of the total execu-
tion time as in the case of Em3d, Ocean, and Radix.

The hardware support we propose, in the form of protocol
controllers, attempts to alleviate these overheads by moving
them out of the computation processor, hiding them behind
useful computation when possible, and providing hardware
support for generating and applying cliffs. Obviously, tech-
niques for tackling overheads are likely to achieve greater
performance improvements for overhead-dominated applica-
tions. In the following sections, we will show that the tech-
niques we study can double some of the speedups in figure 1.

3 Hiding Overheads in SW DSMS

In the previous section we saw that software DSMS suffer
from various forms of overhead that limit performance. In
this section we describe the hardware support we propose for
reducing overheads or hiding them behind useful computa-
tion, and explain how software DSMS can efficiently use it.

TreadMarks Running Tme

100

90

80

70

60
:

50

40

30

20

10

01

10.4%

TSP Water Radix Barnes Em3d Ocean
Application

Figure 2: Application Performance under TreadMarks

DSM on 16 processors.

3.1 Hardware for Hiding Overheads

As shown in figure 3, the hardware support we propose is a
protocol controller associated with each of the computation
processors in a network of workstations. In our system both
the protocol controller and the network interface are plugged
onto the PCI bus of a (commercial) workstation board. As
shown in figure 4, our protocol controller includes a micropro-
cessor (or simply an integer RISC core), 4 MBytes of DRAM,
and two pieces of custom hardware: the logic for snooping the
memory bus and a DMA engine.

Communication between a computation processor and its
controller occurs via the controller’s memory, interrupts, and
snooping of write accesses. The controller’s memory stores
the protocol software, a command queue, and a table for
translating virtual to physical addresses and recording status
information. Whenever the computation processor needs a
protocol-related service, it issues an explicit request to its
protocol controller and continues its normal execution, unless
the completion of the operation is required immediately 2.
This local command (and any commands coming from remote
controllers) is placed in the controller’s queue.

A computation processor may also require service by a
remote node. These inter-node transactions are split into
three different commands: a request issued by the compu-
tation processor to its local controller, an action by the re-
mote controller/computation processor, and a reply issued
by the remote controller. These commands are interleaved
with other transactions in the command queues to improve

controller throughput and occupancy. The protocol software

keeps track of pending remote requests. At the time of the

completion of one of these requests, the controller software

must set a status bit to indicate the occurrence of this event.

The pending requests and the bit flags can be used by the

computation processor on page faults, so that it does not

fetch data for which a prefetch is in progress or for which a

z Requests may be given Klgh or low priority, so that we can

prevent prefetches from delayin-g requests for which a computation

processor is stalled waiting.

200

[,1Processor

vPCI Bridge

PCI Bus

~ Y Network

Figure 3: Node Architecture.

prefetch has completed, for inst ante. The virtual-to-physical
address translation table is used by the controller software to
decide where in main memory to store pages and cliffs.

The protocol controller can also communicate with the
computation processor by interrupting it when necessary.
Computation processor interrupts should be avoided as much
as possible for efficiency, but may be used to prevent com-

plicated operations from crossing the PCI bus in order to
reach main memory. In fact, the ratio between computation
and controller processor speeds is also an issue here; a much
faster computation processor provides another justification
for running complicated protocol code on it.

Both the processor and its protocol controller snoop on

the memory bus. The processor must snoop so that it can
invalidate data written by the protocol controller directly to
local memory, in the event of the application of a remote cliff
to a local page, for instance. The protocol controller must
snoop so that it can compute cliffs on-the-fly. This is accom-
plished by forcing the cache to write shared data through to
the bus and keeping a record (in the controller’s memory) of
all the modified words in a page. The record is kept in the
form of a bit vector, where each bit represents a word of data.
Whenever the protocol controller sees that the computation
processor has written a word, it simply sets the corresponding
bit to record the event. Later, when the controller is asked
for the page’s cliff, our custom DMA engine checks all the
bits that are set, reads the corresponding words of memory,
and returns the words and the bit vector as the page’s cliff.
The cliff can then be saved in main memory for later use.
Generating the cliff resets all the bits in the vector. Applying
a cliff also involves the DMA engine, which is used to assign
the words stored in a cliff to the destination page according to
the cliff’s bit vector. Thus, our DMA engine simply performs
scatter/gather operations directed by bit vectors.

The DMA engine takes a variable amount of time to de-
termine all the words written in a page. As examples, it
takes this hardware about 200 protocol controller cycles to
scan the bit vector for a 4-Kbyte page if none of the words
has been written, while it takes the hardware around 2100
cycles to scan the vector if all of its words have been writ-

PCI BUS

I
Protocol Controller

c J

I
1

I
[

DMA

I

RISC
Engine Core

I

Memory Bus
I

Figure 4: Zoom of Controller Architecture,

ten. In a standard software DSM these operations take about
7K cycles just for processor instruction;. This simple com-
parison shows that our hardware support reduces the overall
time required to generate cliffs, besides obviating the need
for twins and allowing the computation processor to perform
useful work while coherence act ions are taking place.

