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Abstract
Existing file systems, even the most scalable systems

that store hundreds of petabytes (or more) of data across
thousands of machines, store file metadata on a single
server or via a shared-disk architecture in order to ensure
consistency and validity of the metadata.

This paper describes a completely different approach
for the design of replicated, scalable file systems, which
leverages a high-throughput distributed database system
for metadata management. This results in improved
scalability of the metadata layer of the file system, as
file metadata can be partitioned (and replicated) across
a (shared-nothing) cluster of independent servers, and
operations on file metadata transformed into distributed
transactions.

In addition, our file system is able to support stan-
dard file system semantics—including fully linearizable
random writes by concurrent users to arbitrary byte off-
sets within the same file—across wide geographic areas.
Such high performance, fully consistent, geographically
distributed files systems do not exist today.

We demonstrate that our approach to file system de-
sign can scale to billions of files and handle hundreds of
thousands of updates and millions of reads per second—
while maintaining consistently low read latencies. Fur-
thermore, such a deployment can survive entire datacen-
ter outages with only small performance hiccups and no
loss of availability.

1 Introduction

Today’s web-scale applications store and process increas-
ingly vast amounts of data, imposing high scalability re-
quirements on cloud data storage infrastructure.

The most common mechanism for maximizing avail-
ability of data storage infrastructure is to replicate all data

†This work was done while the author was at Yale.

storage across many commodity machines within a data-
center, and then to keep hot backups of all critical system
components on standby, ready to take over in case the
main component fails.

However, natural disasters, configuration errors,
hunters, and squirrels sometimes render entire datacen-
ters unavailable for spans of time ranging from minutes to
days [13, 15]. For applications with stringent availability
requirements, replication across multiple geographically
separated datacenters is therefore essential.

For certain classes of data storage infrastructure, sig-
nificant strides have been made in providing vastly scal-
able solutions that also achieve high availability via WAN
replication. For example, replicated block stores, where
blocks are opaque, immutable, and entirely independent
objects are fairly easy to scale and replicate across data-
centers since they generally do not need to support multi-
block operations or any kind of locality of access span-
ning multiple blocks. NoSQL systems such as Cassan-
dra [12], Dynamo [8], and Riak [2] have also managed
to achieve both scale and geographical replication, albeit
through reduced replica consistency guarantees. Even
some database systems, such as the F1 system [19] which
Google built on top of Spanner [7] have managed to scal-
ably process SQL queries and ACID transactions while
replicating across datacenters.

Unfortunately, file systems have not achieved the same
level of scalable, cross-datacenter implementation. While
many distributed file systems have been developed to
scale to clusters of thousands of machines, these systems
do not provide WAN replication in a manner that allows
continuous operation in the event of a full datacenter fail-
ure due to the difficulties of providing expected file sys-
tem semantics and tools (linearizable operations, hierar-
chical access control, standard command-line tools, etc.)
across geographical distances.
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In addition to lacking support for geographical repli-
cation, modern file systems—even those known for
scalability—utilize a fundamentally unscalable design
for metadata management in order to avoid high syn-
chronization costs necessary to maintain traditional file
system semantics for file and directory metadata, includ-
ing hierarchical access control and linearizable writes.
Hence, while they are able to store hundreds of petabytes
of data (or more) by leveraging replicated block stores
to store the contents of files, they rely on an assumption
that the average file size is very large, while the number
of unique files and directories are comparatively small.
They therefore run into problems handling large numbers
of small files, as the system becomes bottlenecked by the
metadata management layer [20, 27].

In particular, most modern distributed file systems use
one of two synchronization mechanisms to manage meta-
data access:

• A special machine dedicated to storing and managing
all metadata. GFS, HDFS, Lustre, Gluster, Ursa Mi-
nor, Farsite, and XtreemFS are examples of file sys-
tems that take this approach [10, 21, 18, 1, 3, 4, 11].
The scalability of such systems are clearly fundamen-
tally bottlenecked by the metadata management layer.

• A shared-disk abstraction that coordinates all concur-
rent access. File systems that rely on shared disk
for synchronization include GPFS, PanFS, and xFS
[17, 26, 22]. Such systems generally replicate data
across multiple spindles for fault tolerance. However,
these typically rely on extremely low (RAID-local or
rack-local) synchronization latencies between repli-
cated disks in order to efficiently expose a unified disk
address space. Concurrent disk access by multiple
clients are synchronized by locking, introducing per-
formance limitations for hot files [17]. Introducing
WAN latency synchronization times into lock-hold
durations would significantly increase the severity of
these limitations.

In this paper, we describe the design of a distributed
file system that is substantially different from any of
the above-cited file systems. Our system is most distin-
guished by the metadata management layer which hor-
izontally partitions and replicates file system metadata
across a shared-nothing cluster of servers, spanning mul-
tiple geographic regions. File system operations that po-
tentially span multiple files or directories are transformed
into distributed transactions, and processed via a transac-
tion scheduling and replication management layer of an
extensible distributed database system in order to ensure
proper coordination of linearizable updates.

Due to the uniqueness of our design, our system, which

we call CalvinFS, has a different set of advantages and
disadvantages relative to traditional distributed file sys-
tems. In particular, our system can handle a nearly un-
limited number of files, and can support fully lineariz-
able random writes by concurrent users to arbitrary byte
offsets within a file that is consistently replicated across
wide geographic areas—neither of which is possible in
the above-cited file system designs. However, our system
is optimized for operations on single files. Multiple-file
operations require distributed transactions, and while our
underlying database system can handle such operations
at high throughput, the latency of such operations tend to
be larger than in traditional distributed file systems.

2 Background: Calvin

As described above, we horizontally partition metadata
for our file system across multiple nodes, and file oper-
ations that need to atomically edit multiple metadata el-
ements are run as distributed transactions. We extended
the Calvin database system to implement our metadata
layer, since Calvin has proven to be able to achieve con-
sistent geo-replicated and linear distributed transaction
scalability to hundreds of thousands of transactions per
second across hundreds of machines per replica, even un-
der relatively high levels of lock contention [24]. The
remainder of this section will provide a brief overview of
Calvin’s architecture and execution protocol.

