
Published in the Proceedings of the 3rd USENIX Conference on File and Storage Technology (FAST), 2004

C-Miner: Mining Block Correlations in Storage Systems

Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan and Yuanyuan Zhou

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801

{zli4, zchen9, smsriniv, yyzhou}@cs.uiuc.edu

ABSTRACT

Block correlations are common semantic patterns in storage
systems. These correlations can be exploited for improving
the effectiveness of storage caching, prefetching, data layout
and disk scheduling. Unfortunately, information about block
correlations is not available at the storage system level. Previ-
ous approaches for discovering file correlations in file systems
do not scale well enough to be used for discovering block cor-
relations in storage systems.

In this paper, we propose C-Miner, an algorithm which uses
a data mining technique called frequent sequence mining to
discover block correlations in storage systems. C-Miner runs
reasonably fast with feasible space requirement, indicating that
it is a practical tool for dynamically inferring correlations in a
storage system. Moreover, we have also evaluated the bene-
fits of block correlation-directed prefetching and data layout
through experiments. Our results using real system workloads
show that correlation-directed prefetching and data layout can
reduce average I/O response time by 12-25% compared to the
base case, and 7-20% compared to the commonly used se-
quential prefetching scheme.

1 Introduction

To satisfy the growing demand for storage, modern storage sys-
tems are becoming increasingly intelligent. For example, the
IBM Storage Tank system [29] consists of a cluster of stor-
age nodes connected using a storage area network. Each stor-
age node includes processors, memory and disk arrays. An
EMC Symmetric server contains up to eighty 333 MHz mi-
croprocessors with up to 4-64 GB of memory as the storage
cache [19]. Figure 1 gives an example architecture of modern
storage systems. Many storage systems also provide virtual-
ization capabilities to hide disk layout and configurations from
storage clients [36, 3].

Unfortunately, it is not an easy task to exploit the increas-
ing intelligence in storage systems. One primary reason is the
narrow I/O interface between storage applications and storage
systems. In such a simple interface, storage applications per-
form only block read or write operations without any indica-
tion of access patterns or data semantics. As a result, stor-
age systems can only manage data at the block level without
knowing any semantic information such as the semantic corre-
lations between blocks. Therefore, much previous work had to

Processors

L1/L2 Cache

Memory
(Volatile or Non-volatile)

Controller Controller…

Database Server
(e.g. IBM DB2, Oracle)

File Server
(e.g. NFS, CIFS)

…

S
to

rag
e A

rea N
etw

o
rk

Storage SystemStorage Front-ends

Figure 1: Example of modern storage architecture
rely on simple patterns such as temporal locality, sequentiality,
and loop references to improve storage system performance,
without fully exploiting its intelligence. This motivates a more
powerful analysis tool to discover more complex patterns, es-
pecially semantic patterns, in storage systems.

Block correlations are common semantic patterns in storage
systems. Many blocks are correlated by semantics. For ex-
ample, in a database that uses index trees such as B-trees to
speed up query performance, a tree node is correlated to its
parent node and its ancestor nodes. Similarly, in a file server-
backend storage system, a file block is correlated to its inode
block. Correlated blocks tend to be accessed relatively close
to each other in an access stream. Exploring these correla-
tions is very useful for improving the effectiveness of storage
caching, prefetching, data layout and disk scheduling. For ex-
ample, at each access, a storage system can prefetch correlated
blocks into its storage cache so that subsequent accesses to
these blocks do not need to access disks, which is several or-
ders of magnitude slower than accessing directly from a stor-
age cache. As self-managing systems are becoming ever so im-
portant, capturing block correlations would enhance the stor-
age system’s knowledge about its workloads, a necessary step
toward providing self-tuning capability.

Unfortunately, information about block correlations are un-
available at a storage system because a storage system exports
only block interfaces. Since databases or file systems are typi-
cally provided by vendors different from those of storage sys-
tems, it is quite difficult and complex to extend the block I/O
interface to allow upper levels to inform a storage system about
block correlations. Recently, Arpaci-Dusseau et al. proposed
a very interesting approach called semantically-smart disk sys-
tems (SDS) [54] by using a “gray-box” technology to infer data
structure and categorize data in storage systems. However, this
approach requires probing in the front-end and assumes that

1

the front-ends conform to the FFS-like file system layout.
An alternative approach is to infer block correlations fully

transparently inside a storage system by only observing access
sequences. This approach does not require any probing from a
front-end and also makes no assumption about the type of the
front-ends. Therefore, this approach is more general and can
be applied to storage systems with any front-end file systems or
database servers. Semantic distances [34, 35] and probability
graphs [24, 25] are such “black-box” approaches. They are
quite useful in discovering file correlations in file systems (see
section 2.3 for more details).

This paper proposes C-Miner, a method which applies a data
mining technique called frequent sequence mining to discover
block correlations in storage systems. Specifically, we have
modified a recently proposed data mining algorithm called
CloSpan [66] to find block correlations in several storage traces
collected in real systems. To the best of our knowledge, C-
Miner is the first approach to infer block correlations involv-
ing multiple blocks. Furthermore, C-Miner is more scalable
and space-efficient than previous approaches. It runs reason-
ably fast with reasonable space overhead, indicating that it is a
practical tool for dynamically inferring correlations in a stor-
age system. Moreover, we have also evaluated the benefits of
block correlation-directed prefetching and disk data layout us-
ing the real system workloads. Compared to the base case,
this scheme reduces the average response time by 12% to 25%.
Compared to the sequential prefetching scheme, it also reduces
the average response time by 7% to 20%.

The paper is organized as follows. In the next section, we
briefly describe block correlations, the benefits of exploiting
block correlations, and approaches to discover block correla-
tions. In section 3, we present our data mining method to dis-
cover block correlations. Section 4 discusses how to take ad-
vantage of block correlations in the storage cache for prefetch-
ing and disk layout. Section 5 presents our experimental re-
sults. Section 6 discusses the related work and section 7 con-
cludes the paper.

2 Block Correlations

2.1 What are Block Correlations?

Block correlations commonly exist in storage systems. Two
or more blocks are correlated if they are “linked” together se-
mantically. For example, Figure 2(a) shows some block corre-
lations in a storage system which manages data for an NFS
server. In this example, a directory block “/dir” is directly
correlated to the inode block of “/dir/foo.txt”, which is also
directly correlated to the file block of “/dir/foo.txt”. Besides
direct correlations, blocks can also be correlated indirectly
through another block. For example, the directory block “/dir”
is indirectly correlated to the file block of “/dir/foo.txt”. Fig-
ure 2(b) shows block correlations in a database-backend stor-
age system. Databases commonly use a tree structure such as
B-tree or B*-tree to store data. In such a data structure, a node
is directly correlated to its parent and children, and also indi-

/dir

/dir/foo.txt
inode

/dir/foo.txt

/dir/dir2
inode

/dir/dir2 …

node1

node2 node3 node4

node5 node6 node7 node8

…

(a) Block Correlations in file systems (b) Block Correlations in databases

Figure 2: Examples of block correlations
rectly correlated to its ancestor and descendant nodes.

Unlike other access patterns such as temporal locality, block
correlations are inherent in the data managed by a storage sys-
tem. Access patterns such as temporal locality or sequentiality
depend on workloads and can therefore change dynamically,
whereas block correlations are relatively more stable and do
not depend on workloads, but rather on data semantics. When
block semantics are changed (for example, a block is real-
located to store other data), some block correlations may be
affected. In general, block semantics are more stable than
workloads, especially in systems that do not have very bursty
deletion and insertion operations that can significantly change
block semantics. As we will show in section 5.3, block corre-
lations can remain stable for several days in file systems.

Correlated blocks are usually accessed very close to each
other. This is because most storage front-ends (database
servers or file servers) usually follow semantic “links” to ac-
cess blocks. For example, an NFS server needs to access an
inode block before accessing a file block. Similarly, a database
server first needs to access a parent node before accessing its
children. Due to the interleaving of requests and transactions,
these I/O requests may not be always consecutive in the ac-
cess stream received by a storage system. But they should be
relatively close within a short distance from each other.

Spatial locality is a simple case of block correlations. An
access stream exhibits spatial locality if, after a block is ac-
cessed, other blocks that are near it are likely to be accessed in
the near future. This is based on the observation that a block is
usually semantically correlated to its neighboring blocks. For
example, if a file’s blocks are allocated in disks consecutively,
these blocks are correlated to each other. Therefore, in some
workloads, these blocks are likely accessed one after another.

However, many correlations are more complex than spatial
locality. For example, in an NFS server, an inode block is usu-
ally allocated separately from its file blocks and a directory
block is allocated separately from the inode blocks of the files
in this directory. Therefore, although accesses to these corre-
lated blocks are close to each other in the access stream, they
do not exhibit good spatial locality because these blocks are far
away from each other in the disk layout and even on different
disks.

