
Exploiting Weak Connectivity for Mobile File Access

Lily B. Mummert, Maria R. Ebling, M. Satyanarayanan

School of Computer Science

Carnegie Mellon University

Abstract

Weak corrrrecdvi~, in the form of intermittent, low-bandwidth, or expensive networks is a fact of life in mobile computing.

In this paper, we describe how the Coda File System has evolved to exploit such networks. The underlying theme of this

evolution has been the systematic introduction of adaptivity to eliminate hidden assumptions about strong connectivity.

Many aspects of the system, including communication, cache validation, update propagation and cache miss handling have

been modified. As a result, Coda is able to provide good performance even when network bandwidth varies over four orders

of magnitude — from modem speeds to LAN speeds: “

1. Introduction

For the forseeable future, mobde clients will encounter a wide

range of network characteristics in the course of their journeys.

Cheap, reliable, high-performance connectivity via wired or

wireless media will be limited to a few oases in a vast desert of

poor connectivity. Mobile clients must therefore be able to use

networks with rather unpleasant characteristics: intermittence,

low bandwidth, high latency, or high expense. We refer to

connectivity with one or more of these properties as weak

connectivity. In contrast, typical LAN environments have none of

these shortcomings and thus offer strong connectivi~.

In this paper, we report on our work toward exploiting weak

connectivity in the Coda File System. Our mechanisms preserve

usability even at network speeds as low as 1.2 Kb/s. At a typical

modem speed of 9.6 Kb/s, performance on a family of

benchmarks is only about 2% slower than at 10 Mb/s. When a

client reconnects to a network, synchronization of state with a

server typically takes only about 25% longer at 9.6 Kb/s than at

10 Mb/s. To make better use of a network, Coda may solicit

advice from the user. But it preserves usability by limiting the

frequency of such interactions.

Since disconnected operation [13] represents an initial step

toward supporting mobility, we begin by reviewing its strengths

and weaknesses. We then describe a set of adaptive mechamsms

that overcome these weaknesses by exploiting weak connectivity.

Next, we evaluate these mechanisms through controlled

experiments and empirical observations, Finally, we discuss

related work and close with a summary of the main ideas.

This research was supported by the Air Force Materiel Command (AFMC) and

ARPA under contract number F196828-93-C-0193. Add]tiomd support was

provided by the IBM Corp., Digital Equipment Corp., Intel Corp., Xerox Corp , and

AT&T Corp The views and conclusions contained here are those of the authors and

should not be interpreted as necessarily representing the official policies or

endorsements, either express or lmphed, of AFMC, ARPA, IBM, DEC. Intel, Xerox.

AT&T, CMU, or the U.S Government

Permission to make digitahard COPYof part or afl of this work for personal
or classroom use is ranted without fee provided that oopies are not made

!or distributed for pro It or mmmercial advantage, the rxpyright notioe, the
titte of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior spedfic permission
and/or a fee.

SIGOPS ’95 12/95 CO, USA
01995 ACfvt 0-89791 -715-419510012 ...$3.50

2. Starting Point: Disconnected Operation

2.1. Benefits and Limitations

Disconnected operation is a mode of operation in which a client

continues to use data in its cache during temporary network or

server failures. It can be viewed as the extreme case of werikly-

connected operation — the mobile client is effectively using a

network of zero bandwidth and infinite latency.

The ability to operate disconnected can be useful even when

connectivity is available. For example, disconnected operation

can extend battery life by avoiding wireless transmission and

reception. It can reduce network charges, an important feature

when rates are high. It allows radio silence to be maintained, a

vital capability in military applications. And, of course, it is a

viable fallback position when network characteristics degrade

beyond usability.

But disconnected operation is not a panacea. A disconnected

client suffers from many limitations:

● Updates are not visible to other clients.

. Cache misses may impede progress.

● Updates are at risk due to theft, loss or damage.

● Update confiicts become more likely.

● Exhaustion of cache space is a concern.

Our goal is to alleviate these limitations by exploiting weak

connectivity. How successful we are depends on the quality of

the network. With a very weak connection, a user is little better

off than when disconnected; as network quality improves, the

limitations decrease in severity and eventually vanish.

To attain this goal, we have implemented a series of

modifications to Coda. Since Coda has been extensively

described in the literature [13, 25, 26], we provide only a brief

review here.

2.2. Implementation in Coda

Coda preserves the model of security, scalability, and Unix

compatibility of AFS [5], and achieves high availability through

the use of two complementary mechanisms. One mechanism is

disconnected operation. The other mechanism is server

replication, which we do not discuss further in this paper because

it is incidental to our focus on mobility.

143

A small collection of trusted Coda servers exports a location-

transparent Unix file name space to a much larger collection of

untrusted clients. These clients are assumed to be general-

purpose computers rather than limited-function dewces such as

InfoPads [28] and ParcTabs [29]. Files aregrouped into vdwrre.r,

each forming a partial subtree of the name space and typically

containing the files of one user or project. On each client, a

user-level process, Venus, manages a file cache on the local disk.

It is Venus that bears the brunt of disconnected operation.

As described by Kistler [13], Venus operates in one of three

states: hoarding, emulating, and reintegrating. It is normally in

the hoarding state, preserving cache coherence via callbacks [5].

Upon disconnection, Venus enters the emulating state and begins

logging updates inaclient modtfilog(CML). Inthisstate, Venus

performs log optinrizations to improve performance and reduce

resource usage, Upon reconnection, Venus enters the

reintegrating state, synchronizes its cache with servers, propagates

updates from the CML, and returns to the hoarding state. Since

consistency is based on optimistic replica control, update conflicts

may occur upon reintegration, The system ensures their detection

and confinement, and provides mechanisms to help users recover

from them [14].

In anticipation of disconnection, users may Iroard data in the

cache by providing a prioritized list of files in a per-client hoard

database (HDB). Venus combines HDBinformation with LRU

information to implement a cache management policy addressing

both performance and availability concerns. Periodically, Venus

walks the cache to ensure that the highest

present, and consistent with the servers.

explicitly request a hoard walk at any time.

3. Design Rationale and Overview

3.1. Strategy

priority items are

A user may also

Wechose anincremental approach to extending Coda, relying

on usage experience and measurements at each stage. The

underlying theme of this evolution was the identification of

hidden assumptions about strong connectivity, and their

systematic elimination through the introduction of adaptivity.

Our design is based on four guiding principles:

● Don ‘t punish strongly-connected clients.
Itis unacceptable to degrade the performance of strongly-

connected clients on account of weakly-connected clients.

This precludes useofabroad range of cache write-back

schemes in which a weakly-connected client must be
contacted for token revocation or data propagation before

other clients can proceed.

●Don’tnaake life worse than when disconnected.
While a minor performance penalty may be an acceptable
price for the benefits of weakly-connected operation, a
user is unlikely to tolerate substantial performance

degradation.

● Do it in the background t~you can,
Network delays in the foreground affect a user more

acutely than those in the background. As bandwidth

decreases, network usage should be moved into the

background whenever possible. The effect of this strategy

is to replace intolerable performance delays by a

degradation of availability or consistency — lesser evils

in many situations.
.

● When in doubt, seek user advice,

As connectiwty weakens, the higher performance penalty

for suboptimal decisions increases the value of user

advice. Users also make mistakes, of course, but they
tend to be more forgiving if they perceive themselves

responsible. The system should perform better if the user

gives good advice, but should be able to function unaided.

More generally, we were strongly influenced by two classic

prmcipies of system design: favoring simplicity over unwarranted

generahty [15], and respecting the end-to-end argument when

layering functionality [24].

