
121 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles
doi:10.1145/1965724.1965751

With scalable high-performance storage
entirely in DRAM, RAMCloud will enable
a new breed of data-intensive applications.

by John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis, Jacob Leverich, David Mazières,
Subhasish Mitra, Aravind Narayanan, Diego Ongaro,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble,
Eric Stratmann, and Ryan Stutsman

The Case for
RAMCloud

memories of commodity servers and
uses hundreds or thousands of these
servers to create a large-scale storage
system. Because all data is in DRAM at
all times, RAMCloud promises 100x–
1,000x lower latency than disk-based
systems and 100x–1,000x greater
throughput. Though individual mem-
ories are volatile, RAMCloud can use
replication and backup techniques to
provide data durability and availability
equivalent to disk-based systems.

The combination of latency and
scale offered by RAMCloud will change
the storage landscape in three ways:
First, it will simplify development
of large-scale Web applications by
eliminating many of the scalability is-
sues that sap developer productivity
today; it will also enable a new class
of applications that manipulate data
100x–1,000x more intensively than is
possible today; and it will provide the
scalable storage substrate needed for
cloud computing and other data–cen-
ter applications.3 A RAMCloud cluster
can support a single large application
or numerous smaller applications, al-
lowing small applications to grow into
large ones without additional complex-
ity for the developer.

This article describes the RAM-
Cloud concept, including how it will
enable new applications. Building a
practical RAMCloud requires solutions
to several interesting research prob-
lems (such as how to provide durabil-
ity for data stored in volatile DRAM and
managing clusters with thousands of
servers).

For the past four decades magnetic disks have been
the primary storage location for online information in
computer systems. Over that period, disk technology
has undergone dramatic improvements while being
harnessed by higher-level storage systems (such
as file systems and relational databases). However,
disk performance has not improved as quickly as
disk capacity, and developers find it increasingly
difficult to scale disk-based systems to meet the needs
of large-scale Web applications. Many computer
scientists have proposed new approaches to
disk-based storage as a solution, and others have
suggested replacing disks with flash memory
devices. In contrast, we say the solution is to shift
the primary locus of online data from disk to DRAM,
with disk relegated to a backup/archival role.

A new class of storage called RAMCloud will provide
the storage substrate for many future applications.
RAMCloud stores all of its information in the main

 key insights
 � �The Web has driven development of

new large-scale applications that have
effectively scaled compute power and
storage capacity but have not scaled
storage access rates to match.

 � �DRAM-based storage can be made
as durable and available as disk-
based storage without giving up its
performance advantages.

 � �DRAM-based storage is not just faster
than disk or flash; for I/O-intensive
workloads it is also cheaper and more
energy efficient.

july 2011 | vol. 54 | no. 7 | communications of the acm 122

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 G
e

n
c

a
y

 M
.

Emi

n

/s
h

u
t

t
e

r
s

t
o

c
k

.c
o

m

RAMCloud Overview
RAMCloud is most likely to be used
in data centers where large numbers
of servers are divided into two main
categories: application servers, imple-
menting application logic (such as
generating Web pages and enforcing
business rules), and storage servers,
providing longer-term shared storage
for the application servers. Data cen-
ters typically support numerous ap-
plications, ranging from small ones
using only a fraction of an application

server to large ones with thousands
of dedicated application and storage
servers.

RAMCloud represents a new way of
organizing storage servers in such a
system. Two key attributes differenti-
ate RAMCloud from other storage sys-
tems: First, all information is kept in
DRAM at all times. RAMCloud is not a
cache, as with memcached,18 and data
is not stored on an I/O device, as with
flash memory. DRAM is the permanent
home for data, with disk used only for

backup. Second, RAMCloud must scale
automatically to thousands of storage
servers; applications see a single stor-
age system independent of the actual
number of storage servers.

Information stored in RAMCloud
must be as durable as if it was stored
on disk, and failure of a single storage
server must not be allowed to result in
data loss or more than a few seconds of
unavailability. Techniques for achiev-
ing this level of durability and avail-
ability are discussed later in the article.

123 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

Keeping all data in DRAM will al-
low RAMCloud to achieve performance
100x to 1,000x better than today’s high-
est-performing disk-based storage sys-
tems:

˲˲ It should be possible to achieve ac-
cess latencies of 5µs–10µs measured
end-to-end for a process running in an
application server to read a few hun-
dred bytes of data over the network
from a storage server in the same data
center. In comparison, today’s systems
typically require 0.5ms–10ms, depend-
ing on whether data is cached in the
server’s memory or must be fetched
from disk; and

˲˲ A single multi-core storage server
should be able to service at least one
million small read requests per sec-
ond.a In comparison, a disk-based sys-
tem running on a comparable machine
with a few disks and a main-memory
cache can service 1,000–10,000 re-
quests per second, depending on con-
figuration and cache hit rates.b

These goals represent what is possi-
ble, but achieving them is by no means
guaranteed; later, the section on re-
search issues discusses some of the ob-
stacles that must be overcome.

Table 1 outlines a RAMCloud con-
figuration feasible today, assuming
24GB of DRAM on each server, the
most cost-effective configuration we
could find; memory prices rise dra-
matically for larger memory sizes. With
2,000 servers, the configuration offers
48TB of storage at $65/GB. With addi-
tional servers, it should be possible to
build RAMClouds with capacities up to
a few hundred terabytes today. By 2020,
assuming continued improvement in
DRAM technology, it will be possible
to build RAMClouds with capacities of
1PB–10PB for $6/GB.