In some cases, a block correlation may involve more than
two blocks. For example, a three-block correlation might be:
if both a and b are accessed recently, c is very likely to be
accessed in a short period of time. Basically, a and b are corre-
lated to c, but a or b alone may not be correlated to c. To give
a real instance of this multi-block correlation, let us consider a
B* tree which also links all the leaf nodes together. a, b and c

2

are all leaf nodes. If a is accessed, the system cannot predict
that c is going to be accessed soon. However, if a and b are
accessed one after another, it is likely that c will be accessed
soon because it is likely that the front-end is doing a sequence
scan of all the leaf nodes, which is very common in decision-
support system (DSS) workloads [7, 68].

2.2 Exploiting Block Correlations

Block correlations can be exploited to improve storage system
performance. First, correlations can be used to direct prefetch-
ing. For example, if a strong correlation exists between blocks
a and b, these two blocks can be fetched together from disks
whenever one of them is accessed. The disk read-ahead op-
timization is an example of exploiting the simple sequential
block correlations by prefetching subsequent disk blocks ahead
of time. Several studies [55, 14, 31] have shown that using even
these simple sequential correlations can significantly improve
the storage system performance. Our results in section 5.5
demonstrate that prefetching based on block correlations can
improve the performance much better than such simple sequen-
tial prefetching in most cases.

A storage system can also lay out data in disks according
to block correlations. For example, a block can be collocated
with its correlated blocks so that they can be fetched together
using just one disk access. This optimization can reduce the
number of disk seeks and rotations, which dominate the aver-
age disk access latency. With correlation-directed disk layouts,
the system only needs to pay a one-time seek and rotational de-
lay to get multiple blocks that are likely to be accessed soon.
Previous studies [52, 54] have shown promising results in allo-
cating correlated file blocks on the same track to avoid track-
switching costs.

Correlations can also be used to direct storage caching. For
example, a storage cache can “promote” or “demote” a block
after its correlated block is accessed or evicted. After an ac-
cess to block A, blocks that are correlated to A are likely to
be accessed very soon. Therefore, a cache replacement algo-
rithm can specially “mark” these blocks to avoid being evicted.
Similarly, after a block A is evicted, blocks that are correlated
to A are not very likely to be accessed soon so it might be
OK to also evict these blocks in subsequent replacement deci-
sions. The storage cache can also give higher priority to those
blocks that are correlated to many other blocks. Therefore, for
databases that use tree structures, it would achieve a similar
effect as the DBMIN cache replacement algorithm that is spe-
cially designed for database workloads [15]. This algorithm
gives higher priority to root blocks or high-level index blocks
to stay in a database buffer cache.

Besides performance, block correlations can also be used
to improve storage system security, reliability and energy-
efficiency. For example, malicious clients accesses the storage
system in a very different pattern from the normal clients. By
catching abnormal block correlations in an access stream, the
storage system can detect such kind of malicious users. When a
file block is archived to a tertiary storage, its correlated blocks
may also need to be backed up in order to provide consistency.

In addition, storage power management schemes can also take
advantage of block correlations by clustering correlated blocks
in the same disk so it is possible for other disks to transition
into standby mode [11].

The experiments in this study focus on demonstrating the
benefits of exploiting block correlations in improving storage
system performance. The usages for security, reliability and
energy-efficiency remain as our future work.

2.3 Obtaining Block Correlations

There can be three possible approaches to obtain block correla-
tions in storage systems. These approaches trade transparency
and generality for accuracy at different degrees. The “black
box” approach is most transparent and general because it in-
fers block correlations without any assumption or modification
to storage front-ends. The “gray box” approach does not need
modifications to front-end software but makes certain assump-
tions about front-ends and also requires probing from front-
ends. The “white box” approach completely relies on front-
ends to provide information and therefore has the most accu-
rate information but is least transparent.

“Black Box” approaches infer block correlations com-
pletely inside a storage system, without any assumption on the
storage front-ends. One commonly used method of this ap-
proach is to infer block correlations based on accesses. The
observation is that correlated blocks are usually accessed rela-
tively close to each other. Therefore, if two blocks are almost
always accessed together within a short access distance, it is
very likely that these two blocks are correlated to each other.
In other words, it is possible to automatically infer block corre-
lations in a storage system by dynamically analyzing the access
stream.

In the field of networked or mobile file systems, researchers
have proposed semantic distance (SD) [34, 35] or probability
graphs [24, 25] to capture file correlations in file systems. The
main idea is to use a graph to record the number of times two
items are accessed within a specified access distance. In an
SD graph, a node represents an accessed item B1 with edges
linking to other items. The weight of each edge (B1, B2) is
the number of times that B2 is accessed within the specified
lookahead window of B1’s access. So if the weight for an edge
is large, the corresponding items are probably correlated.

The algorithm to build the SD graph from an access stream
works like this: Suppose the specified lookahead window size
is 100, i.e., accesses that are less than 100 accesses apart are
considered to be “close” accesses. Initially the probability
graph is empty. The algorithm processes each access one af-
ter another. The algorithm always keeps track of the items of
most recent 100 accesses in the current sliding window. When
an item B is accessed, it adds node B into the graph if it is
not in the graph yet. It also increments the weight of the edge
(Bi, B) for any Bi accessed during the current window. If such
an edge is not in the graph, it adds this edge and sets the initial
weight to be 1. After the entire access stream is processed, the

3

algorithm rescans the SD graph and only records those corre-
lations with weights larger than a given threshold.

Even though probability graphs or SD graphs work well for
inferring file correlations in a file system, they, unfortunately,
are not practical for inferring block correlations in storage sys-
tems because of two reasons. (1) Scalability problem: a seman-
tic distance graph requires one node to represent each accessed
item and also one edge to capture each non-zero-weight cor-
relation. When the system has a huge number of items as in
a storage system, an SD graph is too big to be practical. For
instance, if we assume the specified window size is 100, it may
require more than 100 edges associated with each node. There-
fore, one node would occupy at least 100×8 = 800 (assuming
each edge requires 8 bytes to store the weight and the disk
block number of B2). For a small storage system with only 80
GB and a block size of 8 KB, the probability graph would oc-
cupy 8 GB, 10% of the storage capacity. Besides space over-
heads, building and searching such a large graph would also
take a significantly large amount of time. (2) Multi-block cor-
relation problem: these graphs cannot represent correlations
that involve more than two blocks. For example, the block cor-
relations described at the end of the Section 2.1 cannot be con-
veniently represented in a semantic distance graph. Therefore,
these techniques can lose some important block correlations.

In this paper, we present a practical black box approach that
uses a data mining method to automatically infer both dual-
block and multi-block correlations in storage systems. In Sec-
tion 3, we describe our approach in detail.

“Gray Box” approaches are investigated by Arpaci-
Dusseau et al in [5]. They developed three gray-box infor-
mation and control layers between a client and the OS, and
combined algorithmic knowledge, observations and inferences
to collect information.

The gray-box idea has been explored by Sivathanu et al
in storage systems to automatically obtain file-system knowl-
edge [54]. The main idea is to probe from a storage front-end
by performing some standard operations and then observing
the triggered I/O accesses to the storage system. It works very
well for file systems that conform to FFS-like structure (if the
front-end security is not a concern). The advantage of this ap-
proach is that it does not require any modification to the storage
front-end software. The tradeoff is that it requires the front-end
to conform to specific disk layouts such as FFS-like structure.

“White Box” approaches rely on storage front-ends to di-
rectly pass semantic information to obtain block correlations
in a storage system. For example, the storage I/O interface can
be modified using a higher-level, object-like interface [23] so
that correlations can be easily expressed using the object in-
terface. The advantage with this approach is that it can obtain
very accurate information about block correlations from stor-
age front-ends. However, it requires modifying storage front-
end software, some of which, such as database servers, are too
large to be easily ported to object-based storage interface.

3 Mining for Block Correlations

Data mining, also known as knowledge discovery in databases
(KDD), has developed quickly in recent years due to the wide
availability of voluminous data and the imminent need for ex-
tracting useful information and knowledge from them. Tradi-
tional methods of data analysis dependent on human handling
cannot scale well to huge sizes of data sets. In this section,
we first introduce some fundamental data mining concepts and
analysis methods used in our paper and then describe C-Miner,
our algorithm for inferring block correlations in storage sys-
tems.

