
Calvin: Fast Distributed Transactions
for Partitioned Database Systems

Alexander Thomson
Yale University

thomson@cs.yale.edu

Thaddeus Diamond
Yale University

diamond@cs.yale.edu

Shu-Chun Weng
Yale University

scweng@cs.yale.edu

Kun Ren
Yale University

kun@cs.yale.edu

Philip Shao
Yale University

shao-philip@cs.yale.edu

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT
Many distributed storage systems achieve high data access through-
put via partitioning and replication, each system with its own ad-
vantages and tradeoffs. In order to achieve high scalability, how-
ever, today’s systems generally reduce transactional support, disal-
lowing single transactions from spanning multiple partitions. Calvin
is a practical transaction scheduling and data replication layer that
uses a deterministic ordering guarantee to significantly reduce the
normally prohibitive contention costs associated with distributed
transactions. Unlike previous deterministic database system proto-
types, Calvin supports disk-based storage, scales near-linearly on
a cluster of commodity machines, and has no single point of fail-
ure. By replicating transaction inputs rather than effects, Calvin is
also able to support multiple consistency levels—including Paxos-
based strong consistency across geographically distant replicas—at
no cost to transactional throughput.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases;
H.2.4 [Database Management]: Systems—concurrency, distributed
databases, transaction processing

General Terms
Algorithms, Design, Performance, Reliability

Keywords
determinism, distributed database systems, replication, transaction
processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. BACKGROUND AND INTRODUCTION
One of several current trends in distributed database system de-

sign is a move away from supporting traditional ACID database
transactions. Some systems, such as Amazon’s Dynamo [13], Mon-
goDB [24], CouchDB [6], and Cassandra [17] provide no transac-
tional support whatsoever. Others provide only limited transaction-
ality, such as single-row transactional updates (e.g. Bigtable [11])
or transactions whose accesses are limited to small subsets of a
database (e.g. Azure [9], Megastore [7], and the Oracle NoSQL
Database [26]). The primary reason that each of these systems
does not support fully ACID transactions is to provide linear out-
ward scalability. Other systems (e.g. VoltDB [27, 16]) support full
ACID, but cease (or limit) concurrent transaction execution when
processing a transaction that accesses data spanning multiple parti-
tions.

Reducing transactional support greatly simplifies the task of build-
ing linearly scalable distributed storage solutions that are designed
to serve “embarrassingly partitionable” applications. For applica-
tions that are not easily partitionable, however, the burden of en-
suring atomicity and isolation is generally left to the application
programmer, resulting in increased code complexity, slower appli-
cation development, and low-performance client-side transaction
scheduling.

Calvin is designed to run alongside a non-transactional storage
system, transforming it into a shared-nothing (near-)linearly scal-
able database system that provides high availability1 and full ACID
transactions. These transactions can potentially span multiple parti-
tions spread across the shared-nothing cluster. Calvin accomplishes
this by providing a layer above the storage system that handles the
scheduling of distributed transactions, as well as replication and
network communication in the system. The key technical feature
that allows for scalability in the face of distributed transactions is
a deterministic locking mechanism that enables the elimination of
distributed commit protocols.

1In this paper we use the term “high availability” in the common
colloquial sense found in the database community where a database
is highly available if it can fail over to an active replica on the fly
with no downtime, rather than the definition of high availability
used in the CAP theorem which requires that even minority replicas
remain available during a network partition.

Pete Keleher

Pete Keleher

1.1 The cost of distributed transactions
Distributed transactions have historically been implemented by

the database community in the manner pioneered by the architects
of System R* [22] in the 1980s. The primary mechanism by which
System R*-style distributed transactions impede throughput and
extend latency is the requirement of an agreement protocol between
all participating machines at commit time to ensure atomicity and
durability. To ensure isolation, all of a transaction’s locks must be
held for the full duration of this agreement protocol, which is typi-
cally two-phase commit.

The problem with holding locks during the agreement protocol
is that two-phase commit requires multiple network round-trips be-
tween all participating machines, and therefore the time required
to run the protocol can often be considerably greater than the time
required to execute all local transaction logic. If a few popularly-
accessed records are frequently involved in distributed transactions,
the resulting extra time that locks are held on these records can have
an extremely deleterious effect on overall transactional throughput.
We refer to the total duration that a transaction holds its locks—
which includes the duration of any required commit protocol—as
the transaction’s contention footprint. Although most of the discus-
sion in this paper assumes pessimistic concurrency control mech-
anisms, the costs of extending a transaction’s contention footprint
are equally applicable—and often even worse due to the possibility
of cascading aborts—in optimistic schemes.

Certain optimizations to two-phase commit, such as combining
multiple concurrent transactions’ commit decisions into a single
round of the protocol, can reduce the CPU and network overhead
of two-phase commit, but do not ameliorate its contention cost.

Allowing distributed transactions may also introduce the possi-
bility of distributed deadlock in systems implementing pessimistic
concurrency control schemes. While detecting and correcting dead-
locks does not typically incur prohibitive system overhead, it can
cause transactions to be aborted and restarted, increasing latency
and reducing throughput to some extent.

1.2 Consistent replication
A second trend in distributed database system design has been

towards reduced consistency guarantees with respect to replication.
Systems such as Dynamo, SimpleDB, Cassandra, Voldemort, Riak,
and PNUTS all lessen the consistency guarantees for replicated
data [13, 1, 17, 2, 3, 12]. The typical reason given for reducing
the replication consistency of these systems is the CAP theorem [5,
14]—in order for the system to achieve 24/7 global availability and
remain available even in the event of a network partition, the sys-
tem must provide lower consistency guarantees. However, in the
last year, this trend is starting to reverse—perhaps in part due to
ever-improving global information infrastructure that makes non-
trivial network partitions increasingly rare—with several new sys-
tems supporting strongly consistent replication. Google’s Megas-
tore [7] and IBM’s Spinnaker [25], for example, are synchronously
replicated via Paxos [18, 19].

Synchronous updates come with a latency cost fundamental to
the agreement protocol, which is dependent on network latency be-
tween replicas. This cost can be significant, since replicas are often
geographically separated to reduce correlated failures. However,
this is intrinsically a latency cost only, and need not necessarily
affect contention or throughput.

1.3 Achieving agreement without increasing
contention

Calvin’s approach to achieving inexpensive distributed transac-
tions and synchronous replication is the following: when multiple

machines need to agree on how to handle a particular transaction,
they do it outside of transactional boundaries—that is, before they
acquire locks and begin executing the transaction.

Once an agreement about how to handle the transaction has been
reached, it must be executed to completion according to the plan—
node failure and related problems cannot cause the transaction to
abort. If a node fails, it can recover from a replica that had been
executing the same plan in parallel, or alternatively, it can replay
the history of planned activity for that node. Both parallel plan
execution and replay of plan history require activity plans to be
deterministic—otherwise replicas might diverge or history might
be repeated incorrectly.

To support this determinism guarantee while maximizing con-
currency in transaction execution, Calvin uses a deterministic lock-
ing protocol based on one we introduced in previous work [28].