RAMCloud is already practical for

a	 For evidence that a server can handle one mil-
lion requests per second see Dobrescu et al.,12
where a single multi-core server was able to re-
ceive and retransmit up to 20 million packets
per second with a small amount of processing
per packet.

b	 This calculation assumes that disks can ser-
vice approximately 100 random requests per
second and that individual servers hold 10
disks, resulting in total server throughput of
1,000 requests per second if every request in-
volves disk I/O. If disk storage is supplement-
ed with DRAM-based caches on the servers,
then a 90% cache hit rate will produce total
throughput of 10,000 requests per second.

a variety of applications; for example,
Table 2 estimates that customer data
for a large-scale online retailer or air-
line could be stored in RAMCloud for
a few hundred thousand dollars. Such
applications are unlikely to be the first
to use RAMCloud but illustrate that
many applications that have histori-
cally been considered “large” are eas-
ily accommodated by RAMCloud. As
of August 2009, all non-image data
for Facebook occupied approximately
260TB,15 which is probably near the up-
per limit of practicality for RAMCloud
today.

It is not yet practical to use RAM-
Cloud for large-scale storage of media
like videos, photos, and songs; these
objects make better use of disks be-
cause of their large size. However,
RAMCloud is practical for almost all
other online data today, and future im-
provements in DRAM technology may
make RAMCloud attractive for media
within a few years.

Motivation
The RAMCloud concept can be mo-
tivated from several different angles,
with the most interesting that RAM-
Cloud may enable a new class of data-
intensive applications. To understand
this potential, consider the two styles
of applications in Figure 1. The tradi-
tional approach (Figure 1a) is for an ap-
plication to be delivered by loading its
code, along with all of its data, into the
main memory of a single machine. This
allows the application to access its data
at memory speeds, thereby enabling a
variety of complex data manipulations
but limits the scale of the application
to the capacity of one machine.

Over the past 10 years, a new ap-
proach to application delivery has
emerged, driven by large-scale Web ap-
plications serving millions of users. In
the Web approach (Figure 1b) the code
and the data for an application are kept
on separate machines in a data center.
The application servers use a stateless

Table 2. Estimates of total storage capacity needed for one year’s worth of customer data
of a hypothetical online retailer and a hypothetical airline.

Online Retailer

Revenue/year: $16B

Average order size: $40

Orders/year: 400M

Data/order: 1,000B–10,000B

Order data/year: 400GB–4.0TB

RAMCloud cost: $26K–$260K

Airline Reservations

Flights/day 4,000

Passengers/flight: 150

Passenger flights/year: 220M

Data/passenger flight: 1,000B–10,000B

Passenger data/year: 220GB–2.2TB

RAMCloud cost: $14.3K–$143K

Total requirements for each application are no more than a few terabytes, which would fit in
a modest-size RAMCloud. The last line of each table (RAMCloud cost) estimates the purchase
cost for RAMCloud servers using data from Table 1.

Table 1. Example RAMCloud configurations using commodity server technology available
today and technology expected by 2020.

2010 2020

servers 2,000 4,000

Capacity/server 24GB 256GB

Total capacity 48TB 1PB

Total server cost $3.1M $6M

Cost/GB $65 $6

Total ops/sec. 2×109 4×109

Total server cost is based on list prices, does not include networking infrastructure or racks, and
assumes a single copy of data in DRAM, as described in the section on durability and availability.
The 2020 estimates assume the cost per server remains approximately the same, but memory
capacity per server increases 10x (about two generations of DRAM technology).

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 124

approach, storing only the data for the
current request and maintaining little
or no state between browser interac-
tions; data must be fetched from stor-
age servers for each browser request.
This approach allows applications to
scale to thousands of application serv-
ers and thousands of storage servers.

Unfortunately, the large-scale ar-
chitecture of Figure 1b increases the
latency of data access by four to five
orders of magnitude relative to the
single-machine architecture, increas-
ing the application’s complexity and
limiting its functionality. For example,
when Facebook receives an HTTP re-
quest for a Web page, the application
server makes an average of 130 internal
requests for data (inside the Facebook
site) as part of generating the HTML for
the page,15 and the requests must typi-
cally be issued sequentially. The cumu-
lative latency of these requests is one of
the limiting factors in overall response
time to users, so considerable develop-
er effort is expended to minimize the
number and size of requests. Features
requiring more requests than this are
not feasible. Amazon has reported
similar results, with 100–200 internal
requests to generate HTML for each
page.9 These limitations rule out entire
classes of algorithms (such as those
traversing large graphs).

If the two architectures in Figure
1 are compared based on how many
distinct (randomly accessed) small ob-
jects each architecture can access per
second, the thousands of servers in Fig-
ure 1b can support only about the same
aggregate access rate as the single ma-
chine in Figure 1a. The “scalable” ar-
chitecture of Figure 1b has scaled total
compute power and total storage ca-
pacity but has not significantly scaled
total data access rate.

The difficulty of scaling data access
rates helps explain the recent rise in
popularity of the MapReduce para-
digm for applications. MapReduce8
organizes large-scale applications as a
series of parallel stages where data is
accessed sequentially in large blocks.
Sequential access eliminates the laten-
cy issue and provides much higher data
access rates; as a result, MapReduce
has made it possible to solve many
large-scale problems efficiently. How-
ever, its insistence on sequential data
access makes MapReduce difficult to
use for applications requiring random
access to data.