3.1 Frequent Sequence Mining

Different patterns can be discovered by different data min-
ing techniques, including association analysis, classification
and prediction, cluster analysis, outlier analysis, and evolu-
tion analysis [27]. Among these techniques, association anal-
ysis can help discover correlations between two or more sets
of events or attributes. Suppose there exists a strong associa-
tion between events x and y, it means that if event x happens,
event y is also very likely to happen. We use the association
rule x → y to describe such a correlation between these two
events.

Frequent sequence mining is one type of association analysis
to discover frequent subsequences in a sequence database [1].
A subsequence is considered frequent when it occurs in at least
a specified number of sequences (called min support) in the se-
quence database. A subsequence is not necessarily contiguous
in an original sequence. For example, a sequence database D
has five sequences:

D = {abced, abcef, agbch, abijc, aklc}

The number of occurrences of subsequence abc is 4. We denote
the number of occurrences of a subsequence as its support.
Obviously, the smaller min sup is, the more frequent sub-
sequences the database contains. In the above example, if
min sup is specified as 5, only the subsequence ac is frequent;
if min sup is specified as 4, the frequent subsequences are
{ab: 4, ac: 5, bc: 4, abc: 4}, where the numbers are the supports
of the subsequences.

Frequent sequence mining is an active research topic in data
mining [67, 46, 6] with broad applications, such as mining
motifs in DNA sequences, analysis of customer shopping se-
quences etc. To the best of our knowledge, our study is the first
one that uses frequent sequence mining to discover patterns in
storage systems.

C-Miner is based on a recently proposed frequent sequence
mining algorithm called CloSpan (Closed Sequential Pattern
mining)[66]. The main idea of CloSpan is to find only closed
frequent subsequences. A closed sequence is a subsequence
whose support is different from that of its super-sequences. In
the above example, subsequence ac is closed because its sup-
port is 5, and the support of any one of its super-sequences (for
example, abc and agc, etc.) is no more than 4; on the other

4

hand, subsequence ab is not closed because its support is the
same as that of one of its super-sequences, abc.

CloSpan only produces the closed frequent subsequences
rather than all frequent subsequences since any non-closed
subsequences can be indicated by their super-sequences with
the same support. In the above example, the frequent sub-
sequences are {a: 4, b: 4, c: 5, ab: 4, ac: 5, bc: 4, abc: 4}, but we
only need to produce the closed subsequences {ac: 5, abc: 4}.
This feature significantly reduces the number of patterns gen-
erated, especially for long frequent subsequences. More details
can be found in [46, 66].

3.2 C-Miner: Our Mining Algorithm

Frequent sequence mining is a good candidate for inferring
block correlations in storage systems. One can map a block to
an item, and an access sequence to a sequence in the sequence
database. Using frequent sequence mining, we can obtain all
the frequent subsequences in an access stream. A frequent
subsequence indicates that the involved blocks are frequently
accessed together. In other words, frequent subsequences are
good indications of block correlations in a storage system.

One limitation with the basic mining algorithm is that it does
not consider the gap of a frequent subsequence. If a frequent
sequence contains two accesses that are very far from each
other in terms of access time, such a correlation is not inter-
esting for our application. From the system’s point of view,
it is much more interesting to consider frequent access sub-
sequences that are not far apart. For example, if a frequent
subsequence xy always appears in the original sequence with
a distance of more than 1000 accesses, it is not a very interest-
ing pattern because it is hard for storage systems to exploit it.
Further, such correlations are generally less accurate.

To address this issue, C-Miner restricts access distances. In
order to describe how far apart two accesses are in the access
stream, the access distance between them is denoted as gap,
measured by the number of accesses between these two ac-
cesses. We specify a maximum distance threshold, denoted
as max gap. All the uninteresting frequent sequences whose
gaps are larger than the threshold are filtered out. This is sim-
ilar to the lookahead window used in the semantic distance al-
gorithms.

3.2.1 Preprocessing

Existing frequent sequence mining algorithms including
CloSpan are designed to discover patterns for a sequence
database rather than a single long sequence of time-series in-
formation as in storage systems. To overcome this limitation,
C-Miner preprocesses the access sequence (that is, the history
access trace) by breaking it into fixed-size short sequences.
The size of each short sequence is called cutting window size.

There are two ways to cut the long access stream into short
sequences - overlapped cutting and non-overlapped cutting.
The overlapped cutting divides an entire access stream into
many short sequences and leaves some overlapped regions be-
tween any two consecutive sequences. Non-overlapped cutting

is straightforward; it simply splits the access stream into access
sequences of equal size.

Figure 3 illustrates how these two methods cut the access
stream abcabdabeabf into short sequences with length of 4.
Overlapped cutting may increase the number of occurrences
for some subsequences if it falls in the overlapped region.
In the example shown in Figure 3, using overlapped cutting
results in 5 short sequences: {abca, cabd, bdab, abea, eabf}.
The subsequences ab in bdab and abea occurs only once in the
original access stream, but now is counted twice since the short
sequences, bdab and abea, overlap with each other. It is quite
difficult to determine how many redundant occurrences there
are due to overlapping. Another drawback is that the over-
lapped cutting generates more sequences than non-overlapped
cutting. Therefore it takes the mining algorithm a longer time
to infer frequent subsequences.

abca

a b c a b d a b e a b f

bdab
 eabf

cabd
 abea

abca
 bdab
 eabf

Overlapping

Non-overlapping

Figure 3: Overlapping and non-overlapping window
(Cutting window size is 4)

Using non-overlapped cutting can, however, lead to loss
of frequent subsequences that are split into two or more se-
quences, and therefore can decrease the support values of
some frequent subsequences because some of their occurrences
are split into two sequences. In the example shown in fig-
ure 3, the non-overlapped cutting results in only 3 sequences:
{abca, bdab, eabf}. The support for ab is 3, but the actual
support in the original long sequence is 4. The lost support is
because the second occurrence is broken across two windows
and is therefore not counted.

But we believe that the amount of lost information in the
non-overlapped cutting scheme is quite small, especially if the
cutting window size is relatively large. Since C-Miner re-
stricts the access distance of a frequent subsequence, only a
few frequent subsequences may be split across multiple win-
dows. Suppose the instances of a frequent subsequence are
distributed uniformly in the access stream, the cutting win-
dows size is w and the maximum access distance for frequent
sequences is max gap (max gap � w). Then, in the worst
case, the probability that an instance of a frequent subsequence
is split across two sequences is max gap/w. For example, if
the access distance is limited within 50, and the cutting win-
dow size is 500 accesses, the support value is lost by at most
10% in the worst case. Therefore, most frequent subsequences
would still be considered frequent after non-overlapped cut-
ting. Based on this analysis, we use non-overlapped cutting in
our experiments.

5

3.2.2 Core Algorithm

Once it has a database of short sequences, C-Miner mines the
database and produces frequent subsequences, which can then
be used to derive block correlations. C-Miner mainly consists
of two stages: (1) generating a candidate set of frequent sub-
sequences that includes all the closed frequent subsequences;
and (2) pruning the non-closed subsequences from the candi-
date set.

In the first stage, C-Miner generates a candidate set of fre-
quent sequences using a depth-first search procedure. The fol-
lowing pseudo-code shows the mining algorithm. In the al-
gorithm, Ds is a suffix database which contains all the maxi-
mum suffixes of the sequences that contain the frequent sub-
sequence s. For example, in the previous sequence database
D, the suffix database of frequent subsequences ab is Dab =
{ced, cef, ch, ijc}.

Algorithm: MINING(s, Ds, min sup, L)
Input: A frequent subsequence s,

a set of subsequence Ds,
support threshold min sup.

Output: The frequent sequence set L.
1: insert s to L.
2: scan Ds to find every frequent item α

such that s � α is frequent sequence,
Ds�α ← { all maximum suffixes that can be
concatenated with s � α}.

3: for each α do
MINING(s � α, Ds�α, min sup, L).

(Note: s � α means to concatenate s with α.)

There are two main ideas in C-Miner to improve the mining
efficiency. The first idea is based on an obvious observation
that if a sequence is frequent, then all of its subsequences are
frequent. For example, if a sequence abc is frequent, all of its
subsequences {a, b, c, ab, ac, bc} are frequent. Based on this
observation, C-Miner recursively produces a longer frequent
subsequence by concatenating every frequent item to a shorter
frequent subsequence that has already been obtained in the pre-
vious iterations.

To better explain this idea, let us consider an example. In
order to get the set Ln of frequent subsequences with length n,
we can join the set Ln−1 of frequent subsequences with length
n − 1 and the set L1 of frequent subsequences with length 1.
For example, suppose we have already computed L1 and L2 as
shown below. In order to compute L3, we can first compute L′

3

by concatenating a subsequence from L2 and an item from L1:

L1 = {a, b, c};

L2 = {ab, ac, bc};

L′

3
= L2 × L1

= {abc, abb, abc, aca, acb, acc, bca, bcb, bcc}

For greater efficiency, C-Miner does not join the sequences
in set L2 with all the items in L1. Instead, each sequence in

L2 is concatenated with only the frequent items in its suffix
database. In our example, for the frequent sequence ab in L2,
its suffix database is Dab = {ced, cef, ch, ijc}, and only c is
the frequent item, so ab is only concatenated with c and then
we get a longer sequence abc that belongs to L′

3.