A Calvin deployment consists of three main compo-
nents: a transaction request log, a storage layer, and a
scheduling layer. Each of these components provides a
clean interface and implementations that can be swapped
in and out. The log stores a global totally-ordered se-
quence of transaction requests. Each transaction request
in the log represents a read-modify-write operation on the
contents of the storage layer; the particular implementa-
tion of the storage layer plus any arguments logged with
the request define the semantics of the operation. The
scheduling layer has the job of orchestrates the (concur-
rent) execution of logged transaction requests in a man-
ner that is equivalent to a deterministic serial execution in
exactly the order they appear in the log.

For each of these three components, we describe here
the specific implementation of the component that we
used in the metadata subsystem of CalvinFS.

Log

The log implementation we used consists of a large col-
lection of “front-end” servers, an asynchronously- repli-
cated distributed block store, and a small group of “meta-
log” servers. Clients append requests to the log by send-
ing them to a front-end server, which batches it with other
incoming requests and writes the batch to the distributed
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block store. Once it is sufficiently replicated in the block
store (2 out of 3 replicas have acked the write, say), the
front-end server sends the batch’s unique block id to a
meta- log server. The meta-log servers, which are typ-
ically distributed across multiple datacenters, maintain
a Paxos-replicated “meta-log” containing a sequence of
block ids referencing request batches. The state of the
log at any time is considered to be the concatenation of
batches in the order specified by the “meta- log”.

Storage Layer The storage layer encapsulates all knowl-
edge about physical datastore organization and actual
transaction semantics. It consists of a collection of “stor-
age nodes”, each of which runs on a different machine
in the cluster and maintains a shard of the data. Valid
storage layer implementations must include (a) read and
write primitives that execute locally at a single node, and
(b) a placement manager that determines at which storage
nodes these primitives must be run with given input argu-
ments. Compound transaction types may also be defined
that combine read/write primitives and arbitrary deter-
ministic application logic. Each transaction request that
appears in the log corresponds to a primitive operation or
compound transaction. Primitives and transactions may
return results to clients upon completion, but their behav-
ior may not depend any inputs other than arguments that
are logged with the request and the current state of the
underlying data (as determined by read primitives) at ex-
ecution time.

The storage layer for CalvinFS metadata consists of a
multiversion key-value store at each storage node, plus
a simple consistent hashing mechanism for determin-
ing data placement. The compound transactions imple-
mented by the storage layer are described in Section 5.1.

Scheduler

Each storage node has a local scheduling layer compo-
nent (called a “scheduler”) associated with it which drives
local transaction execution.

The scheduling layer takes an unusual approach to pes-
simistic concurrency control. Traditional database sys-
tems typically schedule concurrent transaction execution
by checking the safety of each read and write performed
by a transaction immediately before that operation oc-
curs, pausing execution as needed (e.g., until an earlier
transaction releases an already-held lock on the target
record). Each Calvin scheduler, however, examines a
transaction before it begins executing at all, decides when
it is safe to execute the whole transaction based on its
read-write sets (which can be discovered automatically
or annotated by the client), and then hands the transac-
tion request to the associated storage node, which is free
to execute it with no additional oversight.

Calvin’s scheduler implementation uses a protocol
called deterministic locking, which resembles strict two-
phase locking, except that transactions are required to re-
quest all locks that they will need in their lifetimes atomi-
cally, and in the relative order in which they appear in the
log. This protocol is deadlock- free and serializable, and
furthermore ensures that execution is equivalent not only
to some serial order, but to a deterministic serial execu-
tion in log order.

All lock management is performed locally by a sched-
uler, and schedulers track lock requests only for data that
resides at the associated storage node (according to the
placement manager). When transactions access records
spanning multiple machines, Calvin forwards the entire

transaction request to all schedulers guarding relevant
storage nodes. At each participating scheduler, once the
transaction has locked all local records, the transaction
proceeds to execute using the following protocol:

1. Perform all local reads. Read all records in the
transaction’s read-set that are stored at the local stor-
age node.

2. Serve remote reads. Forward each local read result
from step 1 to every other participant.

3. Collect remote read results. Wait to receive all mes-
sages sent by other participants in step 21.

4. Execute transaction to completion. Once all read
results have been received, execute the transaction
to completion, applying writes that affect records in
the local storage node, and silently dropping writes to
data that is not stored locally (since these writes will
be applied by other participants).

Upon completion, the transaction’s locks are released
and the results are sent to the client that originally sub-
mitted the transaction request.

A key characteristic of the above protocol is the lack of
a distributed commit protocol for distributed transactions.
This is a result of the deterministic nature of process-
ing transactions—any failed node can recover its state by
loading a recent datat checkpoint and then replaying the
log deterministically. Therefore, double checking that no
node failed over the course of processing the transaction
is unnecessary. The lack of distributed commit protocol,
combined with the deadlock-free property of the schedul-
ing algorithm greatly improves the scalability of the sys-
tem and reduces latency.

1If all read results are not received within a specified timeframe,
send additional requests to participants to get the results. If there is
still no answer, also send requests to other replicas of the unresponsive
participant.
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2.1 OLLP

Certain file system operations—notably recursive moves,
renames, deletes, and permission changes on non-empty
directories—were implemented by bundling together
many built-in transactions into a single compound trans-
action. It was not always possible to annotate these com-
pound transaction requests with their full read- and write-
sets (as required by Calvin’s deterministic scheduler) at
the time the recursive operation was initiated. In these
cases, we made use of Calvin’s Optimistic Lock Loca-
tion Prediction (OLLP) mechanism [24] as we describe
further in Section 5.2.

With OLLP, an additional step is added to the trans-
action execution pipeline: all transaction requests go
through an Analyze phase before being appended to the
log. The purpose of the Analyze phase is to determine
the read- and write-sets of the transaction. Stores can im-
plement custom Analyze logic for classes of transac-
tions whose read- and write-sets can be statically com-
puted from the arguments supplied by the client, or the
Analyze function can simply do a “dry run” of the
transaction execution, but not apply any writes. In gen-
eral, this is done at no isolation, and only at a single
replica, to make it as inexpensive as possible.

Once the Analyze phase is complete, the transac-
tion is appended to the log, and it can then be scheduled
and executed to completion. However, it is possible for
a transaction’s read- and write-sets to grow between the
Analyze phase and the actual execution (called the Run
phase) due to changes in the contents of the datastore.
In this case, the worker executing the Run phase notices
that the transaction is attempting to read or write a record
that did not appear in its read- or write-set (and which
was therefore not locked by the scheduler and cannot be
safely accessed). It then aborts the transaction and re-
turns an updated read-/write-set annotation to the client,
who may then restart the transaction, this time skipping
Analyze phase.

