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computing systems. Traditional memory consistency ensures that all pro-
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class of programs that, if developed for a strongly consistent memory, run
correctly with causal memory.
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1 Introduction

The abstraction of a shared memory is of growing importance in distributed computing
systems. It allows users to program these systems without concerning themselves with
the details of the underlying message-passing system. Traditionally, distributed shared
memories ensure that all processes in the system agree on a common order of all opera-
tions on memory. Such guarantees are provided by sequentially consistent memory [27]
and by atomic memory [28] (also called linearizable memory [20]). Unfortunately, pro-
viding these consistency guarantees entails access latencies that prevent scaling to large
systems. A simple argument [10,29] can be used to show that no memory can provide
strong consistency and retain low latency in systems with high message-passing delays.
This tradeoff represents a significant efficiency problem since it forces applications to
pay the costs of consistency even if they are highly parallel and involve little synchro-
nization. A number of techniques [11,24] have been suggested to improve the efficiency
of shared memory implementations, but all provide only partial remedies to the funda-
mental problem of latency and scale for strongly consistent memories.

Recent research [1,6,9,16-18,21,29] suggests that a systematic weakening of memory
consistency can reduce the costs of providing consistency while maintaining a viable
“target” model for programmers. Weakly consistent memories admit more executions,
and hence more concurrency, than either sequentially consistent or atomic memories.
This paper defines causal memory, an abstraction that ensures that processes in a
system agree on the relative ordering of operations that are causally related. (Causal
memory has been mentioned earlier [6,21]; however, these papers do not present careful
definitions as is done here.) This paper provides a formal definition of causal memory
and gives an implementation for message-passing systems. We give two classes of
programs that can be developed assuming a sequentially consistent memory and that
run correctly with causal memory.

Causal memory is based on Lamport’s concept of potential causality [26]. Potential
causality provides a natural ordering on events in a distributed system where processes
communicate via message passing. We introduce a similar notion of causality based on
reads and writes in a shared memory environment. Causal memory requires that reads
return values consistent with causally related reads and writes, and we say that “reads
respect the order of causally related writes.” Since causality orders events only partially,
reading processes may disagree on the relative ordering of concurrent writes. This pro-
vides independence between concurrent writers which reduces consistency maintenance
(synchronization) costs. The idea is that the synchronization required by a program is
often specified explicitly and it is not necessary for the memory to provide additional
synchronization guarantees.

Causal memory is related to the ISIS causal broadcast and, thereby, to the notion
of causally ordered messages [13]. Our implementation of causal memory is based on
the use of vector timestamps [14,30], as is the ISIS implementation of causal broadcast.
Both implementations are “non-blocking”: a process may complete an operation (e.g., a
write or a send) without waiting for communication with other processes. Nevertheless,
causal memory is more than a collection of “locations” updated by causal broadcasts.
Memory has overwrite semantics and messages have queuing semantics. A message



recipient can be assured that it will eventually receive all messages that have been
sent to it, but repeated reads cannot guarantee that all values written will be read.
“Hidden writes”, values overwritten before they are read, are always possible. Since a
process may read memory locations in any order it chooses, it may read a value vy from
location & much later than a value vy from location y, even when the write operation
that stores vy in x is causally before the write of vy to y. In a message-passing system,
such behavior would violate the required causal ordering.

We give precise characterizations of two classes of programs that run correctly with
causal memory. Any execution a program in either of these classes with causal memory
is actually sequentially consistent. If the program is proven correct with sequential
consistent memory, then it is still correct with causal memory. One of these classes
includes data-race free programs [1,2] that make use of explicit synchronization to
prevent problems that may stem from concurrent access to shared memory.

It is far from clear that there is a “best” kind of shared memory model for use with
distributed systems. Strongly consistent memories are easier to program than weak
memories, but they require costly blocking implementations. Very weak memories may
be implemented cheaply, but they might not be practical to program. We believe that
causal memory provides a happy medium: it allows non-blocking implementations and
is a useful model for a class of practical programs.

2 Shared Memory Systems

This section formally describes the system that underlies our definitions and results.
We use a model derived from those used by Herlihy and Wing [20] and by Misra [33].

We define a system to be a finite set of processes that interact via a shared memory
that consists of a finite set of locations. Let P = {p1,pa,...,p.} be the set of processes.
A process’s interaction with the memory is through a series of read and write operations
on the memory. Each such operation acts on some named location and has an associated
value. For example, a write operation by process p;, denoted w;(x)v, stores the value v
in location x; a similarly denoted read operation, r;(x)v, reports to p; that v is stored
in location x.

A local execution history (or local history) of process p;, denoted L;, is a sequence
of read and write operations. If operation o; precedes oy in L;, we write 0 — 0,

and say that o, precedes oy in program order. An execution history (or history) H =
(L1, Lg,...,Ly,) is a collection of local histories, one for each process. An operation is
said to be in H if it is in one of the local histories that H comprises.

Different kinds of memories are defined by considering serializations of certain sets
of operations. If A (or, respectively, H) is a set of operations (or history), then S is a
serialization of A (or H) if S is a linear sequence containing exactly the operations of A
(or H) such that each read operation from a location returns the value written by the
most recent preceding write to that location. (Unless otherwise stated, we assume that
each location has initial value L and that this value is returned by any read of a location
with no preceding write.) Serialization S respects order — if, for any operations o; and
02 In S, 01 — 09 implies that o; precedes 05 in S.
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3 Earlier Memory Models

Given the formalism developed above, one can define a variety of memory consistency
models. This section defines Lamport’s sequential consistency [27] and the PRAM of
Lipton and Sandberg [29]. The next section uses the same formalism to define causal
memory.

The idea behind sequential consistency is that, although the shared memory ac-
cessed by processes may be distributed (i.e., may consist of many different modules),
the processes’ observations of the memory should be consistent with one that permits
only sequential accesses (i.e., a single memory). History H is sequentially consistent if
it satisfies the following:

SC: there is a serialization S of H that respects all the program orders —.

Thus, the values returned by the read operations in H are consistent with the sequential
ordering in S. If processes only communicate via the shared memory, they cannot tell,
by way of their interactions with the memory, that they are not accessing a single
memory. A memory is sequentially consistent if it admits only sequentially consistent
histories.!

Recognizing that sequential consistency is costly to implement, Lipton and Sandberg
developed a weaker form of memory that they called the pipelined RAM or PRAM.
This memory requires only that the writes of each process be seen in program order at
all other processes. Thus, each process must sequence its own operations and the writes
of other processes. For this reason, we make the following definition. If H is a history
and p; is a process, let Ag_w comprise all operations in L; and all write operations in

H. A history H is PRAM if it satisfies the following:

PRAM: for each process p;, there is a serialization 5; of Ag_w that respects all

the program orders —.
J

A memory is PRAM if it admits only PRAM histories.