The second idea is used for efficiently evaluating whether a
concatenated subsequence is frequent or not. It tries to avoid
searching through the whole database. Instead, it only checks
with certain suffixes. In the above example, for each sequence
s in L′

3
, C-Miner checks whether it is frequent or not by search-

ing the suffix database Ds. If the number of its occurrences is
greater than min sup, s is added into L3, which is the set of
frequent subsequences of length 3. C-Miner continues com-
puting L4 from L3, L5 from L4, and so on until no more sub-
sequences can be added into the set of frequent subsequences.

In order to mine frequent sequences more efficiently, C-
Miner uses a technique that can efficiently determine whether
there are new closed patterns in search subspaces and stop
checking those unpromising subspaces. The basic idea is based
on the following observation about a closed sequence property.
In the algorithm step 2, among all the sequences in Ds, if an
item a always occurs before another item b, C-Miner does not
need to search any sequences with prefix s � b. The reason is
that ∀γ, s � b � γ is not closed under this condition. Take the
previous sequence database as an example. a always occurs be-
fore b, so any subsequence with prefix b is not closed because it
is also a subsequence with prefix ab. Therefore, C-Miner does
not need to search the frequent sequences with prefix b because
all these frequent sequences are included in the frequent se-
quences with prefix ab (e.g., bc is included in abc with support
4). Without searching these unpromising branches, C-Miner
can generate the candidate frequent sequences much more ef-
ficiently.

3.2.3 Generating Association Rules

C-Miner produces frequent sequences that indicate block cor-
relations, but it does not directly generate the association rules
in the form of x1x2 → y, which is much easier to use in stor-
age systems.

In order to convert the frequent sequences into association
rules, C-Miner breaks each sequence into several rules. In or-
der to limit the number of rules, C-Miner constrains the length
of a rule (the number of items on the left side of a rule). For
example, a frequent sequence abc may be broken into the fol-
lowing set of rules with the same support of abc:

{a→ b, a→ c, b→ c, ab→ c}

Different closed frequent sequences can be broken into the
same rules. For example, both abc and abd can be broken into
the same rule a → b, but they may have different support val-
ues. The support of a rule is the maximum support of all corre-
sponding closed frequent sequences.

6

3.2.4 Confidence of Rules

For each association rule, we also need to evaluate its accu-
racy . In order to describe the reliability of a rule, we intro-
duce confidence to measure the accuracy. For example, in
the above example, a occurs 5 times, but ab only occurs 4
times; this means that when a is accessed, b is also accessed
in the near future (within max gap distance) with probability
80%. We call this probability the confidence of the rule. When
we use an association rule to predict future accesses, its confi-
dence indicates the expected prediction accuracy. Predictions
based on low-confidence rules are likely to be wrong and may
not be able to improve system performance. Worse still, they
may hurt the system performance due to overheads and side-
effects. Because of this, we use confidence to restrict rules and
filter out those with low probability.

The support metric is different from confidence. For ex-
ample, suppose x and y are accessed only once in the entire
access stream and their accesses are within the max gap dis-
tance, the confidence of the association rule x → y is 100%
whereas its support is only 1. This rule is not very interest-
ing because it happens rarely. On the other hand, if a rule has
high support but very low confidence (e.g. 5%), it may not
be useful because it is too inaccurate to be used for predic-
tion. Therefore, in practice, we usually specify a minimum
support threshold min sup and a minimum confidence thresh-
old min conf in order to filter low-quality association rules.

We can estimate the confidence for each rule in a simple
way. Suppose we need to compute the confidence for rule
a → b. Assume that the supports for a and b are sup(a)
and sup(b), respectively. Then the confidence for this rule is
sup(b)/sup(a). Since both sides of each rule are frequent se-
quences (or frequent items) and the supports for all the frequent
sequences are already obtained from post-processing, sup(a)
and sup(b) are ready to be used for computing the confidence
of the rule.

3.3 Efficiency of C-Miner

Compared with other methods such as probability graphs or SD
graphs, C-Miner can find more correlations, especially those
multi-block correlations. From our experiments, we find that
these multi-block correlations are very useful for systems.

For dual-block correlations, which can also be inferred us-
ing previous approaches, C-Miner is more efficient. First, C-
Miner is much more space efficient than SD graphs because
it does not need to maintain the information for non-frequent
sequences, whereas SD graphs need to keep the information
for every block during the graph building process. Second,
in terms of time complexity, C-Miner is the same (O(n)) as
SD. But in practice, since C-Miner has much smaller mem-
ory footprint size, it is more efficient and can run in a cheap
uniprocessor machine with moderate memory size as used in
our experiments.

Other frequent sequence mining algorithms such as
PrefixSpan[46] can also find long frequent sequences. Com-
pared with these frequent sequence mining algorithms, C-

Miner is more efficient for discovering long frequent sequences
because it not only avoids searching the non-frequent se-
quences while generating longer sequences, but also prunes all
the unpromising searching branches according to the closed
sequence property as we have discussed. C-Miner can outper-
form PrefixSpan by an order of magnitude for some datasets.

4 Case Studies

4.1 Correlation-Directed Prefetching (CDP)

The block correlation information inferred by C-Miner can be
used to prefetch more intelligently. Assume that C-Miner has
obtained a block correlation rule: if block b1 is accessed, block
b2 will also be accessed soon within a short distance (of length
gap) with a certain confidence (probability). Based on this
rule, when there is an access to block b1, we can prefetch block
b2 into the storage cache since it will probably be accessed
soon. Doing such can avoid future accesses to disks to fetch
these blocks.

Several design issues should be considered while using
block correlations for prefetching. One of the most important
issues is how to effectively share the limited size cache for both
caching and prefetching. If prefetching is too aggressive, it can
pollute the storage cache and may even degrade the cache hit
ratio and system performance. This problem has been investi-
gated thoroughly by previous work [9, 10, 45]. We therefore
do not investigate it further in our paper. In our simulation ex-
periments, we simply fix the cache size for prefetched data so it
does not compete with non-prefetching requests. However, the
total cache size is fixed at the same value for the system with
and without prefetching in order to have a fair comparison.

Another design issue is the extra disk load imposed by
prefetch requests. If the disk load is too heavy, the disk uti-
lization is close to 100%. In this case, prefetching can add sig-
nificant overheads to demand requests, canceling out the ben-
efits of improved storage cache hit ratio. Two methods can be
used to alleviate this problem. The first method is to differen-
tiate between demand requests and prefetch requests by using
a priority-based disk scheduling scheme. In particular, the sys-
tem uses two waiting queues in the disk scheduler: critical and
non-critical. All the demand requests are issued to the critical
queue, while the prefetch requests are issued to the non-critical
queue which has lower priority.

The other method is to throttle the prefetch requests to a
disk if the disk is heavily utilized. Since the correlation rules
have different confidences, we can set a confidence threshold
to limit the number of rules that are used for prefetching. All
the rules with confidence lower than the threshold are ignored.
Obviously, the higher the confidence threshold is, the fewer the
rules are used. Therefore, CDP acts less aggressively. In order
to adjust the threshold to make prefetching adapt to the current
disk workload, we keep track of the current load on each disk.
When the workload is too high, say the disk utilization is more
than 80%, we increase the confidence threshold for correlation
rules that direct the issuing of prefetch requests to this disk.

7

Once the disk load drops down to a low level, say the utiliza-
tion is less than 50%, we decrease the confidence threshold for
correlation rules so that more rules can be used for prefetch-
ing. By doing this, the overhead on disk bandwidth caused by
prefetches is kept within an acceptable range.

4.2 Correlation-directed Disk Layout

Block correlations can help lay out data on disks to improve
performance. The dominant latencies in a disk access are the
seek time and rotation delay. So if correlated blocks can be al-
located together on a disk and can be fetched using one disk ac-
cess, the total seek time and rotation delay for all these blocks
can be reduced. Thereafter, both of the throughput and the
response time can be improved. But CDP is more effective
than disk layout for improving response time as shown in sec-
tion 5.5.

We can lay out the blocks on disks based on block correla-
toins like that: if we know a correlation abcd from C-Miner,
we can try to allocate them contiguously in a disk. When-
ever any one of these blocks is read, all four blocks are fetched
together into the storage cache using one disk access. Since
some blocks may appear in several patterns, we allocate the
block based on the rules with highest support value.

