
Distributed File Systems: Concepts and Examples

ELIEZER LEVY and ABRAHAM SILBERSCHATZ

Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712-l 188

The purpose of a distributed file system (DFS) is to allow users of physically distributed
computers to share data and storage resources by using a common file system. A typical
configuration for a DFS is a collection of workstations and mainframes connected by a
local area network (LAN). A DFS is implemented as part of the operating system of each
of the connected computers. This paper establishes a viewpoint that emphasizes the
dispersed structure and decentralization of both data and control in the design of such
systems. It defines the concepts of transparency, fault tolerance, and scalability and
discusses them in the context of DFSs. The paper claims that the principle of distributed
operation is fundamental for a fault tolerant and scalable DFS design. It also presents
alternatives for the semantics of sharing and methods for providing access to remote files.
A survey of contemporary UNIX@-based systems, namely, UNIX United, Locus, Sprite,
Sun’s Network File System, and ITC’s Andrew, illustrates the concepts and demonstrates
various implementations and design alternatives. Based on the assessment of these
systems, the paper makes the point that a departure from the approach of extending
centralized file systems over a communication network is necessary to accomplish sound
distributed file system design.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:

Distributed Systems-distributed applications; network operating systems; D.4.2
[Operating Systems]: Storage Management-allocation/deallocation strategies; storage
hierarchies; D.4.3 [Operating Systems]: File Systems Management-directory
structures; distributed file systems; file organization; maintenance; D.4.4 [Operating

Systems]: Communication Management-buffering; network communication; D.4.5
[Operating Systems]: Reliability-fault tolerance; D.4.7 [Operating Systems]:

Organization and Design-distributed systems; F.5 [Files]: Organization/structure

General Terms: Design, Reliability

Additional Key Words and Phrases: Caching, client-server communication, network
transparency, scalability, UNIX

INTRODUCTION discusses Distributed File Systems (DFSs)

The need to share resources in a commuter as the means of sharing storage space and .
system arises due to economics or the na- data.

ture of some applications. In such cases, it A file system is a subsystem of an oper-

is necessary to facilitate sharing long-term ating system whose purpose is to provide

storage devices and their data. This paper long-term storage. It does so by implement-
ing files-named objects that exist from

@ UNIX is a trademark of AT&T Bell Laboratories.
th& explicit creatidn until their explicit
destruction and are immune to temporary

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0360-0300/90/1200-0321 $01.50

ACM Computing Surveys, Vol. 22, No. 4, December 1990

322 l E. Levy and A. Silberschatz

CONTENTS

INTRODUCTION
1. TRENDS AND TERMINOLOGY
2. NAMING AND TRANSPARENCY

2.1 Location Transparency and Independence
2.2 Naming Schemes
2.3 Implementation Techniques

3. SEMANTICS OF SHARING
3.1 UNIX Semantics
3.2 Session Semantics
3.3 Immutable Shared Files Semantics
3.4 Transaction-like Semantics

4. REMOTE-ACCESS METHODS
4.1 Designing a Caching Scheme
4.2 Cache Consistency
4.3 Comparison of Caching and Remote Service

5. FAULT TOLERANCE ISSUES
5.1 Stateful Versus Stateless Service
5.2 Improving Availability
5.3 File Replication

6. SCALABILITY ISSUES
6.1 Guidelines by Negative Examples
6.2 Lightweight Processes

7. UNIX UNITED
7.1 Overview
7.2 Implementation-Newcastle Connection
7.3 Summary

8. LOCUS
8.1 Overview
8.2 Name Structure
8.3 File Operations
8.4 Synchronizing Accesses to Files
8.5 Operation in a Faulty Environment
8.6 Summary

9. SUN NETWORK FILE SYSTEM
9.1 Overview
9.2 NFS Services
9.3 Implementation
9.4 Summary

10. SPRITE
10.1 Overview
10.2 Looking Up Files with Prefix Tables
10.3 Caching and Consistency
10.4 summary

11. ANDREW
11.1 Overview
11.2 Shared Name Space
11.3 File Operations and Sharing Semantics
11.4 Implementation
11.5 Summary

12. OVERVIEW OF RELATED WORK
13. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
BIBLIOGRAPHY

failures in the system. A DFS is a distrib-
uted implementation of the classical time-
sharing model of a file system, where mul-
tiple users share files and storage resources.
The UNIX time-sharing file system is usu-
ally regarded as the model [Ritchie and
Thompson 19741. The purpose of a DFS is
to support the same kind of sharing when
users are physically dispersed in a distrib-
uted system. A distributed system is a col-
lection of loosely coupled machines-either
a mainframe or a workstation-intercon-
nected by a communication network. Un-
less specified otherwise, the network is a
local area network (LAN). From the point
of view of a specific machine in a distrib-
uted system, the rest of the machines and
their respective resources are remote and
the machine’s own resources are local.

To explain the structure of a DFS, we
need to define service, server, and client
[Mitchell 19821. A service is a software
entity running on one or more machines
and providing a particular type of function
to a priori unknown clients. A server is the
service software running on a single ma-
chine. A client is a process that can invoke
a service using a set of operations that form
its client interface (see below). Sometimes,
a lower level interface is defined for the
actual cross-machine interaction. When
the need arises, we refer to this interface as
the intermachine interface. Clients imple-
ment interfaces suitable for higher level
applications or direct access by humans.

Using the above terminology, we say a
file system provides file services to clients.
A client interface for a file service is formed
by a set of file operations. The most primi-
tive operations are Create a file, Delete a
file, Read from a file, and Write to a file.
The primary hardware component a file
server controls is a set of secondary storage
devices (i.e., magnetic disks) on which files
are stored and from which they are re-
trieved according to the client’s requests.
We often say that a server, or a machine,
stores a file, meaning the file resides on one
of its attached devices. We refer to the file
system offered by a uniprocessor, time-
sharing operating system (e.g., UNIX 4.2
BSD) as a conventional file system.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 323

the survey paper by Tanenbaum and Van
Renesse [19851, where the broader context
of distributed operating systems and com-
munication primitives are discussed.

In light of the profusion of UNIX-based
DFSs and the dominance of the UNIX file
system model, five UNIX-based systems
are surveyed. The first part of the paper is
independent of this choice as much as pas-

sible. Since a vast majorit,y of the actual
DFSs (and all systems surveyed and men-
tioned in this paper) have some relation to
UNIX, however, it is inevitable that the
concepts are understood best in the UNIX
context. The choice of the five systems
and the order of their presentation demon-
strate the evolution of DFSs in the last
decade.

Section 1 presents the terminology and
concepts of transparency, fault tolerance,
and scalability. Section 2 discusses trans-
parency and how it is expressed in naming
schemes in greater detail. Section 3 intro-
duces notions that are important for the
semantics of sharing files, and Section 4
compares methods of caching and remote
service. Sections 5 and 6 discuss issues
related to fault tolerance and scalability,
respectively, pointing out observations
based on the designs of the surveyed sys-
tems. Sections 7-11 describe each of the
five systems mentioned above, including
distinctive features of a system not related
to the issues presented in the first part.
Each description is followed by a summary
of the prominent features of the corre-
sponding system. A table compares the five
systems and concludes the survey. Many
important aspects of DFSs and systems are
omitted from this paper; thus, Section 12
reviews related work not emphasized in our
discussion. Finally, Section 13 provides
conclusions and a bibliography provides re-
lated literature not directly referenced.

A DFS is a file system, whose clients,
servers, and storage devices are dispersed
among the machines of a distributed sys-
tem. Accordingly, service activity has to be
carried out across the network, and instead
of a single centralized data repository there
are multiple and independent storage de-
vices. As will become evident, the concrete
configuration and implementation of a
DFS may vary. There are configurations
where servers run on dedicated machines,
as well as configurations where a machine
can be both a server and a client. A DFS
can be implemented as part of a distributed
operating system or, alternatively, by a
software layer whose task is to manage
the communication between conventional
operating systems and file systems. The
distinctive features of a DFS are the
multiplicity and autonomy of clients and
servers in the system.

The paper is divided into two parts. In
the first part, which includes Sections 1 to
6, the basic concepts underlying the design
of a DFS are discussed. In particular, alter-
natives and trade-offs regarding the design
of a DFS are pointed out. The second part
surveys five DFSs: UNIX United [Brown-
bridge et al. 1982; Randell 19831, Locus
[Popek and Walker 1985; Walker et al.
19831, Sun’s Network File System (NFS)
[Sandberg et al. 1985; Sun Microsystems
Inc. 19881, Sprite [Nelson et al., 1988;
Ousterhout et al. 19881, and Andrew
[Howard et al. 1988; Morris et al. 1986;
Satyanarayanan et al. 19851. These systems
exemplify the concepts and observations
mentioned in the first part and demon-
strate various implementations. A point in
the first part is often illustrated by referring
to a later section covering one of the sur-
veyed systems.

The fundamental concepts of a DFS can
be studied without paying significant atten-
tion to the actual operating system of which
it is a component. The first part of the
paper adopts this approach. The second
part reviews actual DFS architectures that
serve to demonstrate approaches to inte-
gration of a DFS with an operating system
and a communication network. To comple-
ment our discussion, we refer the reader to

1. TRENDS AND TERMINOLOGY

Ideally, a DFS should look to its clients like
a conventional, centralized file system.
That is, the multiplicity and dispersion of
servers and storage devices should be trans-
parent to clients. As will become evident,

ACM Computing Surveys, Vol. 22, No. 4, December 1990

324 l E. Levy and A. Silberschatz

transparency has many dimensions and de-
grees. A fundamental property, called net-
work transparency, implies that clients
should be able to access remote files using
the same set of file operations applicable to
local files. That is, the client interface of a
DFS should not distinguish between local
and remote files. It is up to the DFS to
locate the files and arrange for the trans-
port of the data.

Another aspect of transparency is user
mobility, which implies that users can log
in to any machine in the system; that is,
they are not forced to use a specific ma-
chine. A transparent DFS facilitates user
mobility by bringing the user’s environ-
ment (e.g., home directory) to wherever he
or she logs in.

The most important performance mea-
surement of a DFS is the amount of time
needed to satisfy service requests. In con-
ventional systems, this time consists of disk
access time and a small amount of CPU
processing time. In a DFS, a remote access
has the additional overhead attributed to
the distributed structure. This overhead
includes the time needed to deliver the re-
quest to a server, as well as the time needed
to get the response across the network
back to the client. For each direction, in
addition to the actual transfer of the infor-
mation, there is the CPU overhead of run-
ning the communication protocol software.
The performance of a DFS can be viewed
as another dimension of its transparency;
that is, the performance of a DFS should
be comparable to that of a conventional file
system.

We use the term fault tolerance in a
broad sense. Communication faults, ma-
chine failures (of type fail stop), storage
device crashes, and decays of storage media
are all considered to be faults that should
be tolerated to some extent. A fault-
tolerant system should continue function-
ing, perhaps in a degraded form, in the face
of these failures. The degradation can be in
performance, functionality, or both but
should be proportional, in some sense, to
the failures causing it. A system that grinds
to a halt when a small number of its com-
ponents fail is not fault tolerant.

The capability of a system to adapt to
increased service load is called scalability.

Systems have bounded resources and can
become completely saturated under in-
creased load. Regarding a file system, sat-
uration occurs, for example, when a server’s
CPU runs at very high utilization rate or
when disks are almost full. As for a DFS in
particular, server saturation is even a bigger
threat because of the communication over-
head associated with processing remote
requests. Scalability is a relative property;
a scalable system should react more grace-
fully to increased load than a nonscalable
one will. First, its performance should
degrade more moderately than that of a
nonscalable system. Second, its resources
should reach a saturated state later, when
compared with a nonscalable system.

Even a perfect design cannot accommo-
date an ever-growing load. Adding new re-
sources might solve the problem, but it
might generate additional indirect load on
other resources (e.g., adding machines to a
distributed system can clog the network
and increase service loads). Even worse,
expanding the system can incur expensive
design modifications. A scalable system
should have the potential to grow without
the above problems. In a distributed sys-
tem, the ability to scale up gracefully is of
special importance, since expanding the
network by adding new machines or inter-
connecting two networks together is com-
monplace. In short, a scalable design should
withstand high-service load, accommodate
growth of the user community, and enable
simple integration of added resources.

Fault tolerance and scalability are mu-
tually related to each other. A heavily
loaded component can become paralyzed
and behave like a faulty component. Also,
shifting a load from a faulty component to
its backup can saturate the latter. Gener-
ally, having spare resources is essential for
reliability, as well as for handling peak
loads gracefully.

An advantage of distributed systems over
centralized systems is the potential for fault
tolerance and scalability because of the
multiplicity of resources. Inappropriate de-
sign can, however, obscure this potential
and, worse, hinder the system’s scalability
and make it failure prone. Fault tolerance
and scalability considerations call for a de-
sign demonstrating distribution of control

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 325

numerical identifier, which in turn is
mapped to disk blocks. This multilevel
mapping provides users with an abstraction
of a file that hides the details of how and
where the file is actually stored on the disk.

In a transparent DFS, a new dimension
is added to the abstraction, that of hiding
where in the network the file is located. In
a conventional file system the range of the
name mapping is an address within a disk;
in a DFS it is augmented to include the
specific machine on whose disk the file is
stored. Going further with the concept of
treating files as abstractions leads to the
notion of file replication. Given a file name,
the mapping returns a set of the locations
of this file’s replicas [Ellis and Floyd
19831. In this abstraction, both the exist-
ence of multiple copies and their locations
are hidden.

In this section, we elaborate on transpar-
ency issues regarding naming in a DFS.
After introducing the properties in this
context, we sketch approaches to naming
and discuss implementation techniques.

and data. Any centralized entity, be it a
central controller or a central data reposi-
tory, introduces both a severe point of
failure and a performance bottleneck.
Therefore, a scalable and fault-tolerant
DFS should have multiple and independent
servers controlling multiple and indepen-
dent storage devices.

The fact that a DFS manages a set of
dispersed storage devices is its key distin-
guishing feature. The overall storage space
managed by a DFS consists of different and
remotely located smaller storage spaces.
Usually there is correspondence between
these constituent storage spaces and sets of
files. We use the term component unit to
denote the smallest set of files that can be
stored on a single machine, independently
from other units. All files belonging to the
same component unit must reside in the
same location. We illustrate the definition
of a component unit by drawing an analogy
from (conventional) UNIX, where multiple
disk partitions play the role of distributed
storage sites. There, an entire removable
file system is a component unit, since a file
system must fit within a single disk parti-
tion [Ritchie and Thompson 19741. In all
five systems, a component unit is a partial
subtree of the UNIX hierarchy.

Before we proceed, we stress that the
distributed nature of a DFS is fundamental
to our view. This characteristic lays the
foundation for a scalable and fault-tolerant
system. Yet, for a distributed system to be
conveniently used, its underlying dispersed
structure and activity should be made
transparent to users. We confine ourselves
to discussing DFS designs in the context of
transparency, fault tolerance, and scalabil-
ity. The aim of this paper is to develop an
understanding of these three concepts on
the basis of the experience gained with
contemporary systems.

2. NAMING AND TRANSPARENCY

Naming is a mapping between logical and
physical objects. Users deal with logical
data objects represented by file names,
whereas the system manipulates physical
blocks of data stored on disk tracks. Usu-
ally, a user refers to a file by a textual
name. The latter is mapped to a lower-level

2.1 Location Transparency
and Independence

This section discusses transparency in the
context of file names. First, two related
notions regarding name mappings in a DFS
need to be differentiated:

l Location Transparency. The name of a
file does not reveal any hint as to its
physical storage location.

l Location Independence. The name of a
file need not be changed when the file’s
physical storage location changes.

Both definitions are relative to the dis-
cussed level of naming, since files have
different names at different levels (i.e.,
user-level textual names, and system-level
numerical identifiers). A location-indepen-
dent naming scheme is a dynamic mapping,
since it can map the same file name to
different locations at two different in-
stances of time. Therefore, location inde-
pendence is a stronger property than
location transparency. Location indepen-
dence is often referred to as file migration
or file mobility. When referring to file mi-
gration or mobility, one implicitly assumes

ACM Computing Surveys, Vol. 22, No. 4, December 1990

326 l E. Levy and A. Silberschatz

that the movement of files is totally trans-
parent to users. That is, files are migrated
by the system without the users being
aware of it.

In practice, most of the current file sys-
tems (e.g., Locus, NFS, Sprite) provide a
static, location-transparent mapping for
user-level names. The notion of location
independence is, however, irrelevant for
these systems. Only Andrew and some ex-
perimental file systems support location
independence and file mobility (e.g., Eden
[Almes et al., 1983; Jessop et al. 19821).
Andrew supports file mobility mainly for
administrative purposes. A protocol pro-
vides migration of Andrew’s component
units upon explicit request without chang-
ing the user-level or the low-level names of
the corresponding files (see Section 11.2 for
details).

There are few other aspects that can
further differentiate and contrast location
independence and location transparency:

l Divorcing data from location, as exhib-
ited by location independence, provides
a better abstraction for files. Location-
independent files can be viewed as logical
data containers not attached to a specific
storage location. If only location trans-
parency is supported, however, the file
name still denotes a specific, though hid-
den, set of physical disk blocks.

l Location transparency provides users
with a convenient way to share data.
Users may share remote files by naming
them in a location-transparent manner
as if they were local. Nevertheless, shar-
ing the storage space is cumbersome,
since logical names are still statically at-
tached to physical storage devices. Loca-
tion independence promotes sharing the
storage space itself, as well as sharing the
data objects. When files can be mobilized,
the overall, systemwide storage space
looks like a single, virtual resource. A
possible benefit of such a view is the
ability to balance the utilization of disks
across the system. Load balancing of the
servers themselves is also made possible
by this approach, since files can be mi-
grated from heavily loaded servers to
lightly loaded ones.

l Location independence separates the
naming hierarchy from the storage de-
vices hierarchy and the interserver struc-
ture. By contrast, if only location
transparency is used (although names
are transparent), one can easily expose
the correspondence between component
units and machines. The machines are
configured in a pattern similar to the
naming structure. This may restrict the
architecture of the system unnecessarily
and conflict with other considerations. A
server in charge of a root directory is
an example for a structure dictated by
the naming hierarchy and contradicts
decentralizat,ion guidelines. An excellent
example of separation of the service
structure from the naming hierarchy can
be found in the design of the Grapevine
system [Birrel et al. 1982; Schroeder et
al. 19841.

The concept of file mobility deserves more
attention and research. We envision future
DFS that supports location independence
completely and exploits the flexibility that
this property entails.

2.2 Naming Schemes

There are three main approaches to naming
schemes in a DFS [Barak et al. 19861. In
the simplest approach, files are named by
some combination of their host name and
local name, which guarantees a unique sys-
tem-wide name. In Ibis for instance, a
file is uniquely identified by the name
hostzlocal-name, where local name is a
UNIX-like path [Tichy and Ruan 19841.
This naming scheme is neither location
transparent nor location independent.
Nevertheless, the same file operations can
be used for both local and remote files; that
is, at least the fundamental network trans-
parency is provided. The structure of the
DFS is a collection of isolated component
units that are entire conventional file sys-
tems. In this first approach, component
units remain isolated, although means are
provided to refer to a remote file. We do
not consider this scheme any further in this
paper.

The second approach, popularized by
Sun’s NFS, provides means for individual

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems

2.3.1 Pathname Translation

l 327

The mapping of textual names to low-level
identifiers is typically done by a recursive
lookup procedure based on the one used in
conventional UNIX [Ritchie and Thomp-
son 19741. We briefly review how this
procedure works in a DFS scenario by il-
lustrating the lookup of the textual name
/a/b/c of Figure 1. The figure shows a par-
tial name structure constructed from three
component units using the third scheme
mentioned above. For simplicity, we as-
sume that the location table is available to
all the machines. Suppose that the lookup
is initiated by a client on machinel. First,
the root directory ‘1’ (whose low-level iden-
tifier and hence its location on disk is
known in advance) is searched to find the
entry with the low-level identifier of a.
Once the low-level identifier of a is found,
the directory a itself can be fetched from
disk. Now, b is looked for in this directory.
Since b is remote, an indication that b
belongs to cu2 is recorded in the entry of b
in the directory a. The component of the
name looked up so far is stripped off and
the remainder (/b/c) is passed on to
machine2. On machine2, the lookup is con-
tinued and eventually machine3 is con-
tacted and the low-level identifier of /a/b/c
is returned to the client. All five systems
mentioned in this paper use a variant of
this lookup procedure. Joining component
units together and recording the points
where they are joined (e.g., b is such a point
in the above example) is done by the mount
mechanism discussed below.

There are few options to consider when
machine boundaries are crossed in the
course of a pat,hname traversal. We refer
again to the above example. Once
machine2 is contacted, it can look up b and
respond immediately to machinel. Alter-
natively, machine2 can initiate the contact
with machine3 on behalf of the client on
machinel. This choice has ramifications on
fault tolerance that are discussed in Section
5.2. Among the surveyed systems, only in
UNIX United are lookups forwarded from
machine to machine on behalf of the lookup
initiator. If machine2 responds immedi-
ately, it can either respond with the low-
level identifier of b or send as a reply the

machines to attach (or mount in UNIX
jargon) remote directories to their local
name spaces. Once a remote directory is
attached locally, its files can be named in a
location-transparent manner. The result-
ing name structure is versatile; usually it is
a forest of UNIX trees, one for each ma-
chine, with some overlapping (i.e., shared)
subtrees. A prominent property of this
scheme is the fact that the shared name
space may not be identical at all the ma-
chines. Usually this is perceived as a serious
disadvantage; however, the scheme has the
potential for creating customized name
spaces for individual machines.

Total integration between the compo-
nent file systems is achieved using the third
approach-a single global name structure
that spans all the files in the system. Con-
sequently, the same name space is visible to
all clients. Ideally, the composed file system
structure should be isomorphic to the struc-
ture of a conventional file system. In prac-
tice, however, there are many special files
that make the ideal goal difficult to attain.
(In UNIX, for example, I/O devices are
treated as ordinary files and are repre-
sented in the directory Jdev; object code of
system programs reside in the directory
/bin. These are special files specific to a
particular hardware setting.) Different var-
iations of this approach are examined in
the sections on UNIX United, Locus,
Sprite, and Andrew.