Overall, the hardware we propose is fairly simple as shown

in figure 4. The only custom pieces of hardware involved in
our architecture are the logic for snooping the memory bus
and setting the bit vectors, and our DMA engine.

3.2 Using Protocol Controllers

The protocol controller we implemented for our experiments
provides its computation processor with the basic mecha-
nisms used by software DSMS. More specifically, the func-
tionality offered by the controller we evaluate is: a) remote
page request aud reply; b) remote cliff request and reply; c)
local (on-the-fly) cliff creation and application; d) message
send and receive. The remaining tasks associated with pro-
tocol processing are usually more complicated, and thus run
on the computation processor.

Our protocol controller provides software DSMS with nu-
merous possibility ies for hiding overheads. In our experiments,
we concentrated on three different forms of overhead toler-
ance for our overlapping Tread Marks implementation:

The basic communication and coherence actions, such
as cliff generation and application, are performed by the
protocol controllers without burdening their associated
computation processors. The computation processor
must be interrupted under several circumst antes, but
the more expensive protocol actions are always executed
by the controller. For instance, remote cliff requests
must interrupt the processor so that it can perform in-
terval processing, but the cliffs themselves are generated
by the controller. This strategy allows for overlapping
time-consuming protocol actious on the controller with
useful work on the computation processor.

Prefetching of cliffs is accomplished by anticipating fu-
ture accesses to shared data based on past history and

201

requesting them at the time of lock acquisitions. The
write notices are used to determine the processors that
must provide the cliffs. This prefet thing heuristic as-

sumes that a computation processor will likely need
pages it used to cache and reference, but were invali-
dated by another processor. Prefetching overlaps com-
munication and coherence Iatencies associated with ac-
cess faults with useful computation.

● Modified words are dynamically marked as pages are
modified, while our DMA engine is used to generate and
apply cliffs. This scheme is supported directly by the
hardware of our protocol controllers and not only obvi-
ates the need for using twins in our overlapping DSMS,
but also significantly decreases the cliff generation and

application times and the local bus utilization.

3.3 Using Automatic Updates

For comparison purposes, we also study the performance of
AURC, a software DSM based on Shrimp-style automatic up-
dates and optimized pairwise sharing. In the Shrimp multi-
computer [4], two user processes can communicate efficiently
via messages by creating a mapping between the sender’s vir-
tual memory and the destination’s virtual memory across the
network. Write accesses to the sender’s virtual memory are
snooped by the network interface, which automatically prop-
agates them to the destination’s memory. The network inter-
face combines consecutive updates in a way that resembles a
writ e cache [9] to reduce network traffic. Since the network
interface transfers updates while the source and destination
processors proceed with their normal execution, automatic
updates can be considered another form of overlapping over-
heads and useful computation.

Shrimp allows for optimized pairwise sharing of a page,
since two processors can create a hi-directional mapping of
the page so that all changes made by one processor can be
seen by the other. Note that under this scheme, page faults
and page fetches need not occur. To avoid initialization ef-
fects, the third processor to access the page simply replaces
the first processor in the pairwise sharing scheme. If after
that point more processors join the sharing set, the system
reverts to write-through to the home node, by all processors.

In AURC pages shared by two processors are mapped bi-
directionally as described above. Pages used by more than
two processors are assigned home nodes, which store both
data and directory information. Write accesses directed to
shared pages are automatically forwarded to their respective
home nodes, where modifications are merged. At a lock re-
lease operation, a processor has to send jlush tirnestarnps with

an interval number across all links that were active during the

interval and save this interval number in the lock tirnestamp

of the pages it modified. Lock timestamps are passed along

with lock ownership. At a lock acquire, the acquiring proces-

sor must invalidate the pages that the previous lock owner

determined are out-of-date and update their corresponding

lock timestamps. A page fault always requires the offending

processor to wait until it has received all updates destined to

it but

node.

pends

still in progress and to fetch the page from the home
Whether a processor has to wait for these updates de-
on the difference between flush and lock timestamps.

Further details about AURC can be found in [12].

AURC can potentially be improved by prefetching. Our
prefetching implementation of AURC uses the same heuristic
to initiate prefetches as the overlapping Tread Marks. Thus,
at lock acquire points, invalidated pages that were cached
and referenced are fetched prior to being referenced again.

In section 5, we isolate the performance improvement pro-
vided by each of the forms of overlapping we used in Tread-
Marks. In addition, we compare the performance of these
protocols against AURC and AURC with prefetching.