Notice that both sequential consistency and PRAM require serializations that re-
spect program order. PRAM is weaker than sequential consistency because each pro-
cess may “perceive” a different serialization. While the order of two writes by a given
process must be the same in all these serializations (even those for other processes),
writes by different processes may appear in different orders in different serializations.
Furthermore, each process’s serialization does not contain the read operations of other
processes, as it is not (directly) aware of these operations. Figure 1 gives an example
of a PRAM history that is not sequentially consistent. This history is PRAM because
the following serializations exist:

S1o= wi(2)0; wax)l; re(a)l
Sy = wa(a)l; wi(x)0; re(x)0

We now show that the history is not sequentially consistent. Suppose that it were and

LA memory is atomic (or linearizable) if each history admits a serialization that not only preserves
the order within the local histories but also that of any pair of operations whose executions do not
overlap in real time [20,28]. The definition of such memories is beyond the scope of this paper.



pii (w(x)0| ()l

p2: |w(x)l] |r(x)0

Figure 1: A history that is not sequentially consistent

let S be the required serialization. Inspection of L; shows that wy(2)0; wq(x)1;r(2)1
must appear in that order in S. Inspection of Ly shows that wy(x)1;w(2)0;r2(2)0
must appear in that order in S. This gives a contradiction, as wq(2)0 and wq(x)]l must
be ordered uniquely.

Slow memory given by Hutto and Ahamad [21] can also be defined using this for-
malism, as can processor consistency [4,16,18]. We are currently exploring the use of
this formalism in the definition of other memories [25].

4 Causal Memory

We define causal memory to be intermediate between sequential consistency and PRAM.
Its definition is similar to that of PRAM but is stronger because the serializations re-
quired must respect not only program order but a causality order as well. We first
define causality orders.

Let H = (Ly, Ly, ..., L,). A causality order of operations in H is determined by
program order and a writes-into order that associates a write operation with each read
operation (except one of a location’s initial value). The writes-into order is analogous
to the order in message passing systems that relates the sending of a message to its
corresponding receipt. The order in message-passing systems is easier to define because,
for each message receipt, there is a unique sending event. This is not the case in
shared-memory systems: several write operations may write the same value to the
same location, and it is not always clear which to associate with a particular read
operation. (Misra simplified this situation by assuming that all writes to a location are
uniquely valued.)

Because there may be multiple writes of a value to a location, there may be more
than one writes-into order. A writes-into order — on H is any relation with the
following properties:

e if 01 — 09, then there are & and v such that oy = w(z)v and 0y = r(z)v;

e for any operation oy, there is at most one oy such that o; +— 0s;

e if 0o = r(a)v for some x and there is no oy such that o; — o0y, then v = L; that
is, a read with no write must read the initial value.

A causality order ~» induced by — for H is a partial order that is the transitive closure
of the union of the history’s program order and the order . In other words, 0; ~~ 09
if and only if one of the following cases holds:
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pri Jw(@)0| |w(x)l
P2 r(z)l] |w(y)2

P3: r(y)2 r(x)0

Figure 2: A history that is not causal

e 01 — 0y for some p; (01 precedes oy in L;);
1
® 01 > 0y (09 reads the value written by o1); or

e there is some other operation o' such that oy ~» o' ~» 0,.

(If the relation ~» is cyclic, then it is not a causality order.) If o; and oy are two
operations in H such that, for causality order ~», 01 > 0y and 0y ¥~ 01, we say that o,
and o, are concurrent with respect to ~-.

We can now define causal memory. A history H is causal if it has a causality
order ~» such that

CM: for each process p;, there is a serialization .S; of Ag_w that respects ~~.
A memory is causal if it admits only causal histories. Again, this is weaker than
sequential consistency because each process may “perceive” a different serialization.
Figure 1, given above, is causal but not sequentially consistent (it is causal because the
serializations S7 and Sy, given above, exist).

If o4 — 02 in some p;, then o; ~» o0y for all causality orders ~-; thus, it should

be clear that any causal history is also PRAM. However, not all PRAM histories are
causal. Figure 2 gives an example of a history that is PRAM but not causal. It is
PRAM because the following serializations, each consistent with program order, exist:

S = wl(:z;)(); wy
Sy = wi(2)0; wy(x

Sz = wyy)2; r3(y)2; wy

This history is not causal for the following reason. There is only one possible writes-into
order: wy(x)0 — r3(x)0, wy(x)l — ro(x)1, and wz(y)2 — rs(y)2. Thus, H has only one
causality order, and the following relations hold: w; ()0 - wy (@)l — ry(x)l - w2 (y)2.

Thus, w1(x)0 ~ wy(x)l ~ wy(y)2, and the three writes must appear in that order in
all serializations. It is clear that there is no way to construct S3 (that respects the
program order in L3) with the writes in that order so that each read (by ps) returns the
most recently written value to the location being read. Clearly, r5(y)2 would have to
follow w3 (y)2, so the only choice for S5 is wq(x)0;wy(2)1; wa(y)2; rs(y)2; rs(2)0. This
is not a serialization (the last read should return 1), so the history is not causal.



5 An Implementation of Causal Memory

This section presents and proves correct an implementation of causal memory using
message passing. The implementation uses an adaptation of vector timestamps [14,30].
It requires reliable processes and communication channels.

Each process maintains four local data structures. The first is a private copy M of
the abstract shared causal memory M. The second is a vector clock ¢, which is used
to timestamp outgoing messages. This is a vector of natural numbers, one for each
process in the system. Informally, ¢[7] is the number of p;’s writes of which the process
is aware. Two vectors can be compared by comparing their components. Vector ¢; is
less than or equal to ty (11 = t3) if each of ¢1’s components is less than or equal to t5's
corresponding component; ¢y is less than ty (t; < t3) if it is less than or equal to ¢,
and 1s not equal to t,. Note that “=<” is transitive. Each process also maintains two
queues. The first is a first-in-first-out queue called OutQueue. It contains information
about local writes to memory that are yet to be communicated to other processes. The
second is a priority queue called InQueue. Each queue item includes a vector clock
value, which is its timestamp. The queue InQueue is ordered by timestamp, with items
with smaller timestamps appearing closer to the head. The queue is maintained so
that items being added to the queue are only placed ahead of existing items whose
timestamps are greater than that of the new item. That is, the new item is placed after
any existing item with an equal incomparable timestamp (actually, one can show that
no two items can have equal timestamps, but we do not need this fact).