All important criterion for evaluating the
above naming structures is administrative
complexity. The most complex structure
and most difficult to maintain is the NFS
structure. The effects of a failed machine,
or taking a machine off-line, are that some
arbitrary set of directories on different.
machines becomes unavailable. Likewise,
migrating files from one machine to an-
other requires changes in the name spaces
of all the affected machines. In addition, a
separate accreditation mechanism had to
be devised for controlling which machine is
allowed to attach which directory to its
name space.

2.3 Implementation Techniques

This section reviews commonly used tech-
niques related to naming.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

328 l E. Levy and A. Silberschatz

component unit server 7
cul machine1
cu2 machine2
cu3 machine3

Location Table

Figure 1. Lookup example.

ent.ire parent directory of b. In the former
it is the server (machine2 in the example)
that performs the lookup, whereas in the
latter it is the client that initiates the
lookup that actually searches the directory.
In case the server’s CPU is loaded, this
choice is of consequence. In Andrew and
Locus, clients perform the lookups; in NFS
and Sprite the servers perform it.

2.3.2 Structured Identifiers

Implementing transparent naming requires
the provision of the mapping of a file name
to its location. Keeping this mapping man-
ageable calls for aggregating sets of files
into component units and providing the
mapping on a component unit basis rather
than on a single file basis. Typically, struc-
tured identifiers are used for this aggrega-
tion. These are bit strings that usually have
two parts. The first part identifies the com-
ponent unit to which file belongs; the sec-

ond identifies the particular file within the
unit. Variants with more parts are possible.
The invariant of structured names is, how-
ever, that individual parts of the name are
unique for all times only within the context
of the rest of the parts. Uniqueness at all
times can be obtained by not reusing a
name that is still used, or by allocating a
sufficient number of bits for the names
(this method is used in Andrew), or by using
a time stamp as one of the parts of the
name (as done in Apollo Domain [Leach et
al. 19821).

To enhance the availability of the crucial
name to location mapping information,
methods such as replicating it or caching
parts of it locally by clients are used. As
was noted, location independence means
that the mapping changes in time and,
hence, replicating the mapping makes up-
dating the information consistently a com-
plicated matter. Structured identifiers are
location independent; they do not mention

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems 8 329

servers’ locations at all. Hence, these iden-
tifiers can be replicated and cached freely
without being invalidated by migration of
component units. A smaller, second level of
mapping that maps component units to
locations is the only information that does
change when files migrate. The usage of
the techniques of aggregation of files into
component units and lcwer-level, location-
independent file identifiers is exempli-
fied in Andrew (Section 11) and Locus
(Section 8).

We illustrate the above techniques with
the example in Figure 1. Suppose the path-
name /a/b/c is translated to the structured,
low-level identifier <cu3, ll>, where cu3
denotes that file’s component unit and 11
identifies it in that unit. The only place
where machine locations are recorded is in
the location table. Hence, the correspon-
dence between /a/b/c and <cu3, ll> is not
invalidated once cu3 is migrated to
machine2; only the location table should be
updated.

2.3.3 Hints

A technique often used for location map-
ping in a DFS is that of hints [Lampson
1983; Terry 19871. A hint is a piece of
information that speeds up performance if
it is correct and does not cause any se-
mantically negative effects if it is incorrect.
In essence, a hint improves performance
similarly to cached information. A hint may
be wrong, however; therefore, its correct-
ness must be validated upon use. To illus-
trate how location information is treated as
hints, assume there is a location server that
always reflects the correct and complete
mapping of files to locations. Also assume
that clients cache parts of this mapping
locally. The cached location information is
treated as a hint. If a file is found using the
hint, a substantial performance gain is ob-
tained. On the other hand, if the hint was
invalidated because the file had been mi-
grated, the client’s lookup would fail. Con-
sequently, the client must resort to the
more expensive procedure of querying the
location server; but, still, no semantically
negative effects are caused. Examples of
using hints abound: Clients in Andrew

cache location information from servers
and treat this information as hints (see
Section 11.4). Sprite uses an effective form
of hints called prefix tables and resorts to
broadcasting when the hint is wrong (see
Section 10.2). The location mechanism of
Apollo Domain is based on hints and heu-
ristics [Leach et al. 19821. The Grapevine
mail system counts on hints to locate
mailboxes of mail recipients [Birrel et al.
19821.

2.3.4 Mount Mechanism

Joining remote file systems to create a
global name structure is often done by the
mount mechanism. In conventional UNIX,
the mount mechanism is used to join to-
gether several self-contained file systems to
form a single hierarchical name space
[Quarterman et al. 1985; R.itchie and
Thompson 19741. A mount operation binds
the root of one file system to a directory of
another file system. The former file system
hides the subtree descending from the
mounted-over directory and looks like an
integral subtree of the latter file system.
The directory that glues together the two
file systems is called a mount point. All
mount operations are recorded by the op-
erating system kernel in a mount table. This
table is used to redirect name lookups to
the appropriate file systems. The same se-
mantics and mechanisms are used to mount
a remote file system over a local one. Once
the mount is complete, files in the remote
file system can be accessed locally as if they
were ordinary descendants of the mount
point directory. The mount mechanism is
used with slight variations in Locus, NFS,
Sprite, and Andrew. Section 9.2.1 presents
a detailed example of the mount operation.

3. SEMANTICS OF SHARING

The semantics of sharing are important
criteria for evaluating any file system that
allows multiple clients to share files. It is a
characterization of the system that speci-
fies the effects of multiple clients accessing
a shared file simultaneously. In partic-
ular, these semantics should specify when

ACM Computing Surveys, Vol. 22, No. 4, December 1990

330 l E. L.evy and A. Silberschatz

modifications of data by a client are ob-
servable, if at all, by remote clients.

For the following discussion we need to
assume that a series of file accesses (i.e.,
Reads and Writes) attempted by a client to
the same file are always enclosed between
the Open and Close operations. We denote
such a series of accesses as a file session.

It should be realized that applications
that use the file system to store data and
pose constraints on concurrent accesses in
order to guarantee the semantic consis-
tency of their data (i.e., database applica-
tions) should use special means (e.g., locks)
for this purpose and not rely on the under-
lying semantics of sharing provided by the
file system.

To illustrate the concept, we sketch sev-
eral examples of semantics of sharing men-
tioned in this paper. We outline the gist of
the semantics and not the whole detail.

3.1 UNIX Semantics

Every Read of a file sees the effects of all
previous Writes performed on that file in
the DFS. In particular, Writes to an open
file by a client are visible immediately by
other (possibly remote) clients who have
this file open at the same time.
It is possible for clients to share the
pointer of current location into the file.
Thus, the advancing of the pointer by
one client affects all sharing clients.

Consider a sequence interleaving all the
accesses to the same file regardless of the
identity of the issuing client. Enforcing
the above semantics guarantees that each
successive access sees the effects of the ones
that precede it in that sequence. In a file
system context, such an interleaving can be
totally arbitrary, since, in contrast to da-
tabase management systems, sequences of
accesses are not defined as transactions.
These semantics lend themselves to an im-
plementation where a file is associated with
a single physical image that serves all ac-
cesses in some serial order (which is the
order captured in the above sequence).
Contention for this single image results in
clients being delayed. The sharing of the
location pointer mentioned above is an ar-

tifact of UNIX and is needed primarily for
compatibility of distributed UNIX systems
with conventional UNIX software. Most
DFSs try to emulate these semantics to
some extent (e.g., Locus, Sprite) mainly
because of compatibility reasons.

3.2 Session Semantics

Writes to an open file are visible imme-
diately to local clients but are invisible to
remote clients who have the same file
open simultaneously.
Once a file is closed, the changes made to
it are visible only in later starting ses-
sions. Already open instances of the file
do not reflect these changes.

According to these semantics, a file may
be temporarily associated with several (pos-
sibly different) images at the same time.
Consequently, multiple clients are allowed
to perform both Read and Write accesses
concurrently on their image of the file,
without being delayed. Observe that when
a file is closed, all remote active sessions
are actually using a stale copy of the file.
Here, it is evident that application pro-
grams that care about the serialization of
accesses (e.g., a distributed database appli-
cation) should coordinate their accesses
explicitly and not rely on these semantics,

3.3 Immutable Shared Files Semantics

-4 different, quite unique approach is that
of immutable shared files [Schroeder et al.
19851. Once a file is declared as shared by
its creator, it cannot be modified any more.
An immutable file has two important prop-
erties: Its name may not be reused, and its
contents may not be altered. Thus, the
name of an immutable file signifies the
fixed contents of the file, not the file as
a container for variable information. The
implementation of these semantics in a dis-
tributed system is simple since the sharing
is in read-only mode.

3.4 Transaction-Like Semantics

Identifying a file session with a transaction
yields the following, familiar semantics:
The effects of file sessions on a file and

ACM Computing Surveys, Vol. 22, No. 4, December 1990

their output are equivalent to the effect and
output of executing the same sessions in
some serial order. Locking a file for the
duration of a session implements these
semantics. Refer to the rich literature on
database management systems to under-
stand the concepts of transactions and
locking [Bernstein et al. 19871. In the Cam-
bridge File Server, the beginning and end
of a transaction are implicit in the Open
file, Close file operations, and transactions
can involve only one file [Needham and
Herbert 19821. Thus, a file session in that
system is actually a transaction.

Variants of UNIX and (to a lesser de-
gree) session semantics are the most
commonly used policies. An important
trade-off emerges when evaluating these
two extremes of sharing semantics. Sim-
plicity of a distributed implementation is
traded for the strength of the semantics’
guarantee. UNIX semantics guarantee the
strong effect of making all accesses see the
same version of the file, thereby ensuring
that every access is affected by all previous
ones. On the other hand, session semantics
do not guarantee much when a file is ac-
cessed concurrently, since accesses at dif-
ferent machines may observe different
versions of the accessed file. The ramifica-
tions on the ease of implementation are
discussed in the next section.

4. REMOTE-ACCESS METHODS

Consider a client process that requests to
access (i.e., Read or Write) a remote file.
Assuming the server storing the file was
located by the naming scheme, the actual
data transfer to satisfy the client’s request
for the remote access should take place.
There are two complementary methods for
handling this type of data transfer.

l Remote Service. Requests for accesses
are delivered to the server. The server
machine performs the accesses, and their
results are forwarded back to the client.
There is a direct correspondence between
accesses and traffic to and from the
server. Access requests are translated to
messages for the servers, and server re-
plies are packed as messages sent back to

Distributed File Systems l 331

the clients. Every access is handled by
the server and results in network traffic.
For example, a Read corresponds to a
request message sent to the server and a
reply to the client with the requested
data. A similar notion called Remote
Open is defined in Howard et al. [1988].

l Caching. If the data needed to satisfy the
access request are not present locally, a
copy of those data is brought from the
server to the client. Usually the amount
of data brought over is much larger than
the data actually requested (e.g., whole
files or pages versus a few blocks). Ac-
cesses are performed on the cached copy
in the client side. The idea is to retain
recently accessed disk blocks in cache
so repeated accesses to the same infor-
mation can be handled locally, without
additional network traffic. Caching
performs best when the stream of file
accesses exhibits locality of reference. A
replacement policy (e.g., Least Recently
Used) is used to keep the cache size
bounded. There is no direct correspon-
dence between accesses and traffic to
the server. Files are still identified, with
one master copy residing at the server
machine, but copies of (parts of) the file
are scattered in different caches. When a
cached copy is modified, the changes need
to be reflected on the master copy and,
depending on the relevant sharing se-
mantics, on any other cached copies.
Therefore, Write accesses may incur sub-
stantial overhead. The problem of keep-
ing the cached copies consistent with the
master file is referred to as the cache
consistency problem [Smith 19821.

It should be realized that there is a direct
analogy between disk access methods in
conventional file systems and remote ac-
cess methods in DFSs. A pure remote serv-
ice method is analogous to performing a
disk access for each and every access re-
quest. Similarly, a caching scheme in a DFS
is an extension of caching or buffering tech-
niques in conventional file systems (e.g.,
buffering block I/O in UNIX [McKusick et
al. 19841). In conventional file systems, the
rationale behind caching is to reduce disk
I/O, whereas in DFSs the goal is to reduce

ACM Computing Surveys, Vol. 22, No. 4, December 1990

332 . E. Levy and A. Silberschatz

network traffic. For these reasons, a pure
remote service method is not practical. Im-
plementations must incorporate some form
of caching for performance enhancement.
Many implementations can be thought of
as a hybrid of caching and remote service.
In Locus and NFS, for instance, the imple-
mentation is based on remote service but is
augmented with caching for performance
(see Sections 8.3, 8.4, and 9.3.3). On the
other hand, Sprite’s implementation is
based on caching, but under certain circum-
stances a remote service method is adopted
(see Section 10.3). Thus, when we evalu-
ate the two methods we actually evaluate
to what degree one method should be
emphasized over the other.

An interesting study of the performance
aspects of the remote access problem can
be found in Cheriton and Zwaenepoel
[19831. This paper evaluates to what extent
remote access (using the simplest remote
service paradigm) is more expensive than
local access.

The remote service method is straight-
forward and does not require further expla-
nation. Thus, the following material is
primarily concerned with the method of
caching.

4.1 Designing a Caching Scheme

The following discussion pertains to a (file
data) caching scheme between a client’s
cache and a server. The latter is viewed as
a uniform entity and its main memory and
disk are not differentiated. Thus, we ab-
stract the traditional caching scheme on
the server side, between its own cache and
disk.

A caching scheme in a DFS should
address the following design decisions
[Nelson et al. 19881:

The granularity of cached data.
The location of the client’s cache (main
memory or local disk).
How to propagate modifications of
cached copies.
How to determine if a client’s cached data
are consistent.

The choices for these decisions are inter-
twined and related to the selected sharing
semantics.

4.1.1 Cache Unit Size

The granularity of the cached data can vary
from parts of a file to an entire file. Usually,
more data are cached than needed to satisfy
a single access, so many accesses can be
served by the cached data. An early version
of Andrew caches entire files. Currently,
Andrew still performs caching in big
chunks (64Kb). The rest of the systems
support caching individual blocks driven by
clients’ demand, where a block is the unit
of transfer between disk and main memory
buffers (see sample sizes below). Increasing
the caching unit increases the likelihood
that data for the next access will be found
locally (i.e., the hit ratio is increased); on
the other hand, the time required for the
data transfer and the potential for consis-
tency problems are increased, too. Selecting
the unit of caching involves parameters
such as the network transfer unit and the
Remote Procedure Call (RPC) protocol
service unit (in case an RPC protocol is
used) [Birrel and Nelson 19841. The net-
work transfer unit is relatively small (e.g.,
Ethernet packets are about 1.5Kb), so big
units of cached data need to be disassem-
bled for delivery and reassembled upon
reception [Welch 19861.

Typically, block-caching schemes use a
technique called read-ahead. This tech-
nique is useful when sequentially reading a
large file. Blocks are read from the server
disk and buffered on both the server and
client sides before they are actually needed
in order to speed up the reading.

One advantage of a large caching unit is
reduced network overhead. Recall that run-
ning communication protocols accounts for
a substantial portion of this overhead.
Transferring data in bulks amortizes the
protocol cost over many transfer units. At
the sender side, one context switch (to load
the communication software) suffices to
format and transmit multiple packets. At
the receiver side, there is no need to ac-
knowledge each packet individually.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 333

action of sending dirty blocks to be written
on the master copy.

The policy used to flush dirty blocks back
to the server’s master copy has a critical
effect on the system’s performance and re-
liability. (In this section we assume caches
are held in main memories.) The simplest
policy is to write data through to the serv-
er’s disk as soon as it is written to any
cache. The advantage of the write-through
method is its reliability: Little information
is lost when a client crashes. This policy
requires, however, that each Write access
waits until the information is sent to the
server, which results in poor Write perfor-
mance. Caching with write-through is
equivalent to using remote service for Write
accesses and exploiting caching only for
Read accesses.

An alternate write policy is to delay up-
dates to the master copy. Modifications are
written to the cache and then written
through to the server later. This policy has
two advantages over write-through. First,
since writes are to the cache, Write accesses
complete more quickly. Second, data may
be deleted before they are written back, in
which case they need never be written at
all. Unfortunately, delayed-write schemes
introduce reliability problems, since un-
written data will be lost whenever a client
crashes.

There are several variations of the
delayed-write policy that differ in when to
flush dirty blocks to the server. One alter-
native is to flush a block when it is about
to be ejected from the client’s cache. This
option can result in good performance, but
some blocks can reside in the client’s cache
for a long time before they are written back
to the server [Ousterhout et al. 19851. A
compromise between the latter alternative
and the write-through policy is to scan the
cache periodically, at regular intervals, and
flush blocks that have been modified since
the last scan. Sprite uses this policy with a
30-second interval.

Yet another variation on delayed-write,
called write-on-close, is to write data back
to the server when the file is closed. In
cases of files open for very short periods or
rarely modified, this policy does not signif-

Block size and the total cache size are
important for block-caching schemes. In
UNIX-like systems, common block sizes
are 4Kb or 8Kb. For large caches (more
than lMb), large block sizes (more than
8Kb) are beneficial since the advantages
of large caching unit size are dominant
[Lazowska et al. 1986; Ousterhout et al.
19851. For smaller caches, large block sizes
are less beneficial because they result in
fewer blocks in the cache and most of
the cache space is wasted due to internal
fragmentation.

4.1.2 Cache Location

Regarding the second decision, disk caches
have one clear advantage-reliability.
Modifications to cached data are lost in a
crash if the cache is kept in volatile mem-
ory. Moreover, if the cached data are kept
on disk, the data are still there during re-
covery and there is no need to fetch them
again. On the other hand, main-memory
caches have several advantages. First, main
memory caches permit workstations to be
diskless. Second, data can be accessed more
quickly from a cache in main memory than
from one on a disk. Third, the server caches
(used to speed up disk I/O) will be in main
memory regardless of where client caches
are located; by using main-memory caches
on clients, too, it is possible to build a single
caching mechanism for use by both servers
and clients (as it is done in Sprite). It turns
out that the two cache locations emphasize
different functionality. Main-memory
caches emphasize reduced access time;
disk caches emphasize increased reliability
and autonomy of single machines. Notice
that the current technology trend is larger
and cheaper memories. With large main-
memory caches, and hence high hit ratios,
the achieved performance speed up is pre-
dicted to outweigh the advantages of disk
caches.

4.1.3 Modification Policy

In the sequel, we use the term dirty block
to denote a block of data that has been
modified by a client. In the context of cach-
ing, we use the term to flush to denote the

ACM Computing Surveys, Vol. 22, No. 4, December 1990

334 l E. Levy and A. Silberschatz

icantly reduce network traffic. In addition,
the writ.e-on-close policy requires the clos-
ing process to delay while the file is written
through, which reduces the performance
advantages of delayed-writes. The per-
formance advantages of this policy over
delayed-write with more frequent flushing
are apparent for files that are both open for
long periods and modified frequently.

As a reference, we present data regarding
the utility of caching in UNIX 4.2 BSD.
UNIX 4.2 BSD uses a cache of about 400Kb
holding different size blocks (the most com-
mon size is 4Kb). A delayed-write policy
with 30-second intervals is used. A miss
ratio (ratio of the number of real disk I/O
to logical disk accesses) of 15 percent is
reported in McKusick et al. [1984], and of
50 percent in Ousterhout et al. [1985]. The
latter paper also provides the following sta-
tistics, which were obtained by simulations
on UNIX: A 4Mb cache of 4Kb blocks
eliminates between 65 and 90 percent of all
disk accesses for file data. A write-through
policy resulted in the highest miss ratio.
Delayed-write policy with flushing when
the block is ejected from cache had the
lowest miss ratio.

There is a tight relation between the
modification policy and semantics sharing.
Write-on-close is suitable for session se-
mantics. By contrast, using any delayed-
write policy, when situations of files that
are updated concurrently occur frequently
in conjunction with UNIX semantics, is not
reasonable and will result in long delays
and complex mechanisms. A write-through
policy is more suitable for UNIX semantics
under such circumstances.

4.1.4 Cache Validation

A client is faced with the problem of decid-
ing whether or not its locally cached copy
of the data is consistent with the master
copy. If the client determines that its
cached data is out of date, accesses can no
longer be served by that cached data. An
up-to-date copy of the data must be brought
over. There are basically two approaches to
verifying the validity of cached data:

l Client-initiated approach. The client in-
itiates a validity check in which it con-

tacts the server and checks whether the
local data are consistent with the master
copy. The frequency of the validity check
is the crux of this approach and deter-
mines the resulting sharing semantics. It
can range from a check before every sin-
gle access to a check only on first access
to a file (on file Open). Every access that
is coupled with a validity check is de-
layed, compared with an access served
immediately by the cache. Alternatively,
a check can be initiated every fixed inter-
val of time. Usually the validity check
involves comparing file header informa-
tion (e.g., time stamp of the last update
maintained as i-node information in
UNIX). Depending on its frequency, this
kind of validity check can cause severe
network traffic, as well as consume pre-
cious server CPU time. This phenome-
non was the cause for Andrew designers
to withdraw from this approach (Howard
et al. [19881 provide detailed performance
data on this issue).

l Server-initiated approach. The server
records for each client the (parts of) files
the client caches. Maintaining informa-
tion on clients has significant fault tol-
erance implications (see Section 5.1).
When the server detects a potential for
inconsistency, it must now react. A po-
tential for inconsistency occurs when a
file is cached in conflicting modes by two
different clients (i.e., at least one of the
clients specified a Write mode). If session
semantics are implemented, whenever a
server receives a request to close a file
that has been modified, it should react by
notifying the clients to discard their
cached data and consider it invalid.
Clients having this file open at that time,
discard their copy when the current ses-
sion is over. Other clients discard their
copy at once. Under session semantics,
the server need not be informed about
Opens of already cached files. The server
is informed about the Close of a writing
session, however. On the other hand, if a
more restrictive sharing semantics is im-
plemented, like UNIX semantics, the
server must be more involved. The server
must be notified whenever a file is
opened, and the intended mode (Read or

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 335

Write) must be indicated. Assuming such
notification, the server can act when it
detects a file that is opened simultane-
ously in conflicting modes by disabling
caching for that particular file (as done
in Sprite). Disabling caching results in
switching to a remote service mode of
operation.

A problem with the server-initiated ap-
proach is that it violates the traditional
client-server model, where clients initiate
activities by requesting service. Such vi-
olation can result in irregular and com-
plex code for both clients and servers.

In summary, the choice is longer accesses
and greater server load using the former
method versus the fact that the server
maintains information on its clients using
the latter.