Since all Calvin nodes reach an agreement regarding what trans-
actions to attempt and in what order, it is able to completely eschew
distributed commit protocols, reducing the contention footprints of
distributed transactions, thereby allowing throughput to scale out
nearly linearly despite the presence of multipartition transactions.
Our experiments show that Calvin significantly outperforms tra-
ditional distributed database designs under high contention work-
loads. We find that it is possible to run half a million TPC-C
transactions per second on a cluster of commodity machines in the
Amazon cloud, which is immediately competitive with the world-
record results currently published on the TPC-C website that were
obtained on much higher-end hardware.

This paper’s primary contributions are the following:

• The design of a transaction scheduling and data replication
layer that transforms a non-transactional storage system into
a (near-)linearly scalable shared-nothing database system that
provides high availability, strong consistency, and full ACID
transactions.

• A practical implementation of a deterministic concurrency
control protocol that is more scalable than previous approaches,
and does not introduce a potential single point of failure.

• A data prefetching mechanism that leverages the planning
phase performed prior to transaction execution to allow trans-
actions to operate on disk-resident data without extending
transactions’ contention footprints for the full duration of
disk lookups.

• A fast checkpointing scheme that, together with Calvin’s de-
terminism guarantee, completely removes the need for phys-
ical REDO logging and its associated overhead.

The following section discusses further background on determin-
istic database systems. In Section 3 we present Calvin’s architec-
ture. In Section 4 we address how Calvin handles transactions that
access disk-resident data. Section 5 covers Calvin’s mechanism for
periodically taking full database snapshots. In Section 6 we present
a series of experiments that explore the throughput and latency of
Calvin under different workloads. We present related work in Sec-
tion 7, discuss future work in Section 8, and conclude in Section
9.

2. DETERMINISTIC DATABASE SYSTEMS
In traditional (System R*-style) distributed database systems, the

primary reason that an agreement protocol is needed when commit-
ting a distributed transaction is to ensure that all effects of a trans-
action have successfully made it to durable storage in an atomic

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

fashion—either all nodes involved the transaction agree to “com-
mit” their local changes or none of them do. Events that prevent
a node from committing its local changes (and therefore cause the
entire transaction to abort) fall into two categories: nondetermin-
istic events (such as node failures) and deterministic events (such
as transaction logic that forces an abort if, say, an inventory stock
level would fall below zero otherwise).

There is no fundamental reason that a transaction must abort as
a result of any nondeterministic event; when systems do choose
to abort transactions due to outside events, it is due to practical
consideration. After all, forcing all other nodes in a system to wait
for the node that experienced a nondeterministic event (such as a
hardware failure) to recover could bring a system to a painfully
long stand-still.

If there is a replica node performing the exact same operations
in parallel to a failed node, however, then other nodes that depend
on communication with the afflicted node to execute a transaction
need not wait for the failed node to recover back to its original
state—rather they can make requests to the replica node for any
data needed for the current or future transactions. Furthermore,
the transaction can be committed since the replica node was able
to complete the transaction, and the failed node will eventually be
able to complete the transaction upon recovery2.

Therefore, if there exists a replica that is processing the same
transactions in parallel to the node that experiences the nondeter-
ministic failure, the requirement to abort transactions upon such
failures is eliminated. The only problem is that replicas need to
be going through the same sequence of database states in order for
a replica to immediately replace a failed node in the middle of a
transaction. Synchronously replicating every database state change
would have far too high of an overhead to be feasible. Instead,
deterministic database systems synchronously replicate batches of
transaction requests. In a traditional database implementation, sim-
ply replicating transactional input is not generally sufficient to en-
sure that replicas do not diverge, since databases guarantee that they
will process transactions in a manner that is logically equivalent to
some serial ordering of transactional input—but two replicas may
choose to process the input in manners equivalent to different se-
rial orders, for example due to different thread scheduling, network
latencies, or other hardware constraints. However, if the concur-
rency control layer of the database is modified to acquire locks in
the order of the agreed upon transactional input (and several other
minor modifications to the database are made [28]), all replicas can
be made to emulate the same serial execution order, and database
state can be guaranteed not to diverge3.

Such deterministic databases allow two replicas to stay consis-
tent simply by replicating database input, and as described above,
the presence of these actively replicated nodes enable distributed
transactions to commit their work in the presence of nondetermin-
istic failures (which can potentially occur in the middle of a trans-
action). This eliminates the primary justification for an agreement
protocol at the end of distributed transactions (the need to check
for a node failure which could cause the transaction to abort). The
other potential cause of an abort mentioned above—deterministic
logic in the transaction (e.g. a transaction should be aborted if in-

2Even in the unlikely event that all replicas experience the same
nondeterministic failure, the transaction can still be committed if
there was no deterministic code in the part of the transaction as-
signed to the failed nodes that could cause the transaction to abort.
3More precisely, the replica states are guaranteed not to appear
divergent to outside requests for data, even though their physical
states are typically not identical at any particular snapshot of the
system.

ventory is zero)—does not necessarily have to be performed as part
of an agreement protocol at the end of a transaction. Rather, each
node involved in a transaction waits for a one-way message from
each node that could potentially deterministically abort the trans-
action, and only commits once it receives these messages.

3. SYSTEM ARCHITECTURE
Calvin is designed to serve as a scalable transactional layer above

any storage system that implements a basic CRUD interface (cre-
ate/insert, read, update, and delete). Although it is possible to run
Calvin on top of distributed non-transactional storage systems such
as SimpleDB or Cassandra, it is more straightforward to explain the
architecture of Calvin assuming that the storage system is not dis-
tributed out of the box. For example, the storage system could be
a single-node key-value store that is installed on multiple indepen-
dent machines (“nodes”). In this configuration, Calvin organizes
the partitioning of data across the storage systems on each node,
and orchestrates all network communication that must occur be-
tween nodes in the course of transaction execution.

The high level architecture of Calvin is presented in Figure 1.
The essence of Calvin lies in separating the system into three sepa-
rate layers of processing:

• The sequencing layer (or “sequencer”) intercepts transac-
tional inputs and places them into a global transactional input
sequence—this sequence will be the order of transactions to
which all replicas will ensure serial equivalence during their
execution. The sequencer therefore also handles the replica-
tion and logging of this input sequence.

• The scheduling layer (or “scheduler”) orchestrates transac-
tion execution using a deterministic locking scheme to guar-
antee equivalence to the serial order specified by the sequenc-
ing layer while allowing transactions to be executed concur-
rently by a pool of transaction execution threads. (Although
they are shown below the scheduler components in Figure 1,
these execution threads conceptually belong to the schedul-
ing layer.)

• The storage layer handles all physical data layout. Calvin
transactions access data using a simple CRUD interface; any
storage engine supporting a similar interface can be plugged
into Calvin fairly easily.

All three layers scale horizontally, their functionalities partitioned
across a cluster of shared-nothing nodes. Each node in a Calvin
deployment typically runs one partition of each layer (the tall light-
gray boxes in Figure 1 represent physical machines in the cluster).
We discuss the implementation of these three layers in the follow-
ing sections.

By separating the replication mechanism, transactional function-
ality and concurrency control (in the sequencing and scheduling
layers) from the storage system, the design of Calvin deviates sig-
nificantly from traditional database design which is highly mono-
lithic, with physical access methods, buffer manager, lock man-
ager, and log manager highly integrated and cross-reliant. This
decoupling makes it impossible to implement certain popular re-
covery and concurrency control techniques such as the physiolog-
ical logging in ARIES and next-key locking technique to handle
phantoms (i.e., using physical surrogates for logical properties in
concurrency control). Calvin is not the only attempt to separate
the transactional components of a database system from the data
components—thanks to cloud computing and its highly modular

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher
not clear how expressive

Pete Keleher

Figure 1: System Architecture of Calvin

services, there has been a renewed interest within the database com-
munity in separating these functionalities into distinct and modular
system components [21].

