
121    communications of the acm    |   july 2011  |   vol.  54  |   no.  7

contributed articles
doi:10.1145/1965724.1965751

With scalable high-performance storage 
entirely in DRAM, RAMCloud will enable  
a new breed of data-intensive applications. 
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The Case for 
RAMCloud

memories of commodity servers and 
uses hundreds or thousands of these 
servers to create a large-scale storage 
system. Because all data is in DRAM at 
all times, RAMCloud promises 100x–
1,000x lower latency than disk-based 
systems and 100x–1,000x greater 
throughput. Though individual mem-
ories are volatile, RAMCloud can use 
replication and backup techniques to 
provide data durability and availability 
equivalent to disk-based systems. 

The combination of latency and 
scale offered by RAMCloud will change 
the storage landscape in three ways: 
First, it will simplify development 
of large-scale Web applications by 
eliminating many of the scalability is-
sues that sap developer productivity 
today; it will also enable a new class 
of applications that manipulate data 
100x–1,000x more intensively than is 
possible today; and it will provide the 
scalable storage substrate needed for 
cloud computing and other data–cen-
ter applications.3 A RAMCloud cluster 
can support a single large application 
or numerous smaller applications, al-
lowing small applications to grow into 
large ones without additional complex-
ity for the developer. 

This article describes the RAM-
Cloud concept, including how it will 
enable new applications. Building a 
practical RAMCloud requires solutions 
to several interesting research prob-
lems (such as how to provide durabil-
ity for data stored in volatile DRAM and 
managing clusters with thousands of 
servers). 

For the past  four decades magnetic disks have been 
the primary storage location for online information in 
computer systems. Over that period, disk technology 
has undergone dramatic improvements while being 
harnessed by higher-level storage systems (such  
as file systems and relational databases). However,  
disk performance has not improved as quickly as  
disk capacity, and developers find it increasingly 
difficult to scale disk-based systems to meet the needs 
of large-scale Web applications. Many computer 
scientists have proposed new approaches to  
disk-based storage as a solution, and others have 
suggested replacing disks with flash memory  
devices. In contrast, we say the solution is to shift  
the primary locus of online data from disk to DRAM, 
with disk relegated to a backup/archival role. 

A new class of storage called RAMCloud will provide 
the storage substrate for many future applications. 
RAMCloud stores all of its information in the main

 key insights
 � �The Web has driven development of 

new large-scale applications that have 
effectively scaled compute power and 
storage capacity but have not scaled 
storage access rates to match.

 � �DRAM-based storage can be made 
as durable and available as disk-
based storage without giving up its 
performance advantages. 

 � �DRAM-based storage is not just faster 
than disk or flash; for I/O-intensive 
workloads it is also cheaper and more 
energy efficient. 
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RAMCloud Overview 
RAMCloud is most likely to be used 
in data centers where large numbers 
of servers are divided into two main 
categories: application servers, imple-
menting application logic (such as 
generating Web pages and enforcing 
business rules), and storage servers, 
providing longer-term shared storage 
for the application servers. Data cen-
ters typically support numerous ap-
plications, ranging from small ones 
using only a fraction of an application 

server to large ones with thousands 
of dedicated application and storage 
servers. 

RAMCloud represents a new way of 
organizing storage servers in such a 
system. Two key attributes differenti-
ate RAMCloud from other storage sys-
tems: First, all information is kept in 
DRAM at all times. RAMCloud is not a 
cache, as with memcached,18 and data 
is not stored on an I/O device, as with 
flash memory. DRAM is the permanent 
home for data, with disk used only for 

backup. Second, RAMCloud must scale 
automatically to thousands of storage 
servers; applications see a single stor-
age system independent of the actual 
number of storage servers. 

Information stored in RAMCloud 
must be as durable as if it was stored 
on disk, and failure of a single storage 
server must not be allowed to result in 
data loss or more than a few seconds of 
unavailability. Techniques for achiev-
ing this level of durability and avail-
ability are discussed later in the article. 



123    communications of the acm    |   july 2011  |   vol.  54  |   no.  7

contributed articles

Keeping all data in DRAM will al-
low RAMCloud to achieve performance 
100x to 1,000x better than today’s high-
est-performing disk-based storage sys-
tems: 

˲˲ It should be possible to achieve ac-
cess latencies of 5µs–10µs measured 
end-to-end for a process running in an 
application server to read a few hun-
dred bytes of data over the network 
from a storage server in the same data 
center. In comparison, today’s systems 
typically require 0.5ms–10ms, depend-
ing on whether data is cached in the 
server’s memory or must be fetched 
from disk; and 

˲˲ A single multi-core storage server 
should be able to service at least one 
million small read requests per sec-
ond.a In comparison, a disk-based sys-
tem running on a comparable machine 
with a few disks and a main-memory 
cache can service 1,000–10,000 re-
quests per second, depending on con-
figuration and cache hit rates.b 

These goals represent what is possi-
ble, but achieving them is by no means 
guaranteed; later, the section on re-
search issues discusses some of the ob-
stacles that must be overcome. 