4.2 Cache Consistency

Before delving into the evaluation and com-
parison of remote service and caching, we
relate these remote access methods to the
examples of sharing semantics introduced
in Section 3.

l Session semantics are a perfect match for
caching entire files. Read and Write
accesses within a session can be handled
by the cached copy, since the file can be
associated with different images accord-
ing to the semantics. The cache consis-
tency problem diminishes to propagating
the modifications performed in a session
to the master copy at the end of a session.
This model is quite attractive since it has
simple implementation. Observe that
coupling these semantics with caching
parts of files may complicate matters,
since a session is supposed to read the
image of the entire file that corresponds
to the time it was opened.

l A distributed implementation of UNIX
semantics using caching has serious con-
sequences. The implementation must
guarantee that at all times only one client
is allowed to write to any of the cached
copies of the same file. A distributed con-
flict resolution scheme must be used in
order to arbitrate among clients wishing
to access the same file in conflicting

modes. In addition, once a cached copy is
modified, the changes need to be propa-
gated immediately to the rest of the
cached copies. Frequent Writes can gen-
erate tremendous network traffic and
cause long delays before requests are sat-
isfied. This is why implementations (e.g.,
Sprite) disable caching altogether and re-
sort to remote service once a file is con-
currently open in conflicting modes.
Observe that such an approach implies
some form of a server-initiated validation
scheme, where the server makes a note of
all Open calls. As was stated, UNIX se-
mantics lend themselves to an implemen-
tation where a file is associated with a
single physical image. A remote service
approach, where all requests are directed
and served by a single server, fits nicely
with these semantics.

l The immutable shared files semantics
were invented for a whole file caching
scheme [Schroeder et al. 19851. With
these semantics, the cache consistency
problem vanishes totally.

l Transactions-like semantics can be im-
plemented in a straightforward manner
using locking, when all the requests for
the same file are served by the same
server on the same machine as done in
remote service.

4.3 Comparison of Caching
and Remote Service

Essentially, the choice between caching and
remote service is a choice between potential
for improved performance and simplicity.
We evaluate the trade-off by listing the
merits and demerits of the two methods.

l When caching is used, a substantial
amount of the remote accesses can be
handled efficiently by the local cache.
Capitalizing on locality in file access pat-
terns makes caching even more attrac-
tive. Ramifications can be performance
transparency: Most of the remote ac-
cesses will be served as fast as local ones.
Consequently, server load and network
traffic are reduced, and the potential for
scalability is enhanced. By contrast,
when using the remote service method,

ACM Computing Surveys, Vol. 22, No. 4, December 1990

336 . E. Levy and A. Silberschatz

each remote access is handled across the
network. The penalty in network traffic,
server load, and performance is obvious.

l Total network overhead in transmitting
big chunks of data, as done in caching, is
lower than when series of short responses
to specific requests are transmitted (as in
the remote service method).
Disk access routines on the server may
be better optimized if it is known that
requests are always for large, contiguous
segments of data rather than for random
disk blocks. This point and the previous
one indicate the merits of transferring
data in bulk, as done in Andrew.
The cache consistency problem is the
major drawback to caching. In access
patterns that exhibit infrequent writes,
caching is superior. When writes are fre-
quent, however, the mechanisms used to
overcome the consistency problem incur
substantial overhead in terms of perfor-
mance, network traffic, and server load.
It is hard to emulate the sharing seman-
tics of a centralized system in a system
using caching as its remote access
method. The problem is the cache consis-
tency; namely, the fact that accesses are
directed to distributed copies, not to a
central data object. Observe that the two
caching-oriented semantics, session se-
mantics and immutable shared files
semantics, are not restrictive and do not
enforce serializability. On the other hand,
when using remote service, the server
serializes all accesses and, hence, is able
to implement any centralized sharing
semantics.
To use caching and benefit from its mer-
its, clients must have either local disks
or large main memories. Clients without
disks can use remote-service methods
without any problems.
Since, for caching, data are transferred
en masse between the server and client,
and not in response to the specific needs
of a file operation, the lower interma-
chine interface is quite different from the
upper client interface. The remote ser-
vice paradigm, on the other hand, is just
an extension of the local file system in-
terface across the network. Thus, the

intermachine interface mirrors the local
client-file system interface.

5. FAULT TOLERANCE ISSUES

Fault tolerance is an important and broad
subject in the context of DFS. In this
section we focus on the following fault
tolerance issues. In Section 5.1 we examine
two service paradigms in the context of
faults occurring while servicing a client. In
Section 5.2 we define the concept of avail-
ability and discuss how to increase the
availability of files. In Section 5.3 we review
file replication as another means for en-
hancing availability.

5.1 Stateful Versus Stateless Service

When a server holds on to information on
its clients between servicing their requests,
we say the server is stateful. Conversely,
when the server does not maintain any
information on a client once it finished
servicing its request, we say the server is
stateless.

The typical scenario of a stateful file
service is as follows. A client must perform
an Open on a file before accessing it. The
server fetches some information about the
file from its disk, stores it in its memory,
and gives the client some connection iden-
tifier that is unique to the client and the
open file. (In UNIX terms, the server
fetches the i-node and gives the client a file
descriptor, which serves as an index to an
in-core table of i-nodes.) This identifier is
used by the client for subsequent accesses
until the session ends. Typically, the iden-
tifier serves as an index into in-memory
table that records relevant information the
server needs to function properly (e.g.,
timestamp of last modification of the cor-
responding file and its access rights). A
stateful service is characterized by a virtual
circuit between the client and the server
during a session. The connection identifier
embodies this virtual circuit. Either upon
closing the file or by a garbage collection
mechanism, the server must reclaim the
main-memory space used by clients that
are no longer active.

The advantage of stateful service is per-
formance. File information is cached in

ACM Computing Surveys, Vol. 22, No. 4, December 1990

main memory and can be easily accessed
using the connection identifier, thereby
saving disk accesses. The key point regard-
ing fault tolerance in a stateful service
approach is t,he main-memory information
kept by the server on its clients.

A stateless server avoids this state infor-
mation by making each request self-
contained. That is, each request identifies
the file and position in the file (for Read
and Write accesses) in full. The server need
not keep a table of open files in main mem-
ory, although this is usually done for effi-
ciency reasons. Moreover, there is no need
to establish and terminate a connection by
Open and Close operations. They are to-
tally redundant, since each file operation
stands on its own and is not considered as
part of a session.

The distinction between stateful and
stateless service becomes evident when
considering the effects of a crash during a
service activity. A stateful server loses all
its volatile state in a crash. A graceful re-
covery of such a server involves restoring
this state, usually by a recovery protocol
based on a dialog with clients. Less graceful
recovery implies abortion of the operations
that were underway when the crash oc-
curred. A different problem is caused by
client failures. The server needs to become
aware of such failures in order to reclaim
space allocated to record the state of
crashed clients. These phenomena are
sometimes referred to as orphan detection
and elimination.

A stateless server avoids the above prob-
lems, since a newly reincarnated server can
respond to a self-contained request without
difficulty. Therefore, the effects of server
failures and recovery are almost not notice-
able. From a client’s point of view, there is
no difference between a slow server and a
recovering server. The client keeps retrans-
mitting its request if it gets no response.
Regarding client failures, no obsolete state
needs to be cleaned up on the server side.

The penalty for using the robust stateless
service is longer request messages and
slower processing of requests, since there is
no in-core information to speed the pro-
cessing. In addition, stateless service im-
poses other constraints on the design of the

Distributed File Systems l 337

DFS. First, since each request identifies the
target file, a uniform, systemwide, low-level
naming is advised. Translating remote to
local names for each request would imply
even slower processing of the requests. Sec-
ond, since clients retransmit requests for
files operations, these operations must be
idempotent. An idempotent operation has
the same effect and returns the same output
if executed several times consecutively.
Self-contained Read and Write accesses are
idempotent, since they use an absolute byte
count to indicate the position within a file
and do not rely on an incremental offset
(as done in UNIX Read and Write system
calls). Care must be taken when imple-
menting destructive operations (such as
Delete a file) to make them idempotent too.

In some environments a stateful service
is a necessity. If a Wide Area Network
(WAN) or Internetworks is used, it is pos-
sible that messages are not received in the
order they were sent. A stateful, virtual-
circuit-oriented service would be preferable
in such a case, since by the maintained
state it is possible to order the messages
correctly. Also observe that if the server
uses the server-initiated method for cache
validation, it cannot provide stateless serv-
ice since it maintains a record of which files
are cached by which clients. On the other
hand, it is easier to build a stateless service
than a stateful service on top of a datagram
communication protocol [Postel 19801.

The way UNIX uses file descriptors and
implicit offsets is inherently stateful. Serv-
ers must maintain tables to map the file
descriptors to i-nodes and store the current
offset within a file. This is why NFS, which
uses a stateless service, does not use file
descriptors and includes an explicit offset
in every access (see Section 9.2.2).

5.2 Improving Availability

Svobodova [1984] defines two file proper-
ties in the context of fault tolerance: “A file
is recoverable if is possible to revert it to an
earlier, consistent state when an operation
on the file fails or is aborted by the client.
A file is called robust if it is guaranteed to
survive crashes of the storage device and
decays of the storage medium.” A robust

ACM Computing Surveys, Vol. 22, No. 4, December 1990

338 l E. Levy and A. Silberschatz

file is not necessarily recoverable and vice
versa. Different techniques must be used
to implement these two distinct concepts.
Recoverable files are realized by atomic
update techniques. (We do not give account
of atomic updates techniques in this paper.)
Robust files are implemented by redun-
dancy techniques such as mirrored files and
stable storage [Lampson 19811.

It is necessary to consider the additional
criterion of auailability. A file is called avail-
able if it can be accessed whenever needed,
despite machine and storage device crashes
and communication faults. Availability is
often confused with robustness, probably
because they both can be implemented by
redundancy techniques. A robust file is
guaranteed to survive failures, but it may
not be available until the faulty component
has recovered. Availability is a fragile and
unstable property. First, it is temporal;
availability varies as the system’s state
changes. Also, it is relative to a client; for
one client a file may be available, whereas
for another client on a different machine,
the same file may be unavailable.

Replicating files enhances their availa-
bility (see Section 5.3); however, merely
replicating file is not sufficient. There are
some principles destined to ensure in-
creased availability of the files described
below.

The number of machines involved in a
file operation should be minimal, since the
probability of failure grows with the num-
ber of involved parties. Most systems ad-
here to the client-server pair for all file
operations. (This refers to a LAN environ-
ment, where no routing is needed.) Locus
makes an exception, since its service model
involves a triple: a client, a server, and a
Centralized Synchronization site (CSS).
The CSS is involved only in Open and
Close operations; but if the CSS cannot be
reached by a client, the file is not available
to that particular client. In general, having
more than two machines involved in a file
operation can cause bizarre situations in
which a file is available to some but not all
clients.

Once a file has been located there is no
reason to involve machines other than the

client and the server machines. Identifying
the server that stores the file and establish-
ing the client-server connection is more
problematic. A file location mechanism is
an important factor in determining the
availability of files. Traditionally, locating
a file is done by a pathname traversal,
which in a DFS may cross machine bound-
aries several times and hence involve more
than two machines (see Section 2.3.1). In
principle, most systems (e.g., Locus, NFS,
Andrew) approach the problem by requir-
ing that each component (i.e., directory) in
the pathname would be looked up directly
by the client. Therefore, when machine
boundaries are crossed, the server in the
client-server pair changes, but the client
remains the same. In UNIX United, par-
tially because of routing concerns, this
client-server model is not preserved in the
pathname traversal. Instead, the pathname
traversal request is forwarded from ma-
chine to machine along the pathname,
without involving the client machine each
time.

Observe that if a file is located by path-
name traversal, the availability of a file
depends on the availability of all the direc-
tories in its pathname. A situation can arise
whereby a file might be available to reading
and writing clients, but it cannot be located
by new clients since a directory in its path-
name is unavailable. Replicating top-level
directories can partially rectify the prob-
lem, and is indeed used in Locus to increase
the availability of files.

Caching directory information can both
speed up the pathname traversal and avoid
the problem of unavailable directories in
the pathname (i.e., if caching occurs before
the directory in the pathname becomes un-
available). Andrew and NFS use this tech-
nique. Sprite uses a better mechanism for
quick and reliable pathname traversal. In
Sprite, machines maintain prefix tables
that map prefixes of pathnames to the serv-
ers that store the corresponding component
units. Once a file in some component unit
is open, all subsequent Opens of files within
that same unit address the right server
directly, without intermediate lookups at
other servers. This mechanism is faster and

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 339

guarantees better availability. (For com-
plete description of the prefix table mech-
anism refer to Section 10.2.)

5.3 File Replication

Replication of files is a useful redundancy
for improving availability. We focus on rep-
lication of files on different machines
rather than replication on different media
on the same machine (such as mirrored
disks [Lampson 19811). Multimachine
replication can benefit performance too,
since selecting a nearby replica to serve
an access request. results in shorter service
time.

The basic requirement from a replication
scheme is that different replicas of the same
file reside on failure-independent ma-
chines. That is, the availability of one rep-
lica is not affected by the availability of the
rest of the replicas. This obvious require-
ment implies that replicat,ion management
is inherently a location-dependent activity.
Provisions for placing a replica on a partic-
ular machine must be available.

It, is desirable to hide the details of rep-
lication from users. It is the task of the
naming scheme to map a replicated file
name to a particular replica. The existence
of replicas should be invisible to higher
levels. At some level, however, the replicas
must be distinguished from one another by
having different lower level names. This
can be accomplished by first mapping a file
name to an entity that is abie to differen-
tiate the replicas (as done in Locus). An-
other t,ransparency issue is providing
replication control at higher levels. Repli-
cation control includes determining the de-
gree of replication and placement of
replicas. Under certain circumstances, it is
desirable to expose these details to users.
Locus, for instance, provides users and sys-
tem administrators with mechanism to
control the rephcation scheme.

The main problem associated with rep-
licas is their update. From a user’s point of
view, replicas of a file denote the same
logical entity; thus, an update to any replica
must be reflect,ed on all other replicas. More
precisely, the relevant sharing semantics

must be preserved when accesses to replicas
are viewed as virtual accesses to their logi-
cal files. The analogous database term is
One-Copy Serializability [Bernstein et al.
19871. Davidson et al. [1985] survey ap-
proaches to replication for database sys-
tems, where consistency considerations are
of major importance. If consistency is not
of primary importance, it can be sacrificed
for availability and performance. This is an
incarnation of a fundamental trade-off in
the area of fault tolerance. The choice is
between preserving consistency at all costs,
thereby creating a potential for indefinite
blocking, or sacrificing consistency under
some (we hope rare) circumstance of cat-
astrophic failures for the sake of guaran-
teed progress. We illustrate this trade-off
by considering (in a conceptual manner)
the problem of updating a set of replicas of
the same file. The atomicity of such an
update is a desirable property; that is, a
situation in which both updated and not
updated replicas serve accesses should be
prevented. The only way to guarantee the
atomicity of such an update is by using a
commit protocol (e.g., Two-phase commit),
which can lead to indefinite blocking in the
face of machine and network failures
[Bernstein et al. 19871. On the other hand,
if only the available replicas are updated,
progress is guaranteed; stale replicas,
however, are present.

In most cases, the consistency of file data
cannot be compromised, and hence the
price paid for increased availability by
replication is a complicated update prop-
agation protocol. One case in which consis-
tency can be traded for performance, as
well as availability, is replication of the
location hints discussed in Section 2.3.2.
Since hints are validated upon use, their
replication does not require maintaining
their consistency. When a location hint is
correct, it results in quick location of the
corresponding file without relying on a lo-
cation server. Among the surveyed systems,
Locus uses replication extensively and sac-
rifices consistency in a partitioned environ-
ment for the sake of availability of files for
both Read and Write accesses (see Section
8.5 for details).

ACM Computing Surveys, Vol. 22, No. 4, December 1990

340 l E. Levy and A. Silberschatz

Facing the problems associated with
maintaining the consistency of replicas, a
popular compromise is read-only replica-
tion. Files known to be frequently read and
rarely modified are replicated using this
restricted variant of replication. Usually,
only one primary replica can be modified,
and the propagation of the updates involves
either taking the file off line or using some
costly procedure that guarantees atomicity
of the updates. Files containing the object
code of system programs are good candi-
dates for this kind of replication, as are
system data files (e.g., location databases
and user registries).

As an illustration of the concepts dis-
cussed above, we describe the replication
scheme in Ibis, which is quite unique [Tichy
and Ruan 19841. Ibis uses a variation of the
primary copy approach. The domain of the
name mapping is a pair: primary replica
identifier and local replica identifier, if
there is one. (If there is no replica locally,
a special value is returned.) Thus, the map-
ping is relative to a machine. If the local
replica is the primary one, the pair contains
two identical identifiers. Ibis supports
demand replication, which is an automatic
replication control policy (similar to whole-
file caching). Demand replication means
that reading a nonlocal replica causes it to
be cached locally, thereby generating a new
nonprimary replica. Updates are performed
only on the primary copy and cause all
other replicas to be invalidated by sending
appropriate messages. Atomic and serial-
ized invalidation of all nonprimary replicas
is not guaranteed. Hence, it is possible that
a stale replica is considered valid. Consis-
tency of replicas is sacrificed for a simple
update protocol. To satisfy remote Write
accesses, the primary copy is migrated to
the requesting machine.

6. Scalability Issues

Very large-scale DFSs, to a great extent,
are still visionary. Andrew is the closest
system to be classified as a very large-scale
system with a planned configuration of
thousands of workstations. There are no
magic guidelines to ensure the scalability
of a system. Examples of nonscalable de-
signs, however, are abundant. In Section

6.1 we discuss several designs that pose
problems and propose possible solutions,
all in the context of scalability. In Section
6.2 we describe an implementation tech-
nique, Light Weight Processes, essential
for high-performance and scalable designs.

6.1 Guidelines by Negative Examples

Barak and Kornatzky [1987] list several
principles for designing very large-scale
systems. The first is called Bounded
Resources: “The service demand from any
component of the system should be
bounded by a constant. This constant is
independent of the number of nodes in the
system.” Any server whose load is propor-
tional to the size of the system is destined
to become clogged once the system grows
beyond a certain size. Adding more re-
sources will not alleviate the problem. The
capacity of this server simply limits the
growth of the system. This is why the CSS
of Locus is not a scalable design. In Locus,
every filegroup (the Locus component unit,
which is equivalent to a UNIX removable
file system) is assigned a CSS, whose re-
sponsibility it is to synchronize accesses to
files in that filegroup. Every Open request
to a file within that filegroup must go
through this machine. Beyond a certain
system size, CSSs of frequently accessed
filegroups are bound to become a point of
congestion, since they would need to satisfy
a growing number of clients.

The principle of bounded resources can
be applied to channels and network traffic,
too, and hence prohibits the use of broad-
casting. Broadcasting is an activity that
involves every machine in the network.
A mechanism that relies on broadcast-
ing is simply not realistic for large-scale
systems.

The third example combines aspects of
scalability and fault tolerance. It was al-
ready mentioned that if a stateless service
is used, a server need not detect a client’s
crash nor take any precautions because of
it. Obviously this is not the case with state-
ful service, since the server must detect
clients’ crashes and at least discard the
state it maintains for them. It is interesting
to contrast the ways MOS and Locus
reclaim obsolete state storage on servers

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Distributed File Systems l 341

machines violates functional symmetry.
Autonomy and symmetry are, however, im-
portant goals to which to aspire.

An important aspect of decentralization
is system administration. Administrative
responsibilities should be delegated to en-
courage autonomy and symmetry, without
disturbing the coherence and uniformity of
the distributed system. Andrew and Apollo
Domain support decentralized system man-
agement [Leach et al. 19851.

The practical approximation to symmet-
ric and autonomous configuration is clus-
tering, where a system is partitioned into
a collection of semiautonomous clusters.
A cluster consists of a set of machines
and a dedicated cluster server. To make
cross-cluster file references relatively infre-
quent, most of the time, each machine’s
requests should be satisfied by its own clus-
ter server. Such a requirement depends on
the ability to localize file references and the
appropriate placement of component units.
If the cluster is well balanced, that is, the
server in charge suffices to satisfy a major-
ity of the cluster demands, it can be used
as a modular building block to scale up the
system. Observe that clustering complies
with the Bounded Resources Principle. In
essence, clustering attempts to associate a
server with a fixed set of clients and a set
of files they access frequently, not just with
an arbitrary set of files. Andrew’s use of
clusters, coupled with read-only replication
of key files, is a good example for a scalable
clustering scheme.

UNIX United emphasizes the concept of
autonomy. There, UNIX systems are joined
together in a recursive manner to create a
larger global system [Randell 19831. Each
component system is a complex UNIX sys-
tem that can operate and be administered
independently. Again, modular and auton-
omous components are combined to create
a large-scale system. The emphasis on
autonomy results in some negative effects,
however, since component boundaries are
visible to users.

[Barak and Litman 1985; Barak and
Paradise 19861.

The approach taken in MOS is garbage
collection. It is the client’s responsibility to
set, and later reset, an expiration date on
state information the servers maintain for
it. Clients reset this date whenever they
access the server or by special, infrequent
messages. If this date has expired, a
periodic garbage collector reclaims that
storage. This way, the server need not de-
tect clients’ crashes. By contrast, Locus
invokes a clean-up procedure whenever a
server machine determines that a particu-
lar client machine is unavailable. Among
other things, this procedure releases space
occupied by the state of clients from the
crashed machine. Detecting crashes can be
very expensive, since it is based on polling
and time-out mechanisms that incur sub-
stantial network overhead. The scheme
MOS uses requires tolerable and scalable
overhead, where every client signals a
bounded number of objects (the object it
owns), whereas a failure detection mecha-
nism is not scalable since it depends on the
size of the system.

Network congestion and latency are
major obstacles to large-scale systems. A
guideline worth pursuing is to minimize
cross-machine interactions by means of
caching, hints, and enforcement of relaxed
sharing semantics. There is, however, a
trade-off between the strictness of the shar-
ing semantics in a DFS and the network
and server loads (and hence necessarily the
scalability potential). The more stringent
the semantics, the harder it is to scale the
system up.