3.1 Sequencer and replication
In previous work with deterministic database systems, we im-

plemented the sequencing layer’s functionality as a simple echo
server—a single node which accepted transaction requests, logged
them to disk, and forwarded them in timestamp order to the ap-
propriate database nodes within each replica [28]. The problems
with single-node sequencers are (a) that they represent potential
single points of failure and (b) that as systems grow the constant
throughput bound of a single-node sequencer brings overall system
scalability to a quick halt. Calvin’s sequencing layer is distributed
across all system replicas, and also partitioned across every ma-
chine within each replica.

Calvin divides time into 10-millisecond epochs during which ev-
ery machine’s sequencer component collects transaction requests
from clients. At the end of each epoch, all requests that have ar-
rived at a sequencer node are compiled into a batch. This is the
point at which replication of transactional inputs (discussed below)
occurs.

After a sequencer’s batch is successfully replicated, it sends a
message to the scheduler on every partition within its replica con-
taining (1) the sequencer’s unique node ID, (2) the epoch number
(which is synchronously incremented across the entire system once
every 10 ms), and (3) all transaction inputs collected that the recipi-
ent will need to participate in. This allows every scheduler to piece
together its own view of a global transaction order by interleaving

(in a deterministic, round-robin manner) all sequencers’ batches for
that epoch.

3.1.1 Synchronous and asynchronous replication
Calvin currently supports two modes for replicating transactional

input: asynchronous replication and Paxos-based synchronous repli-
cation. In both modes, nodes are organized into replication groups,
each of which contains all replicas of a particular partition. In the
deployment in Figure 1, for example, partition 1 in replica A and
partition 1 in replica B would together form one replication group.

In asynchronous replication mode, one replica is designated as
a master replica, and all transaction requests are forwarded imme-
diately to sequencers located at nodes of this replica. After com-
piling each batch, the sequencer component on each master node
forwards the batch to all other (slave) sequencers in its replication
group. This has the advantage of extremely low latency before a
transaction can begin being executed at the master replica, at the
cost of significant complexity in failover. On the failure of a mas-
ter sequencer, agreement has to be reached between all nodes in
the same replica and all members of the failed node’s replication
group regarding (a) which batch was the last valid batch sent out
by the failed sequencer and (b) exactly what transactions that batch
contained, since each scheduler is only sent the partial view of each
batch that it actually needs in order to execute.

Calvin also supports Paxos-based synchronous replication of trans-
actional inputs. In this mode, all sequencers within a replication
group use Paxos to agree on a combined batch of transaction re-
quests for each epoch. Calvin’s current implementation uses Zoo-
Keeper, a highly reliable distributed coordination service often used
by distributed database systems for heartbeats, configuration syn-

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher
Full replication?

Pete Keleher

Pete Keleher

Pete Keleher

Figure 2: Average transaction latency under Calvin’s different
replication modes.

chronization and naming [15]. ZooKeeper is not optimized for
storing high data volumes, and may incur higher total latencies
than the most efficient possible Paxos implementations. However,
ZooKeeper handles the necessary throughput to replicate Calvin’s
transactional inputs for all the experiments run in this paper, and
since this synchronization step does not extend contention foot-
prints, transactional throughput is completely unaffected by this
preprocessing step. Improving the Calvin codebase by implement-
ing a more streamlined Paxos agreement protocol between Calvin
sequencers than what comes out-of-the-box with ZooKeeper could
be useful for latency-sensitive applications, but would not improve
Calvin’s transactional throughput.

Figure 2 presents average transaction latencies for the current
Calvin codebase under different replication modes. The above data
was collected using 4 EC2 High-CPU machines per replica, run-
ning 40000 microbenchmark transactions per second (10000 per
node), 10% of which were multipartition (see Section 6 for ad-
ditional details on our experimental setup). Both Paxos latencies
reported used three replicas (12 total nodes). When all replicas
were run on one data center, ping time between replicas was ap-
proximately 1ms. When replicating across data centers, one replica
was run on Amazon’s East US (Virginia) data center, one was run
on Amazon’s West US (Northern California) data center, and one
was run on Amazon’s EU (Ireland) data center. Ping times be-
tween replicas ranged from 100 ms to 170 ms. Total transactional
throughput was not affected by changing Calvin’s replication mode.

3.2 Scheduler and concurrency control
When the transactional component of a database system is un-

bundled from the storage component, it can no longer make any
assumptions about the physical implementation of the data layer,
and cannot refer to physical data structures like pages and indexes,
nor can it be aware of side-effects of a transaction on the physi-
cal layout of the data in the database. Both the logging and con-
currency protocols have to be completely logical, referring only to
record keys rather than physical data structures. Fortunately, the
inability to perform physiological logging is not at all a problem in
deterministic database systems; since the state of a database can be
completely determined from the input to the database, logical log-
ging is straightforward (the input is be logged by the sequencing
layer, and occasional checkpoints are taken by the storage layer—
see Section 5 for further discussion of checkpointing in Calvin).

However, only having access to logical records is slightly more

problematic for concurrency control, since locking ranges of keys
and being robust to phantom updates typically require physical ac-
cess to the data. To handle this case, Calvin could use an approach
proposed recently for another unbundled database system by creat-
ing virtual resources that can be logically locked in the transactional
layer [20], although implementation of this feature remains future
work.

Calvin’s deterministic lock manager is partitioned across the en-
tire scheduling layer, and each node’s scheduler is only responsible
for locking records that are stored at that node’s storage component—
even for transactions that access records stored on other nodes. The
locking protocol resembles strict two-phase locking, but with two
added invariants:

• For any pair of transactions A and B that both request exclu-
sive locks on some local record R, if transaction A appears
before B in the serial order provided by the sequencing layer
then A must request its lock on R before B does. In prac-
tice, Calvin implements this by serializing all lock requests
in a single thread. The thread scans the serial transaction or-
der sent by the sequencing layer; for each entry, it requests all
locks that the transaction will need in its lifetime. (All trans-
actions are therefore required to declare their full read/write
sets in advance; section 3.2.1 discusses the limitations en-
tailed.)

• The lock manager must grant each lock to requesting trans-
actions strictly in the order in which those transactions re-
quested the lock. So in the above example, B could not be
granted its lock on R until after A has acquired the lock on
R, executed to completion, and released the lock.

Clients specify transaction logic as C++ functions that may ac-
cess any data using a basic CRUD interface. Transaction code
does not need to be at all aware of partitioning (although the user
may specify elsewhere how keys should be partitioned across ma-
chines), since Calvin intercepts all data accesses that appear in
transaction code and performs all remote read result forwarding
automatically.