Table 1 outlines a RAMCloud con-
figuration feasible today, assuming 
24GB of DRAM on each server, the 
most cost-effective configuration we 
could find; memory prices rise dra-
matically for larger memory sizes. With 
2,000 servers, the configuration offers 
48TB of storage at $65/GB. With addi-
tional servers, it should be possible to 
build RAMClouds with capacities up to 
a few hundred terabytes today. By 2020, 
assuming continued improvement in 
DRAM technology, it will be possible 
to build RAMClouds with capacities of 
1PB–10PB for $6/GB. 

RAMCloud is already practical for 

a	 For evidence that a server can handle one mil-
lion requests per second see Dobrescu et al.,12 
where a single multi-core server was able to re-
ceive and retransmit up to 20 million packets 
per second with a small amount of processing 
per packet.

b	 This calculation assumes that disks can ser-
vice approximately 100 random requests per 
second and that individual servers hold 10 
disks, resulting in total server throughput of 
1,000 requests per second if every request in-
volves disk I/O. If disk storage is supplement-
ed with DRAM-based caches on the servers, 
then a 90% cache hit rate will produce total 
throughput of 10,000 requests per second.

a variety of applications; for example, 
Table 2 estimates that customer data 
for a large-scale online retailer or air-
line could be stored in RAMCloud for 
a few hundred thousand dollars. Such 
applications are unlikely to be the first 
to use RAMCloud but illustrate that 
many applications that have histori-
cally been considered “large” are eas-
ily accommodated by RAMCloud. As 
of August 2009, all non-image data 
for Facebook occupied approximately 
260TB,15 which is probably near the up-
per limit of practicality for RAMCloud 
today. 

It is not yet practical to use RAM-
Cloud for large-scale storage of media 
like videos, photos, and songs; these 
objects make better use of disks be-
cause of their large size. However, 
RAMCloud is practical for almost all 
other online data today, and future im-
provements in DRAM technology may 
make RAMCloud attractive for media 
within a few years. 

Motivation 
The RAMCloud concept can be mo-
tivated from several different angles, 
with the most interesting that RAM-
Cloud may enable a new class of data-
intensive applications. To understand 
this potential, consider the two styles 
of applications in Figure 1. The tradi-
tional approach (Figure 1a) is for an ap-
plication to be delivered by loading its 
code, along with all of its data, into the 
main memory of a single machine. This 
allows the application to access its data 
at memory speeds, thereby enabling a 
variety of complex data manipulations 
but limits the scale of the application 
to the capacity of one machine. 

Over the past 10 years, a new ap-
proach to application delivery has 
emerged, driven by large-scale Web ap-
plications serving millions of users. In 
the Web approach (Figure 1b) the code 
and the data for an application are kept 
on separate machines in a data center. 
The application servers use a stateless 

Table 2. Estimates of total storage capacity needed for one year’s worth of customer data 
of a hypothetical online retailer and a hypothetical airline.

Online Retailer

Revenue/year: $16B

Average order size: $40

Orders/year: 400M

Data/order: 1,000B–10,000B

Order data/year: 400GB–4.0TB

RAMCloud cost: $26K–$260K

Airline Reservations

Flights/day 4,000

Passengers/flight: 150

Passenger flights/year: 220M

Data/passenger flight: 1,000B–10,000B

Passenger data/year: 220GB–2.2TB

RAMCloud cost: $14.3K–$143K

Total requirements for each application are no more than a few terabytes, which would fit in  
a modest-size RAMCloud. The last line of each table (RAMCloud cost) estimates the purchase  
cost for RAMCloud servers using data from Table 1.

Table 1. Example RAMCloud configurations using commodity server technology available 
today and technology expected by 2020.

2010 2020

# servers 2,000 4,000

Capacity/server 24GB 256GB

Total capacity 48TB 1PB

Total server cost $3.1M $6M

Cost/GB $65 $6

Total ops/sec. 2×109 4×109

Total server cost is based on list prices, does not include networking infrastructure or racks, and 
assumes a single copy of data in DRAM, as described in the section on durability and availability.  
The 2020 estimates assume the cost per server remains approximately the same, but memory  
capacity per server increases 10x (about two generations of DRAM technology).
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approach, storing only the data for the 
current request and maintaining little 
or no state between browser interac-
tions; data must be fetched from stor-
age servers for each browser request. 
This approach allows applications to 
scale to thousands of application serv-
ers and thousands of storage servers. 

Unfortunately, the large-scale ar-
chitecture of Figure 1b increases the 
latency of data access by four to five 
orders of magnitude relative to the 
single-machine architecture, increas-
ing the application’s complexity and 
limiting its functionality. For example, 
when Facebook receives an HTTP re-
quest for a Web page, the application 
server makes an average of 130 internal 
requests for data (inside the Facebook 
site) as part of generating the HTML for 
the page,15 and the requests must typi-
cally be issued sequentially. The cumu-
lative latency of these requests is one of 
the limiting factors in overall response 
time to users, so considerable develop-
er effort is expended to minimize the 
number and size of requests. Features 
requiring more requests than this are 
not feasible. Amazon has reported 
similar results, with 100–200 internal 
requests to generate HTML for each 
page.9 These limitations rule out entire 
classes of algorithms (such as those 
traversing large graphs). 