RAMCloud aims to combine the
best of both worlds represented in Fig-
ure 1—retaining the scalability of Web
applications while reducing data ac-
cess latency close to that of traditional
applications. If it can, it will enable a

new breed of data-centric applications
that access information 100x–1,000x
more intensively than has ever been
possible. It is difficult to identify spe-
cific applications that will take full ad-
vantage of RAMCloud, since they are
not feasible today, but a possible ex-
ample is an application that would en-
able massive collaboration at the level
of crowds. Another is an online appli-
cation for statistical machine transla-
tion that must iteratively process large
graphical language models4; in gen-
eral, RAMCloud will enable graph algo-
rithms at a scale never before possible.
Once RAMCloud becomes available,
many application developers will dis-
cover exciting ways to take advantage
of the combination of scale and latency
RAMCloud can offer.

Scalable storage for existing appli-
cations. In addition to enabling new
applications, RAMCloud will make it
easier to build and scale applications
similar to those that already exist on
the Web. Creating large-scale Web ap-
plications is difficult today due to the
lack of a scalable storage system. Vir-
tually all Web applications start out
using relational databases for storage,
but, as they grow, quickly discover that
a single relational database cannot
meet their throughput requirements.
Each large site undergoes a series of
massive revisions that introduce ad
hoc techniques to scale its storage sys-
tem (such as partitioning data among
multiple databases). They work for
a while, but scalability issues return
when the site reaches a new level of
scale or a new feature is introduced,
requiring yet more special-purpose
techniques. Common lore is that every
order-of-magnitude increase in a site’s
traffic requires a major redesign of the
site’s storage system. For example, as
of August 2009, the storage system for
Facebook included 4,000 MySQL serv-
ers. Distribution of data across the in-
stances and consistency between the
instances must be handled explicitly
by Facebook application code.15 Even
so, the database servers were incapable
of meeting Facebook’s throughput re-
quirements by themselves, so Face-
book also employed 2,000 memcached
servers that cached recent query re-
sults in key-value stores kept in main
memory. Unfortunately, consistency
between the memcached and MySQL

Figure 1. Traditional applications and scalable Web applications compared.

Single Computer Data Center

Data
Structures

In traditional applications (a) the application’s data structures reside in memory on the same machine
that contains application logic and user-interface code, allowing the application to access its data at
main-memory speeds. In scalable Web applications (b) the data is stored on servers separate from
the user interface and application logic, resulting in much higher latencies for an application to access
its data, ranging from 0.5ms (for data cached in the storage server’s memory) to 10ms or more (for
data that must be read from disk).

Application
Servers

Network

Storage
Servers

Latency << 1 μs Latency 0.5ms–10ms

(a) (b)

UI

App.
Logic

UI

App.
Logic

125 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

servers must be managed by applica-
tion software (such as flushing cached
values explicitly when the database is
updated), adding to application com-
plexity.

Looking to address the scalability
limitations of relational databases, nu-
merous new storage systems have ap-
peared in recent years. They are collec-
tively referred to as “NoSQL” because
they omit one or more features of a full-
fledged relational database in order to
achieve higher performance or scal-

ability in certain domains. For exam-
ple, some NoSQL systems use simpler
data models (such as key-value stores),
and others offer weaker forms of con-
sistency during updates; examples of
NoSQL systems include Bigtable,5 Dy-
namo,9 and PNUTS.7 Unfortunately,
NoSQL systems tend to be less general-
purpose than relational databases, and
their performance is still limited by
disk speed.

One motivation for RAMCloud is to
provide a general-purpose storage sys-

tem that scales far beyond existing sys-
tems, so application developers need
not resort to specialized approaches
(such as NoSQL systems). Ideally, RAM-
Cloud should offer a simple model that
is easy to use for new applications and
also provide scalable performance that
allows applications to grow without
constant restructuring.

Technology trends. The final moti-
vation for RAMCloud comes from disk
technology evolution. Disk capacity
has increased more than 10,000-fold
since the mid-1980s and seems likely
to continue increasing in the future
(see Table 3). Unfortunately, the ac-
cess rate to information on disk has
improved much more slowly; the trans-
fer rate for large blocks has improved
“only” 50-fold, and seek time and rota-
tional latency have improved by only a
factor of two.

As a result of this uneven evolution,
the role of disks must inevitably be-
come more archival; it simply isn’t pos-
sible to frequently access information
on disk, so frequently accessed infor-
mation must be kept in memory. Table
3 illustrates this in two ways. First, it
computes the capacity/bandwidth ra-
tio; if the disk is filled with blocks of
a particular size, how often can each
block be accessed, assuming random
accesses? In the mid-1980s, 1KB re-
cords could be accessed on average
approximately every 10 minutes; with
today’s disks, each record can be ac-
cessed only about six times per year on
average, a rate that will drop with each
future improvement in disk capacity.
Larger blocks allow more frequent ac-
cess, but, even in the best case, data on
disk can be accessed only 1/300th as
frequently as it was in the mid-1980s.

One possible solution is to reduce
disk utilization; if only half the disk is
used, the blocks in use can be accessed
twice as frequently. As the required
access rate increases, disk utilization
must drop; for example, as of late 2009,
Facebook could utilize only 10% of its
disk capacity. However, reducing disk
utilization increases the cost per us-
able bit; eventually, a crossover point
is reached where the cost/bit of disk is
no better than DRAM. The access rate
corresponding to this crossover point
is called “Jim Gray’s Rule”14; it has in-
creased by a factor of 360x since the
mid-1980s (see Table 3), meaning it

Figure 2. Which storage technology has the lowest total cost of ownership over three
years, given an application’s requirements for data-set size and query rate?