Once a transaction has acquired all of its locks under this proto-
col (and can therefore be safely executed in its entirety) it is handed
off to a worker thread to be executed. Each actual transaction exe-
cution by a worker thread proceeds in five phases:

1. Read/write set analysis. The first thing a transaction execu-
tion thread does when handed a transaction request is analyze
the transaction’s read and write sets, noting (a) the elements
of the read and write sets that are stored locally (i.e. at the
node on which the thread is executing), and (b) the set of par-
ticipating nodes at which elements of the write set are stored.
These nodes are called active participants in the transaction;
participating nodes at which only elements of the read set are
stored are called passive participants.

2. Perform local reads. Next, the worker thread looks up the
values of all records in the read set that are stored locally.
Depending on the storage interface, this may mean making a
copy of the record to a local buffer, or just saving a pointer
to the location in memory at which the record can be found.

3. Serve remote reads. All results from the local read phase
are forwarded to counterpart worker threads on every actively
participating node. Since passive participants do not modify
any data, they need not execute the actual transaction code,
and therefore do not have to collect any remote read results.

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

If the worker thread is executing at a passively participating
node, then it is finished after this phase.

4. Collect remote read results. If the worker thread is ex-
ecuting at an actively participating node, then it must exe-
cute transaction code, and thus it must first acquire all read
results—both the results of local reads (acquired in the sec-
ond phase) and the results of remote reads (forwarded appro-
priately by every participating node during the third phase).
In this phase, the worker thread collects the latter set of read
results.

5. Transaction logic execution and applying writes. Once
the worker thread has collected all read results, it proceeds to
execute all transaction logic, applying any local writes. Non-
local writes can be ignored, since they will be viewed as local
writes by the counterpart transaction execution thread at the
appropriate node, and applied there.

Assuming a distributed transaction begins executing at approxi-
mately the same time at every participating node (which is not al-
ways the case—this is discussed in greater length in Section 6), all
reads occur in parallel, and all remote read results are delivered in
parallel as well, with no need for worker threads at different nodes
to request data from one another at transaction execution time.

3.2.1 Dependent transactions
Transactions which must perform reads in order to determine

their full read/write sets (which we term dependent transactions)
are not natively supported in Calvin since Calvin’s deterministic
locking protocol requires advance knowledge of all transactions’
read/write sets before transaction execution can begin. Instead,
Calvin supports a scheme called Optimistic Lock Location Pre-
diction (OLLP), which can be implemented at very low overhead
cost by modifying the client transaction code itself [28]. The idea
is for dependent transactions to be preceded by an inexpensive,
low-isolation, unreplicated, read-only reconnaissance query that
performs all the necessary reads to discover the transaction’s full
read/write set. The actual transaction is then sent to be added to
the global sequence and executed, using the reconnaissance query’s
results for its read/write set. Because it is possible for the records
read by the reconnaissance query (and therefore the actual transac-
tion’s read/write set) to have changed between the execution of the
reconnaissance query and the execution of the actual transaction,
the read results must be rechecked, and the process have to may be
(deterministically) restarted if the “reconnoitered” read/write set is
no longer valid.

Particularly common within this class of transactions are those
that must perform secondary index lookups in order to identify their
full read/write sets. Since secondary indexes tend to be compara-
tively expensive to modify, they are seldom kept on fields whose
values are updated extremely frequently. Secondary indexes on “in-
ventory item name” or “New York Stock Exchange stock symbol”,
for example, would be common, whereas it would be unusual to
maintain a secondary index on more volatile fields such as “inven-
tory item quantity” or “NYSE stock price”. One therefore expects
the OLLP scheme seldom to result in repeated transaction restarts
under most common real-world workloads.

The TPC-C benchmark’s “Payment” transaction type is an ex-
ample of this sub-class of transaction. And since the TPC-C bench-
mark workload never modifies the index on which Payment trans-
actions’ read/write sets may depend, Payment transactions never
have to be restarted when using OLLP.

4. CALVIN WITH DISK-BASED STORAGE
Our previous work on deterministic database system came with

the caveat that deterministic execution would only work for databases
entirely resident in main memory [28]. The reasoning was that a
major disadvantage of deterministic database systems relative to
traditional nondeterministic systems is that nondeterministic sys-
tems are able to guarantee equivalence to any serial order, and
can therefore arbitrarily reorder transactions, whereas a system like
Calvin is constrained to respect whatever order the sequencer chooses.

For example, if a transaction (let’s call it A) is stalled waiting for
a disk access, a traditional system would be able to run other trans-
actions (B and C, say) that do not conflict with the locks already
held by A. If B and C’s write sets overlapped with A’s on keys
that A has not yet locked, then execution can proceed in manner
equivalent to the serial order B − C − A rather than A −B − C.
In a deterministic system, however, B and C would have to block
until A completed. Worse yet, other transactions that conflicted
with B and C—but not with A—would also get stuck behind A.
On-the-fly reordering is therefore highly effective at maximizing
resource utilization in systems where disk stalls upwards of 10 ms
may occur frequently during transaction execution.

Calvin avoids this disadvantage of determinism in the context
of disk-based databases by following its guiding design principle:
move as much as possible of the heavy lifting to earlier in the trans-
action processing pipeline, before locks are acquired.

Any time a sequencer component receives a request for a trans-
action that may incur a disk stall, it introduces an artificial delay
before forwarding the transaction request to the scheduling layer
and meanwhile sends requests to all relevant storage components
to “warm up” the disk-resident records that the transaction will ac-
cess. If the artificial delay is greater than or equal to the time it
takes to bring all the disk-resident records into memory, then when
the transaction is actually executed, it will access only memory-
resident data. Note that with this scheme the overall latency for the
transaction should be no greater than it would be in a traditional
system where the disk IO were performed during execution (since
exactly the same set of disk operations occur in either case)—but
none of the disk latency adds to the transaction’s contention foot-
print.

To clearly demonstrate the applicability (and pitfalls) of this tech-
nique, we implemented a simple disk-based storage system for Calvin
in which “cold” records are written out to the local filesystem and
only read into Calvin’s primary memory-resident key-value table
when needed by a transaction. When running 10,000 microbench-
mark transactions per second per machine (see Section 6 for more
details on experimental setup), Calvin’s total transactional through-
put was unaffected by the presence of transactions that access disk-
based storage, as long as no more than 0.9% of transactions (90 out
of 10,000) to disk. However, this number is very dependent on the
particular hardware configuration of the servers used. We ran our
experiments on low-end commodity hardware, and so we found
that the number of disk-accessing transactions that could be sup-
ported was limited by the maximum throughput of local disk (rather
than contention footprint). Since the microbenchmark workload in-
volved random accesses to a lot of different files, 90 disk-accessing
transactions per second per machine was sufficient to turn disk ran-
dom access throughput into a bottleneck. With higher end disk
arrays (or with flash memory instead of magnetic disk) many more
disk-based transactions could be supported without affecting total
throughput in Calvin.

To better understand Calvin’s potential for interfacing with other
disk configurations, flash, networked block storage, etc., we also
implemented a storage engine in which “cold” data was stored in

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

memory on a separate machine that could be configured to serve
data requests only after a pre-specified delay (to simulate network
or storage-access latency). Using this setup, we found that each ma-
chine was able to support the same load of 10,000 transactions per
second, no matter how many of these transactions accessed “cold”
data—even under extremely high contention (contention index =
0.01).

We found two main challenges in reconciling deterministic exe-
cution with disk-based storage. First, disk latencies must be accu-
rately predicted so that transactions are delayed for the appropriate
amount of time. Second, Calvin’s sequencer layer must accurately
track which keys are in memory across all storage nodes in order to
determine when prefetching is necessary.