If the two architectures in Figure 
1 are compared based on how many 
distinct (randomly accessed) small ob-
jects each architecture can access per 
second, the thousands of servers in Fig-
ure 1b can support only about the same 
aggregate access rate as the single ma-
chine in Figure 1a. The “scalable” ar-
chitecture of Figure 1b has scaled total 
compute power and total storage ca-
pacity but has not significantly scaled 
total data access rate. 

The difficulty of scaling data access 
rates helps explain the recent rise in 
popularity of the MapReduce para-
digm for applications. MapReduce8 
organizes large-scale applications as a 
series of parallel stages where data is 
accessed sequentially in large blocks. 
Sequential access eliminates the laten-
cy issue and provides much higher data 
access rates; as a result, MapReduce 
has made it possible to solve many 
large-scale problems efficiently. How-
ever, its insistence on sequential data 
access makes MapReduce difficult to 
use for applications requiring random 
access to data. 

RAMCloud aims to combine the 
best of both worlds represented in Fig-
ure 1—retaining the scalability of Web 
applications while reducing data ac-
cess latency close to that of traditional 
applications. If it can, it will enable a 

new breed of data-centric applications 
that access information 100x–1,000x 
more intensively than has ever been 
possible. It is difficult to identify spe-
cific applications that will take full ad-
vantage of RAMCloud, since they are 
not feasible today, but a possible ex-
ample is an application that would en-
able massive collaboration at the level 
of crowds. Another is an online appli-
cation for statistical machine transla-
tion that must iteratively process large 
graphical language models4; in gen-
eral, RAMCloud will enable graph algo-
rithms at a scale never before possible. 
Once RAMCloud becomes available, 
many application developers will dis-
cover exciting ways to take advantage 
of the combination of scale and latency 
RAMCloud can offer. 

Scalable storage for existing appli-
cations. In addition to enabling new 
applications, RAMCloud will make it 
easier to build and scale applications 
similar to those that already exist on 
the Web. Creating large-scale Web ap-
plications is difficult today due to the 
lack of a scalable storage system. Vir-
tually all Web applications start out 
using relational databases for storage, 
but, as they grow, quickly discover that 
a single relational database cannot 
meet their throughput requirements. 
Each large site undergoes a series of 
massive revisions that introduce ad 
hoc techniques to scale its storage sys-
tem (such as partitioning data among 
multiple databases). They work for 
a while, but scalability issues return 
when the site reaches a new level of 
scale or a new feature is introduced, 
requiring yet more special-purpose 
techniques. Common lore is that every 
order-of-magnitude increase in a site’s 
traffic requires a major redesign of the 
site’s storage system. For example, as 
of August 2009, the storage system for 
Facebook included 4,000 MySQL serv-
ers. Distribution of data across the in-
stances and consistency between the 
instances must be handled explicitly 
by Facebook application code.15 Even 
so, the database servers were incapable 
of meeting Facebook’s throughput re-
quirements by themselves, so Face-
book also employed 2,000 memcached 
servers that cached recent query re-
sults in key-value stores kept in main 
memory. Unfortunately, consistency 
between the memcached and MySQL 

Figure 1. Traditional applications and scalable Web applications compared.  
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Data  
Structures

In traditional applications (a) the application’s data structures reside in memory on the same machine 
that contains application logic and user-interface code, allowing the application to access its data at 
main-memory speeds. In scalable Web applications (b) the data is stored on servers separate from 
the user interface and application logic, resulting in much higher latencies for an application to access 
its data, ranging from 0.5ms (for data cached in the storage server’s memory) to 10ms or more (for 
data that must be read from disk). 
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servers must be managed by applica-
tion software (such as flushing cached 
values explicitly when the database is 
updated), adding to application com-
plexity. 

Looking to address the scalability 
limitations of relational databases, nu-
merous new storage systems have ap-
peared in recent years. They are collec-
tively referred to as “NoSQL” because 
they omit one or more features of a full-
fledged relational database in order to 
achieve higher performance or scal-

ability in certain domains. For exam-
ple, some NoSQL systems use simpler 
data models (such as key-value stores), 
and others offer weaker forms of con-
sistency during updates; examples of 
NoSQL systems include Bigtable,5 Dy-
namo,9 and PNUTS.7 Unfortunately, 
NoSQL systems tend to be less general-
purpose than relational databases, and 
their performance is still limited by 
disk speed. 

One motivation for RAMCloud is to 
provide a general-purpose storage sys-

tem that scales far beyond existing sys-
tems, so application developers need 
not resort to specialized approaches 
(such as NoSQL systems). Ideally, RAM-
Cloud should offer a simple model that 
is easy to use for new applications and 
also provide scalable performance that 
allows applications to grow without 
constant restructuring. 