4 Methodology and Workload

4.1 Simulation Infrastructure

Our simulator consists of two parts: a front end, Mint [24],
that simulates the execution of the computation processors,
and a back end that simulates the protocol controller and the
memory system (finite-sized write buffers and caches, TLB
behavior, full protocol emulation, network transfer costs in-
cluding contention effects, and memory access costs includ-
ing contention effects) in great detail. The front end calls the
back end on every data reference (instruction fetches are as-
sumed to always be cache hits). The back end decides which
computation processors block waiting for memory (or other
events) and which continue execution. Since this decision is
made on-line, the back end affects the timing of the front
end, so that the interleaving of instructions across processors
depends on the behavior of the memory system and control
flow within a processor can change as a result of the timing
of memory references.

We simulate a network of workst ations with 16 nodes in de-
tail. Each node consists of a computation processor, a write
buffer, a first-level direct-mapped data cache (all instructions
are assumed to take 1 cycle), local memory, a mesh network
router (using wormhole routing), and the custom protocol
controller. The network interface and the protocol controller
reside on the PCI bus, which is also fully modeled. The pro-
tocol controller is assumed to have an option for creating
cliffs statically (and therefore managing twins), for compar-
ison purposes. Table 1 summarizes the default parameters
used in our simulations; variations of these parameters are
studied in section 5.3. All times are given in 10-ns processor
cycles. The processor and the DMA engine in the protocol
controller are assumed to run at the same speed as the com-
putation processor.

4.2 Workload

our application suite includes applications exhibiting widely
different speedup levels as shown in section 2. We report re-

sults for six parallel programs: TS P, Barnes, Radix, Water,

Ocean, and Em3d. TSP is from Rice University and comes

wit h the TreadM arks distribution. The next four applica-

tions are from the Splash-2 suite [25]. These applications

were run on the default problem sizes for 32 processors, as

suggest ed by the Stanford researchers, except for Barnes. In

fact, Barnes is the only application that required modification

for correct execution under a software DSM; we eliminated

202

System Constant Name Default Value

Number of processors 16
TLB size 128 entries

TLB fill service time 100 cycles
All interrupts 400 cycles
Page size 4K bytes

Total cache per processor 128K bytes
Write buffer size 4 entries
Write cache size (AURC) 4 entries
Cache line size 32 bytes
Memory setup time 10 cycles

Memory access time (after setup) 3 cycles/word

PCI setup time 10 cycles

PCI burst access time (after setup) 3 cycles/word

Network path width 8 bits (bidirectional)

Messaging overhead 200 cycles

Switch latency 4 cycles

Wire latency 2 cycles

List processing 6 cycles/element
Page twinning 5 cycles/word + memory accesses

Diff application and creation 7 cycles/word + memory accesses

Table 1: Default Values for System Parameters. 1 cycle = 10 ns.

its busy waiting synchronization.

TSP uses a branch-and-bound algorithm to find the mini-
mum cost tour of 18 cities. Barnes simulates the interaction
of a system of 4K bodies under the influence of gravitational
forces for 4 time-steps, using the Barnes-Hut hierarchical N-
body method. Radix is an integer radix sort kernel. The
algorithm is iterative, performing one iteration per digit of
the 1M keys. Water is a molecular dynamics simulation com-
puting inter- and intra-molecule forces for a set of 512 water
molecules. Interactions are computed using an 0(n2) a3go-
rithm. Ocean studies large-scale ocean movements based on
eddy and boundary currents. We simulate a 258 x 258 ocean
grid. Em3d [7] simulates electromagnetic wave propagation
through 3D objects. We simulate 40064 electric and mag-
netic objects connected randomly, with a 107o probability y
that neighboring objects reside in different nodes. We simu-
late the interactions between objects for 6 iterations.

5 Experimental Results

In this section we evaluate the performance of TreadMarks
and AURC running on our simulated network of worksta-
tions. Subsection 5.1 studies the performance implications
of each of the different forms of overhead tolerance afforded
by protocol controllers. Subsection 5.2 compares the perfor-
mance of our overlapping protocols against two versions of
AURC, one with and one without prefetching. Subsection 5.3
evaluates the impact of different assumptions about messag-
ing overhead, network bandwidth, and memory latency and
bandwidth.

5.1 Isolated and Combined Gains

Figures 5 to 10 show the performance of the various forms
of overlapping for the applications in our suite running on
16 nodes, under TreadMarks. From left to right, the bars
represent:

Base: The non-overlapping version of the Tread Marks pro-
tocol.

1: The version where a computation processor is only used
for complicated protocol processing, such as traversing
lists and manipulating write notices. The more basic
protocol actions are performed in software by its con-
troller.

I+D: The version where cliffs are computed using the hard-

P:

ware support we propose. Computation processors only
run complicated protocol tasks, while cliff generation
and application are performed by the custom DMA en-
gine.

The version where cliff prefetching is applied to the stan-
dard TreadMarks protocol. All proto~ol processing, in-
cluding cliff-related operations, is performed by the com-
putation processors.

