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The purpose of a distributed file system (DFS) is to allow users of physically distributed 
computers to share data and storage resources by using a common file system. A typical 
configuration for a DFS is a collection of workstations and mainframes connected by a 
local area network (LAN). A DFS is implemented as part of the operating system of each 
of the connected computers. This paper establishes a viewpoint that emphasizes the 
dispersed structure and decentralization of both data and control in the design of such 
systems. It defines the concepts of transparency, fault tolerance, and scalability and 
discusses them in the context of DFSs. The paper claims that the principle of distributed 
operation is fundamental for a fault tolerant and scalable DFS design. It also presents 
alternatives for the semantics of sharing and methods for providing access to remote files. 
A survey of contemporary UNIX@-based systems, namely, UNIX United, Locus, Sprite, 
Sun’s Network File System, and ITC’s Andrew, illustrates the concepts and demonstrates 
various implementations and design alternatives. Based on the assessment of these 
systems, the paper makes the point that a departure from the approach of extending 
centralized file systems over a communication network is necessary to accomplish sound 
distributed file system design. 
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INTRODUCTION discusses Distributed File Systems (DFSs) 

The need to share resources in a commuter as the means of sharing storage space and . 
system arises due to economics or the na- data. 

ture of some applications. In such cases, it A file system is a subsystem of an oper- 

is necessary to facilitate sharing long-term ating system whose purpose is to provide 

storage devices and their data. This paper long-term storage. It does so by implement- 
ing files-named objects that exist from 

@ UNIX is a trademark of AT&T Bell Laboratories. 
th& explicit creatidn until their explicit 
destruction and are immune to temporary 
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failures in the system. A DFS is a distrib- 
uted implementation of the classical time- 
sharing model of a file system, where mul- 
tiple users share files and storage resources. 
The UNIX time-sharing file system is usu- 
ally regarded as the model [Ritchie and 
Thompson 19741. The purpose of a DFS is 
to support the same kind of sharing when 
users are physically dispersed in a distrib- 
uted system. A distributed system is a col- 
lection of loosely coupled machines-either 
a mainframe or a workstation-intercon- 
nected by a communication network. Un- 
less specified otherwise, the network is a 
local area network (LAN). From the point 
of view of a specific machine in a distrib- 
uted system, the rest of the machines and 
their respective resources are remote and 
the machine’s own resources are local. 

To explain the structure of a DFS, we 
need to define service, server, and client 
[Mitchell 19821. A service is a software 
entity running on one or more machines 
and providing a particular type of function 
to a priori unknown clients. A server is the 
service software running on a single ma- 
chine. A client is a process that can invoke 
a service using a set of operations that form 
its client interface (see below). Sometimes, 
a lower level interface is defined for the 
actual cross-machine interaction. When 
the need arises, we refer to this interface as 
the intermachine interface. Clients imple- 
ment interfaces suitable for higher level 
applications or direct access by humans. 

Using the above terminology, we say a 
file system provides file services to clients. 
A client interface for a file service is formed 
by a set of file operations. The most primi- 
tive operations are Create a file, Delete a 
file, Read from a file, and Write to a file. 
The primary hardware component a file 
server controls is a set of secondary storage 
devices (i.e., magnetic disks) on which files 
are stored and from which they are re- 
trieved according to the client’s requests. 
We often say that a server, or a machine, 
stores a file, meaning the file resides on one 
of its attached devices. We refer to the file 
system offered by a uniprocessor, time- 
sharing operating system (e.g., UNIX 4.2 
BSD) as a conventional file system. 
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the survey paper by Tanenbaum and Van 
Renesse [ 19851, where the broader context 
of distributed operating systems and com- 
munication primitives are discussed. 

In light of the profusion of UNIX-based 
DFSs and the dominance of the UNIX file 
system model, five UNIX-based systems 
are surveyed. The first part of the paper is 
independent of this choice as much as pas- 

sible. Since a vast majorit,y of the actual 
DFSs (and all systems surveyed and men- 
tioned in this paper) have some relation to 
UNIX, however, it is inevitable that the 
concepts are understood best in the UNIX 
context. The choice of the five systems 
and the order of their presentation demon- 
strate the evolution of DFSs in the last 
decade. 

Section 1 presents the terminology and 
concepts of transparency, fault tolerance, 
and scalability. Section 2 discusses trans- 
parency and how it is expressed in naming 
schemes in greater detail. Section 3 intro- 
duces notions that are important for the 
semantics of sharing files, and Section 4 
compares methods of caching and remote 
service. Sections 5 and 6 discuss issues 
related to fault tolerance and scalability, 
respectively, pointing out observations 
based on the designs of the surveyed sys- 
tems. Sections 7-11 describe each of the 
five systems mentioned above, including 
distinctive features of a system not related 
to the issues presented in the first part. 
Each description is followed by a summary 
of the prominent features of the corre- 
sponding system. A table compares the five 
systems and concludes the survey. Many 
important aspects of DFSs and systems are 
omitted from this paper; thus, Section 12 
reviews related work not emphasized in our 
discussion. Finally, Section 13 provides 
conclusions and a bibliography provides re- 
lated literature not directly referenced. 

A DFS is a file system, whose clients, 
servers, and storage devices are dispersed 
among the machines of a distributed sys- 
tem. Accordingly, service activity has to be 
carried out across the network, and instead 
of a single centralized data repository there 
are multiple and independent storage de- 
vices. As will become evident, the concrete 
configuration and implementation of a 
DFS may vary. There are configurations 
where servers run on dedicated machines, 
as well as configurations where a machine 
can be both a server and a client. A DFS 
can be implemented as part of a distributed 
operating system or, alternatively, by a 
software layer whose task is to manage 
the communication between conventional 
operating systems and file systems. The 
distinctive features of a DFS are the 
multiplicity and autonomy of clients and 
servers in the system. 

The paper is divided into two parts. In 
the first part, which includes Sections 1 to 
6, the basic concepts underlying the design 
of a DFS are discussed. In particular, alter- 
natives and trade-offs regarding the design 
of a DFS are pointed out. The second part 
surveys five DFSs: UNIX United [Brown- 
bridge et al. 1982; Randell 19831, Locus 
[Popek and Walker 1985; Walker et al. 
19831, Sun’s Network File System (NFS) 
[Sandberg et al. 1985; Sun Microsystems 
Inc. 19881, Sprite [Nelson et al., 1988; 
Ousterhout et al. 19881, and Andrew 
[Howard et al. 1988; Morris et al. 1986; 
Satyanarayanan et al. 19851. These systems 
exemplify the concepts and observations 
mentioned in the first part and demon- 
strate various implementations. A point in 
the first part is often illustrated by referring 
to a later section covering one of the sur- 
veyed systems. 

The fundamental concepts of a DFS can 
be studied without paying significant atten- 
tion to the actual operating system of which 
it is a component. The first part of the 
paper adopts this approach. The second 
part reviews actual DFS architectures that 
serve to demonstrate approaches to inte- 
gration of a DFS with an operating system 
and a communication network. To comple- 
ment our discussion, we refer the reader to 

1. TRENDS AND TERMINOLOGY 

Ideally, a DFS should look to its clients like 
a conventional, centralized file system. 
That is, the multiplicity and dispersion of 
servers and storage devices should be trans- 
parent to clients. As will become evident, 
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transparency has many dimensions and de- 
grees. A fundamental property, called net- 
work transparency, implies that clients 
should be able to access remote files using 
the same set of file operations applicable to 
local files. That is, the client interface of a 
DFS should not distinguish between local 
and remote files. It is up to the DFS to 
locate the files and arrange for the trans- 
port of the data. 

Another aspect of transparency is user 
mobility, which implies that users can log 
in to any machine in the system; that is, 
they are not forced to use a specific ma- 
chine. A transparent DFS facilitates user 
mobility by bringing the user’s environ- 
ment (e.g., home directory) to wherever he 
or she logs in. 

The most important performance mea- 
surement of a DFS is the amount of time 
needed to satisfy service requests. In con- 
ventional systems, this time consists of disk 
access time and a small amount of CPU 
processing time. In a DFS, a remote access 
has the additional overhead attributed to 
the distributed structure. This overhead 
includes the time needed to deliver the re- 
quest to a server, as well as the time needed 
to get the response across the network 
back to the client. For each direction, in 
addition to the actual transfer of the infor- 
mation, there is the CPU overhead of run- 
ning the communication protocol software. 
The performance of a DFS can be viewed 
as another dimension of its transparency; 
that is, the performance of a DFS should 
be comparable to that of a conventional file 
system. 

We use the term fault tolerance in a 
broad sense. Communication faults, ma- 
chine failures (of type fail stop), storage 
device crashes, and decays of storage media 
are all considered to be faults that should 
be tolerated to some extent. A fault- 
tolerant system should continue function- 
ing, perhaps in a degraded form, in the face 
of these failures. The degradation can be in 
performance, functionality, or both but 
should be proportional, in some sense, to 
the failures causing it. A system that grinds 
to a halt when a small number of its com- 
ponents fail is not fault tolerant. 

The capability of a system to adapt to 
increased service load is called scalability. 

Systems have bounded resources and can 
become completely saturated under in- 
creased load. Regarding a file system, sat- 
uration occurs, for example, when a server’s 
CPU runs at very high utilization rate or 
when disks are almost full. As for a DFS in 
particular, server saturation is even a bigger 
threat because of the communication over- 
head associated with processing remote 
requests. Scalability is a relative property; 
a scalable system should react more grace- 
fully to increased load than a nonscalable 
one will. First, its performance should 
degrade more moderately than that of a 
nonscalable system. Second, its resources 
should reach a saturated state later, when 
compared with a nonscalable system. 

Even a perfect design cannot accommo- 
date an ever-growing load. Adding new re- 
sources might solve the problem, but it 
might generate additional indirect load on 
other resources (e.g., adding machines to a 
distributed system can clog the network 
and increase service loads). Even worse, 
expanding the system can incur expensive 
design modifications. A scalable system 
should have the potential to grow without 
the above problems. In a distributed sys- 
tem, the ability to scale up gracefully is of 
special importance, since expanding the 
network by adding new machines or inter- 
connecting two networks together is com- 
monplace. In short, a scalable design should 
withstand high-service load, accommodate 
growth of the user community, and enable 
simple integration of added resources. 

Fault tolerance and scalability are mu- 
tually related to each other. A heavily 
loaded component can become paralyzed 
and behave like a faulty component. Also, 
shifting a load from a faulty component to 
its backup can saturate the latter. Gener- 
ally, having spare resources is essential for 
reliability, as well as for handling peak 
loads gracefully. 

An advantage of distributed systems over 
centralized systems is the potential for fault 
tolerance and scalability because of the 
multiplicity of resources. Inappropriate de- 
sign can, however, obscure this potential 
and, worse, hinder the system’s scalability 
and make it failure prone. Fault tolerance 
and scalability considerations call for a de- 
sign demonstrating distribution of control 
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numerical identifier, which in turn is 
mapped to disk blocks. This multilevel 
mapping provides users with an abstraction 
of a file that hides the details of how and 
where the file is actually stored on the disk. 

In a transparent DFS, a new dimension 
is added to the abstraction, that of hiding 
where in the network the file is located. In 
a conventional file system the range of the 
name mapping is an address within a disk; 
in a DFS it is augmented to include the 
specific machine on whose disk the file is 
stored. Going further with the concept of 
treating files as abstractions leads to the 
notion of file replication. Given a file name, 
the mapping returns a set of the locations 
of this file’s replicas [Ellis and Floyd 
19831. In this abstraction, both the exist- 
ence of multiple copies and their locations 
are hidden. 

In this section, we elaborate on transpar- 
ency issues regarding naming in a DFS. 
After introducing the properties in this 
context, we sketch approaches to naming 
and discuss implementation techniques. 

and data. Any centralized entity, be it a 
central controller or a central data reposi- 
tory, introduces both a severe point of 
failure and a performance bottleneck. 
Therefore, a scalable and fault-tolerant 
DFS should have multiple and independent 
servers controlling multiple and indepen- 
dent storage devices. 

The fact that a DFS manages a set of 
dispersed storage devices is its key distin- 
guishing feature. The overall storage space 
managed by a DFS consists of different and 
remotely located smaller storage spaces. 
Usually there is correspondence between 
these constituent storage spaces and sets of 
files. We use the term component unit to 
denote the smallest set of files that can be 
stored on a single machine, independently 
from other units. All files belonging to the 
same component unit must reside in the 
same location. We illustrate the definition 
of a component unit by drawing an analogy 
from (conventional) UNIX, where multiple 
disk partitions play the role of distributed 
storage sites. There, an entire removable 
file system is a component unit, since a file 
system must fit within a single disk parti- 
tion [Ritchie and Thompson 19741. In all 
five systems, a component unit is a partial 
subtree of the UNIX hierarchy. 

Before we proceed, we stress that the 
distributed nature of a DFS is fundamental 
to our view. This characteristic lays the 
foundation for a scalable and fault-tolerant 
system. Yet, for a distributed system to be 
conveniently used, its underlying dispersed 
structure and activity should be made 
transparent to users. We confine ourselves 
to discussing DFS designs in the context of 
transparency, fault tolerance, and scalabil- 
ity. The aim of this paper is to develop an 
understanding of these three concepts on 
the basis of the experience gained with 
contemporary systems. 

2. NAMING AND TRANSPARENCY 

Naming is a mapping between logical and 
physical objects. Users deal with logical 
data objects represented by file names, 
whereas the system manipulates physical 
blocks of data stored on disk tracks. Usu- 
ally, a user refers to a file by a textual 
name. The latter is mapped to a lower-level 

2.1 Location Transparency 
and Independence 

This section discusses transparency in the 
context of file names. First, two related 
notions regarding name mappings in a DFS 
need to be differentiated: 

l Location Transparency. The name of a 
file does not reveal any hint as to its 
physical storage location. 

l Location Independence. The name of a 
file need not be changed when the file’s 
physical storage location changes. 

Both definitions are relative to the dis- 
cussed level of naming, since files have 
different names at different levels (i.e., 
user-level textual names, and system-level 
numerical identifiers). A location-indepen- 
dent naming scheme is a dynamic mapping, 
since it can map the same file name to 
different locations at two different in- 
stances of time. Therefore, location inde- 
pendence is a stronger property than 
location transparency. Location indepen- 
dence is often referred to as file migration 
or file mobility. When referring to file mi- 
gration or mobility, one implicitly assumes 
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that the movement of files is totally trans- 
parent to users. That is, files are migrated 
by the system without the users being 
aware of it. 

In practice, most of the current file sys- 
tems (e.g., Locus, NFS, Sprite) provide a 
static, location-transparent mapping for 
user-level names. The notion of location 
independence is, however, irrelevant for 
these systems. Only Andrew and some ex- 
perimental file systems support location 
independence and file mobility (e.g., Eden 
[Almes et al., 1983; Jessop et al. 19821). 
Andrew supports file mobility mainly for 
administrative purposes. A protocol pro- 
vides migration of Andrew’s component 
units upon explicit request without chang- 
ing the user-level or the low-level names of 
the corresponding files (see Section 11.2 for 
details). 

There are few other aspects that can 
further differentiate and contrast location 
independence and location transparency: 

l Divorcing data from location, as exhib- 
ited by location independence, provides 
a better abstraction for files. Location- 
independent files can be viewed as logical 
data containers not attached to a specific 
storage location. If only location trans- 
parency is supported, however, the file 
name still denotes a specific, though hid- 
den, set of physical disk blocks. 

l Location transparency provides users 
with a convenient way to share data. 
Users may share remote files by naming 
them in a location-transparent manner 
as if they were local. Nevertheless, shar- 
ing the storage space is cumbersome, 
since logical names are still statically at- 
tached to physical storage devices. Loca- 
tion independence promotes sharing the 
storage space itself, as well as sharing the 
data objects. When files can be mobilized, 
the overall, systemwide storage space 
looks like a single, virtual resource. A 
possible benefit of such a view is the 
ability to balance the utilization of disks 
across the system. Load balancing of the 
servers themselves is also made possible 
by this approach, since files can be mi- 
grated from heavily loaded servers to 
lightly loaded ones. 

l Location independence separates the 
naming hierarchy from the storage de- 
vices hierarchy and the interserver struc- 
ture. By contrast, if only location 
transparency is used (although names 
are transparent), one can easily expose 
the correspondence between component 
units and machines. The machines are 
configured in a pattern similar to the 
naming structure. This may restrict the 
architecture of the system unnecessarily 
and conflict with other considerations. A 
server in charge of a root directory is 
an example for a structure dictated by 
the naming hierarchy and contradicts 
decentralizat,ion guidelines. An excellent 
example of separation of the service 
structure from the naming hierarchy can 
be found in the design of the Grapevine 
system [Birrel et al. 1982; Schroeder et 
al. 19841. 

The concept of file mobility deserves more 
attention and research. We envision future 
DFS that supports location independence 
completely and exploits the flexibility that 
this property entails. 

2.2 Naming Schemes 

There are three main approaches to naming 
schemes in a DFS [Barak et al. 19861. In 
the simplest approach, files are named by 
some combination of their host name and 
local name, which guarantees a unique sys- 
tem-wide name. In Ibis for instance, a 
file is uniquely identified by the name 
hostzlocal-name, where local name is a 
UNIX-like path [Tichy and Ruan 19841. 
This naming scheme is neither location 
transparent nor location independent. 
Nevertheless, the same file operations can 
be used for both local and remote files; that 
is, at least the fundamental network trans- 
parency is provided. The structure of the 
DFS is a collection of isolated component 
units that are entire conventional file sys- 
tems. In this first approach, component 
units remain isolated, although means are 
provided to refer to a remote file. We do 
not consider this scheme any further in this 
paper. 

The second approach, popularized by 
Sun’s NFS, provides means for individual 
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The mapping of textual names to low-level 
identifiers is typically done by a recursive 
lookup procedure based on the one used in 
conventional UNIX [Ritchie and Thomp- 
son 19741. We briefly review how this 
procedure works in a DFS scenario by il- 
lustrating the lookup of the textual name 
/a/b/c of Figure 1. The figure shows a par- 
tial name structure constructed from three 
component units using the third scheme 
mentioned above. For simplicity, we as- 
sume that the location table is available to 
all the machines. Suppose that the lookup 
is initiated by a client on machinel. First, 
the root directory ‘1’ (whose low-level iden- 
tifier and hence its location on disk is 
known in advance) is searched to find the 
entry with the low-level identifier of a. 
Once the low-level identifier of a is found, 
the directory a itself can be fetched from 
disk. Now, b is looked for in this directory. 
Since b is remote, an indication that b 
belongs to cu2 is recorded in the entry of b 
in the directory a. The component of the 
name looked up so far is stripped off and 
the remainder (/b/c) is passed on to 
machine2. On machine2, the lookup is con- 
tinued and eventually machine3 is con- 
tacted and the low-level identifier of /a/b/c 
is returned to the client. All five systems 
mentioned in this paper use a variant of 
this lookup procedure. Joining component 
units together and recording the points 
where they are joined (e.g., b is such a point 
in the above example) is done by the mount 
mechanism discussed below. 