Technology trends. The final moti-
vation for RAMCloud comes from disk 
technology evolution. Disk capacity 
has increased more than 10,000-fold 
since the mid-1980s and seems likely 
to continue increasing in the future 
(see Table 3). Unfortunately, the ac-
cess rate to information on disk has 
improved much more slowly; the trans-
fer rate for large blocks has improved 
“only” 50-fold, and seek time and rota-
tional latency have improved by only a 
factor of two. 

As a result of this uneven evolution, 
the role of disks must inevitably be-
come more archival; it simply isn’t pos-
sible to frequently access information 
on disk, so frequently accessed infor-
mation must be kept in memory. Table 
3 illustrates this in two ways. First, it 
computes the capacity/bandwidth ra-
tio; if the disk is filled with blocks of 
a particular size, how often can each 
block be accessed, assuming random 
accesses? In the mid-1980s, 1KB re-
cords could be accessed on average 
approximately every 10 minutes; with 
today’s disks, each record can be ac-
cessed only about six times per year on 
average, a rate that will drop with each 
future improvement in disk capacity. 
Larger blocks allow more frequent ac-
cess, but, even in the best case, data on 
disk can be accessed only 1/300th as 
frequently as it was in the mid-1980s. 

One possible solution is to reduce 
disk utilization; if only half the disk is 
used, the blocks in use can be accessed 
twice as frequently. As the required 
access rate increases, disk utilization 
must drop; for example, as of late 2009, 
Facebook could utilize only 10% of its 
disk capacity. However, reducing disk 
utilization increases the cost per us-
able bit; eventually, a crossover point 
is reached where the cost/bit of disk is 
no better than DRAM. The access rate 
corresponding to this crossover point 
is called “Jim Gray’s Rule”14; it has in-
creased by a factor of 360x since the 
mid-1980s (see Table 3), meaning it 

Figure 2. Which storage technology has the lowest total cost of ownership over three  
years, given an application’s requirements for data-set size and query rate? 

Reproduced from Andersen et al.1; cost includes servers and energy use.
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Table 3. Disk technology available in 2009 versus 25 years previously, based on typical 
personal computer disks.

Mid-1980s 2009  Improvement

Disk capacity 30MB 500GB 16,667x

Maximum transfer rate 2MB/sec. 100MB/sec. 50x

Latency (seek + rotate) 20ms 10ms 2x

Capacity/bandwidth (large blocks) 15s 5,000s 333x worse

Capacity/bandwidth (1KB blocks) 600s 58 days 8,333x worse

Jim Gray’s Rule [12] (1KB blocks) 5 min. 30 hours 360x worse

Capacity/bandwidth measures how long it takes to read the entire disk, assuming accesses in random 
order to blocks of a particular size. Capacity/bandwidth also indicates how frequently each block can be 
accessed on average, assuming the disk is filled with blocks of the same size. For large blocks (>10MB) 
capacity/bandwidth is limited by the disk transfer rate and for small blocks by latency. The last line  
(Jim Gray’s Rule) assumes disk utilization is reduced to allow more frequent accesses to a smaller 
number of records, using the approach of Gray and Putzolu14 to calculate the access rate at which 
memory becomes cheaper than disk; for example, if a 1KB record is accessed at least once every 30 
hours, it is not only faster to store it in memory than on disk but cheaper as well; this access rate allows 
only 2% of the disk space to be utilized.
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makes economic sense to keep more 
and more data in memory. 

Caching. Historically, software en-
gineers have viewed caching as the an-
swer to the problems of disk latency; 
if most accesses are made to a small 
subset of the disk blocks, high per-
formance can be achieved by keeping 
the most frequently accessed blocks 
in DRAM. In the ideal case, a system 
with caching offers DRAM-like perfor-
mance with disk-like cost. 

However, the trends outlined in Ta-
ble 3 dilute the benefits of caching by 
requiring a larger and larger fraction of 
data to be kept in DRAM. Furthermore, 
some new Web applications (such as 
Facebook) appear to have little or no lo-
cality due to complex linkages between 
data (such as friendships in Facebook). 
As of August 2009, approximately 25% 
of all online data for Facebook was 
kept in main memory on memcached 
servers at any given point in time, pro-
viding a hit rate of 96.5%. Counting ad-
ditional caches on the database serv-
ers, the total amount of memory used 
by the storage system is approximately 
75% of the total size of the data (exclud-
ing images). Thus RAMCloud would 
increase memory use for Facebook by 
only about one-third. 

In addition, the 1,000x gap in access 
time between DRAM and disk means 
a cache must have exceptionally high 
hit rates to avoid significant perfor-
mance penalties; even a 1% miss ratio 
for a DRAM cache costs a factor of 10x 
in performance. A caching approach 
makes the deceptive suggestion that “a 
few cache misses are OK,” luring pro-
grammers into configurations where 
system performance may be poor. 