I+P: The version where protocol controllers relieve their
associated processors of the basic protocol tasks, and
prefetching is applied. Diffs are generated and applied
in software by the protocol controllers.

I+P+D: The version where computation processors do
not perform basic protocol tasks, and prefetching and
hardware-supported cliffs are combined.

Note that versions Base and P do not assume protocol con-
trollers, they represent the standard version of TreadMarks
and TreadMarks with cliff prefetching, respectively.

203

X107 TreadMarks Running Time – TSP
lo~ I

X108 TreadMarks Running Time – Water

[1

.
Base I I+D P I+P l+P+D

Overlav Mode

synch
data
busy

Figure 5: Performance of Overlapping Techniques for

TSP under TreadMarks DSM.

Xio” TreadMarks Running Time - Radix

I
4

t

100% 96%

Sase 1

214%

178%

OVerlap MOdB

others
!pc
synch
data
busy

Figure 7: Performance of Overlapping Techniques for

Radix under TreadMarks DSM.

The bars in the figures show execution time once again bro-
ken down into busy time, page fetch latency, synchronization
time, IPC overhead, and other overheads.

The Base execution time results for TreadMarks (the same
as in section 2) show the great influence of data fetch and
synchronization latencies in the applications we study. IPC
overheads are not as significant, but can account for up to
about 10~0 of the execution time as in Em3d. The cost of
twinning, and cliff generation and application contributes to
both IPC and data fetch overheads and is often significant for
our applications; these costs account for 1.5, 7.6, 20.6, 10.4,
26.7, and 20.9~0 of the execution time of TSP, Water, Radix,
Barnes, Em3d, and Ocean, respectively. The techniques we
study usually reduce these overheads. We now discuss the
performance implications of each of the techniques in turn.

First, we consider the performance impact of moving basic
protocol processing away from computation processors. This
strategy affects the IPC time primarily. The I results show
that this technique alone only provides non-negligible per-

Figure 6: Performance of Overlapping Techniques for

Water under TreadMarks DSM.

X108 TreadMarks Running Time - Barnes

I
5 -

4.5 -

4 -

100%
3.5

:Iln
94%
. .

!3
%
52.5 67%

f
22

n

30%

m

1.5

1

0.5

0
Sase I I+D P I+P

Overlap Mode

m others
ipc
synch

10.s% data
busy

I+P+D

Figure 8: Performance of Overlapping Techniques for

Barnes under TreadMarks DSM

formance improvements for Em3d and Barnes. These gains
come mainly from almost eliminating IPC overheads (Em3d)
and reducing synchronization time (Barnes). Synchroniz a-
tion overhead is reduced because a lock holder (in lock syn-
chronization) or a processor lagging behind the others (in
barrier synchronization) can progress without much interfer-
ence from other processors.

Adding our hardware support for cliffs to protocol con-
trollers achieves very good performance for all applications.
The overall performance improvements achieved by I+D with
respect to Base range from 4 to 39~0. The more significant
performance improvements provided by this technique come
from reductions in data access and synchronization over-
heads. Data access improvements are a direct consequence
of having hardware support for generating and applying cliffs
and, more import antly, avoiding twin crest ion alt oget her.
The time required by these cliff-related operations is reduced
in 50, 44, 66, 44, 71, and 60’% for TSP, Water, Radix, Barnes,
Em3d, and Ocean, respectively, with respect to our Base re-

204

107 TreadMarks Running Time – Em3d

Overlap Mode

Figure 9: Performance of Overlapping Techniques for

Em3d under TreadMarks DSM.

suits. In all but two instances (Ocean and Em3d), I+D out-

performs all other overlapping techniques.

Now we turn to cliff prefetching. Our experiments show

that there are enough computation cycles to hide most or

all of the latency of prefetches in our applications; the av-

erage time between a prefetch point and the actual use of

the prefetched page ranges between 5K cycles for Em3d to

600K cycles for Ocean. However, prefetching alone only im-

proves performance with respect to Base results for Em3d

and Ocean. Even though prefetching does reduce page access

latencies for all applications except Radix, it almost invari-

ably causes a sizable increase in synchronization latency and

may also generate significantly higher IPC overheads. Syn-

chronization times increase because prefetching makes short

critical sections extremely expensive, as in the case of Barnes

and Water. IPC times increase as a result of prefet thing when

nodes guess their future access patterns incorrectly and end

up prefetching pages they will not actually use. Each useless

prefetch causes node interference (in the form of IPC time)

that would not occur in Base. A high percentage of useless

prefetches is a serious problem for Water and Radix: more

than 85% of all their prefetches is useless. Another poten-

tial problem with prefetching is that it clusters page and/or

cliff transfers in time, which may degrade network, bus, and

protocol controller performance significantly. Radix, Barnes,

and Em3d are the applications that suffer the most from this

type of degradation; network performance for these applica-

tions degrades by more than a factor of 2 unda prefetching.