3 CalvinFS Architecture

CalvinFS was designed for deployments in which file
data and metadata are both (a) replicated with strong con-
sistency across geographically separated datacenters and
(b) partitioned across many commodity servers within
each datacenter. CalvinFS therefore simultaneously ad-
dresses the availability and scalability challenges de-
scribed above—while providing standard, consistent file
system semantics.

We engineered CalvinFS around certain additional
goals and design principles:

Main-memory metadata store. Current metadata en-
tries for all files and directories must be stored in main-
memory across a shared-nothing cluster of machines.

Potentially many small files. The system must handle
billions distinct files.

Scalable read/write throughput. Read and write
throughput capacity must scale near-linearly and must
not depend on replication configuration.

Tolerating slow writes. High update latencies that ac-
commodate WAN round trips for the purposes of consis-
tent replication are acceptable.

Linearizable and snapshot reads. When reading a file,
clients must be able to specify one of three modes, each
with different latency costs:

• Full linearizable read. If a client requires fully lin-
earizable read semantics when reading a file, the read
may be required to go through the same log-ordering
process as any update operation.

• Very recent snapshot read. For many clients, very
low-latency reads of extremely recent file system
snapshots are preferable to higher-latency lineariz-
able reads. We specifically optimize CalvinFS for
this type of read operation, allowing for up to 400ms
of staleness. (Note that this only applies to read-
only operations. Read-modify-write operations on
metadata—such as permissions checks before writing
to a file—are always linearizable.)

• Client-specified snapshot read. Clients can also
specify explicit version/timestamp bounds on snap-
shot reads. For example, a client may choose to limit
staleness to make sure that a recent write is reflected
in a new read, even if this requires blocking until all
earlier writes are applied at the replica at which the
read is occurring. Or a client may choose to per-
form snapshot read operations at a historical times-
tamp for the purposes of auditing, restoring a backup,
or other historical analyses. Since only current meta-
data entries for each file/directory are pinned in mem-
ory at all times, it is acceptable for historical snap-
shot reads to incur additional latency when digging
up now-defunct versions of metadata entries.

Hash-partitioned metadata. Hash partitioning of file
metadata based on full file path is preferable to range-
or subtree-partitioning, because it typically provides bet-
ter load balancing and simplifies data placement track-
ing. Nonetheless, identifying the contents of a directory
should only require reading from a single metadata shard.

Optimize for single-file operations. The system should
be optimized for operations that create, delete, modify, or
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read one file or directory at a time2. Recursive metadata
operations such as directory copies, moves, deletes, and
owner/permission changes must be fully supported (and
should not require data block copying) but the metadata
subsystem need not be optimized for such operations.

CalvinFS stores file contents in a non-transactional dis-
tributed block store analogous to the collection of chunk
servers that make up a GFS deployment. We use our ex-
tension of Calvin described above to store all metadata,
track directory namespaces, and map logical files to the
blocks that store their contents.

Both the block store and the metadata store are repli-
cated across multiple datacenters. In our evaluation, we
used three physically separate (and geographically dis-
tant) datacenters, so our discussion below assumes this
type of deployment and refers to each full system replica
as being in its own datacenter. However, the replication
mechanisms discussed here can just as easily be used in
deployments within a single physical datacenter by divid-
ing it into multiple logical datacenters.

As with GFS and HDFS, clients access a CalvinFS de-
ployment not via kernel mounting, but via a provided
client library, which provides standard file access APIs
and file utils [10, 21]. No technical shortcoming prevents
CalvinFS from being fully mountable, but implementa-
tion of this functionality remains future work.

4 The CalvinFS Block Store

Although the main focus of our design is metadata man-
agement, certain aspects of CalvinFS’s block store affect
metadata entry format and therefore warrant discussion.
Most of these decisions were made to simplify the tasks
of implementing, benchmarking, and describing the sys-
tem; other designs of scalable block stores would also
work with CalvinFS’s metadata architecture.

4.1 Variable-Size Immutable Blocks
As in many other file systems, the contents of a Calv-
inFS file are stored in a sequence of zero or more blocks.
Unlike most others, however, CalvinFS does not set a
fixed block size—blocks may be anywhere from 1 byte
to 10 megabytes. A 1-GB file may therefore legally con-
sist of anywhere from one hundred to one billion blocks,
although steps are taken to avoid the latter case.

Furthermore, blocks are completely immutable once
written. When appending data to a file, CalvinFS does
not append to the file’s final block—rather, a new block
containing the appended data (but not the original data)
is written to the block store, and the new block’s ID and
size are added to the metadata entry for the file.

2Note that this still involves many distributed transactions. For ex-
ample, creating or deleting a file also updates its parent directory.

4.2 Block Storage and Placement

Each block is assigned a globally unique ID, and is as-
signed to a block “bucket” by hashing its ID. Each bucket
is then assigned to a certain number of block servers
(analogous to GFS Chunkservers [10]) at each datacen-
ter, depending on the desired replication factor for the
system. Each block server stores its blocks in files on its
local file system.

The mapping of buckets to block servers is main-
tained in a global Paxos-replicated configuration file and
changes only when needed due to hardware failures, load
balancing, adding new machines to the cluster, and other
global configuration changes. Every CalvinFS node also
caches a copy of the bucket map. This allows any ma-
chine to quickly locate a particular block by hashing its
GUID to find the bucket, then checking the bucket map
to find what block servers store that bucket. In the event
where a configuration change causes this cached table to
return stale data, the node will fail to find the bucket at
the specified server, query the configuration manager to
update its cached table, then retry.

In the event of a machine failure, each bucket assigned
to the failed machine is reassigned to a new machine,
which copies its blocks from a non-failed server that also
stored the reassigned bucket.

To avoid excessive fragmenting, a background process
periodically scans the metadata store and compacts files
that consist of many small blocks. Once a compacted
file is asynchronously re-written to the block store using
larger blocks, the metadata is updated—as long as the file
contents haven’t changed since this compaction process
began. If that part of the file has changed, the newly writ-
ten block is discarded and the compaction process restarts
for the file.

