
Existential Consistency:
Measuring and Understanding Consistency at Facebook

Haonan Lu∗†, Kaushik Veeraraghavan†, Philippe Ajoux†, Jim Hunt†,
Yee Jiun Song†, Wendy Tobagus†, Sanjeev Kumar†, Wyatt Lloyd∗†

∗University of Southern California, †Facebook, Inc.

Abstract
Replicated storage for large Web services faces a trade-off
between stronger forms of consistency and higher perfor-
mance properties. Stronger consistency prevents anomalies,
i.e., unexpected behavior visible to users, and reduces pro-
gramming complexity. There is much recent work on im-
proving the performance properties of systems with stronger
consistency, yet the flip-side of this trade-off remains elu-
sively hard to quantify. To the best of our knowledge, no
prior work does so for a large, production Web service.

We use measurement and analysis of requests to Face-
book’s TAO system to quantify how often anomalies happen
in practice, i.e., when results returned by eventually consis-
tent TAO differ from what is allowed by stronger consistency
models. For instance, our analysis shows that 0.0004% of
reads to vertices would return different results in a lineariz-
able system. This in turn gives insight into the benefits of
stronger consistency; 0.0004% of reads are potential anoma-
lies that a linearizable system would prevent. We directly
study local consistency models—i.e., those we can analyze
using requests to a sample of objects—and use the relation-
ships between models to infer bounds on the others.

We also describe a practical consistency monitoring sys-
tem that tracks φ -consistency, a new consistency metric ide-
ally suited for health monitoring. In addition, we give insight
into the increased programming complexity of weaker con-
sistency by discussing bugs our monitoring uncovered, and
anti-patterns we teach developers to avoid.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Copyright is held by the owner/author(s).
SOSP’15, October 4–7, 2015, Monterey, CA.
ACM 978-1-4503-3834-9/15/10.
http://dx.doi.org/10.1145/2815400.2815426

1. Introduction
Replicated storage is an important component of large Web
services and the consistency model it provides determines
the guarantees for operations upon it. The guarantees range
from eventual consistency, which ensures replicas eventu-
ally agree on the value of data items after receiving the same
set of updates to strict serializability [12] that ensures trans-
actional isolation and external consistency [25]. Stronger
consistency guarantees often require heavier-weight imple-
mentations that increase latency and/or decrease through-
put [5, 13, 26, 37]. As a result, many production systems [14,
15, 19, 24, 32, 42, 46] choose weaker forms of consistency
in order to provide low latency and high throughput.

These weaker forms of consistency have two primary
drawbacks. First, they admit executions with user-visible
anomalies, i.e., strange behavior that defies user expecta-
tions. A common example is out-of-order comments on a so-
cial network post, e.g., Alice comments on a post, Bob com-
ments on the same post after seeing Alice’s comments, and
then Charlie sees Bob’s comment appear before Alice’s. The
second drawback of weaker consistency models is that they
increase programming complexity, i.e., programmers work-
ing on systems with weaker models must reason about and
handle all the complex cases. A common example is the loss
of referential integrity, e.g., Alice uploads a photo, and then
adds it to an album. In some weaker consistency models, the
programmer must reason about an album with references to
photos that do not yet exist.

There has been much recent work on providing interme-
diate [3, 7, 21, 22, 38, 39], and even strong consistency [6,
9, 17, 18, 23, 27, 31, 36, 39, 41, 43, 50–52, 54, 56] with in-
creasingly high throughput and low latency. Yet the flip side
of this trade-off remains elusively difficult to quantify; to the
best of our knowledge there is no prior work that does so for
a large, production Web service. Without an understanding
of the consistency benefits of intermediate and strong con-
sistency, it is difficult to fully evaluate how they compare to
weaker models, and each other.

295

Pete Keleher

Pete Keleher

This work takes the first step towards quantifying those
benefits by measuring and analyzing requests to the social
graph at Facebook. We focus our study on a social network
because it is the application that has motivated much of the
recent research boom in replicated storage. We also focus on
it because it provides a more interesting trade-off between
performance and consistency than some other applications
that require strong forms of consistency, e.g., the ads served
by the F1 database [49], which motivates the strongly con-
sistent Spanner system [17].