The combination of prefetching and I overlapping performs

as well or better than prefetching in isolation in all cases,

as a result of the virtual elimination of IPC overheads and

reductions in synchronization time. Note that data access

latencies often increase when we add I overlapping to cliff

prefetching. The reason for this result is that we assign low

priorities to prefetches, making them wait for other more

urgent contemporaneous commands to be executed by our

protocol controllers.

Combining all the overlapping techniques afforded by our

protocol controllers leads to the best running time results for

TreadMarXs Running Time - Ocean

‘“~ ‘

Figure 10: Performance of Overlapping Techniques for

Ocean under TreadMarks DSM.

the situations where I+D is not ideal.

Overall, our results show that our hardware-supported
cliffs are very efficient. The prefetching results indicate that
this technique should not be used for the standard version
of TreadMarks. For some applications prefetching performs
well when combined with I overlapping as provided by our
protocol controller. Independently of any hardware support,
a less aggressive or adaptive prefetching strategy might re-
duce overheads, but it is not clear what this strategy should
be. A complete analysis of different prefetching strategies is
an interesting research topic, but is beyond the scope of this
paper. In another paper [3] we propose and evaluate several
cliff prefetching strategies.

5.2 Comparison with AURC

In this section we compare the overlapping Tread Marks per-
formance obtained in the previous section to AURC and
AURC with prefetching. Figures 11 and 12 present these
results. In each graph we plot, from left to right, the I+D ver-
sion of the overlapping Tread Marks, AURC and AURC+P.

The results in the figures show that our prefetching strat-

egy neoer improves the performance of AURC. For all appli-
cations prefetching reduces the page access latency exhibited
by the protocol. However, these reductions are not large
enough to outweigh the increased IPC and synchronization
overheads entailed by prefetching 3. There are two main rea-
sons for this result: a) prefet thing clusters requests at syn-
chronization points, leading to degraded network and bus
performance during these periods; and b) servicing prefetch
requests requires processor intervention, which degrades per-
formance severely when useless page prefetches dominate.
Note that prefetching hurts AURC much more than Tread-
Marks, since the automatic-update traffic of AURC ends up
competing for the same bandwidth as the prefetch traffic.

3Barnes exhibits au interesting result as AURC+P also in-

creased this application’s busy time significantly. This increase

is a consequence of the synchronizaticm style used when building

the octree at each phase of the algorithm.

205

Best RUhning Time
500

e4~2

Best Running Tima
Soo

621
A 672 1141A .

450 -

400 -

350 -

300 -

g 250 -

200

150

100

50

0 1

100 96 g~

TSP Water
Application

Radix

Figure 11: Comparison of Overlapping TreadMarks

(left) with AURC (center) and AURC+P (right).

Our protocol controllers, on the other hand, have support for
prefetching as commands can be assigned priorities. These
priorities allow more urgent requests to be serviced ahead of
prefetches.

Figures 11 and 12 also demonstrate that, in 4 cases (Radix,
Barnes, Em3d, and Ocean), the overlapping TreadMarks
outperforms the other DSMS. The performance advantage
of overlapping TreadMarks over AURC ranges between 15
and 33%. These gains come mainly from significantly lower

synchronization overheads that more than compensate for
the higher data access latencies involved in our overlap-
ping TreadMarks. AURC exhibits higher synchronization la-
tencies for some applications due to excessive update traf-
fic, which congests the uetwork and, as a result, delays
synchronization-related messages.

The performance of the overlapping TreadMarks and
AURC is almost indistinguishable for TSP, while AURC per-
forms 13% better than the overlapping TreadMarks for Wa-
ter. It is also important to note that the overlapping version
of Tread Marks performs at least as well as AURC for 5 out
of our 6 applications, while the non-overlapping Tread Marks
implementation is always outperformed by AURC.

5.3 Impact of Architectural Parameters

In order to understand the impact of different network and
memory subsystems on D SM performance, in this section
we evaluate the effect of messaging overhead (or the cycles
spent on setting up the network interface), network band-
width, and memory latency and bandwidth on our results.
Figures 13 and 14 present a representative example of the
impact of wide variations in messaging overhead and network
bandwidth, respectively. We show results for the I+D ver-
sion of our overlapping TreadMarksj along with the AURC
running times. All running times are normalized to the over-
lapping Tread Marks results of the previous section. For ref-
erence, the network latency we have assumed so far translates
into 2 microseconds, while the bandwidth corresponds to 50
MBytes/second. These settings can be considered aggressive

450 ~

400 -

350 -

.300 -

%& 25o

200 - I
&,,

IB
others

C ipc
synch
data
busy

150

100

50

0
Barnes Em3d Ocean

Application

Figure 12: Comparison of Overlapping TreadMarks

(left) with AURC (center) and AURC+P (right) Cont.

for commercial networks nowadays, such as ATMs.