The implementation for process p; is shown in Figure 3. It consists of an initial-
ization routine and five basic actions. Each of these actions is local and executed
atomically. A read action is executed whenever a read of a location x is invoked by
pi. The value stored in M[z] is returned to p;. A write action is executed whenever
a write of some value v to some location x is invoked by p;. Process p; increments
t[7], writes v to M|z], and adds the tuple (i, x,v,t) to OutQueue; this tuple is called
a write-tuple. Note that the read and write actions require no blocking. This is in
contrast to implementations of linearizable or sequentially consistent memory; in these
cases, it can be shown that some blocking is required [10,29,31].

The information in QutQueue must be communicated to the other processes. This
is done by send actions, which may be performed whenever is convenient to the process
but which must be performed infinitely often (that is, a process can never elect to
perform no more send actions). A send action removes some nonempty prefix from
OutQueue and sends it to all other processes. When such a message is received, p;
executes a receive action; it adds all the write-tuples in the message received to InQueue
(recall that this is a priority queue based on the tuples’ timestamps). The information
in InQueue 1s used to update a process’s view of memory. This is done by an apply
action, which need only be performed infinitely often. The write-tuple at the head of
InQueue can be applied if its timestamp reflects no other write of which p; is not aware.
This can be determined by comparing p;’s vector clock to the timestamp of the write; a
write by p; can be applied only if all components of its timestamp (other than the jth)
are less than or equal to those of p;’s vector clock and if the jth component is exactly
one more than the jth component of p;’s vector clock. When a write can be applied, it
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/* Initialization: */
foreach = € M do
Mlz]:= L
for j:=1to n do
tj] =0
OutQueue := ()
InQueue := ()

/* Read action: to read from x */

return(M|z])

/* Write action: to write v to o */

t[e] :=tfi] +1
Mlz]:=v
enqueue (i, z,v,1) to OutQueue

/* Send action: executed infinitely often */

if OutQueue # () then

let A be some nonempty prefix of QutQueue

remove A from OutQueue
send A to all others

/™ Receive action: upon receipt of A from p; */

foreach (j,z,v,s) € A
enqueue (7, x,v,s) to InQueue

/* Apply action: executed infinitely often */
if InQueue # () then

let (j,x,v,s) be head of InQueue

if s[k] < t[k]
remove (j, x, v, s) from InQueue
tj] := sJ]
Mlz]:=v

/* Add r;(x)* to L; and S; */

/>k Add wi(:zj)v to L; and 5; >k/

for all k # j and s[j] = t[j] + 1 then

/* Add wj(z)v to S; */

Figure 3: Implementation of Causal Memory for Process p;




is removed from InQueue, the corresponding component of p;’s vector clock is updated,
and the new value is written to M. This means that, after the write-tuple (j, x, v, s) is
applied to p;’s memory, s < ¢, where t is the value of p;’s vector clock.

To facilitate the proof of correctness of the implementation, we introduce the fol-
lowing notation: if o is an operation of a process p;, the timestamp of o, denoted
ts(0), is the value of p;’s vector clock immediately after o completes. Note that, for a
write operation o, ts(0) is the same as the timestamp included with the corresponding
write-tuple. H = (L, Ly, ..., L,) is a history of the implementation if each L; is the
ordered sequence of read and write operations performed by process p; (see comments
in Figure 3). Theorem 3 below shows that H is causal. The causality order ~~ used is
derived from the following writes-into order —. If 0y = r;(x)v is a read by p; of some
non-initial value, then o; — o0y, where o; is the latest write to = applied by p; before
performing oy (it is clear from Figure 3 that o; is a write of v).

The following two lemmas are used in the proof of correctness. The first asserts
that the causality order ~~ is reflected in vector timestamps:

Lemma 1: Let H be a history of the implementation and let 0, and oy be two operations
such that oy ~» og. Then ts(o1) < ts(og). Furthermore, if oy is a write operation by p;,
ts(o1)[t] < ts(o2)[t], so ts(o1) < ts(oz).

Proof:  The proof is by induction on the structure of the order ~». Consider three
cases:

® 0 — 09 for some p;. Since no process ever decrements any component of its

vector clock, ts(o;) must be less than or equal to ts(oy). Furthermore, if 0, is a
write operation, then p; increments its local component during og, so ts(o1)[i] <

ts(o2)[1])-

® 01 — 0y. This means that oy is a write operation, say w;(z)v, and oq is a corre-
sponding read, say r;(x)v. Note that the write-tuple associated with o, includes
the timestamp ts(o1). By Figure 3, it is clear that p; cannot read v from « before
it applies the write to its memory. Process p; does not apply the write until its
own timestamp is greater than or equal to ts(o1) (except for ts(o1)[i], which is
assigned to the 7' component of p;’s clock when the write is applied). Since no
component of p;’s timestamp is ever decremented, it is still greater than or equal
to ts(o1) when it reads v, so ts(01) = ts(o2).

e There is some operation o' such that o; ~» o’ ~» 0,. By induction, this implies
that ts(o1) < ts(0') = ts(oz). By the transitivity of <, the desired result holds.
If 05 is a write by p;, then ¢s(0')[i] < ts(o02)[¢] by induction. Since ts(o1) < ts(o')
implies ts(o1)[1] < ts(0')[i], we have that ts(o1)[i] < ts(02)][7].

The next lemma is used to show the liveness of the implementation:



Causal Memory: Definitions, Implementation, and Programming 9

Lemma 2: Let H be a history of the implementation and suppose that w is a write
operation of process p;. Then each process p; eventually applies w to its memory.

Proof: If 1 = j, the write is applied immediately; for the remainder of the proof,
assume that ¢ # j. Let s = ts(w). An inspection of Figure 3 shows that, once p; has
executed w, it is always the case that one of the following holds for w: its write-tuple
is in p;’s OutQueue, its write-tuple is in transit from p; to p;, its write-tuple is in p;’s
InQueue, or p; has applied the write. Since p; performs send operations infinitely often
and QutQueue is first-in-first-out, any write-tuple in QutQueue is eventually sent to
p;. Since channels are reliable, any write-tuple that is sent is eventually received and
added to p;’s InQueue. We now show that p; eventually applies any write-tuple added
to InQueue.

Consider the time at which p; adds the write-tuple for w, (i, z, v, s), to its InQueue.
There are only finitely many write-tuples ahead of it at this time. Write-tuples with
timestamps smaller than ts(w) that can arrive in the future will also be placed ahead
of (1,2,v,8) in p;’s InQueue. 1t is easy to see that there can be only finitely many such
write-tuples. For this reason, we can assume by induction that, at some point in time,
p; has applied all write-tuples that are ever placed before (i, 2,v,s) in p;’s InQueue
or whose timestamps are less than s. At this point, (¢, 2,v,s) is at the head of p;’s
InQueue and remains there until it is applied; we say that it is ready to be applied by
p;. We now show that it is indeed applied when p; next performs an apply action.