There are few options to consider when 
machine boundaries are crossed in the 
course of a pat,hname traversal. We refer 
again to the above example. Once 
machine2 is contacted, it can look up b and 
respond immediately to machinel. Alter- 
natively, machine2 can initiate the contact 
with machine3 on behalf of the client on 
machinel. This choice has ramifications on 
fault tolerance that are discussed in Section 
5.2. Among the surveyed systems, only in 
UNIX United are lookups forwarded from 
machine to machine on behalf of the lookup 
initiator. If machine2 responds immedi- 
ately, it can either respond with the low- 
level identifier of b or send as a reply the 

machines to attach (or mount in UNIX 
jargon) remote directories to their local 
name spaces. Once a remote directory is 
attached locally, its files can be named in a 
location-transparent manner. The result- 
ing name structure is versatile; usually it is 
a forest of UNIX trees, one for each ma- 
chine, with some overlapping (i.e., shared) 
subtrees. A prominent property of this 
scheme is the fact that the shared name 
space may not be identical at all the ma- 
chines. Usually this is perceived as a serious 
disadvantage; however, the scheme has the 
potential for creating customized name 
spaces for individual machines. 

Total integration between the compo- 
nent file systems is achieved using the third 
approach-a single global name structure 
that spans all the files in the system. Con- 
sequently, the same name space is visible to 
all clients. Ideally, the composed file system 
structure should be isomorphic to the struc- 
ture of a conventional file system. In prac- 
tice, however, there are many special files 
that make the ideal goal difficult to attain. 
(In UNIX, for example, I/O devices are 
treated as ordinary files and are repre- 
sented in the directory Jdev; object code of 
system programs reside in the directory 
/bin. These are special files specific to a 
particular hardware setting.) Different var- 
iations of this approach are examined in 
the sections on UNIX United, Locus, 
Sprite, and Andrew. 

All important criterion for evaluating the 
above naming structures is administrative 
complexity. The most complex structure 
and most difficult to maintain is the NFS 
structure. The effects of a failed machine, 
or taking a machine off-line, are that some 
arbitrary set of directories on different. 
machines becomes unavailable. Likewise, 
migrating files from one machine to an- 
other requires changes in the name spaces 
of all the affected machines. In addition, a 
separate accreditation mechanism had to 
be devised for controlling which machine is 
allowed to attach which directory to its 
name space. 

2.3 Implementation Techniques 

This section reviews commonly used tech- 
niques related to naming. 
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component unit server 7 
cul machine1 
cu2 machine2 
cu3 machine3 

Location Table 

Figure 1. Lookup example. 

ent.ire parent directory of b. In the former 
it is the server (machine2 in the example) 
that performs the lookup, whereas in the 
latter it is the client that initiates the 
lookup that actually searches the directory. 
In case the server’s CPU is loaded, this 
choice is of consequence. In Andrew and 
Locus, clients perform the lookups; in NFS 
and Sprite the servers perform it. 

2.3.2 Structured Identifiers 

Implementing transparent naming requires 
the provision of the mapping of a file name 
to its location. Keeping this mapping man- 
ageable calls for aggregating sets of files 
into component units and providing the 
mapping on a component unit basis rather 
than on a single file basis. Typically, struc- 
tured identifiers are used for this aggrega- 
tion. These are bit strings that usually have 
two parts. The first part identifies the com- 
ponent unit to which file belongs; the sec- 

ond identifies the particular file within the 
unit. Variants with more parts are possible. 
The invariant of structured names is, how- 
ever, that individual parts of the name are 
unique for all times only within the context 
of the rest of the parts. Uniqueness at all 
times can be obtained by not reusing a 
name that is still used, or by allocating a 
sufficient number of bits for the names 
(this method is used in Andrew), or by using 
a time stamp as one of the parts of the 
name (as done in Apollo Domain [Leach et 
al. 19821). 

To enhance the availability of the crucial 
name to location mapping information, 
methods such as replicating it or caching 
parts of it locally by clients are used. As 
was noted, location independence means 
that the mapping changes in time and, 
hence, replicating the mapping makes up- 
dating the information consistently a com- 
plicated matter. Structured identifiers are 
location independent; they do not mention 
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servers’ locations at all. Hence, these iden- 
tifiers can be replicated and cached freely 
without being invalidated by migration of 
component units. A smaller, second level of 
mapping that maps component units to 
locations is the only information that does 
change when files migrate. The usage of 
the techniques of aggregation of files into 
component units and lcwer-level, location- 
independent file identifiers is exempli- 
fied in Andrew (Section 11) and Locus 
(Section 8). 

We illustrate the above techniques with 
the example in Figure 1. Suppose the path- 
name /a/b/c is translated to the structured, 
low-level identifier <cu3, ll>, where cu3 
denotes that file’s component unit and 11 
identifies it in that unit. The only place 
where machine locations are recorded is in 
the location table. Hence, the correspon- 
dence between /a/b/c and <cu3, ll> is not 
invalidated once cu3 is migrated to 
machine2; only the location table should be 
updated. 

2.3.3 Hints 

A technique often used for location map- 
ping in a DFS is that of hints [Lampson 
1983; Terry 19871. A hint is a piece of 
information that speeds up performance if 
it is correct and does not cause any se- 
mantically negative effects if it is incorrect. 
In essence, a hint improves performance 
similarly to cached information. A hint may 
be wrong, however; therefore, its correct- 
ness must be validated upon use. To illus- 
trate how location information is treated as 
hints, assume there is a location server that 
always reflects the correct and complete 
mapping of files to locations. Also assume 
that clients cache parts of this mapping 
locally. The cached location information is 
treated as a hint. If a file is found using the 
hint, a substantial performance gain is ob- 
tained. On the other hand, if the hint was 
invalidated because the file had been mi- 
grated, the client’s lookup would fail. Con- 
sequently, the client must resort to the 
more expensive procedure of querying the 
location server; but, still, no semantically 
negative effects are caused. Examples of 
using hints abound: Clients in Andrew 

cache location information from servers 
and treat this information as hints (see 
Section 11.4). Sprite uses an effective form 
of hints called prefix tables and resorts to 
broadcasting when the hint is wrong (see 
Section 10.2). The location mechanism of 
Apollo Domain is based on hints and heu- 
ristics [Leach et al. 19821. The Grapevine 
mail system counts on hints to locate 
mailboxes of mail recipients [Birrel et al. 
19821. 

2.3.4 Mount Mechanism 

Joining remote file systems to create a 
global name structure is often done by the 
mount mechanism. In conventional UNIX, 
the mount mechanism is used to join to- 
gether several self-contained file systems to 
form a single hierarchical name space 
[Quarterman et al. 1985; R.itchie and 
Thompson 19741. A mount operation binds 
the root of one file system to a directory of 
another file system. The former file system 
hides the subtree descending from the 
mounted-over directory and looks like an 
integral subtree of the latter file system. 
The directory that glues together the two 
file systems is called a mount point. All 
mount operations are recorded by the op- 
erating system kernel in a mount table. This 
table is used to redirect name lookups to 
the appropriate file systems. The same se- 
mantics and mechanisms are used to mount 
a remote file system over a local one. Once 
the mount is complete, files in the remote 
file system can be accessed locally as if they 
were ordinary descendants of the mount 
point directory. The mount mechanism is 
used with slight variations in Locus, NFS, 
Sprite, and Andrew. Section 9.2.1 presents 
a detailed example of the mount operation. 

3. SEMANTICS OF SHARING 

The semantics of sharing are important 
criteria for evaluating any file system that 
allows multiple clients to share files. It is a 
characterization of the system that speci- 
fies the effects of multiple clients accessing 
a shared file simultaneously. In partic- 
ular, these semantics should specify when 
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modifications of data by a client are ob- 
servable, if at all, by remote clients. 

For the following discussion we need to 
assume that a series of file accesses (i.e., 
Reads and Writes) attempted by a client to 
the same file are always enclosed between 
the Open and Close operations. We denote 
such a series of accesses as a file session. 

It should be realized that applications 
that use the file system to store data and 
pose constraints on concurrent accesses in 
order to guarantee the semantic consis- 
tency of their data (i.e., database applica- 
tions) should use special means (e.g., locks) 
for this purpose and not rely on the under- 
lying semantics of sharing provided by the 
file system. 

To illustrate the concept, we sketch sev- 
eral examples of semantics of sharing men- 
tioned in this paper. We outline the gist of 
the semantics and not the whole detail. 

3.1 UNIX Semantics 

Every Read of a file sees the effects of all 
previous Writes performed on that file in 
the DFS. In particular, Writes to an open 
file by a client are visible immediately by 
other (possibly remote) clients who have 
this file open at the same time. 
It is possible for clients to share the 
pointer of current location into the file. 
Thus, the advancing of the pointer by 
one client affects all sharing clients. 

Consider a sequence interleaving all the 
accesses to the same file regardless of the 
identity of the issuing client. Enforcing 
the above semantics guarantees that each 
successive access sees the effects of the ones 
that precede it in that sequence. In a file 
system context, such an interleaving can be 
totally arbitrary, since, in contrast to da- 
tabase management systems, sequences of 
accesses are not defined as transactions. 
These semantics lend themselves to an im- 
plementation where a file is associated with 
a single physical image that serves all ac- 
cesses in some serial order (which is the 
order captured in the above sequence). 
Contention for this single image results in 
clients being delayed. The sharing of the 
location pointer mentioned above is an ar- 

tifact of UNIX and is needed primarily for 
compatibility of distributed UNIX systems 
with conventional UNIX software. Most 
DFSs try to emulate these semantics to 
some extent (e.g., Locus, Sprite) mainly 
because of compatibility reasons. 

3.2 Session Semantics 

Writes to an open file are visible imme- 
diately to local clients but are invisible to 
remote clients who have the same file 
open simultaneously. 
Once a file is closed, the changes made to 
it are visible only in later starting ses- 
sions. Already open instances of the file 
do not reflect these changes. 

According to these semantics, a file may 
be temporarily associated with several (pos- 
sibly different) images at the same time. 
Consequently, multiple clients are allowed 
to perform both Read and Write accesses 
concurrently on their image of the file, 
without being delayed. Observe that when 
a file is closed, all remote active sessions 
are actually using a stale copy of the file. 
Here, it is evident that application pro- 
grams that care about the serialization of 
accesses (e.g., a distributed database appli- 
cation) should coordinate their accesses 
explicitly and not rely on these semantics, 

3.3 Immutable Shared Files Semantics 

-4 different, quite unique approach is that 
of immutable shared files [Schroeder et al. 
19851. Once a file is declared as shared by 
its creator, it cannot be modified any more. 
An immutable file has two important prop- 
erties: Its name may not be reused, and its 
contents may not be altered. Thus, the 
name of an immutable file signifies the 
fixed contents of the file, not the file as 
a container for variable information. The 
implementation of these semantics in a dis- 
tributed system is simple since the sharing 
is in read-only mode. 

3.4 Transaction-Like Semantics 

Identifying a file session with a transaction 
yields the following, familiar semantics: 
The effects of file sessions on a file and 
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their output are equivalent to the effect and 
output of executing the same sessions in 
some serial order. Locking a file for the 
duration of a session implements these 
semantics. Refer to the rich literature on 
database management systems to under- 
stand the concepts of transactions and 
locking [Bernstein et al. 19871. In the Cam- 
bridge File Server, the beginning and end 
of a transaction are implicit in the Open 
file, Close file operations, and transactions 
can involve only one file [Needham and 
Herbert 19821. Thus, a file session in that 
system is actually a transaction. 

Variants of UNIX and (to a lesser de- 
gree) session semantics are the most 
commonly used policies. An important 
trade-off emerges when evaluating these 
two extremes of sharing semantics. Sim- 
plicity of a distributed implementation is 
traded for the strength of the semantics’ 
guarantee. UNIX semantics guarantee the 
strong effect of making all accesses see the 
same version of the file, thereby ensuring 
that every access is affected by all previous 
ones. On the other hand, session semantics 
do not guarantee much when a file is ac- 
cessed concurrently, since accesses at dif- 
ferent machines may observe different 
versions of the accessed file. The ramifica- 
tions on the ease of implementation are 
discussed in the next section. 

4. REMOTE-ACCESS METHODS 

Consider a client process that requests to 
access (i.e., Read or Write) a remote file. 
Assuming the server storing the file was 
located by the naming scheme, the actual 
data transfer to satisfy the client’s request 
for the remote access should take place. 
There are two complementary methods for 
handling this type of data transfer. 

l Remote Service. Requests for accesses 
are delivered to the server. The server 
machine performs the accesses, and their 
results are forwarded back to the client. 
There is a direct correspondence between 
accesses and traffic to and from the 
server. Access requests are translated to 
messages for the servers, and server re- 
plies are packed as messages sent back to 
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the clients. Every access is handled by 
the server and results in network traffic. 
For example, a Read corresponds to a 
request message sent to the server and a 
reply to the client with the requested 
data. A similar notion called Remote 
Open is defined in Howard et al. [1988]. 

l Caching. If the data needed to satisfy the 
access request are not present locally, a 
copy of those data is brought from the 
server to the client. Usually the amount 
of data brought over is much larger than 
the data actually requested (e.g., whole 
files or pages versus a few blocks). Ac- 
cesses are performed on the cached copy 
in the client side. The idea is to retain 
recently accessed disk blocks in cache 
so repeated accesses to the same infor- 
mation can be handled locally, without 
additional network traffic. Caching 
performs best when the stream of file 
accesses exhibits locality of reference. A 
replacement policy (e.g., Least Recently 
Used) is used to keep the cache size 
bounded. There is no direct correspon- 
dence between accesses and traffic to 
the server. Files are still identified, with 
one master copy residing at the server 
machine, but copies of (parts of) the file 
are scattered in different caches. When a 
cached copy is modified, the changes need 
to be reflected on the master copy and, 
depending on the relevant sharing se- 
mantics, on any other cached copies. 
Therefore, Write accesses may incur sub- 
stantial overhead. The problem of keep- 
ing the cached copies consistent with the 
master file is referred to as the cache 
consistency problem [Smith 19821. 

It should be realized that there is a direct 
analogy between disk access methods in 
conventional file systems and remote ac- 
cess methods in DFSs. A pure remote serv- 
ice method is analogous to performing a 
disk access for each and every access re- 
quest. Similarly, a caching scheme in a DFS 
is an extension of caching or buffering tech- 
niques in conventional file systems (e.g., 
buffering block I/O in UNIX [McKusick et 
al. 19841). In conventional file systems, the 
rationale behind caching is to reduce disk 
I/O, whereas in DFSs the goal is to reduce 
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network traffic. For these reasons, a pure 
remote service method is not practical. Im- 
plementations must incorporate some form 
of caching for performance enhancement. 
Many implementations can be thought of 
as a hybrid of caching and remote service. 
In Locus and NFS, for instance, the imple- 
mentation is based on remote service but is 
augmented with caching for performance 
(see Sections 8.3, 8.4, and 9.3.3). On the 
other hand, Sprite’s implementation is 
based on caching, but under certain circum- 
stances a remote service method is adopted 
(see Section 10.3). Thus, when we evalu- 
ate the two methods we actually evaluate 
to what degree one method should be 
emphasized over the other. 

An interesting study of the performance 
aspects of the remote access problem can 
be found in Cheriton and Zwaenepoel 
[ 19831. This paper evaluates to what extent 
remote access (using the simplest remote 
service paradigm) is more expensive than 
local access. 

The remote service method is straight- 
forward and does not require further expla- 
nation. Thus, the following material is 
primarily concerned with the method of 
caching. 

4.1 Designing a Caching Scheme 

The following discussion pertains to a (file 
data) caching scheme between a client’s 
cache and a server. The latter is viewed as 
a uniform entity and its main memory and 
disk are not differentiated. Thus, we ab- 
stract the traditional caching scheme on 
the server side, between its own cache and 
disk. 

A caching scheme in a DFS should 
address the following design decisions 
[Nelson et al. 19881: 

The granularity of cached data. 
The location of the client’s cache (main 
memory or local disk). 
How to propagate modifications of 
cached copies. 
How to determine if a client’s cached data 
are consistent. 

The choices for these decisions are inter- 
twined and related to the selected sharing 
semantics. 

4.1.1 Cache Unit Size 

The granularity of the cached data can vary 
from parts of a file to an entire file. Usually, 
more data are cached than needed to satisfy 
a single access, so many accesses can be 
served by the cached data. An early version 
of Andrew caches entire files. Currently, 
Andrew still performs caching in big 
chunks (64Kb). The rest of the systems 
support caching individual blocks driven by 
clients’ demand, where a block is the unit 
of transfer between disk and main memory 
buffers (see sample sizes below). Increasing 
the caching unit increases the likelihood 
that data for the next access will be found 
locally (i.e., the hit ratio is increased); on 
the other hand, the time required for the 
data transfer and the potential for consis- 
tency problems are increased, too. Selecting 
the unit of caching involves parameters 
such as the network transfer unit and the 
Remote Procedure Call (RPC) protocol 
service unit (in case an RPC protocol is 
used) [Birrel and Nelson 19841. The net- 
work transfer unit is relatively small (e.g., 
Ethernet packets are about 1.5Kb), so big 
units of cached data need to be disassem- 
bled for delivery and reassembled upon 
reception [Welch 19861. 

Typically, block-caching schemes use a 
technique called read-ahead. This tech- 
nique is useful when sequentially reading a 
large file. Blocks are read from the server 
disk and buffered on both the server and 
client sides before they are actually needed 
in order to speed up the reading. 

One advantage of a large caching unit is 
reduced network overhead. Recall that run- 
ning communication protocols accounts for 
a substantial portion of this overhead. 
Transferring data in bulks amortizes the 
protocol cost over many transfer units. At 
the sender side, one context switch (to load 
the communication software) suffices to 
format and transmit multiple packets. At 
the receiver side, there is no need to ac- 
knowledge each packet individually. 
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action of sending dirty blocks to be written 
on the master copy. 

The policy used to flush dirty blocks back 
to the server’s master copy has a critical 
effect on the system’s performance and re- 
liability. (In this section we assume caches 
are held in main memories.) The simplest 
policy is to write data through to the serv- 
er’s disk as soon as it is written to any 
cache. The advantage of the write-through 
method is its reliability: Little information 
is lost when a client crashes. This policy 
requires, however, that each Write access 
waits until the information is sent to the 
server, which results in poor Write perfor- 
mance. Caching with write-through is 
equivalent to using remote service for Write 
accesses and exploiting caching only for 
Read accesses. 

An alternate write policy is to delay up- 
dates to the master copy. Modifications are 
written to the cache and then written 
through to the server later. This policy has 
two advantages over write-through. First, 
since writes are to the cache, Write accesses 
complete more quickly. Second, data may 
be deleted before they are written back, in 
which case they need never be written at 
all. Unfortunately, delayed-write schemes 
introduce reliability problems, since un- 
written data will be lost whenever a client 
crashes. 

There are several variations of the 
delayed-write policy that differ in when to 
flush dirty blocks to the server. One alter- 
native is to flush a block when it is about 
to be ejected from the client’s cache. This 
option can result in good performance, but 
some blocks can reside in the client’s cache 
for a long time before they are written back 
to the server [Ousterhout et al. 19851. A 
compromise between the latter alternative 
and the write-through policy is to scan the 
cache periodically, at regular intervals, and 
flush blocks that have been modified since 
the last scan. Sprite uses this policy with a 
30-second interval. 

Yet another variation on delayed-write, 
called write-on-close, is to write data back 
to the server when the file is closed. In 
cases of files open for very short periods or 
rarely modified, this policy does not signif- 

Block size and the total cache size are 
important for block-caching schemes. In 
UNIX-like systems, common block sizes 
are 4Kb or 8Kb. For large caches (more 
than lMb), large block sizes (more than 
8Kb) are beneficial since the advantages 
of large caching unit size are dominant 
[Lazowska et al. 1986; Ousterhout et al. 
19851. For smaller caches, large block sizes 
are less beneficial because they result in 
fewer blocks in the cache and most of 
the cache space is wasted due to internal 
fragmentation. 