For these reasons, future caches 
will have to be so large they will pro-
vide little cost benefit while still intro-
ducing significant performance risk. 
RAMCloud may cost slightly more than 
caching systems but will provide guar-
anteed performance independent of 
access patterns or locality. 

Flash memory instead of DRAM? 
Flash memory is an alternative stor-
age technology with lower latency 
than disk; it is most commonly used 
today in cameras and media players 
but receives increasing attention for 
general-purpose online storage.1 RAM-
Cloud could be constructed with flash 
memory as the primary storage tech-

nology instead of DRAM (FlashCloud) 
and would be cheaper and consume 
less energy than a DRAM-based ap-
proach. Nonetheless, a DRAM-based 
implementation is attractive because it 
offers higher performance. 

Latency is the primary advantage 
of DRAM over flash memory. Flash 
devices have read latencies as low as 
20µs–50µs but are typically packaged 
as I/O devices, adding latency for de-
vice drivers and interrupt handlers. 
Write latencies for flash devices are 
200µs or more. Overall, RAMCloud is 
likely to have latency 5x–10x lower than 
FlashCloud. 

RAMCloud also provides higher 
throughput than FlashCloud, making 
it attractive even in situations where 
latency isn’t important. Figure 2 (re-
produced from Andersen et al.1) gen-
eralizes Jim Gray’s Rule and indicates 
whether disk, flash, or DRAM is cheap-
est for a given system, given its require-
ments in terms of data set size and op-
erations/sec. For high query rates and 
smaller data set sizes, DRAM is cheap-
est; for low query rates and large data 
sets, disk is cheapest; and in the mid-
dle ground, flash is cheapest. 

Interestingly, the dividing lines in 
Figure 2 are all shifting upward with 
time, meaning RAMCloud coverage 
will increase in the future. To under-
stand this effect, consider the dividing 
line between flash and DRAM. At this 
boundary the cost of flash is limited by 
cost/query/sec, while the cost of DRAM 
is limited by cost/bit. Thus the bound-
ary moves upward as the cost/bit of 
DRAM improves and moves to the right 
as the cost/query/sec of flash improves. 
For all three storage technologies, cost/
bit is improving much more quickly 
than cost/query/sec, so all boundaries 
are moving upward. 

The latency of flash memory may 
improve to match DRAM in the future; 
in addition, several other emerging 
memory technologies (such as phase-
change memory) may ultimately prove 
better than DRAM for storage. How-
ever, considerable uncertainty char-
acterizes all these technologies; for 
example, not clear is whether flash 
memory can scale more than another 
generation or two. In any case, all these 
technologies are similar in that they 
provide fast access to small chunks of 
data. Most of the implementation tech-
niques developed for RAMCloud (such 
as replication mechanisms, cluster 
management, and a systemic approach 
to latency) will be relevant regardless 
which technology dominates. 

Research Challenges 
Many challenges must be addressed 
before a practical RAMCloud system 
can be constructed. This section de-
scribes a few of them, along with some 
possible solutions; a common theme 
is the impact of latency and scale on 
a system’s abstractions and architec-
ture; for a more detailed discussion, 
see Ousterhout et al.19 

Low-latency remote procedure calls. 
Though RPC latencies less than 10µs 
have been achieved in specialized net-
works (such as Infiniband and Myri-
net), most data centers use network-
ing infrastructure based on Ethernet/
IP/TCP, with typical round-trip times 
of 300µs–500µs. Table 4 lists some of 
the factors contributing to these high 
times; improvements in both network-
ing hardware and system software are 
required to achieve 5µs–10µs latency. 

On the hardware side, newer 10Gbit/
sec switches offer lower latencies; for 
example, the Arista 7100S2 claims la-
tencies of less than 1µs (total delay of 

Table 4. Some factors contributing to high latency for RPCs in today’s data centers.

Component Delay Round Trip

Network switch 10μs–30μs 100μs–300μs

Network interface controller 2.5μs–32μs 10μs–128μs

Protocol stack 15μs 60μs

For each component, the “Delay” column indicates the cost of a single traversal of that 
component, and “Round Trip” indicates the total effect for an RPC; for example, in a three-tier 
data center network, packets must traverse five switches or routers in each direction.
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10µs round-trip in a large data center), 
and additional improvements seem 
possible in the future. Similar improve-
ments are needed in network interface 
controllers (NICs) as well. 

On the software side, it will be nec-
essary to simplify protocol processing 
and eliminate context switches and 
layer crossings that contribute to la-
tency. One possible approach is to map 
NICs directly into the address space 
of applications, so there is no need to 
cross into and out of kernel code and 
dedicate a processor core to polling the 
NIC to eliminate the overhead of taking 
interrupts. Using these techniques, we 
have been able to reduce total round-
trip software overheads to about 1µs in 
simplified “best-case” experiments. 