One of the main design issues is how to maintain the direc-
tory information and reorganize data without an impact on the
foreground workload. After reorganizing disk layouts, we need
to map logical block numbers to new physical block numbers.
The mapping table might become very large. Some previous
work has studied these issues and shown that disk layout re-
organization is feasible to implement [50]. They proposed a
two-tiered software architecture to combine multiple disk lay-
out heuristics so that it adapts to different environments. Block
correlation-directed disk layout can be one of the heuristics in
their framework. Due to space limitation, we do not discuss
this issue further.

5 Simulation Results

5.1 Evaluation Methodology

To evaluate the benefits of exploiting block correlations in
block prefetching and disk data layout, we use trace-driven
simulations with several large disk traces collected in real sys-
tems. Our simulator combines the widely used DiskSim sim-
ulator [20] with a storage cache simulator, CacheSim, to sim-
ulate a complete storage system. CacheSim implements the
Least Recently Used (LRU) replacement policy. Accesses to
the simulated storage system first go through a storage cache
and only read misses or writes access physical disks. The sim-
ulated disk specification is similar to that of the 10000 RPM
IBM Ultrastar 36Z15. The parameters are taken from the disk’s
data sheet [28, 11].

Our experiments use the following four real system traces:

• TPC-C Trace is an I/O trace collected on a storage sys-
tem connected to a Microsoft SQL Server via storage area

network. The Microsoft Server SQL clients connect to
the Microsoft SQL Server via Ethernet and run the TPC-
C benchmark [39] for 2 hours. The database consists of
256 warehouses and the footprint is 60GB, and the stor-
age system employs a RAID of 4 disks. A more detailed
description of this trace can be found in [69, 13].

• Cello-92 was collected at Hewlett-Packard Laboratories
in 1992 [49, 48]. It captured all low-level disk I/O per-
formed by the system. We used the trace gathered on
Cello, which is a timesharing system used by a group of
researchers at HP Labs to do simulations, compilation,
editing and email. The trace includes the accesses to 8
disks. We have also tried other HP disk trace files, and
the results are similar.

• Cello-96 is similar to Cello-92. The only difference is that
this trace was collected in 1996 and thereby contains more
modern workloads. It includes the accesses to 20 disks
from multiple users and miscellaneous applications. It
contains a lot of sequential access patterns, so the simple
sequential prefetching approaches can significantly bene-
fit from them.

• OLTP is a trace of an OLTP application running at a large
financial institution. It was made available by the Storage
Performance Council [58]. The disk subsystem is com-
posed of 19 disks.

All the traces are collected after filtering through a first-level
buffer cache such as the database server cache. Fortunately, un-
like other access patterns such temporal locality that can be fil-
tered by large first-level buffer caches, most block correlations
can still be discovered at the second-level. Only those correla-
tions involving “hot” blocks that always stay at the first-level
can be lost at the second-level. However, these correlations are
not useful to exploit anyway since “hot” blocks are kept at the
first-level and therefore are rarely accessed at the second-level.

In our experiments, we use only the first half part of the
trace to mine block correlations using C-Miner. Using these
correlation rules, we evaluate the performance of correlation-
directed prefetching and data layout using the rest of the traces.
The correlation rules are kept unchanged during the evalua-
tion phase. For example, in Cello-92, we use the first 3-days’
trace to mine block correlations and use the following 4 days
to evaluate the correlation-directed prefetching and data layout.
The reason for doing this is to show the stable characteristic of
block correlations and predictive powers of our method.

To provide a more fair comparison, we also implement
the commonly used sequential prefetching scheme. At non-
consecutive misses to disks, the system also issues a prefetch
request to load 16 consecutive blocks. We have also tried
prefetching more or fewer blocks, but the results are similar
or worse.

8

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5

6

x 10
5

(a) Cello-96 trace (b) TPC-C trace

Figure 4: Block correlations mined from traces

5.2 Visualization of Block Correlations

5.2.1 Correlations in Real System Traces

Figure 4 plots the block correlations discovered by C-Miner
from the Cello-96 and TPC-C traces. Since multi-block corre-
lations are difficult to visualize, we plot only dual-block corre-
lations. If there is an association rule x → y, we plot a cor-
responding point at (x, y). Therefore, each point (x, y) in the
graphs indicates a correlation between blocks x and y. Since
the traces contain multiple disks’ accesses, we plot the disk
block address using a unified continuous address space by plot-
ting one disk address space after another.

Simple patterns such as spatial locality can be demonstrated
in such a correlation graph. It is indicated by dark areas around
the diagonal line. This is because the spatial locality can be
represented by an association rule x → (x ± k) where k is a
small number, which means that if block x accessed, its neigh-
bor blocks are likely to be accessed soon. Since k is small,
the points (x, x± k) are around the diagonal line, as shown on
the Cello-96 traces (Figure 4a). The graph for the TPC-C trace
does not have such apparent characteristic, indicating TPC-C
does not have strong spatial locality.

Some more complex patterns can also be seen from corre-
lation graphs. For example, in figure 4b, there are many hori-
zontal or vertical lines, indicating some blocks are correlated to
many other blocks. Because this is a database I/O trace, these
hot blocks with many correlations are likely to be the root of
trees or subtrees. In the next subsection, we visualize block
correlations specifically for tree structures.

5.2.2 Correlations in B-tree

In order to demonstrate the capability of C-Miner to discover
semantics in a tree structure, we use a synthetic trace that simu-
lates a client that searches data in a B-tree data structure, which
is commonly used in databases. The B-tree maintains the in-
dices for 5000 data items, each block has space for four search-
key values and five pointers. We perform 1000 searches. To
simulate a real-world situation where some “hot” data items
are searched more frequently than others, searches are not uni-
formly distributed. Instead, we use a Zipf distribution and 80%
of searches are to 100 “hot” data items.

The block correlations mined from the B-tree trace are vi-
sualized in figures 5. Note here constructing this tree does
not take any semantic information from the application (the

3406

4678

173

5739

90

3424

88

931

87

5233

75

6328

72

7344

62

6405

39

2936

38

2195

30

9253

32

4290

24

149

142

118

104

7187

27

171

6429

115

118 42

165

61

326

29

85

86

64
139

7316

107

2297

22
577

23

34

1299

27

4217

25

5425

2424

7143

23

4922

21

91
32

31

1929

28

70

7741

31

8157

27

9412

37

7098

22

Figure 5: Block correlations in B-tree. The number on an edge
is the support value for the corresponding correlation. The
dashed lines indicate the correlation between a node and its de-
scendants other than its children. The highlighted lines are the
correlations with support ≥ 80. Note that correlations with
support < 20 are not produced by C-Miner (min sup = 20)
in order to make the tree reasonably small and sparse for plot-
ting.

synthetic trace generator). The edges between nodes are re-
constructed purely based on block correlations. Due to the
space limitation, we only show part of the correlations. Each
rule x → y is denoted as a directed edge with support as its
weight. The figure illustrates that the block correlations impli-
cate a tree-like structure. Also note that our approach to obtain
block correlations is fully transparent without any assumption
on storage front-ends.

5.3 Stability of Block Correlations

In order to show that block correlations are relatively stable,
we use the correlation rules mined from the first 3 days of the
Cello-92 trace. Our simulator applies these rules to the next
4 days’ trace without updating any rules. Figure 6 shows the
miss ratio for the next 4 days’ trace using correlated-directed
prefetching (CDP). The miss ratios in the figure are calculated
by aggregating every 10000 read operations. This figure shows
that CDP is always better than the base case. This implies that
correlations mined from the first 3 days are still effective for the
next 4 days. In other words, block correlations are relatively
stable for a relative long period of time. Therefore, there is no
need to run C-Miner continuously in the background to update
block correlations. This also shows that, as long as the mining
algorithm is reasonably efficient, the mining overhead is not a
big issue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

M
is

s
ra

tio
 (

T
ot

al
 8

41
89

7
re

ad
s)

Time (hour)

No prefetching
CDP

Figure 6: Miss ratio for Cello-92 (64MB; 4MB)

9

5.4 Data Mining Overhead

Table 1 shows the running time and space overheads for mining
different traces. C-Miner is running on an Intel Xeon 2.4GHz
machine and Windows 2000 Server. The time and space over-
head does not depend on the confidence of rules as we dis-
cussed in section 3.2 but the number of rules does. The re-
sults show that C-Miner can effectively and practically dis-
cover block correlations for different workloads. For example,
it takes less than 1 hour to discover half a million association
rules from the Cello-96 trace that contains a full-day’s disk re-
quests. For the TPC-C trace, although it takes about 1 hour to
mine 1 hour’s trace, it is still practical for storage systems. Be-
cause block correlations are relatively stable, it is unnecessary
to keep mining for correlations in the background. Instead, it
might be acceptable to spend one hour every week on running
C-Miner to update correlation rules. In our experiments, we
only use parts of the traces to mine correlations, and use the re-
maining traces to evaluate correlation-directed prefetching and
disk layout. Our experimental results indicate that correlations
are relative stable and are useful for accesses made much later
after the training period.