Central control schemes and central re-
sources should not be used to build scalable
(and fault-tolerant) systems. Examples of
centralized entities are central authentica-
tion server, central naming server, and cen-
tral file server. Centralization is a form of
functional asymmetry among the machines
comprising the system. The ideal alterna-
tive is a configuration that is functionally
symmetric; that is, all the component
machines have an equal role in the opera-
tion of the system, and hence each machine
has some degree of autonomy. Practically,
it is impossible to comply with such a prin-
ciple. For instance, incorporating diskless

6.2 Lightweight Processes

A major problem in the design of any serv-
ice is the process structure of the server.
Servers are supposed to operate efficiently

ACM Computing Surveys, Vol. 22, No. 4, December 1990

342 l E. Levy and A. Silberschatz

in peak periods when hundreds of active
clients need to be served simultaneously. A
single server process is certainly not a good
choice, since whenever a request necessi-
tates disk I/O the whole service is delayed
until the I/O is completed. Assigning a
process for each client is a better choice;
however, the overhead of multiplexing the
CPU among the processes (i.e., the context
switches) is an expensive price that must
be paid.

A related problem has to do with the fact
that all the server processes need to share
information, such as file headers and serv-
ice tables. In UNIX 4.2 BSD processes
are not permitted to share address
spaces, hence sharing must be done exter-
naliy by using files and other unnatural
mechanisms.

It appears that one of the best solutions
for the server architecture is the use of
Lightweight Processes (LWPs) or Threads.
A thread is a process that has very little
nonshared state. A group of peer threads
share code, address space, and operating
system resources. An individual thread has
at least its own register state. The extensive
sharing makes context switches among peer
threads and threads’ creation inexpensive,
compared with context switches among tra-
ditional, heavy-weight processes. Thus,
blocking a thread and switching to another
thread is a reasonable solution to the prob-
lem of a server handling many requests.
The abstraction presented by a group of
LWPs is that of multiple threads of control
associated with some shared resources.

There are many alternatives regarding
threads; we mention a few of them briefly.
Threads can be supported above the kernel,
at the user level (as done in Andrew) or by
the kernel (as in Mach [Tevanian et al.
19871). Usually, a lightweight process is not
bound to a particular client. Instead, it
serves single requests of different clients.
Scheduling threads can be preemptive or
nonpreemptive. If threads are allowed to
run to completion, their shared data need
not be explicitly protected. Otherwise, some
explicit locking mechanism must be used
to synchronize the accesses to the shared
data.

Typically, when LWPs are used to im-
plement a service, client requests accumu-

ACM Computing Surveys, Vol. 22, No. 4, December 1990

late in a common queue and threads are
assigned to requests from the queue. The
advantages of using an LWPs scheme to
implement the service are twofold. First,
an I/O request delays a single thread, not
the entire service. Second, sharing common
data structures (e.g., the requests queue)
among the threads is easily facilitated.

It is clear that some form of LWPs
scheme is essential for servers to be scal-
able. Locus, Sprite, Andrew, use such
schemes; in the future NFS will too. De-
tailed studies of threads implementations
can be found in Kepecs 1985 and Tevanian
et al. 1987.

7. UNIX UNITED

The UNIX United project from the lJni-
versity of Newcastle upon Tyne, England,
is one of the earliest attempts to extend the
UNIX file system to a distributed one with-
out modifying the UNIX kernel. In UNIX
United, a software subsystem is added
to each of a set of interconnected UNIX
systems (referred to as component or con-
stituent systems), so as to construct a dis-
tributed system that is functionally
indistinguishable from a conventional cen-
tralized UNIX system.

Originally, the component systems were
perceived as mainframes functioning as
time-sharing UNIX systems, and indeed
the original implementation was based
on a set of PDP-11’s connected by a
Cambridge Ring.

The system is presented in two levels of
detail: First, an overview of UNIX United
is given. Then the implementation, the
Newcastle Connection layer, is described.

7.1 Overview

Any number of inter-linked UNIX system
can be joined to compose a UNIX United
system. Their naming structures (for files,
devices, directories, and commands) are
joined together into a single naming struc-
ture, in which each component system is to
all intents and purposes just a directory.
Ignoring for the moment questions regard-
ing accreditation and access control, the
resulting system is one in which each user
can read or write any file, use any device,

Distributed File Systems l 343

/f3, file fl is referred to as /../fl, file f2 is
referred to as /../../unix2/f2, and finally
file f4 is referred to as /../../unix2/dir/
unix4/f4.

Observe that users are aware of the up-
ward boundaries of the current component
unit since they must use the ‘I..’ syntax
whenever they wish to ascend outside of
their current machine. Hence, UNIX
United fails to provide complete location
transparency.

The traditional root directories (e.g.,
/dev, /bin) are maintained for each ma-
chine separately. Because of the relative
naming scheme, they are named, from
within a component system, in the exact
way as in conventional UNIX (e.g., just
/dev). Each component system has its own
set of named users and its own administra-
tor (superuser). The latter is responsible
for the accreditation for users of his or her
own system as well as remote users. For
uniqueness, remote users’ identifiers are
prefixed with the name of their original
system. Accesses are governed by the stan-
dard UNIX file protection mechanisms,
even if they cross component boundaries.
That is, there is no need for users to log in
separately or provide passwords when they
access remote files if they are properly ac-
credited. Accreditation for remote users
must be arranged with the system admin-
istrator separately.

UNIX United is well suited for a diverse
internetwork topology, spanning LANs, as
well as direct links and even WANS. The
logical name space needs to be properly
mapped onto routing information in such a
complex internetwork. An important de-
sign principle is that the naming hierarchy
needs bear no relationship to the network
topology.

execute any command, or inspect any di-
rectory, regardless of the system to which
it belongs. That is, network transparency
is supported.

The component unit is a complete UNIX
tree belonging to a certain machine. The
position of these component units in the
naming hierarchy is arbitrary. They can
appear in the naming structure in positions
subservient to other component units (di-
rectly or via intermediary directories). It is
often convenient to set the naming struc-
ture to reflect organizational hierarchy
of the environment in which the system
exists.

In conventional UNIX the root of a file
hierarchy is its own parent and is the only
directory not assigned a string name. In
UNIX United, each component’s root is
still referred to as ‘/’ and still serves as the
starting point of all pathnames starting
with a ‘1’. Roots of component units, how-
ever, are assigned names so that they
become accessible and distinguishable ex-
ternally. Also, a subservient component can
access its superior system by referring to
its own root parent, (i.e., ‘/..‘). Therefore,
there is only one root that is its own parent
and that is not assigned a string name;
namely, the root of the composite name
structure, which is just a virtual node
needed to make the whole structure a single
tree. Under this conventions, there is no
notion of absolute pathname. Each path..
name is relative to some context, either the
current working directory or the current
component unit.

In Figure 2, the directories unixl,
unix2, unix3, and unix4 are component
units (i.e., complete UNIX hierarchies) be-
longing to machines by the same names.
For instance, all the files descending from
unix2, except files that descend from
unix4, are stored on the machine unix2.
The tree rooted at Unix4 descends from
the directory dir, which is an ordinary (lo-
cal) directory of unix2. To illustrate the
relative pathnames, note that /../unix2/f2
is the name of the file f2 on the system
unix2 from within the unixl system.
From the unix3 system, the same file is
referred to as /../..unix2jf2. Now, suppose
the current root (‘/‘) is as shown by the
arrow. Then file f3 can be referenced as

7.2 Implementation-Newcastle Connection

The Newcastle Connection is a (user-level)
software layer incorporated in each com-
ponent system. This layer separates be-
tween the UNIX kernel on one hand, and
applications, command programs and the
shell on the other hand. It intercepts all
system calls concerning files and filters out
those that have to be redirected to remote
systems. Also, the Connection layer accepts

ACM Computing Surveys, Vol. 22, No. 4, December 1990

344 l E. Levy and A. Silberschatz

f4

Figure 2. UNIX United hierarchy.

system calls that have been directed to it
from other systems. Remote layers manage
communication by the means of a RPC
protocol. Figure 3 is a schematic view of
the software architecture just described.

Incorporating the Connection layer pre-
serves both the same UNIX system call
interface and the UNIX kernel, in spite of
the extensive remote activity carried out by
the system. The penalty for preserving the
kernel intact is the fact that the service is
implemented as user-level daemon pro-
cesses (as opposed to a kernel implemen-
tation), which slow down remote operation.

Each Connection layer stores a partial
skeleton of the overall naming structure.
Each system stores its own file system lo-
cally. In addition, each system maintains
information on the fragments of the overall
name structure that relate it to its neigh-
boring systems in the naming structure
(i.e., systems that can be reached via trav-
ersal of the naming tree without passing
through another system). For instance, re-
fer to Figure 2. System Unix2 is aware of
the position of systems unixl, unix2, and
unix4 in the global tree. Figure 4 shows
the relative positioning of the component
units of the global name space that system
unix2 knows about.

The fragments maintained by different
systems overlap and hence must remain
consistent, a requirement that makes

ACM Computing Surveys, Vol. 22, No. 4, Dxember 1990

changing the overall structure a very ex-
pensive (and hence infrequent) event.
Some leaves of the partial structure stored
locally correspond to remote roots of other
parts of the global file system. These leaves
are specially marked and contain addresses
of the appropriate storage sites of the de-
scending file systems. Pathname traversals
have to be continued remotely when en-
countering such marked leaves and, in fact,
can span more than two systems until the
target file is located. Therefore, a strict
client-server pair model is not preserved.
Once a name is resolved and the file is
opened, it is accessed using file descriptors.
The Connection layer marks descriptors
that refer to remote files and keeps network
addresses and routing information for them
in a per-process table.

The actual remote file accesses are car-
ried out by a set of file server processes on
the target system. Each client has its own
file server process with which it communi-
cates directly. The initial connection is es-
tablished with the aid of a spawner process
that has a standard fixed name that makes
it callable from any external process. This
spawner process performs the remote ac-
cess rights checks according to a machine-
user identification pair. It also converts this
identification to a valid local name. For the
sake of preserving UNIX semantics, once a
user process forks, its file service process