Let t be p;’s vector clock at such a point. We must show that t[k] > s[k] for all
k # j and that t[5] + 1 = s[j]. Let px be any process other than p; (k could equal 7).
Let w’ be the s[k]th write by pg. This means that p; applies w’ before it performs w,
which implies that ts(w’) < ts(w). Thus, p; must order w’ ahead of w in InQueue,
which implies that, once (i, 2z, v, s) is ready to be applied by p;, p; has already applied
w'. Once p; applies w', t[k] > s[k], as desired. Let @ be the (s[j] L 1)st write by p;,. By
Lemma 1, ts(w) = ts(w). Thus, p; must order w ahead of w in InQueue and thus has
already applied w. Therefore, ¢[j] > s[j] L 1. This means that p; applies w the next
time it performs an apply operation. Since p; does this infinitely often, we conclude
that p; eventually applies this write. O

We can now prove the correctness of the implementation:
Theorem 3: Let H be a history of the implementation. Then H is causal.

Proof:  The proof must show that, for each process p;, there is a serialization 5; of
Ag_w that respects ~». (Recall that Ag_w is the set of all of p;’s operations and all
writes in H.)

The serialization S; for p; is obtained simply by concatenating all writes as they are
applied to p;’s memory and all reads as they occur (see comments in Figure 3). By
Lemma 2, S; includes all write operations in H, and thus all of Ag_w. S, 1s a serialization
because all reads and writes apply directly to p;’s copy of memory and each read thus
reads the value most recently written. It remains to be seen that S5; respects ~>.

We first observe that ~» is indeed a partial order in H. To prove this, it suffices

to observe that it is acyclic by showing that o; ~» oy implies 0y ¥ 01. Suppose for a
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contradiction that oy ~» 05 and 0y ~» 0. By Lemma 1, this means that ts(oy) < ts(o2)
and ts(o2) < ts(o1), implying that ts(o;) = ts(03). Lemma 1 implies that neither o; nor
07 1s a write operation, as this would contradict this equality. Even if o; and o0y occur
at the same process, it cannot be the case that each of 0; and 0, precede the other with
respect to program order. Without loss of generality, assume that o; does not precede
0y In any L;. Since o; ~» 0y and both operations are reads, there must be some write
operation w such that oy ~> w ~» 03. By Lemma 1, ts(01) < ts(w) < ts(oz), implying
ts(o1) # ts(o02), a contradiction. We conclude that the causality order is not cyclic.
Let 0; and oy be two operations in Ag_w such that oy ~» 0,; we must show that o,
precedes oy in S;. By Lemma 1, ts(o1) < ts(03). One of the following five cases must

hold:

e Both o; and o0, are operations by p;. Since ~» is acyclic, this means that o,
precedes 0, in L;. Since p;’s operations appear in both L; and 5; in the order in
which they are performed, 0, precedes oy in 5;.

® 0y is a write by another process p; and o3 is an operation by p;. An inspection of
Figure 3 shows that p; does not set its vector clock ¢ so that ¢[j] = ts(o1)[j] until
it applies o1 to its local memory. Since ts(o02)[7] > ts(01)[j], 02 can occur only
after this application. This means that o; precedes oy in ;.

e 0; is a write by p; and oy is a write by another process p;. Since ts(o1) < ts(o2),
ts(o1)[t] < ts(oz)[t]. This means that p; does not execute oy until it has applied
o1; since p; cannot apply oy before p; and must apply o, before p;, it must be
that p; applies o; before it applies 0. Thus, 01 precedes o, in 5.

e 01 is a read by p; and 0, is a write by another process. It is not hard to see that
01 ~> 0, implies that there is a write w by p; such that o; ~ w ~» 0,. By the
first case above, 0y precedes w in 5;. By the third case above, w precedes o0y in
Si. Thus, o1 precedes 0, in S;.

e 0; and o0, are both writes by processes other than p;. Suppose oy and oy are
executed by processes p; and pi. If j = k, Lemma 1 implies ts(01)[j] < ts(02)[J],
so p; cannot apply oy until it has applied 0,. Now assume that j # k and let ¢
be p;’s vector clock at the point when oq is applied. By Figure 3, ts(o02)[7] < t[7].
Since ts(o1) = ts(o0z2), ts(01)[j] < ts(o2)[g]. This means that p; has already applied
o1 at this point. Thus, o; precedes 0, in S;.

In all cases, o1 precedes oy in S;, so the proof is complete. g

The implementation given in Figure 3 shows that read and write operations for
causal memory can be implemented without processes experiencing any blocking. Con-
sider the following analyses of the performance of implementations of various forms
of distributed shared memory. Assume that local computation time is negligible with
respect to message delays and assume that d is the worst-case message delay. Given
a memory implementation, let R be the worst-case execution time for a read and W
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be the worst-case execution time for a write. Attiya and Welch [10] showed that, in
systems in which process clocks were not perfectly synchronized and in which there
was some uncertainty with respect to message delays (e.g., some messages may take d
to be delivered and others may take less), it is impossible to achieve W =0 or R =0
in implementations of linearizable memory (see footnote 1). Lipton and Sandberg [29]
showed that, for any implementation of sequentially consistent memory, R + W > d.
In contrast, our implementation of causal memory gives R = W = 0.

The implementation presented here is correct as long as processes and communica-
tion channels are reliable. This is a normal assumption when implementing distributed
shared memory [3,9,10,29.31,32]. However, we have also developed an implementation
of causal memory that is correct even in systems in which processes may fail by stop-
ping and in which communication channels can lose messages (as long as each channel
delivers infinitely many messages if infinitely many are sent) [5]. This implementation
is complex and inefficient and is not presented here.

In other work [6,23], we give a more practical implementation that sacrifices the
non-blocking property of the implementation presented here. The implementation also
makes use of vector timestamps but associates them with pages instead of individual
locations. The memory of each node is treated like a cache for some subset of the
shared pages, and a page-fault occurs when an accessed page is not in the cache. This
results in communication with an owner node, which is unique for each page. Since
the owner supplies the page on a fault, this implementation also requires that writes
to a page be sent to the owner. However, it is not necessary that nodes other than
the owner be notified on a write operation even when they store a copy of the page.
Causal memory consistency is implemented by locally invalidating pages that could
potentially be causally “overwritten”. Vector timestamps are used for this purpose.
This implementation does require nodes to communicate before certain read or write
operations can be completed and hence some memory operations may be blocking.
However, we have shown [23] that this implementation provides better performance
than sequentially consistent memory for several scientific applications.

6 Programming with Causal Memory

The previous section showed that causal memory may be implemented without block-
ing; a process’s write operations can complete before other processes learn about them.
To strengthen the case that causal memory is a good model of a distributed shared
memory, we must also argue that it can be programmed without undue difficulty. In
this section, we characterize two classes of programs; any program in these classes, if
written to run correctly on sequentially consistent memory, also runs correctly in a
system with causal memory. Thus, programs in these classes can be written assuming
a sequentially consistent memory even for a system that provides causal memory. We
show that all executions of these programs on causal memory are also possible with a
sequentially consistent memory.