4.1.2 Cache Location 

Regarding the second decision, disk caches 
have one clear advantage-reliability. 
Modifications to cached data are lost in a 
crash if the cache is kept in volatile mem- 
ory. Moreover, if the cached data are kept 
on disk, the data are still there during re- 
covery and there is no need to fetch them 
again. On the other hand, main-memory 
caches have several advantages. First, main 
memory caches permit workstations to be 
diskless. Second, data can be accessed more 
quickly from a cache in main memory than 
from one on a disk. Third, the server caches 
(used to speed up disk I/O) will be in main 
memory regardless of where client caches 
are located; by using main-memory caches 
on clients, too, it is possible to build a single 
caching mechanism for use by both servers 
and clients (as it is done in Sprite). It turns 
out that the two cache locations emphasize 
different functionality. Main-memory 
caches emphasize reduced access time; 
disk caches emphasize increased reliability 
and autonomy of single machines. Notice 
that the current technology trend is larger 
and cheaper memories. With large main- 
memory caches, and hence high hit ratios, 
the achieved performance speed up is pre- 
dicted to outweigh the advantages of disk 
caches. 

4.1.3 Modification Policy 

In the sequel, we use the term dirty block 
to denote a block of data that has been 
modified by a client. In the context of cach- 
ing, we use the term to flush to denote the 
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icantly reduce network traffic. In addition, 
the writ.e-on-close policy requires the clos- 
ing process to delay while the file is written 
through, which reduces the performance 
advantages of delayed-writes. The per- 
formance advantages of this policy over 
delayed-write with more frequent flushing 
are apparent for files that are both open for 
long periods and modified frequently. 

As a reference, we present data regarding 
the utility of caching in UNIX 4.2 BSD. 
UNIX 4.2 BSD uses a cache of about 400Kb 
holding different size blocks (the most com- 
mon size is 4Kb). A delayed-write policy 
with 30-second intervals is used. A miss 
ratio (ratio of the number of real disk I/O 
to logical disk accesses) of 15 percent is 
reported in McKusick et al. [1984], and of 
50 percent in Ousterhout et al. [1985]. The 
latter paper also provides the following sta- 
tistics, which were obtained by simulations 
on UNIX: A 4Mb cache of 4Kb blocks 
eliminates between 65 and 90 percent of all 
disk accesses for file data. A write-through 
policy resulted in the highest miss ratio. 
Delayed-write policy with flushing when 
the block is ejected from cache had the 
lowest miss ratio. 

There is a tight relation between the 
modification policy and semantics sharing. 
Write-on-close is suitable for session se- 
mantics. By contrast, using any delayed- 
write policy, when situations of files that 
are updated concurrently occur frequently 
in conjunction with UNIX semantics, is not 
reasonable and will result in long delays 
and complex mechanisms. A write-through 
policy is more suitable for UNIX semantics 
under such circumstances. 

4.1.4 Cache Validation 

A client is faced with the problem of decid- 
ing whether or not its locally cached copy 
of the data is consistent with the master 
copy. If the client determines that its 
cached data is out of date, accesses can no 
longer be served by that cached data. An 
up-to-date copy of the data must be brought 
over. There are basically two approaches to 
verifying the validity of cached data: 

l Client-initiated approach. The client in- 
itiates a validity check in which it con- 

tacts the server and checks whether the 
local data are consistent with the master 
copy. The frequency of the validity check 
is the crux of this approach and deter- 
mines the resulting sharing semantics. It 
can range from a check before every sin- 
gle access to a check only on first access 
to a file (on file Open). Every access that 
is coupled with a validity check is de- 
layed, compared with an access served 
immediately by the cache. Alternatively, 
a check can be initiated every fixed inter- 
val of time. Usually the validity check 
involves comparing file header informa- 
tion (e.g., time stamp of the last update 
maintained as i-node information in 
UNIX). Depending on its frequency, this 
kind of validity check can cause severe 
network traffic, as well as consume pre- 
cious server CPU time. This phenome- 
non was the cause for Andrew designers 
to withdraw from this approach (Howard 
et al. [ 19881 provide detailed performance 
data on this issue). 

l Server-initiated approach. The server 
records for each client the (parts of) files 
the client caches. Maintaining informa- 
tion on clients has significant fault tol- 
erance implications (see Section 5.1). 
When the server detects a potential for 
inconsistency, it must now react. A po- 
tential for inconsistency occurs when a 
file is cached in conflicting modes by two 
different clients (i.e., at least one of the 
clients specified a Write mode). If session 
semantics are implemented, whenever a 
server receives a request to close a file 
that has been modified, it should react by 
notifying the clients to discard their 
cached data and consider it invalid. 
Clients having this file open at that time, 
discard their copy when the current ses- 
sion is over. Other clients discard their 
copy at once. Under session semantics, 
the server need not be informed about 
Opens of already cached files. The server 
is informed about the Close of a writing 
session, however. On the other hand, if a 
more restrictive sharing semantics is im- 
plemented, like UNIX semantics, the 
server must be more involved. The server 
must be notified whenever a file is 
opened, and the intended mode (Read or 
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Write) must be indicated. Assuming such 
notification, the server can act when it 
detects a file that is opened simultane- 
ously in conflicting modes by disabling 
caching for that particular file (as done 
in Sprite). Disabling caching results in 
switching to a remote service mode of 
operation. 

A problem with the server-initiated ap- 
proach is that it violates the traditional 
client-server model, where clients initiate 
activities by requesting service. Such vi- 
olation can result in irregular and com- 
plex code for both clients and servers. 

In summary, the choice is longer accesses 
and greater server load using the former 
method versus the fact that the server 
maintains information on its clients using 
the latter. 

4.2 Cache Consistency 

Before delving into the evaluation and com- 
parison of remote service and caching, we 
relate these remote access methods to the 
examples of sharing semantics introduced 
in Section 3. 

l Session semantics are a perfect match for 
caching entire files. Read and Write 
accesses within a session can be handled 
by the cached copy, since the file can be 
associated with different images accord- 
ing to the semantics. The cache consis- 
tency problem diminishes to propagating 
the modifications performed in a session 
to the master copy at the end of a session. 
This model is quite attractive since it has 
simple implementation. Observe that 
coupling these semantics with caching 
parts of files may complicate matters, 
since a session is supposed to read the 
image of the entire file that corresponds 
to the time it was opened. 

l A distributed implementation of UNIX 
semantics using caching has serious con- 
sequences. The implementation must 
guarantee that at all times only one client 
is allowed to write to any of the cached 
copies of the same file. A distributed con- 
flict resolution scheme must be used in 
order to arbitrate among clients wishing 
to access the same file in conflicting 

modes. In addition, once a cached copy is 
modified, the changes need to be propa- 
gated immediately to the rest of the 
cached copies. Frequent Writes can gen- 
erate tremendous network traffic and 
cause long delays before requests are sat- 
isfied. This is why implementations (e.g., 
Sprite) disable caching altogether and re- 
sort to remote service once a file is con- 
currently open in conflicting modes. 
Observe that such an approach implies 
some form of a server-initiated validation 
scheme, where the server makes a note of 
all Open calls. As was stated, UNIX se- 
mantics lend themselves to an implemen- 
tation where a file is associated with a 
single physical image. A remote service 
approach, where all requests are directed 
and served by a single server, fits nicely 
with these semantics. 

l The immutable shared files semantics 
were invented for a whole file caching 
scheme [Schroeder et al. 19851. With 
these semantics, the cache consistency 
problem vanishes totally. 

l Transactions-like semantics can be im- 
plemented in a straightforward manner 
using locking, when all the requests for 
the same file are served by the same 
server on the same machine as done in 
remote service. 

4.3 Comparison of Caching 
and Remote Service 

Essentially, the choice between caching and 
remote service is a choice between potential 
for improved performance and simplicity. 
We evaluate the trade-off by listing the 
merits and demerits of the two methods. 

l When caching is used, a substantial 
amount of the remote accesses can be 
handled efficiently by the local cache. 
Capitalizing on locality in file access pat- 
terns makes caching even more attrac- 
tive. Ramifications can be performance 
transparency: Most of the remote ac- 
cesses will be served as fast as local ones. 
Consequently, server load and network 
traffic are reduced, and the potential for 
scalability is enhanced. By contrast, 
when using the remote service method, 
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each remote access is handled across the 
network. The penalty in network traffic, 
server load, and performance is obvious. 

l Total network overhead in transmitting 
big chunks of data, as done in caching, is 
lower than when series of short responses 
to specific requests are transmitted (as in 
the remote service method). 
Disk access routines on the server may 
be better optimized if it is known that 
requests are always for large, contiguous 
segments of data rather than for random 
disk blocks. This point and the previous 
one indicate the merits of transferring 
data in bulk, as done in Andrew. 
The cache consistency problem is the 
major drawback to caching. In access 
patterns that exhibit infrequent writes, 
caching is superior. When writes are fre- 
quent, however, the mechanisms used to 
overcome the consistency problem incur 
substantial overhead in terms of perfor- 
mance, network traffic, and server load. 
It is hard to emulate the sharing seman- 
tics of a centralized system in a system 
using caching as its remote access 
method. The problem is the cache consis- 
tency; namely, the fact that accesses are 
directed to distributed copies, not to a 
central data object. Observe that the two 
caching-oriented semantics, session se- 
mantics and immutable shared files 
semantics, are not restrictive and do not 
enforce serializability. On the other hand, 
when using remote service, the server 
serializes all accesses and, hence, is able 
to implement any centralized sharing 
semantics. 
To use caching and benefit from its mer- 
its, clients must have either local disks 
or large main memories. Clients without 
disks can use remote-service methods 
without any problems. 
Since, for caching, data are transferred 
en masse between the server and client, 
and not in response to the specific needs 
of a file operation, the lower interma- 
chine interface is quite different from the 
upper client interface. The remote ser- 
vice paradigm, on the other hand, is just 
an extension of the local file system in- 
terface across the network. Thus, the 

intermachine interface mirrors the local 
client-file system interface. 

5. FAULT TOLERANCE ISSUES 

Fault tolerance is an important and broad 
subject in the context of DFS. In this 
section we focus on the following fault 
tolerance issues. In Section 5.1 we examine 
two service paradigms in the context of 
faults occurring while servicing a client. In 
Section 5.2 we define the concept of avail- 
ability and discuss how to increase the 
availability of files. In Section 5.3 we review 
file replication as another means for en- 
hancing availability. 

5.1 Stateful Versus Stateless Service 

When a server holds on to information on 
its clients between servicing their requests, 
we say the server is stateful. Conversely, 
when the server does not maintain any 
information on a client once it finished 
servicing its request, we say the server is 
stateless. 

The typical scenario of a stateful file 
service is as follows. A client must perform 
an Open on a file before accessing it. The 
server fetches some information about the 
file from its disk, stores it in its memory, 
and gives the client some connection iden- 
tifier that is unique to the client and the 
open file. (In UNIX terms, the server 
fetches the i-node and gives the client a file 
descriptor, which serves as an index to an 
in-core table of i-nodes.) This identifier is 
used by the client for subsequent accesses 
until the session ends. Typically, the iden- 
tifier serves as an index into in-memory 
table that records relevant information the 
server needs to function properly (e.g., 
timestamp of last modification of the cor- 
responding file and its access rights). A 
stateful service is characterized by a virtual 
circuit between the client and the server 
during a session. The connection identifier 
embodies this virtual circuit. Either upon 
closing the file or by a garbage collection 
mechanism, the server must reclaim the 
main-memory space used by clients that 
are no longer active. 

The advantage of stateful service is per- 
formance. File information is cached in 
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main memory and can be easily accessed 
using the connection identifier, thereby 
saving disk accesses. The key point regard- 
ing fault tolerance in a stateful service 
approach is t,he main-memory information 
kept by the server on its clients. 

A stateless server avoids this state infor- 
mation by making each request self- 
contained. That is, each request identifies 
the file and position in the file (for Read 
and Write accesses) in full. The server need 
not keep a table of open files in main mem- 
ory, although this is usually done for effi- 
ciency reasons. Moreover, there is no need 
to establish and terminate a connection by 
Open and Close operations. They are to- 
tally redundant, since each file operation 
stands on its own and is not considered as 
part of a session. 

The distinction between stateful and 
stateless service becomes evident when 
considering the effects of a crash during a 
service activity. A stateful server loses all 
its volatile state in a crash. A graceful re- 
covery of such a server involves restoring 
this state, usually by a recovery protocol 
based on a dialog with clients. Less graceful 
recovery implies abortion of the operations 
that were underway when the crash oc- 
curred. A different problem is caused by 
client failures. The server needs to become 
aware of such failures in order to reclaim 
space allocated to record the state of 
crashed clients. These phenomena are 
sometimes referred to as orphan detection 
and elimination. 

A stateless server avoids the above prob- 
lems, since a newly reincarnated server can 
respond to a self-contained request without 
difficulty. Therefore, the effects of server 
failures and recovery are almost not notice- 
able. From a client’s point of view, there is 
no difference between a slow server and a 
recovering server. The client keeps retrans- 
mitting its request if it gets no response. 
Regarding client failures, no obsolete state 
needs to be cleaned up on the server side. 

The penalty for using the robust stateless 
service is longer request messages and 
slower processing of requests, since there is 
no in-core information to speed the pro- 
cessing. In addition, stateless service im- 
poses other constraints on the design of the 
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DFS. First, since each request identifies the 
target file, a uniform, systemwide, low-level 
naming is advised. Translating remote to 
local names for each request would imply 
even slower processing of the requests. Sec- 
ond, since clients retransmit requests for 
files operations, these operations must be 
idempotent. An idempotent operation has 
the same effect and returns the same output 
if executed several times consecutively. 
Self-contained Read and Write accesses are 
idempotent, since they use an absolute byte 
count to indicate the position within a file 
and do not rely on an incremental offset 
(as done in UNIX Read and Write system 
calls). Care must be taken when imple- 
menting destructive operations (such as 
Delete a file) to make them idempotent too. 

In some environments a stateful service 
is a necessity. If a Wide Area Network 
(WAN) or Internetworks is used, it is pos- 
sible that messages are not received in the 
order they were sent. A stateful, virtual- 
circuit-oriented service would be preferable 
in such a case, since by the maintained 
state it is possible to order the messages 
correctly. Also observe that if the server 
uses the server-initiated method for cache 
validation, it cannot provide stateless serv- 
ice since it maintains a record of which files 
are cached by which clients. On the other 
hand, it is easier to build a stateless service 
than a stateful service on top of a datagram 
communication protocol [Postel 19801. 

The way UNIX uses file descriptors and 
implicit offsets is inherently stateful. Serv- 
ers must maintain tables to map the file 
descriptors to i-nodes and store the current 
offset within a file. This is why NFS, which 
uses a stateless service, does not use file 
descriptors and includes an explicit offset 
in every access (see Section 9.2.2). 

5.2 Improving Availability 

Svobodova [1984] defines two file proper- 
ties in the context of fault tolerance: “A file 
is recoverable if is possible to revert it to an 
earlier, consistent state when an operation 
on the file fails or is aborted by the client. 
A file is called robust if it is guaranteed to 
survive crashes of the storage device and 
decays of the storage medium.” A robust 
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file is not necessarily recoverable and vice 
versa. Different techniques must be used 
to implement these two distinct concepts. 
Recoverable files are realized by atomic 
update techniques. (We do not give account 
of atomic updates techniques in this paper.) 
Robust files are implemented by redun- 
dancy techniques such as mirrored files and 
stable storage [ Lampson 19811. 

It is necessary to consider the additional 
criterion of auailability. A file is called avail- 
able if it can be accessed whenever needed, 
despite machine and storage device crashes 
and communication faults. Availability is 
often confused with robustness, probably 
because they both can be implemented by 
redundancy techniques. A robust file is 
guaranteed to survive failures, but it may 
not be available until the faulty component 
has recovered. Availability is a fragile and 
unstable property. First, it is temporal; 
availability varies as the system’s state 
changes. Also, it is relative to a client; for 
one client a file may be available, whereas 
for another client on a different machine, 
the same file may be unavailable. 

Replicating files enhances their availa- 
bility (see Section 5.3); however, merely 
replicating file is not sufficient. There are 
some principles destined to ensure in- 
creased availability of the files described 
below. 

The number of machines involved in a 
file operation should be minimal, since the 
probability of failure grows with the num- 
ber of involved parties. Most systems ad- 
here to the client-server pair for all file 
operations. (This refers to a LAN environ- 
ment, where no routing is needed.) Locus 
makes an exception, since its service model 
involves a triple: a client, a server, and a 
Centralized Synchronization site (CSS). 
The CSS is involved only in Open and 
Close operations; but if the CSS cannot be 
reached by a client, the file is not available 
to that particular client. In general, having 
more than two machines involved in a file 
operation can cause bizarre situations in 
which a file is available to some but not all 
clients. 

Once a file has been located there is no 
reason to involve machines other than the 

client and the server machines. Identifying 
the server that stores the file and establish- 
ing the client-server connection is more 
problematic. A file location mechanism is 
an important factor in determining the 
availability of files. Traditionally, locating 
a file is done by a pathname traversal, 
which in a DFS may cross machine bound- 
aries several times and hence involve more 
than two machines (see Section 2.3.1). In 
principle, most systems (e.g., Locus, NFS, 
Andrew) approach the problem by requir- 
ing that each component (i.e., directory) in 
the pathname would be looked up directly 
by the client. Therefore, when machine 
boundaries are crossed, the server in the 
client-server pair changes, but the client 
remains the same. In UNIX United, par- 
tially because of routing concerns, this 
client-server model is not preserved in the 
pathname traversal. Instead, the pathname 
traversal request is forwarded from ma- 
chine to machine along the pathname, 
without involving the client machine each 
time. 

Observe that if a file is located by path- 
name traversal, the availability of a file 
depends on the availability of all the direc- 
tories in its pathname. A situation can arise 
whereby a file might be available to reading 
and writing clients, but it cannot be located 
by new clients since a directory in its path- 
name is unavailable. Replicating top-level 
directories can partially rectify the prob- 
lem, and is indeed used in Locus to increase 
the availability of files. 

Caching directory information can both 
speed up the pathname traversal and avoid 
the problem of unavailable directories in 
the pathname (i.e., if caching occurs before 
the directory in the pathname becomes un- 
available). Andrew and NFS use this tech- 
nique. Sprite uses a better mechanism for 
quick and reliable pathname traversal. In 
Sprite, machines maintain prefix tables 
that map prefixes of pathnames to the serv- 
ers that store the corresponding component 
units. Once a file in some component unit 
is open, all subsequent Opens of files within 
that same unit address the right server 
directly, without intermediate lookups at 
other servers. This mechanism is faster and 
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guarantees better availability. (For com- 
plete description of the prefix table mech- 
anism refer to Section 10.2.) 

5.3 File Replication 

Replication of files is a useful redundancy 
for improving availability. We focus on rep- 
lication of files on different machines 
rather than replication on different media 
on the same machine (such as mirrored 
disks [Lampson 19811). Multimachine 
replication can benefit performance too, 
since selecting a nearby replica to serve 
an access request. results in shorter service 
time. 

The basic requirement from a replication 
scheme is that different replicas of the same 
file reside on failure-independent ma- 
chines. That is, the availability of one rep- 
lica is not affected by the availability of the 
rest of the replicas. This obvious require- 
ment implies that replicat,ion management 
is inherently a location-dependent activity. 
Provisions for placing a replica on a partic- 
ular machine must be available. 