Training Trace # of rules time space
(K) (sec) (MB)

Cello-92 (3 days) 228 7800 3.1
Cello-96 (1 day) 514 2089 4.6
TPC-C (1 hour) 235 3355 9.2
OLTP (2.5 hours) 186 174 172.6

Table 1: Mining Overhead (confidence ≥ 10%)

C-Miner is also efficient in terms of space overhead for most
of traces. It takes less than 10 MB to mine the Cello and TPC-
C traces. With such a small requirement, the data mining
can run on the same machine as the storage system without
causing too much memory overhead. A uniprocessor PC with
512MB memory would do the work. In the future, we will in-
vestigate using stream mining algorithms to effectively mine
continuous information with much less time and space over-
head. The stream mining algorithm could be embedded in the
storage controllers using their spare CPU power.

5.5 Correlation-directed Prefetching and Disk
Layout

The bar graphs in figures 7a-d compare the read miss ra-
tios and response times using the four different schemes:
base-line (no-prefetching), sequential prefetching, correlation-
directed prefetching (CDP), and correlation-directed prefetch-
ing and disk layout (CDP+layout). For the last three schemes
with prefetching, the prefetch cache size is set to be the
same. All four settings use the same total size of stor-
age cache in order to make a fair comparison. In other
words, the TotalCacheSize, which equals to the sum of
DemandCacheSize and PrefetchCacheSize, is the same
for all four schemes.

CDP can improve the average I/O response time for the
base-line case by up to 25%. For instance, in Cello-92, CDP
has 24.4% lower storage cache hit ratios than the base-line
case. This translates into 24.75% improvement in the average
I/O response time. These improvements are due to the fact that
prefetching reduces the number of capacity misses as well as
the number of cold misses. When the cache size is small, some
blocks are evicted and need to be fetched again for disks upon
subsequent accesses. Prefetching can avoid misses at some of
these accesses.

The improvement by CDP is much more significant than that
by the commonly used sequential prefetching scheme, espe-
cially in the case of TPC-C and Cello-92. For example, for the
TPC-C trace, sequential prefetching only slightly reduces the
cache miss ratio (by only 2%), which is then completely can-
celled out by the prefetching overheads. Therefore, sequential
prefetching has even worse response time than the base case.
For the other two traces (Cello-92 and OLTP trace), the im-
provement of the sequential prefetching scheme is very small,
almost invisible in terms of the average response time. How-
ever, in Cello-96, sequential prefetching has a lower miss ratio
and slightly better response time than CDP. This is because
this trace has a lot of sequential accesses. But these sequen-
tial accesses are not frequent enough in the access stream so it
is not caught by C-Miner. Fortunately, our patterns obtained
by C-Miner can be complementary and combined with the ex-
isting online sequential prefetching algorithms that can detect
non-frequent sequential access patterns.

CDP+layout has only small improvement over CDP. Obvi-
ously, CDP+layout should not affect cache miss ratio at all.
It only matters to average I/O response time when the disk
is heavily utilized. Its benefits are only visible in the Cello-
96 trace, where CDP+layout has 4% better average response
time than CDP. This small improvement indicates that our opti-
mization for hiding prefetching overheads using priority-based
disk scheduling is already good enough. Therefore, disk lay-
out does not provide significant benefits. However, when the
disk is too heavily utilized for the disk scheduling scheme to
hide most of the prefetching overheads, we expect the benefit
of correlation-directed disk layout will be larger.

5.6 Impact of Configurations

5.6.1 Effects of the Confidence Threshold

A parameter that might affect the benefits of correlation di-
rected prefetching is the confidence threshold. Figure 8 shows
the effects of varying the confidence threshold from 0% to 90%
. A lower confidence threshold corresponds to a more aggres-
sive prefetching policy. The figure shows that the miss ratio is
minimum when prefetching is most aggressive and all the rules
are used. We can see that the line is flat when the confidence
is smaller than 30%, which indicates that the rules with small
confidence are useless.

10

(a) Cello-92 (b) TPC-C

(c) Cello-96 (d) OLTP

Figure 7: Miss Ratio and Response Time. The first number in the parenthesis is the total cache size, and the second number is the
prefetch cache size. In the base-line case “None”, the prefetch cache size is 0, so the demand cache size = the total cache size.
In the other three schemes, the demand cache size is the total cache size − the prefetch cache size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90

M
is

s
ra

tio

Confidence threshold (%)

Figure 8: Effect of the confidence threshold (Cello-92)
5.6.2 Effects of the Total Cache Sizes

If the cache size is comparable to the footprint of a trace, the
system simply caches all accesses. Because of this, the read
misses in the case of no prefetching are predominantly cold
misses since subsequent accesses will be cache hits and will
not go to the disk. Therefore, the prefetching schemes do not
yield much improvement in performance.

We study the effects of the cache size by varying the cache
size for TPC-C exponentially from 256 MB to 1024 MB. In
this experiment, we keep the prefetch cache fixed at 128 MB
and vary the size of the demand cache. As expected, when the
cache size is set at 256 MB, CDP+layout shows an improve-
ment of 14.62% in miss ratio while with 512 MB, the improve-
ment is only 10.58%. It is important to note that our workloads
have relatively small working set sizes. In large real systems,
it is usually not the case that the entire working set can fit into
main memory.

5.6.3 Effects of the Prefetch Cache Size

Figures 10a-d show the effects of varying the prefetch cache
size while the total cache size is fixed. In TPC-C, for instance,
the storage cache miss ratio with CDP initially decreases as the
prefetch cache size increases. It reaches the minimum when

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

256 512 1024

M
is

s
ra

tio

Total cache size (MB)

No prefetching
Sequential prefetching

CDP
CDP+layout

Figure 9: Effect of varying the total cache size for TPC-C

the prefetch cache size is set to 128 MB. Beyond that point the
miss ratio increases again with the prefetch cache size. This
phenomenon is also true for the sequential prefetching, even
though it performs worse than CDP with almost all prefetch
cache sizes.

The above phenomenon can be quite expected. When the
prefetch cache size is very small, prefetched blocks may be
replaced even before they are used. Even though the demand
cache size is increased correspondingly, its benefit is not large
enough to offset the loss in unused prefetches. Even worse, the
overhead imposed by CDP causes an increase in the response
time compared to the base case, as shown on Figure 10d. For-
tunately, in this case, the CDP+layout starts to show the bene-
fits of correlation-directed disk layout. It is still able to provide
some small improvement over the base line case.

As the prefetch cache size increases, blocks can be retained
longer in the prefetch cache and subsequently be used to han-
dle block requests. However, the increase in prefetch cache
size corresponds to a reduced demand cache size, but the ben-
efit of prefetching in reducing misses outweighs the loss in
the demand cache. Beyond 128 MB, increasing the prefetch
cache size no longer has benefits for increasing hit ratio. So
the loss due to the reduced demand cache size starts to domi-
nate. Therefore, the overall miss ratio increases.

11

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 4 8 16

M
is

s
ra

tio

Prefetch cache size (MB)

No prefetching
Sequential pref.

CDP
CDP+layout

0
0.5

1
1.5

2
2.5

3

1 2 4 8 16

R
es

po
ns

e
tim

e
(m

s)

Prefetch cache size (MB)

No prefetching
Sequential pref.

CDP
CDP+layout

0

0.1

0.2

0.3

0.4

32 64 128 256 512

M
is

s
ra

tio

Prefetch cache size (MB)

No prefetching
Sequential pref.

CDP
CDP+layout

0
0.5

1
1.5

2
2.5

3

32 64 128 256 512

R
es

po
ns

e
tim

e
(m

s)

Prefetch cache size (MB)

No prefetching
Sequential pref.

CDP
CDP+layout

(a) Cello-92 - miss ratio (b) Cello-92 - response time (c) TPC-C - miss ratio (d) TPC-C - response time

Figure 10: Effect of varying the prefetch cache size (Note: the total cache size is fixed. Therefore, the demand cache size is also
changing with the prefetch cache size. In the base-line case, there is no prefetch cache)

6 Related Work

In this section, we briefly discuss some representative work
that is closely related to our work. Section 2 has discussed
various approaches to capture data semantics. Thus, we do not
repeat them here.