5 CalvinFS Metadata Management

The CalvinFS metadata manager logically contains an
entry for every version (current and historical) of ev-
ery file and directory to appear in the CalvinFS deploy-
ment. The metadata store is structured as key- value store,
where each entry’s key is the absolute path of the file or
directory that it represents, and its value contains the fol-
lowing:

• Entry type. Specifies whether the entry represents a
file or a directory3.

• Permissions. CalvinFS uses a mechanism to support
POSIX hierarchical access control that avoids full file
system tree traversal when checking permissions for

3Although we see no major technical barrier to supporting linking in
CalvinFS, adding support for soft and hard links remains future work.
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an individual file by additionally storing all ances-
tor directories’ permissions (up through the / direc-
tory) values in tree- ascending order in each metadata
entry.

• Contents. For directories, this is a list of files and
sub-directories immediately contained by the direc-
tory. For files, this is a mapping of byte ranges in the
(logical) file to byte ranges within specific (physical)
blocks in the block store. For example, if a file’s con-
tents are represented by the first 100 bytes of block
X followed by the 28 bytes starting at byte offset 100
of block Y, then the contents would be represented as
[(X, 0, 100), (Y, 100, 28)]4.

To illustrate this structure, consider a directory fs

in user calvin’s home directory, which contains
the source files for, say, an academic paper. The
calvinfs-ls util (analogous to ls -lA) yields the
following output:

$ calvinfs-ls /home/calvin/fs/

drwxr-xr-x calvin users ... figures

-rw-r--r-- calvin users ... ref.bib

-rw-r--r-- calvin users ... paper.tex

The CalvinFS metadata entry for this directory would be:

KEY:

/home/calvin/fs

VALUE:

type: directory

permissions: rwxr-xr-x calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: figures ref.bib paper.tex

We see that the entry contains permissions for the di-
rectory, plus permissions for three ancestor directories:
/home/calvin, /home, and /, respectively. Since the
path (in the entry’s key) implicitly identifies these direc-
tories, they need not explicitly named in the value part of
the field.

Since permissions checks need not access ancestor
directory entries and the contents field names all
files and subdirectories contained in the directory, the
calvinfs-ls invocation above only needed to read
that one metadata entry. Note that unlike POSIX-style
ls -lA, however, the command above did not show the
sizes of each file. To output those, additional metadata
entries have to be read. For example, the metadata entry
for paper.tex looks like this:

4This particular example might come about by the file being cre-
ated containing 128 bytes in block Y, then having the first 100 bytes
overwritten with the contents of block X.

KEY:

/home/calvin/fs/paper.tex

VALUE:

type: file

permissions: rw-r--r-- calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: 0x3A28213A 0 65536

0x6339392C 0 65536

0x7363682E 0 34061

Since paper.tex is a file rather than a directory,
its contents field contains block ids and byte offset
ranges in those blocks. We see here that paper.tex
is about 161 KB in total size, and its contents are a
concatenation of byte ranges [0,65536), [0,65536), and
[0,34061) in three specified blocks in the block store.

Storing all ancestor directories’ permissions in each
metadata entry eliminates the need for distributed per-
missions checks when accessing individual files, but
comes with a tradeoff: when modifying permissions for a
nonempty directory, the new permission information has
to be atomically propagated recursively to all descendents
of the modified directory. We discuss our protocol for
handling such large recursive operations in Section 5.2.

5.1 Metadata Storage Layer

As mentioned above, the metadata management system
in CalvinFS is an instance of Calvin with a custom stor-
age layer implementation that includes compound trans-
actions as well as primitive read/write operations. It im-
plements six transaction types:

• Read(path) returns the metadata entry for speci-
fied file or directory.

• Create{File,Dir}(path) creates a new empty
file or directory. This updates the parent directory’s
entry and inserts a new entry for the created file.

• Resize(path, size) a file. If a file grows as a
result of a resize operation, all bytes past the previous
file length are by default set to 0.

• Write(path, file offset, source,

source offset, num bytes) writes a speci-
fied number of bytes to a file, starting at a specified
offset within the file. The source data written must be
a subsequence of the contents of a block in the block
store.

• Delete(path) removes a file (or an empty direc-
tory). As with the file creation operation, the parent
directory’s entry is again modified, and the file’s entry
is removed.

6
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• Edit permissions(path, permissions)

of a file or directory, which may include changing the
owner and/or group.

Each of these operation types also takes as part of its
input the user and group IDs of the caller, and performs
the appropriate POSIX-style permissions checking be-
fore applying any changes. Any POSIX-style file system
interaction can be emulated by composing of multiple of
these six built-in operations together in a single Calvin
transaction.

Three of these six operations (read, resize, write) ac-
cess only a single metadata entry. Creating or deleting a
file or directory, however, touches two metadata entries:
the newly created file/directory and its parent directory.
Changing permissions of a directory may involve many
entries, since all descendants must be updated, as ex-
plained above. Since entries are hash-partitioned across
many metadata stores on different machines, the create,
delete, and change permissions (of a non-empty direc-
tory) operations necessarily constitute distributed trans-
actions.

Other operations, such as appending to, copying, and
renaming files are constructed by bundling together mul-
tiple built-in operations to be executed atomically.

5.2 Recursive Operations on Directories

Recursive metadata operations (e.g., copying a directory,
changing directory permissions) in CalvinFS use Calvin’s
built-in OLLP mechanism. The metadata store first runs
the transaction at no isolation in Analyze mode to dis-
cover the read set without actually applying any muta-
tions. This determines the entire collection of metadata
entries that will be affected by the recursive operation by
traversing the directory tree starting at the “root” of the
operation—the metadata entry for the directory that was
passed as the argument to the procedure.

Once the full read/write set is determined, it is added
as an annotation to the transaction request, which is re-
peated in Runmode, during which the directory tree is re-
traversed from the operation to check that the read/write
set of the operation has not grown (e.g., due to a newly
inserted file in a subtree). If the read- and write-sets
have grown between the Analyze and Run steps, OLLP
(deterministically) aborts the transaction, and restarts it
again in Run mode with an appropriately updated anno-
tation.

6 The Life of an Update

To illustrate how CalvinFS’s various components work
together in a scalable, fault-tolerant manner, we present

the end-to-end process of executing a simple operation—
creating a new file and writing a string to it:

echo "import antigravity" >/home/calvin/fly.py

The first step is for the client to submit the request to a
CalvinFS front-end—a process that runs on every Calv-
inFS server and orchestrates the actual execution of client
requests, then returns the results to the client.