Figure 13 shows that the messaging overhead has little ef-
fect on the two DSMS. However, the results in this figure
optimistically y assume that update messages in AU RC have a
messaging overhead of a single cycle. When this assumption
is eliminated, i.e. all messages in AURC suffer the same non-
trivial messaging overhead, the performance of AURC starts
degrading significantly as messages become more expensive.
Figure 14 demonstrates that network bandwidth variations
have a much greater impact on AURC than on TreadMarks.
In fact, a bandwidth of 200 MBytes/second is required in this
case for AURC to approach the performance of the overlap-
ping TreadMarks implementation. Unfortunate ely, this level
of bandwidth cannot currently be matched by low-cost, com-
mercial net works.

Figures 15 and 16 present an evaluation of the impact
of memory latency and bandwidth on overall performance.
Again, we show results for the I+D version of our overlapping
TreadMarks implementation and AURC. Running times are
normalized to TreadMarks results. Our default memory la-
tency has been 100 nanoseconds, while the default bandwidth
has been 103 MBytes/second for cache block transfers.

Figures 15 and 16 show that memory performance affects
the overlapping TreadMarks implementation more heavily
than AURC. Memory latency has little effect on AURC, while
the overlapping TreadMarks sufferG severely with very high
latency. Decreases in memory bandwidth affect TreadMarks
slightly more severely than AURC.

6 Related Work

Several cache-coherent multiprocessors have been built in re-

cent years [19, 1, 16]. These multiprocessors achieve very

high performance at the cost of complex, hardware-intensive

designs. Due to the complexity of the hardware, systems in

this class may fail to keep up with microprocessor advances;

i.e. the microprocessor chosen at the start of the project may

end up being much slower than other off-the-shelf micropro-

206

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

.......
........... ...”””””” t

Em3d-AURC --+--
Em3d-TM + -

~

I

..--+.- -...--’””’““””””””””““““””....... ------ 1
I I

‘:~
1 1.5 2 2.5 3 3.5 4

Network Latency (microseconds)

Figure 13: Effect of Messaging Overhead on Em3d

Running Times. Bandwidth = 50 MB/see.

1.4, I

1.35 -+........... --------
..

1.3 -
...........

1.25 -

1.2 -

1,15 -

1.1

1.05 -

1
.....-.

0.95 -
.......

Em3d-AURC -+--
Em3d-TM -+ -.

4
.,...,

......-”””...-
.,----

.----
.....

,.4

og~

40 60 80 100 120 140 160 180 200
Memory Latency (nanoseconds)

Figure 15: Effect of Memory Latency on Em3d Run-

ning Times. Bandwidth = 103 MB/see.

cessors by the time the machine is operational. Basing the
machine’s design on a next-generation microprocessor allevi-
ates this problem, but may not solve it depending on how
long it takes to build the machine. Due to its simplicity and
reliance on commodity parts, our design leads to much lower
costs and a much shorter design cycle, which places it in a
different class of shared memory systems.

Our work borrows ideas from the research in pro-
grammable protocol processors being pioneered by the Stan-
ford FLASH [18] and Wisconsin Typhoon [21] projects.
These systems seek to provide flexible and efficient fine-
gained sharing of data at the level of cache blocks. For such
small coherence and transfer units, protocol processors must
be extremely optimized to avoid becoming performance bot-
tlenecks. More importantly however, short data transfers re-
quire very low network latency for efficient execution; these
networks must then be backplanes tightly coupled with the
rest of the node and protocol processor, which makes de-
signs more complicated and expensive. In contrast to these

2.8

2.6

2,4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

Em3d-AURC -+ ---
Em3d-TM +--

I

~~
20 40 60 80 100 120 140 160 180 200

Network Bandwidth (Mbytes/see)

Figure 14: Effect of Network Bandwidth on Em3d Run-

ning Times. Latency = 2 microsecs.

1.6

- r’ ‘ +

Em3d-AURC -+. --

1.5 ““”,,,, Em3d-TM +.

: ,..,
.-

1.4
.,..,.

c %,,
o .,,.-

“+.,---------.....5
u 1.3
al
x
al
u
a 1.2 *.,,,
N~ ‘,..,,

E 1.1 -
...

s ...
z

.,...,,

1 ‘+--’.
.........

...-
60 80 100 120 140 160 180 200

Memory Bandwidth (Mbytes/see)

Figure 16: Effect of Memory Bandwidth on Em3d Run-

ning Times. Latency = 100 nsecs.

approaches, our page-based coherence allows for a much sim-
pler protocol processor and low-cost, commercial networks
plugged onto a PCI bus.

Systems that attempt to provide fine-grained sharing of
data in software but without as much custom hardware [23,
22] also require tight integration between the interconnection
network and the rest of the node and place heavy (especially
latency) demands on the network.