3.2. Evolution

We began by modifying Coda’s RPC and bulk transfer

protocols to function over a serial-line 1P (SLIP) connection [23].

These modifications were necessary because the protocols had

been originally designed for good LAN performance. Once they

functioned robustly down to 1.2 Kb/s, we had a rehable means of

reintegrating and servicing cntlcal cache misses from any location

with a phone connection. Performance was atrocious because

Venus used the SLIP connection like a LAN. But users were

grateful for even this limited functionahty, because the alternative

would have been a significant commute to connect to a high-

speed network.

Phone reintegration turned out to be much slower than even the

most pessimistic of our estimates, The culprit was the vahdatlon

of cache state on the first hoard walk after reconnection. Our

solution raises the granularity at which cache coherence is

maintained. In most cases, this renders the time for validation

imperceptible even at modem speeds.

Next, we reduced update propagation delays by allowing a user

to be loglcally disconnected while remainmg physically

connected. In this mode of use, Venus logged updates in the

CML but continued to service cache misses. It was the user’s

responsibility to periodically uutiate reintegration. Cache misses

hurt performance, but there were few of them if the user had done

a good Job of hoarding.

Our next step was to eliminate manual triggering of

reintegration when weakly connected. Since this removed user

control over an important component of network usage, we had to

be confident that a completely automated strategy could perform

well even on very slow networks. This indeed proved possible,

using a technique called trickle reintegration.

The last phase of our work was to substantially improve the

handling of cache misses when weakly connected. Exammatlon

of misses showed that they varied widely m Importance and

cause. We did not see a way of automating the handling of all

misses while preserving usability, So we decided to handle a

subset of the misses transparently, and to provide users with a

means of influencing the handling of the rest.

144

As a result of this evolution, Coda is now able to effectively

exploit networks of low bandwidth and intermittent connectivity.

Venus and the transport protocols transparently adapt to

variations in network bandwidth spanning nearly four orders of

magnitude — from a few Kb/s to 10 Mb/s. From a performance

perspective, the user is well insulated from this variation.

Network quality manifests itself mainly in the promptness with

which updates are propagated, and in the degree of transparency

with which cache misses are handled.

4. Detailed Design and Implementation

We provide more detail on four aspects of our system:

● Transport protocol refinements.

● Rapid cache validation.

● Trickle reintegration.

● User-assisted miss handling.

Although rapid cache validation has been described in detail an

earlier paper [18], we provide a brief summary here for

completeness. We also augment our earlier evaluation with

measurements from the deployed system. The other three aspects

of Coda are described here for the first time.

4.1, Transport Protocol Refinements

Coda uses the RPC2 remote procedure call mechanism [27],

which performs efficient transfer of file contents through a

specialized streaming protocol called SFTP. Both RPC2 and

SFTP are implemented on top of UDP. We made two major

changes to them for slow networks.

One change addressed the isolation between RPC2 and SITP.

While this isolation made for clean code separation, it generated

duplicate keepalive traffic. In addition, Venus generated its own

higher-level keepalive traffic. Our fix was to share keepalive

information between RPC2 and SFIT’, and to export this

information to Venus.

The other change was to modify RPC2 and SITP to monitor

network speed by estimating round trip times (R77’) using an

adaptation of the timestamp echoing technique proposed by

Jacobson [10]. The RTT estimates are used to dynamically adapt

the retransmission parameters of RPC2 and SFI’P. Our strategy is

broadly consistent with Jacobson’s recommendations for TCP [8].

With these changes, RPC2 and SFTP perform well over a wide

range of network speeds. Figure 1 compares the performance of

SFTP and TCP over three different networks: an Ethernet, a

WaveLan wireless network, and a modem over a phone line. In

almost all cases, SFTP’s performance exceeds that of TCP.

Opportunities abound for further improvement to the transport

protocols. For example, we could perform header compression as

in TCP [9], and enhance the SLIP driver to prioritize traffic as

described by Huston and Honeyman [7]. We could also enhance

SFTP to ship file differences rather than full contents. But we

have deliberately tried to minimize efforts at the transport level.

I I Nominal I Receive I Send
Protocol Network Speed (Kb/s) (Kb/s)

TCP

SFTP

Ethernet

WaveLan

Modem

Ethernet

WaveLan

Modem +

10 Mb/s 1824 (64)

2 Mb/s 568 (136)

9.6 Kb/s 6.8 (0.06)

10 Mb/s 1952 (104)

2 Mb/s 1152 (64)

9.6 Kbls 6.6 (0.02)

2400 (224)

760 (80)

6.4 (0.04)

2744 (96)

1168 (48)

6.9 (o.o2)

This table compares the observed throughputs of TCP and S~P.

The data was obtained by timnrg the disk-to-disk transfer of a

lMB file between a DECpc 425SL laptop client and a DEC

5000/200 server on an isolated network. Both client and server

were running Mach 2.6. Each result IS the mean of five trials.

Numbers in parentheses are standard deviations.

Figure 1: Transport Protocol Performance

As the rest of this paper shows, mechanisms at higher levels of

the system offer major benefits for weakly-connected operation.

Additional transport level improvements may enhance those

mechanisms, but cannot replace them.

4.2. Rapid Cache Validation

Coda’s original technique for cache coherence while connected

was based on callbacks [5, 25]. In this technique, a server

remembers that a client has cached an object’, and promises to

notify it when the object is updated by another client. This

promise is a callback, and the invalidation message is a callback

break. When a callback break is received, the client discards the

cached copy and refetches it on demand or at the next hoard walk.

When a client is disconnected, it can no longer rely on

callbacks. Upon reconnection, it must validate all cached objects

before use to detect updates at the server.

4.2.1. Raising the Granularity of Cache Coherence

Our sohrtion preserves the correctness of the original callback

scheme, while dramatically reducing reconnection latency. It is

based upon the observation that, in most cases, the vast majority

of cached objects are still valid upon reconnection. The essence

of our solution is for clients to track server state at multiple levels

of granulari~. Our current implementation uses only two levels:

entire volume and individual object. We have not yet found the

need to support additional levels.

A server now mamtains version stamps for each of its volumes,

in addition to stamps on individual objects. When an object is

updated, the server increments the version stamp of the object and

that of its containing volume. A client caches volume version

stamps at the end of a hoard walk. Since all cached objects are

known to be valid at this point, mutual consistency of volume and

object state is achieved at minimal cost.

When connectivity is restored, the chent presents these volume

stamps for validation. If a volume stamp is still vahd, so is every

object cached from that volume. In this case, validation of all

‘For brewty, we use “obJect” to mean a file, dmectory, or symbolic hnk

145

those objects has been achieved with a single RPC. We batch

multiple volume validation requests in a single RPC for even

faster validation. If a volume stamp is not valid, nothing can be

assumed; each cached object from that volume must be validated

individually. But even in this case, performance is no worse than

in the original scheme.

4.2.2. Volume Callbacks

When a client obtains (or validates) a volume version stamp, a

server establishes a volume callback as a side effect. This is in

addition to (or instead of) callbacks on individual objects. The

server must break a client’s volume callback when another client

updates any object in that volume. Once broken, a volume

callback is reacquired only on the next hoard walk. In the

interim, the client must rely on object callbacks, if present, or

obtain them on demand.

Thus, volume callbacks improve speed of validation at the cost

of precision of invalidation. This is an excellent performance

tradeoff for typical Unix workloads [2, 19, 22]. Performance may

be poorer with other workloads, but Coda’s original cache

coherence guarantees are still preserved.