Distributed File Systems l 345

~~~~ 

Figure 3. Schematic view of the UNIX United architecture. 

mix1 

unix4 

Figure 4. Partial skeleton UNIX2 has (see Figure 2). 

forks as well. File descriptors (not lower 
level means such as i-nodes) are used to 
identify files between a user and its file 
server. This is a stateful service scheme and 
hence does not excel in terms of robustness. 

7.3 Summary 

The overall profile of the UNIX United 
system can be characterized by the follow- 
ing prominent features: 

l Logical Name Structure. The UNIX 
United name structure is a hierarchy 
composed of component UNIX subtrees. 
There is an explicitly visible correspon- 
dence between a machine and a subtree 
in the structure; hence, machine bound- 
aries are noticeable. Users must use the 
‘/..’ trap to get out of the current com- 
ponent unit. There are no absolute path- 
names-all pathnames are relative to 
some context. 

l Connection Layer. Conceptually, the con- 
nection layer implementation is ele- 
gant and simple. It is a modular sub- 
system interfacing two existing layers 
without modifying either of them or their 
original semantics and still extending 
their capabilities by large. The imple- 
mentation strategy is by relinking appli- 
cation programs with the Connection 
layer library routines. These routines 
intercept file system calls and forward 
the remote ones to user-level remote 
daemons at the remote sites. 

Even though UNIX United is outdated, it 
serves our purposes well in demonstrating 
network transparency without location 
transparency, a simple implementation 
technique, and the issue of autonomy of 
component systems. 

8. LOCUS 

l Recursive Structure. Structuring a UNIX Locus is an ambitious project aimed at 
United system out of a set of component building a full-scale distributed operating 
systems is a recursive process akin to a system. The system is upward compatible 
recursive definition of a tree. In theory, with UNIX, but unlike NFS, UNIX United, 
such a system can be indefinitely exten- and other UNIX-based distributed sys- 
sible. The building block of this recursive tems, the extensions are major ones and 
scheme is an autonomous and complete necessitate a new kernel rather than a mod- 
UNIX system. ified one. Locus stands out among other 

ACM Computing Surveys. Vol. 22, No. 4, December 1990 



346 l E. Levy and A. Silberschatz 

systems by hosting a variety of sophisti- 
cated features such as automatic manage- 
ment of replicated data, atomic file update, 
remote tasking, ability to withstand (to a 
certain extent) failures and network parti- 
tions, and full implementation of nested 
transactions [Weinstein et al. 19851. The 
system has been operational at UCLA for 
several years on a set of mainframes and 
workstations connected by an Ethernet. 
A general strategy for extending Locus to 
an internet environment is outlined in 
Sheltzer and Popek [1986]. 

The heart of the Locus architecture is its 
DFS. We first give an overview of the fea- 
tures and general implementation philoso- 
phy of the file system. Then we discuss the 
static nature of the file system (Sections 
8.2) and its dynamics (Sections 8.3 and 8.4). 
We devote section 8.5 of the operation of 
the system in a faulty environment. 

8.1 Overview 

The Locus file system presents a single tree 
structure naming hierarchy to users and 
applications. This structure covers all ob- 
jects (files, directories, executable files, and 
devices) of all the machines in the system. 
Locus names are fully location transparent; 
from a name of an object it is not possible 
to discern its location in the network. To a 
first approximation, there is almost no way 
to distinguish the Locus name structure 
from a standard UNIX tree. 

A Locus file may correspond to a set of 
copies distributed on different sizes. An 
additional transparency dimension is intro- 
duced since it is the system responsibility 
to keep all copies up to date and assure that 
access requests are served by the most re- 
cently available version. As an option, users 
may have control over both the number 
and location of replicated files. In Locus, 
file replication serves mainly to increase 
availability for reading purposes. A primary 
copy approach is adopted for modifications. 

Locus strives to provide UNIX semantics 
in the distributed and replicated environ- 
ment in which it operates. Additionally, it 
supports locking of files and atomic update. 

Fault tolerance issues are emphasized in 
Locus design. Network failure may discon- 

nect the network into two or more parti- 
tions cr disconnect,ed subnetworks. As long 
as at least one copy of a file is available in 
a partition, read requests are served, and it 
is still guaranteed that the version read is 
the most recent one available in the parti- 
tion. Automatic mechanisms take care 
to update stale copies of files upon the 
reconnection of partitions. 

Emphasizing high performance in the de- 
sign of Locus led to incorporating network- 
ing functions (such as formatting, queuing, 
transmitting, and retransmitting messages) 
into the operating system. Specialized re- 
mote operations protocols were devised for 
kernel-to-kernel communication, in con- 
trast to the prevalent approach of using an 
off-the-shelf package (e.g., an RPC proto- 
col). Lack of multilayering (as suggested in 
the IS0 standard [Zimmermann 19801) en- 
abled achieving high performance for 
remote operations. On the other hand, 
this snecialized protocol hampers Locus 
portability to different networks and 
file systems. 

An efficient but limited kernel-supported 
LWP facility is devised for serving remote 
requests. These are processes that have no 
nonprivileged address space, their code and 
stack are resident in the operating system 
nucleus, and they can call internal system 
routines directly. These processes are as- 
signed to serve net.worb requests that ac- 
cumulate in a system queue. The system is 
configured with some number of these pro- 
cesses, but that number is automatically 
and dynamically altered during system 
operation. 

8.2 Name Structure 

The logical name structure disguises both 
location and replication details from users 
and applications. A removable file system, 
in Locus terms, is called a filegroup. A 
filegroup is the component unit in Locus. 
Virtually, logical filegroups are joined to- 
gether to form this unified structure. Phys- 
ically, a logical filegroup is mapped to 
multiple physical containers (called also 
packs) residing at various sites and storing 
replicas of the files of that filegroup. The 
pair <logical filegroup number, i-node 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



number>, referred to as a file designator 
serves as low-level, location-independent 
file identifier. The designator itself hides 
both location and replication details, since 
it points to a file in general and not to a 
particular replica. 

Each site has a consistent and complete 
view of the logical name structure. A logical 
mount table is globally replicated and con- 
tains an entry for each logical filegroup. 
The entry records the file designator of the 
directory over which the filegroup is logi- 
cally mounted and an indication of which 
site is currently responsible for access syn- 
chronization (the function of this site is 
explained subsequently) within the file- 
group. A protocol, implemented within the 
mount and unmount Locus system calls, 
performs update of the logical mount tables 
on all sites when necessary. 

On the physical level, physical containers 
correspond to disk partitions. One of the 
packs is designated as the Primary Copy. A 
file must be stored at the site of the primary 
copy and, in addition, can be stored at any 
subset of the other sites where there exists 
a pack corresponding to its filegroup. Thus, 
the primary copy stores the filegroup com- 
pletely, whereas the rest of the packs might 
be partial. Replication is especially useful 
for directories in the high levels of the name 
hierarchy. Such directories are rarely up- 
dated and are crucial for pathnames trans- 
lation of files. 

The various copies of a file are assigned 
to the same i-node number on all the file- 
group’s packs. Consequently, a pack has an 
empty i-node slot for all files it does not 
store. Data page numbers may be different 
on different packs, hence reference over the 
network to data pages use logical page num- 
bers rather than physical ones. Each pack 
has a mapping of these logical numbers to 
physical numbers. To facilitate automatic 
replication management, each i-node of a 
file copy contains a version number, deter- 
mining which copy dominates other copies. 

Whereas globally unique file naming is 
very important most of the time, certain 
files and directories are hardware and site 
specific (e.g., /bin is hardware-specific, and 
/dev is site-specific). Locus provides trans- 
parent means for translating references to 

Distributed File Systems l 347 

these traditional file names to hardware- 
and site-specific files. 

8.3 File Operations 

In contrast to the prevalent model of a 
server-client pair involved in a file access, 
Locus distinguishes three logical roles in 
file accesses; each one potentially per- 
formed by a different site: 

Using Site (US) issues the requests to 
open and access a remote file. 
Storage Site (SS) is the selected site to 
serve the requests. 
Current Synchronization Site (CSS) en- 
forces a global synchronization policy for 
a filegroup and selects an SS for each 
Open request referring to a file in the 
filegroup. There is at most one CSS for 
each filegroup in any set of communicat- 
ing sites (i.e., partition). The CSS main- 
tains the version number and a list of 
physical containers for every file in the 
filegroup. 

The following sections describe the file op- 
erations as they are carried out by the above 
entities. Related synchronization issues are 
described in Section 8.3.4. 

8.3.1 Opening and Reading a File 

We first describe how a file is opened and 
read given its designator and then describe 
how a designator is obtained from a string 
pathname. 

Given a file designator, opening the file 
commences as follows. The US determines 
the relevant CSS by looking up the file- 
group in the logical mount table, then for- 
wards the Open request to the CSS. The 
CSS polls potential SSs for that file to 
decide which one will act as the real SS. In 
its polling messages: the CSS includes the 
version number for the particular file so the 
potential SSs can, by comparing this num- 
ber to their own, decide whether or not 
their copy is up to date. The CSS selects 
an SS by considering the response it got 
back from the candidate sites and sends the 
selected SS identity to the US. Both the 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



348 l E. Levy and A. Silberschatz 

CSS and the SS allocate in-core i-node 
structures for the opened file. The CSS 
needs this information to make future syn- 
chronization decisions, and the SS main- 
tains the i-node to serve forthcoming 
accesses efficiently. 

After a file is open, a Read request is sent 
directly to the SS without the CSS inter- 
vention. A Read request contains the des- 
ignator of the file, the logical number of the 
needed page within that file, and a hint as 
to where the SS might store the file’s 
i-node in main memory. Once the i-node is 
found, the SS translates the logical page 
number to physical number, and a standard 
low-level routine is called to allocate a 
buffer and get the appropriate page from 
disk. The buffer is queued on the network 
queue for transmission back to the US as a 
response, where it is stored in a kernel 
buffer. Once a page is fetched to the US, 
further Read calls are serviced from the 
kernel buffer. As in the case of local disk 
Reads, read-ahead is useful to speed up 
sequential reading, both at the US and the 
SS. If a process loses its connection with a 
file it is reading remotely, the system at- 
tempts to reopen a different copy of the 
same version of the file. 

Translating a pathname into a file des- 
ignator is carried out by seemingly conven- 
tional pathname traversal mechanism since 
pathnames are regular UNIX pathnames, 
with no exception (unlike UNIX United). 
Every lookup of a component of the path- 
name within a directory involves opening 
the latter and reading from it. These oper- 
ations are conducted according to the above 
protocols (i.e., directory entries are also 
cached in US buffers). There is no parallel 
to NFS’s remote lookup operation. The ac- 
tual directory searching is performed by the 
client rather than by the server. A directory 
opened for pathname searching is not open 
for normal Read, but instead for an internal 
unsynchronized Read. The distinction is 
that no global synchronization is needed 
and no locking is done while the reading is 
performed; that is, updates to the directory 
can occur while the search is ongoing. 
When the directory is local, even the CSS 
is not informed of such access. 

8.3.2 Modifying a File 

In Locus, a primary copy policy is used for 
file modifications. The CSS must select the 
primary copy pack site as the SS if the 
Open is for a Write. The act of modifying 
data takes on two forms. If the modification 
does not include the entire page, the old 
page is first read from the SS using the 
Read protocol. If an entire page is modified, 
a buffer is set up at the US without any 
reads. In either case, after changes are 
made, possibly by delayed-write, the page 
is sent back to the SS. All modified pages 
must be flushed to the SS before a modified 
file can be closed. 

If a file is closed by the last user process 
at a US, the SS and CSS must be informed 
so that they can deallocate in-core i-node 
structures and the CSS can alter state data 
that might affect its next synchronization 
decision. 

Caching of data pages is relied upon 
heavily in both Read and Write operations. 
The validation of the cached data is dealt 
with in Section 8.3.4. 

8.3.3 Commit and Abort 

Locus uses the following shadow page 
mechanism for implementing atomic com- 
mit. When a file is modified, disk pages are 
allocated at the SS; these pages are the 
shadow pages. The in-core copy of the disk 
i-node is updated to point to the shadow 
pages. The disk i-node is kept intact, point- 
ing to the original pages. To abort a set of 
changes, both the in-core i-node informa- 
tion and the shadow pages used to record 
the changes are discarded. The atomic 
Commit operation consists of moving the 
incore i-node to the disk i-node. After that, 
the file contains the new information. The 
US function never deals with actual disk 
pages, but rather with logical pages. Thus, 
the entire shadow page mechanism is im- 
plemented at the SS and is transparent to 
the US. 

Locus deals with file modification by first 
committing the change to the primary copy. 
Later, messages are sent to all other SSs 
and to the CSS. At a minimum, these mes- 
sages identify the modified file and contain 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



the new version number (in order to pre- 
vent attempts to read the old version). It is 
the responsibility of these additional SSs 
to bring their version up to date by propa- 
gating the entire file or just the changes. A 
queue of propagation requests is kept 
within the kernel at each site, and a kernel 
process services the queue efficiently by 
issuing appropriate Read requests. This 
propagation procedure uses the standard 
commit mechanism. Thus, if contact with 
the file containing the newer version is lost, 
the local file is left with a coherent copy, 
albeit still out of date. Given this commit 
mechanism, one is always left with either 
the original file or a completely changed 
file, but never with a partially made change, 
even in the face of site failures. 

8.4 Synchronizing Accesses to Files 

The default synchronization policy in Lo- 
cus is to emulate UNIX semantics on file 
accesses in a distributed environment. 
UNIX semantics can be implemented fairly 
easily by having the processes share the 
same operating system data structures and 
caches and by using locks on data struc- 
tures to serialize requests. In Locus the 
sharing processes may not co-reside on the 
same machine, and hence the implementa- 
tion is more complicated. 

Recall that UNIX semantics allow sev- 
eral processes descending from the same 
ancestor process to share the same current 
position (offset) in a file. A single token 
scheme is devised to preserve this special 
mode of sharing. Only when the token is 
present, can a site proceed with executing 
system calls needing the offset. 

In UNIX, the same in-core i-node for a 
file can be shared by several processes. In 
Locus, the situation is much more compli- 
cated since the i-node of the file, as well as 
the parts of the file itself, can be cached at 
several sites. Token schemes are used to 
synchronize sharing of a file’s i-node and 
data. An exclusive-writer-multiple-readers 
policy is enforced. Only a site with a write 
token for a file may modify the file; 
any site with a read token can read it. The 
token schemes are coordinated by token 

Distributed File Systems l 349 

managers operating at the corresponding 
storage sites. 

The cached data pages are guaranteed to 
contain valid data only when the files’s data 
token is present. When the write data token 
is taken from that site, the i-node, as well 
as all modified pages, is copied back to the 
SS. Since arbitrary changes (initiated by 
remote clients) may have occurred when 
the token was not present, all cached 
buffers are invalidated when the token is 
released. When a data token is granted to 
a site, both the i-node and data pages need 
to be fetched from the SS. There are some 
exceptions to enforcing this policy. Some 
attribute reading and writing calls (e.g., 
stat) as well as directory reading and mod- 
ifying (e.g., lookup) calls are not subject to 
the synchronization constraints. These 
calls are sent directly to the SS, where the 
changes are made, committed, and propa- 
gated to all storage and using sites. 

Alternatively to the default UNIX se- 
mantics, Locus offers facilities for locking 
entire files or parts of them. Locking can 
be advisory (only checked as a result of a 
locking attempt) or enforced (checked on 
all reads and writes). A process can choose 
to either fail if it cannot immediately get a 
lock or wait for it to be released. 

8.5 Operation in a Faulty Environment 

The basic approach in Locus is to maintain, 
within a single partition, consistency 
among copies of a file. The policy is to 
allow updates only in a partition that has 
the primary copy. It is guaranteed that the 
most recent version of a file in a partition 
is read. The latter guarantee applies to all 
partitions. 

A central point addressed in this section 
is the reconciliation of replicated filegroups 
residing at partitioned sites. During normal 
operation, the commit protocol ascertains 
proper propagation of updates as described 
earlier. A more elaborate scheme has to be 
used by recovering sites wishing to bring 
their packs up to date. To this end, the 
system maintains a commit count for each 
filegroup, enumerating each commit of 
every file in the filegroup. Each pack has a 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



350 l E. Levy and A. Silberschatz 

lower-water-mark (lwm) that is a commit 
count value up to which the system guar- 
antees that all prior commits are reflects in 
the pack. Also, the primary copy pack (usu- 
ally stored at the CSS) keeps a list enu- 
merating the files in the filegroup and the 
corresponding commit counts of all the re- 
cent commits in secondary storage. When 
a pack joins a partition it attempts to con- 
tact the CSS and checks whether its lwm 
is within the recent commit list range. If 
this is the case, the pack site schedules a 
kernel process that brings the pack to a 
consistent state by copying only the files 
that reflect commits later than that of the 
site’s lwm. If the CSS is not available, 
writing is disallowed in this partition, but 
reading is possible after a new CSS is cho- 
sen. The new CSS communicates with the 
partition members so it will be informed of 
the most recent available (in the partition) 
version of each file in the filegroup. Once 
the new CSS accomplishes the objective, 
other pack sites can reconcile themselves 
with it. As a result, all communicating sites 
see the same view of the filegroup, and this 
view is as complete as possible, given a 
particular partition. Note that since up- 
dates are allowed within the partition with 
the primary copy and Reads are allowed in 
the rest of the partitions, it is possible to 
Read out-of-date replicas of a file. Thus, 
Locus sacrifices consistency for the ability 
to continue to both update and read files in 
a partitioned environment. 

When a pack is too far out of date (i.e., 
its lwm indicates a prior value to the earli- 
est commit count value in the primary 
copy commit list), the system invokes an 
application-level process to bring the file- 
group up to date. At this point, the system 
lacks sufficient knowledge of the most re- 
cent commits to identify the missing up- 
dates. Instead, the site must inspect the 
entire i-node space to determine which files 
in its pack are out of date. 

When a site is lost from an operational 
Locus network, a clean-up procedure is nec- 
essary. Essentially, once site a has decided 
that site b is unavailable, site a must invoke 
failure handling for remote resources that 
processes local to a were using at site b, 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 

and for all local resources being used by 
processes local to site b. This substantial 
cleaning procedure is the penalty of the 
state information kept by a!1 three sites 
participating in file access. 

Since directory updates are not restricted 
to be applied to the primary copy, conflicts 
among updates in different partitions may 
arise [Walker et al. 19831. Because of the 
simple nature of directory modification, 
however, an automatic reconciliation pro- 
cedure is devised. This procedure is based 
on comparing the i-nodes and string name 
pairs of replicas of the same directory. The 
most extreme action taken is when the 
same name string corresponds to two dif- 
ferent i-nodes (i.e., the same name is used 
for creating two different files) and 
amounts to altering the file names slightly 
and notifying the files owners by electronic 
mail. 

8.8 Summary 

An overall profile and evaluation of Locus 
is summarized by pointing out the following 
issues: 

Distributed operating system. Because of 
the multiple dimensions of transparency 
in Locus, it comes close to the definition 
of a truly distributed operating system 
in contrast to a collection of network 
services [Tanenbaum and Van Renesse 
19851. 
Implementation strategy. Essent,ially, 
kernel augmentation is the implementa- 
tion strategy in Locus. The common 
pattern in Locus is kernel-to-kernel 
communication via specialized, high- 
performance protocols. This strategy is 
needed to support the philosophy of a 
distributed operating system. 
Replication. A primary copy replication 
scheme is used in Locus. The main merit 
of this kind of replication scheme is in- 
creased availability of directories that ex- 
hibit high read-write ratio. Availability 
for modifying files is not increased by the 
primary copy approach. Handling repli- 
cation transparently is one of the reasons 
for introducing the CSS entity, which is 



Distributed File Systems l 351 

l A logical mount table replicated at all 
sites is clearly not a scalable mecha- 
nism. 

l Extensive message traffic and server 
load caused by the complex synchro- 
nization of accesses needed to provide 
UNIX semantics. 

l UNIX compatibility. The way Locus 
handles remote operation is geared to 
emulation of standard UNIX. The im- 
plementation is merely an extension of 
UNIX implementation across a net- 
work. Whenever buffering is used in 
UNIX, it is used in Locus as well. 
UNIX compatibility is indeed retained; 
however, this approach has some in- 
herent flaws. First, it is not clear 
whether UNIX semantics are appro- 
priate. For instance, the mechanism for 
supporting shared file offset by remote 
processes is complex and expensive. It 
is unclear whether this peculiar mode 
of sharing justifies this price. Second, 
using caching and buffering as done in 
UNIX in a distributed system has some 
ramifications on the robustness and re- 
coverability of the system. Compatibil- 
ity with UNIX is indeed an important 
design goal, but sometimes it obscures 
the development of an advanced dis- 
tributed and robust system. 

a third entity taking part in a remote 
access. In this context, the CSS functions 
as the mapping from an abstract file to a 
physical replica. 

l Access synchronization. UNIX seman- 
tics are emulated to the last detail, in 
spite of caching at multiple USs. Alter- 
natively, locking facilities are provided. 

l Fault tolerance. Substantial effort has 
been devoted to designing mechanisms 
for fault tolerance. A few are an atomic 
update facility, merging replicated packs 
after recovery, and a degree of indepen- 
dent operation of partitions. The effects 
can be characterized as follows: 

Within a partition, the most recent, 
available version of a file is read. The 
primary copy must be available for 
write operations. 
The primary copy of a file is always up 
to date with the most recent committed 
version. Other copies may have either 
the same version or an older version, 
but never a partially modified one. 
A CSS function introduces an addi- 
tional point of failure. For a file to be 
available for opening, both the CSS 
for the filegroup and an SS must be 
available. 
Every pathname component must be 
available for the corresponding file to 
be available for opening. 

A basic questionable decision regarding 
fault tolerance is the extensive use of in- 
core information by the CSS and SS func- 
tions. Supporting the synchronization pol- 
icy is a partial cause for maintaining this 
information; however, the price paid during 
recovery is enormous. Besides, explicit 
deallocation is needed to reclaim this in- 
core space, resulting in a pure overhead of 
message traffic. 

l Scalability. Locus does not lend itself to 
very large distributed system environ- 
ment, mainly because of the following 
reasons: 

l One CSS per file group can easily be- 
come a bottleneck for heavily accessed 
filegroups. 

9. SUN NETWORK FILE SYSTEM 

The Network File System (NFS) is a name 
for both an implementation and a specifi- 
cation of a software system for accessing 
remote files across LANs. The implemen- 
tation is part of the SunOS operating sys- 
tem, which is a flavor of UNIX running on 
Sun workstations using an unreliable da- 
tagram protocol (UDP/IP protocol [Postel 
19801) and Ethernet. The specification and 
implementation are intertwined in the fol- 
lowing description; whenever a level of de- 
tail is needed we refer to the SunOS 
implementation, and whenever the descrip- 
tion is general enough it also applies to the 
specification. 

The system is presented in three levels 
of detail. First (in Section 9.1), an overview 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



352 . E. Levy and A. Silberschatz 

is given. Then, two service protocols that 
are the building blocks for the implemen- 
tation are examined (Section 9.2). Finally 
(in Section 9.3), a description of the SunOS 
implementation is given. 

9.1 Overview 

NFS views a set of interconnected worksta- 
tions as a set of independent machines with 
independent file systems. The goal is to 
allow some degree of sharing among these 
file systems in a transparent manner. Shar- 
ing is based on server-client relationship. A 
machine may be, and often is, both a client 
and a server. Sharing is allowed between 
any pair of machines, not only with dedi- 
cated server machines. Consistent with the 
independence of a machine is the critical 
observation that NFS sharing of a remote 