It, is desirable to hide the details of rep- 
lication from users. It is the task of the 
naming scheme to map a replicated file 
name to a particular replica. The existence 
of replicas should be invisible to higher 
levels. At some level, however, the replicas 
must be distinguished from one another by 
having different lower level names. This 
can be accomplished by first mapping a file 
name to an entity that is abie to differen- 
tiate the replicas (as done in Locus). An- 
other t,ransparency issue is providing 
replication control at higher levels. Repli- 
cation control includes determining the de- 
gree of replication and placement of 
replicas. Under certain circumstances, it is 
desirable to expose these details to users. 
Locus, for instance, provides users and sys- 
tem administrators with mechanism to 
control the rephcation scheme. 

The main problem associated with rep- 
licas is their update. From a user’s point of 
view, replicas of a file denote the same 
logical entity; thus, an update to any replica 
must be reflect,ed on all other replicas. More 
precisely, the relevant sharing semantics 

must be preserved when accesses to replicas 
are viewed as virtual accesses to their logi- 
cal files. The analogous database term is 
One-Copy Serializability [Bernstein et al. 
19871. Davidson et al. [1985] survey ap- 
proaches to replication for database sys- 
tems, where consistency considerations are 
of major importance. If consistency is not 
of primary importance, it can be sacrificed 
for availability and performance. This is an 
incarnation of a fundamental trade-off in 
the area of fault tolerance. The choice is 
between preserving consistency at all costs, 
thereby creating a potential for indefinite 
blocking, or sacrificing consistency under 
some (we hope rare) circumstance of cat- 
astrophic failures for the sake of guaran- 
teed progress. We illustrate this trade-off 
by considering (in a conceptual manner) 
the problem of updating a set of replicas of 
the same file. The atomicity of such an 
update is a desirable property; that is, a 
situation in which both updated and not 
updated replicas serve accesses should be 
prevented. The only way to guarantee the 
atomicity of such an update is by using a 
commit protocol (e.g., Two-phase commit), 
which can lead to indefinite blocking in the 
face of machine and network failures 
[Bernstein et al. 19871. On the other hand, 
if only the available replicas are updated, 
progress is guaranteed; stale replicas, 
however, are present. 

In most cases, the consistency of file data 
cannot be compromised, and hence the 
price paid for increased availability by 
replication is a complicated update prop- 
agation protocol. One case in which consis- 
tency can be traded for performance, as 
well as availability, is replication of the 
location hints discussed in Section 2.3.2. 
Since hints are validated upon use, their 
replication does not require maintaining 
their consistency. When a location hint is 
correct, it results in quick location of the 
corresponding file without relying on a lo- 
cation server. Among the surveyed systems, 
Locus uses replication extensively and sac- 
rifices consistency in a partitioned environ- 
ment for the sake of availability of files for 
both Read and Write accesses (see Section 
8.5 for details). 
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Facing the problems associated with 
maintaining the consistency of replicas, a 
popular compromise is read-only replica- 
tion. Files known to be frequently read and 
rarely modified are replicated using this 
restricted variant of replication. Usually, 
only one primary replica can be modified, 
and the propagation of the updates involves 
either taking the file off line or using some 
costly procedure that guarantees atomicity 
of the updates. Files containing the object 
code of system programs are good candi- 
dates for this kind of replication, as are 
system data files (e.g., location databases 
and user registries). 

As an illustration of the concepts dis- 
cussed above, we describe the replication 
scheme in Ibis, which is quite unique [Tichy 
and Ruan 19841. Ibis uses a variation of the 
primary copy approach. The domain of the 
name mapping is a pair: primary replica 
identifier and local replica identifier, if 
there is one. (If there is no replica locally, 
a special value is returned.) Thus, the map- 
ping is relative to a machine. If the local 
replica is the primary one, the pair contains 
two identical identifiers. Ibis supports 
demand replication, which is an automatic 
replication control policy (similar to whole- 
file caching). Demand replication means 
that reading a nonlocal replica causes it to 
be cached locally, thereby generating a new 
nonprimary replica. Updates are performed 
only on the primary copy and cause all 
other replicas to be invalidated by sending 
appropriate messages. Atomic and serial- 
ized invalidation of all nonprimary replicas 
is not guaranteed. Hence, it is possible that 
a stale replica is considered valid. Consis- 
tency of replicas is sacrificed for a simple 
update protocol. To satisfy remote Write 
accesses, the primary copy is migrated to 
the requesting machine. 

6. Scalability Issues 

Very large-scale DFSs, to a great extent, 
are still visionary. Andrew is the closest 
system to be classified as a very large-scale 
system with a planned configuration of 
thousands of workstations. There are no 
magic guidelines to ensure the scalability 
of a system. Examples of nonscalable de- 
signs, however, are abundant. In Section 

6.1 we discuss several designs that pose 
problems and propose possible solutions, 
all in the context of scalability. In Section 
6.2 we describe an implementation tech- 
nique, Light Weight Processes, essential 
for high-performance and scalable designs. 

6.1 Guidelines by Negative Examples 

Barak and Kornatzky [1987] list several 
principles for designing very large-scale 
systems. The first is called Bounded 
Resources: “The service demand from any 
component of the system should be 
bounded by a constant. This constant is 
independent of the number of nodes in the 
system.” Any server whose load is propor- 
tional to the size of the system is destined 
to become clogged once the system grows 
beyond a certain size. Adding more re- 
sources will not alleviate the problem. The 
capacity of this server simply limits the 
growth of the system. This is why the CSS 
of Locus is not a scalable design. In Locus, 
every filegroup (the Locus component unit, 
which is equivalent to a UNIX removable 
file system) is assigned a CSS, whose re- 
sponsibility it is to synchronize accesses to 
files in that filegroup. Every Open request 
to a file within that filegroup must go 
through this machine. Beyond a certain 
system size, CSSs of frequently accessed 
filegroups are bound to become a point of 
congestion, since they would need to satisfy 
a growing number of clients. 

The principle of bounded resources can 
be applied to channels and network traffic, 
too, and hence prohibits the use of broad- 
casting. Broadcasting is an activity that 
involves every machine in the network. 
A mechanism that relies on broadcast- 
ing is simply not realistic for large-scale 
systems. 

The third example combines aspects of 
scalability and fault tolerance. It was al- 
ready mentioned that if a stateless service 
is used, a server need not detect a client’s 
crash nor take any precautions because of 
it. Obviously this is not the case with state- 
ful service, since the server must detect 
clients’ crashes and at least discard the 
state it maintains for them. It is interesting 
to contrast the ways MOS and Locus 
reclaim obsolete state storage on servers 
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machines violates functional symmetry. 
Autonomy and symmetry are, however, im- 
portant goals to which to aspire. 

An important aspect of decentralization 
is system administration. Administrative 
responsibilities should be delegated to en- 
courage autonomy and symmetry, without 
disturbing the coherence and uniformity of 
the distributed system. Andrew and Apollo 
Domain support decentralized system man- 
agement [Leach et al. 19851. 

The practical approximation to symmet- 
ric and autonomous configuration is clus- 
tering, where a system is partitioned into 
a collection of semiautonomous clusters. 
A cluster consists of a set of machines 
and a dedicated cluster server. To make 
cross-cluster file references relatively infre- 
quent, most of the time, each machine’s 
requests should be satisfied by its own clus- 
ter server. Such a requirement depends on 
the ability to localize file references and the 
appropriate placement of component units. 
If the cluster is well balanced, that is, the 
server in charge suffices to satisfy a major- 
ity of the cluster demands, it can be used 
as a modular building block to scale up the 
system. Observe that clustering complies 
with the Bounded Resources Principle. In 
essence, clustering attempts to associate a 
server with a fixed set of clients and a set 
of files they access frequently, not just with 
an arbitrary set of files. Andrew’s use of 
clusters, coupled with read-only replication 
of key files, is a good example for a scalable 
clustering scheme. 

UNIX United emphasizes the concept of 
autonomy. There, UNIX systems are joined 
together in a recursive manner to create a 
larger global system [Randell 19831. Each 
component system is a complex UNIX sys- 
tem that can operate and be administered 
independently. Again, modular and auton- 
omous components are combined to create 
a large-scale system. The emphasis on 
autonomy results in some negative effects, 
however, since component boundaries are 
visible to users. 

[Barak and Litman 1985; Barak and 
Paradise 19861. 

The approach taken in MOS is garbage 
collection. It is the client’s responsibility to 
set, and later reset, an expiration date on 
state information the servers maintain for 
it. Clients reset this date whenever they 
access the server or by special, infrequent 
messages. If this date has expired, a 
periodic garbage collector reclaims that 
storage. This way, the server need not de- 
tect clients’ crashes. By contrast, Locus 
invokes a clean-up procedure whenever a 
server machine determines that a particu- 
lar client machine is unavailable. Among 
other things, this procedure releases space 
occupied by the state of clients from the 
crashed machine. Detecting crashes can be 
very expensive, since it is based on polling 
and time-out mechanisms that incur sub- 
stantial network overhead. The scheme 
MOS uses requires tolerable and scalable 
overhead, where every client signals a 
bounded number of objects (the object it 
owns), whereas a failure detection mecha- 
nism is not scalable since it depends on the 
size of the system. 

Network congestion and latency are 
major obstacles to large-scale systems. A 
guideline worth pursuing is to minimize 
cross-machine interactions by means of 
caching, hints, and enforcement of relaxed 
sharing semantics. There is, however, a 
trade-off between the strictness of the shar- 
ing semantics in a DFS and the network 
and server loads (and hence necessarily the 
scalability potential). The more stringent 
the semantics, the harder it is to scale the 
system up. 

Central control schemes and central re- 
sources should not be used to build scalable 
(and fault-tolerant) systems. Examples of 
centralized entities are central authentica- 
tion server, central naming server, and cen- 
tral file server. Centralization is a form of 
functional asymmetry among the machines 
comprising the system. The ideal alterna- 
tive is a configuration that is functionally 
symmetric; that is, all the component 
machines have an equal role in the opera- 
tion of the system, and hence each machine 
has some degree of autonomy. Practically, 
it is impossible to comply with such a prin- 
ciple. For instance, incorporating diskless 

6.2 Lightweight Processes 

A major problem in the design of any serv- 
ice is the process structure of the server. 
Servers are supposed to operate efficiently 
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in peak periods when hundreds of active 
clients need to be served simultaneously. A 
single server process is certainly not a good 
choice, since whenever a request necessi- 
tates disk I/O the whole service is delayed 
until the I/O is completed. Assigning a 
process for each client is a better choice; 
however, the overhead of multiplexing the 
CPU among the processes (i.e., the context 
switches) is an expensive price that must 
be paid. 

A related problem has to do with the fact 
that all the server processes need to share 
information, such as file headers and serv- 
ice tables. In UNIX 4.2 BSD processes 
are not permitted to share address 
spaces, hence sharing must be done exter- 
naliy by using files and other unnatural 
mechanisms. 

It appears that one of the best solutions 
for the server architecture is the use of 
Lightweight Processes (LWPs) or Threads. 
A thread is a process that has very little 
nonshared state. A group of peer threads 
share code, address space, and operating 
system resources. An individual thread has 
at least its own register state. The extensive 
sharing makes context switches among peer 
threads and threads’ creation inexpensive, 
compared with context switches among tra- 
ditional, heavy-weight processes. Thus, 
blocking a thread and switching to another 
thread is a reasonable solution to the prob- 
lem of a server handling many requests. 
The abstraction presented by a group of 
LWPs is that of multiple threads of control 
associated with some shared resources. 

There are many alternatives regarding 
threads; we mention a few of them briefly. 
Threads can be supported above the kernel, 
at the user level (as done in Andrew) or by 
the kernel (as in Mach [Tevanian et al. 
19871). Usually, a lightweight process is not 
bound to a particular client. Instead, it 
serves single requests of different clients. 
Scheduling threads can be preemptive or 
nonpreemptive. If threads are allowed to 
run to completion, their shared data need 
not be explicitly protected. Otherwise, some 
explicit locking mechanism must be used 
to synchronize the accesses to the shared 
data. 

Typically, when LWPs are used to im- 
plement a service, client requests accumu- 
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late in a common queue and threads are 
assigned to requests from the queue. The 
advantages of using an LWPs scheme to 
implement the service are twofold. First, 
an I/O request delays a single thread, not 
the entire service. Second, sharing common 
data structures (e.g., the requests queue) 
among the threads is easily facilitated. 

It is clear that some form of LWPs 
scheme is essential for servers to be scal- 
able. Locus, Sprite, Andrew, use such 
schemes; in the future NFS will too. De- 
tailed studies of threads implementations 
can be found in Kepecs 1985 and Tevanian 
et al. 1987. 

7. UNIX UNITED 

The UNIX United project from the lJni- 
versity of Newcastle upon Tyne, England, 
is one of the earliest attempts to extend the 
UNIX file system to a distributed one with- 
out modifying the UNIX kernel. In UNIX 
United, a software subsystem is added 
to each of a set of interconnected UNIX 
systems (referred to as component or con- 
stituent systems), so as to construct a dis- 
tributed system that is functionally 
indistinguishable from a conventional cen- 
tralized UNIX system. 

Originally, the component systems were 
perceived as mainframes functioning as 
time-sharing UNIX systems, and indeed 
the original implementation was based 
on a set of PDP-11’s connected by a 
Cambridge Ring. 

The system is presented in two levels of 
detail: First, an overview of UNIX United 
is given. Then the implementation, the 
Newcastle Connection layer, is described. 

7.1 Overview 

Any number of inter-linked UNIX system 
can be joined to compose a UNIX United 
system. Their naming structures (for files, 
devices, directories, and commands) are 
joined together into a single naming struc- 
ture, in which each component system is to 
all intents and purposes just a directory. 
Ignoring for the moment questions regard- 
ing accreditation and access control, the 
resulting system is one in which each user 
can read or write any file, use any device, 
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/f3, file fl is referred to as /../fl, file f2 is 
referred to as /../../unix2/f2, and finally 
file f4 is referred to as /../../unix2/dir/ 
unix4/f4. 

Observe that users are aware of the up- 
ward boundaries of the current component 
unit since they must use the ‘I..’ syntax 
whenever they wish to ascend outside of 
their current machine. Hence, UNIX 
United fails to provide complete location 
transparency. 

The traditional root directories (e.g., 
/dev, /bin) are maintained for each ma- 
chine separately. Because of the relative 
naming scheme, they are named, from 
within a component system, in the exact 
way as in conventional UNIX (e.g., just 
/dev). Each component system has its own 
set of named users and its own administra- 
tor (superuser). The latter is responsible 
for the accreditation for users of his or her 
own system as well as remote users. For 
uniqueness, remote users’ identifiers are 
prefixed with the name of their original 
system. Accesses are governed by the stan- 
dard UNIX file protection mechanisms, 
even if they cross component boundaries. 
That is, there is no need for users to log in 
separately or provide passwords when they 
access remote files if they are properly ac- 
credited. Accreditation for remote users 
must be arranged with the system admin- 
istrator separately. 

UNIX United is well suited for a diverse 
internetwork topology, spanning LANs, as 
well as direct links and even WANS. The 
logical name space needs to be properly 
mapped onto routing information in such a 
complex internetwork. An important de- 
sign principle is that the naming hierarchy 
needs bear no relationship to the network 
topology. 

execute any command, or inspect any di- 
rectory, regardless of the system to which 
it belongs. That is, network transparency 
is supported. 

The component unit is a complete UNIX 
tree belonging to a certain machine. The 
position of these component units in the 
naming hierarchy is arbitrary. They can 
appear in the naming structure in positions 
subservient to other component units (di- 
rectly or via intermediary directories). It is 
often convenient to set the naming struc- 
ture to reflect organizational hierarchy 
of the environment in which the system 
exists. 

In conventional UNIX the root of a file 
hierarchy is its own parent and is the only 
directory not assigned a string name. In 
UNIX United, each component’s root is 
still referred to as ‘/’ and still serves as the 
starting point of all pathnames starting 
with a ‘1’. Roots of component units, how- 
ever, are assigned names so that they 
become accessible and distinguishable ex- 
ternally. Also, a subservient component can 
access its superior system by referring to 
its own root parent, (i.e., ‘/..‘). Therefore, 
there is only one root that is its own parent 
and that is not assigned a string name; 
namely, the root of the composite name 
structure, which is just a virtual node 
needed to make the whole structure a single 
tree. Under this conventions, there is no 
notion of absolute pathname. Each path.. 
name is relative to some context, either the 
current working directory or the current 
component unit. 

In Figure 2, the directories unixl, 
unix2, unix3, and unix4 are component 
units (i.e., complete UNIX hierarchies) be- 
longing to machines by the same names. 
For instance, all the files descending from 
unix2, except files that descend from 
unix4, are stored on the machine unix2. 
The tree rooted at Unix4 descends from 
the directory dir, which is an ordinary (lo- 
cal) directory of unix2. To illustrate the 
relative pathnames, note that /../unix2/f2 
is the name of the file f2 on the system 
unix2 from within the unixl system. 
From the unix3 system, the same file is 
referred to as /../..unix2jf2. Now, suppose 
the current root (‘/‘) is as shown by the 
arrow. Then file f3 can be referenced as 

7.2 Implementation-Newcastle Connection 

The Newcastle Connection is a (user-level) 
software layer incorporated in each com- 
ponent system. This layer separates be- 
tween the UNIX kernel on one hand, and 
applications, command programs and the 
shell on the other hand. It intercepts all 
system calls concerning files and filters out 
those that have to be redirected to remote 
systems. Also, the Connection layer accepts 
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f4 

Figure 2. UNIX United hierarchy. 

system calls that have been directed to it 
from other systems. Remote layers manage 
communication by the means of a RPC 
protocol. Figure 3 is a schematic view of 
the software architecture just described. 

Incorporating the Connection layer pre- 
serves both the same UNIX system call 
interface and the UNIX kernel, in spite of 
the extensive remote activity carried out by 
the system. The penalty for preserving the 
kernel intact is the fact that the service is 
implemented as user-level daemon pro- 
cesses (as opposed to a kernel implemen- 
tation), which slow down remote operation. 

Each Connection layer stores a partial 
skeleton of the overall naming structure. 
Each system stores its own file system lo- 
cally. In addition, each system maintains 
information on the fragments of the overall 
name structure that relate it to its neigh- 
boring systems in the naming structure 
(i.e., systems that can be reached via trav- 
ersal of the naming tree without passing 
through another system). For instance, re- 
fer to Figure 2. System Unix2 is aware of 
the position of systems unixl, unix2, and 
unix4 in the global tree. Figure 4 shows 
the relative positioning of the component 
units of the global name space that system 
unix2 knows about. 

The fragments maintained by different 
systems overlap and hence must remain 
consistent, a requirement that makes 
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changing the overall structure a very ex- 
pensive (and hence infrequent) event. 
Some leaves of the partial structure stored 
locally correspond to remote roots of other 
parts of the global file system. These leaves 
are specially marked and contain addresses 
of the appropriate storage sites of the de- 
scending file systems. Pathname traversals 
have to be continued remotely when en- 
countering such marked leaves and, in fact, 
can span more than two systems until the 
target file is located. Therefore, a strict 
client-server pair model is not preserved. 
Once a name is resolved and the file is 
opened, it is accessed using file descriptors. 
The Connection layer marks descriptors 
that refer to remote files and keeps network 
addresses and routing information for them 
in a per-process table. 