4.1 Disk I/O latency prediction
Accurately predicting the time required to fetch a record from

disk to memory is not an easy problem. The time it takes to read a
disk-resident can vary significantly for many reasons:

• Variable physical distance for the head and spindle to move

• Prior queued disk I/O operations

• Network latency for remote reads

• Failover from media failures

• Multiple I/O operations required due to traversing a disk-
based data structure (e.g. a B+ tree)

It is therefore impossible to predict latency perfectly, and any
heuristic used will sometimes result in underestimates and some-
times in overestimates. Disk IO latency estimation proved to be a
particularly interesting and crucial parameter when tuning Calvin
to perform well on disk-resident data under high contention.

We found that if the sequencer chooses a conservatively high es-
timate and delays forwarding transactions for longer than is likely
necessary, the contention cost due to disk access is minimized (since
fetching is almost always completed before the transaction requires
the record to be read), but at a cost to overall transaction latency.
Excessively high estimates could also result in the memory of the
storage system being overloaded with “cold” records waiting for
the transactions that requested them to be scheduled.

However, if the sequencer underestimates disk I/O latency and
does not delay the transaction for long enough, then it will be
scheduled too soon and stall during execution until all fetching
completes. Since locks are held for the duration, this may come
with high costs to contention footprint and therefore overall through-
put.

There is therefore a fundamental tradeoff between total transac-
tional latency and contention when estimating for disk I/O latency.
In both experiments described above, we tuned our latency predic-
tions so at least 99% of disk-accessing transactions were scheduled
after their corresponding prefetching requests had completed. Us-
ing the simple filesystem-based storage engine, this meant intro-
ducing an artificial delay of 40ms, but this was sufficient to sus-
tain throughput even under very high contention (contention in-
dex = 0.01). Under lower contention (contention index ≤ 0.001),
we found that no delay was necessary beyond the default delay
caused by collecting transaction requests into batches, which aver-
ages 5 ms. A more exhaustive exploration of this particular latency-
contention tradeoff would be an interesting avenue for future re-
search, particularly as we experiment further with hooking Calvin
up to various commercially available storage engines.

4.2 Globally tracking hot records
In order for the sequencer to accurately determine which transac-

tions to delay scheduling while their read sets are warmed up, each
node’s sequencer component must track what data is currently in
memory across the entire system—not just the data managed by
the storage components co-located on the sequencer’s node. Al-
though this was feasible for our experiments in this paper, this is
not a scalable solution. If global lists of hot keys are not tracked
at every sequencer, one solution is to delay all transactions from
being scheduled until adequate time for prefetching has been al-
lowed. This protects against disk seeks extending contention foot-
prints, but incurs latency at every transaction. Another solution (for
single-partition transactions only) would be for schedulers to track
their local hot data synchronously across all replicas, and then al-
low schedulers to deterministically decide to delay requesting locks
for single-partition transactions that try to read cold data. A more
comprehensive exploration of this strategy, including investigation
of how to implement it for multipartition transactions, remains fu-
ture work.

5. CHECKPOINTING
Deterministic database systems have two properties that simplify

the task of ensuring fault tolerance. First, active replication allows
clients to instantaneously failover to another replica in the event of
a crash.

Second, only the transactional input is logged—there is no need
to pay the overhead of physical REDO logging. Replaying history
of transactional input is sufficient to recover the database system to
the current state. However, it would be inefficient (and ridiculous)
to replay the entire history of the database from the beginning of
time upon every failure. Instead, Calvin periodically takes a check-
point of full database state in order to provide a starting point from
which to begin replay during recovery.

Calvin supports three checkpointing modes: naïve synchronous
checkpointing, an asynchronous variation of Cao et al.’s Zig-Zag
algorithm [10], and an asynchronous snapshot mode that is sup-
ported only when the storage layer supports full multiversioning.

The first mode uses the redundancy inherent in an actively repli-
cated system in order to create a system checkpoint. The sys-
tem can periodically freeze an entire replica and produces a full-
versioned snapshot of the system. Since this only happens at one
snapshot at a time, the period during which the replica is unavail-
able is not seen by the client.

One problem with this approach is that the replica taking the
checkpoint may fall significantly behind other replicas, which can
be problematic if it is called into action due to a hardware failure
in another replica. In addition, it may take the replica significant
time for it to catch back up to other replicas, especially in a heavily
loaded system.

Calvin’s second checkpointing mode is closely based on Cao et
al.’s Zig-Zag algorithm [10]. Zig-Zag stores two copies of each
record in given datastore, AS[K]0 and AS[K]1, plus two addi-
tional bits per record, MR[K] and MW [K] (where K is the key of
the record). MR[K] specifies which record version should be used
when reading record K from the database, and MW [K] specifies
which version to overwrite when updating record K. So new val-
ues of record K are always written to AS[K]MW [K], and MR[K]
is set equal to MW [K] each time K is updated.

Each checkpoint period in Zig-Zag begins with setting MW [K]
equal to ¬MR[K] for all keys K in the database during a physi-
cal point of consistency in which the database is entirely quiesced.
Thus AS[K]MW [K] always stores the latest version of the record,

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Figure 3: Throughput over time during a typical checkpointing
period using Calvin’s modified Zig-Zag scheme.

and AS[K]¬MW [K] always stores the last value written prior to
the beginning of the most recent the checkpoint period. An asyn-
chronous checkpointing thread can therefore go through every key
K, logging AS[K]¬MW [K] to disk without having to worry about
the record being clobbered.

Taking advantage of Calvin’s global serial order, we implemented
a variant of Zig-Zag that does not require quiescing the database to
create a physical point of consistency. Instead, Calvin captures a
snapshot with respect to a virtual point of consistency, which is
simply a pre-specified point in the global serial order. When a vir-
tual point of consistency approaches, Calvin’s storage layer begins
keeping two versions of each record in the storage system—a “be-
fore” version, which can only be updated by transactions that pre-
cede the virtual point of consistency, and an “after” version, which
is written to by transactions that appear after the virtual point of
consistency. Once all transactions preceding the virtual point of
consistency have completed executing, the “before” versions of
each record are effectively immutable, and an asynchronous check-
pointing thread can begin checkpointing them to disk. Once the
checkpoint is completed, any duplicate versions are garbage-collected:
all records that have both a “before” version and an “after” version
discard their “before” versions, so that only one record is kept of
each version until the next checkpointing period begins.

Whereas Calvin’s first checkpointing mode described above in-
volves stopping transaction execution entirely for the duration of
the checkpoint, this scheme incurs only moderate overhead while
the asynchronous checkpointing thread is active. Figure 3 shows
Calvin’s maximum throughput over time during a typical check-
point capture period. This measurement was taken on a single-
machine Calvin deployment running our microbenchmark under
low contention (see section 6 for more on our experimental setup).

Although there is some reduction in total throughput due to (a)
the CPU cost of acquiring the checkpoint and (b) a small amount
of latch contention when accessing records, writing stable values to
storage asynchronously does not increase lock contention or trans-
action latency.