Facebook’s replicated storage for its social graph is a
combination of a two-level cache and a sharded, single-
master-per-shard database. The caches are grouped into clus-
ters. Within a cluster, per-object sequential and read-after-
write consistency are provided. Across the entire system,
eventual consistency is provided. We perform two types of
analysis on this system: a principled analysis and a practi-
cal analysis. The principled analysis identifies when the re-
sults of the system differ from what is allowed by stronger
consistency models, i.e., what anomalies occur in the even-
tually consistent production system. The practical analysis
is used as a real-time monitoring tool. It is also a useful tool
for finding bugs in code written on top of the storage system.
These bugs give us insight into the types of mistakes that can
happen due to the increased programmer complexity due to
weaker consistency models.

We conduct the principled analysis by logging all the re-
quests to a small random sample of the social graph, and by
running offline consistency checkers on those logs. We have
created checkers that identify when the real, eventually con-
sistent system returns results that are disallowed by stronger
consistency models. We have checkers for local consistency
models, e.g., linearizability [29], per-object sequential con-
sistency [16], and read-after-write consistency, which can be
accurately measured by a random sample. In addition, we
use the theoretical relationships between consistency mod-
els to infer bounds on the results for non-local consistency
models, e.g., causal consistency [1, 33], which cannot be ac-
curately measured by a random sample. The results of these
checkers directly measure or bound how often anomalies oc-
cur and give insight into the benefits of different consistency
models in reducing the frequency of anomalies.

Running the principled analysis in real-time would be
equivalent to implementing a system with stronger consis-
tency guarantees, and running it in parallel with the even-
tually consistent system. To avoid that overhead, we in-
stead use a practical online consistency checker for real-
time health monitoring of the replicated storage system. The
practical checker measures φ -consistency, a new metric that
can be computed in real-time. It reflects the frequency of
all replicas returning the same results for a user’s read re-
quest. We define φ -consistency formally, relate it to princi-
pled consistency models, and explain how it is used to mon-

itor the health of the system. The practical checker has been
deployed at Facebook since 2012.

The contributions of this paper include:

• The first systematic analysis of the benefits of stronger
consistency models in a large-scale production system.

• A principled approach for identifying anomalies, and a
practical approach for real-time health monitoring of a
weakly consistent system.

• Insights into the effects of increased programmer complex-
ity due to weaker consistency models through a discussion
of bugs our monitoring system has uncovered, and anti-
patterns we teach developers to avoid.

We present background on Facebook’s replicated storage
and consistency models in Section 2. We present our princi-
pled analysis in Section 3 and our practical analysis in Sec-
tion 4. We discuss experience in Section 5. We review related
work in Section 6; and we conclude in Section 7.

2. Background
This section covers background on Facebook’s replicated
storage and consistency models.

2.1 Facebook’s Replicated Storage
The replicated storage that holds the social graph at Face-
book uses a graph data model stored in a two-level cache
and a backing database.

Data Model Facebook models entities and the relation-
ships between them with vertices and directed edges in a
graph data model.1 Vertices are typed objects identified by
a 64-bit unique id and are stored with a type-specific dictio-
nary. For instance, vertex 370 could be a post object with the
content and creation time of the post stored in the dictionary,
and vertex 450 could be a user object with the hometown
and join date stored in the dictionary.

Directed edges in the graph are also typed objects stored
with a type-specific dictionary, but they are identified by
their endpoints. For instance, edge(370,450) could be a
posted by edge that indicates user 450 created post 370 with
an empty dictionary. Edges are indexed and accessed by
their tail (source). Some edge types are symmetric, i.e., an
edge(x,y) is always accompanied by a symmetric edge(y,x).
For instance, if user 450 follows user 520, this relation-
ship is represented by a pair of symmetric edges: a fol-
lowing edge(450,520) and a followed by edge(520,450).
Symmetric edge types are identified in the schema. A cre-
ation/deletion operation on one edge in a pair implicitly
creates/deletes the symmetric edge. For instance, creating
the following edge(450,520) would automatically create the
followed by edge(520,450).

1 Vertices and edges are also called objects and associations [14].

296

Pete Keleher

Pete Keleher

Pete Keleher

SlaveSlaveSlaveSlave

Slave

Master

Master

Slave

Slave

Web
Servers

Leaf
Caches

Root
Caches

Databases
SlaveSlaveSlave

Region A Region B Region C

asynchronous synchronous

Slave

1

2

345

6
7

8

5' 5'

6' 6' 7'

6''

7'' 7''

Figure 1: The write path for Facebook’s replicated stor-
age. On-path caches are synchronously updated; off-
path caches are asynchronously invalidated. There is a
single master region for each shard with the root-master
cache and master database. Different shards may have
masters in different regions.