4.3. Trickle Reintegration

Trickle reintegration is a mechanism that propagates updates to

servers asynchronously, while minimally impacting foreground

activity. Its purpose is to relieve users of the need to perform

manual reintegration. The challenge is to meet this goal while

remaining unobtrusive.

4.3.1. Relationship to Write-Back Caching

Trickle reintegration is conceptually similar to write-back

caching, as used in systems such as Sprite [20] and Echo [16].

Both techniques strive to improve client performance by deferring

the propagation of updates to servers. But they are sufficiently

different in their details that it is appropriate to view them as

distinct mechanisms.

First, write-back caching preserves strict Unix write-sharing

semantics, since it is typically intended for use in strongly-

connected environments. In contrast, trickle reintegration has the

opportunity to trade off consistency for performance because its

users have already accepted the lower consistency offered by

optimistic replication.

Second, the focus of write-back caching is minimizing file

system latency; reducing network traffic is only an incidental

concern. In contrast, reducing traffic is a prime concern of trickle

reintegration because network bandwidth is precious.

Third, write-back caching schemes maintain their caches in

volatile memory. Their need to bound damage due to a software

crash typically limits the maximum delay before update

propagation to some tens of seconds or a few minutes. In

contrast, local persistence of updates on a Coda client is assured

by the CML. Trickle reintegration can therefore defer

propagation for many minutes or hours, bounded only by

concerns of theft, loss, or disk damage.

4.3.2. Structural Modifications

Supporting trickle reintegration required major modifications to

the structure of Venus. Reintegration was originally a transient

state through which Venus passed en route to the hoarding state.

Since reintegration is now an ongoing background process, the

transient state has been replaced by a stable one called the write

disconnected state. Figure 2 shows the new states of Venus and

the main transitions between them.

(nHoarding

This figure shows the states of Venus, as modified to handle

weak connectivity. The state Iabelled “Write Disconnected”

replaces the reintegrating state in our original design In this

state, Venus relies on trickle reintegration to propagate changes

to servers. The transition from the emulating to the wrrte

disconnected state occurs on any connection, regardless of

strength. All outstanding updates are reintegrated before the

transition to the hoarding state occurs

Figure 2: Venus States and Transitions

As in our original design, Venus is in the hoarding state when

strongly connected, and m the emulating state when disconnected.

When weakly connected, lt M in the write disconnected state. In

this state, Venus’ behavior is a blend of its connected and

disconnected mode behaviors. Updates are logged, as when

disconnected; they are propagated to servers via trickle

reintegration. Cache misses are serviced, as when connected; but

some misses may require user intervention. Cache coherence is

maintained as explained earlier in Section 4.2.2.

A user can force a full reintegration at any time that she 1sin the

write disconnected state. This might be valuable, for example, if

she wishes to terminate a long distance phone call or realizes that

she is about to move out of range of wireless communication. It

is also valuable if she wishes to ensure that recent updates have

been propagated to a server before notifying a collaborator via

telephone, e-mad, or other out-of-band mechanism.

Our desire to avoid penalizing strongly-connected clients

lrnphes that a weakly-connected client cannot prevent them from

updating an object awaiting reintegration. This situation results in

a callback break for that object on the weakly-connected client.

Consistent with our optimistic philosophy, we ignore the callback

break and proceed as usual. When reintegration of the object is

eventually attempted, it may be resolved successfully or may fail.

In the latter case, the conflict becomes visible to the user just as if

it had occured after a disconnected session. The existing Coda

mechanisms for conflict resolution [14] are then applied.

146

4.3.3. Preserving the Effectiveness of Log Optimizations

Early trace-driven simulations of Coda indicated that log

optimizations were the key to reducing the volume of

reintegration data [26]. Measurements of Coda in actual use

confirm this prediction [21].

Applying log optimizations is conceptually simple. Except for

store records, a CML record contains all the information

needed to replay the corresponding update at the server. For a

store record, the file data resides in the local file system.

Before a log record is appended to the CML, Venus checks if it

cancels or overrides the effect of earlier records. For example,

consider the create of a file, followed by a store. If they are

followed by an unlink, all three CML records and the data

associated with the store can be eliminated.

Trickle reintegration reduces the effectiveness of log

optimizations, because records are propagated to the server earlier

than when disconnected. Thus they have less opportunity to be

eliminated at the client. A good design must balance two factors.

On the one hand, records should spend enough time in the CML

for optimizations to be effective. On the other hand, updates

should be propagated to servers with reasonable promptness. At

very low bandwidths, the first concern is dominant since

reduction of data volume is paramount. As bandwidth increases,

the concerns become comparable in importance. When strongly

connected, prompt propagation is the dominant concern.

Our solution, illustrated in Figure 3, uses a simple technique

based on aging. A record is not eligible for reintegration until it

has spent a minimal amount of time in the CML. This amount of

time, called the aging window, (A), establishes a limit on the

effectiveness of log optimization,

Older than A 1

I ~j/n~-

Reintegration
Barrier

This figure depicts a typical CML scenario while weakly

connected. A is the aging window. The shaded records in this

figure are being reintegrated. They are protected from concurrent

activity at the client by the reintegration barrier. For store

records, the corresponding file data is locked; if contention

occurs later, a shadow copy is created and the lock released.

Figure 3: CML During Trickle Reintegration

Since the CML is maintained in temporal order, the aging

window partitions log records into two groups: those older than A,

and those younger than A. Only the former group is eligible for

reintegration. At the beginning of reintegration, a logical divider

called the reintegration barrier is placed in the CML. During

reintegration, which may take a while on a slow network, the

portion of the CML to the left of the reintegration barrier is

frozen. Only records to the right are examined for optimization.

If reintegration is successful, the barrier and all records to its

left are removed. If a network or server failure causes

reintegration to be aborted, the barrier as well as any records

rendered superfluous by new updates are removed. Our

implementation of reintegration is atomic, ensuring that a failure

leaves behind no server state that would hinder a future retry.

Until the next reintegration attempt, all records in the CML are

again eligible for optimization.

Discovery of records old enough for reintegration is done by a

periodic daemon. Once the daemon finds CML records ripe for

reintegration, it notifies a separate thread to do the actual work.

4.3.4. Selecting an Aging Window

What should the value of A be? To answer this question, we

conducted a study using file reference traces gathered from

workstations in our environment [19]. We chose five week-long

traces (used in an earlier analysis [26]) in which there were

extended periods of sustained high levels of user activity.

The traces were used as input to a Venus simulator. This

simulator is the actual Venus code, modified to accept requests

from a trace instead of the operating system. The output of the

simulator inchtdes the state of the CML at the end of the trace,

and data on cancelled CML records. Our analysis includes all

references from the traces, whether to the local file system, AFS,

Coda, or NFS.

...’..’_ ,J1.

80
.’1. -

..>.; -
- ----- 1

i
,.””<”””” ,. H.

/
.-.~”-” -

60 :—’ .“
---” I

/ 1
/ j-”’

40 - N’ ,r. _.J

~n

. ives
/.4 -— concord

I
— ho/sr

20 -.-” - - messisen
_ ._.-.-.-” ---- purcell

~0 32 100 316 1000 3162 10000 31623
Aging Window (sees)

The X axis of this graph shows the aging window (A) on a

logarithmic state. Only CML records of age A or less are subject

to optimization. Each curve corresponds to a different trace, and

a point on a curve is the ratio of two quantities. The numerator is
the amount of data saved by optimizations for the value of A at

that point. The denominator is the savings when A is four hours

(14,400 seconds). The vahre of the denominator is 84 MB for
ives, 817 MB for corrcord, 40 MB for lzolst, 152 MB for
messiaen, and 44 MB for purcell.