Much of today’s networking infra-
structure was designed to optimize 
throughput at the expense of latency. 
We hope designers of future networks 
will focus more on latency to enable 
systems like RAMCloud. 

Durability and availability. For RAM-
Cloud to be widely adopted it must of-
fer a level of durability and availability 
at least as good as today’s disk-based 
systems. At minimum, this means a 
crash of a single server cannot cause 
data to be lost or affect system avail-
ability for more than a few seconds, 

and a systemic loss of power to a data 
center cannot result in permanent loss 
of information. 

One possible approach is to repli-
cate each object in the memories of 
several server machines. It offers the 
highest performance but also high 
cost, since DRAM is the greatest overall 
contributor to system cost, and at least 
three copies are likely required. It is 
also vulnerable to power failures, since 
DRAM contents will be lost. 

Another approach is to keep a single 
copy of information in DRAM, with 
multiple backup copies on disk. This 
would reduce cost and protect against 
power failures. However, if the disk 
copies must be updated synchronously 
during write operations, write laten-
cies will increase by three orders of 
magnitude, losing much of the benefit 
of RAMCloud. 

We are exploring an alternative we 
call “buffered logging” that uses both 
disk and memory for backup (see Fig-
ure 3). A single copy of each object is 
stored in DRAM of a master server, and 
copies are kept on the disks of two or 
more backup servers, with each server 
acting as both master and backup. 
However, the disk copies are not up-
dated synchronously during write op-
erations. Instead, the master server 

updates its DRAM and forwards log 
entries to the backup servers where 
they are stored temporarily in DRAM. 
The write operation returns as soon as 
the log entries are written to DRAM in 
the backups. Each backup server col-
lects log entries into batches that can 
be written efficiently to a log on disk. 
Log entries written to disk can be re-
moved from the backups’ memories. 
This approach allows writes to pro-
ceed at DRAM speeds and utilizes the 
full bandwidth of disks for maximum 
write throughput. The log can be man-
aged using techniques similar to those 
developed for log-structured file sys-
tems.22 

One potential problem with buff-
ered logging is that recently written 
data could be lost if the master and all 
backups lose power simultaneously. 
The ideal solution is to provision each 
server with small batteries that keep 
the server alive after a power failure 
long enough for it to flush buffered log 
entries to disk. Google uses such a con-
figuration in its data centers; we hope 
server manufacturers will make this 
mechanism widely available. 

With only a single copy of data in 
main memory, RAMCloud must recov-
er quickly after server failures to guar-
antee continuous service. However, the 
simplest approach to recovery—trans-
ferring the memory image of the failed 
machine from a disk on a backup over 
the network to a replacement server—
would take approximately 10 minutes,c 
which would be unacceptable for many 
applications. Fortunately, recovery 
time can be reduced by taking advan-
tage of the scale of a RAMCloud clus-
ter; for example, backup data can be 
scattered across hundreds of servers in 
the cluster so it can be read in parallel 
during recovery. Moreover, the memo-
ry image of the failed server can be re-
constructed in pieces using hundreds 
of replacement servers, thereby avoid-
ing a bottleneck at the network inter-
face of a single replacement server. Us-
ing a combination of such techniques, 
recovery time can be reduced to 1–2 
seconds. A cluster with 5,000–10,000 

c	 This assumes the failed server has 64GB of 
memory and the backup disk has a transfer rate 
of 100MB/sec. Even if the disk was infinitely 
fast, it would take approximately 60 seconds to 
transfer 64GB data over a 10Gbit/sec network.

Figure 3. Buffered logging approach to durability.

In the buffered-logging approach to durability, a single copy of each object is stored in 
DRAM. When an object is modified, the changes are logged to two or more other servers. 
The log entries are initially stored in the DRAM of the backup servers and transferred to disk 
asynchronously in batches in order to maximize disk bandwidth.
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servers has enough resources to sup-
port multiple simultaneous recoveries. 
It may even be possible to recover from 
the loss of an entire rack within a few 
seconds. 

Cluster management. RAMCloud 
must function as a single unified stor-
age system, even though it is actually 
implemented with thousands of server 
machines, meaning data placement 
must be managed automatically by the 
RAMCloud software. For small tables 
it is most efficient to store the entire 
table plus any related indexes on a 
single server, since it would allow mul-
tiple objects to be retrieved from the 
table with a single request to a single 
server. However, some tables will even-
tually be too large or too hot for a single 
server, in which case the RAMCloud 
software must automatically partition 
them among multiple servers. This 
reconfiguration and others (such as 
adding and removing servers) must be 
carried out transparently, without af-
fecting running applications. 

Due to the high throughput of its 
servers, RAMCloud is unlikely to need 
data replication for performance rea-
sons; replication will be needed only 
for data durability and availability. If a 
server becomes overloaded, then some 
of its tables can be moved to other serv-
ers; if a single table overloads the serv-
er, then the table can be partitioned to 
spread the load. Replication for perfor-
mance will be needed only if the access 
rate to a single object exceeds the one-
million ops/sec throughput of a single 
server; however, this situation may be 
so rare it can be handled with special 
techniques in the affected applica-
tions. 