Calvin is also able to take advantage of storage engines that
explicitly track all recent versions of each record in addition to
the current version. Multiversion storage engines allow read-only
queries to be executed without acquiring any locks, reducing over-
all contention and total concurrency-control overhead at the cost
of increased memory usage. When running in this mode, Calvin’s
checkpointing scheme takes the form of an ordinary “SELECT *”
query over all records, where the query’s result is logged to a file
on disk rather than returned to a client.

 0

 100000

 200000

 300000

 400000

 500000

 0 10 20 30 40 50 60 70 80 90 100

to
ta

l t
hr

ou
gh

pu
t (

tx
ns

/s
ec

)

number of machines

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80 90 100pe
r-

no
de

 th
ro

ug
hp

ut
 (

tx
ns

/s
ec

)

number of machines

Figure 4: Total and per-node TPC-C (100% New Order)
throughput, varying deployment size.

6. PERFORMANCE AND SCALABILITY
To investigate Calvin’s performance and scalability characteris-

tics under a variety of conditions, we ran a number of experiments
using two benchmarks: the TPC-C benchmark and a Microbench-
mark we created in order to have more control over how bench-
mark parameters are varied. Except where otherwise noted, all ex-
periments were run on Amazon EC2 using High-CPU/Extra-Large
instances, which promise 7GB of memory and 20 EC2 Compute
Units—8 virtual cores with 2.5 EC2 Compute Units each4.

6.1 TPC-C benchmark
The TPC-C benchmark consists of several classes of transac-

tions, but the bulk of the workload—including almost all distributed
transactions that require high isolation—is made up by the New Or-
der transaction, which simulates a customer placing an order on an
eCommerce application. Since the focus of our experiments are
on distributed transactions, we limited our TPC-C implementation
to only New Order transactions. We would expect, however, to
achieve similar performance and scalability results if we were to
run the complete TPC-C benchmark.

Figure 4 shows total and per-machine throughput (TPC-C New
Order transactions executed per second) as a function of the number
of Calvin nodes, each of which stores a database partition contain-
ing 10 TPC-C warehouses. To fully investigate Calvin’s handling
of distributed transactions, multi-warehouse New Order transac-
tions (about 10% of total New Order transactions) always access
a second warehouse that is not on the same machine as the first.

Because each partition contains 10 warehouses and New Order
updates one of 10 “districts” for some warehouse, at most 100 New
Order transactions can be executing concurrently at any machine
(since there are no more than 100 unique districts per partition,
and each New Order transaction requires an exclusive lock on a

4Each EC2 Compute Unit provides the roughly the CPU capacity
of a 1.0 to 1.2 GHz 2007 Opteron or 2007 Xeon processor.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

 0 10 20 30 40 50 60 70 80 90 100

to
ta

l t
hr

ou
gh

pu
t (

tx
ns

/s
ec

)

number of machines

10% distributed txns, contention index=0.0001
100% distributed txns, contention index=0.0001

10% distributed txns, contention index=0.01

0

5000

10000

15000

20000

25000

30000

 0 10 20 30 40 50 60 70 80 90 100

pe
r

no
de

 th
ro

ug
hp

ut
 (

tx
ns

/s
ec

)

number of machines

10% distributed txns, contention index=0.0001
100% distributed txns, contention index=0.0001

10% distributed txns, contention index=0.01

Figure 5: Total and per-node microbenchmark throughput,
varying deployment size.

district). Therefore, it is critical that the time that locks are held is
minimized, since the throughput of the system is limited by how
fast these 100 concurrent transactions complete (and release locks)
so that new transactions can grab exclusive locks on the districts
and get started.

If Calvin were to hold locks during an agreement protocol such
as two-phase commit for distributed New Order transactions, through-
put would be severely limited (a detailed comparison to a tradi-
tional system implementing two-phase commit is given in section
6.3). Without the agreement protocol, Calvin is able to achieve
around 5000 transactions per second per node in clusters larger than
10 nodes, and scales linearly. (The reason why Calvin achieves
more transactions per second per node on smaller clusters is dis-
cussed in the next section.) Our Calvin implementation is therefore
able to achieve nearly half a million TPC-C transactions per sec-
ond on a 100 node cluster. It is notable that the present TPC-C
world record holder (Oracle) runs 504,161 New Order transactions
per second, despite running on much higher end hardware than the
machines we used for our experiments [4].

6.2 Microbenchmark experiments
To more precisely examine the costs incurred when combining

distributed transactions and high contention, we implemented a Mi-
crobenchmark that shares some characteristics with TPC-C’s New
Order transaction, while reducing overall overhead and allowing

finer adjustments to the workload. Each transaction in the bench-
mark reads 10 records, performs a constraint check on the result,
and updates a counter at each record if and only if the constraint
check passed. Of the 10 records accessed by the microbenchmark
transaction, one is chosen from a small set of “hot” records5, and
the rest are chosen from a very much larger set of records—except
when a microbenchmark transaction spans two machines, in which
case it accesses one “hot” record on each machine participating
in the transaction. By varying the number of “hot” records, we
can finely tune contention. In the subsequent discussion, we use
the term contention index to refer to the fraction of the total “hot”
records that are updated when a transaction executes at a particular
machine. A contention index of 0.001 therefore means that each
transaction chooses one out of one thousand “hot” records to up-
date at each participating machine (i.e. at most 1000 transactions
could ever be executing concurrently), while a contention index of
1 would mean that every transaction touches all “hot” records (i.e.
transactions must be executed completely serially).

Figure 5 shows experiments in which we scaled the Microbench-
mark to 100 Calvin nodes under different contention settings and
with varying numbers of distributed transactions. When adding
machines under very low contention (contention index = 0.0001),
throughput per node drops to a stable amount by around 10 ma-
chines and then stays constant, scaling linearly to many nodes. Un-
der higher contention (contention index = 0.01, which is similar
to TPC-C’s contention level), we see a longer, more gradual per-
node throughput degradation as machines are added, more slowly
approaching a stable amount.

Multiple factors contribute to the shape of this scalability curve
in Calvin. In all cases, the sharp drop-off between one machine
and two machines is a result of the CPU cost of additional work
that must be performed for every multipartition transaction:

• Serializing and deserializing remote read results.

• Additional context switching between transactions waiting to
receive remote read results.

• Setting up, executing, and cleaning up after the transaction
at all participating machines, even though it is counted only
once in total throughput.

After this initial drop-off, the reason for further decline as more
nodes are added—even when both the contention and the number
of machines participating in any distributed transaction are held
constant—is quite subtle. Suppose, under a high contention work-
load, that machine A starts executing a distributed transaction that
requires a remote read from machine B, but B hasn’t gotten to that
transaction yet (B may still be working on earlier transactions in
the sequence, and it can not start working on the transaction until
locks have been acquired for all previous transactions in the se-
quence). Machine A may be able to begin executing some other
non-conflicting transactions, but soon it will simply have to wait for
B to catch up before it can commit the pending distributed transac-
tion and execute subsequent conflicting transactions. By this mech-
anism, there is a limit to how far ahead of or behind the pack any
particular machine can get. The higher the contention, the tighter
this limit. As machines are added, two things happen:

• Slow machines. Not all EC2 instances yield equivalent per-
formance, and sometimes an EC2 user gets stuck with a slow

5Note that this is a different use of the term “hot” than that used in
the discussion of caching in our earlier discussion of memory- vs.
disk-based storage engines.

instance. Since the experimental results shown in Figure 5
were obtained using the same EC2 instances for all three
lines and all three lines show a sudden drop between 6 and 8
machines, it is clear that a slightly slow machine was added
when we went from 6 nodes to 8 nodes.