Database Facebook uses a horizontally (i.e., row) sharded,
geo-replicated relational database management system to
persistently store user data. There is a full copy of the entire
database in each of the geo-distributed regions, which are co-
located sets of datacenters. For each shard there is a single
master region that asynchronously updates the other, slave
regions. The master region is not necessarily the same for all
shards and the master region for a shard can be changed.

Two-Level Cache A two-level cache fronts (i.e., it is a
write-through cache) the full database replica in each re-
gion. There is a single logical root cache that sits in front
of the database; there are multiple logical leaf caches that
sit in front of the root cache.2 Shards of root caches are dis-
tinguished by the role of the database shard they front: a
root-master fronts the master for its shard of the database,
a root-slave fronts a slave for its shard of the database. The
front-end web servers that handle user requests are grouped
into clusters and each cluster is exclusively associated with a
single leaf cache. Figure 1 shows clusters of web servers, the
top-level leaf caches, mid-level root cache, and bottom-level
database in three regions.

Reads progress down the stack in their local region on
cache misses from leaf cache to root cache, and then to local
database. The cache-hit ratios are very high, so reads are
typically served by the leaf caches.

Writes follow a more complex route as shown in Fig-
ure 1. They are synchronously routed through their leaf
cache (1) to their local root cache (2) to the root-master
cache (3), and to the master database shard (4) and back (5–
8). Each of those caches applies the write when it forwards
the database’s acknowledgment back towards the client. The
root caches in the master (6′) and originating regions (7′)
both asynchronously invalidate the other leaf caches in their
region. The database master asynchronously replicates the

2 The root and leaf caches are also called leader and follower tiers [14].

write to the slave regions (5′). When a slave database in a re-
gion that did not originate the write receives it, the database
asynchronously invalidates its root cache (6′′) that in turn
asynchronously invalidates all its leaf caches (7′′).

2.2 Consistency Models
This subsection reviews the definition of “local” for consis-
tency models, the consistency models covered by our princi-
pled anomaly checkers, and the consistency model provided
by Facebook’s replicated storage.

Local Consistency Models A consistency model, C, is lo-
cal if the system as a whole provides C whenever each indi-
vidual object provides C [29]. We primarily study local con-
sistency models in this paper because they can be checked
and reasoned about using requests to a subset of objects.
Analyzing non-local consistency models—e.g., strict seri-
alizability, sequential consistency, and causal consistency—
require requests to all objects, and thus are not amenable
to sampling-based study. While we focus on local consis-
tency models, we do derive lower bounds, and also some up-
per bounds on the anomalies non-local consistency models
would prevent in Section 3.4. All of the consistency models
described in the remainder of this section are local.

Linearizability Linearizability [29] is the strongest consis-
tency model for non-transactional systems. Intuitively, lin-
earizability ensures that each operation appears to take ef-
fect instantaneously at some point between when the client
invokes the operation and it receives the response. More for-
mally, linearizability dictates that there exists a total order
over all operations in the system, and that this order is con-
sistent with the real-time order of operations. For instance,
if operation A completes before operation B begins, then A
will be ordered before B. Linearizability avoids anomalies
by ensuring that writes take effect in some sequential order
consistent with real time, and that reads always see the re-
sults of the most recently completed write. Linearizability
also decreases programming complexity because it is easy
to reason about.

Per-Object Sequential Consistency Per-object sequential
consistency3 [16, 34] requires that there exists a legal, total
order over all requests to each object that is consistent with
client’s orders. Intuitively, there is one logical version of
each object that progresses forward in time. Clients always
see a newer version of an object as they interact with it.
Different clients, however, may see different versions of the
object, e.g., one client may be on version 100 of an object,
while another client may see version 105.

Read-After-Write Consistency Within each cluster, Face-
book’s replicated storage is also designed to provide read-
after-write consistency within each leaf cache, which means
when a write request has committed, all following read re-
quests to that cache always reflect this write or later writes.

3 Also called per-record timeline consistency.

297

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

We also consider read-after-write consistency within a re-
gion and globally. Region read-after-write consistency ap-
plies the constraint for reads in the same region as a write.
Global read-after-write consistency applies the constraint for
all reads.

Eventual Consistency Eventual consistency requires that
replicas “eventually” agree on a value of an object, i.e.,
when they all have received the same set of writes, they will
have the same value. Eventual consistency allows replicas
to answer reads immediately using their current version of
the data, while writes are asynchronously propagated in the
background. While writes are propagating between replicas,
different replicas may return different results for reads. A
useful way to think about this is that a write might not be
seen by reads within time ∆t after it committed, which is
not allowed in linearizable systems. We later refer to this
∆t as a vulnerability window. Multiple replicas may accept
writes concurrently in an eventually consistent system, but
we do not have that complication here, because Facebook’s
TAO system uses a single-master-per-shard model to order
all writes to an object.