Write File Data

After receiving the client request, the front-end begins by
performing the write by inserting a data block into Calv-
inFS’s block store containing the data that will be written
to the file. The first step here is to obtain a new, globally
unique 64-bit block id β from a block store server. β is
hashed to identify the bucket that the block will belong to,
and the front-end then looks up in its cached configura-
tion file the set of block servers that store that bucket, and
sends a block creation request interface node now sends
a block write request (β → import antigravity)
to each of those block servers.

Once a quorum of the participating block servers (2 out
of 3 in this case) have acknowledged to the front- end that
they have created and stored the block, the next step is to
update the metadata to reflect the newly created file.

Construct Metadata Operation

Since our system does not provide a single built-in op-
eration that both creates a file and writes to it, this op-
eration is actually a compound request specifying three
mutations that should be bundled together:

• create file /home/calvin/fly.py

• resize the file to 18 bytes.

• write β : [0,18) to byte range [0,18) of the file

Once this compound transaction request (let’s call it α)
is constructed, the front-end is ready to submit it to be
applied to the metadata store.

Append Transaction Request to Log

The first step in applying metadata mutation is for the
CalvinFS front-end to append α to the log. The Calv-
inFS front-end sends the request to a Calvin log front-
end, which appends α to its current batch of log entries,
which has some globally unique id γ . When batch γ fills
up with requests (or after a specified duration), it is writ-
ten out another asynchronously replicated block store.
Again, the log front-end waits for a majority of block
servers to acknowledge its durability, and then does two
things: (a) it submits the batch id γ to be appended to
the Paxos- replicated metalog, and (b) it goes through the
batch in order, forwarding each transaction request to all
metadata shards that will participate in its execution.

7
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Apply Update to Metadata Store

Each Calvin metadata shard is constantly receiving trans-
action requests from various Calvin log front- ends—
however it receives them in a completely unspecified or-
der. Therefore, it also reads new metalog entries as they
are successfully appended, and uses these to sort the
transaction requests coming in from all of the log front-
ends, forming the precise subsequence of the log con-
taining exactly those transactions in whose execution the
shard will participate. Now, the sequencer at each meta-
data storage shard can process requests in the correct or-
der.

Our example update α reads and modifies
two metadata records: /home/calvin and /

home/calvin/fly.py. Suppose that these are
stored on shards P and Q, respectively. Note that each
metadata shard is itself replicated multiple times—once
in each datacenter in the deployment—but since no
further communication is required between replicas to
execute α , let us focus on the instantiations of P and Q

in a single datacenter (P0 and Q0 in datacenter 0, say).

Both P0 and Q0 receive request α in its entirety
and proceed to perform their parts of it. At P0,
α requests a lock on record /home/calvin from
the local scheduler; at Q0, α requests a lock on
/home/calvin/fly.py. At each machine, α only
starts executing once it has received its local locks.

Before we walk through the execution of α at P0 and
Q0, let us first review the sequence of logical steps that
the request needs to complete:

1. Check parent directory permissions. Abort trans-
action if /home/calvin does not exist or is not
writable.

2. Update parent directory metadata. If fly.py is
not contained in /home/calvin’s contents, add it.

3. Check file permissions. If the file exists and is not a
writable file, abort the transaction.

4. Create file metadata entry. If no metadata entry ex-
ists for /home/calvin/fly.py, create one.

5. Resize file metadata entry. Update the metadata en-
try to indicate a length of 18 bytes. If it was pre-
viously longer than 18 bytes, this truncates it. If it
was previously shorter (or empty), it is extended to
18 bytes, padded with zeros.

6. Update file metadata entry’s contents.
Write β : [0,18) to the byte range [0,18) of
/home/calvin/fly.py, overwriting any
previously existing contents in that range.

Note that steps 1 and 2 involve the parent directory meta-
data entry at P0, while steps 3, 4, 5, and 6 involve only

the new file’s metadata at Q0. However, steps 4 through
6 depend on the outcome of step 1 (as well as 3), so P0

and Q0 do need to coordinate in their handling of this
mutation request. The two shards therefore proceed as
follows:

P0 Q0

Check parent dir

permissions (step 1).

Send result (OK

or ABORT) to Q0.

If result was OK,

update parent dir

metadata (step 2).

Check file permissions;

abort if not OK (step 3).

Receive parent directory

permissions check

result from P0.

If received result is OK,

perform steps 4 through 6.

Both shards begin with permissions checks (step 1 for
P0 and step 3 for β ). Suppose that both checks succeed.
Now α sends an OK result message to β . β receives the
result message, and now both shards execute the remain-
der of the operation with no further coordination.

Note that we were discussing datacenter 0’s P and
Q metadata shards. Metadata shards (P1,Q1), (P2,Q2),
etc., in other datacenters independently follow these same
steps. Since each shard deterministically processes the
same request sequence from the log, metadata state re-
mains strongly consistent: import antigravity is
written to /home/calvin/fly.py identically at every
datacenter.

7 Performance Evaluation

CalvinFS is designed to address the challenges of (a)
distributing metadata management across multiple ma-
chines, and (b) wide area replication for fault tolerance.
In exploring the scalability and performance character-
istics of CalvinFS, we therefore chose experiments that
explicitly stressed the metadata subsystem to its limits.
WAN replication. All results shown here used deploy-
ments that replicated all data and metadata three ways—
across datacenters in Oregon, Virginia, and Ireland.
Many small data blocks. In order to test the perfor-
mance of CalvinFS’s metadata store (as opposed to the
more easily scalable block storage component), we fo-
cused mainly on update-heavy workloads in which 99.9%
of files were 1KB or smaller. Obviously, most real world
file systems typically deal with much larger files; how-
ever, by experimenting on smaller files we were able to
test the ability of the metadata store to handle billions
of files while keeping the cluster size affordably small
enough for our experimental budget. Obviously, larger
files would require additional horizontal scalability of the
block store; however this is not the focus of our work.

8
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We use this setup to examine CalvinFS’s memory usage,
throughput capacity, latency, and fault tolerance.