The actual remote file accesses are car- 
ried out by a set of file server processes on 
the target system. Each client has its own 
file server process with which it communi- 
cates directly. The initial connection is es- 
tablished with the aid of a spawner process 
that has a standard fixed name that makes 
it callable from any external process. This 
spawner process performs the remote ac- 
cess rights checks according to a machine- 
user identification pair. It also converts this 
identification to a valid local name. For the 
sake of preserving UNIX semantics, once a 
user process forks, its file service process 
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~~~~ 

Figure 3. Schematic view of the UNIX United architecture. 

mix1 

unix4 

Figure 4. Partial skeleton UNIX2 has (see Figure 2). 

forks as well. File descriptors (not lower 
level means such as i-nodes) are used to 
identify files between a user and its file 
server. This is a stateful service scheme and 
hence does not excel in terms of robustness. 

7.3 Summary 

The overall profile of the UNIX United 
system can be characterized by the follow- 
ing prominent features: 

l Logical Name Structure. The UNIX 
United name structure is a hierarchy 
composed of component UNIX subtrees. 
There is an explicitly visible correspon- 
dence between a machine and a subtree 
in the structure; hence, machine bound- 
aries are noticeable. Users must use the 
‘/..’ trap to get out of the current com- 
ponent unit. There are no absolute path- 
names-all pathnames are relative to 
some context. 

l Connection Layer. Conceptually, the con- 
nection layer implementation is ele- 
gant and simple. It is a modular sub- 
system interfacing two existing layers 
without modifying either of them or their 
original semantics and still extending 
their capabilities by large. The imple- 
mentation strategy is by relinking appli- 
cation programs with the Connection 
layer library routines. These routines 
intercept file system calls and forward 
the remote ones to user-level remote 
daemons at the remote sites. 

Even though UNIX United is outdated, it 
serves our purposes well in demonstrating 
network transparency without location 
transparency, a simple implementation 
technique, and the issue of autonomy of 
component systems. 

8. LOCUS 

l Recursive Structure. Structuring a UNIX Locus is an ambitious project aimed at 
United system out of a set of component building a full-scale distributed operating 
systems is a recursive process akin to a system. The system is upward compatible 
recursive definition of a tree. In theory, with UNIX, but unlike NFS, UNIX United, 
such a system can be indefinitely exten- and other UNIX-based distributed sys- 
sible. The building block of this recursive tems, the extensions are major ones and 
scheme is an autonomous and complete necessitate a new kernel rather than a mod- 
UNIX system. ified one. Locus stands out among other 
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systems by hosting a variety of sophisti- 
cated features such as automatic manage- 
ment of replicated data, atomic file update, 
remote tasking, ability to withstand (to a 
certain extent) failures and network parti- 
tions, and full implementation of nested 
transactions [Weinstein et al. 19851. The 
system has been operational at UCLA for 
several years on a set of mainframes and 
workstations connected by an Ethernet. 
A general strategy for extending Locus to 
an internet environment is outlined in 
Sheltzer and Popek [1986]. 

The heart of the Locus architecture is its 
DFS. We first give an overview of the fea- 
tures and general implementation philoso- 
phy of the file system. Then we discuss the 
static nature of the file system (Sections 
8.2) and its dynamics (Sections 8.3 and 8.4). 
We devote section 8.5 of the operation of 
the system in a faulty environment. 

8.1 Overview 

The Locus file system presents a single tree 
structure naming hierarchy to users and 
applications. This structure covers all ob- 
jects (files, directories, executable files, and 
devices) of all the machines in the system. 
Locus names are fully location transparent; 
from a name of an object it is not possible 
to discern its location in the network. To a 
first approximation, there is almost no way 
to distinguish the Locus name structure 
from a standard UNIX tree. 

A Locus file may correspond to a set of 
copies distributed on different sizes. An 
additional transparency dimension is intro- 
duced since it is the system responsibility 
to keep all copies up to date and assure that 
access requests are served by the most re- 
cently available version. As an option, users 
may have control over both the number 
and location of replicated files. In Locus, 
file replication serves mainly to increase 
availability for reading purposes. A primary 
copy approach is adopted for modifications. 

Locus strives to provide UNIX semantics 
in the distributed and replicated environ- 
ment in which it operates. Additionally, it 
supports locking of files and atomic update. 

Fault tolerance issues are emphasized in 
Locus design. Network failure may discon- 

nect the network into two or more parti- 
tions cr disconnect,ed subnetworks. As long 
as at least one copy of a file is available in 
a partition, read requests are served, and it 
is still guaranteed that the version read is 
the most recent one available in the parti- 
tion. Automatic mechanisms take care 
to update stale copies of files upon the 
reconnection of partitions. 

Emphasizing high performance in the de- 
sign of Locus led to incorporating network- 
ing functions (such as formatting, queuing, 
transmitting, and retransmitting messages) 
into the operating system. Specialized re- 
mote operations protocols were devised for 
kernel-to-kernel communication, in con- 
trast to the prevalent approach of using an 
off-the-shelf package (e.g., an RPC proto- 
col). Lack of multilayering (as suggested in 
the IS0 standard [Zimmermann 19801) en- 
abled achieving high performance for 
remote operations. On the other hand, 
this snecialized protocol hampers Locus 
portability to different networks and 
file systems. 

An efficient but limited kernel-supported 
LWP facility is devised for serving remote 
requests. These are processes that have no 
nonprivileged address space, their code and 
stack are resident in the operating system 
nucleus, and they can call internal system 
routines directly. These processes are as- 
signed to serve net.worb requests that ac- 
cumulate in a system queue. The system is 
configured with some number of these pro- 
cesses, but that number is automatically 
and dynamically altered during system 
operation. 

8.2 Name Structure 

The logical name structure disguises both 
location and replication details from users 
and applications. A removable file system, 
in Locus terms, is called a filegroup. A 
filegroup is the component unit in Locus. 
Virtually, logical filegroups are joined to- 
gether to form this unified structure. Phys- 
ically, a logical filegroup is mapped to 
multiple physical containers (called also 
packs) residing at various sites and storing 
replicas of the files of that filegroup. The 
pair <logical filegroup number, i-node 
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number>, referred to as a file designator 
serves as low-level, location-independent 
file identifier. The designator itself hides 
both location and replication details, since 
it points to a file in general and not to a 
particular replica. 

Each site has a consistent and complete 
view of the logical name structure. A logical 
mount table is globally replicated and con- 
tains an entry for each logical filegroup. 
The entry records the file designator of the 
directory over which the filegroup is logi- 
cally mounted and an indication of which 
site is currently responsible for access syn- 
chronization (the function of this site is 
explained subsequently) within the file- 
group. A protocol, implemented within the 
mount and unmount Locus system calls, 
performs update of the logical mount tables 
on all sites when necessary. 

On the physical level, physical containers 
correspond to disk partitions. One of the 
packs is designated as the Primary Copy. A 
file must be stored at the site of the primary 
copy and, in addition, can be stored at any 
subset of the other sites where there exists 
a pack corresponding to its filegroup. Thus, 
the primary copy stores the filegroup com- 
pletely, whereas the rest of the packs might 
be partial. Replication is especially useful 
for directories in the high levels of the name 
hierarchy. Such directories are rarely up- 
dated and are crucial for pathnames trans- 
lation of files. 

The various copies of a file are assigned 
to the same i-node number on all the file- 
group’s packs. Consequently, a pack has an 
empty i-node slot for all files it does not 
store. Data page numbers may be different 
on different packs, hence reference over the 
network to data pages use logical page num- 
bers rather than physical ones. Each pack 
has a mapping of these logical numbers to 
physical numbers. To facilitate automatic 
replication management, each i-node of a 
file copy contains a version number, deter- 
mining which copy dominates other copies. 

Whereas globally unique file naming is 
very important most of the time, certain 
files and directories are hardware and site 
specific (e.g., /bin is hardware-specific, and 
/dev is site-specific). Locus provides trans- 
parent means for translating references to 
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these traditional file names to hardware- 
and site-specific files. 

8.3 File Operations 

In contrast to the prevalent model of a 
server-client pair involved in a file access, 
Locus distinguishes three logical roles in 
file accesses; each one potentially per- 
formed by a different site: 

Using Site (US) issues the requests to 
open and access a remote file. 
Storage Site (SS) is the selected site to 
serve the requests. 
Current Synchronization Site (CSS) en- 
forces a global synchronization policy for 
a filegroup and selects an SS for each 
Open request referring to a file in the 
filegroup. There is at most one CSS for 
each filegroup in any set of communicat- 
ing sites (i.e., partition). The CSS main- 
tains the version number and a list of 
physical containers for every file in the 
filegroup. 

The following sections describe the file op- 
erations as they are carried out by the above 
entities. Related synchronization issues are 
described in Section 8.3.4. 

8.3.1 Opening and Reading a File 

We first describe how a file is opened and 
read given its designator and then describe 
how a designator is obtained from a string 
pathname. 

Given a file designator, opening the file 
commences as follows. The US determines 
the relevant CSS by looking up the file- 
group in the logical mount table, then for- 
wards the Open request to the CSS. The 
CSS polls potential SSs for that file to 
decide which one will act as the real SS. In 
its polling messages: the CSS includes the 
version number for the particular file so the 
potential SSs can, by comparing this num- 
ber to their own, decide whether or not 
their copy is up to date. The CSS selects 
an SS by considering the response it got 
back from the candidate sites and sends the 
selected SS identity to the US. Both the 
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CSS and the SS allocate in-core i-node 
structures for the opened file. The CSS 
needs this information to make future syn- 
chronization decisions, and the SS main- 
tains the i-node to serve forthcoming 
accesses efficiently. 

After a file is open, a Read request is sent 
directly to the SS without the CSS inter- 
vention. A Read request contains the des- 
ignator of the file, the logical number of the 
needed page within that file, and a hint as 
to where the SS might store the file’s 
i-node in main memory. Once the i-node is 
found, the SS translates the logical page 
number to physical number, and a standard 
low-level routine is called to allocate a 
buffer and get the appropriate page from 
disk. The buffer is queued on the network 
queue for transmission back to the US as a 
response, where it is stored in a kernel 
buffer. Once a page is fetched to the US, 
further Read calls are serviced from the 
kernel buffer. As in the case of local disk 
Reads, read-ahead is useful to speed up 
sequential reading, both at the US and the 
SS. If a process loses its connection with a 
file it is reading remotely, the system at- 
tempts to reopen a different copy of the 
same version of the file. 

Translating a pathname into a file des- 
ignator is carried out by seemingly conven- 
tional pathname traversal mechanism since 
pathnames are regular UNIX pathnames, 
with no exception (unlike UNIX United). 
Every lookup of a component of the path- 
name within a directory involves opening 
the latter and reading from it. These oper- 
ations are conducted according to the above 
protocols (i.e., directory entries are also 
cached in US buffers). There is no parallel 
to NFS’s remote lookup operation. The ac- 
tual directory searching is performed by the 
client rather than by the server. A directory 
opened for pathname searching is not open 
for normal Read, but instead for an internal 
unsynchronized Read. The distinction is 
that no global synchronization is needed 
and no locking is done while the reading is 
performed; that is, updates to the directory 
can occur while the search is ongoing. 
When the directory is local, even the CSS 
is not informed of such access. 

8.3.2 Modifying a File 

In Locus, a primary copy policy is used for 
file modifications. The CSS must select the 
primary copy pack site as the SS if the 
Open is for a Write. The act of modifying 
data takes on two forms. If the modification 
does not include the entire page, the old 
page is first read from the SS using the 
Read protocol. If an entire page is modified, 
a buffer is set up at the US without any 
reads. In either case, after changes are 
made, possibly by delayed-write, the page 
is sent back to the SS. All modified pages 
must be flushed to the SS before a modified 
file can be closed. 

If a file is closed by the last user process 
at a US, the SS and CSS must be informed 
so that they can deallocate in-core i-node 
structures and the CSS can alter state data 
that might affect its next synchronization 
decision. 

Caching of data pages is relied upon 
heavily in both Read and Write operations. 
The validation of the cached data is dealt 
with in Section 8.3.4. 

8.3.3 Commit and Abort 

Locus uses the following shadow page 
mechanism for implementing atomic com- 
mit. When a file is modified, disk pages are 
allocated at the SS; these pages are the 
shadow pages. The in-core copy of the disk 
i-node is updated to point to the shadow 
pages. The disk i-node is kept intact, point- 
ing to the original pages. To abort a set of 
changes, both the in-core i-node informa- 
tion and the shadow pages used to record 
the changes are discarded. The atomic 
Commit operation consists of moving the 
incore i-node to the disk i-node. After that, 
the file contains the new information. The 
US function never deals with actual disk 
pages, but rather with logical pages. Thus, 
the entire shadow page mechanism is im- 
plemented at the SS and is transparent to 
the US. 

Locus deals with file modification by first 
committing the change to the primary copy. 
Later, messages are sent to all other SSs 
and to the CSS. At a minimum, these mes- 
sages identify the modified file and contain 
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the new version number (in order to pre- 
vent attempts to read the old version). It is 
the responsibility of these additional SSs 
to bring their version up to date by propa- 
gating the entire file or just the changes. A 
queue of propagation requests is kept 
within the kernel at each site, and a kernel 
process services the queue efficiently by 
issuing appropriate Read requests. This 
propagation procedure uses the standard 
commit mechanism. Thus, if contact with 
the file containing the newer version is lost, 
the local file is left with a coherent copy, 
albeit still out of date. Given this commit 
mechanism, one is always left with either 
the original file or a completely changed 
file, but never with a partially made change, 
even in the face of site failures. 

8.4 Synchronizing Accesses to Files 

The default synchronization policy in Lo- 
cus is to emulate UNIX semantics on file 
accesses in a distributed environment. 
UNIX semantics can be implemented fairly 
easily by having the processes share the 
same operating system data structures and 
caches and by using locks on data struc- 
tures to serialize requests. In Locus the 
sharing processes may not co-reside on the 
same machine, and hence the implementa- 
tion is more complicated. 

Recall that UNIX semantics allow sev- 
eral processes descending from the same 
ancestor process to share the same current 
position (offset) in a file. A single token 
scheme is devised to preserve this special 
mode of sharing. Only when the token is 
present, can a site proceed with executing 
system calls needing the offset. 

In UNIX, the same in-core i-node for a 
file can be shared by several processes. In 
Locus, the situation is much more compli- 
cated since the i-node of the file, as well as 
the parts of the file itself, can be cached at 
several sites. Token schemes are used to 
synchronize sharing of a file’s i-node and 
data. An exclusive-writer-multiple-readers 
policy is enforced. Only a site with a write 
token for a file may modify the file; 
any site with a read token can read it. The 
token schemes are coordinated by token 
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managers operating at the corresponding 
storage sites. 

The cached data pages are guaranteed to 
contain valid data only when the files’s data 
token is present. When the write data token 
is taken from that site, the i-node, as well 
as all modified pages, is copied back to the 
SS. Since arbitrary changes (initiated by 
remote clients) may have occurred when 
the token was not present, all cached 
buffers are invalidated when the token is 
released. When a data token is granted to 
a site, both the i-node and data pages need 
to be fetched from the SS. There are some 
exceptions to enforcing this policy. Some 
attribute reading and writing calls (e.g., 
stat) as well as directory reading and mod- 
ifying (e.g., lookup) calls are not subject to 
the synchronization constraints. These 
calls are sent directly to the SS, where the 
changes are made, committed, and propa- 
gated to all storage and using sites. 

Alternatively to the default UNIX se- 
mantics, Locus offers facilities for locking 
entire files or parts of them. Locking can 
be advisory (only checked as a result of a 
locking attempt) or enforced (checked on 
all reads and writes). A process can choose 
to either fail if it cannot immediately get a 
lock or wait for it to be released. 

8.5 Operation in a Faulty Environment 

The basic approach in Locus is to maintain, 
within a single partition, consistency 
among copies of a file. The policy is to 
allow updates only in a partition that has 
the primary copy. It is guaranteed that the 
most recent version of a file in a partition 
is read. The latter guarantee applies to all 
partitions. 

A central point addressed in this section 
is the reconciliation of replicated filegroups 
residing at partitioned sites. During normal 
operation, the commit protocol ascertains 
proper propagation of updates as described 
earlier. A more elaborate scheme has to be 
used by recovering sites wishing to bring 
their packs up to date. To this end, the 
system maintains a commit count for each 
filegroup, enumerating each commit of 
every file in the filegroup. Each pack has a 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



350 l E. Levy and A. Silberschatz 

lower-water-mark (lwm) that is a commit 
count value up to which the system guar- 
antees that all prior commits are reflects in 
the pack. Also, the primary copy pack (usu- 
ally stored at the CSS) keeps a list enu- 
merating the files in the filegroup and the 
corresponding commit counts of all the re- 
cent commits in secondary storage. When 
a pack joins a partition it attempts to con- 
tact the CSS and checks whether its lwm 
is within the recent commit list range. If 
this is the case, the pack site schedules a 
kernel process that brings the pack to a 
consistent state by copying only the files 
that reflect commits later than that of the 
site’s lwm. If the CSS is not available, 
writing is disallowed in this partition, but 
reading is possible after a new CSS is cho- 
sen. The new CSS communicates with the 
partition members so it will be informed of 
the most recent available (in the partition) 
version of each file in the filegroup. Once 
the new CSS accomplishes the objective, 
other pack sites can reconcile themselves 
with it. As a result, all communicating sites 
see the same view of the filegroup, and this 
view is as complete as possible, given a 
particular partition. Note that since up- 
dates are allowed within the partition with 
the primary copy and Reads are allowed in 
the rest of the partitions, it is possible to 
Read out-of-date replicas of a file. Thus, 
Locus sacrifices consistency for the ability 
to continue to both update and read files in 
a partitioned environment. 

When a pack is too far out of date (i.e., 
its lwm indicates a prior value to the earli- 
est commit count value in the primary 
copy commit list), the system invokes an 
application-level process to bring the file- 
group up to date. At this point, the system 
lacks sufficient knowledge of the most re- 
cent commits to identify the missing up- 
dates. Instead, the site must inspect the 
entire i-node space to determine which files 
in its pack are out of date. 

When a site is lost from an operational 
Locus network, a clean-up procedure is nec- 
essary. Essentially, once site a has decided 
that site b is unavailable, site a must invoke 
failure handling for remote resources that 
processes local to a were using at site b, 
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and for all local resources being used by 
processes local to site b. This substantial 
cleaning procedure is the penalty of the 
state information kept by a!1 three sites 
participating in file access. 

Since directory updates are not restricted 
to be applied to the primary copy, conflicts 
among updates in different partitions may 
arise [Walker et al. 19831. Because of the 
simple nature of directory modification, 
however, an automatic reconciliation pro- 
cedure is devised. This procedure is based 
on comparing the i-nodes and string name 
pairs of replicas of the same directory. The 
most extreme action taken is when the 
same name string corresponds to two dif- 
ferent i-nodes (i.e., the same name is used 
for creating two different files) and 
amounts to altering the file names slightly 
and notifying the files owners by electronic 
mail. 