Data prefetching has also been studied extensively in
databases, file systems and parallel applications with intensive
I/Os. Most of previous prefetching work either relies on ap-
plications to pass hints or is based on simple heuristics such
as sequential accesses. Examples of prefetching studies for
databases include [56, 63, 44, 22, 21] as well some recent
work [53] for mobile data delivery environments. Prefetching
for file I/Os include application-controlled prefetching [9, 10]
and informed prefetching [60, 32, 45], just to name a few. [57]
is an example of prefetching in disk caches. I/O prefetching for
out-of-core applications include compiler-assisted prefetch-
ing [43, 8] and prefetching through speculative execution [12].

In the spectrum of sophisticated prefetching schemes, re-
search has been conducted for semantic distance-based file
prefetching for mobile or networked file servers. Besides the
probability graph-based approach described in Section 2, the
SEER project from UCLA [34, 35] groups related files into
clusters by keeping track of semantic distances between files
and downloading as many complete clusters as possible onto
the mobile station. The CLUMP project tries to leverage the
concept of semantic distance to prefetch file clusters [18].
Kroeger extends the probability graph to a trie with each node
representing the sequence of consecutive file accesses from
the root to the node [33]. Lei and Duchamp also use a simi-
lar structure by building a probability tree [59, 38]. Vellanki
and Chervenak combine Patterson’s cost-benefit analysis with
probabilistic prefetching for high performance parallel file sys-
tems [61]. Similar to the probability graph, most of these ap-
proaches may be feasible for prefetching at file granularity, but
are impractical to track block correlations in a storage system
(see Section 2).

Some studies used data compression techniques for
prefetching. It was first proposed by Vitter and Krishnan [62].
The basic idea is to encode the data expected with higher prob-
ability using fewer bits. The prefetchers based on any opti-
mal character-by-character data compressor were theoretically
proven to be optimal in page fault rate. Later, [17] analyzed
some practical issues of such a technique, and proposed three
practical data compressors for prefetching.

Data mining methods have been mostly used to discover pat-

terns in sales, finance or bio-informatics databases [27, 26].
Only a few studies have applied them in systems. A well-
known example is using data mining for intrusion detec-
tion [37, 16]. Data mining has recently been used in perfor-
mance evaluation [40] to model bursty traffic.

Data mining and machine learning have been used in web
environments to predict HTTP requests. Schechter et al. in-
troduced path profiling to predict HTTP requests in web en-
vironments [51]. Pitkow and Pirolli have used longest re-
peating subsequences to perform path matching for predicting
web accesses from a client [47]. These schemes predict the
next HTTP request by matching the surfer’s current sequence
against the path profile database.

While path-based prediction may work very well for web
environments, it is very difficult to capture block correlations
in storage systems. This is because web browser/server work-
loads are different from storage workloads. Each web client
usually only browses one page at a time, whereas a storage
front-end such as database server can have hundreds of out-
standing requests. Since the path-matching schemes do not
allow any gaps in the subsequence or path, they cannot be used
easily to capture block correlations in a storage system. To
support gaps or lookahead distances in these work will suffer
the same problem as the probability graph-based approach.

Our work is also related to various adaptive approaches
using learning techniques [41, 4], intelligent storage cache
management [69, 65, 42, 13], and autonomic storage sys-
tems [64, 2, 30]

7 Conclusions and Future Work

This paper proposes C-Miner, a novel approach that uses data
mining techniques to systematically mine access sequences in
a storage system to infer block correlations. More specifically,
we have designed a frequent sequence mining algorithm to
find correlations among blocks. Using several large real sys-
tem disk traces, our experiments show that C-Miner is reason-
ably fast with small space requirement and is therefore prac-
tical to be used on-line in an autonomic storage system. We
have also evaluated correlation-directed prefetching and data
layout. Our experimental results with real-system traces have
shown that correlation-directed prefetching and data layout can
improve I/O average response time by 12-25% compared to
no-prefetching, and 7-20% compared to the commonly used
sequential prefetching.

12

Our study has several limitations. First, even though this
paper focuses on how to obtain block correlations, our eval-
uation of the block correlation-directed prefetching and disk
layout was conducted using only simulations. We are in the
process of implementing correlation-directed prefetching and
disk layout in our previously built storage system. Second, we
have only evaluated four real-system workloads, it would be
interesting to evaluate other workloads such as those with sub-
stantially sequential accesses. Third, we do not compare with
the semantic-distance graph approach. The main reason is that
our preliminary experiment indicates that the SD graphs sig-
nificantly exceed the memory space, making it extremely slow
and almost infeasible to build such graphs.

Currently, C-Miner does not consider the recency factor,
that is, some recent frequent subsequences may be more im-
portant than other “ancient” frequent subsequences. To mine
time-series data, our algorithm needs to be modified to change
the support or confidence value of a rule dynamically as time
progresses. Currently, we are designing efficient stream data
mining algorithms specifically for mining access sequences for
storage systems and any other similar situations.

8 Acknowledgements

The authors would like to thank the shepherd, Jeff Chase, and
the anonymous reviewers for their invaluable feedback. We
appreciate Kimberly Keeton of HP labs for the constructive
discussion and thank HP storage system labs for providing us
cello traces. We are also grateful to Professor Jiawei Han and
his student Xifeng Yan for their help with the CloSpan algo-
rithm and insightful discussions. This research is supported by
the NSF CCR-0305854 grant and IBM CAS Fellowship. Our
experiments were conducted on equipment provided through
the IBM SUR grant.

REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Eleventh
International Conference on Data Engineering, 1995.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch.
Hippodrome: running circles around storage administration. In Proceed-
ings of the First USENIX Conference on File and Storage Technologies,
2002.

[3] G. H. Anthes. Storage virtualization: The next step. Computerworld,
January 28, 2002.

[4] I. Ari, A. Amer, E. Miller, S. Brandt, and D. Long. Who is more adap-
tive? ACME: adaptive caching using multiple experts. In Workshop on
Distributed Data and Structures (WDAS), 2002.

[5] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and con-
trol in gray-box systems. In Proceedings of the eighteenth ACM sympo-
sium on Operating systems principles, 2001.

[6] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick. Sequential pattern min-
ing using bitmaps. In Proc. 2002 ACM SIGKDD Int. Conf. Knowledge
Discovery in Databases (KDD’02), pages 429–435, Edmonton, Canada,
July 2002.

[7] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system char-
acterization of commercial workloads. In Proceedings of the 25th annual
international symposium on Computer architecture, pages 3–14. IEEE
Press, 1998.

[8] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-based I/O prefetch-
ing for out-of-core applications. ACM Transactions on Computer Sys-
tems, 19(2):111–170, 2001.

[9] P. Cao, E. Felten, and K. Li. Application-controlled file caching policies.
In USENIX Summer 1994 Technical Conference, pages 171–182, June
1994.

[10] P. Cao, E. W. Felten, A. Karlin, and K. Li. A study of integrated prefetch-
ing and caching strategies. In Proceedings of ACM SIGMETRICS, May
1995.

[11] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy in
network servers. In Proceedings of the 17th International Conference on
Supercomputing, June 2003.

[12] F. W. Chang and G. A. Gibson. Automatic I/O hint generation through
speculative execution. In Operating Systems Design and Implementa-
tion, pages 1–14, 1999.

[13] Z. Chen, Y. Zhou, and K. Li. Eviction-based cache placement for storage
caches. In USENIX, 2003.

[14] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards application/file-level
characterization of block references: a case for fine-grained buffer man-
agement. In Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2000.

[15] H. Chou and D. DeWitt. An evaluation of buffer management strategies
for relational database systems. In Proceedings of the 19th International
Conference on Very Large Data Bases, pages 127–141, Dublin, Ireland,
1993.

[16] C. Clifton and G. Gengo. Developing custom intrusion detection filters
using data mining. In 2000 Military Communications International Sym-
posium (MILCOM2000), Los Angeles, California, Oct. 2000.

[17] K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via
data compression. In Proc. 1993 ACM-SIGMOD Conference on Man-
agement of Data, pages 257–266, May 1993.

[18] P. R. Eaton, D. Geels, and G. Mori. Clump: Improving file system per-
formance through adaptive optimizations.

[19] EMC Corporation. Symmetrix 3000 and 5000 Enterprise Storage Sys-
tems product description guide., 1999.

[20] G. Ganger. Systemoriented evaluation of I/O subsystem performance.
Technical Report CSE-TR-243-95, University of Michigan, June 1995.

[21] C. A. Gerlhof and A. Kemper. A multi-threaded architecture for prefetch-
ing in object bases. In M. Jarke, J. A. B. Jr., and K. G. Jeffery, editors,
Advances in Database Technology - EDBT’94. 4th International Confer-
ence on Extending Database Technology, Cambridge, United Kingdom,
March 28-31, 1994, Proceedings, volume 779 of Lecture Notes in Com-
puter Science, pages 351–364. Springer, 1994.