Facebook’s Consistency Overall Facebook’s design pro-
vides per-object sequential consistency and read-after-write
consistency within a cache, and eventual consistency across
caches. User sessions are typically handled exclusively by
one leaf cache, and thus we expect most of them to receive
per-object sequential and read-after-write consistency.

Sometimes user sessions are spread across multiple leaf
caches. This happens when user sessions are load-balanced
between web server clusters. It also happens when a machine
within a leaf cache fails and the requests to it are sent to other
leaf caches in the same region. In these cases we expect user
sessions to receive eventual consistency [14].

3. Principled Consistency Analysis
This section makes progress towards quantifying the bene-
fits of stronger consistency models by identifying how often
the behavior they disallow occurs in Facebook’s replicated
storage. This section describes the trace collection, the con-
sistency checkers, the results of those checkers, and the con-
clusions about the benefits of stronger consistency.

3.1 The Trace
We collect a trace that is useful for identifying the violations
of consistency models. An ideal trace would contain all re-
quests to all vertices (and their adjacent edges) in the system
and would allow us to check all consistency models. Unfor-
tunately, logging all requests to the replicated storage system
is not feasible because it would create significant compu-
tational and network overhead. To avoid this, our trace in-
stead contains all requests to a small subset of the vertices
(and their adjacent edges) in the system. This trace allows us
to check local consistency models, while keeping collection
overhead low.

Trace Collection Vertices are identified by 64-bit unique
ids. These ids are not necessarily evenly distributed so we
hash them before applying our sampling logic. This ensures
an even distribution among vertex types and a rate of logged
requests that is similar to our sampling rate. We trace vertex
requests if the hashed ID is in our sample. We trace edge
requests if the hashed head or tail ID is in our sample.
Tracing based on both directions of edge requests ensures
we catch explicit requests that implicitly update the opposite
direction for symmetric edge types.

For each request, we log the information necessary for
running our checkers and debugging identified anomalies:

• object id: Vertex ID or head and tail IDs for edge requests.
• type: The type of the vertex or edge requested.
• action: The request type, e.g., vertex create, edge add.
• value: The hashed value field of the request.
• invocation time: Time when the request was invoked.
• response time: Time when a response was received.
• user id: Hashed ID of the user that issued the request.
• cluster: ID of the cluster that served the request.
• region: ID of the region that served the request.
• endpoint: ID of the service that issued the request.
• server: ID of server that issued the request.

The object id, type, and action fully define a request.
The value allows us to match reads with the write(s) they
observed. The invocation time and response time are used
for defining the real-time order in linearizability and read-
after-write consistency. Those times in combination with the
user id define the (process) ordering for per-object sequen-
tial consistency. The cluster is used to differentiate different
varieties of anomalies by checking per-cluster, per-region,
and global consistency. The endpoint and server are useful
for debugging anomalies we identify.

Requests are logged from the web servers that issue the
requests to the storage system. They are logged to a separate
logging system that stores the requests in a data warehouse.
At the end of each day we run the offline consistency check-
ers. Waiting until well after the requests have occurred to
check them ensures we see all requests to an object. This
eliminates any effects we would otherwise see if parts of the
logging system straggle.

Clock Skew The web servers that log requests take the
invocation timestamp before issuing each request, and the
response timestamp after receiving the response. The time
on the web servers is synchronized using NTP [40] and
there is a small amount of clock skew, the amount of time
a machine’s local clock differs from the actual time. For
the days of August 20-31 the 99.9th percentile clock skew
across all web servers was 35 ms.

We account for this clock skew by expanding the invoca-
tion time and response time, i.e., we subtract 35 ms from all
invocation times and add 35 ms to all response times. This
ensures all anomalies we identify are true anomalies, and

298

Pete Keleher

Pete Keleher

thus we are certain that a system with a strong consistency
model would return a different result. Another way to view
this is that we are identifying a close lower bound on the true
number of anomalies.

Coping with Imperfect Logging One tricky issue we dealt
with in collecting and processing our trace was that our log-
ging was not lossless. In particular, we log from web servers
that prioritize user traffic over our logging and as a result
sometimes cause it to timeout. This means the trace does
not contain 100% of requests for our sample of objects. For
reads, we do not believe this has much impact on our results
because the missing reads should be evenly distributed be-
tween anomalous and regular reads.