The existence of these classes indicates that causal memory is a viable model for
programming distributed applications: if a few rules are followed, a programmer may
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assume that the memory is sequentially consistent, while causal memory may be used
instead. Because causal memory can be implemented more efficiently, this could result
in improved performance.

Section 6.1 presents some definitions and notation necessary for discussing the be-
havior of programs with a distributed shared memory. Section 6.2 considers first the
simple but restricted class of concurrent-write free programs. Section 6.3 considers the
more practical class of data-race free programs. Section 6.4 discusses other work done
in proving that programs in certain classes run correctly on memories weaker than
sequential consistency.

6.1 Definitions and Notation

At any time during an execution, a process is in some local state; this is determined by
its initial state and the operations performed thus far in its local history. A process p;
runs a local program II;, which is a function from local states to actions; each action
is either of the form w(x)v, indicating that value v should be written to location z,
or of the form r(z), indicating that the value of  should be read and returned.? The
execution of an action is an operation and changes the process’s local state; note that
the operation associated with a read action includes the value that was read. A tuple
of local programs, one for each process, is called a program and is usually denoted II.
H is a history of II if all operations in H are the execution of the actions that 1I would
specify given the local states through which processes pass.

Recall that a history H is a tuple of local histories, L; for each process p;. Let ~~
be a causality order of H. We say that history H' = (L, L,,..., L) is a prefix of H
with respect to ~» if each L’ is a prefix of L; and, if o is an operation in H’, then all
operations in H that precede o with respect to ~» are also in H'. H' is a proper prefix
of H with respect to ~» if it is a prefix of H with respect to ~» and H' # H.

6.2 Concurrent-Write Free Programs

A major advantage of using causal memory is that normal memory accesses can be
implemented without blocking; processes need not synchronize with each other in per-
forming these accesses. As a result, programs running on causal memory must do their
own synchronization. One way to achieve this is to ensure that no two writes can be
concurrent.

Let H be a history with causality order ~». H is concurrent-write free with respect
to ~» if there are no two write operations w; and ws, in H that are concurrent with
respect to ~». Program Il is concurrent-write free if, for all histories H of 1l and
all causality orders ~» of H, if H has a serialization that respects ~» (note that this
implies that H is sequentially consistent), then H is concurrent-write free with respect
to ~». Note that the concurrent-write freedom of a program is only a statement about
its sequentially consistent histories. An example of a concurrent-write free program is

2These actions should not be confused with the implementation actions described in Figure 3.
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x, y, and z are shared variables, initially 0;
a, b, ¢, and d are local variables

process p: process ps: process ps:
x:=1 repeat b:=y;
y:=1 a =1y repeat
until « = 1 c:=z
z:=1 until ¢ =1
d:=x

Figure 4: A Concurrent-Write Free Program

given in Figure 4. It is concurrent-write free because, in any execution of the program,
the three writes to global variables must be related as follows by any causality order ~»:
wi(2)l ~ wi(y)l ~» wy(z)l. (The read of y by ps is not relevant to the concurrent-
write freedom of the program. It serves to make the program not data-race free; see
below.)

Let H be a causal history, let ~ be a causality order that proves H is causal, and
suppose that H is concurrent-write free with respect to ~». For each process p;, let 5;
be the serialization of Ag_w that respects ~» (see Section 4). From ~», define a strong

causality order, denoted =, as follows: 0; = 0y if and only if one of the following cases

holds:
® 01 ~ 02
e 07 is a read by process p;, 0y is a write, and oy precedes oy in S;; or

e there is some other operation o' such that o; = o' = o,.

The idea behind = is that it extends ~» by ordering a read after any writes that causally
precede it and before all other writes. It is not hard to see that, if H is concurrent-write
free with respect to ~», then the associated = is acyclic; in particular, if 0; = 09, then
09 > 01. Furthermore, for any operation in such a history, there are only finitely many
operations that precede it with respect to =.

The following theorem shows that concurrent-write free programs produce only
sequentially consistent executions when run on causal memory:

Theorem 4: If1l is concurrent-write free, then all histories of 11 with causal memory
are sequentially consistent.

Proof:  The proof is by induction on the structure of causal histories of II. Specifically,
let H be a finite causal history of II and let ~~ be a causality order that proves that H
is causal. (The proof for infinite H follows.) We will prove the following for H given

3In this figure and in Figure 5, an assignment to a shared variable indicates a write action. An
assignment with a shared variable on the right side indicates a read action.
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that it holds for all proper prefixes of H with respect to ~»: H is concurrent-write free
with respect to ~» and has a serialization that respects ~».

To show that H is concurrent-write free with respect to ~», assume for a contradic-
tion that w; and wy are two concurrent writes in H. Clearly, w; and w; are executed
by different processes, so assume that wy is performed by p; and ws by pg, where j # k.
Define H' = (L}, L}, ..., L) by letting L. be the subsequence of L; containing all op-
erations that precede either w; or wy with respect to ~». If either w; or wy appears in
H', one precedes the other with respect to ~», giving a contradiction. Assume instead
that neither operation appears in H'; this means L’ includes p;’s operations up to but
not including w; and that the same holds for L}, px, and w,. Clearly, H is a proper
prefix of H with respect to ~»; by inductive hypothesis, H' is concurrent-write free with

respect to ~» and has a serialization that respects ~». Now define H = @1, EQ, ceey En>
by

Zf] = L;7 Wy;

LAk = Lj;wy;

L = I ifi ¢ {j, k).

H is also a (not necessarily proper) prefix of H with respect to ~» and is thus an
execution of II. Let S be a serialization of H’ that respects ~». This implies that
S’ wq;wsy is a serialization of H that also respects ~». Since Hisa history of II and II
is concurrent-write free, H is concurrent-write free with respect to ~». This means that
w; and wy cannot be concurrent with respect to ~», giving the desired contradiction.
We now show that H has a serialization that respects ~». As noted above, the
order = is acyclic. Since H is finite, we can choose an operation o in H such that for
no o' in H does o = o' hold. Let H be identical to H but excluding o. H is a proper
prefix of H with respect to ~» and, by the inductive hypothesis, has a serialization S
that respects ~». Clearly, S; o respects ~»; if it did not, either .S would not respect ~ or
there would be an operation o' in H such that o ~» o, which contradicts the definition
of 0. We will now prove that S;o is a serialization of H, proving that H is sequentially
consistent.
Assume for a contradiction that S;o is not a serialization of H. This means that
o is some read operation r;(z)v. Recall that H is causal; let S; be the serialization of
Ag_w that respects ~». There are two possibilities:
o There is some write to # in H. All such writes precede o in 5;: any write that
does not do so will follow o with respect to =, contradicting the definition of
o. Let w be the latest write to = in 5;. Since 5; is a linearization, w writes the
value v. Since S;o is not a serialization, there must be some write w’ to z of
another value after w in S. Since H is concurrent-write free with respect to ~,
there are two possibilities:

— w' ~» w. Since S respects ~-, this means that w’ precedes w in S, contra-
dicting the definition of w’.