Reproduced from Andersen et al.1; cost includes servers and energy use.

10,000

1,000

100

10

1.0

0.1

0.1 1.0 10 100 1,000

Query Rate (Millions/sec.)

Disk

Flash

DRAM

D
at

a
S

et
 S

iz
e

(TB

)

Table 3. Disk technology available in 2009 versus 25 years previously, based on typical
personal computer disks.

Mid-1980s 2009 Improvement

Disk capacity 30MB 500GB 16,667x

Maximum transfer rate 2MB/sec. 100MB/sec. 50x

Latency (seek + rotate) 20ms 10ms 2x

Capacity/bandwidth (large blocks) 15s 5,000s 333x worse

Capacity/bandwidth (1KB blocks) 600s 58 days 8,333x worse

Jim Gray’s Rule [12] (1KB blocks) 5 min. 30 hours 360x worse

Capacity/bandwidth measures how long it takes to read the entire disk, assuming accesses in random
order to blocks of a particular size. Capacity/bandwidth also indicates how frequently each block can be
accessed on average, assuming the disk is filled with blocks of the same size. For large blocks (>10MB)
capacity/bandwidth is limited by the disk transfer rate and for small blocks by latency. The last line
(Jim Gray’s Rule) assumes disk utilization is reduced to allow more frequent accesses to a smaller
number of records, using the approach of Gray and Putzolu14 to calculate the access rate at which
memory becomes cheaper than disk; for example, if a 1KB record is accessed at least once every 30
hours, it is not only faster to store it in memory than on disk but cheaper as well; this access rate allows
only 2% of the disk space to be utilized.

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 126

makes economic sense to keep more
and more data in memory.

Caching. Historically, software en-
gineers have viewed caching as the an-
swer to the problems of disk latency;
if most accesses are made to a small
subset of the disk blocks, high per-
formance can be achieved by keeping
the most frequently accessed blocks
in DRAM. In the ideal case, a system
with caching offers DRAM-like perfor-
mance with disk-like cost.

However, the trends outlined in Ta-
ble 3 dilute the benefits of caching by
requiring a larger and larger fraction of
data to be kept in DRAM. Furthermore,
some new Web applications (such as
Facebook) appear to have little or no lo-
cality due to complex linkages between
data (such as friendships in Facebook).
As of August 2009, approximately 25%
of all online data for Facebook was
kept in main memory on memcached
servers at any given point in time, pro-
viding a hit rate of 96.5%. Counting ad-
ditional caches on the database serv-
ers, the total amount of memory used
by the storage system is approximately
75% of the total size of the data (exclud-
ing images). Thus RAMCloud would
increase memory use for Facebook by
only about one-third.

In addition, the 1,000x gap in access
time between DRAM and disk means
a cache must have exceptionally high
hit rates to avoid significant perfor-
mance penalties; even a 1% miss ratio
for a DRAM cache costs a factor of 10x
in performance. A caching approach
makes the deceptive suggestion that “a
few cache misses are OK,” luring pro-
grammers into configurations where
system performance may be poor.

For these reasons, future caches
will have to be so large they will pro-
vide little cost benefit while still intro-
ducing significant performance risk.
RAMCloud may cost slightly more than
caching systems but will provide guar-
anteed performance independent of
access patterns or locality.

Flash memory instead of DRAM?
Flash memory is an alternative stor-
age technology with lower latency
than disk; it is most commonly used
today in cameras and media players
but receives increasing attention for
general-purpose online storage.1 RAM-
Cloud could be constructed with flash
memory as the primary storage tech-

nology instead of DRAM (FlashCloud)
and would be cheaper and consume
less energy than a DRAM-based ap-
proach. Nonetheless, a DRAM-based
implementation is attractive because it
offers higher performance.

Latency is the primary advantage
of DRAM over flash memory. Flash
devices have read latencies as low as
20µs–50µs but are typically packaged
as I/O devices, adding latency for de-
vice drivers and interrupt handlers.
Write latencies for flash devices are
200µs or more. Overall, RAMCloud is
likely to have latency 5x–10x lower than
FlashCloud.

RAMCloud also provides higher
throughput than FlashCloud, making
it attractive even in situations where
latency isn’t important. Figure 2 (re-
produced from Andersen et al.1) gen-
eralizes Jim Gray’s Rule and indicates
whether disk, flash, or DRAM is cheap-
est for a given system, given its require-
ments in terms of data set size and op-
erations/sec. For high query rates and
smaller data set sizes, DRAM is cheap-
est; for low query rates and large data
sets, disk is cheapest; and in the mid-
dle ground, flash is cheapest.

Interestingly, the dividing lines in
Figure 2 are all shifting upward with
time, meaning RAMCloud coverage
will increase in the future. To under-
stand this effect, consider the dividing
line between flash and DRAM. At this
boundary the cost of flash is limited by
cost/query/sec, while the cost of DRAM
is limited by cost/bit. Thus the bound-
ary moves upward as the cost/bit of
DRAM improves and moves to the right
as the cost/query/sec of flash improves.
For all three storage technologies, cost/
bit is improving much more quickly
than cost/query/sec, so all boundaries
are moving upward.

The latency of flash memory may
improve to match DRAM in the future;
in addition, several other emerging
memory technologies (such as phase-
change memory) may ultimately prove
better than DRAM for storage. How-
ever, considerable uncertainty char-
acterizes all these technologies; for
example, not clear is whether flash
memory can scale more than another
generation or two. In any case, all these
technologies are similar in that they
provide fast access to small chunks of
data. Most of the implementation tech-
niques developed for RAMCloud (such
as replication mechanisms, cluster
management, and a systemic approach
to latency) will be relevant regardless
which technology dominates.