• Execution progress skew. Every machine occasionally gets
slightly ahead of or behind others due to many factors, such
as OS thread scheduling, variable network latencies, and ran-
dom variations in contention between sequences of transac-
tions. The more machines there are, the more likely at any
given time there will be at least one that is slightly behind for
some reason.

The sensitivity of overall system throughput to execution progress
skew is strongly dependent on two factors:

• Number of machines. The fewer machines there are in the
cluster, the more each additional machine will increase skew.
For example, suppose each of n machines spends some frac-
tion k of the time contributing to execution progress skew
(i.e. falling behind the pack). Then at each instant there
would be a 1− (1− k)n chance that at least one machine is
slowing the system down. As n grows, this probability ap-
proaches 1, and each additional machine has less and less of
a skewing effect.

• Level of contention. The higher the contention rate, the
more likely each machine’s random slowdowns will be to
cause other machines to have to slow their execution as well.
Under low contention (contention index = 0.0001), we see
per-node throughput decline sharply only when adding the
first few machines, then flatten out at around 10 nodes, since
the diminishing increases in execution progress skew have
relatively little effect on total throughput. Under higher con-
tention (contention index = 0.01), we see an even sharper ini-
tial drop, and then it takes many more machines being added
before the curve begins to flatten, since even small incremen-
tal increases in the level of execution progress skew can have
a significant effect on throughput.

6.3 Handling high contention
Most real-world workloads have low contention most of the time,

but the appearance of small numbers of extremely hot data items is
not infrequent. We therefore experimented with Calvin under the
kind of workload that we believe is the primary reason that so few
practical systems attempt to support distributed transactions: com-
bining many multipartition transactions with very high contention.
In this experiment we therefore do not focus on the entirety of a
realistic workload, but instead we consider only the subset of a
workload consisting of high-contention multipartition transactions.
Other transactions can still conflict with these high-conflict transac-
tions (on records besides those that are very hot), so the throughput
of this subset of an (otherwise easily scalable) workload may be
tightly coupled to overall system throughput.

Figure 6 shows the factor by which 4-node and 8-node Calvin
systems are slowed down (compared to running a perfectly parti-
tionable, low-contention version of the same workload) while run-
ning 100% multipartition transactions, depending on contention in-
dex. Recall that contention index is the fraction of the total set of
hot records locked by each transaction, so a contention index of
0.01 means that up to 100 transactions can execute concurrently,
while a contention index of 1 forces transactions to run completely
serially.

 0

 50

 100

 150

 200

 250

 0.001 0.01 0.1 1

sl
ow

do
w

n
(v

s.
 n

o
di

st
rib

ut
ed

 tx
ns

)

contention factor

Calvin, 4 nodes
Calvin, 8 nodes

System R*-style system w/ 2PC

Figure 6: Slowdown for 100% multipartition workloads, vary-
ing contention index.

Because modern implementations of distributed systems do not
implement System R*-style distributed transactions with two-phase
commit, and comparisons with any earlier-generation systems would
not be an apples-to-apples comparison, we include for compari-
son a simple model of the contention-based slowdown that would
be incurred by this type of system. We assume that in the non-
multipartition, low-contention case this system would get similar
throughput to Calvin (about 27000 microbenchmark transactions
per second per machine). To compute the slowdown caused by
multipartition transactions, we consider the extended contention
footprint caused by two-phase commit. Since given a contention
index C at most 1/C transactions can execute concurrently, a sys-
tem running 2PC at commit time can never execute more than

1
C∗D2PC

total transactions per second where where D2PC is the duration of
the two-phase commit protocol.

Typical round-trip ping latency between nodes in the same EC2
data center is around 1 ms, but including delays of message mul-
tiplexing, serialization/deserialization, and thread scheduling, one-
way latencies in our system between transaction execution threads
are almost never less than 2 ms, and usually longer. In our model of
a system similar in overhead to Calvin, we therefore expect to locks
to be held for approximately 8ms on each distributed transaction.
Note that this model is somewhat naïve since the contention foot-
print of a transaction is assumed to include nothing but the latency
of two-phase commit. Other factors that contribute to Calvin’s ac-
tual slowdown are completely ignored in this model, including:

• CPU costs of multipartition transactions

• Latency of reaching a local commit/abort decision before
starting 2PC (which may require additional remote reads in
a real system)

• Execution progress skew (all nodes are assumed to begin ex-
ecution of each transaction and the ensuing 2PC in perfect
lockstep)

Therefore, the model does not establish a specific comparison point
for our system, but a strong lower bound on the slowdown for such
a system. In an actual System R*-style system, one might expect

to see considerably more slowdown than predicted by this model in
the context of high-contention distributed transactions.

There are two very notable features in the results shown in Figure
6. First, under low contention, Calvin gets the same approximately
5x to 7x slowdown—from 27000 to about 5000 (4 nodes) or 4000
(8 nodes) transactions per second—as seen in the previous exper-
iment going from 1 machine to 4 or 8. For all contention levels
examined in this experiment, the difference in throughput between
the 4-node and 8-node cases is a result of increased skew in work-
load execution progress between the different nodes; as one would
predict, the detrimental effect of this skew to throughput is signifi-
cantly worse at higher contention levels.

Second, as expected, at very high contentions, even though we
ignore a number of the expected costs, the model of the system run-
ning two-phase commit incurs significantly more slowdown than
Calvin. This is evidence that (a) the distributed commit protocol
is a major factor behind the decision for most modern distributed
system not to support ACID transactions and (b) Calvin alleviates
this issue.

7. RELATED WORK
One key contribution of the Calvin architecture is that it fea-

tures active replication, where the same transactional input is sent
to multiple replicas, each of which processes transactional input in
a deterministic manner so as to avoid diverging. There have been
several related attempts to actively replicate database systems in
this way. Pacitti et al. [23], Whitney et al. [29], Stonebraker et
al.[27], and Jones et al. [16] all propose performing transactional
processing in a distributed database without concurrency control
by executing transactions serially—and therefore equivalently to
a known serial order—in a single thread on each node (where a
node in some cases can be a single CPU core in a multi-core server
[27]). By executing transactions serially, nondeterminism due to
thread scheduling of concurrent transactions is eliminated, and ac-
tive replication is easier to achieve. However, serializing transac-
tions can limit transactional throughput, since if a transaction stalls
(e.g. for a network read), other transactions are unable to take over.
Calvin enables concurrent transactions while still ensuring logical
equivalence to a given serial order. Furthermore, although these
systems choose a serial order in advance of execution, adherence to
that order is not as strictly enforced as in Calvin (e.g. transactions
can be aborted due to hardware failures), so two-phase commit is
still required for distributed transactions.

Each of the above works implements a system component anal-
ogous to Calvin’s sequencing layer that chooses the serial order.
Calvin’s sequencer design most closely resembles the H-Store de-
sign [27], in which clients can submit transactions to any node
in the cluster. Synchronization of inputs between replicas differs,
however, in that Calvin can use either asynchronous (log-shipping)
replication or Paxos-based, strongly consistent synchronous repli-
cation, while H-Store replicates inputs by stalling transactions by
the expected network latency of sending a transaction to a replica,
and then using a deterministic scheme for transaction ordering as-
suming all transactions arrive from all replicas within this time win-
dow.