Multi-tenancy. A single large RAM-
Cloud system must support shared 
access by hundreds of applications of 
varying sizes. For example, it should be 
possible to provide a few gigabytes of 
storage to a small application for only 
a few hundred dollars per year, since 
this storage represents just a small 
fraction of one server. If an application 
is suddenly popular, it should be able 
to scale quickly within its RAMCloud 
to achieve high performance levels on 
short notice. Due to its scale, RAM-
Cloud efficiently amortizes the cost of 
spare capacity over many applications. 

In order to support multiple ten-
ants, RAMCloud must provide access 

control and security mechanisms that 
isolate antagonistic applications from 
one another. RAMCloud may also need 
to provide mechanisms for perfor-
mance isolation, so high-workload ap-
plications cannot degrade the perfor-
mance of other applications. 

Data model. The abstractions pro-
vided by RAMCloud will significantly 
affect its usability, performance, and 
scalability. Though the relational data 
model is time-tested and provides a 
rich and convenient programming in-
terface,20 its built-in overheads may 
be incompatible with the low-latency 
goals of RAMCloud, and no one has 
yet constructed a system with ACID 
(atomicity, consistency, isolation, and 
durability) properties at the scale we 
envision for RAMCloud. Thus the best 
data model for RAMCloud is likely to 
be something simpler (such as a key-
value store).4,9 

Concurrency, transactions, consis-
tency. Another question is how much 
support RAMCloud should provide 
for transactions; for example, should 
it support atomic updates to multiple 
objects? One potential benefit of RAM-
Cloud’s extremely low latency is that it 
might enable a higher level of consis-
tency/atomicity at larger system scale; 
if transactions execute quickly, then 
conflicting transactions are less likely 
to overlap, which should reduce the 
costs of preventing or resolving con-
flicts. 

RAMCloud Disadvantages 
The most obvious drawbacks of RAM-
Cloud are high cost per bit and high en-
ergy use per bit. For both metrics, RAM-
Cloud storage will be 50x–100x worse 
than a pure disk-based system and 5x–
10x worse than a storage system based 
on flash memory; see Andersen et al.1 
for sample configurations and met-
rics. A RAMCloud system also requires 
more floor space in a data center than a 
system based on disk or flash memory. 
Thus, if an application must store a 
large amount of data inexpensively and 
has a relatively low access rate, RAM-
Cloud is not the best solution. 

However, RAMCloud is much more 
attractive for applications with high 
throughput requirements. Measured 
in terms of cost per operation or energy 
per operation, RAMCloud is 50x–100x 
more efficient than disk-based sys-

If RAMCloud 
succeeds, it will 
probably displace 
magnetic disk as 
the primary storage 
technology in data 
centers. 
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tems and 5x–10x more efficient than 
systems based on flash memory.1 For 
systems with high throughput require-
ments, RAMCloud can provide not just 
high performance but also energy effi-
ciency. 

Another RAMCloud disadvantage 
is it provides high performance only 
within a single data center. For applica-
tions requiring data replication across 
data centers, the latency of updates will 
be dominated by speed-of-light delays 
between data centers, so RAMCloud 
will have little or no latency advantage 
for writes. However, RAMCloud can 
still offer exceptionally low latency for 
reads, even with cross-data-center rep-
lication. 

Related Work 
The role of DRAM in storage systems 
has steadily increased over recent de-
cades, and many RAMCloud ideas have 
been explored in other systems; for ex-
ample, several research experiments 
in the mid-1980s involved databases 
stored entirely in main memory.10,13 

Main-memory databases were not 
widely adopted at the time, perhaps 
due to their limited capacities, but 
there has been a resurgence of inter-
est lately, evidenced by such systems as 
H-store.16 The latency benefits of opti-
mizing a storage system around DRAM 
have also been demonstrated in Rio 
Vista and other projects,17 and the limi-
tations of disk storage have been noted 
by many researchers, including Jim 
Gray, who predicted that data would 
migrate from disk to RAM.21 

Many Web-related applications 
make aggressive use of DRAM; for 
example, both Google and Yahoo! 
store their search indices entirely in 
DRAM. Memcached18 provides a gen-
eral-purpose key-value store entirely 
in DRAM and is widely used to offload 
back-end database systems; however, 
memcached makes no durability guar-
antees, so it must be used as a cache. 
Google’s Bigtable storage system al-
lows entire column families to be load-
ed into memory where they can be read 
without disk accesses.5 The Bigtable 
project has also explored many of the 
issues in federating large numbers of 
storage servers. 