Research Challenges
Many challenges must be addressed
before a practical RAMCloud system
can be constructed. This section de-
scribes a few of them, along with some
possible solutions; a common theme
is the impact of latency and scale on
a system’s abstractions and architec-
ture; for a more detailed discussion,
see Ousterhout et al.19

Low-latency remote procedure calls.
Though RPC latencies less than 10µs
have been achieved in specialized net-
works (such as Infiniband and Myri-
net), most data centers use network-
ing infrastructure based on Ethernet/
IP/TCP, with typical round-trip times
of 300µs–500µs. Table 4 lists some of
the factors contributing to these high
times; improvements in both network-
ing hardware and system software are
required to achieve 5µs–10µs latency.

On the hardware side, newer 10Gbit/
sec switches offer lower latencies; for
example, the Arista 7100S2 claims la-
tencies of less than 1µs (total delay of

Table 4. Some factors contributing to high latency for RPCs in today’s data centers.

Component Delay Round Trip

Network switch 10μs–30μs 100μs–300μs

Network interface controller 2.5μs–32μs 10μs–128μs

Protocol stack 15μs 60μs

For each component, the “Delay” column indicates the cost of a single traversal of that
component, and “Round Trip” indicates the total effect for an RPC; for example, in a three-tier
data center network, packets must traverse five switches or routers in each direction.

127 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

10µs round-trip in a large data center),
and additional improvements seem
possible in the future. Similar improve-
ments are needed in network interface
controllers (NICs) as well.

On the software side, it will be nec-
essary to simplify protocol processing
and eliminate context switches and
layer crossings that contribute to la-
tency. One possible approach is to map
NICs directly into the address space
of applications, so there is no need to
cross into and out of kernel code and
dedicate a processor core to polling the
NIC to eliminate the overhead of taking
interrupts. Using these techniques, we
have been able to reduce total round-
trip software overheads to about 1µs in
simplified “best-case” experiments.

Much of today’s networking infra-
structure was designed to optimize
throughput at the expense of latency.
We hope designers of future networks
will focus more on latency to enable
systems like RAMCloud.

Durability and availability. For RAM-
Cloud to be widely adopted it must of-
fer a level of durability and availability
at least as good as today’s disk-based
systems. At minimum, this means a
crash of a single server cannot cause
data to be lost or affect system avail-
ability for more than a few seconds,

and a systemic loss of power to a data
center cannot result in permanent loss
of information.

One possible approach is to repli-
cate each object in the memories of
several server machines. It offers the
highest performance but also high
cost, since DRAM is the greatest overall
contributor to system cost, and at least
three copies are likely required. It is
also vulnerable to power failures, since
DRAM contents will be lost.

Another approach is to keep a single
copy of information in DRAM, with
multiple backup copies on disk. This
would reduce cost and protect against
power failures. However, if the disk
copies must be updated synchronously
during write operations, write laten-
cies will increase by three orders of
magnitude, losing much of the benefit
of RAMCloud.

We are exploring an alternative we
call “buffered logging” that uses both
disk and memory for backup (see Fig-
ure 3). A single copy of each object is
stored in DRAM of a master server, and
copies are kept on the disks of two or
more backup servers, with each server
acting as both master and backup.
However, the disk copies are not up-
dated synchronously during write op-
erations. Instead, the master server

updates its DRAM and forwards log
entries to the backup servers where
they are stored temporarily in DRAM.
The write operation returns as soon as
the log entries are written to DRAM in
the backups. Each backup server col-
lects log entries into batches that can
be written efficiently to a log on disk.
Log entries written to disk can be re-
moved from the backups’ memories.
This approach allows writes to pro-
ceed at DRAM speeds and utilizes the
full bandwidth of disks for maximum
write throughput. The log can be man-
aged using techniques similar to those
developed for log-structured file sys-
tems.22

One potential problem with buff-
ered logging is that recently written
data could be lost if the master and all
backups lose power simultaneously.
The ideal solution is to provision each
server with small batteries that keep
the server alive after a power failure
long enough for it to flush buffered log
entries to disk. Google uses such a con-
figuration in its data centers; we hope
server manufacturers will make this
mechanism widely available.

With only a single copy of data in
main memory, RAMCloud must recov-
er quickly after server failures to guar-
antee continuous service. However, the
simplest approach to recovery—trans-
ferring the memory image of the failed
machine from a disk on a backup over
the network to a replacement server—
would take approximately 10 minutes,c
which would be unacceptable for many
applications. Fortunately, recovery
time can be reduced by taking advan-
tage of the scale of a RAMCloud clus-
ter; for example, backup data can be
scattered across hundreds of servers in
the cluster so it can be read in parallel
during recovery. Moreover, the memo-
ry image of the failed server can be re-
constructed in pieces using hundreds
of replacement servers, thereby avoid-
ing a bottleneck at the network inter-
face of a single replacement server. Us-
ing a combination of such techniques,
recovery time can be reduced to 1–2
seconds. A cluster with 5,000–10,000

c	 This assumes the failed server has 64GB of
memory and the backup disk has a transfer rate
of 100MB/sec. Even if the disk was infinitely
fast, it would take approximately 60 seconds to
transfer 64GB data over a 10Gbit/sec network.

Figure 3. Buffered logging approach to durability.