file system affects only the client machine 
and no other machine. Therefore, there is 
no notion of a globally shared file system 
as in Locus, Sprite, UNIX United, and 
Andrew. 

To make a remote directory accessible in 
a transparent manner from a client ma- 
chine, a user of that machine first has to 
carry out a mount operation. Actually, only 
a superuser can invoke the mount opera- 
tion. Specifying the remote directory as an 
argument for the mount operation is done 
in a nontransparent manner; the location 
(i.e., hostname) of the remote directory has 
to be provided. From then on, users on the 
client machine can access files in the re- 
mote directory in a totally transparent 
manner, as if the directory were local. Since 
each machine is free to configure its own 
name space, it is not guaranteed that all 
machines have a common view of the 
shared space. The convention is to con- 
figure the system to have a uniform name 
space. By mounting a shared file system 
over user home directories on all the ma- 
chines, a user can log in to any workstation 
and get his or her home environment. Thus, 
user mobility can be provided, although 
again by convention. 

Subject to access rights accreditation, po- 
tentially any file system or a directory 
within a file system can be remotely 
mounted on top of any local directory. In 

the latest NFS version, diskless worksta- 
tions can even mount their own roots from 
servers (Version 4.0, May 1988 described in 
Sun Microsystems Inc. [ 19881). In previous 
NFS versions, a diskless workstation de- 
pends on the Network Disk (ND) protocol 
that provides raw block I/O service from 
remote disks; the server disk was parti- 
tioned and no sharing of root file systems 
was allowed. 

One of the design goals of NFS is to 
provide file services in a heterogeneous en- 
vironment of different machines, operating 
systems, and network architecture. The 
NFS specification is independent of these 
media and thus encourages other imple- 
mentations. This independence is achieved 
through the use of RPC primitives built on 
top of an External Date Representation 
(XDR) protocol-two implementation- 
independent interfaces [Sun Microsystems 
Inc. 19881. Hence, if the system consists of 
heterogeneous machines and file systems 
that are properly interfaced to NFS, file 
systems of different types can be mounted 
both locally and remotely. 

9.2 NFS Services 

The NFS specification distinguishes be- 
tween the services provided by a mount 
mechanism and the actual remote file ac- 
cess services. Accordingly, two separate 
protocols are specified for these services- 
a mount protocol and a protocol for remote 
file accesses called the NFS protocol. 
The protocols are specified as sets of 
RPCs that define the protocols’ function- 
ality. These RPCs are the building blocks 
used to implement transparent remote file 
access. 

9.2.1 Mount Protocol 

We first illustrate the semantics of mount- 
ing by a series of examples. In Figure 5a, 
the independent file systems belonging to 
the machines named client, serverl, and 
server2 are shown. At this stage, at each 
machine only the local files can be accessed. 
The triangles in the figure represent sub- 
trees of directories of interest in this 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Client: Serverl: 

\ “SI‘ 

\ 
shared ,.:.. 

: ‘.., 
.:’ .., 

Client: 

Distributed File Systems 

Server2: 

l 353 

,:’ .., 
,:’ ‘4, 

,:’ dir1 ‘... 
,:’ ‘.._ 

: . . . . . . . . . . . . . . .._............ 1.. 

(a) 

Client: 

A 

“Sr 

,:’ 
,;’ ‘9.. 

,:’ 
,:’ 

dir1 ““.. 
:. ::.. 

(b) 

Figure 5. NFS joins independent file systems (a), by mounts (b), and cascading mounts (c). 

example. In Figure 5b, the effects of 
the mounting server l:/usr/shared over 
client:/usr/local are shown. This figure 
depicts the view users on client have of 
their file system. Observe that any file 
within the dir1 directory, for instance, can 
be accessed using the prefix /usr/local/ 
dir1 in client after the mount is complete. 
The original directory /usr/local on that 
machine is not visible any more. 

Cascading mounts are also permitted. 
That is, a file system can be mounted over 
another file system that is not a local one, 
but rather a remotely mounted one. A ma- 
chine’s name space, however, is affected 
only by those mounts the machine’s own 
superuser has invoked. By mounting a re- 
mote file system, access is not gained for 
other file systems that were, by chance, 
mounted over the former file system. Thus, 

the mount mechanism does not exhibit a 
transitivity property. In Figure 5c we illus- 
trate cascading mounts by continuing our 
example. The figure shows the result of 
mounting server2:/dir2/dir over client:/ 
usr/local/dir 1, which is already remotely 
mounted from serverl. Files within dir3 
can be accessed in client using the prefix 
/usr/local/dir 1. 

The mount protocol is used to establish 
the initial connection between a server and 
a client. The server maintains an export 
list (the /etc/exports in UNIX) that spec- 
ifies the local file systems it exports for 
mounting, along with names of machines 
permitted to mount them. Any directory 
within an exported file system can be re- 
motely mounted by an accredited machine. 
Hence, a component unit is such a direc- 
tory. When the server receives a mount 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



354 l E. Levy and A. Silberschatz 

request that conforms to its export list, it 
returns to the client a file handle that is 
the key for further accesses to files within 
the mounted file system. The file handle 
contains all the information the server 
needs to distinguish individual files it 
stores. In UNIX terms, the file handle con- 
sists of a file system identifier and an i- 
node number to identify the exact mounted 
directory within the exported file system. 

The server also maintains a list of the 
client machines and the corresponding cur- 
rently mounted directories. This list is 
mainly for administrative purposes, such as 
for notifying all clients that the server is 
going down. Adding and deleting an entry 
in this list is the only way the server state 
is affected by the mount protocol. 

Usually a system has some static mount- 
ing preconfiguration that is established at 
boot time; however, this layout can be mod- 
ified (/etc/fstab in UNIX). 

9.2.2 NFS Protocol 

The NFS protocol provides a set of remote 
procedure calls for remote file operations. 
The procedures support the following 
operations: 

Searching for a file within a directory 
(i.e., lookup). 
Reading a set of directory entries. 
Manipulating links and directories. 
Accessing file attributes. 
Reading and writing files. 

These procedures can be invoked only after 
having a file handle for the remotely 
mounted directory. Recall that the mount 
operation supplies this file handle. 

The omission of Open and Close opera- 
tions is intentional. A prominent feature of 
NFS servers is that they are stateless. 
There are no parallels to UNIX’s open files 
table or file structures on the server side. 
Maintaining the clients list mentioned in 
Section 9.2.1 seems to violate the stateless- 
ness of the server. The client list, however, 
is not essential in any manner for the cor- 
rect operation of the client or the server 
and hence need not be restored after a 

server crash. Consequently, this list might 
include inconsistent data and should be 
treated only as a hint. 

A further implication of the stateless 
server philosophy and a result of the syn- 
chrony of an RPC is that modified data 
(including indirection and status blocks) 
must be committed to the server’s disk 
before the call returns results to the client. 
The NFS protocol does not provide concur- 
rency control mechanisms. The claim is 
that since locks management is inherently 
stateful, a service outside the NFS should 
provide locking. It is advised that users 
would coordinate access to shared files us- 
ing mechanisms outside the scope of NFS 
(e.g., by means provided in a database man- 
agement system). 

9.3 Implementation 

In general, Sun’s implementation of NFS 
is integrated with the SunOS kernel for 
reasons of efficiency (although such inte- 
gration is not strictly necessary). In this 
section we outline this implementation. 

9.3.1 Architecture 

The NFS architecture is schematically de- 
picted in Figure 6. The user interface is the 
UNIX system calls interface based on the 
Open, Read, Write, Close calls, and file 
descriptors. This interface is on top of a 
middle layer called the Virtual File System 
(VFS) layer. The bottom layer is the one 
that implements the NFS protocol and is 
called the NFS layer. These layers comprise 
the NFS software architecture. The figure 
also shows the RPC/XDR software layer, 
local file systems, and the network and thus 
can serve to illustrate the integration of a 
DFS with all these components. The VFS 
serves two important functions: 

l It separates file system generic opera- 
tions from their implementation by 
defining a clean interface. Several imple- 
mentations for the VFS interface may 
coexist on the same machine, allowing 
transparent access to a variety of types 
of file systems mounted locally (e.g., 4.2 
BSD or MS-DOS). 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Client 

VFS intelface 

Distributed File Systems l 355 

Server 

( VFS iryfncc 1 

RPC/XDR 

0 ,” disk 

Network 
I 

Figure 6. Schematic view of the NFS architecture. 

RPUXDR 

7 
l The VFS is based on a file representation 

structure called a unode, which contains 
a numerical designator for a file that is 
networkwide unique. (Recall that UNIX- 
i-nodes are unique only within a single 
file system.) The kernel maintains one 
vnode structure for each active node (file 
or directory). Essentially, for every file 
the vnode structures complemented by 
the mount table provide a pointer to its 
parent file system, as well as to the file 
system over which it is mounted. 

Thus, the VFS distinguishes local files 
from remote ones, and local files are further 
distinguished according to their file system 
types. The VFS activates file system spe- 
cific operations to handle local requests 
according to their file system types and 
calls the NFS protocol procedures for re- 
mote requests. File handles are constructed 
from the relevant vnodes and passed as 
arguments to these procedures. 

As an illustration of the architecture, let 
us trace how an operation on an already 
open remote file is handled (follow the ex- 
ample in Figure 6). The client initiates the 

operation by a regular system call. The 
operating system layer maps this call to a 
VFS operation on the appropriate vnode. 
The VFS layer identifies the file as a remote 
one and invokes the appropriate NFS pro- 
cedure. An RPC call is made to the NFS 
service layer at the remote server. This call 
is reinjected into the VFS layer, which finds 
that it is local and invokes the appropriate 
file system operation. This path is retraced 
to return the result. An advantage of this 
architecture is that the client and the server 
are identical; thus, it is possible for a ma- 
chine to be a client, or a server, or both. 

The actual service on each server is per- 
formed by several kernel processes, which 
provide a temporary substitute to a LWP 
facility. 

9.3.2 Pathname Translation 

Pathname translation is done by breaking 
the path into component names and doing 
a separate NFS lookup call for every pair 
of component name and directory vnode. 
Thus, lookups are performed remotely by 
the server. Once a mount point is crossed, 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



356 . E. Levy and A. Silberschatz 

every component lookup causes a separate 
RPC to the server. This expensive path- 
name traversal scheme is needed, since 
each client has a unique layout of its logical 
name space, dictated by the mounts if per- 
formed. It would have been much more 
efficient to pass a pathname to a server and 
receive a target vnode once a mount point 
was encountered. But at any point there 
can be another mount point for the partic- 
ular client of which the stateless server is 
unaware. 

To make lookup faster, a directory name 
lookup cache at the client holds the vnodes 
for remote directory names. This cache 
speeds up references to files with the same 
initial pathname. The directory cache is 
discarded when attributes returned from 
the server do not match the attributes of 
the cached vnode. 

Recall that mounting a remote file sys- 
tem on top of another already mounted 
remote file system (cascading mount) is 
allowed in NFS. A server cannot, however, 
act as an intermediary between a client and 
another server. Instead, a client must es- 
tablish a direct server-client connection 
with the second server by mounting the 
desired server directory. Therefore, when a 
client does a lookup on a directory on which 
the server has mounted a file system, the 
client sees the underlying directory instead 
of the mounted directory. When a client 
has a cascading mount, more than one 
server can be involved in a pathname trav- 
ersal. Each component lookup is, however, 
performed between the original client and 
some server. 

9.3.3 Caching and Consistency 

With the exception of opening and closing 
files, there is almost a one-to-one corre- 
spondence between the regular UNIX sys- 
tem calls for file operations and the NFS 
protocol RPCs. Thus, a remote file opera- 
tion can be translated directly to the cor- 
responding RPC. Conceptually, NFS 
adheres to the remote service paradigm, but 
in practice buffering and caching tech- 
niques are used for the sake of performance. 
There is no direct correspondence between 

a remote operation and an RPC. Instead, 
file blocks and file attributes are fetched by 
the RPCs and cached locally. Future re- 
mote operations use the cached data subject 
to some consistency constraints. 

There are two caches: file blocks cache 
and file attribute (i-node information) 
cache. On a file open, the kernel checks 
with the remote server about whether to 
fetch or revalidate the cached attributes by 
comparing time stamps of the last modifi- 
cation. The cached file blocks are used only 
if the corresponding cached attributes are 
up to date. The attribute cache is updated 
whenever new attributes arrive from the 
server after a cache miss. Cached attributes 
are discarded typically after 3 s for files or 
30 s for directories. Both read-ahead and 
delayed-write techniques are used between 
the server and the client [Sun Microsys- 
tems Inc. 881. (Earlier version of NFS used 
write-on-close [Sandberg et al. 19851). The 
caching unit is fairly large (8Kb) for per- 
formance reasons. Clients do not free 
delayed-write blocks until the server con- 
firms the data are written to disk. In con- 
trast to Sprite, delayed-write is retained 
even when a file is open concurrently in 
conflicting modes. Hence, UNIX semantics 
are not preserved. 

Tuning the system for performance 
makes it difficult to characterize the shar- 
ing semantics of NFS. New files created on 
a machine may not be visible elsewhere for 
30 s. It is indeterminate whether writes to 
a file at one site are visible to other sites 
that have the file open for reading. New 
opens of that file observe only the changes 
that have already been flushed to the 
server. Thus, NFS fails to provide either 
strict emulation of UNIX semantics or any 
other clear semantics. 

9.4 Summary 

l Logical name structure. A fundamental 
observation is that every machine estab- 
lishes its own view of the logical name 
structure. There is no notion of global 
name hierarchy. Each machine has its 
own root serving as a private and absolute 
point of reference for its own view of the 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



name structure. Selective mounting of 
parts of file systems upon explicit request 
allows each machine to obtain its unique 
view of the global file system. As a result, 
users enjoy some degree of independence, 
flexibility, and privacy. It seems that 
the penalty paid for this flexibility is 
administrative complexity. 

Network service versus distributed op- 
erating system. NFS is a network service 
for sharing files rather than an integral 
component of a distributed operating sys- 
tem [Tanenbaum and Van Renesse 
19851. This characterization does not 
contradict the SunOS kernel implemen- 
tation of NFS, since the kernel integra- 
tion is only for performance reasons. 
Being a network service has two main 
implications. First, remote-file sharing is 
not the default; the service initiating re- 
mote sharing (i.e., mounting) has to be 
explicitly invoked. Moreover, the first 
step in accessing a remote file, the mount 
call, is a location dependent one. Second, 
perceiving NFS as a service and not as 
part of the operating system allows its 
design specification to be implementa- 
tion independent. 
Remote service. Once a file can be ac- 
cessed transparently I/O operations are 
performed according to the remote serv- 
ice method: The data in the file are not 
fetched en masse; instead, the remote site 
potentially participates in each Read and 
Write operation. NFS uses caching to 
improve performance, but the remote site 
is conceptually involved in every I/O op- 
eration. 

Fault tolerance. A novel feature of NFS 
is the stateless approach taken in the 
design of the servers. The result is resil- 
iency to client, server, or network fail- 
ures. Should a client fail, it is not 
necessary for the server to take any ac- 
tion. Once caching was introduced, var- 
ious patches had to be invented to keep 
the cached data consistent without mak- 
ing the server stateful. 
Sharing semantics. NFS does not pro- 
vide UNIX semantics for concurrently 
open files. In fact, the current semantics 

Distributed File Systems l 357 

cannot be characterized clearly, since 
they are timing dependent. 

Finally, it should be realized that NFS is 
commercially available, has very reason- 
able performance, and is perceived as a 
de facto standard in the user community. 

10. SPRITE 

Sprite is an experimental, distributed op- 
erating system under development at the 
University of California at Berkeley. It 
is part of the Spur project, whose goal 
is the design and construction of high- 
performance multiprocessor workstation 
[Hill et al. 19861. A preliminary version of 
Sprite is currently operational on intercon- 
nected Sun workstations. 

Section 10.1 gives an overview of the file 
system and related aspects. Section 10.2 
elaborates on the file lookup mechanism 
(called prefix tables) and Section 10.3 on 
t.he caching methods used in the file system. 

10.1 Overview 

Sprite designers envision the next genera- 
tion of workstations as powerful machines 
with vast main memory. Currently, work- 
stations have 4 to 32Mb of main memory. 
Sprite designers predict that memories of 
100 to 500Mb will be commonplace in a few 
years. Their claim is that by caching files 
from dedicated servers, the large physical 
memories can compensate for lack of local 
disks in clients’ workstations. 

The interface that Sprite provides in gen- 
eral and to the file system in particular is 
much like the one provided by UNIX. The 
file system appears as a single UNIX tree 
encompassing all files and devices in the 
network, making them equally and trans- 
parently accessible from every workstation. 
As with Locus, the location transparency is 
complete; there is no way to discern a file’s 
network location from its name. Sprite en- 
forces UNIX semantics for share files. 

In spite of its functional similarity to 
UNIX, the Sprite kernel was developed 
from scratch. Oriented toward multipro- 
cessing, the kernel is multithreaded. Syn- 
chronization between the multiple threads 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



358 l E. Levy and A. Silberschatz 

is based on monitorlike structures with 
many small locks protecting the shared 
data [Hoare 19741. Network integrat,ion is 
based on a simple kernel-to-kernel RPC 
facility implemented on top of a special- 
purpose network protocol. The technique 
used in the protocol is implicit acknowledg- 
ment, originally discussed in Birrel and 
Nelson [ 19841. 

A unique feature of the Sprite file system 
is its interplay with the virtual memory 
system. Most versions of UNIX use a spe- 
cial disk partition as a swapping area for 
virtual memory purposes. In contrast,, 
Sprite uses ordinary files (called backing 
files) to store data and stacks of running 
processes. The motivation for this design is 
that it simplifies process migration and en- 
ables flexibility and sharing of the space 
allocated for swapping. Backing files are 
cached in the main memories of servers, 
just like any other file. It is claimed that 
clients would be able to read random pages 
from a server’s (physical) cache faster than 
from a local disk, which means that a server 
with a large cache may provide better pag- 
ing performance t.han from a local disk. The 
virtual memory and file system share the 
same cache, which is dynamically parti- 
tioned according to their conflicting needs. 
Sprite allows the file cache on each ma- 
chine to grow and shrink in response to 
changing demands of the machine’s virtual 
memory and file system. Among other fea- 
tures of Sprite are support for user LWPs 
and a process migration facility, which is 
transparent both to users and the migrated 
process. 

10.2 Looking Up Files with Prefix Tables 

Sprite presents its user with a single file 
system hierarchy. The hierarchy is com- 
posed of several subtrees called domains 
(the Sprite term for component unit), with 
each server providing storage for one or 
more domains. Each machine maintains a 
server map called a prefix table, whose func- 
tion is to map domains to servers [Welch 
and Ousterhout 19861. The mapping is built 
and updated dynamically by a broadcast 
protocol. We first describe how the tables 

are used during name lookups, then de- 
scribe how the tables change dynamically. 

Each entry in a prefix table corresponds 
to one of the domains. It contains the path- 
name of the topmost directory in the do- 
main (that pathname is called the prefix for 
the domain), the network address of the 
server storing the domain, and a numeric 
designator identifying the domain’s root 
directory for the storing server. This des- 
ignator is an index into the server table of 
open files; it saves repeating expensive 
name translation. 

Every lookup operation for an absolute 
pathname starts with the client searching 
its prefix table for the longest prefix match- 
ing the given file name. The client strips 
the matching prefix from the file name and 
sends the remainder of the name to the 
selected server along with the designat,or 
from the prefix table entry. The server uses 
this designator to locate the root directory 
of the domain, then proceeds by usual 
UNIX pathname translation for the re- 
mainder of the file name. If the server 
succeeds in completing the translation, it 
replies with a designator for the open file. 

There are several cases in which the 
server does not complete the lookup. For 
instance, a pathname can descend down 
into a new domain. This can happen when 
an entry for a domain is absent from the 
table and, as a result, the prefix of the 
domain above the missing domain is 
the longest matching prefix. The selected 
server cannot complete the pathname trav- 
ersal since it descends outside its domain. 
The solution to this problem is to place a 
marker to indicate domain boundaries (a 
mount point). The marker is a special kind 
of file called a remote link. Similar to a 
symbolic link, it.s content is a file name- 
its own name in this case. When a server 
encounters a remote link, it returns the file 
name to the client. 

So far, the key difference from mappings 
based on the UNIX mount mechanism is 
the initial step of matching the file name 
against the prefix table instead of looking 
it up component by component. Systems 
(such as NFS and conventional UNIX) 
that use a name lookup cache get a similar 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Distributed File Systems 359 

effect of avoiding the component-by- 
component lookup once the cache holds the 
appropriate information. Prefix tables are, 
however, a unique mechanism mainly be- 
cause of the way they evolve and change. 
When a remote link is encountered by the 
server, it indicates that the client lacks an 
entry for a domain-the domain whose re- 
mote link was encountered. To obtain the 
missing prefix information, a client broad- 
casts a file name. A server storing that file 
responds with the prefix table entry for this 
file, including the string to use as a prefix, 
the server’s address, and the descriptor cor- 
responding to the domain’s root. The client 
can then fill in the details in its prefix table. 

Initially, each client starts with an empty 
prefix table. The broadcast protocol is in- 
voked to find the entry for the root domain. 
More entries are added as needed; a domain 
that has never been accessed will not 
appear in the table. 

The server locations kept in the prefix 
table are hints that are corrected when 
found to be wrong. Hence, if a client tries 
to open a file and gets no response from the 
server, it invalidates the prefix table entry 
and issues a broadcast query. If the server 
has become available again, it responds to 
the broadcast and the prefix table entry is 
reestablished. This same mechanism also 
works if the server reboots at a different 
network address or if its domains are mi- 
grated to other servers. 

The prefix mechanism ensures that 
whenever a server storing a domain is up, 
the domain’s files can be accessed regard- 
less of the status of servers storing domains 
that appear in the pathname of the accessed 
files. In essence, the built-in broadcast pro- 
tocol enables dynamic reconfiguration and 
a certain degree of robustness. Also, when 
a prefix for a domain exists in a client’s 
table, a direct client-server connection is 
established as soon as the client attempts 
to open a file in that domain (in contrast 
to pathname traversal schemes). 

A machine with a local disk wishing to 
keep some local files private can accomplish 
this by placing an entry for the private 
domain in its prefix table and refusing to 
respond to broadcast queries about it. One 

of the uses of this provision can be for 
the directory /usr/tmp, which holds tem- 
porary files generated by many UNIX pro- 
grams. Every workstation needs access to 
/usr/tmp. But workstations with local 
disks would probably prefer to use their 
own disk for the temporary space. They can 
set up their /usr/tmp domains for private 
use, with a network file server providing a 
public version of the domain for diskless 
clients. All broadcast queries for /usr/tmp 
would be handled by the public server. 

A primitive form of read-only replication 
can also be provided. It can be arranged so 
that servers storing a replicated domain 
give different clients different prefix entries 
(standing for different replicas) for the 
same domain. As a result, the service load 
is divided among the servers as each rep- 
lica serves a different set of clients. The 
same technique can be used for sharing 
binary files by different hardware types 
of machines. 

Since the prefix tables bypass part of the 
director lookup mechanism, the permission 
checking done during lookup is bypassed 
too. The effect is that all programs implic- 
itly have search permission along all the 
paths denoting prefixes of domains. If ac- 
cess to a domain is to be restricted, it must 
be restricted at the root of the domain or 
below it. 

10.3 Caching and Consistency 

An important aspect of the Sprite file sys- 
tem design is the extent to which it uses 
using caching techniques. Capitalizing on 
the large main memories and advocating 
diskless workstations, file caches are stored 
incore. The same caching scheme is used to 
avoid local disk accesses as well as to speed 
up remote accesses. The caches are orga- 
nized on a block basis. Blocks are currently 