7.1 Experimental Setup
All experiments were run on EC2 High-CPU Extra-Large
instances5. Each deployment was split equally between
AWS’s US-West (Oregon), US-East (Virginia), and EU
(Ireland) regions. Block and metadata replication factors
were set to 3, and buckets, metadata shards, and Paxos
group members were placed such that each object (meta-
data entries, log blocks, data blocks, and Paxos log and
metalog entries) would be stored once in each datacenter.

Each machine served as (a) a block server (contain-
ing 30 buckets), (b) a log front-end, and (c) a metadata
shard. In addition, one randomly selected machine from
each datacenter participated in the Paxos group for the
Calvin metalog. We ran our client load generation pro-
gram on the same machines (but it did not use any knowl-
edge about data or metadata placement when generating
requests, so very few requests could be satisfied locally,
especially in large deployments).

We ran each performance measurement on deploy-
ments of seven different sizes: 3, 6, 18, 36, 75, 150,
and 300 total machines. As mentioned above, we had
a limited budget for running experiments, so we could
not exceed 300 machines. However, we were able to
store billions of files across these 300 machines by lim-
iting the file size. Our results can be translated directly
to larger clusters that have more machines and larger files
(and therefore the same total number of files to manage).
We compare our findings directly to HDFS performance
measurements published by Yahoo researchers [20].

7.2 File Counts and Memory Usage
After creating each CalvinFS deployment, we created 10
million files per machine. File sizes ranged from 10 bytes
to 1MB, with an average size of 1kB. 90% of files con-
tained only one block, and 99.9% of files had a total size
of under 1kB. Most file names (including full directory
paths) were between 25 and 50 bytes long.

We found that total memory usage for metadata was
approximately 140 bytes per metadata entry—which is
closely comparable to the per-file metadata overhead of
HDFS [28]. Unlike HDFS, however, the metadata shards
did not store an in-memory table of block placement
data, since Calvin uses a coarser-grained bucket place-
ment mechanism instead. We would therefore expect
an HDFS-like file system deployment (with ˜1 block per

5Each EC2 High-CPU Extra-Large instance contains 7 GB of mem-
ory, 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute
Units each with the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor), and 1690 GB of instance storage

file) to require approximately twice the amount of total
memory to store metadata (assuming the same level of
metadata replication). Of course, by partitioning meta-
data across machines, CalvinFS requires far less memory
per machine.

Our largest deployment—300 machines—held 3 bil-
lion files (and therefore 9 billion total metadata entries)
in a total of 1.3 TB of main memory. This large number
of files is far beyond what HDFS can handle [27].

7.3 Throughput Capacity

Next, we examined the throughput capacity (Figure 1)
and latency distributions (Figure 2) of reading files, writ-
ing to files, and creating files in CalvinFS deployments of
varying sizes. For each measurement, we created client
applications that issued requests to read files, create files,
and write to files—but with different frequencies. For ex-
periments on read throughput, 98% of all client requests
were reads, with 1% of operations being file creations
and 1% being writes to existing files. Similarly, for write
benchmarks, clients submitted 98% write requests, and
for append benchmarks, clients submitted 98% append
requests. For all workloads, clients chose which files to
read, write, and create using a Gaussian distribution.

Once key feature of CalvinFS is that throughput is to-
tally unaffected by WAN replication (and the latencies
of message passing between datacenters). This is be-
cause once a transaction is replicated to all datacenters by
the Calvin log component (which happens before request
execution begins), no further cross-datacenter communi-
cation is required to execute the transaction to comple-
tion. Therefore, we only experiment with the three dat-
acenter case of Oregon, Virginia, and Ireland for these
set of experiments—changing datacenter locations (or
even removing WAN replication entirely) has no effect
on throughput results. Latency, however, is affected by
the metalog Paxos agreement protocol across datacenters,
which we discuss in Section 7.4 below.

Read Throughput

For many analytical applications, extremely high read
throughput is extremely important, even if it comes at
the cost of occasionally poor latencies for reads of spe-
cific files. On the other hand, being able to rely on
consistent read latencies vastly simplifies the develop-
ment of distributed applications that face end-users. We
therefore performed two separate read throughput exper-
iments: one in which we fully saturated the system with
read requests, resulting in “flaky” latency, and one at only
partial load that yields reliable (99.9th percentile) latency
(Figures 1a and 1b). Because each datacenter stores a
full, consistent replica of all data and metadata, each read
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Figure 1: Total and per-machine read (a,b) and update
(c,d) throughput, and maximum per-file update through-
put (e), for WAN-replicated CalvinFS deployments.

request is routed only to the relevant machine(s) in the
same datacenter as the client.

Specifically, we observed that under very heavy load,
occasional background tasks such as LSM tree com-
pactions and garbage collection could cause a large num-
ber of concurrent read requests to stall, introducing oc-
casional latency spikes and some completely failed reads
that then had to be retried. Median and 90th percentile la-
tencies, however, were comparable to those observed for

the “partial load” experiments described below.

For our partial load experiments, we reduced the num-
ber of clients as far as necessary to completely remove
latency spikes. Typically running the system at 50% of
the maximum load accomplished this. For our largest de-
ployments, we had to reduce the load to about 45% of
maximum throughput to accomplish this 6.

Figures 1a and 1b) show that CalvinFS is able to
achieve linear scalability for read throughput, even as
millions of files are read per second. At machine count 3,
there is only one machine per datacenter, so all reads can
be satisfied locally, which yields very high throughput.
Starting with machine count 6, however, the probability
of at least one non-local access increases rapidly (already
at machine count 6 there is a 75% probability that either
the file metadata or the file data itself will be non-local).

We include in Figure 1a the upper bound of read re-
quest throughput for HDFS, as reported by Yahoo re-
searchers in 2010[20]. Specifically, this corresponds to
block location lookups by the NameNode. It was found
that the HDFS metadata store can serve no more than
126,119 block location lookups per second. Since read
requests involve more metadata operations than just a sin-
gle block location lookup—such as other metadata entry
lookups to check file existence, permissions, and block
IDs, not to mention possibly having to look up multiple
block locations if the file spans multiple blocks—this is
strictly an upper bound. We also assume here that the
metadata management layer is the only bottleneck for
reads, which in HDFS would certainly not be the case
for small deployments. It is fair to expect actual HDFS
read throughput to be considerably lower than the upper
bound plotted in Figure 1a.