Bernstein et al.’s Hyder [8] bears conceptual similarities to Calvin
despite extremely different architectural designs and approaches
to achieving high scalability. In Hyder, transactions submit their
“intentions”—buffered writes—after executing based on a view of
the database obtained from a recent snapshot. The intentions are
composed into a global order and processed by a deterministic
“meld” function, which determines what transactions to commit
and what transactions must be aborted (for example due to a data

update that invalidated the transaction’s view of the database af-
ter the transaction executed, but before the meld function validated
the transaction). Hyder’s globally-ordered log of things-to-attempt-
deterministically is comprised of the after-effects of transactions,
whereas the analogous log in Calvin contains unexecuted transac-
tion requests. However, Hyder’s optimistic scheme is conceptually
very similar to the Optimistic Lock Location Prediction scheme
(OLLP) discussed in section 3.2.1. OLLP’s “reconnaissance” queries
determine the transactional inputs, which are deterministically val-
idated at “actual” transaction execution time in the same optimistic
manner that Hyder’s meld function deterministically validates trans-
actional results.

Lomet et al. propose “unbundling” transaction processing sys-
tem components in a cloud setting in a manner similar to Calvin’s
separation of different stages of the pipeline into different subsys-
tems [21]. Although Lomet et al.’s concurrency control and replica-
tion mechanisms do not resemble Calvin’s, both systems separate
the “Transactional Component” (scheduling layer) from the “Data
Component” (storage layer) to allow arbitrary storage backends to
serve the transaction processing system depending on the needs of
the application. Calvin also takes the unbundling one step further,
separating out the sequencing layer, which handles data replication.

Google’s Megastore [7] and IBM’s Spinnaker [25] recently pio-
neered the use of the Paxos algorithm [18, 19] for strongly consis-
tent data replication in modern, high-volume transactional databases
(although Paxos and its variants are widely used to reach synchronous
agreement in countless other applications). Like Calvin, Spinnaker
uses ZooKeeper [15] for its Paxos implementation. Since they are
not deterministic systems, both Megastore and Spinnaker must use
Paxos to replicate transactional effects, whereas Calvin only has to
use Paxos to replicate transactional inputs.

8. FUTURE WORK
In its current implementation, Calvin handles hardware failures

by recovering the crashed machine from its most recent complete
snapshot and then replaying all more recent transactions. Since
other nodes within the same replica may depend on remote reads
from the afflicted machine, however, throughput in the rest of the
replica is apt to slow or halt until recovery is complete.

In the future we intend to develop a more seamless failover sys-
tem. For example, failures could be made completely invisible with
the following simple technique. The set of all replicas can be di-
vided into replication subgroups—pairs or trios of replicas located
near one another, generally on the same local area network. Out-
going messages related to multipartition transaction execution at a
database node A in one replica are sent not only to the intended
node B within the same replica, but also to every replica of node B
within the replication subgroup—just in case one of the subgroup’s
node A replicas has failed. This redundancy technique comes with
various tradeoffs and would not be implemented if inter-partition
network communication threatened to be a bottleneck (especially
since active replication in deterministic systems already provides
high availability), but it illustrates a way of achieving a highly
“hiccup-free” system in the face of failures.

A good compromise between these two approaches might be to
integrate a component that monitor each node’s status, could de-
tect failures and carefully orchestrate quicker failover for a replica
with a failed node by directing other replicas of the afflicted ma-
chine to forward their remote read messages appropriately. Such a
component would also be well-situated to oversee load-balancing
of read-only queries, dynamic data migration and repartitioning,
and load monitoring.

9. CONCLUSIONS
This paper presents Calvin, a transaction processing and replica-

tion layer designed to transform a generic, non-transactional, un-
replicated data store into a fully ACID, consistently replicated dis-
tributed database system. Calvin supports horizontal scalability of
the database and unconstrained ACID-compliant distributed trans-
actions while supporting both asynchronous and Paxos-based syn-
chronous replication, both within a single data center and across
geographically separated data centers. By using a deterministic
framework, Calvin is able to eliminate distributed commit proto-
cols, the largest scalability impediment of modern distributed sys-
tems. Consequently, Calvin scales near-linearly and has achieved
near-world record transactional throughput on a simplified TPC-C
benchmark.

10. ACKNOWLEDGMENTS
This work was sponsored by the NSF under grants IIS-0845643

and IIS-0844480. Kun Ren is supported by National Natural Sci-
ence Foundation of China under Grant 61033007 and National 973
project under Grant 2012CB316203. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation (NSF) or the National Natural Science
foundation of China.

11. REFERENCES
[1] Amazon simpledb. http://aws.amazon.com/simpledb/.
[2] Project voldemort. http://project-voldemort.com/.
[3] Riak. http://wiki.basho.com/riak.html.
[4] Transaction processing performance council.

http://www.tpc.org/tpcc/.
[5] D. Abadi. Replication and the latency-consistency tradeoff.

http://dbmsmusings.blogspot.com/2011/12/replication-and-
latency-consistency.html.

[6] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The
Definitive Guide. 2010.

[7] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In CIDR, 2011.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a
transactional record manager for shared flash. In CIDR,
2011.

[9] D. Campbell, G. Kakivaya, and N. Ellis. Extreme scale with
full sql language support in microsoft sql azure. In SIGMOD,
2010.

[10] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers,
J. Gehrke, and W. White. Fast checkpoint recovery
algorithms for frequently consistent applications. In
SIGMOD, 2011.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured
data. In OSDI, 2006.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
VLDB, 2008.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. SIGOPS, 2007.

[14] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 2002.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In In
USENIX Annual Technical Conference.

[16] E. P. C. Jones, D. J. Abadi, and S. R. Madden. Concurrency
control for partitioned databases. In SIGMOD, 2010.

[17] A. Lakshman and P. Malik. Cassandra: structured storage
system on a p2p network. In PODC, 2009.

[18] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[19] L. Lamport. Paxos made simple. ACM SIGACT News, 2001.
[20] D. Lomet and M. F. Mokbel. Locking key ranges with

unbundled transaction services. VLDB, 2009.
[21] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling.

Unbundling transaction services in the cloud. In CIDR, 2009.
[22] C. Mohan, B. G. Lindsay, and R. Obermarck. Transaction

management in the r* distributed database management
system. ACM Trans. Database Syst., 1986.

[23] E. Pacitti, M. T. Ozsu, and C. Coulon. Preventive
multi-master replication in a cluster of autonomous
databases. In Euro-Par, 2003.

[24] E. Plugge, T. Hawkins, and P. Membrey. The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and
Desktop Computing. 2010.

[25] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build a
scalable, consistent, and highly available datastore. VLDB,
2011.

[26] M. Seltzer. Oracle nosql database. In Oracle White Paper,
2011.

[27] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era
(it’s time for a complete rewrite). In VLDB, 2007.

[28] A. Thomson and D. J. Abadi. The case for determinism in
database systems. VLDB, 2010.

[29] A. Whitney, D. Shasha, and S. Apter. High volume
transaction processing without concurrency control, two
phase commit, SQL or C++. In HPTS, 1997.