4Kb. Each block in the cache is virtually 
addressed by the file designator and a block 
location within the file. Using virtual ad- 
dresses instead of physical disk addresses 
enable clients to create new blocks in the 
cache and locate any block without the file 
i-node being brought from the server. Cur- 
rently, Sprite does not use read-ahead to 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



360 . E. Levy and A. Silberschatz 

speed up sequential read (in contrast 
to NFS). 

A delayed-write approach is used to han- 
dle file modification. A dirty block is not 
written through to the servers cache or the 
disk until it is ejected from the cache or 
30 s have elapsed since the block was last 
modified. Hence, a block written on a client 
machine will be written to the servers cache 
in at most 30 s and will be written to the 
server’s disk after an additional 30 s. 

Exact emulation of UNIX semantics is 
one of Sprite’s goals. A hybrid cache vali- 
dation method is used for this end. Files 
are associated with a version number. The 
version number of a file is incremented 
whenever a file is opened in Write mode. 
When a client opens a file, it obtains 
the file’s current version number from the 
server and compares this number to the 
version number associated with the cached 
blocks for that file. If the version numbers 
are different, the client discards all cached 
blocks for the file and reloads its cache 
from the server when the blocks are needed. 
Because of the delayed-write policy, the 
server does not always have the current file 
data. Servers handle this situation by keep- 
ing track of the last writer for each file. 
When a client other than the last writer 
opens the file, the server forces the last 
writer to write all its dirty blocks back to 
the server’s cache. When a server detects 
(during an Open operation) that a file is 
open on two or more workstations and at 
least one of them is writing the file, it 
disables client caching for that file (thereby 
resorting to a remote service mode). All 
subsequent Reads and Writes go through 
the server, which serializes the accesses. 
Caching is disabled on a file basis, and the 
disablement affects only clients with open 
files. A substantial degradation of perfor- 
mance occurs when caching is disabled. A 
noncachable file becomes cachable again 
when it has been closed on all clients. A file 
may be cached simultaneously by several 
active readers. 

This approach depends on the fact that 
the server is notified whenever a file is 
opened or closed. This prohibits perfor- 
mance optimizations such as name caching 
in which clients open files without contact- 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 

ing their servers. Essentially, the servers 
are used as centralized control points for 
cache consistency. In order to fulfill this 
function, they must maintain state infor- 
mation about open files. 

10.4 Summary 

Since Sprite is currently under develop- 
ment its design is evolving. Some definite 
characteristics of the system are, however, 
already evident; 

Extensive use of caching. Sprite is in- 
spired by the vision of diskless worksta- 
tions with huge main memories and 
accordingly relies heavily on caching. 
The current design is fragile due to the 
amount of the state data kept in-core by 
the servers. A server crash results in 
aborting all processes using files on the 
server. On the other hand, Sprite dem- 
onstrates the big merit of caching in main 
memory-performance. 
Sharing semantics. Sprite sacrifices even 
performance in order to emulate UNIX 
semantics. This decision eliminates the 
possibility and benefits of caching in big 
chunks. 
Prefix tables. There is nothing out of the 
ordinary in prefix tables. Nevertheless, 
for LAN-based file systems, prefix tables 
are a most efficient, dynamic, versatile, 
and robust mechanism for file lookup. 
The key advantages are the built-in 
facility for processing whole prefixes 
of pathnames (instead of processing 
component by component) and the sup- 
porting broadcast protocol that allows 
dynamic changes in the tables. 

11. ANDREW 

Andrew is a distributed computing environ- 
ment that has been under development 
since 1983 at Carnegie-Mellon University. 
The Andrew file system constitutes the un- 
derlying information-sharing mechanism 
among users of the environment. One of 
the most formidable requirements of An- 
drew is its scale-the system is targeted to 
span more than 5000 workstations. Since 
1983, Andrew has gone through design, 



Distributed File Systems l 361 

Local name space 

Shared name space 

Figure 7. Andrew’s name spaces. 

prototype implementation, and refinement 
phases. Our description concentrates on a 
recent version reported mainly in Howard 
et al. [1988]. It is interesting to examine 
how the design evolved from the prototype 
to the current version. An excellent account 
of this evolution along with a concise de- 
scription of the first prototype can be found 
in Howard et al. [ 19881. 

In early 1987 Andrew encompassed about 
400 workstations and 16 servers. Typically, 
the workstations were Sun’s and IBM RTs, 
with local disks; the file servers were Sun’s 
or Vax’s, with much larger disks. Section 
11.1 gives a brief overview of the file system 
and introduces its primary architectural 
components. Sections 11.2, 11.3, and 11.4 
discuss the shared name space structure, 
the strategy for implementing file opera- 
tions, and various implementation details, 
respectively. 

il. 1 Overview 

Andrew distinguishes between client ma- 
chines (sometimes referred to just as work- 
stations) and dedicated server machines. 
Servers and clients alike run the UNIX 
4.2BSD operating system and are intercon- 
nected by an internet of LANs. 

Clients are presented with a partitioned 
space of file names: a local name space and 
a shared name space. A collection of dedi- 
cated servers, collectively called Vice, pre- 
sents the shared name space to the clients 

as an identical and location-transparent 
file hierarchy. The local name space is the 
root file system of a workstation from 
which the shared name space descends 
(Figure 7). Workstations are required to 
have local disks where they store their local 
name space, whereas servers collectively 
are responsible for the storage and manage- 
ment of the shared name space. The local 
name space is small and distinct from each 
workstation and contains system programs 
essential for autonomous operation and 
better performance, temporary files, and 
files the workstation owner explicitly 
wants, for privacy reasons, to store locally. 
Viewed at a finer granularity, clients and 
servers are structured in clusters intercon- 
nected by a backbone LAN (Figure 8). Each 
cluster consists of a collection of worksta- 
tions, a representative of Vice called a clus- 
ter server, and is connected to the backbone 
by a router. The decomposition into clus- 
ters is primarily to address the problem 
of scale. For optimal performance, work- 
stations should use the server on their 
own cluster most of the time, thereby mak- 
ing cross-cluster file references relatively 
infrequent. 

The file system architecture was moti- 
vated by consideration of scale, too. The 
basic heuristic was to off-load work from 
the servers to the clients, in light of the 
common experience indicating that server’s 
CPU is the system’s bottleneck [Lazowska 
et al. 19861. Following this heuristic, the 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



362 . E. Levy and A. Silberschatz 

Backbone Ethernet 

---..1...--- 

+-zq 

ws - 

.--El 
W8 - 

-El 

Figure 8. Typical cluster in Andrew. 

key mechanism selected for remote file op- 
erations is whole file caching. Opening a 
file causes it to be cached, in its entirety, 
in the local disk. Reads and writes are 
directed to the cached copy without involv- 
ing the servers. Under certain circum- 
stances, the cached copy can be retained 
for later use. 

Entire file caching has many merits, 
which are described subsequently. This de- 
sign cannot, however, efficiently accom- 
modate remote access to very large files 
(i.e., above a few megabytes). Thus, a 
separate design will have to address the 
issue of usage of large databases in the 
Andrew environment. Additional issues 
in Andrew’s design are briefly noted: 

l User mobility. Users are able to access 
any file in the shared name space from 
any workstation. The only noticeable ef- 
fect of a user accessing files not from the 
usual workstation would be some initial 
degraded performance due to the caching 
of files. 

Security. Special consideration was 
given to security. The Vice interface is 
considered the boundary of trustworthi- 
ness since no user programs are executed 
on Vice machines. Authentication and 
secure transmission functions based on 
the RPC paradigm, are provided as part 
of communication package. After mutual 
authentication, a Vice server and a client 
communicate via encrypted messages. 
Encryption is performed by hardware de- 
vices. Information about users and 
groups is stored in a protection database 
that is replicated at each server. 
Protection. Andrew provides access lists 
for protecting directories and the regular 
UNIX bits for file protection. The access 
lists mechanism is based on recursive 
groups structure, similar to the registra- 
tion database of Grapevine [Birrel et al. 
19821. 
Heterogeneity. Defining a clear interface 
to Vice is a key for integration of diverse 
workstation hardware and operating sys- 
tem. To facilitate heterogeneity, some 
files in the local /bin directory are sym- 
bolic links pointing to machine-specific 
executable files residing in Vice. 

11.2 Shared Name Space 

Andrew’s shared name space is constituted 
of component units called volumes. An- 
drew’s volumes are unusually small com- 
ponent unit. Typically, they are associated 
with the files of a single user. Few volumes 
reside within a single disk partition and 
may grow (up to a quota) and shrink in 
size. Volumes are joined together by a 
mechanism similar to the mount mecha- 
nism. The granularity difference is signifi- 
cant, since in UNIX only an entire disk 
partition (containing a file system) can be 
mounted. Volumes are a key administrative 
unit and play a vital role in identifying and 
locating an individual file. 

A Vice file or directory is identified by a 
low-level identifier called fid. Each Andrew 
directory entry maps a pathname compo- 
nent to a fid. A fid has three equal length 
components: a volume number, a vnode 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Distributed File Systems l 363 

This key distinction has far-reaching ram- 
ifications on performance as well as on 
semantics of file operations. The operating 
system on each workstation intercepts file 
system calls and forwards them to a user- 
level process on that workstation. This pro- 
cess, called Venus, caches files from Vice 
when they are opened and stores modified 
copies of files back on the servers from 
which they came when they are closed. 
Venus may contact Vice only when a file is 
opened or closed; reading and writing in- 
dividual bytes of a file are performed di- 
rectly on the cached copy and bypass 
Venus. As a result, writes at some sites are 
not immediately visible at other sites. 

Caching is further exploited for future 
opens of the cached file. Venus assumes 
that cached entries (files or directories) are 
valid unless notified otherwise. Therefore, 
Venus need not contact Vice on a file open 
in order to validate the cached copy. The 
mechanism to support this policy is called 
Callback, and it dramatically reduces the 
number of cache validation requests re- 
ceived by servers. It works as follows: When 
a client caches a file or a directory, the 
server updates its state information record- 
ing this caching. We say that the client has 
a callback on that file. The server notifies 
the client before allowing a modification to 
the file by another client. In such a case, 
we say that the server removes the callback 
on the file for the former client. A client 
can use a cached file for open purposes only 
when the file has a callback. Therefore, if 
a client closed a file after modifying it, all 
other clients caching this file lose their 
callbacks. When these clients open the file 
later, they have to get the new version from 
the server. 

Reading and writing bytes of a file are 
done directly by the kernel without Venus 
intervention on the cached copy. Venus 
regains control when the file is closed, and 
if the file has been modified locally, Venus 
updates the file on the appropriate server. 
Thus, the only occasions in which Venus 
contacts Vice servers are on opening files 
that either are not in the cache or have had 
their callbacks revoked, and on Close-of- 
writing sessions. 

number, and a uniquifier. The vnode num- 
ber is used as an index into an array con- 
taining the i-node of files in a single 
volume. The uniquifier allows reuse of 
vnode numbers, thereby keeping certain 
data structures compact. Fid’s are location 
independent; therefore, file movements 
from server to server do not invalidate 
cached directory contents. 

Location information is kept on a volume 
basis in a volume location database repli- 
cated on each server. A client can identify 
the location of every volume in the system, 
querying this database. It is the aggregation 
of files into volumes that makes it possible 
to keep the location database at a manage- 
able size. 

To balance the available disk space and 
use of servers, volumes need to be migrated 
among disk partitions and servers. When a 
volume is shipped to its new location, its 
original server is left with temporary for- 
warding information so the location data- 
base need not be updated synchronously. 
While the volume is being transferred, the 
original server still may handle updates, 
which are later shipped to the new server. 
At some point the volume is briefly disabled 
to process the recent modifications, then 
the new volume becomes available again at 
the new site. The volume movement oper- 
ation is atomic; if either server crashes the 
operation is aborted. 

Read-only replication at the granularity 
of an entire volume is supported for system- 
executable files and seldom-updated files in 
the upper levels of the Vice name space. 
The volume location database specifies the 
server containing the only read-write copy 
of a volume and a list of read-only replica- 
tion sites. 

11.3 File Operations and Sharing Semantics 

The fundamental architectural principle in 
Andrew is the caching of entire files from 
servers. Accordingly, a client workstation 
interacts with Vice servers only during 
opening and closing of files, and even this 
is not always necessary. No remote inter- 
action is caused by reading or writing files 
(in contrast to the remote service method). 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



364 . E. Levy and A. Silberschatz 

Basically, Andrew implements session I 1.4 Implementation 
semantics. The only exceptions are file op- 
erations other than the primitive Read and 
Write (such as protection changes at the 
directory level), which are visible every- 
where on the network immediately after 
the operation completes. 

In spite of the callback mechanism, a 
small amount of cached validation traffic 
is still present, usually to replace callbacks 
lost because of machine or network failures. 
When a workstation is rebooted, Venus 
considers all cached files and directories 
suspect and generates a cache valida- 
tion request for the first use of each such 
entry. 

The callback mechanism forces each 
server to maintain callback information 
and each client to maintain validity infor- 
mation. If the amount of callback infor- 
mation maintained by a server is excessive, 
the server can break callbacks and reclaim 
some storage by unilaterally notifying 
clients and revoking the validity of their 
cached files. There is a potential for incon- 
sistency if the callback state maintained by 
Venus gets out of sync with the correspond- 
ing state maintained by the servers. 

Venus also caches contents of directories 
and symbolic links for pathname transla- 
tion. Each component in the pathname is 
fetched, and a callback is established for it 
if it is not already cached or if the client 
does not have a callback on it. Lookups are 
done locally by Venus on the fetched direc- 
tories using fid’s. There is no forwarding of 
requests from one server to another. At the 
end of a pathname traversal all the inter- 
mediate directories and the target file are 
in the cache with callbacks on them. Future 
open calls to this file will involve no net- 
work communication at all, unless a call- 
back is broken on a component of the 
pathname. 

The only exception to the caching policy 
are modifications to directories that are 
made directly on the server responsible for 
that directory for reasons of integrity. 
There are well-defined operations in the 
Vice interface for such purposes. Venus 
reflects the changes in its cached copy to 
avoid refetching the directory. 

User processes are interfaced to a UNIX 
kernel with the usual set of system calls. 
The kernel is modified slightly to detect 
references to Vice files in the relevant 
operations and to forward the requests 
to the user-level Venus process at the 
workstation. 

Venus carries out pathname translation 
component by component as described ear- 
lier. It has a mapping cache that associates 
volumes of server locations to avoid server 
interrogation for an already known volume 
location. The information in this cache is 
treated as a hint. If a volume is not present 
in this cache or if the location information 
turned out to be wrong, Venus contacts a 
server, requests the location information, 
and enters this information into the map- 
ping cache. When a target file is found and 
cached, a copy is created on the local disk. 
Venus then returns to the kernel, which 
opens the cached copy and returns its han- 
dle to the user process. 

The UNIX file system is used as a low- 
level storage system for both servers and 
clients. The client cache is a local directory 
on the workstation’s disk. Within this di- 
rectory are files whose names are place 
holders for cache entries. Both Venus and 
server processes access UNIX files directly 
by their i-nodes to avoid the expensive 
pathname translation routine (namei). 
Since the internal i-node interface is not 
visible to user-level processes (both Venus 
and server processes are user-level pro- 
cesses), an appropriate set of additional 
system calls was added. 

Venus manages two separate caches- 
one for status and the other for data. Venus 
uses a simple least-recently used algorithm 
to keep each of them bounded in size. When 
a file is flushed from the cache, Venus 
notifies the appropriate server to remove 
the callback for this file. The status cache 
is kept in virtual memory to allow rapid 
servicing of system calls that ask for status 
information (e.g., the UNIX stat call). The 
data cache is resident on the local disk, but 
the UNIX I/O buffering mechanism does 
some caching of disk blocks in memory that 
is transparent to Venus. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



A single user-level process on each file 
server services all file requests from clients. 
This process uses a LWP package with 
nonpreemptabie scheduling to service 
many client requests concurrently. The 
RPC package is integrated with the LWP, 
thereby allowing the file server to be con- 
currently making or servicing one RPC per 
lightweight process. RPC is built on top of 
a low-level datagram abstraction. 

Whole file transfer is implemented as a 
side effect of RPC call. There is an RPC 
connection per client, but there is no a 
priori binding of LWPs to these connec- 
tions. Instead, a pool of LWPs service client 
requests on all connections. The use of a 
single, user-level, server process allows Ve- 
nus to maintain in its address space caches 
of data structures needed for its operation. 
On the other hand, a single server process 
crash has the disastrous effect of paralyzing 
this particular server. 

A more recent version of Andrew differs 
slightly from the version described here. 
Instead of whole-file caching, caching in 
chunks of 64Kb, is used. Also, the sharing 
semantics were modified slightly. Updates 
are still immediately invisible. The updat- 
ing client can, however, explicitly request 
that the changes become visible even to 
remote clients having the file already open. 

11.5 Summary 

We review the highlights of the Andrew file 
system: 

l Name space and service model. Andrew 
explicitly distinguishes among local and 
shared name spaces, as well as among 
clients and dedicated servers. Clients 
have a small and distinct local name 
space and can access the shared name 
space managed by the servers. 

l Scalability. Andrew is distinguished by 
its scalability. The strategy adopted to 
address scale is whole file caching (to 
local disks) in order to reduce servers 
load. Servers are not involved in reading 
and writing operations. The callback 
mechanism was invented to reduce the 
number of validity checks. Performing 
pathname traversals by clients off-loads 

Distributed File Systems l 365 

this burden from servers. The penalty for 
choosing this strategy and the corre- 
sponding design includes maintaining a 
lot of state data on the servers to support 
the callback mechanism and specialized 
sharing semantics. 
Sharing semantics. Andrew’s semantics 
are simple and well defined (in contrast 
to NFS, for instance, where effects of 
concurrent accesses are time dependent). 
They are not, however, UNIX semantics. 
Basically, Andrew’s semantics ensure 
that a file’s updates are visible across the 
network only after the file has been 
closed. 
Component units and location mapping. 
Andrew’s component unit-the vol- 
ume-is of relatively fine granularity and 
exhibits some primitive mobility capabil- 
ities. Volume location mapping is imple- 
mented as a complete and replicated 
mapping at each server. 

Results of a thorough series of perfor- 
mance experimentation with Andrew are 
presented in Howard et al [1988]. The re- 
sults confirm the current design predic- 
tions. That is, the desired effects on server 
CPU use, network traffic, and overall time 
needed to perform remote file operations 
were obtained, in particular under severe 
server load. The performance experiments 
include a benchmark comparison with NFS 
in which Andrew demonstrated its superi- 
ority regarding the recently mentioned cri- 
teria, again especially for severe server load. 

12. OVERVfEW OF RELATED WORK 

This paper focused on several concepts and 
systems without exhausting the area of 
DFSs. Consequently, many aspects and 
systems were omitted. In this section we 
therefore cite references that complement 
this paper. 

Many studies of typical properties of file 
and characteristics of file accesses have 
been done over the years [Ousterhout et al. 
1985; Satyanarayanan 1981; Smith 19811. 
These empirical results have vast impact 
on the design of a DFS. Material on another 
subject that was not covered in this survey, 
namely security and authentication, can be 

ACM ComDutinz Survevs, Vol. 22, No. 4, December 1990 



366 l E. Levy and A. Silberschatz 

found in Needham and Schroeder [1978] 
and Satyanarayanan [ 19891. 

A detailed survey of mainly centralized 
file servers is found in Svobodova [ 19841. 
The emphasis is on support of atomic 
transactions, not on location transparency 
and naming. A tutorial on distributed op- 
erating systems is presented in Tanenbaum 
and Van Renesse [1985]. There, a distrib- 
uted operating system is defined and issues 
like communication primitives and protec- 
tion are discussed. These two surveys in- 
clude an extensive bibliography to a variety 
of distributed systems. 

Next, we give a concise overview of a few 
noteworthy DFSs that were not surveyed 
in this paper. 

l Roe [Ellis and Floyd 1983; Floyd 19891. 
Roe presents a file as an abstraction hid- 
ing both replication and location details. 
Files are migrated to achieve balancing 
of systemwide disk storage allocation and 
also as a remote access method. Consis- 
tency of replicated files is obtained by 
a weighted voting algorithm [Gifford 
19791. 

. Eden [Almes et al, 1983; Black 1985; 
Jessop et al. 19821. A radically different 
approach is adopted for the experimental 
Eden file system from the University of 
Washington. The system is based on the 
object-oriented and capability-based ap- 
proaches [Levy 19841. A file is a dynamic 
object that can be viewed as an instance 
of an abstract data type. It includes pro- 
cesses that satisfy requests oriented to 
the file (i.e., there is no separation of 
passive data files and active server pro- 
cesses). A kernel-supported storage 
system provides primitives for check- 
pointing the representation of an object 
to secondary storage, copying it, or mov- 
ing it from machine to machine. Eden 
files can be replicated, can be migrated, 
are named in a location-independent 
manner, and can support atomic trans- 
actions. More material on migratory ob- 
jects can be found in the context of the 
Emerald project, conducted in the same 
university [Jul et al. 19871. 

l Stork [Paris and Tichy 19831. Stork is 
an experimental file system designed to 

evaluate the feasibility of file migration 
as a remote access method. Locating a 
migratory file is based on a primitive 
mechanism of associating the file’s owner 
with a list of possible machines where the 
files can be located. It emphasizes that 
file access patterns must exhibit local- 
ity to make file migration an attractive 
remote access method. 

Ibis [Tichy and Ruan 19841. Ibis is the 
successor of Stork. It is a user-level ex- 
tension of UNIX. Remote file names are 
prefixed with their host name and can 
appear in system calls as well as in shell 
commands. The replication scheme was 
described in Section 5.3. Low-level, struc- 
ture, but location-dependent names are 
used. One of the parts of the structured 
name designates the machine that cur- 
rently stores the file. These names render 
file migration a very expensive operation, 
since all directories containing the name 
of the migrated file must be updated. 

Apollo Domain [Leach et al., 1982, 19851. 
The Domain system is a commercial 
product featuring a collection of powerful 
workstations connected by a high-speed 
LAN. An object-oriented approach is 
taken. Files are objects, and as such they 
may be of different types. Accordingly, it 
is possible to construct file operations 
that are customized for a particular file 
type. All the objects in the system are 
named by a networkwide, unique, low- 
level, location-independent name, called 
a UID. Objects are organized in hierar- 
chical, UNIX-like, directories that asso- 
ciate textual names with UIDs. No global 
state information is kept on object loca- 
tions. Instead, an interesting location al- 
gorithm, based on heuristics (hints) for 
guessing the object’s location, is used. For 
instance, one helpful heuristic is to as- 
sume that objects created at the same 
machine are likely to be located together. 
A unique feature of Domain is the way 
objects are accessed once located. Objects 
are mapped directly onto clients’ address 
spaces and accessed via virtual memory 
paging. In terms of remote access meth- 
ods, this amounts to caching in the gran- 
ularity of pages. Write-through policy 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



is used for modification, and client- 
initiated approach is used for validation 
of cached data. 

13. CONCLUSIONS 

In this paper we presented the basic con- 
cepts underlying the design of a distributed 
file system and surveyed five of the most 
prominent systems. A comparison of the 
systems is presented in Table 1. A crucial 
observation, based on the assessment of 
contemporary DFSs, is that the design of a 
DFS must depart from approaches devel- 
oped for conventional file systems. Basing 
a DFS on emulation of a conventional file 