Figure 4: Effect of Aging on Optimizations

Figure 4 presents the results of our analysis. For each trace, this

graph shows the impact of the aging window on the effectiveness

of log optimizations. The results have been normalized with

respect to a maximum aging window of four hours. We chose

this period because it represents half a typical working day, and is

a reasonable upper bound on the amount of work loss a user

might be willing to tolerate.

147

The graph shows that there is considerable variation across

traces. Values of A below 300 seconds barely yield an

effectiveness of 30~o on some traces, but they yield nearly 80%

on others. For effectiveness above 80’ZOon all traces, A must be

nearly one hour. Since 600 seconds yields nearly 50%

effectiveness on all traces, we have chosen it as the default value

of A. This value can easily be changed by the user.

4.3.5. Reducing the Impact of Reintegration

Reintegrating all records older than A in one chunk could

saturate a slow network for an extended period. The performance

of a concurrent high priority network event, such as the servicing

of a cache miss, could then be severely degraded. To avoid this

problem, we have made reintegration chunk size adaptive,

The choice of a chunk size, (Q, must strike a balance between

two factors affecting performance. A large chunk size is more

appropriate at high bandwidths because it amortizes the fixed

costs of reintegration (such as transaction commitment at the

server) over many log records. A small chunk size is better at low

bandwidths because it reduces the maximum time of network

contention. We have chosen a default value of 30 seconds for this

time. This corresponds to C being 36 KB at 9.6 Kb/s, 240 KB at

64 Kb/s, and 7.7 MB at 2 Mb/s.

Before initiating reintegration, we estimate C for the current

bandwidth. We then select a maximal prefix of CML records

whose age is greater than A and whose sizes sum to C or less.

Most records are small, except for store records, whose sizes

include that of the corresponding file data. In the limit, we select

at least one record even if its size is larger than C. This prefix is

the chunk for reintegration. The reintegration barrier is placed

after it, and reintegration proceeds as described in Section 4.3.3.

This procedure is repeated a chunk at a time, deferring between

chunks to high priority network use, until all records older than A

have been reintegrated.

With this procedure, the size of a chunk can be larger than C

only when it consists of a single store record for a large file. In

this case, we transfer the file as a series of fragments of size C or

less, If a failure occurs, file transfer is resumed after the last

successful fragment. Atomicity is preserved in spite of

fragmentation because the server does not logically attempt

reintegration until it has received the entire fde. Note that this is

the reverse of the procedure at strong connectivity, where the

server verifies the logical soundness of updates before fetching

file contents. The change in order reflects a change in the more

likely cause of reintegration failure in the two scenarios.

We are considering a refinement that would allow a user to

force immediate reintegration of updates to a specific directory or

subtree, without waiting for propagation of other updates.

Implementing this would require computing the precedence

relationships between records, and ensuring that a record is not

reintegrated before its antecedents, This computation is not

necessary at present because the CML and every possible chunk

are already in temporal order, which implies precedence order.

We are awaiting usage experience to decide whether the benefits

of this refinement merit its implementation cost.

4.4. Seeking User Advice

When weakly connected, the performance impact of cache

misses is often too large to ignore. For example, a cache miss on

a 1 MB file at 10 Mb/s can usually be serviced in a few seconds.

At 9.6 Kb/s, the same miss causes a delay of nearly 20 minutes!

From a user’s perspective, this lack of performance

transparency can overshadow the functional transparency of

caching. The problem is especially annoying because cache miss

handling, unlike trickle reintegration, N a foreground activity. In

most cases, a user would rather be told that a large file is missing

than be forced to wait for it to be fetched over a weak connection.

But there are also situations where a file is so critical that a user

is willing to suffer considerable delay. We refer to the maximum

time that a user is willing to wait for a particular file as her

patience ~hre.rhok! for that file. The need for user input arises

because Venus has to find out how critical a missing object is.

Since the hoarding mechanism already provided a means of

factoring user estimates of importance into cache management, it

was the natural focal point of our efforts. Our extensions of this

mechanism for weak connectivity are in two parts: an interactive

facility to help augment the hoard database (HDB), and another to

control the amount of data fetched during hoard walks. Together

these changes have the effect of moving many cache miss delays

into the background.

4.4.1. Handling Misses

When a miss occurs, Venus estimates its service time from the

current network bandwidth and the object’s size (as given by its

status information). If the object’s status information is not

already cached, Venus obtains it from the server. The delay for

this is acceptable even on slow networks because status

information is only about 100 bytes long.

The estimated service time is then compared with the patience

threshold. If the service time is below the threshold, Venus

transparently services the miss. If the threshold is exceeded,

Venus returns a cache miss error and records the miss.

4,4.2, Augmenting the Hoard Database

At any time, a user can ask Venus to show her all the misses

that have occured since the previous such request. Venus displays

each miss along with contextual information, as shown in Figure

5. The user can then select objects to be added to the HDB. This

action does not immediately fetch the object; that is deferred until

a future hoard walk. Hoard walks occur once every 10 minutes,

or by explicit user request.

4.4.3, Controlling Hoard Walks

A hoard walk is executed in two phases. In the first phase,

called the status walk, Venus obtains status information for

missing objects and determines which objects, if any, should be

fetched. Because of volume callbacks, the status walk usually

involves little network traffic. During the second phase, called

the data walk, Venus fetches the contents of objects selected by

the status walk. Even if there are only a few large objects to be

fetched, this phase can be a substantial source of network traffic.

148

File/Dtmctsrty Fregrem HDB?

/code/usr/hqb/paper$/sl 5/s15.bib emacs J
/coda/m!$cAex/i386-math/lib/macros/artl O,sty virtex EJ
/code/mi$c/emacs/i386_machtlisprlex-mode,elc emacs El
/code/mi$c/Xl 1-others/i386_mach/binr%loadimage c$h El
/coda/mist/otherstlibAveatherllatest c$h El
/codeJproject/code/alphalsrc/venu$ffsoO.c more ,!

El M
cancel Done

This screen shows the name of each missing object and the

program thatreferenced it. Toaddan object tothe HDB, the user

clicks the button to its right. A pop-up form (not shown here)

allows the user to specify the hoard priority of the object and

other related information.

Figure5: Augmenting the Hoard Database

By introducing an interactive phase between the status and data

walks, we allow users to limit the volume of data fetched in the

data walk. Each object whose estimated service timeis below the

user’s patience threshold is pre-approved for fetching. The

fetching of other objects must be explicitly approved by the user.

Cache ft[es: Atlocated. 6250 Occupied= 389 Available- 5861 I

Ceche Space (KB): Atlocafarl. 50000 Occupied. LtZ44 Available= 41756

Speed of Networft CannectSon(bIs)= 9600 I

Number of Objects Presppruved for Fetch= 3
I

Object Name Friority Cost (s) Fetch? Stop Asking?

/coda/project/code/alpha/src/venus/fsoO.c 20 46~ d;
/code/mist/emacs/i386_mactVbin/emac$ 600 611 El EIJ

Lk
Totaf Expected Fetch ~me (s) = 65

J
TotaJ Number of Ohiects to be Fetched = 4 i

Cache Space (KB) Aftsr Watk PJloc’d= 50000 Occ’d = 8301 Avtil. 41699
I

CancelI DoneI I

This screen enables the user to suppress fetching of objects

selectively during a hoard wrdk. The priority and estimated

service time of each object are shown. The user approves the

fetch of an object by clicking on its “Fetch” button. By clicking

on its “Stop Asking” button, she can prevent the prompt and fetch

for that object until strongly connected. The cache state that

would result from the data walk is shown at the bottom of the

screen. This information is updated as the user clicks on “Fetch”

buttons.