— w ~» w'. This means that w must precede w’ in 5;, contradicting the defini-
tion of w.
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e There is no write to « in H. This implies that there can be no write to « in 5;
either. Since S;o is not a serialization, it must be that v # 1. This means that
S; cannot be a serialization either, which is a contradiction.

Since all cases lead to contradictions, we conclude that S;o is a serialization of H that
respects ~». This implies that H is sequentially consistent.

This theorem also holds if H is an infinite causal history of II. Let ~» be a causality
order that proves that H is causal. We first prove that H is concurrent-write free with
respect to ~». If not, let w; and wy be two writes in H that are concurrent with respect
to ~». Let H' be the shortest prefix of H that includes w; and w;y. Note that H' is causal
and that ~» is a causality order that proves it. It is easy to see that H' is finite; by the
above, H' is concurrent-write free with respect to ~». This implies that w; and w, are
related by ~», giving the desired contradiction. Let = be the strong causality order for
H derived from ~». We know that = is acyclic and that any operation in H has a finite
number of predecessors with respect to =. Define an infinite sequence (Hy, Hy,...) of
finite prefixes of H with respect to ~», each having all previous ones as proper prefixes
with respect to ~», as follows. Hy is the empty history. H;yq includes H; plus one
operation o such that all operations in H that precede o with respect to = appear in
H; (the operations o can be chosen “fairly” so that every operation in H appears in
some H;). Given this construction, there can be no operation in H; that follows o with
respect to =. An inspection of the proof above shows that the serializations S; of the
prefixes H; respect ~» and are such that, for all 7, 5; is prefix of S;y;. This means
that lim; .o, .5; 1s well-defined and is thus a serialization of H. This shows that H 1is
sequentially consistent. a

6.3 Data-Race Free Programs

While concurrent-write free programs run correctly with causal memory, they form a
very restricted class and allow very little concurrency. In this section, we define the
more practical class of data-race free programs and show that they also run correctly
with causal memory. Alternative definitions have been given elsewhere [1,2,16].

Let H be a history with causality order ~». Two operations 0, and 0, in H compete
with respect to ~» if both access the same location, at least one is a write, and they are
concurrent with respect to ~». H is data-race free with respect to ~» if it contains no pair
of operations that compete with respect to ~». A history data-race free with respect
to ~» has the property that all writes to a given location are linearly ordered with
respect to ~». Program Il is data-race free if, for all histories H of II and all causality
orders ~ of H, if H has a serialization that respects ~» (note that this implies that H
is sequentially consistent), then H is data-race free with respect to ~». Note that the
data-race freedom of a program is only a statement about its sequentially consistent
histories.

Previous definitions of data-race free programs were quite different from ours. These
definitions were for systems with normal data operations (reads and writes) and spe-
cial synchronization operations. Any competing operations in a sequentially consistent
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execution of a data-race free program must be separated (by a kind of causality) by
synchronization operations. It is not hard to see that our definition is a generalization
of this to systems in which there need not be synchronization operations with speci-
fied semantics. Sections 6.3.1 and 6.3.2 below give two ways in which data-race free
programs (using our definition) may be derived. The class of data-race free programs
should not be confused with the memory models DRFO0 [1] and DRF1 [2].

The following theorem shows that data-race free programs produce only sequentially
consistent executions when run on causal memory:

Theorem 5: If 1l is data-race free, then all histories of 11 with causal memory are
sequentially consistent.

Proof:  The proof is by induction on the structure of causal histories of II. Specifically,
let H be a finite causal history of II and let ~» be a causality order that proves that H
is causal. (The proof for infinite histories follows.) We will prove the following for H
given that it holds for all proper prefixes of H with respect to ~»: H is data-race free
with respect to ~» and has a serialization that respects ~».

To show that H is data-race free with respect to ~», assume for a contradiction that
o1 and oq are two operations in H that compete with respect to ~>. We can assume by
induction that there is no operation o in H such that either (1) o ~» o1 holds and o and
05 compete with respect to ~» or (2) 0 ~» 03 holds and o and 0; compete with respect
to ~». If 01 and o0y are both reads, both are performed by the same process, or they
are to different locations, then they do not compete. Assume, therefore, that o; and
o0, are concurrent with respect to ~», oy is a write to a performed by p; and oy is an
operation on x performed by py, where j # k. Define H' = (L}, L,,..., L) by letting
L be the subsequence of L; containing all operations that precede either o; or oy with
respect to ~». If either 0y or o, appears in H’, they are related by ~-», and we are done.
Assume instead that that neither operation appears in ['; this means that L’ includes
p;’s operations up to but not including o, and that the same holds for L}, pi, and oz.
Clearly, H' is a proper prefix of H with respect to ~»; by inductive hypothesis, H’ is
data-race free with respect to ~» and has a serialization that respects ~». Now define

~

ﬁ:<z1,z2,...,Ln> by

Ej = Loy
Ly = Li;oq;
Lo= 1 ifig (k)

H is also a (not necessarily proper) prefix of H with respect to ~» and is thus an
execution of II. Let S’ be a serialization of H' that respects ~». We will now prove that
H has a serialization that respects ~». By the data-race freedom of II, this will imply
that 0, and oy do not compete with respect to ~», giving the desired contradiction.

If 0, and o0y are both write operations, then S’;0;;0, is a serialization of H that
respects ~». Assume instead that o, is a read (o; was already assumed to be a write).
If 03 returns the value that o; writes, then S’; 01; 05 is a serialization of H that respects
~». Suppose instead that oy returns a different value. There are two possible cases:

e 5’ contains a write to # and oy returns the value written by the last such write.
In this case, S’; 09; 01 is a serialization of H that respects ~-.
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e S’ contains a write to x and 0, does not return the value written by the last such
write w. Because H’ is data-race free with respect to ~», all of its writes to x
are totally ordered by ~». Since S’ respects ~», all other writes to = precede w
with respect to ~». Recall that H is causal and that o, is performed by pg; let
Sk be the serialization of Aﬂw that respects ~». By the above, all other writes
to & must precede w in Sk. Since 0, does not return the value written by w, it
must also precede w in Si. Since Sy respects ~», w + 0y. Since H' contains only
operations that causally precede o; or oy and w appears in H’, it must be that
w ~» 07. Consider now two sub-cases:

— 0y o w. This implies that w and o, are concurrent with respect to ~
and thus compete with respect to ~». This means that w contradicts the
assumption that there is no operation causally preceding o; that competes
with oy with respect to ~».