In the buffered-logging approach to durability, a single copy of each object is stored in
DRAM. When an object is modified, the changes are logged to two or more other servers.
The log entries are initially stored in the DRAM of the backup servers and transferred to disk
asynchronously in batches in order to maximize disk bandwidth.

DRAM DRAM DRAM

disk

backup master backup

disk disk

write

Storage Servers

log log

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 128

servers has enough resources to sup-
port multiple simultaneous recoveries.
It may even be possible to recover from
the loss of an entire rack within a few
seconds.

Cluster management. RAMCloud
must function as a single unified stor-
age system, even though it is actually
implemented with thousands of server
machines, meaning data placement
must be managed automatically by the
RAMCloud software. For small tables
it is most efficient to store the entire
table plus any related indexes on a
single server, since it would allow mul-
tiple objects to be retrieved from the
table with a single request to a single
server. However, some tables will even-
tually be too large or too hot for a single
server, in which case the RAMCloud
software must automatically partition
them among multiple servers. This
reconfiguration and others (such as
adding and removing servers) must be
carried out transparently, without af-
fecting running applications.

Due to the high throughput of its
servers, RAMCloud is unlikely to need
data replication for performance rea-
sons; replication will be needed only
for data durability and availability. If a
server becomes overloaded, then some
of its tables can be moved to other serv-
ers; if a single table overloads the serv-
er, then the table can be partitioned to
spread the load. Replication for perfor-
mance will be needed only if the access
rate to a single object exceeds the one-
million ops/sec throughput of a single
server; however, this situation may be
so rare it can be handled with special
techniques in the affected applica-
tions.

Multi-tenancy. A single large RAM-
Cloud system must support shared
access by hundreds of applications of
varying sizes. For example, it should be
possible to provide a few gigabytes of
storage to a small application for only
a few hundred dollars per year, since
this storage represents just a small
fraction of one server. If an application
is suddenly popular, it should be able
to scale quickly within its RAMCloud
to achieve high performance levels on
short notice. Due to its scale, RAM-
Cloud efficiently amortizes the cost of
spare capacity over many applications.

In order to support multiple ten-
ants, RAMCloud must provide access

control and security mechanisms that
isolate antagonistic applications from
one another. RAMCloud may also need
to provide mechanisms for perfor-
mance isolation, so high-workload ap-
plications cannot degrade the perfor-
mance of other applications.

Data model. The abstractions pro-
vided by RAMCloud will significantly
affect its usability, performance, and
scalability. Though the relational data
model is time-tested and provides a
rich and convenient programming in-
terface,20 its built-in overheads may
be incompatible with the low-latency
goals of RAMCloud, and no one has
yet constructed a system with ACID
(atomicity, consistency, isolation, and
durability) properties at the scale we
envision for RAMCloud. Thus the best
data model for RAMCloud is likely to
be something simpler (such as a key-
value store).4,9

Concurrency, transactions, consis-
tency. Another question is how much
support RAMCloud should provide
for transactions; for example, should
it support atomic updates to multiple
objects? One potential benefit of RAM-
Cloud’s extremely low latency is that it
might enable a higher level of consis-
tency/atomicity at larger system scale;
if transactions execute quickly, then
conflicting transactions are less likely
to overlap, which should reduce the
costs of preventing or resolving con-
flicts.

RAMCloud Disadvantages
The most obvious drawbacks of RAM-
Cloud are high cost per bit and high en-
ergy use per bit. For both metrics, RAM-
Cloud storage will be 50x–100x worse
than a pure disk-based system and 5x–
10x worse than a storage system based
on flash memory; see Andersen et al.1
for sample configurations and met-
rics. A RAMCloud system also requires
more floor space in a data center than a
system based on disk or flash memory.
Thus, if an application must store a
large amount of data inexpensively and
has a relatively low access rate, RAM-
Cloud is not the best solution.

However, RAMCloud is much more
attractive for applications with high
throughput requirements. Measured
in terms of cost per operation or energy
per operation, RAMCloud is 50x–100x
more efficient than disk-based sys-

If RAMCloud
succeeds, it will
probably displace
magnetic disk as
the primary storage
technology in data
centers.

129 communications of the acm | july 2011 | vol. 54 | no. 7

contributed articles

tems and 5x–10x more efficient than
systems based on flash memory.1 For
systems with high throughput require-
ments, RAMCloud can provide not just
high performance but also energy effi-
ciency.

Another RAMCloud disadvantage
is it provides high performance only
within a single data center. For applica-
tions requiring data replication across
data centers, the latency of updates will
be dominated by speed-of-light delays
between data centers, so RAMCloud
will have little or no latency advantage
for writes. However, RAMCloud can
still offer exceptionally low latency for
reads, even with cross-data-center rep-
lication.

Related Work
The role of DRAM in storage systems
has steadily increased over recent de-
cades, and many RAMCloud ideas have
been explored in other systems; for ex-
ample, several research experiments
in the mid-1980s involved databases
stored entirely in main memory.10,13

Main-memory databases were not
widely adopted at the time, perhaps
due to their limited capacities, but
there has been a resurgence of inter-
est lately, evidenced by such systems as
H-store.16 The latency benefits of opti-
mizing a storage system around DRAM
have also been demonstrated in Rio
Vista and other projects,17 and the limi-
tations of disk storage have been noted
by many researchers, including Jim
Gray, who predicted that data would
migrate from disk to RAM.21

Many Web-related applications
make aggressive use of DRAM; for
example, both Google and Yahoo!
store their search indices entirely in
DRAM. Memcached18 provides a gen-
eral-purpose key-value store entirely
in DRAM and is widely used to offload
back-end database systems; however,
memcached makes no durability guar-
antees, so it must be used as a cache.
Google’s Bigtable storage system al-
lows entire column families to be load-
ed into memory where they can be read
without disk accesses.5 The Bigtable
project has also explored many of the
issues in federating large numbers of
storage servers.