Update Throughput

Next, we measured the total number of file creation and
append operations that each CalvinFS deployment could
perform (Figures 1c and 1d). Append throughput scaled
very nearly linearly with the number of machines in the
cluster, reaching about 40,000 appends per second with a
300- machine cluster.

However, file creation throughput scaled slightly less
smoothly. This is because each file creation operation is
implemented as a distributed transaction (since metadata
entries had to be modified for both the parent directory
and the newly-created file)—requiring coordination be-
tween metadata shards to complete. As more machines

6The problems of performance isolation between processes and mit-
igating tail latencies have been studied extensively, and many tech-
niques have been developed that could be applied to CalvinFS to safely
increase CPU utilization and improve performance, but these are out-
side the scope of this paper.
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are added, the likelihood increases that at any given time
at least one machine will “fall behind,” delaying other
machines’ progress involved in distributed transactions
accessing data at that node. This effect is similar to
that observed running TPC-C and other OLTP bench-
marks using the Calvin framework [24]. Despite slightly
sub-linear scaling, file creation capacity in CalvinFS still
scales very well overall—far better than alternatives that
do not scale metadata management across multiple ma-
chines.

We include in Figure 1c the observed HDFS through-
put upper bound of 5600 new blocks per second [20]. In
our benchmark, each file creation and write involved cre-
ating a block, then performing one or more other meta-
data updates. We therefore expect actual HDFS update
throughput of this type to be considerably lower than
5600 operations per second, but this figure serves as a
proven upper bound.

Concurrent Writes to Contended Files

Many distributed systems do not perform well when a
large number of clients concurrently attempt to write to
the same file—such as heavy traffic of simultaneous ap-
pends to a shared log file. The systems that provide the
best performance for this situation often forgo consistent
replication and strong linearizability guarantees to do so.

CalvinFS, however, supports high concurrent write
throughput to individual files without sacrificing lineariz-
ability. To demonstrate this, we performed an experiment
in which we chose one file for every three machines in
the full deployment (so 1 file for the 3-machine deploy-
ment and 100 files for the 300 machine deployment) and
had 100 independent clients per file repeatedly send re-
quests to either append data to that file or perform a ran-
dom write within the file. Figure 1e shows the resulting
per-file throughput. Small-cluster CalvinFS deployments
sustained rates of 250 writes or appends per second on
each file. Our largest deployments sustained 130 writes
or appends per second on each file.

7.4 Latency Measurements
Next, we examined the latency distribution for file read,
write, and file creation operations for deployments of 36
and 300 machines (Figures 2a and 2b). Latencies are
measured from when a client submits a request until the
operation is completed and it receives a final response.

Read Latencies

Our measurement of read latencies was taken under
“non-flaky” load, which is about half of maximum read
throughput. In all cases, read requests are served by the
nearest metadata shard and block server within the same
datacenter.

We broke reads down into three categories: (a) reads of
files that contain no data in the block store (this includes
ls operations on directories, since each directory’s con-
tents are listed in its metadata entry), reads of files that
contain a single block, and reads of multi-block files.

There are several interesting features to note in these
plots. First, in the 36-machine deployment, the median
latency to read a non-empty file is about 3ms and the
99th percentile latency is about 80ms, while at 300 ma-
chines, median latency is about 5 ms, and 99th percentile
latency is about 120ms. Although adding more machines
to a distributed system invariably introduces performance
variabilities, we deemed this a reasonable latency price
for nearly an order of magnitude of scaling.

Second, when reading zero-block files in the 36-
machine deployment (which has 12 machine per data-
center), about 1 read in 12 is extremely fast—less than
100 microseconds—because 1 in 12 metadata lookups
happen to occur on the same machine as the interface
node handling the client’s request, requiring no network
round trips. The same effect is visible for one 100th
of metadata-only reads in the 300-machine deployment
(which, likewise, has 100 machines per datacenter). LAN
round-trip times within a datacenter were 1 ms—about
the latency of most non-local metadata-only reads. Simi-
larly, 1-block reads generally incur 2 round trips, while
2+ block reads incur 3 or more. Because of the non-
uniform distribution of files read, around 85% of blocks
could be served directly from block servers’ OS memory
cache, without needing to go to disk; only 15% of 1-block
reads incur disk I/O costs; among reads of multi-block
files, the frequency of I/O latencies appearing is higher.

Although these benchmarks may not be very indicative
of real-world usage patterns for distributed file systems
(which would likely include many more large files, and
in some cases worse cache locality for reads), we chose
them to highlight the specific sources of latency that are
introduced by components other than the block store.
Therefore, one can know what to expect if a CalvinFS-
style metadata subsystem were coupled with an off-the-
shelf block store whose performance and scalability was
already well-documented for petabyte-scale data volumes
and much larger individual block sizes.

Update Latencies

Latencies for file creation and write/append requests are
dominated by WAN round-trip times. Creating a file typ-
ically incurs approximately two non-overlapping round
trip latencies: one for the log front-end to write its re-
quest batch out to a majority of datacenters, and one to
append the entry to the Paxos metalog.

Although we saw above that CalvinFS achieves more
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Figure 2: Latency distributions for read, write/append,
and create operations for WAN-replicated CalvinFS de-
ployments of (a) 36 machines and (b) 300 machines.

impressive throughput for writes and appends to existing
files than for file creation, the latency for writes/appends
is higher—one additional non- overlapping WAN round
trip is necessary to replicate the newly created data blocks
before requesting the metadata update.

7.5 Fault Tolerance
Since we designed CalvinFS’s WAN replication mecha-
nism with the explicit goal of high availability, we now
test our system in the presence of full datacenter fail-
ure. In our next experiment, we killed all CalvinFS
processes in the Virginia datacenter while a 36-machine
CalvinFS deployment the system was running under a
mixed read/create/write load. Specifically, we deployed
1000 clients—one third constantly reading files, one third
constantly creating new files, and one third constantly ap-
pending to files. This saturates the file system’s maxi-
mum file creation throughput capacity (which is limited
by lock contention) and represents approximately 50%
read load and 20% append load.

Figure 3 shows throughput (a) and median and 99th-
percentile latency (b) for the 30 seconds immediately pre-
ceding and following the datacenter “failure”. In order
to clearly show what effects this had on CalvinFS’s core
operation capacities, we immediately redirected all new
client requests that would have been routed to Virginia
to either Oregon or Ireland, rather than requiring clients
to wait for timeouts before resuming (which would have
“unfairly” given the system time to recover from its sud-
den involuntary reconfiguration).