8.8 Summary 

An overall profile and evaluation of Locus 
is summarized by pointing out the following 
issues: 

Distributed operating system. Because of 
the multiple dimensions of transparency 
in Locus, it comes close to the definition 
of a truly distributed operating system 
in contrast to a collection of network 
services [Tanenbaum and Van Renesse 
19851. 
Implementation strategy. Essent,ially, 
kernel augmentation is the implementa- 
tion strategy in Locus. The common 
pattern in Locus is kernel-to-kernel 
communication via specialized, high- 
performance protocols. This strategy is 
needed to support the philosophy of a 
distributed operating system. 
Replication. A primary copy replication 
scheme is used in Locus. The main merit 
of this kind of replication scheme is in- 
creased availability of directories that ex- 
hibit high read-write ratio. Availability 
for modifying files is not increased by the 
primary copy approach. Handling repli- 
cation transparently is one of the reasons 
for introducing the CSS entity, which is 
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l A logical mount table replicated at all 
sites is clearly not a scalable mecha- 
nism. 

l Extensive message traffic and server 
load caused by the complex synchro- 
nization of accesses needed to provide 
UNIX semantics. 

l UNIX compatibility. The way Locus 
handles remote operation is geared to 
emulation of standard UNIX. The im- 
plementation is merely an extension of 
UNIX implementation across a net- 
work. Whenever buffering is used in 
UNIX, it is used in Locus as well. 
UNIX compatibility is indeed retained; 
however, this approach has some in- 
herent flaws. First, it is not clear 
whether UNIX semantics are appro- 
priate. For instance, the mechanism for 
supporting shared file offset by remote 
processes is complex and expensive. It 
is unclear whether this peculiar mode 
of sharing justifies this price. Second, 
using caching and buffering as done in 
UNIX in a distributed system has some 
ramifications on the robustness and re- 
coverability of the system. Compatibil- 
ity with UNIX is indeed an important 
design goal, but sometimes it obscures 
the development of an advanced dis- 
tributed and robust system. 

a third entity taking part in a remote 
access. In this context, the CSS functions 
as the mapping from an abstract file to a 
physical replica. 

l Access synchronization. UNIX seman- 
tics are emulated to the last detail, in 
spite of caching at multiple USs. Alter- 
natively, locking facilities are provided. 

l Fault tolerance. Substantial effort has 
been devoted to designing mechanisms 
for fault tolerance. A few are an atomic 
update facility, merging replicated packs 
after recovery, and a degree of indepen- 
dent operation of partitions. The effects 
can be characterized as follows: 

Within a partition, the most recent, 
available version of a file is read. The 
primary copy must be available for 
write operations. 
The primary copy of a file is always up 
to date with the most recent committed 
version. Other copies may have either 
the same version or an older version, 
but never a partially modified one. 
A CSS function introduces an addi- 
tional point of failure. For a file to be 
available for opening, both the CSS 
for the filegroup and an SS must be 
available. 
Every pathname component must be 
available for the corresponding file to 
be available for opening. 

A basic questionable decision regarding 
fault tolerance is the extensive use of in- 
core information by the CSS and SS func- 
tions. Supporting the synchronization pol- 
icy is a partial cause for maintaining this 
information; however, the price paid during 
recovery is enormous. Besides, explicit 
deallocation is needed to reclaim this in- 
core space, resulting in a pure overhead of 
message traffic. 

l Scalability. Locus does not lend itself to 
very large distributed system environ- 
ment, mainly because of the following 
reasons: 

l One CSS per file group can easily be- 
come a bottleneck for heavily accessed 
filegroups. 

9. SUN NETWORK FILE SYSTEM 

The Network File System (NFS) is a name 
for both an implementation and a specifi- 
cation of a software system for accessing 
remote files across LANs. The implemen- 
tation is part of the SunOS operating sys- 
tem, which is a flavor of UNIX running on 
Sun workstations using an unreliable da- 
tagram protocol (UDP/IP protocol [Postel 
19801) and Ethernet. The specification and 
implementation are intertwined in the fol- 
lowing description; whenever a level of de- 
tail is needed we refer to the SunOS 
implementation, and whenever the descrip- 
tion is general enough it also applies to the 
specification. 

The system is presented in three levels 
of detail. First (in Section 9.1), an overview 
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is given. Then, two service protocols that 
are the building blocks for the implemen- 
tation are examined (Section 9.2). Finally 
(in Section 9.3), a description of the SunOS 
implementation is given. 

9.1 Overview 

NFS views a set of interconnected worksta- 
tions as a set of independent machines with 
independent file systems. The goal is to 
allow some degree of sharing among these 
file systems in a transparent manner. Shar- 
ing is based on server-client relationship. A 
machine may be, and often is, both a client 
and a server. Sharing is allowed between 
any pair of machines, not only with dedi- 
cated server machines. Consistent with the 
independence of a machine is the critical 
observation that NFS sharing of a remote 
file system affects only the client machine 
and no other machine. Therefore, there is 
no notion of a globally shared file system 
as in Locus, Sprite, UNIX United, and 
Andrew. 

To make a remote directory accessible in 
a transparent manner from a client ma- 
chine, a user of that machine first has to 
carry out a mount operation. Actually, only 
a superuser can invoke the mount opera- 
tion. Specifying the remote directory as an 
argument for the mount operation is done 
in a nontransparent manner; the location 
(i.e., hostname) of the remote directory has 
to be provided. From then on, users on the 
client machine can access files in the re- 
mote directory in a totally transparent 
manner, as if the directory were local. Since 
each machine is free to configure its own 
name space, it is not guaranteed that all 
machines have a common view of the 
shared space. The convention is to con- 
figure the system to have a uniform name 
space. By mounting a shared file system 
over user home directories on all the ma- 
chines, a user can log in to any workstation 
and get his or her home environment. Thus, 
user mobility can be provided, although 
again by convention. 

Subject to access rights accreditation, po- 
tentially any file system or a directory 
within a file system can be remotely 
mounted on top of any local directory. In 

the latest NFS version, diskless worksta- 
tions can even mount their own roots from 
servers (Version 4.0, May 1988 described in 
Sun Microsystems Inc. [ 19881). In previous 
NFS versions, a diskless workstation de- 
pends on the Network Disk (ND) protocol 
that provides raw block I/O service from 
remote disks; the server disk was parti- 
tioned and no sharing of root file systems 
was allowed. 

One of the design goals of NFS is to 
provide file services in a heterogeneous en- 
vironment of different machines, operating 
systems, and network architecture. The 
NFS specification is independent of these 
media and thus encourages other imple- 
mentations. This independence is achieved 
through the use of RPC primitives built on 
top of an External Date Representation 
(XDR) protocol-two implementation- 
independent interfaces [Sun Microsystems 
Inc. 19881. Hence, if the system consists of 
heterogeneous machines and file systems 
that are properly interfaced to NFS, file 
systems of different types can be mounted 
both locally and remotely. 

9.2 NFS Services 

The NFS specification distinguishes be- 
tween the services provided by a mount 
mechanism and the actual remote file ac- 
cess services. Accordingly, two separate 
protocols are specified for these services- 
a mount protocol and a protocol for remote 
file accesses called the NFS protocol. 
The protocols are specified as sets of 
RPCs that define the protocols’ function- 
ality. These RPCs are the building blocks 
used to implement transparent remote file 
access. 

9.2.1 Mount Protocol 

We first illustrate the semantics of mount- 
ing by a series of examples. In Figure 5a, 
the independent file systems belonging to 
the machines named client, serverl, and 
server2 are shown. At this stage, at each 
machine only the local files can be accessed. 
The triangles in the figure represent sub- 
trees of directories of interest in this 
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Figure 5. NFS joins independent file systems (a), by mounts (b), and cascading mounts (c). 

example. In Figure 5b, the effects of 
the mounting server l:/usr/shared over 
client:/usr/local are shown. This figure 
depicts the view users on client have of 
their file system. Observe that any file 
within the dir1 directory, for instance, can 
be accessed using the prefix /usr/local/ 
dir1 in client after the mount is complete. 
The original directory /usr/local on that 
machine is not visible any more. 

Cascading mounts are also permitted. 
That is, a file system can be mounted over 
another file system that is not a local one, 
but rather a remotely mounted one. A ma- 
chine’s name space, however, is affected 
only by those mounts the machine’s own 
superuser has invoked. By mounting a re- 
mote file system, access is not gained for 
other file systems that were, by chance, 
mounted over the former file system. Thus, 

the mount mechanism does not exhibit a 
transitivity property. In Figure 5c we illus- 
trate cascading mounts by continuing our 
example. The figure shows the result of 
mounting server2:/dir2/dir over client:/ 
usr/local/dir 1, which is already remotely 
mounted from serverl. Files within dir3 
can be accessed in client using the prefix 
/usr/local/dir 1. 

The mount protocol is used to establish 
the initial connection between a server and 
a client. The server maintains an export 
list (the /etc/exports in UNIX) that spec- 
ifies the local file systems it exports for 
mounting, along with names of machines 
permitted to mount them. Any directory 
within an exported file system can be re- 
motely mounted by an accredited machine. 
Hence, a component unit is such a direc- 
tory. When the server receives a mount 
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request that conforms to its export list, it 
returns to the client a file handle that is 
the key for further accesses to files within 
the mounted file system. The file handle 
contains all the information the server 
needs to distinguish individual files it 
stores. In UNIX terms, the file handle con- 
sists of a file system identifier and an i- 
node number to identify the exact mounted 
directory within the exported file system. 

The server also maintains a list of the 
client machines and the corresponding cur- 
rently mounted directories. This list is 
mainly for administrative purposes, such as 
for notifying all clients that the server is 
going down. Adding and deleting an entry 
in this list is the only way the server state 
is affected by the mount protocol. 

Usually a system has some static mount- 
ing preconfiguration that is established at 
boot time; however, this layout can be mod- 
ified (/etc/fstab in UNIX). 

9.2.2 NFS Protocol 

The NFS protocol provides a set of remote 
procedure calls for remote file operations. 
The procedures support the following 
operations: 

Searching for a file within a directory 
(i.e., lookup). 
Reading a set of directory entries. 
Manipulating links and directories. 
Accessing file attributes. 
Reading and writing files. 

These procedures can be invoked only after 
having a file handle for the remotely 
mounted directory. Recall that the mount 
operation supplies this file handle. 

The omission of Open and Close opera- 
tions is intentional. A prominent feature of 
NFS servers is that they are stateless. 
There are no parallels to UNIX’s open files 
table or file structures on the server side. 
Maintaining the clients list mentioned in 
Section 9.2.1 seems to violate the stateless- 
ness of the server. The client list, however, 
is not essential in any manner for the cor- 
rect operation of the client or the server 
and hence need not be restored after a 

server crash. Consequently, this list might 
include inconsistent data and should be 
treated only as a hint. 

A further implication of the stateless 
server philosophy and a result of the syn- 
chrony of an RPC is that modified data 
(including indirection and status blocks) 
must be committed to the server’s disk 
before the call returns results to the client. 
The NFS protocol does not provide concur- 
rency control mechanisms. The claim is 
that since locks management is inherently 
stateful, a service outside the NFS should 
provide locking. It is advised that users 
would coordinate access to shared files us- 
ing mechanisms outside the scope of NFS 
(e.g., by means provided in a database man- 
agement system). 

9.3 Implementation 

In general, Sun’s implementation of NFS 
is integrated with the SunOS kernel for 
reasons of efficiency (although such inte- 
gration is not strictly necessary). In this 
section we outline this implementation. 

9.3.1 Architecture 

The NFS architecture is schematically de- 
picted in Figure 6. The user interface is the 
UNIX system calls interface based on the 
Open, Read, Write, Close calls, and file 
descriptors. This interface is on top of a 
middle layer called the Virtual File System 
(VFS) layer. The bottom layer is the one 
that implements the NFS protocol and is 
called the NFS layer. These layers comprise 
the NFS software architecture. The figure 
also shows the RPC/XDR software layer, 
local file systems, and the network and thus 
can serve to illustrate the integration of a 
DFS with all these components. The VFS 
serves two important functions: 

l It separates file system generic opera- 
tions from their implementation by 
defining a clean interface. Several imple- 
mentations for the VFS interface may 
coexist on the same machine, allowing 
transparent access to a variety of types 
of file systems mounted locally (e.g., 4.2 
BSD or MS-DOS). 
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l The VFS is based on a file representation 

structure called a unode, which contains 
a numerical designator for a file that is 
networkwide unique. (Recall that UNIX- 
i-nodes are unique only within a single 
file system.) The kernel maintains one 
vnode structure for each active node (file 
or directory). Essentially, for every file 
the vnode structures complemented by 
the mount table provide a pointer to its 
parent file system, as well as to the file 
system over which it is mounted. 

Thus, the VFS distinguishes local files 
from remote ones, and local files are further 
distinguished according to their file system 
types. The VFS activates file system spe- 
cific operations to handle local requests 
according to their file system types and 
calls the NFS protocol procedures for re- 
mote requests. File handles are constructed 
from the relevant vnodes and passed as 
arguments to these procedures. 

As an illustration of the architecture, let 
us trace how an operation on an already 
open remote file is handled (follow the ex- 
ample in Figure 6). The client initiates the 

operation by a regular system call. The 
operating system layer maps this call to a 
VFS operation on the appropriate vnode. 
The VFS layer identifies the file as a remote 
one and invokes the appropriate NFS pro- 
cedure. An RPC call is made to the NFS 
service layer at the remote server. This call 
is reinjected into the VFS layer, which finds 
that it is local and invokes the appropriate 
file system operation. This path is retraced 
to return the result. An advantage of this 
architecture is that the client and the server 
are identical; thus, it is possible for a ma- 
chine to be a client, or a server, or both. 

The actual service on each server is per- 
formed by several kernel processes, which 
provide a temporary substitute to a LWP 
facility. 

9.3.2 Pathname Translation 

Pathname translation is done by breaking 
the path into component names and doing 
a separate NFS lookup call for every pair 
of component name and directory vnode. 
Thus, lookups are performed remotely by 
the server. Once a mount point is crossed, 
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every component lookup causes a separate 
RPC to the server. This expensive path- 
name traversal scheme is needed, since 
each client has a unique layout of its logical 
name space, dictated by the mounts if per- 
formed. It would have been much more 
efficient to pass a pathname to a server and 
receive a target vnode once a mount point 
was encountered. But at any point there 
can be another mount point for the partic- 
ular client of which the stateless server is 
unaware. 

To make lookup faster, a directory name 
lookup cache at the client holds the vnodes 
for remote directory names. This cache 
speeds up references to files with the same 
initial pathname. The directory cache is 
discarded when attributes returned from 
the server do not match the attributes of 
the cached vnode. 

Recall that mounting a remote file sys- 
tem on top of another already mounted 
remote file system (cascading mount) is 
allowed in NFS. A server cannot, however, 
act as an intermediary between a client and 
another server. Instead, a client must es- 
tablish a direct server-client connection 
with the second server by mounting the 
desired server directory. Therefore, when a 
client does a lookup on a directory on which 
the server has mounted a file system, the 
client sees the underlying directory instead 
of the mounted directory. When a client 
has a cascading mount, more than one 
server can be involved in a pathname trav- 
ersal. Each component lookup is, however, 
performed between the original client and 
some server. 

9.3.3 Caching and Consistency 

With the exception of opening and closing 
files, there is almost a one-to-one corre- 
spondence between the regular UNIX sys- 
tem calls for file operations and the NFS 
protocol RPCs. Thus, a remote file opera- 
tion can be translated directly to the cor- 
responding RPC. Conceptually, NFS 
adheres to the remote service paradigm, but 
in practice buffering and caching tech- 
niques are used for the sake of performance. 
There is no direct correspondence between 

a remote operation and an RPC. Instead, 
file blocks and file attributes are fetched by 
the RPCs and cached locally. Future re- 
mote operations use the cached data subject 
to some consistency constraints. 

There are two caches: file blocks cache 
and file attribute (i-node information) 
cache. On a file open, the kernel checks 
with the remote server about whether to 
fetch or revalidate the cached attributes by 
comparing time stamps of the last modifi- 
cation. The cached file blocks are used only 
if the corresponding cached attributes are 
up to date. The attribute cache is updated 
whenever new attributes arrive from the 
server after a cache miss. Cached attributes 
are discarded typically after 3 s for files or 
30 s for directories. Both read-ahead and 
delayed-write techniques are used between 
the server and the client [Sun Microsys- 
tems Inc. 881. (Earlier version of NFS used 
write-on-close [Sandberg et al. 19851). The 
caching unit is fairly large (8Kb) for per- 
formance reasons. Clients do not free 
delayed-write blocks until the server con- 
firms the data are written to disk. In con- 
trast to Sprite, delayed-write is retained 
even when a file is open concurrently in 
conflicting modes. Hence, UNIX semantics 
are not preserved. 

Tuning the system for performance 
makes it difficult to characterize the shar- 
ing semantics of NFS. New files created on 
a machine may not be visible elsewhere for 
30 s. It is indeterminate whether writes to 
a file at one site are visible to other sites 
that have the file open for reading. New 
opens of that file observe only the changes 
that have already been flushed to the 
server. Thus, NFS fails to provide either 
strict emulation of UNIX semantics or any 
other clear semantics. 

9.4 Summary 

l Logical name structure. A fundamental 
observation is that every machine estab- 
lishes its own view of the logical name 
structure. There is no notion of global 
name hierarchy. Each machine has its 
own root serving as a private and absolute 
point of reference for its own view of the 
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name structure. Selective mounting of 
parts of file systems upon explicit request 
allows each machine to obtain its unique 
view of the global file system. As a result, 
users enjoy some degree of independence, 
flexibility, and privacy. It seems that 
the penalty paid for this flexibility is 
administrative complexity. 

Network service versus distributed op- 
erating system. NFS is a network service 
for sharing files rather than an integral 
component of a distributed operating sys- 
tem [Tanenbaum and Van Renesse 
19851. This characterization does not 
contradict the SunOS kernel implemen- 
tation of NFS, since the kernel integra- 
tion is only for performance reasons. 
Being a network service has two main 
implications. First, remote-file sharing is 
not the default; the service initiating re- 
mote sharing (i.e., mounting) has to be 
explicitly invoked. Moreover, the first 
step in accessing a remote file, the mount 
call, is a location dependent one. Second, 
perceiving NFS as a service and not as 
part of the operating system allows its 
design specification to be implementa- 
tion independent. 
Remote service. Once a file can be ac- 
cessed transparently I/O operations are 
performed according to the remote serv- 
ice method: The data in the file are not 
fetched en masse; instead, the remote site 
potentially participates in each Read and 
Write operation. NFS uses caching to 
improve performance, but the remote site 
is conceptually involved in every I/O op- 
eration. 

Fault tolerance. A novel feature of NFS 
is the stateless approach taken in the 
design of the servers. The result is resil- 
iency to client, server, or network fail- 
ures. Should a client fail, it is not 
necessary for the server to take any ac- 
tion. Once caching was introduced, var- 
ious patches had to be invented to keep 
the cached data consistent without mak- 
ing the server stateful. 
Sharing semantics. NFS does not pro- 
vide UNIX semantics for concurrently 
open files. In fact, the current semantics 
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cannot be characterized clearly, since 
they are timing dependent. 

Finally, it should be realized that NFS is 
commercially available, has very reason- 
able performance, and is perceived as a 
de facto standard in the user community. 

10. SPRITE 

Sprite is an experimental, distributed op- 
erating system under development at the 
University of California at Berkeley. It 
is part of the Spur project, whose goal 
is the design and construction of high- 
performance multiprocessor workstation 
[Hill et al. 19861. A preliminary version of 
Sprite is currently operational on intercon- 
nected Sun workstations. 

Section 10.1 gives an overview of the file 
system and related aspects. Section 10.2 
elaborates on the file lookup mechanism 
(called prefix tables) and Section 10.3 on 
t.he caching methods used in the file system. 

10.1 Overview 

Sprite designers envision the next genera- 
tion of workstations as powerful machines 
with vast main memory. Currently, work- 
stations have 4 to 32Mb of main memory. 
Sprite designers predict that memories of 
100 to 500Mb will be commonplace in a few 
years. Their claim is that by caching files 
from dedicated servers, the large physical 
memories can compensate for lack of local 
disks in clients’ workstations. 