Low-latency network communica-
tion has been explored extensively,
including in research projects (such

as Chun et al.6 and Dittia11) and indus-
try standards (such as InfiniBand and
iWARP). These projects and standards
demonstrate the RAMCloud goal of
5µs–10µs RPC is achievable. How-
ever, most of the fastest results were
achieved in specialized environments.
For example, InfiniBand uses a differ-
ent networking infrastructure from
the Ethernet switches common in data
centers. Both InfiniBand and iWARP
support the remote direct memory ac-
cess (RDMA) protocol, allowing a cli-
ent application to issue read and write
requests to selected memory regions
of a server; the requests are processed
on the server entirely in the network
interface controller, with no software
involvement. Though RDMA provides
low latency, its operations are too low-
level, forcing many questions (such as
how to organize the server’s memory)
back to the clients, where the solutions
require complex, expensive synchroni-
zation among clients. For RAMCloud,
the best approach is for all RPCs to
pass through application-specific soft-
ware on the server, possibly making
individual RPCs slower but allowing
higher-level operations that improve
overall system performance.

Potential Impact
If the RAMCloud concept is shown
to be practical and is widely used, it
could have broad impact across the
field of computing. The most impor-
tant will be to enable a new class of
applications that access large data
sets at a very high rate. A RAMCloud
containing 1,000–10,000 storage serv-
ers will support data sets of 1014–1015B
(100TB–1PB) being accessed by tens of
thousands of application servers at a
total rate of 109–1010 requests/sec. The
storage model for RAMCloud is “flat,”
meaning all objects can be accessed
quickly; unlike disk-based systems,
performance is not affected by data
placement. This model should make
RAMCloud particularly attractive for
graph algorithms operating at very
large scale, where accesses are ran-
dom and unpredictable.

RAMCloud will accelerate adoption
of cloud computing. Although cloud
computing offers many advantages, it
is limited by the absence of scalable
storage systems.3 As a result, develop-
ers find it difficult to create applica-

RAMCloud may
cost slightly more
than caching
systems but will
provide guaranteed
performance
independent
of access patterns
or locality.

contributed articles

july 2011 | vol. 54 | no. 7 | communications of the acm 130

tions that reap the full benefit of cloud
computing. RAMCloud will make it
easier to develop such applications
and eliminate many of the problems
associated with scaling them.

RAMCloud could also have a signifi-
cant effect on network infrastructure.
In the past, the design of networks fo-
cused primarily on bandwidth, and it
has been common practice to sacrifice
latency to improve bandwidth. RAM-
Cloud will require extremely low net-
work latency; we hope therefore to see
a change of mind-set, with latency be-
coming a key area where vendors com-
pete for superiority. Latency-driven
network design will have a far-reaching
effect; for example, networking ven-
dors today are under pressure to in-
corporate deep packet buffers to avoid
dropped packets, causing problems for
higher-level protocols (such as TCP).
However, these deep buffers can result
in huge delays (tens of milliseconds).
A low-latency approach would require
elimination of almost all buffering,
possibly requiring new strategies for
handling packet loss in higher-level
protocols.

RAMCloud is likely to influence the
design and management of data cen-
ters, in part through the cloud com-
puting and networking changes dis-
cussed earlier; RAMCloud will require
data-center managers to think much
more about latency than they do today.
In addition, if RAMCloud succeeds, it
will probably displace magnetic disk as
the primary storage technology in data
centers. RAMCloud may also lay the
groundwork that enables adoption of
alternative storage technologies (such
as flash memory and phase-change
memory).

RAMCloud will also encourage new
approaches to server architecture. One
change we hope to see is new power-
management techniques (such as bat-
tery backup and supercapacitors), al-
lowing servers to continue operation
for a fraction of a second after power
failure in order to flush volatile infor-
mation to secondary storage. RAM-
Cloud may also enable a spectrum of
server designs representing trade-offs
among speed, memory capacity, and
power consumption. A RAMCloud clus-
ter could also contain several differ-
ent kinds of servers and automatically
adjust system configuration to match

access patterns with server characteris-
tics; for example, tables with relatively
low access rates could be migrated to
servers with processors that are slower
but more energy efficient.

Conclusion
In the future, technology trends and
application requirements will dictate a
larger and larger fraction of online data
be kept in DRAM. We have argued here
that the best long-term solution for
many applications may be a radical ap-
proach where all data is kept in DRAM
all the time. The two most important
aspects of RAMCloud are its extremely
low latency and its ability to aggregate
the resources of large numbers of com-
modity servers. This combination of la-
tency and scale will enable creation of
many new data-intensive applications
and simplify construction of existing
large-scale applications. In addition,
RAMCloud will provide an attractive
substrate for cloud-computing envi-
ronments.

Many challenging issues must still
be addressed before a practical RAM-
Cloud can be constructed. Toward this
end, we have begun a research proj-
ect at Stanford University to build a
RAMCloud system. Over the next few
years, we hope to answer some of the
research questions about how to build
an efficient and reliable RAMCloud, as
well as observe the effect of RAMCloud
on application development.