We see here that total read, create, and write/append
throughput capacity is only reduced by a small amount,

Figure 3: Throughput (a) and latency (b) for the time win-
dow preceding and following a datacenter failure.

median read latency remains unchanged, and 99th-
percentile read latency only increases by about 30%. File
creation and write/append latency, however, roughly dou-
ble. The reason for this is that the non-overlapping por-
tions of WAN latencies goes from being around 100ms
(round trip between either Oregon and Virginia or Vir-
ginia and Ireland—each of which pair forms a quorum)
to nearly 200ms (round trip between Oregon and Ireland,
which now represent the only quorum). No file is at any
time unavailable for reading or writing.

In summary, we found that CalvinFS tolerated an un-
planned datacenter outage with exceptional grace.

8 Related Work

CalvinFS builds on a long history of research on the scal-
ability and reliability of distributed file systems.

We modeled certain aspects of the CalvinFS design
after GFS/HDFS. In particular, our decision to concen-
trate all metadata in the main memory of a specific meta-
data component is based on the success of this tactic in
GFS/HDFS. CalvinFS’ block store is also a simplifica-
tion of the GFS/HDFS model that uses consistent hash-
ing to simplify block metadata. Our implementation
of CalvinFS’ novel features—scalable metadata man-
agement and consistent WAN replication—was designed

12
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to illuminate a path that a GFS-/HDFS-like file system
could take towards eliminating the single metadata mas-
ter as both a scalability bottleneck and availability hazard
[10, 21, 20].

In 2009, Google released a retrospective on the scala-
bility, availability, and consistency challenges that GFS
had faced since its creation, attributing many difficul-
ties to its single-master design. The interview also de-
scribes a new distributed-master implementation of GFS
that stores metadata in Bigtable [10, 14, 6]. Since
Bigtable supports neither multi-row transactions nor syn-
chronous replication, it is unclear how (or if) this new
GFS implementation supports strongly consistent seman-
tics and linearizable file updates while maintaining high
availability—particularly in the case of machine failures
in the metadata Bigtable deployment.

The Lustre file system resembles GFS in that it uses a
single metadata server (MDS), but it does not store per-
block metadata, reducing MDS dependence in the block
creation and block-level read paths. The latest release
of Lustre allows metadata for specific directory subtrees
to be offloaded to special “secondary” MDSs for out-
ward scalability and load balancing. Lustre supports only
cluster-level data replication [18].

Tango provides an abstraction of a distributed, transac-
tional data structure backed by a replicated, flash-resident
log, and is designed for use in metadata subsystems. Like
in the CalvinFS metadata manager, a Tango deployment’s
state is uniquely determined by a single serialized log
of operation requests. Tango transactions use optimistic
concurrency control, however: they log a commit entry as
the final execution step (readers of the log are instructed
to ignore any commit entry that turns out to be preceded
by a conflicting one). To avoid high optimistic abort
rates under contention, this mechanism requires a log im-
plementation with very low append latency. Since syn-
chronous geo-replication inherently incurs high latencies,
Tango is only suited to single-datacenter deployments [5].

IBM’s GPFS distributes metadata using a shared-disk
abstraction and allows multiple machines to access it con-
currently protected by a distributed locking mechanism.
When multiple clients access the same object, however,
distributed locking mechanisms perform poorly. File sys-
tems that store metadata using shared-disk arrays depend
on low-latency network fabrics to mitigate these issues
[17].

Gluster distributes and replicates both data blocks and
file metadata entries using an elastic hashing algorithm.
However, adding replicas to a Gluster deployment signif-
icantly hinders write throughput. Furthermore, Gluster’s
implementation of copy and rename operations forces

data blocks as well as metadata to be copied between stor-
age shards, which can easily become too expensive [1].

The Ceph file system scales metadata management by
dynamically partitioning metadata by directory subtree
(and hashing “hotspot” directories across multiple meta-
data servers). Ceph is optimized for single- datacenter
deployments, however; its metadata replication mecha-
nism relies heavily on low latencies between replicas to
avoid introducing update-contention bottlenecks [25].

The Panasas File System colocates file metadata with
file data on Object-based Storage Devices (OSDs), each
of which manages (RAID-based) data replication inde-
pendently. OSDs optimize caching for high-throughput
concurrent reads. Clients cache a global mapping of file
system objects to OSDs, updates to which require global
synchronization [26].

The Ursa Minor Storage System uses subtree-
partitioning to distribute metadata but takes a different
approach to outwardly scalable metadata management:
any time an atomic operation would span multiple par-
titions, instead of using a distributed transaction, it repar-
titions the metadata data, migrating all entries that need
to be atomically updated to the same partition [3].

The Farsite file system is designed to unite a collec-
tion of “desktop” computers rather than datacenters full
of rack servers. Early versions Farsite relied on a sin-
gle metadata server, but Farsite now supports dynamic
subtree-partitioning as well, but no metadata replication
[4].

Frangipani and xFS are shared-disk distributed file sys-
tems. xFS implemented a “serverless” file system, dis-
tributing file data and metadata across a collection of
disks, using a globally replicated mapping of file system
object locations. All implementation logic is executed
by clients, using on-disk state for synchronization. Some
currently popular shared-disk-based file systems appear
to be loosely based on the xFS design [23, 22].

Panache approaches file system scalability from a dif-
ferent direction—providing scalable caching of both data
and metadata for a traditional (and less scalable) file sys-
tem. Although Panache does not provide a full replace-
ment for a file system’s metadata component, it effec-
tively removes some bottlenecks, particularly from the
read path, via partitioning and replication [9].

Like CalvinFS, Giga+ uses hash partitioning to dis-
tribute metadata for across many servers within a data-
center. However Giga+’s distributed operations are even-
tually consistent and rely on clever handling of stale
client-side state [16].
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9 Conclusions

CalvinFS deployments can scale on large clusters of com-
modity machines to store billions of files and process
hundreds of thousands of updates and millions of reads
per second—while maintaining consistently low read la-
tencies. Furthermore, CalvinFS deployments can survive
entire datacenter outages with only minor performance
consequences and no loss of availability at all.
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