— 0y ~» w. This implies 0, ~» 01, contradicting the fact that o; and oy are
concurrent with respect to ~-.

Thus, this case leads to a contradiction.

e 5’ contains no writes to x. Since no writes to x causally precede oy, that operation
must return the initial value L. In this case, S’; 0; 01 is a serialization of H that

respects ~.

We have shown that all non-contradictory cases lead to serializations of H that respects
. Since H is a history of Il and II is data-race free, H is data-race free with respect
to ~». This means that 0, and 0y cannot compete with respect to ~», giving the desired
contradiction.

We now show that H has a serialization that respects ~». Since H is finite and ~
is acyclic, we can choose an operation o in H such that for no o in H does 0 ~» o hold.
Let H be the same as H but excluding o. H is a proper prefix of H with respect to ~
and, by the inductive hypothesis, has a serialization S that respects ~». Clearly, S;o
respects ~ if it did not, either S would not respect ~» or there would be an operation
o' in H such that o ~ o, which contradicts the definition of 0. We will now prove that
S0 is a serialization of H, proving that H is sequentially consistent.

Assume for a contradiction that S;o is not a serialization of H. This means that
o is some read operation r;(z)v. Recall that H is causal; let S; be the serialization of
Ag_w that respects ~». There are two possibilities:

o There is some write to = in H. All such writes precede o with respect to ~»: any
write that does not so either competes with o with respect to ~» (contradicting
the data-race freedom of H with respect to ~~) or follows o with respect to ~»
(contradicting the definition of o). Thus, all writes to « precede o in S;. Let w
be the latest such write. Since S; is a linearization, w writes the value v. Since
S0 is not a serialization, there must be some write w’ to = of another value after
win S. Since H is data-race free with respect to ~», w and w’ are related by ~»

and there are two possibilities:
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— w' ~» w. Since S respects ~-, this means that w’ precedes w in S, contra-
dicting the definition of w’.

— w ~» w'. This means that w must precede w’ in 5;, contradicting the defini-
tion of w.

e There is no write to # in H. This implies that there can be no write to x in S;
either. Since S;o0 is not a serialization, it must be that v # 1. This means that
S; cannot be a serialization either, which is a contradiction.

Since all cases lead to contradictions, we conclude that S; o is a serialization of H that
respects ~». This implies that H is sequentially consistent.

This theorem also holds when H is an infinite causal history of 1. Let ~» be a
causality order that proves that H is causal. We first prove that H is data-race free
with respect to ~». If not, let 0; and 0y be two operations in H that compete with
respect to ~». Let H’ be the shortest prefix of H that includes o; and 0;. Note that
H' is causal and that ~ is a causality order that proves it. It is easy to see that H' is
finite; by the above, H' is data-race free with respect to ~». This implies that o, and
0y do not compete with respect to ~», giving the desired contradiction. We define an
infinite sequence (Hyg, Hy,...) of finite prefixes of H with respect to ~», each having all
previous ones as proper prefixes with respect to ~», as follows. Hy is the empty history.
H;y includes H; plus one operation o such that all operations in H that precede o
with respect to = appear in H; (the operations o can be chosen “fairly” so that every
operation in H appears in some H;). Given this construction, there can be no operation
in H; that follows o with respect to ~». An inspection of the proof above shows that the
serializations 5; of the prefixes H; respect ~» and are such that, for all ¢, S; is prefix of
Sit1. This means that lim;_., .5; is well-defined and is thus a serialization of H. This
shows that H is sequentially consistent. O

(Theorem 5 also follows from an independently derived result of Singh’s [35].)

The classes of data-race free and concurrent-write free programs are incomparable.
For example, consider the concurrent-write free program given in Figure 4. It is not
data-race free. In an execution in which ps reads y before p; writes it, these two
operations are concurrent and thus compete. On the other hand, the data-race free
program given in Figure 5 is not concurrent-write free. In any given iteration, the
variables z[i] may all be written concurrently.

Despite this incomparability, the class of data-race free programs contains many
more programs that are of practical use. The following subsections demonstrate two
ways of obtaining data-race free programs. Both of these sections require some kind
of blocking, the first through the use of programmer-specified busy-waiting and the
second through the augmentation of causal memory with semaphores. This use of
blocking does not eliminate the advantages gained by our non-blocking implementation
of causal memory. Blocking is required for any kind of synchronization, and data-race
free programs require a programmer to do explicit synchronization. The advantage of
causal memory is that it requires such blocking only when explicit synchronization is
required. It does not require blocking for ordinary memory operations.
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complete[l..n] and changed[l..n] are shared variables, initially 0;
done is a shared variable, initially false;
z[l..n] are shared variables, initially 0;
All..n,1..n] and b[1..n] are shared constants;
t[1..n] are local variables, t[:] local to p;;
converged is an external routine that evaluates convergence

process po: process p;:
while not done while not done
fori:=1ton tl] = (b[z] 1 Z;;l Ali, 7] z[5] L
await(complete[i] = 1) S Al ] x[j])/A[z,z]
for i:=1ton complete[i] :=1
completeli] := 0 await(complete[i] = 0)
for1:=1ton z[i] := t[i]
await(changed[i] = 1) changed|i] := 1

1
done := converged(A, x,b) await(changed[i]) = 0
for i1:=1ton

changed[i] := 0

Figure 5: Synchronous Iterative Linear Solver on Causal Memory

6.3.1 Programs with await Statements

One common way to synchronize processes’ actions is by blocking a process until some
desired condition becomes true. To capture this in our program model, we allow a
program to specify an action of the form await(x = v); in process histories, we will
denote this by a(a)v. This blocks the process until the desired condition is true, that
is, until the shared variable x takes on the value v. It can be implemented by simple
read actions as follows:

repeat
a:=2x
until « = v

However, we consider an await as a single read that appears in a local history only
once each time it is invoked (any preceding reads of other values do not). Thus, a
writes-into order — relates to a(x)v w(x)v and not any writes of other values read
before the await completes. It is not hard to see that Theorem 5 continues to apply
when await statements are added to the model. (Singh [35] also augments the usual
memory operations with await operations.)

Many programs use await statements to synchronize the access to shared vari-
ables. For example, they can be used to effect barrier synchronization to control
access to certain data. An example is given in Figure 5. The example is a syn-
chronous iterative linear equation solver that solves Ax = b, where A is a known



20

n X n matrix, b is a known vector, and x is the vector that is to contain the so-
lution. The solver operates in a series of phases: in each phase, process p; com-
putes a new value for the solution component z[i]. If we use z*[i] to represent the
value of the ith component of x in phase k, then new values are computed as follows:

o] = (bfi] LZS Al 5] 0[] L Sy Ali g1 2*5]) / Ali,i]. Thus, the computing
of #"+1[i] requires access to all z*[j] (for j # i) from the previous iteration. The pro-
cess p; (1 <1 < n)computes x[i]. The process py tests for convergence and synchronizes
each worker twice per iteration using a barrier technique: before reading the various
x[j] from phase k and before writing x[i] for phase k£ 4+ 1. (By making the array ¢
shared and having workers read alternately from z[i] and ¢[¢], we could eliminate the
first synchronization.)