For writes, however, missing them presents a problem
that results in many false positive anomalies. Reads that
reflect the results of a write not in the trace would be marked
as anomalies. For instance, in:

vertex write(450,“x:1”,...)
vertex write(450,“x:2”,...) # missing

vertex read(450, ...) = “x:2”
the read appears to be an anomaly in the trace because it
reflects a state of the data store that never (appears to have)
existed. We encountered many of these apparent anomalies,
including some cases where a value we never saw written
was returned for hours. We investigated them by checking
the state of the master database and confirmed that the reads
were reflecting a write that was missing from our trace.

Our initial approach for dealing with these missing writes
was to exclude reads that did not match with a write in our
trace. This provided a better measurement, but we still saw
some false positives. For instance, in:

vertex write(450,“x:2”,...)
potentially many hours and operations

vertex write(450,“x:1”,...)
vertex write(450,“x:2”,...) # missing

vertex read(450, ...) = “x:2”
the read still incorrectly appears to be an anomaly because it
appears to be reflecting a too old state.

To eliminate these false positives from our trace we sup-
plemented it with an additional trace of writes from the
Wormhole system [48]. This secondary trace uses the same
hashing and sampling logic to determine which writes to log.
Its logging is also not lossless, so again we do not have 100%
of writes to all objects in the sample. When we combine
the writes from both traces, however, we have ~99.96% of
all writes to the objects in our sample. The impact of the
few remaining missing writes is negligible when we add our
logic that identifies obviously missing writes to the com-
bined trace.

3.2 Anomaly Checkers
We designed a set of algorithms to identify anomalies for
three consistency models: linearizability, per-object sequen-
tial consistency, and read-after-write consistency. Consis-

tency models provide guarantees by restricting the set of
possible executions. The basic idea of these algorithms is to
identify when a traced execution violates these restrictions,
i.e., it is not possible in a system that provides the checked
consistency guarantee. Each checker does this by maintain-
ing a directed graph, whose vertices represent the state of an
object, and whose edges represent the constraints on the or-
dering between them. We check for anomalies by checking
that the state transition order observed by reads is consistent
with these constraints.

Preprocessing We preprocess the trace to reduce its size
for faster checking, to reduce the memory required by the
checkers, and to simplify the implementations. Each consis-
tency model that we check is a local consistency model, so
we can check it by checking each object individually. Our
first preprocessing step enables this by grouping the requests
for each object together.

Our second preprocessing step reduces the size of the
trace by eliminating objects that will not show anomalies.
These eliminated objects include those that either have no
writes, or have no reads. Objects with no writes have no re-
strictions on the set of allowed values. Objects with no reads
have nothing to check against the set of allowed values.

Our final preprocessing step sorts the requests to each
object by their invocation time.4 This step simplifies the
implementation of the checkers and allows them to make a
single pass over the requests to each object.

Linearizability Checker Figure 2 shows the pseudocode
for a simplified version of our linearizability checker. The
input to the checker is a list of all of the operations to one
object sorted by invocation time. The output of the checker
is all of the anomalous reads, i.e., reads that return results
they would not in a linearizable system.

Intuitively, the checker maintains a graph whose vertices
are operations, and edges are constraints. It checks for cycles
as it adds operations to the graph. If the graph is acyclic,
then there exists at least one total order over the operations
with all constraints satisfied, i.e., there are no anomalies.5

If there are cycles, then there are anomalies. After adding
an operation to the graph we check for cycles; if there are
cycles then the operation is flagged as an anomaly and the
cycle broken. Breaking cycles maintains the invariant that
the graph is acyclic before an operation is added, and thus
allows us to check if the operation is an anomaly simply by
checking for cycles after adding it.

Linearizability requires that there exists a total order that
is legal, and agrees with the real-time ordering of operations.
A total order is legal if a read is ordered after the write
it observed with no other writes in between. Our checker
4 Sorting is primarily to merge traces from individual web servers. In ad-
dition, it also deals with occasionally delayed components in the logging
infrastructure that can cause out of order logging.
5 A topological sort of the graph would give one such total order.