Acknowledgments
Many people offered helpful com-
ments on drafts of this article, improv-
ing both its presentation and our think-
ing about RAMCloud. In particular, we
would like to thank David Andersen,
Michael Armbrust, Andrew Chien, Jeff
Dean, Robert Johnson, Jim Larus, Da-
vid Patterson, Jeff Rothschild, Vijay
Vasudevan, and the anonymous Com-
munications reviewers. The RAMCloud
project is supported by Facebook, Mel-
lanox, NEC, NetApp, and SAP. 	

References
1.	A ndersen, D., Franklin, J., Kaminsky, M. et al. FAWN: A

fast array of wimpy nodes. In Proceedings of the 22nd
Symposium on Operating Systems Principles (Big Sky,
MT, Oct. 11–14). ACM Press, New York, 2009, 1–14.

2.	A rista Networks. Arista Networks 7100 Series
Switches; http://www.aristanetworks.com/
en/7100Series

3.	A rmbrust, M., Fox, A., Griffith, R. et al. A view of cloud
computing. Commun. ACM 53, 4 (Apr. 2010), 50–58.

4.	B rants, T., Popat, A.C., Xu, P., Och, F.J., and Dean,

J. Large language models in machine translation.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning
(Prague, June 28–30). Association for Computational
Linguistics, Stroudsburg, PA, 2007, 858–867.

5.	C hang, F., Dean, J, Ghemawat, S. et al. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems 26, 2 (2008),
4:1–4:26.

6.	C hun, B., Mainwaring, A., and Culler, D. Virtual network
transport protocols for Myrinet. IEEE Micro 18, 1 (Jan.
1998), 53–63.

7.	C ooper, B., Ramakrishnan, R., Srivastava, U. et al.
PNUTS: Yahoo!’s hosted data serving platform. In
Proceedings of the 34th International Conference on
Very Large Data Bases (Auckland, New Zealand, Aug.
23–28, 2008), 1277–1288.

8.	 Dean, J. and Ghemawat, S. MapReduce: Simplified
data processing on large clusters. In Proceedings of
the Sixth USENIX Symposium on Operating Systems
Design and Implementation (San Francisco, Dec. 6–8).
USENIX Association, Berkeley, CA, 2004, 137–150.

9.	 DeCandia, G., Hastorun, D., Jampani, M. et al. Dynamo:
Amazon’s highly available key-value store. In
Proceedings of the 21st ACM Symposium on Operating
Systems Principles (Stevenson, WA, Oct. 14–17). ACM
Press, New York, 205–220.

10.	 DeWitt, D., Katz, R., Olken, F. et al. Implementation
techniques for main memory database systems. In
Proceedings of the ACM SIGMOD Conference (Boston,
June 18–21). ACM Press, New York, 1984, 1–8.

11.	 Dittia, Z. Integrated Hardware/Software Design
of a High-Performance Network Interface, Ph.D.
dissertation. Washington University in St. Louis, 2001;
http://www.arl.wustl.edu/Publications/2000-04/
zDittia-2001.pdf

12.	 Dobrescu, J., Egi, N., Argyraki, K. et al. RouteBricks:
Exploiting parallelism to scale software routers. In
Proceedings of the 22nd Symposium on Operating
Systems Principles (Big Sky, MT, Oct. 11–14). ACM
Press, New York, 2009, 15–28.

13.	 Garcia-Molina, H. and Salem, K. Main memory
database systems: An overview. IEEE Transactions
on Knowledge and Data Engineering 4, 6 (Dec. 1992),
509–516.

14.	 Gray, J. and Putzolu, G.F. The five-minute rule for
trading memory for disc accesses and the 10 byte rule
for trading memory for CPU time. In Proceedings of
the SIGMOD Conference (San Francisco, May 27–29).
ACM Press, New York, 1987, 395–398.

15.	 Johnson, R. and Rothschild, J. Personal
communications (Mar. 24, 2009 and Aug. 20, 2009).

16.	K allman, R., Kimura, H., Natkins, J. et al. H-store:
A high-performance distributed main memory
transaction processing system. In Proceedings of the
34th International Conference on Very Large Data
Bases (Auckland, New Zealand, Aug. 23–28, 2008),
1496–1499.

17.	L owell, D. and Chen, P. Free transactions with Rio
Vista. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (Saint-Malo, France, Oct.
5–8). ACM Press, New York, 1997, 92–101.

18.	 Memcached. A distributed memory object caching
system; http://www.danga.com/memcached/

19.	O usterhout, J., Agrawal, P., Erickson, D., Kozyrakis,
C., Leverich, J., Mazières, D., Mitra, S., Narayanan, A.,
Parulkar, G., Rosenblum, M., Rumble, S., Stratmann, E.,
and Stutsman, R. The case for RAMClouds: Scalable
high-performance storage entirely in DRAM. SIGOPS
Operating Systems Review 43, 4 (Dec. 2009), 92–105.

20.	R amakrishnan, R. and Gehrke, J. Database
Management Systems, Third Edition. McGraw-Hill,
New York, 2003.

21.	R obbins, S., RAM is the new disk… InfoQ (June 19,
2008); http://www.infoq.com/news/2008/06/ram-is-
disk

22.	R osenblum, M. and Ousterhout, J. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems 10, 1 (Feb. 1992),
26–52.

John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis, Jacob Leverich, David Mazières,
Subhasish Mitra, Aravind Narayanan, Diego Ongaro,
Guru Parulkar, Mendel Rosenblum, Stephen M.
Rumble, Eric Stratmann, and Ryan Stutsman are all
affiliated with the Department of Computer Science of
Stanford University, Stanford, CA.

© 2011 ACM 0001-0782/11/07 $10.00