Figure 6: Controlling the Data Walk

Figure 6 shows an example of the screen displayed by Venus

between the status and data walks. If no input is provided by the

user within a certain time, the screen disappears and all the listed

objects are fetched. This handles the case where the client is

running unattended.

4.4.4. Modelling User Patience

Our goal in modelling user patience is to improve usability by

reducing the frequency of user interaction. In those cases where

we can predict a user’s response with reasonable confidence, we

can avoid the corresponding interactions. As mentioned earlier, a

user’s patience threshold, (~), depends on how important she

perceives an object to be: for a very important object, she is

probably willing to wait many minutes.

Since user perception of importance is the notion captured by

the hoard priority, (P), of an object, we posit that ~ should be a

function of P. At present, we are not aware of any data that could

be the scientific basis for establishing the form of this

relationship. Hence we use a function based solely on intuition,

but have structured the implementation to make it easy to

substitute a better alternative.

We conjecture that patience is similar to other human processes

such as vision, whose sensitivity is logarithmic [3]. This suggests

a relationship of the form ~ = rx + ~e”@, where ~ and y are scaling

parameters and u represents a lower bound on patience. Even if

an object is unimportant, the user prefers to tolerate a delay of a

rather than dealing with a cache miss. We chose parameter

settings based on their ability to yield plausible patience values

for files commonly found in the hoard profiles of Coda users.

The values we chose were et = 2 seconds, ~ = 1, y = 0.01.

Figure 7 illustrates the resulting model of user patience. Rather

than expressing ~ in terms of seconds, we have converted it into

the size of the largest file that can be fetched in that time at a

given bandwidth. For example, 60 seconds at a bandwidth of 64

Kb/s yields a maximum file size of 480KB, Each curve in Figure

7 shows ~ as a function of P for a given bandwidth. In the region

below this curve, cache misses are transparently handled and

pre-approval is granted during hoard walks.

~lon,— 9.6Kb/s :

~ -— 64 Kb/s !
. 2Mb/s :

~8 “:
1 KB File ~
7 MB Fi/e ;

Q 0 4 MB F//e ;
.=
k “ 8 MB F//e /’

6

I4“:

I (/

t

2 ,...”’”
/

,.. /’..A. .. . /.7s / A

n

o 200 400 600 800 1000
Hoard Priority

Each curve in this graph expresses patience threshold, (z), in
terms of file size. Superimposed on these curves are points

representing tiles of various sizes hoarded at priorities 100.500,

and 900. At 9,6 Kb/s, only the tiles at priority 900 and the 1KB

tile at priority 500 are below T. At 64 Kb/s, the lMB tile at

priority 500 is also below T. At 2Mb/s, all files except the 4MB

and 8MB files at priorit y 100 are below ~.

Figure 7: Patience Threshold versus Hoard Priority

The user patience model is the source of adaptivity in cache

miss. handling. It maintains usability at all bandwidths by

balancing two factors that intrude upon transparency. At very low

bandwidths, the delays in fetching large files annoy users more

than the need for interaction. As bandwidth rises, delays shrink

and interaction becomes more annoying. To preserve usability,

we handle more cases transparently. In the limit, at strong

connectivity, cache misses are fully transparent.

149

5. Deployment Status

The mechanisms described in this paper are being deployed to a

user community of Coda developers and other computer science

researchers. We have over 40 user accounts, of which about 25

are used regularly. Many users run Coda on both their desktop

workstations and their laptops. We have a totaf of about 35 Coda

clients, evenly divided between workstations and laptops. These

clients access almost 4.0 GB of data stored on Coda servers.

The evolution described in Section 3.2 has spanned over two

years. Early usage experience with each mechanism was

invaluable in guiding further development. The transport protocol

extensions were implemented in early 1993, and incorporated into

the deployed system later that year. The rapid cache validation

mechanism was implemented in late 1993, and has been deployed

since early 1994. The trickle reintegration and user advice

mechanisms were implemented between 1994 and early 1995, and

have been released for general use.

6. Evaluation

6.1. Rapid Cache Validation
Two questions best characterize our evaluation of Coda’s rapid

cache validation mechanism:

● Under ideal conditions, how much do volume callbacks

improve cache validation time?

● In practice, how close are conditions to ideal?

The first question was discussed in detail in an earlier

paper [18]. Hence, we only present a brief summary of the key

results. More recently, we have addressed the second question,

and present the detailed results here.

6.1.1. Performance Under Ideal Conditions

For a given set of cached objects, the time for validation is

minimal when two conditions hold. First, at disconnection,

volume callbacks must exist for all cached objects. Second, while

disconnected, the volumes containing these objects must not be

updated at the server. Then, upon reconnection, communication

is needed only to verify volume version stamps. Fresh volume

callbacks are acquired as a side effect, at no additional cost.

Under these conditions, the primary determinants of

performance are network bandwidth and the composition of cache

contents. We conducted experiments to measure validation time

as a function of these two variables. To study variation due to

cache composition, we used the hoard profiles of five typical

Coda users. To Yary bandwidth, we used a network emulator.

Figure 8 shows that for all users, and at all bandwidths, volume

callbacks reduce cache validation time. The reduction is modest

at high bandwidths, but becomes substantial as bandwidth

decreases. At 9,6 Kb/s, the improvement is dramatic, typically

taking only about zs~. longer than at 10 Mb/s.

~
Object Callbacks = Black+ Gray

This figure compares the time for validation using object and

volume callbacks. Cache contents were determined by the hoard

profiles of five Coda users. The network speeds correspond to

the nominal speeds of Ethernet (E, 10 Mb/s), WaveLan (W, 2

Mb/s), ISDN (I, 64 Kb/s), and Modem (M, 9.6 Kb/s). The client

and server were DECstation 5000/200s running Mach 2.6.

Bandwidth was varied using an emulator on Ethernet.

Figure 8: Validation Time Under Ideal Conditions

6.1.2. Conditions Observed in Practice

There are two ways in which a Coda client in actual use may

find conditions less than ideal. First, a client may not possess

volume stamps for some objects at disconnection. If frequent,

this event would indicate that our strategy of waiting for a hoard

walk to acquire volume callbacks is not aggressive enough.

Second, a volume stamp may prove to be stale when presented for

validation. This would mean that the volume was updated on the

server while the client was disconnected. If frequent, this event

would indicate that acquiring volume stamps is futile, because it

rarely speeds up validation. It could also be symptomatic of a

volume being too large a granularity for cache coherence, for

reasons analogous to false sharing in virtual memory systems with

too large a page size.

To understand how serious these concerns are, we instrumented

Coda clients to record cache validation statistics. Figure 9

presents data gathered from 26 clients. The data shows that our

fears were baseless. On average, clients found themselves

without a volume stamp only in 3% of the cases. The data on

successful validations is even more reassuring. Most success

rates were over 9’7~0, and each successful validation saved

roughly 53 individual validations.

6.2. Trickle Reintegration

How much is a typical user’s update activity slowed when

weakly connected? This is the question most germane to trickle

reintegration, because the answer will reveal how effectively

foreground activity is insulated from update propagation over

slow networks.

The simplest way to answer this question would be to run a

standard file system benchmark on a write-disconnected client

over a wide range of network speeds. The obvious candidate is

the Andrew benchmark [5] since it is compact, portable, and

widely used. Unfortunately, this benchmark is of limited value in

evaluating trickle reintegration.