system might be a transparency goal, but it 
certainly should not be an implementation 
strategy. Extending mechanisms developed 
for conventional file systems over a net- 
work is a strategy that disregards the 
unique characteristics of a DFS. 

Supporting this claim is the observation 
that a loose notion of sharing semantics is 
more appropriate for a DFS than conven- 
tional UNIX semantics. Restrictive seman- 
tics incur a complex design and intolerable 
overhead. A provision to facilitate restric- 
tive semantics for database applications 
may be offered as an option. Consequently, 
UNIX compatibility should be sacrificed 
for the sake of a good DFS design. In this 
respect, the approach used in Andrew to 
the semantics of sharing prove superior to 
those used in Locus and NFS. 

Another area in which a fresh approach 
is essential is the server process architec- 
ture. There is a wide consensus that some 
form of LWPs is more suitable than tradi- 
tional processes for efficiently handling 
high loads of service requests. 

It is difficult to present concrete guide- 
lines in the context of fault tolerance and 
scalability, mainly because there is not 
enough experience in these areas. It is clear, 
however, that distribution of control and 
data as presented in this paper is a key 
concept. User convenience calls for hiding 
the distributed nature of such a system. As 
we pointed out in Section 2, the additional 
flexibility gained by mobile files is the next 
step in the spirit of distribution and trans- 
parency. Based on the Andrew experience, 

Distributed File Systems l 367 

off-loading work from servers to clients and 
structuring a system as a collection of clus- 
ters are two sound scalability strategies. 
Clusters should be as autonomous as pos- 
sible and should serve as a modular building 
block for an expandable system. A chal- 
lenging aspect of scale that might be of 
interest for future designs is the exten- 
sion of the DFS paradigm over WANs. 
Such an extended DFS would be character- 
ized by larger latencies and higher failure 
probabilities. 

A factor that is certain to be prominent 
in the design of future DFSs is the available 
technology. It is important to follow tech- 
nological trends and exploit their potential. 
Some imminent possibilities are as follows: 

Large main memories. As main memo- 
ries become larger and less expensive, 
main-memory caching (as exemplified in 
Sprite) becomes more attractive. The re- 
wards in terms of performance can be 
exceptional. 
Optical disks. Optical storage technology 
has an impact on file systems in general 
and hence on DFSs in particular, too. 
Write-once optical disks are already 
available [Fujitani 19841. Their key fea- 
tures are very large density, slow access 
time, high reliability, and nonerasable 
writing. This medium is bound to become 
on-line tertiary storage and replace tape 
devices. Rewritable optical disks are be- 
coming available and might replace mag- 
netic disks altogether. 

Optical fiber networks. A change in the 
entire approach to the remote access 
problem can be justified by the existence 
of these remarkably fast communication 
networks. The concept of local disk is 
faster may be rendered obsolete. 
Nonvolatile RAMS. Battery-backed 
memories can survive power outage, 
thereby enhancing the reliability of 
main-memories caches. A large and reli- 
able memory can cause a revolution in 
storage techniques. Still, it is questiona- 
ble whether this technology is sufficient 
to make main memories as reliable as 
disks because of the unpredictable con- 
sequences of an operating system crash 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



368 . E. Levy and A. Silberschatz 

Table 1. Comparison of Surveyed Systems 

UNIX United Locus 

Background Interconnecting a set of loosely 
coupled UNIX systems without 
modifying the kernel. 

A highly reliable distributed op- 
erating system providing multi- 
ple dimensions of transparency 
and is UNIX compatible. 

Naming scheme 

Component unit 

User mobility Not supported. 

Client-server Each machine can be both. 

Remote-access method 

Caching 

Sharing semantics 

Pathname traversal 

Reconfiguration, file mobility 

Availability 

Single pseudo-UNIX tree. No- 
ticeable machine boundaries. All 
pathnames are relative (by the 
‘ ’ syntax). Independence of . 
component systems. Recursive 
structuring. 

Single UNIX tree, hiding both 
replication and location. 

Entire UNIX hierarchy. 

Emulation of conventional 
UNIX across the network. 

Emulation of UNIX buffering. 

The pathname translation re- 
quest is forwarded from machine 
to machine. 

Impossible to move a file without 
changing its name. No dynamic 
reconfiguration. 

A logical filegroup (UNIX file 
system). 

Supported. 

A triple: US, SS, CSS. Every file 
group has a CSS that selects SS 
and synchronizes accesses. Once 
a file is open, direct US-SS 
protocol. 

Once a file is open, accesses are 
served by caching. 

Block caching similar to UNIX 
buffering. A token scheme for 
cache consistency. Closing a file 
commits it on the server. 

Complete UNIX semantics, 
including sharing of file offset. 

US reads each directory and per- 
forms lookup itself. Given a tile 
group number, the CSS is found 
replicated on all machines in the 
logical mount table. The CSS 
picks SS. 

Because of replication, servers 
can be taken off-line or fail with- 
out disturbance. Directory hier- 
archy can be changed by 
mounting/unmounting. 

Availability of a file means the 
CSS and SS are available. Each 
component in the file’s path- 
name must be available for the 
file to be opened. The primary 
copy must be available for a 
Write. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Distributed File Systems 

Table l-Continued 

369 

NFS Sprite Andrew 

A network service so that inde- Designed for an environment 
pendent workstations would be consisting of diskless worksta- 
able to share remote files trans- tions with huge main memories 
parently. interconnected by a LAN. 

Each machine has its own view 
of the global name space. 

Single UNIX tree; hiding 
location. 

A directory within an exported 
file system can be remotely 
mounted. 

Potential for support exists; 
demands certain configuration. 

Every machine can be both. Di- 
rect client-server relationship is 
enforced. 

Remote service mixed with block 
caching for service. 

Block caching similar to UNIX 
buffering. Client checks validity 
of cached data on each open. 
Delayed-write policy. 

Not UNIX semantics. Timing- 
dependent semantics. 

Lookups are done remotely for 
each pathname component, but 
all are initiated from the client. 
A lookup cache for speedup. 

Mount/unmount can be done 
dynamically by superuser for 
each machine. 

In case of cascading mount, each 
server along the mount chain has 
to be available for a file to be 
available. 

A domain (UNIX file system). 

Supported. 

Typically, clients are diskless 
and servers are machines with 
disks. 

Block caching in main memory. 
In case of concurrent writes, 
switch to Remote Service. 

Block caching similar to UNIX 
buffering. Delayed-write policy. 
Client checks validity of cached 
data on each open. Server dis- 
ables caching when a file is 
opened in conflicting modes. 

UNIX semantics. 

Prefix tables mechanism. Inside 
a domain, lookup is done by 
server. 

Broadcast protocol supports 
dynamic reassignment of 
domains to servers. 

If a server of a file is available, 
the file is available regardless of 
the state of other servers (along 
the pathname). 

Designed as the sharing mecha- 
nism of a large-scale system for a 
university campus. 

Private name spaces and one 
UNIX tree for the shared name 
space. The shared tree descends 
from each local name space. 

A volume (typically, all files of a 
single user). 

Fully supported. 

Clustering: Dedicated servers per 
cluster. 

Whole file caching in local disks. 

Read and Write are served 
directly by the cache without 
server involvement. Write-on- 
close policy. Server-initiated 
approach for cache validation 
(callback), hence no need to 
check on each open. 

Session semantics. 

Client caches each directory and 
performs lookup itself. Given a 
volume number, the server is 
found in a volume location data- 
base replicated on each server. 
Parts of this database are cached 
on each machine. 

Volume migration is supported. 

A client has to have a connection 
to a server, and each pathname 
component must be available. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



370 l E. Levy and A. Silberschatz 

Table l-Continued 

UNIX United Locus 

Other fault tolerance issues 

Scalability issues Recursive structuring. 

Implementation strategy, archi- 
tecture 

UNIX kernel kept intact. Con- 
nection layer intercepts remote 
calls. User-level daemons for- 
ward and service remote opera- 
tions. A spawner process creates 
a server process per user that ac- 
cesses files using file descriptors. 

Networking 

Communication protocol 

Special features 

Main advantage 

Suitable for arbitrary internet- 
work topology. 

RPC 

Original UNIX kernel. Internet- 
working capabilities. 

Main disadvantage Not fully transparent naming. 

A file is committed on close. The 
primary copy is always up to 
date. Other replicas may have 
older (but not partially modified) 
versions. 

Replicated mount table on each 
site and CSS for a file group are 
major problems. 

Extensive UNIX kernel modifi- 
cation. Kernel is pushed into the 
network. Some kernel LWP for 
remote services. Structured, low- 
level, location-independent file 
identifiers are used. 

LAN 

Specialized low-level protocols 
for each operation. 

Replication (primary copy). 
Atomic update by shadow pag- 
ing. 

Performance, because of kernel 
implementation. Fault tolerance, 
due to replication, atomic up- 
date, and other features. UNIX 
compatibility. 

Complicated design and large 
kernel. Unscalable features. 
Complex recovery due to main- 
tained state. 

[Ousterhout 19891. Other problems of 
relatively slow access time and limited 
size still plague this technology. 

ACKNOWLEDGMENTS 

This work was partially supported by NSF grant IRI 
8805215 and by the Texas Advanced Research Pro- 
gram under grant No. 4355. We would like to thank 
the anonymous reviewers and the editor-in-chief, 
Salvatore March, for their constructive comments that 
led us to improve the clarity of this paper. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 

REFERENCES 

ALMES, G. T., BLACK, A. P., LAZOWSKA, E. D., AND 
NOE, J. D. 1983. The Eden system: A technical 
review. IEEE Trans. Softw. Eng. 11, 1 (Jan.), 
43-59. 

BARAK, A., AND KORNATZKY, Y. 1987. Design Prin- 
ciples of Operating Systems for Large Scale Mul- 
ticomputers. IBM Research Division, T. J. 
Watson Research Center, Yorktown Heights, 
New York. RC 13220 (#59114). 

BARAK, A., AND LITMAN, A. 1985. MOS: A multi- 
computer distributed operating system. Softw. 
Prac. Exper. 15, 8 (Aug.), 725-737. 



Distributed File Systems 

Table l-Continued 

l 371 

NFS 

Complete stateless service. Idem- 
potent operations. 

Sprite 

No guarantees because of the 
delayed write policy. Stateful 
service. 

Andrew 

Not dealt with fully yet. Stateful 
service. 

Not intended for very large-scale 
systems. 

Three layers: UNIX system call 
interface, VFS interface to sepa- 
rate file system implementation 
from operations, and NFS layer. 
Independent specifications for 
mount and NFS protocols. The 
Current implementation is ker- 
nel based. 

LAN 

RPC and XDR on top of 
UDP/IP (unreliable datagram). 

Stateless service. 

Fault tolerance, because of state- 
less protocol. Implementation- 
independent protocols, ideal for 
heterogeneous environment. 

Unclear semantics. Performance 
improvements obscure clean 
design. 

Because broadcast is relied upon Reducing server load and cluster- 
and of server involvement in ing are the main strategy. Repli- 
operations there might be a cated location database might be 
problem. a problem. 

New kernel based on multi- 
threading, intended for multi- 
processor workstation. 

Augmenting UNIX kernel with 
user-level processes: Venus at 
each client, and a single server 
process on each server using 
nonpreemptable LWPs. Struc- 
tured, low-level, location- 
independent file identifiers are 
used. 

LAN 

RPC on top of special-purpose 
network protocol. 

Regular files used as swapping 
area. Interaction between file 
system and virtual memory 
system. 

Performance due to main mem- 
ory caching. 

Questionable scalability. Not 
much in terms of fault tolerance. 

Cluster structure, with a router 
per cluster. All communication is 
based on high bandwidth LAN 
technology. 

RPC on top of datagram proto- 
col. Whole file transfer as a side 
effect. 

Authentication and encryption 
built into the communication 
protocol. Access list mechanism 
for protection. Limited read-only 
replication. 

Ability to scale up gracefully. 
Clear and simple consistency 
semantics. 

Fault tolerance issues due to 
maintained state. 

BARAK, A., MALKI, D., AND WHEELER, R. 1986. 
AFS, BFS, CFS . or Distributed File Systems 
for UNIX. In European UNIX Users Group Con- 
ference Proceedings (Sept. 22-24, Manchester, 
U.K.). EUUG, pp. 461-472. 

BARAK, A., AND PARADISE, 0. G. 1986. MOS: Scal- 
ing up UNIX. In Proceedings of USENIX 1986 
Summer Conference. USENIX Association, 
Berkeley, California, pp. 414-418. 

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, 
N. 1987. Concurrency Control and Recouery an 
Database Systems. Addison-Wesley, Reading, 
Mass. 

BIRREL, A. D., LEVIN, R., NEEDHAM, R. M., AND 
SCHROEDER, M. D. 1982. Grapevine: An exer- 

cise in distributed computing. Commun. ACM 25, 
4 (Apr.), 260-274. 

BIRREL, A. D., AND NELSON, B. J. 1984. 
Implementing remote procedure calls. ACM 
Trans. Comput Syst. 2, 1 (Feb.), 39-59. 

BLACK, A. P. 1985. Supporting distributed applica- 
tions: Experience with Eden. In Proceedings of 
the 10th Symposium on Operating Systems Prin- 
ciples (Orcas, Island, Wash., Dec. l-4). ACM, 
New York, pp. 181-193. 

BROWNBRIDGE, D. R., MARSHALL, L. F., AND RAN- 
DELL, B. 1982. The Newcastle connection or 
UNIXes of the world unite! Softw. Prac. Exper. 
12, 12 (Dec.), 1147-1162. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



372 . E. Levy and A. Silberschatz 

CHERITON, D. R., AND ZWAENEPOEL, W. 1983. The 
distributed V kernel and its performance for disk- 
less workstations. In Proceedings of the 9th 
Symposium on Operating Systems Principles 
(Bretton Woods, N.H., Oct.). ACM, New York, 
pp. 128-140. 

DAVIDSON, S. B., GARCIA-M• LINA, H., AND SKEEN, 
D. 1985. Consistency in partitioned networks. 
ACM Comput. Suru. 17, 3 (Sept.), 341-370. 

DION, J. 1980. The Cambridge file server. ACM 
SZGOPS, Oper. Syst. Reu. 14, 4 (Oct.), 26-35. 

DOUGLIS, F., AND OUSTERHOUT, J. K. 1989. 
Beating the l/O bottleneck. ACM SIGOPS, Oper. 
Syst. Reu. 23, 1 (Jan.), 11-28. 

ELLIS, C. S., AND FLOYD, R. A. 1983. The ROE file 
system. In Proceedings of the 3rd Symposium on 
Reliability in Distributed Software and Database 
Systems (Clearwater Beach, Florida, October 
17-19). IEEE, New York. 

FLOYD, R. 1989. Transparency in distributed file 
systems. Tech. Rep. 272, Department of Com- 
puter Science, University of Rochester. 

FUJITANI, L. 1984. Laser optical disks: The coming 
revolution in on-line storage. Commun. ACM 27, 
6 (June). 

GIFFORD, D. 1979. Weighted voting for replicated 
data. In Proceedings of the 7th Symposium on 
Operating Systems Principles (Pacific Grove, 
Calif. Dec. 10-12). ACM, New York, pp. 150-159. 

HILL M., EGGERS, S., LARUS, J., TAYLOR, G., 
ADAMS, G., BOSE, B. K., GIBSON, G., 
HANSEN, P., KELLER, J., KONG, S., LEE, C., 
LEE, D., PENDLETON, J., RITCHIE, S., WOOD, D., 
ZORN. B.. HILFINGER. P.. HODGES. D.. KATZ. R.. 
OUST~R~OUT, J., AND ‘PATTER&N,’ D. 1986: 
Design decisions in SPUR. IEEE Comput. 19, 11 
(Nov.), 8-22. 

HOARE, C. A. R. 1974. Monitors: An operating sys- 
tem structuring concept. Commun. ACM 17, 10 
(Oct.), 549-557. 

HOWARD, J. H., KAZAR, M. L., MENEES, S. G., 
NICHOLS, D. A., SATYANARAYANAN, M., AND 
SIDEBOTHAM, R. N. 1988. Scale and perfor- 
mance in a distributed file system. ACM Trans. 
Comput. Syst. 6, 1 (Feb.), 55-81. 

JESSOP, W. H., JACOBSON, D. M., NOE, J. D., 
BAER, J. L., AND Pu, C. 1982. The Eden trans- 
action based file system. In Proceedings of the 
2nd Symposium onkeliability in Distributed Soft- 
ware and Databases Systems (July). IEEE, New 

- York, pp. 163-169. 
JUL, E., LEVY, H. M., HUCHINSON, N., AND BLACK, 

A. 1987. Fine grain mobility in the Emerald 
system (extended abstract). In Proceedings of the 
11 th Symposium on Operating Systems Principles, 
(Austin, Texas, November). ACM, New York. 

KEPECS, J. 1985. Light weight processes for UNIX 
implementation and applications. In Proceedings 
of Usenix 1985 Summer Conference. 

LAMPSON, B. W. 1981. Atomic transactions. In Dis- 
tributed Systems-Architecture and Implemen- 

tation: An Advanced Course, G. Goos and 
J. Hartmanis, Eds., Springer-Verlag, Berlin, 
Chap. 11, pp. 246-265. 

LAMPSON, B. W. 1983. Hints for computer system 
designers. In Proceedings of the 9th Symposium 
on Operating Systems Principles (Bretton Woods, 
N.H., Oct.). ACM, New York, pp. 33-48. 

LAZOWSKA, E. D., LEVY, H. M., AND ALMES, G. T. 
1981. The architecture of the Eden system. In 
Proceedings of the 8th Symposium on Operating 
Systems Principles (Asilomar, Calif., Dec.). ACM, 
New York, pp. 148-159. 

LAZOWSKA, E. D., ZAHORJAN, J., CHERITON, D., AND 
ZWAENEPOEL, W. 1986. File access perfor- 
mance of diskless workstations. ACM Trans. 
Comput. Syst. 4, 3 (Aug.), 238-268. 

LEACH, P. J., STUMP, B. L., HAMILTON, J. A., AND 
LEVINE, P. H. 1982. UlDs as internal names in 
a distributed file system. In Proceedings of the 1st 
Symposium on Principles of Distributed Comput- 
ing (Ottawa, Ontario, Canada, Aug. 18-20). ACM, 
New York, pp. 34-41. 

LEACH, P. J., LEVINE, P. H., HAMILTON, J. A., 
STUMP, B. L. 1985. The file system of an inte- 
grated local network. In Proceedings of the ACM 
Computer Science Conference (New Orleans, 
Mar.). ACM, New York. 

LEVY, H. M. 1984. Capability Based Computer Sys- 
tems. Digital Press, Bedford, Mass. 

MCKUSICK, M. K., JOY, W. N., LEFFER, S. J., FABRY, 
R. S. 1984. A fast file system for UNIX. ACM 
Trans. Comput. Syst. 2, 3 (Aug.), 181-197. 

MITCHELL, J. G. 1982. File servers for local area 
networks. Lecture Notes, Course on Local Area 
Networks, University of Kent, Canterbury, 
England, pp. 83-114. 

MORRIS, J. H., SATYANARAYANAN, M., CONNEK, 
M. H., HOWARD, J. H., ROSENTHAL, D. S. H., 
AND SMITH, F. D. 1986. Andrew: A distributed 
personal computing environment. Commun. 
ACM 29, 3 (Mar.), 184-201. 

NEEDHAM, R. M. HERBERT, A. J. 1982. The Cam- 
bridge Distributed Computing System, Addison 
Wesley, Reading, Mass. 

NEEDHAM, R. M., AND SCHROEDER, M. D. 1978. 
Using encryption for authentication in large net- 
works of computers. Commun. ACM 21, 12 (Dec. 
1978). 

NELSON, M., WELCH, B., AND OUSTERHOUT, J. K. 
1988. Caching in the Sprite network file system. 
ACM Trans. Comput. Syst. 6, 1 (Feb.). 

OUSTERHOUT, J. K., DA COSTA, H., HARISSON, D., 
KUNZE, J. A., KUPFLER, M., AND THOMPSON, 
J. G. 1985. A trace-driven analysis of the UNIX 
4.2 BSD file system. In Proceedings of the Z.Oth 
Symposium on Operating Systems Principles 
(Orcas Island, Wash., Dec. l-4). ACM, New York, 
pp. 15-24. 

OUSTERHOUT, J. K., CHERENSON, A. R., DOUGLIS, 
F., NELSON, M. N., AND WELCH, B. B. 1988. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Distributed File Systems l 373 

The Sprite network operating system. IEEE SUN MICROSYSTEMS, INC. 1988. Network Program- 
Comput. 21, 2 (Feb.), 23-36. ming, Sun Microsystems, Part Number: 800- 

PARIS, J. F., AND TICHY, W. F. 1983. Stork: An 1779-10, Revision A, of 9 May 1988. 
experimental migrating file system for computer SVOBODOVA, L. 1984. File servers for network based 
networks. In Proceedings IEEE INFCOM. IEEE, distributed systems. ACM Comput. Sure. 26, 4 
New York, pp. 168-175. (Dec.), 353-398. 

POPEK, G., AND WALKER, B. Eds. 1985. The LOCUS 
Distributed System Architecture. MIT Press, 
Cambridge Mass. 

POSTEL, J. 1980. User datagram protocol. RFC-768. 
Network Information Center, SRI. 

QUARTERMAN, J. S., SILBERSCHATZ, A., AND PETER- 
SON, J. L. 1985. 4.2 and 4.3 BSD as examples 
of the UNIX system. ACM Comput. Suru. 17, 4 
(Dec.). 

RANDELL, B. 1983. Recursively structured distrib- 
uted computing systems. In Proceedings of the 
3rd Symposium on Reliability in Distributed Soft- 
ware and Database Systems (Clearwater Beach, 
Fla., Oct. 17-19). IEEE, New York, pp. 3-11. 

RITCHIE, D. M., AND THOMPSON, K. 1974. The 
UNIX time sharing system. Commun. ACM 19, 7 
(Jul.), 365-375. 

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, 
D., AND LYONE, B. 1985. Design and implemen- 
tation of the Sun network file system. In Pro- 
ceedings of Usenix 1985 Summer Conference 
(Jun.), pp. 119-130. 

SATYANARAYANAN, M. 1981. A Study of file sizes 
and functional lifetimes. In Proceedings of the 
8th Symposium on Operating Systems Principles 
(Asilomar, Calif., Dec.). ACM, New York. 

SATYANARAYANAN, M. 1989. Integrating security in 
a large distributed system. ACM Trans. Comput. 
Syst. 7, 3 (Aug.), 247-280. 

SCHROEDER, M. D., BIRREL, A. D., AND NEEDHAM, 

SATYANARAYANAN, M., HOWARD, J. H., NICHOLS, D. 
A., SIDEBOTHAM, R. N., SPECTOR, A. Z., AND 
WEST, M. J. 1985. ITC distlibuted file system: 
Principles and design. In Proceedings of the 10th 
Symposium on Operating Systems Principles 
(Orcas Island, Wash., Dec. l-4). ACM, New York, 
pp. 35-50. 

R. M. 1984. Experience with grapevine: The 
growth of a distributed system. ACM Trans. Com- 
put. Syst. 2, 1 (Feb.), 3-23. 

SCHROEDER, M. D., GIFFORD, D. K., AND NEEDHAM, 
R. M. 1985. A caching file system for a program- 
mer’s workstation. Proceedings of the 20th Sym- 
posium on Operating Systems Principles (Orcas 
Island, Wash., Dec. l-4), ACM, New York, 
pp. 25-32. 

SHELTZER, A. B., AND POPEK, G. J. 1986. Internet 
Locus: Extending transparency to an Internet 
environment. IEEE Trans. Softw. Eng. SE-12, 11 
(Nov.). 

SMITH, A. J. 1981. Analysis of long term file refer- 
ence patterns for application to file migration 
algorithms. IEEE Trans. Softw. Eng. 7, 4 (Jul.). 

SMITH, A. J. 1982. Cache memories. ACM Comput. 
Suru. 14, 3 (Sept.), 473-530. 

TANENBAUM, A. S., AND VAN RENESSE, R. 
1985. Distributed operating systems. ACM 
Comput. Suru. 17, 4 (Dec.) 419-470. 

TERRY, D. B. 1987. Caching hints in distributed 
systems. IEEE Trans. Softw. Eng. SE-13, 1 
(Jan.), 48-54. 

TEVANIAN, A., RASHID, R., GOLUB, D., BLACK, D., 
COOPER, E., AND YOUNG, M. 1987. Mach 
threads and the UNIX kernel: The battle for 
control. In Proceedings of USENIX 1987 Summer 
Conference. USENIX Association, Berkeley, 
California. 

TICHY, W. F., AND RUAN, Z. 1984. Towards a dis- 
tributed file system. In Proceedings of Usenix 
1984 Summer Conference (Salt Lake City, Utah), 
pp. 87-97. 

WALKER, B., POPEK, J., ENGLISH, R., KLINE, C., 
THIEL, G. 1983. The LOCUS distributed oper- 
ating system. ACM SIGOPS, Oper. Syst. Rev. 17, 
5 (Oct.), 49-70. 

WEINSTEIN, M. J., PAGE, T. W. JR., B. K. LIVEZEY, 
AND G. J. POPEK. 1985. Transactions and syn- 
chronization in a distributed operating system. 
In Proceedings of the 10th Symposium on Opera- 
ting Systems Principles (Orcas Island, Wash., 
Dec. l-4). ACM, New York. 

WELCH, B. 1986. The Sprite remote procedure call 
system. Tech. Rep. UCB/CSD 86/302, Computer 
Science Division (EECS). Universitv of Califor- 
nia, Berkeley. 

WELCH, B., AND OUSTERHOUT, J. K. 1986. Prefix 
tables: A Simple mechanism for locating files in 
a distributed system. In Proceedings of the 6th 
Conference on Distributed Computing Systems 
(Cambridge, Mass., May), IEEE, New York, 
pp. 184-189. 

IS0 model of architecture for open system inter- 
ZIMMERMANN, H. 1980. OS1 reference model: The 

connection. IEEE Trans. Commun. COM-28 
(Apr.), 425-432. 

BIBLIOGRAPHY 

BACH, M. J., LUPPI, M. W., MELAMED, A. S., AND 
YUEH, K. 1987. A remore file cache for 
RFS. Summer Usenix Conference Proceedings. 
Phoenix, Ariz. 

BIRREL, A. D., AND NEEDHAM, R. M. 1980. A uni- 
versal file server. IEEE Trans. Softw. Eng. SE-6, 
5 (Sept.), 450-453. 

BROWN, M. R., KOLLING, K. N., AND TAFT, E. A. 
1985. The Alpine file system. ACM Trans. Com- 
put. Syst. 3, 4 (Nov.). 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



374 l E. Levy and A. Silberschatz 

CABRERA, L. F., AND WYLLIE, J. 1988. Quicksilver 
distributed file services: An architecture for 
horizontal growth. In Proceedings of the 2nd 
IEEE Conference on Computer Workstations 
(Santa Clara, Calif.). IEEE, New York. 

CALLAGHAN, B., AND LYON, T. 1989. The Auto- 
mounter. In Winter USENIX Conference Pro- 
ceedings (San Diego). USENIX Association, 
Berkeley, California. 

CHARLOCK, H. 1987. RFS in SunOS. In Summer 
USENIX Conference Proceedings (Phoenix, 
Ariz.). USENIX Association, Berkeley, 
California. 

DAVCEV, C., AND BURKHARD, W. A. 1985. 
Consistency and recovery control for replicated 
files. In Proceedings of the 10th Symposium on 
Operating Systems Principles (Orcas Island, 
Wash., Dec. l-4). ACM, New York. 

FINLAGSON, R. S., AND CHERITON, D. R. 1987. Log 
files: An extended file service exploiting write- 
once storage. In Proceedings of the 1 Ith Sympo- 
sium on Operating Systems Principles (Austin, 
Tex., Nov.). ACM, New York. 

FRIDIRICH, M., AND OLDER, W. 1981. The Felix file 
server. In Proceedings of the 8th Symposium on 
Operating Systems Principles (Asilomar, Calif., 
Dec.). ACM, New York. 

GAIT, J. 1988. The optical file-cabinet: A random- 
access file system for write-once optical disks. 
IEEE Comput. 21,6 (June). 

KLEIMAN, S. R. 1986. Vnodes: An architecture for 
multiple file system types in Sun UNIX. In Sum- 
mer USENIX Conference Proceedings (Atlanta, 
Ga.). USENIX Association, Berkeley, California. 

MITCHELL, J. G., AND DION, J. A. 1982. Comparison 
of two network-based file servers. Commun. ACM 
25, 4 (Apr.). 

MULLENDER, S. J., AND TANENBALJM, A. S. 1985. A 
distributed file service based on optimistic con- 
currency control. In Proceedings of the 10th Sym- 
posium on Operating Systems Principles (Orcas 
Island, Wash., Dec. l-4). ACM, New York. 

NEEDHAM, R. M., HERBERT, A. J., AND MITCHELL, J. 
G. 1983. How to connect stable memory to a 
computer. Operat. Syst. Reu. 17, 1 (Jan.). 

PINKERTON, C. B., LAZOWSKA, E. D., NOTKIN, D., 
AND ZAHORJAN, J. A. 1988. Heterogeneous re- 
mote file system. Tech. Rep. 88-08-08, Dept. of 
Computer Science, Univ. of Washington. 

RIFKIN, FORBES, A. P., HAMILTON, R. L., 
SABREO, M., SHAH, S., AND YUEH, K. 1986. 
RFS architectural overview. In Summer USE- 
NIX Conference Proceedings (Atlanta, Ga.). 
USENIX Association, Berkeley, California. 

ROSEN, M. B., WILDE, M. J., FRASER-CAMPBELL, B. 
1986. NFS portability. In Summer Usenix Con- 
ference Proceedings (Atlanta, Ga.). 

SATYANARAYANAN, M. 1988. On the influence of 
scale in a distributed system. In Proceedings of 
the 10th International Conference on Software 
Engineering, (Singapore, April). 

SIDEBOTHAM, R. N. 1986. Volumes: The Andrew file 
system data structuring primitive. In European 
Unix Users Group Conference Proceedings (Aug.). 
EUUG. 

SPECTOR, A. Z., AND KAZAR, M. L. Wide area file 
services and the AFS experimental system. UNIX 
Reu. 7, 3 (Mar.). 

STURGIS, H. E., MITCHELL, J. G., AND ISRAEL, J. 
1980. Issues in the design and use of a distrib- 
uted file system. Operat. Syst. Reu. 14, 3 (Jul.), 
55-69. 

SVOBODOVA, L. 1986. A reliable object-oriented data 
repository for a distributed computer system. In 
Proceedings of the 8th Symposium on Operating 
Systems Principles (Asilomar, Calif., Dec.). ACM, 
New York. 

WALSH, D., LYON, B., SAGER, G., CHANG, J. M., 
GOLDBERG, D., KLEIMAN, S., LYON, T., 
SANDBERG, R., AND WEISS, P. 1985. Overview 
of the Sun network filesystem. In Winter 
USENIX Conference Proceedings (Dallas, Tex.). 
USENIX Association, Berkeley, California. 

WUPIT, A. 1983. Comparison of Unix Network Sys- 
tems. ACM, New York. 

Received March 1989; final revision accepted December 1989. 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 