The program in Figure 5 is easily shown to be correct with sequential consistency. It
is also not hard to see that it is data-race free. Access to x[¢] is controlled by complete][i]
and changed[i]. Suppose for example that p; (j # 1) reads the kth iteration value v
from z[i] and let v be the (k + 1)st iteration value of x[i]. It is not hard to see that the

following causal chain must exists (for any writes-into order —) in the k4 1st iteration:

ri(x[i])v 7> w;(complete[j])1 — ag(complete[j])1 e
wo(complete[i])0 — a;(completei])0 — w;(x]7))v'.

Thus, these two accesses to x[i] do not compete to any ~»; similar arguments show that
there are no competing accesses in any execution of the program; thus, the program is
data-race free. Theorem 5 now implies it runs correctly on causal memory. In fact, it
runs faster with causal memory than with sequential consistency [22].

While the program presented in Figure 5 requires a centralized coordinator, there
also exists a fully distributed solution [15]. This solution is also data-race free and thus
runs correctly with causal memory.

6.3.2 Programs with Semaphores

While await statements allow for barrier synchronization such as that used in Figure 5
above, they do not suffice for implementing other kinds of synchronization, such as
critical sections. Recall that await statements can be implemented with a “spinning
read.” However, it has been shown that the mutual exclusion necessary for implement-
ing critical sections cannot be realized with causal memory without cooperation [9];
for example, Peterson’s algorithm [34] for mutual exclusion will not run correctly with
causal memory.

Mutual exclusion can be implemented with special synchronization primitives such
as semaphores. A semaphore is a variable holding a non-negative integer that supports
two operations: V', which atomically increments the value, and P, which atomically
decrements it. If the semaphore’s value is zero, then a P operation is blocked until the
semaphore becomes positive.

It is possible to add semaphores to our definition of causal memory; call the result
extended causal memory. Note that every operation on a semaphore reads and then
writes the semaphore (e.g., a V operation first reads the semaphore and then writes an
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incremented value). Because of this, all operations on a semaphore are causally related,
meaning that there can be no competing accesses to a semaphore. This implies that,
in an execution with extended causal memory, all operations on a semaphore appear
in the same order to all processes. An implementation of extended causal memory
would require blocking and is beyond the scope of this paper. It is not hard to see that
Theorem 5 applies to extended causal memory.

Semaphores can be useful in synchronization. For example, the program in Fig-
ure 5 can be modified to use semaphores. Let the arrays complete and changed be of
semaphores, and let each write to an array element be a V' operation and each await
statement be a P operation. The program remains correct and data-race free.

Semaphores can also be used to implement critical sections. With each critical
section is associated a semaphore with initial value 1. A process invokes P on the
semaphore before entering a critical section and invokes V' on the same semaphore
upon leaving.

6.4 Other Work

Other researchers have considered different programming models and the correctness
of programs in those models on memories weaker than sequential consistency.

Gibbons, Merritt, and Gharachorloo considered the DASH system’s RCsc version
of release consistency [17]. This is a “mixed” memory model in that it allows program-
mers to specify (or “label”) whether operations are “weak” or “strong”. In this case,
the strong operations are sequentially consistent, whereas weak operations are ordered
based on when they are invoked relative to the strong operations. A program is properly
labeled if there are no data races among the weak operations. Gibbons et al. showed
that, when run on RCsc, properly labeled programs admit only sequentially consistent
executions. Attiya et al. showed a similar result for a different mixed memory model,
called hybrid consistency [8]. They also proved that only sequentially consistent exe-
cutions are obtained if either all writes or all reads are labeled as strong. Our results
contrast with both of these in that we do not require a memory model that allows
strong (sequentially consistent) operations (except in Section 6.3.2).

Singh [35] independently considered programming models for purely weak consis-
tency models such as causal memory. His work classifies programs based on the types
of executions they permit with a weaker form of memory. Our work differs from his in
that we classify programs based on how they execute with sequentially consistency and
then prove properties about their execution on causal memory. We believe that this is
a potentially more productive approach, as it is easier for programmers to reason about
the behavior of programs with sequential consistency.

Heddaya and Sinha [19] considered a variety of weaker forms of memory, including
slow memory [21]. They showed that all programs in the class of totally asynchronous
iterative algorithms [12] run correctly on slow memory (and, therefore, on causal mem-
ory). We note here that the class of synchronous iterative algorithms is a broader class
and not all of these programs run correctly with slow memory. However, these programs
are data-race free (Figure 5 gives an example) and run correctly with causal memory.
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7 Discussion

We have presented a new model of distributed shared memory called causal memory.
We defined it formally using a simple framework that allows it to be compared easily
with other memory models. We exhibited a message-based implementation of causal
memory. Finally, we formally characterized two classes of programs that run correctly
with causal memory, assuming that they do so under sequential consistency.

Our formal analysis shows causal memory to lie between sequential consistency
(a strong memory) and PRAM (a weak one). This suggests that it may be powerful
enough to program easily (like strong memories) but at the same time allow inexpensive
implementations (like weak memories). These are borne out by the results in Sections 5
and 6.

Our implementation of causal memory is non-blocking; a process can always com-
plete a read or a write operation immediately, without having to communicate with
other processes. All communication can take place in the background between memory
accesses. It 1s important to note that this implementation, like the definition of causal
memory, lies between sequential consistency and PRAM; it allows histories that are
not sequentially consistent but no PRAM histories that are not causal.

Section 6 shows that all concurrent-write free and data-race free programs will run
correctly on causal memory. These are programs in which data accesses are controlled
using explicit synchronization. Such synchronization is often necessary even for dis-
tributed programs designed to run with sequentially consistent memory. For example,
the synchronization in the program in Figure 5 is necessary even with stronger mem-
ories, yet the program runs correctly with causal memory. By requiring only that the
programmer explicitly specify the synchronization needed, we allow him or her to use
a form of memory that can be implemented much more efficiently.

All these facts show that causal memory has the potential to be an important model
for distributed shared memory systems. To realize this potential, we are currently
exploring implementations of causal memory in actual distributed systems [6]. These
are more practical than the theoretically motivated implementation given in Section 5,
basing communication on entire pages rather than single variables (see the discussion
at the end of that section). In the future, we plan to benchmark these implementations
to better compare causal memory with other intermediate memory models.
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