On the algorithmic side, our research builds on the work of
a number of systems that provide shared memory and coher-
ence in software using variants of release consistency. Both
Munin [6] and TreadMarks [15] are designed to run on net-
works of workstations, with no hardware support for overlap-
ping computation and communication. Our work shows that
significant performance improvements can be accrued with
hardware support for hiding communication latency and co-
herence overhead in such systems.

Prefetching for software DSMS has received little atten-

207

tion so far [11, 13, 10, 3]. In [1 I], Dwarkadas et al. describe
a variation of TreadMarks (the Lazy Hybrid protocol) that
does not use prefetching per se, but attempts to achieve the
same result by piggybacking updates on a lock grant mes-
sage when the last releaser of the lock has up-to-date data
to provide and knows that the acquirer caches the data. Us-
ing this type of updates instead of our prefetches has the
potential to reduce the number of messages exchanged by
the system, however our more general prefetching strategy
exhibits a greater potentiaf to reduce data access latencies.
In other work, Dwarkadas et al. [10] combine compile-time
analysis with runtime support for prefetching. This strategy
delivers good results as static analysis can predict the mem-
ory access behavior of loops. However, the strategy requires
relatively complex compilers that may sometimes lack enough
static information to perform the access analysis effectively.
In contrast with this strategy and similarly to [13], our ap-
proach is solely based on dynamic, past-history information.

Previous research on prefetching for hardware-coherent
multiprocessors has been extensive, e.g. [20, 8, 5, 2]. Our
prefetching strategy differs from the above, in that it as-

sociates prefetching with synchronization and invalidation
events. Furthermore our prefetching strategy fetches data
in memory as opposed to the cache, and can still be prof-
itably combined with the above strategies to reduce the cost

of misses to the local memory.

Iftode et al. [12] proposes AURC and compares it against
standard TreadMarks utilizing some of the same applications
as we used. They show that AURC consistently outperforms
TreadMarks which is consistent with our results. However,
the application speedups they present in the paper are supe-
rior to the ones we found in our Base experiments. The main
reason for this difference is that simulation time limitations
prevented us from using inputs as large as theirs.

Kontothanassis and Scott [17] propose the Cashmere
DSMS, which require the same type of hardware support
as AURC. We believe that our claims and results regarding
AURC apply to the Cashmere protocols as well.

7 Summary and Conclusions

In this paper we addressed the performance implications of
using simple protocol controllers for hiding communication
and coherence-induced overheads in software DSMS. Our
protocol controllers provide three types of overhead toler-
ance: a) moving basic protocol tasks away from computation
processors; b) prefetching of cliffs; and c) generating and ap-
plying cliffs with hardware assistance. We have developed
overlapping versions of TreadMarks as they would run on a

machine with protocol controllers like the ones we propose.

Using detailed execution-driven simulations of real appli-
cations, we isolated the impact of each of the overlapping
techniques we studied and showed that the greatest perfor-
mance benefits can be achieved by generating and applying
cliffs with hardware assistance. Reducing the burden of com-

munication and coherence transactions on the computation
processor is also beneficial but to a smaller extent. Prefetch-
ing was found to hurt performance in some cases, particu-
larly when other forms of overlapping were not used as in

standard TreadMarks. We have shown that these techniques
can improve performance by up to about 50$Z0with respect
to standard TreadMarks.

We also studied two automatic-update-based DSMS,
AURC and AURC using prefetching. Surprisingly, prefet th-
ing was found to always degrade the performance of AURC
significantly. The overlapping TreadMarks protocol was

shown to perform as well or better than AURC for 5 out

of 6 applications.

We conclude that software DSMS supported by fairly sim-
ple hardware provide a low-cost approach to boosting the
performance of parallel applications. However, further work
on improving the performance of software DSMS is required,
as significant amounts of overhead are stilf present in the ap-
plications we studied. Research on other overhead-tolerance
techniques and on optimizing applications for software DSMS

seems imperative. We have been pursuing these and other
research avenues in the context of the NCP2 project at
COPPE/UFRJ.

Acknowledgements

We would like to thank the other members of the NCP2
project, Gabriel Silva, Malena Hor-Meyll, Lauro Whately,
and Julio Barros Jr., for their support and comments on all
aspects of our project. We would also like to thank Luiz
Andr6 Barroso and Czarek Dubnicki, who gave us useful com-

ments on an early version of this paper. Last but not least,
our thanks to John Bennett and the anonymous referees for
helping improve this paper significantly.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson,

D. Kranz, J. Kubiatowicz, B.-H. Llm, K. Mackenzie, and

D. Yeung. The MIT Alewife Machine: Architecture and Per-

formance. In Proceedings of the %’2nd Annual Intemzattonal

Symposium on Computer Architecture, June 1995.

R. Bianchini and B.-H. Lim. Evaluating the Performance of

Multithreading and Prefetching in Shared-Memory Multipro-

cessors. To appear in Journal of Parallel and Distributed

Computing, specaal issue on Multithreading for Multiproces-

sors, October 1996.