[22] C. A. Gerlhof and A. Kemper. Prefetch support relations in object bases.
In M. P. Atkinson, D. Maier, and V. Benzaken, editors, Persistent Ob-
ject Systems, Proceedings of the Sixth International Workshop on Persis-
tent Object Systems, Tarascon, Provence, France, 5-9 September 1994,
Workshops in Computing, pages 115–126. Springer and British Com-
puter Society, 1994.

[23] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage architecture. In the 8th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1998.

[24] J. Griffioen and R. Appleton. Reducing file system latency using a pre-
dictive approach. In In Proceedings of the 1994 Summer USENIX Con-
ference, 1994.

[25] J. Griffioen and R. Appleton. Performance measurements of automatic
prefetching. In In Proceedings of the International Conference on Par-
allel and Distributed Computing Systems, 1995.

[26] J. Han. How can data mining help bio-data analysis? In Proc. 2002
Workshop on Data Mining in Bioinformatics (BIOKDD’02), pages 1–4,
Edmonton, Canada, July 2002.

13

[27] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2001.

[28] IBM hard disk drive - Ultrastar 36Z15.

[29] IBM. Storage Tank, a distributed storage system. IBM White
Paper, http://www.almaden.ibm.com/StorageSystems/file systems/ stor-
age tank/papers.shtml.

[30] K. Keeton and J. Wilkes. Automating data dependability. Proceedings
of the 10th ACM-SIGOPS European Workshop, 2002.

[31] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. A low-
overhead high-performance unified buffer management scheme that ex-
ploits sequential and looping references. In Proceedings of the 4th Sym-
posium on Operating Systems Design and Implementation (OSDI), pages
119–134, San Diego, CA, Oct. 2000.

[32] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P. Cao, E. Fel-
ten, G. Gibson, A. R. Karlin, and K. Li. A trace-driven comparison
of algorithms for parallel prefetching and caching. In Proceedings of
the 1996 Symposium on Operating Systems Design and Implementation,
pages 19–34. USENIX Association, 1996.

[33] T. M. Kroeger and D. D. E. Long. Predicting file-system actions from
prior events. In 1996 USENIX Annual Technical Conference, pages 319–
328, 1996.

[34] G. Kuenning. Design of the SEER predictive caching scheme. In Work-
shop on Mobile Computing Systems and Applications, 1994.

[35] G. H. Kuenning and G. J. Popek. Automated hoarding for mobile com-
puters. In Proceedings of the 15th Symposium on Operating Systems
Principles, pages 264–275, St. Malo, France, Oct. 1997. ACM.

[36] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In Pro-
ceedings of the seventh international conference on Architectural sup-
port for programming languages and operating systems, pages 84–92.
ACM Press, 1996.

[37] W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX,
1998.

[38] H. Lei and D. Duchamp. An analytical approach to file prefetching. In
1997 USENIX Annual Technical Conference, Anaheim, California, USA,
1997.

[39] S. T. Leutenegger and D. Dias. A modeling study of the TPC-C bench-
mark. SIGMOD Record, 22(2):22–31, June 1993.

[40] T. M. M. Wang, N. Chan, S. Papadimitriou, and C. Faloutsos. Data min-
ing meets performance evaluation: Fast algorithms for modeling bursty
traffic. 18th Internal Conference on Data Engineering, 2002.

[41] T. M. Madhyastha, G. A. Gibson, and C. Faloutsos. Informed prefetching
of collective input/output requests. Proceedings of SC99.

[42] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead re-
placement cache. In Proc. 2nd USENIX Conference on File and Storage
Technologies (FAST 03), San Franciso, CA, 2003.

[43] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic compiler-inserted
I/O prefetching for out-of-core applications. In Proceedings of the 1996
Symposium on Operating Systems Design and Implementation, pages 3–
17. USENIX Association, Oct. 1996.

[44] M. Palmer and S. B. Zdonik. Fido: A cache that learns to fetch. In G. M.
Lohman, A. Sernadas, and R. Camps, editors, 17th International Confer-
ence on Very Large Data Bases, September 3-6, 1991, Barcelona, Cat-
alonia, Spain, Proceedings, pages 255–264. Morgan Kaufmann, 1991.

[45] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. In the 15th ACM Symposium on Op-
erating System Principles, 1995.

[46] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-
C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth. In Proc. 2001 Int. Conf. Data Engineering
(ICDE’01), pages 215–224, Heidelberg, Germany, April 2001.

[47] J. E. Pitkow and P. Pirolli. Mining longest repeating subsequences to pre-
dict world wide web surfing. In USENIX Symposium on Internet Tech-
nologies and Systems, 1999.

[48] C. Ruemmler and J. Wilkes. A trace-driven analysis of disk working set
sizes. Technical Report HPL–OSR–93–23, Hewlett-Packard Laborato-
ries, Palo Alto, CA, USA, Apr. 5 1993.

[49] C. Ruemmler and J. Wilkes. UNIX disk access patterns. In Proceedings
of the Winter 1993 USENIX Conference, 1993.

[50] B. Salmon, E. Thereska, C. A. Soules, and G. R. Ganger. A two-tiered
software architecture for automated tuning of disk layouts. In First Work-
shop on Algorithms and Architectures for Self-Managing Systems, June
2003.

[51] S. Schechter, M. Krishnan, and M. D. Smith. Using path profiles to
predict http requests. In Seventh Intl World Wide Web Conference, Apr
1998.

[52] J. Schindler, J. Griffin, C. Lumb, and G. Ganger. Track-aligned extents:
matching access patterns to disk drive characteristics. In Proceedings of
the First USENIX Conference on File and Storage Technologies, 2002.

[53] A. Seifert and M. H. Scholl. A multi-version cache replacement and
prefetching policy for hybrid data delivery environments. In 28th Inter-
national Conference on Very Large Data Bases (VLDB), 2002.

[54] M. Sivathanu, V. Prabhakaran, F. Popovici, T. E. Denehy, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Semantically-Smart Disk Systems.
In Proceedings of the Second USENIX Conference on File and Storage
Technologies, 2003.

[55] A. J. Smith. Sequentiality and prefetching in database systems. ACM
Transactions on Database Systems, 3(3):223–247, Sept. 1978.

[56] B. J. Smith. A pipelined, shared resource MIMD computer. In Pro-
ceedings of International Conference on Parallel Proc essing, pages 6–8,
1978.

[57] V. Soloviev. Prefetching in segmented disk cache for multi-disk systems.
In Proceedings of the fourth workshop on I/O in parallel and distributed
systems, pages 69–82. ACM Press, 1996.

[58] Storage Performance Council. SPC I/O traces.
http://www.storageperformance.org/.

[59] C. D. Tait, H. Lei, S. Acharya, and H. Chang. Intelligent file hoarding for
mobile computers. In Mobile Computing and Networking, pages 119–
125, 1995.

[60] A. Tomkins, R. H. Patterson, and G. Gibson. Informed multi-process
prefetching and caching. In Proceedings of the 1997 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages
100–114. ACM Press, 1997.

[61] V. Vellanki and A. Chervenak. A cost-benefit scheme for high perfor-
mance predictive prefetching. In Proceedings of SC99: High Perfor-
mance Networking and Computing, Portland, OR, 1999. ACM Press and
IEEE Computer Society Press.

[62] J. S. Vitter and P. Krishnan. Optimal prefetching via data compression.
In Proceedings of the 32nd Annual IEEE Symposium on Foundations of
Computer Science, Oct 1991.

[63] H. Wedekind and G. Zoerntlein. Prefetching in realtime database appli-
cations. In Proceedings of the 1986 ACM SIGMOD international con-
ference on Management of data, pages 215–226. ACM Press, 1986.

[64] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hi-
erarchical storage system. Proc. of the 15th Symp. on Operating Systems
Principles, 1995.

[65] T. Wong and J. Wilkes. My cache or yours? making storage more exclu-
sive. In USENIX, 2002.

[66] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential
patterns in large datasets. In Proc. 2003 SIAM Int. Conf. Data Mining
(SDM’03), San Fransisco, CA, May 2003.

[67] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 40:31–60, 2001.

[68] Y. Zhang, J. Zhang, A. Sivasubramaniam, C. Liu, and H. Franke.
Decision-support workload characteristics on clustered database server
from the OS perspective. In Proceedings of the International Confer-
ence on Distributed Conputing Systems(ICDCS), May 2003.

[69] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue replacement algorithm
for second level buffer caches. In Proceedings of the Usenix Technical
Conference, June 2001.

14