150

Client

bath

berlioz

brahms

chopm

copland

dvorak

gershwin

gs125

hoist

ives

mahler

messiaen

mozart

varicose

verdi

wvaldi

Mean

Missing
Stamp

2%

8%

o%

4’%

3%

2%

11%

o%

o%

o%

1%

o%

1%

o%

6%

7%

3%

T
Missing

Client Stamp

caractacus 2%

deidamia 2%

finlandia 13%

gloriana 2%

guntram o%

nabucco 1%

A
,rometheus 6%

serse 8%

tosca 1%

valkyrie 4%

Mean 4%

Validation
Attempts

970

1178

542

1674

1387

5536

467

897

474

1532

566

827

1633

568

2370

344

1310

(a) Desktops

k’alidation
Attempts

650

2257

541

1457

2977

1301

1617

1790

652

759

1400

Fraction
Successful

99%

97%

99%

97%

94%

98%

95%

99%

99%

98%

97%

98%

98%

98%

98%

89%

97%

Fraction
Successful

97%

98%

99%

97%

99%

96%

97%

98%

99%

96%

98%

Objs per
Success

89

48

5

102

171

75

32

22

29

56

6

31

126

32

64

28

57

Objs per
Success

40

112

32

29

26

28

74

32

60

32

47

(b) Laptops

These tables present data collected for approximately four weeks

in July and August 1995 from 16 desktops and 10 laptops. The

first column indicates how often validation could not be
attempted because of a missing volume stamp. The last column

gives a per-client average of object vahdatlons saved by a

successful volume vahdation.

Figure9: Observed Volume Validation Statistics

First, the running time of the benchmark on current hardware N

very small, typically less than three minutes. This implies that no

updates would bepropagated totheserver during anentiremnof

the benchmark foranyreasonable aging window. Increasing the

total time by using multiple iterations is not satisfactory because

the benchmark is not idempotent. Second, although the

benchmark captures many aspects of typical user activity, it does

not exhibit overwrite cancellations. Hence; its file references are

only marginally affected by log optimizations. Third, the

benchmark involves no user think time, which we believe to be

atypical of mobile computing applications.

For these reasons, our evaluation of trickle reintegration is

based on trace replay, which is likely to be a much better

indicator of performance in real use.

6.2.1. Trace Replay: Experiment Design

The ultimate in realism would be to measure trickle

reintegration inactual use by mobile users. But this approach has

serious shortcomings. First, a human subject cannot be made to

repeat her behavior precisely enough for multiple runs of an

experiment. Second, many confounding factors make timing

results from actual use difficult to interpret. Third, such

experiments cannot be replicated at other sites or in the future.

To overcome these limitations, we have developed an

experimental methodology in which trace replay is used in lieu of

human subjects. Realism is preserved since the trace was

generated in actual use. Timing measurements are much less

ambiguous, since experimental control and replicability are easier

to achieve. Thetraces andthereplay software can reexported.

Note that a trace replay experiment differs from a trace-driven

simtrlation inthattraces arereplayed on alive system. Our replay

software [19] generates Unix system calls that are serviced by

Venus and the servers just as if they had been generated by a

human user. Theonly difference isthata single process performs

the replay, whereas the trace may have been generated by

multiple processes. It would be fairly simple toextend our replay

software to exactly emulate the original process structure.

How does one incorporate the effect of human think time in a

trace replay experiment? Since atraceis often used many months

or years after it was collected, the system on which it is replayed

may bemuchfaster than theonginal. But a faster system will not

speed up those delays in the trace that were caused by human

think time. Unfortunately, it is difficult to reliably distinguish

think time delays from system-limited delays in a trace.

Oursoh.rtion is to perform sensitivity analysis for think time,

using a parameter called think threshold, (k). This parameter

defines the smallest delay in the input trace that will be preserved

in the replay. When k is O, all delays are preserved; when it is

infinity, the trace is replayed as fast as possible.

We rejected both extremities as parameter values for our

experiments. At 1 = O, there is so much opportunity for

overlapping data transmission with think time that experiments

would be biased toomuch in favor oftrickle reintegration. At A=

infinity, the absence of think time makes the experiment as

unrealistic as the Andrew benchmark. In the light of these

considerations, we chose values of h equal to 1 second and 10

seconds for our experiments. These are plausible values for

typical think times during periods of high activity, and they are

not biased too far against or in favor of trickle reintegration.

Since log optimizations play such a critical role in trickle

reintegration, we also conducted a sensitivity analysis for this

factor. We divided the traces mentioned in Section 4.3.4 into

45-minute segments, selected segments with the highest activity

levels, and analyzed their susceptibility to logoptimizations. A

segment longer than45 minutes would have made the duration of

each experiment excessive, allowing us to explore only a few

parameter combinations.

151

We define the compressibility of a trace segment as the ratio of

two quantities obtained when the segment is run through the

Venus simulator. Thenumerator istheamount ofdata optimized

out; the denominator is the length of the unoptimized CML.

Figure 10 shows the observed distribution of compressibility in

those trace segments with a final CML of 1MB or greater.

o 20 40 60 80 100
Compressibility f!%)

Figure lO: Compressibility of Trace Segments

The data shows that the compressibilities of roughly a third of

the segments are below 2070, while those of the remaining two-

thirds range from 40% to 100VO. For our experiments, we chose

one segment from each quartile of compressibility. The

characteristics of these segments are shown in Figure 11.

Trace No. of No. of Unopt. opt. COmpress-
Segnrent References Updates CML (KB) CML (KB) ibility

Purcell 51681 519 2864 2625 8’%
Hoist 61019 596 3402 2302 32%

Messiaen 38342 188 6996 2184 69%
Concord 160397 1273 34704 2247 94%

Each of these segments is45rninutes long. Since Coda uses the

open-close session semantics of AFS, individual read and

write operations are not included. Hence “Updates” in this

table only refers to operations such as close after write, and

mkdir, “References” includes, in addition, operations such as

close after read, stat, and lookup.

Figure 11: Segments Used in Trace Replay Experiments

6.2.2. Trace Replay: Results

Figure 12 presents the results of our trace replay experiments.

The same data is graphically illustrated in Figure 13. To ensure a

fair comparison, we forced Venus to remain write disconnected at

all bandwidths. We also deferred the beginning of measurements

until 10 minutes into each run, thus warming the CML for trickle

reintegration. The choice of 10 minutes corresponds to the largest

value of A used in our experiments.

Figures 12 and 13 cover 64 combinations of experimental

parameters: two aging windows (A = 300 and 600 seconds), two

think thresholds (L = 1 and 10 seconds), four trace

compressibilities (8, 32, 69, and 94~0), and four bandwidths (10

Mb/s, 2 Mb/s, 64 Kb/s, and 9.6 Kb/s).

These measurements confirm the effectiveness

reintegration over the entire experimental range.

of trickle

Bandwidth

varies over three orders of magnitude, yet elapsed time remains

almost unchanged. On average, performance is only about 2%

slower at 9.6 Kb/s than at 10 Mb/s. Even the worst case,

corresponding to the Ethernet and ISDN numbers for Concord in

Figure 12(d), is only 11% slower.

Trickle reintegration achieves insulation from network

bandwidth by decoupling updates from their propagation to

servers. Figure 14 illustrates this decoupling for one combination

of h and A. As bandwidth decreases, so does the amount of data

shipped. For example, in Figure 14(b), the data shipped decreases

from 2254 KB for Ethernet to 1536 KB for Modem. Since data

spends more time in the CML, there is greater opportunity for

optimization: 1067 KB versus 1081 KB. At the end of the

experiment, more data remains in the CML at lower bandwidths:

70KB versus 2289 KB.