The interface that Sprite provides in gen- 
eral and to the file system in particular is 
much like the one provided by UNIX. The 
file system appears as a single UNIX tree 
encompassing all files and devices in the 
network, making them equally and trans- 
parently accessible from every workstation. 
As with Locus, the location transparency is 
complete; there is no way to discern a file’s 
network location from its name. Sprite en- 
forces UNIX semantics for share files. 

In spite of its functional similarity to 
UNIX, the Sprite kernel was developed 
from scratch. Oriented toward multipro- 
cessing, the kernel is multithreaded. Syn- 
chronization between the multiple threads 
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is based on monitorlike structures with 
many small locks protecting the shared 
data [Hoare 19741. Network integrat,ion is 
based on a simple kernel-to-kernel RPC 
facility implemented on top of a special- 
purpose network protocol. The technique 
used in the protocol is implicit acknowledg- 
ment, originally discussed in Birrel and 
Nelson [ 19841. 

A unique feature of the Sprite file system 
is its interplay with the virtual memory 
system. Most versions of UNIX use a spe- 
cial disk partition as a swapping area for 
virtual memory purposes. In contrast,, 
Sprite uses ordinary files (called backing 
files) to store data and stacks of running 
processes. The motivation for this design is 
that it simplifies process migration and en- 
ables flexibility and sharing of the space 
allocated for swapping. Backing files are 
cached in the main memories of servers, 
just like any other file. It is claimed that 
clients would be able to read random pages 
from a server’s (physical) cache faster than 
from a local disk, which means that a server 
with a large cache may provide better pag- 
ing performance t.han from a local disk. The 
virtual memory and file system share the 
same cache, which is dynamically parti- 
tioned according to their conflicting needs. 
Sprite allows the file cache on each ma- 
chine to grow and shrink in response to 
changing demands of the machine’s virtual 
memory and file system. Among other fea- 
tures of Sprite are support for user LWPs 
and a process migration facility, which is 
transparent both to users and the migrated 
process. 

10.2 Looking Up Files with Prefix Tables 

Sprite presents its user with a single file 
system hierarchy. The hierarchy is com- 
posed of several subtrees called domains 
(the Sprite term for component unit), with 
each server providing storage for one or 
more domains. Each machine maintains a 
server map called a prefix table, whose func- 
tion is to map domains to servers [Welch 
and Ousterhout 19861. The mapping is built 
and updated dynamically by a broadcast 
protocol. We first describe how the tables 

are used during name lookups, then de- 
scribe how the tables change dynamically. 

Each entry in a prefix table corresponds 
to one of the domains. It contains the path- 
name of the topmost directory in the do- 
main (that pathname is called the prefix for 
the domain), the network address of the 
server storing the domain, and a numeric 
designator identifying the domain’s root 
directory for the storing server. This des- 
ignator is an index into the server table of 
open files; it saves repeating expensive 
name translation. 

Every lookup operation for an absolute 
pathname starts with the client searching 
its prefix table for the longest prefix match- 
ing the given file name. The client strips 
the matching prefix from the file name and 
sends the remainder of the name to the 
selected server along with the designat,or 
from the prefix table entry. The server uses 
this designator to locate the root directory 
of the domain, then proceeds by usual 
UNIX pathname translation for the re- 
mainder of the file name. If the server 
succeeds in completing the translation, it 
replies with a designator for the open file. 

There are several cases in which the 
server does not complete the lookup. For 
instance, a pathname can descend down 
into a new domain. This can happen when 
an entry for a domain is absent from the 
table and, as a result, the prefix of the 
domain above the missing domain is 
the longest matching prefix. The selected 
server cannot complete the pathname trav- 
ersal since it descends outside its domain. 
The solution to this problem is to place a 
marker to indicate domain boundaries (a 
mount point). The marker is a special kind 
of file called a remote link. Similar to a 
symbolic link, it.s content is a file name- 
its own name in this case. When a server 
encounters a remote link, it returns the file 
name to the client. 

So far, the key difference from mappings 
based on the UNIX mount mechanism is 
the initial step of matching the file name 
against the prefix table instead of looking 
it up component by component. Systems 
(such as NFS and conventional UNIX) 
that use a name lookup cache get a similar 

ACM Computing Surveys, Vol. 22, No. 4, December 1990 



Distributed File Systems 359 

effect of avoiding the component-by- 
component lookup once the cache holds the 
appropriate information. Prefix tables are, 
however, a unique mechanism mainly be- 
cause of the way they evolve and change. 
When a remote link is encountered by the 
server, it indicates that the client lacks an 
entry for a domain-the domain whose re- 
mote link was encountered. To obtain the 
missing prefix information, a client broad- 
casts a file name. A server storing that file 
responds with the prefix table entry for this 
file, including the string to use as a prefix, 
the server’s address, and the descriptor cor- 
responding to the domain’s root. The client 
can then fill in the details in its prefix table. 

Initially, each client starts with an empty 
prefix table. The broadcast protocol is in- 
voked to find the entry for the root domain. 
More entries are added as needed; a domain 
that has never been accessed will not 
appear in the table. 

The server locations kept in the prefix 
table are hints that are corrected when 
found to be wrong. Hence, if a client tries 
to open a file and gets no response from the 
server, it invalidates the prefix table entry 
and issues a broadcast query. If the server 
has become available again, it responds to 
the broadcast and the prefix table entry is 
reestablished. This same mechanism also 
works if the server reboots at a different 
network address or if its domains are mi- 
grated to other servers. 

The prefix mechanism ensures that 
whenever a server storing a domain is up, 
the domain’s files can be accessed regard- 
less of the status of servers storing domains 
that appear in the pathname of the accessed 
files. In essence, the built-in broadcast pro- 
tocol enables dynamic reconfiguration and 
a certain degree of robustness. Also, when 
a prefix for a domain exists in a client’s 
table, a direct client-server connection is 
established as soon as the client attempts 
to open a file in that domain (in contrast 
to pathname traversal schemes). 

A machine with a local disk wishing to 
keep some local files private can accomplish 
this by placing an entry for the private 
domain in its prefix table and refusing to 
respond to broadcast queries about it. One 

of the uses of this provision can be for 
the directory /usr/tmp, which holds tem- 
porary files generated by many UNIX pro- 
grams. Every workstation needs access to 
/usr/tmp. But workstations with local 
disks would probably prefer to use their 
own disk for the temporary space. They can 
set up their /usr/tmp domains for private 
use, with a network file server providing a 
public version of the domain for diskless 
clients. All broadcast queries for /usr/tmp 
would be handled by the public server. 

A primitive form of read-only replication 
can also be provided. It can be arranged so 
that servers storing a replicated domain 
give different clients different prefix entries 
(standing for different replicas) for the 
same domain. As a result, the service load 
is divided among the servers as each rep- 
lica serves a different set of clients. The 
same technique can be used for sharing 
binary files by different hardware types 
of machines. 

Since the prefix tables bypass part of the 
director lookup mechanism, the permission 
checking done during lookup is bypassed 
too. The effect is that all programs implic- 
itly have search permission along all the 
paths denoting prefixes of domains. If ac- 
cess to a domain is to be restricted, it must 
be restricted at the root of the domain or 
below it. 

10.3 Caching and Consistency 

An important aspect of the Sprite file sys- 
tem design is the extent to which it uses 
using caching techniques. Capitalizing on 
the large main memories and advocating 
diskless workstations, file caches are stored 
incore. The same caching scheme is used to 
avoid local disk accesses as well as to speed 
up remote accesses. The caches are orga- 
nized on a block basis. Blocks are currently 
4Kb. Each block in the cache is virtually 
addressed by the file designator and a block 
location within the file. Using virtual ad- 
dresses instead of physical disk addresses 
enable clients to create new blocks in the 
cache and locate any block without the file 
i-node being brought from the server. Cur- 
rently, Sprite does not use read-ahead to 
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speed up sequential read (in contrast 
to NFS). 

A delayed-write approach is used to han- 
dle file modification. A dirty block is not 
written through to the servers cache or the 
disk until it is ejected from the cache or 
30 s have elapsed since the block was last 
modified. Hence, a block written on a client 
machine will be written to the servers cache 
in at most 30 s and will be written to the 
server’s disk after an additional 30 s. 

Exact emulation of UNIX semantics is 
one of Sprite’s goals. A hybrid cache vali- 
dation method is used for this end. Files 
are associated with a version number. The 
version number of a file is incremented 
whenever a file is opened in Write mode. 
When a client opens a file, it obtains 
the file’s current version number from the 
server and compares this number to the 
version number associated with the cached 
blocks for that file. If the version numbers 
are different, the client discards all cached 
blocks for the file and reloads its cache 
from the server when the blocks are needed. 
Because of the delayed-write policy, the 
server does not always have the current file 
data. Servers handle this situation by keep- 
ing track of the last writer for each file. 
When a client other than the last writer 
opens the file, the server forces the last 
writer to write all its dirty blocks back to 
the server’s cache. When a server detects 
(during an Open operation) that a file is 
open on two or more workstations and at 
least one of them is writing the file, it 
disables client caching for that file (thereby 
resorting to a remote service mode). All 
subsequent Reads and Writes go through 
the server, which serializes the accesses. 
Caching is disabled on a file basis, and the 
disablement affects only clients with open 
files. A substantial degradation of perfor- 
mance occurs when caching is disabled. A 
noncachable file becomes cachable again 
when it has been closed on all clients. A file 
may be cached simultaneously by several 
active readers. 

This approach depends on the fact that 
the server is notified whenever a file is 
opened or closed. This prohibits perfor- 
mance optimizations such as name caching 
in which clients open files without contact- 
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ing their servers. Essentially, the servers 
are used as centralized control points for 
cache consistency. In order to fulfill this 
function, they must maintain state infor- 
mation about open files. 

10.4 Summary 

Since Sprite is currently under develop- 
ment its design is evolving. Some definite 
characteristics of the system are, however, 
already evident; 

Extensive use of caching. Sprite is in- 
spired by the vision of diskless worksta- 
tions with huge main memories and 
accordingly relies heavily on caching. 
The current design is fragile due to the 
amount of the state data kept in-core by 
the servers. A server crash results in 
aborting all processes using files on the 
server. On the other hand, Sprite dem- 
onstrates the big merit of caching in main 
memory-performance. 
Sharing semantics. Sprite sacrifices even 
performance in order to emulate UNIX 
semantics. This decision eliminates the 
possibility and benefits of caching in big 
chunks. 
Prefix tables. There is nothing out of the 
ordinary in prefix tables. Nevertheless, 
for LAN-based file systems, prefix tables 
are a most efficient, dynamic, versatile, 
and robust mechanism for file lookup. 
The key advantages are the built-in 
facility for processing whole prefixes 
of pathnames (instead of processing 
component by component) and the sup- 
porting broadcast protocol that allows 
dynamic changes in the tables. 

11. ANDREW 

Andrew is a distributed computing environ- 
ment that has been under development 
since 1983 at Carnegie-Mellon University. 
The Andrew file system constitutes the un- 
derlying information-sharing mechanism 
among users of the environment. One of 
the most formidable requirements of An- 
drew is its scale-the system is targeted to 
span more than 5000 workstations. Since 
1983, Andrew has gone through design, 
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Local name space 

Shared name space 

Figure 7. Andrew’s name spaces. 

prototype implementation, and refinement 
phases. Our description concentrates on a 
recent version reported mainly in Howard 
et al. [1988]. It is interesting to examine 
how the design evolved from the prototype 
to the current version. An excellent account 
of this evolution along with a concise de- 
scription of the first prototype can be found 
in Howard et al. [ 19881. 

In early 1987 Andrew encompassed about 
400 workstations and 16 servers. Typically, 
the workstations were Sun’s and IBM RTs, 
with local disks; the file servers were Sun’s 
or Vax’s, with much larger disks. Section 
11.1 gives a brief overview of the file system 
and introduces its primary architectural 
components. Sections 11.2, 11.3, and 11.4 
discuss the shared name space structure, 
the strategy for implementing file opera- 
tions, and various implementation details, 
respectively. 

il. 1 Overview 

Andrew distinguishes between client ma- 
chines (sometimes referred to just as work- 
stations) and dedicated server machines. 
Servers and clients alike run the UNIX 
4.2BSD operating system and are intercon- 
nected by an internet of LANs. 

Clients are presented with a partitioned 
space of file names: a local name space and 
a shared name space. A collection of dedi- 
cated servers, collectively called Vice, pre- 
sents the shared name space to the clients 

as an identical and location-transparent 
file hierarchy. The local name space is the 
root file system of a workstation from 
which the shared name space descends 
(Figure 7). Workstations are required to 
have local disks where they store their local 
name space, whereas servers collectively 
are responsible for the storage and manage- 
ment of the shared name space. The local 
name space is small and distinct from each 
workstation and contains system programs 
essential for autonomous operation and 
better performance, temporary files, and 
files the workstation owner explicitly 
wants, for privacy reasons, to store locally. 
Viewed at a finer granularity, clients and 
servers are structured in clusters intercon- 
nected by a backbone LAN (Figure 8). Each 
cluster consists of a collection of worksta- 
tions, a representative of Vice called a clus- 
ter server, and is connected to the backbone 
by a router. The decomposition into clus- 
ters is primarily to address the problem 
of scale. For optimal performance, work- 
stations should use the server on their 
own cluster most of the time, thereby mak- 
ing cross-cluster file references relatively 
infrequent. 

The file system architecture was moti- 
vated by consideration of scale, too. The 
basic heuristic was to off-load work from 
the servers to the clients, in light of the 
common experience indicating that server’s 
CPU is the system’s bottleneck [Lazowska 
et al. 19861. Following this heuristic, the 
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Figure 8. Typical cluster in Andrew. 

key mechanism selected for remote file op- 
erations is whole file caching. Opening a 
file causes it to be cached, in its entirety, 
in the local disk. Reads and writes are 
directed to the cached copy without involv- 
ing the servers. Under certain circum- 
stances, the cached copy can be retained 
for later use. 

Entire file caching has many merits, 
which are described subsequently. This de- 
sign cannot, however, efficiently accom- 
modate remote access to very large files 
(i.e., above a few megabytes). Thus, a 
separate design will have to address the 
issue of usage of large databases in the 
Andrew environment. Additional issues 
in Andrew’s design are briefly noted: 

l User mobility. Users are able to access 
any file in the shared name space from 
any workstation. The only noticeable ef- 
fect of a user accessing files not from the 
usual workstation would be some initial 
degraded performance due to the caching 
of files. 

Security. Special consideration was 
given to security. The Vice interface is 
considered the boundary of trustworthi- 
ness since no user programs are executed 
on Vice machines. Authentication and 
secure transmission functions based on 
the RPC paradigm, are provided as part 
of communication package. After mutual 
authentication, a Vice server and a client 
communicate via encrypted messages. 
Encryption is performed by hardware de- 
vices. Information about users and 
groups is stored in a protection database 
that is replicated at each server. 
Protection. Andrew provides access lists 
for protecting directories and the regular 
UNIX bits for file protection. The access 
lists mechanism is based on recursive 
groups structure, similar to the registra- 
tion database of Grapevine [Birrel et al. 
19821. 
Heterogeneity. Defining a clear interface 
to Vice is a key for integration of diverse 
workstation hardware and operating sys- 
tem. To facilitate heterogeneity, some 
files in the local /bin directory are sym- 
bolic links pointing to machine-specific 
executable files residing in Vice. 

11.2 Shared Name Space 

Andrew’s shared name space is constituted 
of component units called volumes. An- 
drew’s volumes are unusually small com- 
ponent unit. Typically, they are associated 
with the files of a single user. Few volumes 
reside within a single disk partition and 
may grow (up to a quota) and shrink in 
size. Volumes are joined together by a 
mechanism similar to the mount mecha- 
nism. The granularity difference is signifi- 
cant, since in UNIX only an entire disk 
partition (containing a file system) can be 
mounted. Volumes are a key administrative 
unit and play a vital role in identifying and 
locating an individual file. 

A Vice file or directory is identified by a 
low-level identifier called fid. Each Andrew 
directory entry maps a pathname compo- 
nent to a fid. A fid has three equal length 
components: a volume number, a vnode 
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This key distinction has far-reaching ram- 
ifications on performance as well as on 
semantics of file operations. The operating 
system on each workstation intercepts file 
system calls and forwards them to a user- 
level process on that workstation. This pro- 
cess, called Venus, caches files from Vice 
when they are opened and stores modified 
copies of files back on the servers from 
which they came when they are closed. 
Venus may contact Vice only when a file is 
opened or closed; reading and writing in- 
dividual bytes of a file are performed di- 
rectly on the cached copy and bypass 
Venus. As a result, writes at some sites are 
not immediately visible at other sites. 

Caching is further exploited for future 
opens of the cached file. Venus assumes 
that cached entries (files or directories) are 
valid unless notified otherwise. Therefore, 
Venus need not contact Vice on a file open 
in order to validate the cached copy. The 
mechanism to support this policy is called 
Callback, and it dramatically reduces the 
number of cache validation requests re- 
ceived by servers. It works as follows: When 
a client caches a file or a directory, the 
server updates its state information record- 
ing this caching. We say that the client has 
a callback on that file. The server notifies 
the client before allowing a modification to 
the file by another client. In such a case, 
we say that the server removes the callback 
on the file for the former client. A client 
can use a cached file for open purposes only 
when the file has a callback. Therefore, if 
a client closed a file after modifying it, all 
other clients caching this file lose their 
callbacks. When these clients open the file 
later, they have to get the new version from 
the server. 

Reading and writing bytes of a file are 
done directly by the kernel without Venus 
intervention on the cached copy. Venus 
regains control when the file is closed, and 
if the file has been modified locally, Venus 
updates the file on the appropriate server. 
Thus, the only occasions in which Venus 
contacts Vice servers are on opening files 
that either are not in the cache or have had 
their callbacks revoked, and on Close-of- 
writing sessions. 

number, and a uniquifier. The vnode num- 
ber is used as an index into an array con- 
taining the i-node of files in a single 
volume. The uniquifier allows reuse of 
vnode numbers, thereby keeping certain 
data structures compact. Fid’s are location 
independent; therefore, file movements 
from server to server do not invalidate 
cached directory contents. 

Location information is kept on a volume 
basis in a volume location database repli- 
cated on each server. A client can identify 
the location of every volume in the system, 
querying this database. It is the aggregation 
of files into volumes that makes it possible 
to keep the location database at a manage- 
able size. 

To balance the available disk space and 
use of servers, volumes need to be migrated 
among disk partitions and servers. When a 
volume is shipped to its new location, its 
original server is left with temporary for- 
warding information so the location data- 
base need not be updated synchronously. 
While the volume is being transferred, the 
original server still may handle updates, 
which are later shipped to the new server. 
At some point the volume is briefly disabled 
to process the recent modifications, then 
the new volume becomes available again at 
the new site. The volume movement oper- 
ation is atomic; if either server crashes the 
operation is aborted. 

Read-only replication at the granularity 
of an entire volume is supported for system- 
executable files and seldom-updated files in 
the upper levels of the Vice name space. 
The volume location database specifies the 
server containing the only read-write copy 
of a volume and a list of read-only replica- 
tion sites. 

11.3 File Operations and Sharing Semantics 

The fundamental architectural principle in 
Andrew is the caching of entire files from 
servers. Accordingly, a client workstation 
interacts with Vice servers only during 
opening and closing of files, and even this 
is not always necessary. No remote inter- 
action is caused by reading or writing files 
(in contrast to the remote service method). 
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Basically, Andrew implements session I 1.4 Implementation 
semantics. The only exceptions are file op- 
erations other than the primitive Read and 
Write (such as protection changes at the 
directory level), which are visible every- 
where on the network immediately after 
the operation completes. 