R. Bianchini, R. Pinto, and C. L. Amorim. Page Fault Be-

havior and Prefetching in Software DSMS. Technical Report

ES-401/96, COPPE Systems Engineering, Federal University

of Rio de Janeiro, July 1996.

M. Blumrich, K. Li, R. Alpert, C, Dubnicki, E. Felten, and

J. Sandberg. Virtual Memory Mapped Network Interface

for the SHRIMP Multicomputer. In Proceedings of the 21st

Annuml International Symposium on Computer Amhitecture,

pages 142–153, April 1994.

D. Callahan, K. Kennedy, and A. Porterfield. Software

Prefetching. P70ceedzngs of the dth International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems, pages 40–52, April 1991.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-

tation and Performance of Munin. In proceedings of the 1 %h

Symposium on Operating Systems Principles, October 1991.

D. Culler et al. Parallel Programmi ng in Split-c. In Proceed-

ings of Stipe7computing ’93, pages 262–273, November 1993.

208

[8] F. Dahlgren and P. Stenstrom. Effectiveness of Hardware-

Based Stride and Sequential Prefetching in Shared-Memory

Multiprocessors. In Proceedings of the 1st IEEE Symposium

on High-Performance ComputeT Architecture, January 1995.

[9] F. Dahlgren and P, Stenstrom. Reducing the Write Traffic for

a Hybrid Cache Protocol. In Proceedings of the 1994 Znt er-

national Conference on Parallel Processing, August 1994.

[10] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An ktegrated

Compile-Time/Run-Time Software Distributed Shared Mem-

ory System. In Proceedings of the 7th International Confer-

ence on Architectural Support foT Programming Languages

and Operating Systems, Ott 1996.

[11] S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel. Eval-

uation of Release Consistent Software Distributed Shared

Memory on Emerging Network Technology. In Proceedings

oj the 20nd Annual International Symposium on Computer

ATchitectuTe, May 1993.

[12] L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving

Release-Consistent Shared Virtual Memory using Automatic

Update. In Proceeding. of the %d IEEE Symposium on High-

Perjormance Computer Architecture, Febmary 1996.

[13] P. Keleher. Coherence as an Abstract Type. Technical Report

CS-TR-3544, Department of Computer Science, University of

Maryland, Ott 1995.

[14] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release

Consistency for Software Distributed Shared Memory. In

Proceedings o.f the 19th Annual International Symposium on

Computer Architecture, pages 13-21, May 1992.

[15] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.

TreadMarks: Distributed Shared Memory on Standard Work-

stations and Operating Systems. In Proceedings of the

USENIX Winter ’94 Technical Conference, pages 17–21, Jan

1994.

[16] Kendall Square Research. KSR1 Principles o.f Operation,

1992.

[17] L. I. Kontothanassis and M. L. Scott. Distributed Shared

Memory for New Generation Networks. In Proceedings of

the 2nd IEEE Symposium on High-Performance Computer

Architecture, Febmary 1996.

[18] J. Kuskin et ar. The Stanford FLASH Multiprocessor. In

Proceedings of the 21st Annual International Symposium on

Computer Architecture, Chicago, IL, April 1994.

[19] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens,

A. Gupta, and J. Hennessy. The DASH Prototype: Logic

Overhead and Performance. IEEE Transactions on Parallel

and Distributed Systems, 4(1):41–61, Jan 1993.

[20] T. Mowry and A. Gupta. Tolerating Latency Through

Software-Controlled Prefetching in Shared-Memory Multi-

processors. Journal of Parallel and Distributed Computing,

12(2):87–106, June 1991.

[21] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest

and Typhoon: User-Level Shared Memory. In Proceedings

of the 2ist Annual International SYmPo&um on Compvter

Architecture, Chicago, IL, April 1994.

[22] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decou-

pled Hardware Support for Distributed Shared Memory. In

Proceedings of the M’rd Annual International Symposium on

Computer Architecture, Philadelphia, PA, May 1996.

[23] I. Schoinas, B. Falsafi, A. Lebeck, S. Reinhardt, J. Larus, and

D. Wood. Fine-grain Access Control for Distributed Shared
Memory. Proceedings o.f the 6th International Conference on

Architectural Supped for Programming Languages and Op-

erating Systems, pages 297–307, October 1994.

[24] J. E. Veenstra and R. J. Fowler, MINT: A Front End for

Efficient Simulation of Shared-Memory Multiprocessors. In

Proceedings of the 2nd International woTkshop on Modeling,

Analysis and Simulation of Computer and Telecommunica-

tion Systems, 1994.

[25] S. C. Woo, M. Ohara, E, Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 Programs: Characterization and Method-

ological Considerations. In Proceedings of the 22nd Annual

International Sympositim on Computer Architecture, pages

24–36, May 1995.

209