7. Related Work

Effective use of low bandwidth networks has been widely

recognized as a vital capability for mobile computing [4, 11], but

only a few systems currently provide this functionality. Of these,

Little Work [6] is most closely related to our system.

Like Coda, Little Work provides transparent Unix file access to

disconnected and weakly-connected clients, and makes use of log

optimization. But, for reasons of upward compatibility, it makes

no changes to the AFS client-server interface. This constraint

hurts its ability to cope with intermittent connectivity. First, it

renders the use of large-granularity cache coherence infeasible.

Second, it weakens fault tolerance because transactional support

for reintegration cannot be added to the server.

Little Work supports partially connected operation [7], which is

analogous to Coda’s write disconnected state. But there are

important differences. First, users cannot influence the servicing

of cache misses in Little Work. Second, update propagation is

less adaptive than trickle reintegration in Coda. Third, much of

Little Work’s efforts to reduce and prioritize network traffic occur

in the SLIP driver. This is in contrast to Coda’s emphasis on the

higher levels of the system.

AirAccess 2.0 is a recent product that provides access to Novell

and other DOS file servers over low-bandwidth networks [1]. Its

implementation focuses on the lower levels, using techniques

such as data compression and differential file transfer. Like Little

Work, it preserves upward compatibility with existing servers and

therefore suffers from the same limitations. AirAccess has no

analog of trickle reintegration, nor does it allow users to influence

the handling of cache misses.

From a broader perspective, application packages such as Lotus

Notes [12] and cc:Mail [17] allow use of low-bandwidth

networks. These systems differ from Coda in that support for

mobility is entirely the responsibility of the application. By

providing this support at the file system level, Coda obviates the

need to modify individual applications. Further, by mediating the

resource demands of concurrent applications, Coda can better

manage resources such as network bandwidth and cache space.

152

E
Trace

Segment

Purcell

Hoist

Messiaen

Concord

Ethernet
10 Mb/s

2025 (16)

1960 (3)

1950 (2)

1897 (9) zWaveLan ISDN Modem
2 Mb/s 64 Kb/s 9.6 Kb/s

1999 (15) 2002 (20) 2096 (32)

1961 (5) 1964 (5) 1983 (5)

1970 (9) 1959 (3) 1995 (6)

1952 (2o) 1954 (43) 2002 (13)

(a) h = 1 second, A = 300 seconds

Hoist I 1026 (6)

Messiaen 1234 (2)

Concord I 1254 (7)

WaveLan
2 Mb/s

1622 (12)

1000 (3)

1241 (2)

1323 (16)

ISDN
64 Kbls

1624 (s)

1005 (lo)

1238 (5)

1312 (17)

Modem
9.6 Kb/s

1744 (8)

1047 (2)

1278 (9)

1362 (18)

*

Trace Ethernet
Segment 10 Mb/s

Purcell 2086 (28)

Hoist 2004 (13)

Messiaen 1949 (2)

Concord 2078 (49)

WaveLan
2 Mb/s

2064 (6)

1984 (11)

1974 (8)

2051 (38)

ISDN
64 Kb/s

2026 (20)

1970 (11)

1969 (16)

2017 (39)

(b) k = 1 second, A = 600 seconds

mTrace Ethernet WaveLan
Segment 10 Mb/s 2 Mb/s

Purcell 1704 (9) 1658 (14)

Hoist 1060 (10) 1027 (8)

Messiaen 1234 (3) 1265 (13)

Concord 1258 (7) 1383 (27)

ISDN
64 Kbls

1664 (23)

1021 (8)

1263 (11)

1402 (3o)

Modem
9.6 Kbls

2031 (4)

2009 (17)

1986 (3)

2079 (10)

Modem
9.6 Kbls

1683 (16)

998 (3)

1279 (7)

1340 (16)

(c) h= 10 seconds, A = 300 seconds (d) L = 10 seconds, A = 600 seconds

This table presents the elapsed time, in seconds, of the trace replay experiments described in Section 6.2.1. The think threshold is l., and the

aging wind-ow is A. Each data point is the mean of five trials; figures in parentheses are standard deviations. The experiments were conducted

using a DEC PC425SL laptop client and a DECstation 5000/200 server, both with 32 MB of memory, and mnning Mach 2.6. The client and

server were isolated on a separate network. The Ethernet, WaveLars and Modem experiments used actual networks of the corresponding type.

The ISDN experiments were conducted on an Ethernet using a network emulator. Measurements began after a 10 minute warming period.

Figure 12: Performance of Trickle Reintegration on Trace Replay

a2400r

(a) k= 1 second, A = 300 seconds

T >

\ /

\ /

\ /

\ /

\ /

\ /
EW’IM
Concord

(b) L = 1 second, A = 600 seconds

(c) L = 10 seconds, A = 300 seconds (d) k = 10 seconds, A = 600 seconds

These graphs illustrate the data in Figure 12. Network speed is indicated by E (Ethernet), W (WaveLan), I (ISDN), or M (Modem)

Figure 13: Comparison of Trace Replay Times

153

Network Begin CML End CML

I (KB) ~-

Shipped
Type (KB) (KB)

(a) Trace Segment = Purcell

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet I 896 (o) I O (0) I 2270@) I 3022 (0, [

WaveLrm I 896 (o) I O (0) I 2270 (o) I 3022 (o) I

ISDN 896 (0) I o(o) I 2270 (0) I 3022 (0) I
Modem 896 (0) 1060 (0) 1309 (16) 3103 (o)

(c) Trace Segment = Messiaen

Network Begin CML End CML Shipped
Type (KB) (KB) (KB)

Ethernet 2133 (0) 70 (o) 2254 (0)

WaveLan 2133 (0) 70 (0) 2254 (0)

ISDN 2133 (0) 70 (o) 2252 (0)

Modem 2133 (0) 2289 [0) 1536 (68)

Optimized
(KB)

1067 (())

1067 (0)

1069 (0)

1081 (0)

I Network

I_...3L
Ethernet

WaveLan

lSDN

Modem

(b) Trace Segment = Hoist

=

legin CML End CML Shipped
(KB) (KB) (KB)

63 (0) 2103 (0) 2496 (())

63 (0) 2103 (0) 2496 (0)

63 (0) 2103 (()) 2407 (0)

63 (0) 2180 @) 1142 (46)

(d) Trace Segment = Concord

Optimized
(KB)

30209 (0)

30209 (0)

30291 (0)

32322 (0)

This table shows components of the data generated in the experiments of Figure 12(b). Results for other combinations of h and A are

comparable, The columns labelled “Begin-CML” and “End CML” give the Mount of data in the CML at the beginning and end of the

measurement period. This corresponds to the amount of data waiting to be propagated to the servers at those times. The column labelled

“Shipped” gives the amount of data actuatly transfemed over the network; “Optnnized” gwes the amount of data saved by optlmlzations.

It may appear at first glance that the sum of the “End CML’, “Shipped”, and “Optimized” cohrmns should equal the “Unopt. CML” column of

Figure 11 But this need not be true for the following reasons, First, optlmlzations that occur prror to the measurement period are not included m

“Optimized” Second, if an experiment ends while a large tile is being transferred as a series of fragments, the fragments already transferred are

counted both in the “End CML” and “Shipped” columns Third, log records are larger when shipped than m the CML

Figure 14: Data Generated During Trace Replay (1= 1 second, A = 600 seconds)

8. Conclusion

Adaptation is the key to mobility. Coda’s approach is best

characterized as application-transparent adaptation — Venus

bears full responsibility for coping with the demands of mobility.