In spite of the callback mechanism, a 
small amount of cached validation traffic 
is still present, usually to replace callbacks 
lost because of machine or network failures. 
When a workstation is rebooted, Venus 
considers all cached files and directories 
suspect and generates a cache valida- 
tion request for the first use of each such 
entry. 

The callback mechanism forces each 
server to maintain callback information 
and each client to maintain validity infor- 
mation. If the amount of callback infor- 
mation maintained by a server is excessive, 
the server can break callbacks and reclaim 
some storage by unilaterally notifying 
clients and revoking the validity of their 
cached files. There is a potential for incon- 
sistency if the callback state maintained by 
Venus gets out of sync with the correspond- 
ing state maintained by the servers. 

Venus also caches contents of directories 
and symbolic links for pathname transla- 
tion. Each component in the pathname is 
fetched, and a callback is established for it 
if it is not already cached or if the client 
does not have a callback on it. Lookups are 
done locally by Venus on the fetched direc- 
tories using fid’s. There is no forwarding of 
requests from one server to another. At the 
end of a pathname traversal all the inter- 
mediate directories and the target file are 
in the cache with callbacks on them. Future 
open calls to this file will involve no net- 
work communication at all, unless a call- 
back is broken on a component of the 
pathname. 

The only exception to the caching policy 
are modifications to directories that are 
made directly on the server responsible for 
that directory for reasons of integrity. 
There are well-defined operations in the 
Vice interface for such purposes. Venus 
reflects the changes in its cached copy to 
avoid refetching the directory. 

User processes are interfaced to a UNIX 
kernel with the usual set of system calls. 
The kernel is modified slightly to detect 
references to Vice files in the relevant 
operations and to forward the requests 
to the user-level Venus process at the 
workstation. 

Venus carries out pathname translation 
component by component as described ear- 
lier. It has a mapping cache that associates 
volumes of server locations to avoid server 
interrogation for an already known volume 
location. The information in this cache is 
treated as a hint. If a volume is not present 
in this cache or if the location information 
turned out to be wrong, Venus contacts a 
server, requests the location information, 
and enters this information into the map- 
ping cache. When a target file is found and 
cached, a copy is created on the local disk. 
Venus then returns to the kernel, which 
opens the cached copy and returns its han- 
dle to the user process. 

The UNIX file system is used as a low- 
level storage system for both servers and 
clients. The client cache is a local directory 
on the workstation’s disk. Within this di- 
rectory are files whose names are place 
holders for cache entries. Both Venus and 
server processes access UNIX files directly 
by their i-nodes to avoid the expensive 
pathname translation routine (namei). 
Since the internal i-node interface is not 
visible to user-level processes (both Venus 
and server processes are user-level pro- 
cesses), an appropriate set of additional 
system calls was added. 

Venus manages two separate caches- 
one for status and the other for data. Venus 
uses a simple least-recently used algorithm 
to keep each of them bounded in size. When 
a file is flushed from the cache, Venus 
notifies the appropriate server to remove 
the callback for this file. The status cache 
is kept in virtual memory to allow rapid 
servicing of system calls that ask for status 
information (e.g., the UNIX stat call). The 
data cache is resident on the local disk, but 
the UNIX I/O buffering mechanism does 
some caching of disk blocks in memory that 
is transparent to Venus. 
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A single user-level process on each file 
server services all file requests from clients. 
This process uses a LWP package with 
nonpreemptabie scheduling to service 
many client requests concurrently. The 
RPC package is integrated with the LWP, 
thereby allowing the file server to be con- 
currently making or servicing one RPC per 
lightweight process. RPC is built on top of 
a low-level datagram abstraction. 

Whole file transfer is implemented as a 
side effect of RPC call. There is an RPC 
connection per client, but there is no a 
priori binding of LWPs to these connec- 
tions. Instead, a pool of LWPs service client 
requests on all connections. The use of a 
single, user-level, server process allows Ve- 
nus to maintain in its address space caches 
of data structures needed for its operation. 
On the other hand, a single server process 
crash has the disastrous effect of paralyzing 
this particular server. 

A more recent version of Andrew differs 
slightly from the version described here. 
Instead of whole-file caching, caching in 
chunks of 64Kb, is used. Also, the sharing 
semantics were modified slightly. Updates 
are still immediately invisible. The updat- 
ing client can, however, explicitly request 
that the changes become visible even to 
remote clients having the file already open. 

11.5 Summary 

We review the highlights of the Andrew file 
system: 

l Name space and service model. Andrew 
explicitly distinguishes among local and 
shared name spaces, as well as among 
clients and dedicated servers. Clients 
have a small and distinct local name 
space and can access the shared name 
space managed by the servers. 

l Scalability. Andrew is distinguished by 
its scalability. The strategy adopted to 
address scale is whole file caching (to 
local disks) in order to reduce servers 
load. Servers are not involved in reading 
and writing operations. The callback 
mechanism was invented to reduce the 
number of validity checks. Performing 
pathname traversals by clients off-loads 
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this burden from servers. The penalty for 
choosing this strategy and the corre- 
sponding design includes maintaining a 
lot of state data on the servers to support 
the callback mechanism and specialized 
sharing semantics. 
Sharing semantics. Andrew’s semantics 
are simple and well defined (in contrast 
to NFS, for instance, where effects of 
concurrent accesses are time dependent). 
They are not, however, UNIX semantics. 
Basically, Andrew’s semantics ensure 
that a file’s updates are visible across the 
network only after the file has been 
closed. 
Component units and location mapping. 
Andrew’s component unit-the vol- 
ume-is of relatively fine granularity and 
exhibits some primitive mobility capabil- 
ities. Volume location mapping is imple- 
mented as a complete and replicated 
mapping at each server. 

Results of a thorough series of perfor- 
mance experimentation with Andrew are 
presented in Howard et al [1988]. The re- 
sults confirm the current design predic- 
tions. That is, the desired effects on server 
CPU use, network traffic, and overall time 
needed to perform remote file operations 
were obtained, in particular under severe 
server load. The performance experiments 
include a benchmark comparison with NFS 
in which Andrew demonstrated its superi- 
ority regarding the recently mentioned cri- 
teria, again especially for severe server load. 

12. OVERVfEW OF RELATED WORK 

This paper focused on several concepts and 
systems without exhausting the area of 
DFSs. Consequently, many aspects and 
systems were omitted. In this section we 
therefore cite references that complement 
this paper. 

Many studies of typical properties of file 
and characteristics of file accesses have 
been done over the years [Ousterhout et al. 
1985; Satyanarayanan 1981; Smith 19811. 
These empirical results have vast impact 
on the design of a DFS. Material on another 
subject that was not covered in this survey, 
namely security and authentication, can be 
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found in Needham and Schroeder [1978] 
and Satyanarayanan [ 19891. 

A detailed survey of mainly centralized 
file servers is found in Svobodova [ 19841. 
The emphasis is on support of atomic 
transactions, not on location transparency 
and naming. A tutorial on distributed op- 
erating systems is presented in Tanenbaum 
and Van Renesse [1985]. There, a distrib- 
uted operating system is defined and issues 
like communication primitives and protec- 
tion are discussed. These two surveys in- 
clude an extensive bibliography to a variety 
of distributed systems. 

Next, we give a concise overview of a few 
noteworthy DFSs that were not surveyed 
in this paper. 

l Roe [Ellis and Floyd 1983; Floyd 19891. 
Roe presents a file as an abstraction hid- 
ing both replication and location details. 
Files are migrated to achieve balancing 
of systemwide disk storage allocation and 
also as a remote access method. Consis- 
tency of replicated files is obtained by 
a weighted voting algorithm [Gifford 
19791. 

. Eden [Almes et al, 1983; Black 1985; 
Jessop et al. 19821. A radically different 
approach is adopted for the experimental 
Eden file system from the University of 
Washington. The system is based on the 
object-oriented and capability-based ap- 
proaches [Levy 19841. A file is a dynamic 
object that can be viewed as an instance 
of an abstract data type. It includes pro- 
cesses that satisfy requests oriented to 
the file (i.e., there is no separation of 
passive data files and active server pro- 
cesses). A kernel-supported storage 
system provides primitives for check- 
pointing the representation of an object 
to secondary storage, copying it, or mov- 
ing it from machine to machine. Eden 
files can be replicated, can be migrated, 
are named in a location-independent 
manner, and can support atomic trans- 
actions. More material on migratory ob- 
jects can be found in the context of the 
Emerald project, conducted in the same 
university [Jul et al. 19871. 

l Stork [Paris and Tichy 19831. Stork is 
an experimental file system designed to 

evaluate the feasibility of file migration 
as a remote access method. Locating a 
migratory file is based on a primitive 
mechanism of associating the file’s owner 
with a list of possible machines where the 
files can be located. It emphasizes that 
file access patterns must exhibit local- 
ity to make file migration an attractive 
remote access method. 

Ibis [Tichy and Ruan 19841. Ibis is the 
successor of Stork. It is a user-level ex- 
tension of UNIX. Remote file names are 
prefixed with their host name and can 
appear in system calls as well as in shell 
commands. The replication scheme was 
described in Section 5.3. Low-level, struc- 
ture, but location-dependent names are 
used. One of the parts of the structured 
name designates the machine that cur- 
rently stores the file. These names render 
file migration a very expensive operation, 
since all directories containing the name 
of the migrated file must be updated. 

Apollo Domain [Leach et al., 1982, 19851. 
The Domain system is a commercial 
product featuring a collection of powerful 
workstations connected by a high-speed 
LAN. An object-oriented approach is 
taken. Files are objects, and as such they 
may be of different types. Accordingly, it 
is possible to construct file operations 
that are customized for a particular file 
type. All the objects in the system are 
named by a networkwide, unique, low- 
level, location-independent name, called 
a UID. Objects are organized in hierar- 
chical, UNIX-like, directories that asso- 
ciate textual names with UIDs. No global 
state information is kept on object loca- 
tions. Instead, an interesting location al- 
gorithm, based on heuristics (hints) for 
guessing the object’s location, is used. For 
instance, one helpful heuristic is to as- 
sume that objects created at the same 
machine are likely to be located together. 
A unique feature of Domain is the way 
objects are accessed once located. Objects 
are mapped directly onto clients’ address 
spaces and accessed via virtual memory 
paging. In terms of remote access meth- 
ods, this amounts to caching in the gran- 
ularity of pages. Write-through policy 
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is used for modification, and client- 
initiated approach is used for validation 
of cached data. 

13. CONCLUSIONS 

In this paper we presented the basic con- 
cepts underlying the design of a distributed 
file system and surveyed five of the most 
prominent systems. A comparison of the 
systems is presented in Table 1. A crucial 
observation, based on the assessment of 
contemporary DFSs, is that the design of a 
DFS must depart from approaches devel- 
oped for conventional file systems. Basing 
a DFS on emulation of a conventional file 
system might be a transparency goal, but it 
certainly should not be an implementation 
strategy. Extending mechanisms developed 
for conventional file systems over a net- 
work is a strategy that disregards the 
unique characteristics of a DFS. 

Supporting this claim is the observation 
that a loose notion of sharing semantics is 
more appropriate for a DFS than conven- 
tional UNIX semantics. Restrictive seman- 
tics incur a complex design and intolerable 
overhead. A provision to facilitate restric- 
tive semantics for database applications 
may be offered as an option. Consequently, 
UNIX compatibility should be sacrificed 
for the sake of a good DFS design. In this 
respect, the approach used in Andrew to 
the semantics of sharing prove superior to 
those used in Locus and NFS. 

Another area in which a fresh approach 
is essential is the server process architec- 
ture. There is a wide consensus that some 
form of LWPs is more suitable than tradi- 
tional processes for efficiently handling 
high loads of service requests. 

It is difficult to present concrete guide- 
lines in the context of fault tolerance and 
scalability, mainly because there is not 
enough experience in these areas. It is clear, 
however, that distribution of control and 
data as presented in this paper is a key 
concept. User convenience calls for hiding 
the distributed nature of such a system. As 
we pointed out in Section 2, the additional 
flexibility gained by mobile files is the next 
step in the spirit of distribution and trans- 
parency. Based on the Andrew experience, 
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off-loading work from servers to clients and 
structuring a system as a collection of clus- 
ters are two sound scalability strategies. 
Clusters should be as autonomous as pos- 
sible and should serve as a modular building 
block for an expandable system. A chal- 
lenging aspect of scale that might be of 
interest for future designs is the exten- 
sion of the DFS paradigm over WANs. 
Such an extended DFS would be character- 
ized by larger latencies and higher failure 
probabilities. 

A factor that is certain to be prominent 
in the design of future DFSs is the available 
technology. It is important to follow tech- 
nological trends and exploit their potential. 
Some imminent possibilities are as follows: 

Large main memories. As main memo- 
ries become larger and less expensive, 
main-memory caching (as exemplified in 
Sprite) becomes more attractive. The re- 
wards in terms of performance can be 
exceptional. 
Optical disks. Optical storage technology 
has an impact on file systems in general 
and hence on DFSs in particular, too. 
Write-once optical disks are already 
available [Fujitani 19841. Their key fea- 
tures are very large density, slow access 
time, high reliability, and nonerasable 
writing. This medium is bound to become 
on-line tertiary storage and replace tape 
devices. Rewritable optical disks are be- 
coming available and might replace mag- 
netic disks altogether. 

Optical fiber networks. A change in the 
entire approach to the remote access 
problem can be justified by the existence 
of these remarkably fast communication 
networks. The concept of local disk is 
faster may be rendered obsolete. 
Nonvolatile RAMS. Battery-backed 
memories can survive power outage, 
thereby enhancing the reliability of 
main-memories caches. A large and reli- 
able memory can cause a revolution in 
storage techniques. Still, it is questiona- 
ble whether this technology is sufficient 
to make main memories as reliable as 
disks because of the unpredictable con- 
sequences of an operating system crash 
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Table 1. Comparison of Surveyed Systems 

UNIX United Locus 

Background Interconnecting a set of loosely 
coupled UNIX systems without 
modifying the kernel. 

A highly reliable distributed op- 
erating system providing multi- 
ple dimensions of transparency 
and is UNIX compatible. 

Naming scheme 

Component unit 

User mobility Not supported. 

Client-server Each machine can be both. 

Remote-access method 

Caching 

Sharing semantics 

Pathname traversal 

Reconfiguration, file mobility 

Availability 

Single pseudo-UNIX tree. No- 
ticeable machine boundaries. All 
pathnames are relative (by the 
‘ ’ syntax). Independence of . 
component systems. Recursive 
structuring. 

Single UNIX tree, hiding both 
replication and location. 

Entire UNIX hierarchy. 

Emulation of conventional 
UNIX across the network. 

Emulation of UNIX buffering. 

The pathname translation re- 
quest is forwarded from machine 
to machine. 

Impossible to move a file without 
changing its name. No dynamic 
reconfiguration. 

A logical filegroup (UNIX file 
system). 

Supported. 

A triple: US, SS, CSS. Every file 
group has a CSS that selects SS 
and synchronizes accesses. Once 
a file is open, direct US-SS 
protocol. 

Once a file is open, accesses are 
served by caching. 

Block caching similar to UNIX 
buffering. A token scheme for 
cache consistency. Closing a file 
commits it on the server. 

Complete UNIX semantics, 
including sharing of file offset. 

US reads each directory and per- 
forms lookup itself. Given a tile 
group number, the CSS is found 
replicated on all machines in the 
logical mount table. The CSS 
picks SS. 

Because of replication, servers 
can be taken off-line or fail with- 
out disturbance. Directory hier- 
archy can be changed by 
mounting/unmounting. 

Availability of a file means the 
CSS and SS are available. Each 
component in the file’s path- 
name must be available for the 
file to be opened. The primary 
copy must be available for a 
Write. 
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NFS Sprite Andrew 

A network service so that inde- Designed for an environment 
pendent workstations would be consisting of diskless worksta- 
able to share remote files trans- tions with huge main memories 
parently. interconnected by a LAN. 

Each machine has its own view 
of the global name space. 

Single UNIX tree; hiding 
location. 

A directory within an exported 
file system can be remotely 
mounted. 

Potential for support exists; 
demands certain configuration. 

Every machine can be both. Di- 
rect client-server relationship is 
enforced. 

Remote service mixed with block 
caching for service. 

Block caching similar to UNIX 
buffering. Client checks validity 
of cached data on each open. 
Delayed-write policy. 

Not UNIX semantics. Timing- 
dependent semantics. 

Lookups are done remotely for 
each pathname component, but 
all are initiated from the client. 
A lookup cache for speedup. 

Mount/unmount can be done 
dynamically by superuser for 
each machine. 

In case of cascading mount, each 
server along the mount chain has 
to be available for a file to be 
available. 

A domain (UNIX file system). 

Supported. 

Typically, clients are diskless 
and servers are machines with 
disks. 

Block caching in main memory. 
In case of concurrent writes, 
switch to Remote Service. 

Block caching similar to UNIX 
buffering. Delayed-write policy. 
Client checks validity of cached 
data on each open. Server dis- 
ables caching when a file is 
opened in conflicting modes. 

UNIX semantics. 

Prefix tables mechanism. Inside 
a domain, lookup is done by 
server. 

Broadcast protocol supports 
dynamic reassignment of 
domains to servers. 

If a server of a file is available, 
the file is available regardless of 
the state of other servers (along 
the pathname). 

Designed as the sharing mecha- 
nism of a large-scale system for a 
university campus. 

Private name spaces and one 
UNIX tree for the shared name 
space. The shared tree descends 
from each local name space. 

A volume (typically, all files of a 
single user). 

Fully supported. 

Clustering: Dedicated servers per 
cluster. 

Whole file caching in local disks. 

Read and Write are served 
directly by the cache without 
server involvement. Write-on- 
close policy. Server-initiated 
approach for cache validation 
(callback), hence no need to 
check on each open. 

Session semantics. 

Client caches each directory and 
performs lookup itself. Given a 
volume number, the server is 
found in a volume location data- 
base replicated on each server. 
Parts of this database are cached 
on each machine. 

Volume migration is supported. 

A client has to have a connection 
to a server, and each pathname 
component must be available. 
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Table l-Continued 

UNIX United Locus 

Other fault tolerance issues 

Scalability issues Recursive structuring. 

Implementation strategy, archi- 
tecture 

UNIX kernel kept intact. Con- 
nection layer intercepts remote 
calls. User-level daemons for- 
ward and service remote opera- 
tions. A spawner process creates 
a server process per user that ac- 
cesses files using file descriptors. 

Networking 

Communication protocol 

Special features 

Main advantage 

Suitable for arbitrary internet- 
work topology. 

RPC 

Original UNIX kernel. Internet- 
working capabilities. 

Main disadvantage Not fully transparent naming. 

A file is committed on close. The 
primary copy is always up to 
date. Other replicas may have 
older (but not partially modified) 
versions. 

Replicated mount table on each 
site and CSS for a file group are 
major problems. 

Extensive UNIX kernel modifi- 
cation. Kernel is pushed into the 
network. Some kernel LWP for 
remote services. Structured, low- 
level, location-independent file 
identifiers are used. 

LAN 

Specialized low-level protocols 
for each operation. 

Replication (primary copy). 
Atomic update by shadow pag- 
ing. 

Performance, because of kernel 
implementation. Fault tolerance, 
due to replication, atomic up- 
date, and other features. UNIX 
compatibility. 

Complicated design and large 
kernel. Unscalable features. 
Complex recovery due to main- 
tained state. 

[Ousterhout 19891. Other problems of 
relatively slow access time and limited 
size still plague this technology. 
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