Low-latency network communica-
tion has been explored extensively, 
including in research projects (such 

as Chun et al.6 and Dittia11) and indus-
try standards (such as InfiniBand and 
iWARP). These projects and standards 
demonstrate the RAMCloud goal of 
5µs–10µs RPC is achievable. How-
ever, most of the fastest results were 
achieved in specialized environments. 
For example, InfiniBand uses a differ-
ent networking infrastructure from 
the Ethernet switches common in data 
centers. Both InfiniBand and iWARP 
support the remote direct memory ac-
cess (RDMA) protocol, allowing a cli-
ent application to issue read and write 
requests to selected memory regions 
of a server; the requests are processed 
on the server entirely in the network 
interface controller, with no software 
involvement. Though RDMA provides 
low latency, its operations are too low-
level, forcing many questions (such as 
how to organize the server’s memory) 
back to the clients, where the solutions 
require complex, expensive synchroni-
zation among clients. For RAMCloud, 
the best approach is for all RPCs to 
pass through application-specific soft-
ware on the server, possibly making 
individual RPCs slower but allowing 
higher-level operations that improve 
overall system performance. 

Potential Impact 
If the RAMCloud concept is shown 
to be practical and is widely used, it 
could have broad impact across the 
field of computing. The most impor-
tant will be to enable a new class of 
applications that access large data 
sets at a very high rate. A RAMCloud 
containing 1,000–10,000 storage serv-
ers will support data sets of 1014–1015B 
(100TB–1PB) being accessed by tens of 
thousands of application servers at a 
total rate of 109–1010 requests/sec. The 
storage model for RAMCloud is “flat,” 
meaning all objects can be accessed 
quickly; unlike disk-based systems, 
performance is not affected by data 
placement. This model should make 
RAMCloud particularly attractive for 
graph algorithms operating at very 
large scale, where accesses are ran-
dom and unpredictable. 

RAMCloud will accelerate adoption 
of cloud computing. Although cloud 
computing offers many advantages, it 
is limited by the absence of scalable 
storage systems.3 As a result, develop-
ers find it difficult to create applica-

RAMCloud may 
cost slightly more 
than caching 
systems but will 
provide guaranteed 
performance 
independent  
of access patterns 
or locality. 
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tions that reap the full benefit of cloud 
computing. RAMCloud will make it 
easier to develop such applications 
and eliminate many of the problems 
associated with scaling them. 

RAMCloud could also have a signifi-
cant effect on network infrastructure. 
In the past, the design of networks fo-
cused primarily on bandwidth, and it 
has been common practice to sacrifice 
latency to improve bandwidth. RAM-
Cloud will require extremely low net-
work latency; we hope therefore to see 
a change of mind-set, with latency be-
coming a key area where vendors com-
pete for superiority. Latency-driven 
network design will have a far-reaching 
effect; for example, networking ven-
dors today are under pressure to in-
corporate deep packet buffers to avoid 
dropped packets, causing problems for 
higher-level protocols (such as TCP). 
However, these deep buffers can result 
in huge delays (tens of milliseconds). 
A low-latency approach would require 
elimination of almost all buffering, 
possibly requiring new strategies for 
handling packet loss in higher-level 
protocols. 

RAMCloud is likely to influence the 
design and management of data cen-
ters, in part through the cloud com-
puting and networking changes dis-
cussed earlier; RAMCloud will require 
data-center managers to think much 
more about latency than they do today. 
In addition, if RAMCloud succeeds, it 
will probably displace magnetic disk as 
the primary storage technology in data 
centers. RAMCloud may also lay the 
groundwork that enables adoption of 
alternative storage technologies (such 
as flash memory and phase-change 
memory). 

RAMCloud will also encourage new 
approaches to server architecture. One 
change we hope to see is new power-
management techniques (such as bat-
tery backup and supercapacitors), al-
lowing servers to continue operation 
for a fraction of a second after power 
failure in order to flush volatile infor-
mation to secondary storage. RAM-
Cloud may also enable a spectrum of 
server designs representing trade-offs 
among speed, memory capacity, and 
power consumption. A RAMCloud clus-
ter could also contain several differ-
ent kinds of servers and automatically 
adjust system configuration to match 

access patterns with server characteris-
tics; for example, tables with relatively 
low access rates could be migrated to 
servers with processors that are slower 
but more energy efficient. 

Conclusion 
In the future, technology trends and 
application requirements will dictate a 
larger and larger fraction of online data 
be kept in DRAM. We have argued here 
that the best long-term solution for 
many applications may be a radical ap-
proach where all data is kept in DRAM 
all the time. The two most important 
aspects of RAMCloud are its extremely 
low latency and its ability to aggregate 
the resources of large numbers of com-
modity servers. This combination of la-
tency and scale will enable creation of 
many new data-intensive applications 
and simplify construction of existing 
large-scale applications. In addition, 
RAMCloud will provide an attractive 
substrate for cloud-computing envi-
ronments. 

Many challenging issues must still 
be addressed before a practical RAM-
Cloud can be constructed. Toward this 
end, we have begun a research proj-
ect at Stanford University to build a 
RAMCloud system. Over the next few 
years, we hope to answer some of the 
research questions about how to build 
an efficient and reliable RAMCloud, as 
well as observe the effect of RAMCloud 
on application development. 
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