Applications remain unchanged, preserving upward compatibility.

The quest for adaptivity has resulted in major changes to many

aspects of Coda, including communication, cache validation,

update propagation, and cache miss handling. In makmg these

changes, our preference has been to place functionality at higher

levels of Venus, with only the bare minimum at the lowest levels.

Consistent with the end-to-end argument, we believe that this is

the best approach to achieving good performance and usability m

mobile computing.

In its present form, Coda can use a wide range of

communication media relevant to mobile computing. Examples

include regular phone lines, cellular modems, wireless LANs,

ISDN lines, and cellular digital packet data (CDPD) links, But

Coda may require further modifications to use satellite networks,

which have enormous delay-bandwidth products, and cable TV

networks, whose bandwidth is asymmetric.

Our work so far has assumed that performance is the only

metric of cost, In practice, many networks used in mobile

computing cost real money. We therefore plan to explore

techniques by which Venus can electronically require about

network cost, and base its adaptation on both cost and quality. Of

course, full-scale deployment of this capability will require the

cooperation of network providers and regulatory agencies.

Weak connectivity is a fact of life in mobile computing. In this

paper, we have shown how such connectivity can be exploited to

benefit mobile users of a distributed file system. Our mechanisms

allow users to focus on their work, largely ignoring the vagaries

of network performance and reliability. While many further

improvements will undoubtedly be made, Coda in its present form

is already a potent and usable tool for exploiting weak

connectivity in mobile computing.

Acknowledgements

Brian Noble, Ptmeet Kumar, David Eckhardt, Wayne Sawdon,

and Randy Dean provided insightful comments that substantially

strengthened this paper. Our SOSP shepherd, Mary Baker, was

helpful in improving the presentation. Brent Welch helped with

the TCL mud-wrestling involved in implementing user-assisted

cache management,

This work builds upon the contributions of many past and

present Coda project members. Perhaps the most important

contribution of all has been made by the Coda user community,

through Its bold wdlmgness to use and help Improve an

experimental system.

154

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

AirSoft AirAccess 20 Mobile Networking Software

AirSoft, Inc., Cupertino, CA, 1994.

Baker, M.G., Hartmann, J.H., Kupfer, M.D., Shirriff, K. W.,

Ousterhout, J.K.

Measurements of a Distributed File System.

In Proceedings qf the Thwteenth ACM Symposmm on Operating

Sy.rterns l%-irwples. Pacific Grove, CA, October, 1991.

Comsweet, T.N.

Visual Perception,

Academic Press, 1971.

Forman, G. H., Zahorjan, J

The Challenges of Mobile Computing.

IEEE Computer 27(4), April, 1994,

Howard, J.H,, Kazar, M.L., Menees, S.G., Nichols, D. A.,

Satyanarayanan, M., Sidebotham, R. N., West, M.J,

Scrde and Performance m a Distributed File System,

ACM Transactions on Computer Systems 6(l), February, 1988.

Huston, L., Honeyman, P.

Disconnected Operation for AFS,

In Proceedings of the 1993 USENIX Symposium on Mobile and

Location-Independenr Computing. Cambridge, MA, August,

1993.

Huston, L., Honeyman, P.

Partially Connected Operation.

In Proceedings qf the Second USENIX Symposium on Mobile and

Location-hrdependerr rComputing. Ann Arbor, MI, April,

1995.

Jacobson, V.

Congestion Avoidance and Control.

In Proceedings of SIGCOMM88. Stanford, CA, Arrgrrst,1988.

Jacobson, V.
RFC 1144: Compressing TCP/IP Headers for Low-Speed Serial

Links.

February, 1990.

Jacobson, V., Braden, R., Berman, D.

RFC 1323: TCPExtensions for High Performance.

May, 1992.

Katz, R.H.

Adaptation and Mobility in Wireless Information Systems.

IEEE PersonalC omrnunications l(l), 1994.

Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzle, R., Greif, 1,

Replicated Document Management in a Group Communication

System.

In Marca, D., Bock, G.(editors), Groupware: Software,fi}r

Computer-Supported Cooperate Work, pages 226-235. IEEE

Computer Society Press, Los Alamitos, CA, 1992.

Kk.tier, J.J., Satyanarayanan, M,

Disconnected Operation in the Coda File System.

ACM Transactions on Computer Systems 10(1), February, 1992,

Kumar, P,

Mitlgatmg the Eflects of Optimistic Replication in a Distributed

File System.

PhD thesis, School of Computer Science, Camegle Mellon

University, December, 1994

Lampson, B. W.

Hints for Computer System Design,
In Proceedings of the Ninth ACM Symposium on Operating

Sy.~tems Principles. Bretton Woods, NH, October, 1983.

Mann, T., Birrell, A,, Hisgen, A., Jertan, C,, Swart, G,

A Coherent Distributed File Cache with Dmectory Write-Behhrd,

ACM Transactions on Computer Systems 12(2), May, 1994.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Moeller, M.

Lotus Opens cc:Mail to Pagers.

PC Week 11(35):39, September, 1994,

Mummert, L.B., Satyanarayanan, M.

Large Granularity Cache Coherence for Intermittent Connectivity,

In Proceedings of the 1994 Summer USENIX Cotrference, Boston,

MA, June, 1994

Mmmnert, L. B,, Satyanarayanan, M.

Long-Term Distributed File Reference Tracing: lmplementatmn

and Experience.

Technical Report CMU-CS-94-2 13, School of Computer Science,

Carnegie Mellon University, November, 1994.

Nelson, M. N,, Welch, B, B., Ousterhout, J.K,

Caching in the Sprite Network File System.

ACM Transactiorr$ on Computer Systems 6(1), February, 1988,

Noble, B., Satyanarayanan, M.

An Empirical Study of a Highly-Available File System.

In Proceedings of the 1994 ACM Sigmetrics Conference.

Nashville, TN, May, 1994,

Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M..

Thompson, J.

A Trace-Driven Analysis of the 4.2BSD File System

In Proceedings of the Tenth A CM Symposium mr Operating System

Principles. Orcas Island, WA, December, 1985.

Romkey, J.

RFC 1055: A Nonstandard for Transmission of 1P Datagrams Over

Serial Lines. SLIP.

June, 1988.

Saltzer, J H., Reed, D.P, Clark, D.D.

End-to-End Arguments in System Design.

ACM Transactions on Computer Systems 2(4), November, 1984.

Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasrd+ ME.,

Siegel, E. H., Steere, D.C.

Coda: A Highly Available File System for a Distributed

Workstation Enwronment.

IEEE Transactors an Computers 39(4), April, 1990.

Satyanarayanan, M., Kistler, J.J., Mrmrmert, LB., Ebling, M. R.,

Kumar, P,, Lu, Q.

Experience with Disconnected Operation in a Mobile Computing

Environment.

In Prwceedmgs of the 1993 USENIX Symposium on Mobde and

Location-Independent Computing. Cambrtdge, MA, August,

1993.

Satyanarayanan, M. (Editor).
RPC2 User Guide and Reference Manual

Department of Computer Science, Carnegie Mellon University,
1995 (Last revised).

Sheng, S., Chandrakasrm, A., Brodersen, R.W.

A Portable Multimedia Terminal.

IEEE Communications Magazine 30(12), December, 1992.

Weiser, M.

The Computer for the Twenty-Ftrst Century.
Sctentifrc Amertcan 265(3), September, 1991.

155