299

Pete Keleher

1 # all requests to one object
2 # sorted by their invocation time
3 func linearizable_check(requests):
4 for req in requests
5 add_to_graph(req)
6 if req is read
7 # look ahead for concurrent writes
8 next_req = req.next()
9 while next_req.invocT < req.respT

10 if next_req is write
11 graph.add_vertex(next_req)
12 match = find_matched_write(req)
13 merge_read_into_write(req, match)
14 if found_anomaly(graph)
15 anomaly_reads.add(req)
16 # graph only has writes and is acyclic
17 print anomaly_reads
18

19 func add_to_graph(req):
20 if req in graph
21 # already in graph from lookahead
22 return
23 new_v = graph.add_vertex(req)
24 # add edges from real-time ordering
25 for v in graph.vertices()
26 if v.resp_t < new_v.invoc_t
27 graph.add_edge(v, new_v)

28 # matched write inherits edges read
29 func merge_read_into_write(read, match)
30 for e in read.in_edges()
31 if e.source != match
32 graph.add_edge(e.source, match)
33 # refine response time of merged vertex
34 if req.resp_t < match.resp_t
35 match.resp_t = req.resp_t
36 graph.remove_vertex(read)
37

38 func find_matched_write(req)
39 for v in graph.breadth_first_search(req)
40 if v.hashValue matches req.hashValue
41 return v
42

43 # cycles indicate no legal total order
44 # exists and this read is an anomaly
45 func found_anomaly(graph)
46 cycles = graph.check_for_cycles()
47 if cycles is null
48 return false
49 # remove edges that produced cycles
50 for c in cycles
51 for e in c.edges()
52 if e.source.invoc_t > e.dest.resp_t
53 graph.remove_edge(e)
54 return true

Figure 2: Psuedo-code for the linearizability checker.

enforces this constraint by merging a read vertex into the
write vertex it observed (lines 29–36). This leaves us with
only write vertices in the graph. We can then convert a total
order of the write vertices into a total order of all operations
by simply placing the reads immediately after the write they
were merged into.

Merging read vertices into the write vertices they observe
requires matching reads to writes (lines 38–41). Figure 3
shows the three possible cases: a read observes an earlier
write (a), a read observes a concurrent write that began
before it (b), and a read observes a concurrent write that
began after it (c). Handling the third case when processing
operations ordered by invocation time requires that we look
ahead to find all the concurrent writes (lines 9–11, 20–22).

The real-time ordering constraint dictates that any opera-
tion that is invoked after another completes must be ordered
after it. Our checker incorporates this constraint by adding
edges to an operation from all those that precede it (lines 25–
27). Figure 4 shows the execution for a stale read anomaly
where the real-time ordering is violated when a read ob-
serves the value of an old write instead of a more recent one.
The figure also shows the cycle this anomaly creates in the
graph that our checker will catch (lines 14–15, 45–54).

The total order requirement of linearizability may still be
violated even when reads do not observe stale values. This
type of anomaly typically occurs when there are concurrent

writes followed by reads that do not mutually agree on the
execution order of the writes. We term this type of violation
a total order anomaly and show an example in Figure 5. The
figure also shows the cycle the anomaly creates in the graph
that our checker will find and flag.

An important part of making our checker complete is re-
fining the response time of a write vertex to be the mini-
mum of its response time and the response times of all the
reads that observe it (lines 34–35). This ensures we enforce
transitive ordering constraints where a read must be after the
write it observes. Operations that follow that read in real-
time must be ordered after it, and thus operations that fol-
low the read must also be after the write. For instance, our
checker would refine the response time of w3 in Figure 3 to
be that of r3 to ensure that if some other operation began
after r3’s response time but before w3’s response time, we
would still capture that constraint.

For clarity we omit pseudo-code for a number of corner
cases and optimizations. The corner cases include leading
reads, missing writes, and picking between multiple sets of
reads for concurrent writes. Leading reads are the reads for
an object in the trace that occur before we see any writes.
We handle these reads by inserting special ghost writes into
the beginning of the trace for the writes that we can assume
happened, but were before our trace began. Missing writes
are the writes that are still missing from the merged trace. We

300

Pete Keleher

Pete Keleher

w1
1 è X

r1
1 ç X

(a) Earlier write.
w2

2 è Y
r2

2 ç Y

(b) Concurrent write, begins earlier.
w3

3 è Z
r3

3 ç Z

(c) Concurrent write, begins later.

Figure 3: Reads observing writes.

w1
1 è X w2

2 è X

r1
1 ç X

(a) Execution.

w1 w2 r1

(b) Graph before merge.

w1 w2

(c) Graph after merge.

Figure 4: Stale read anomaly. Bars indicate invocation and response times. Edges
indicate a real-time ordering constraint. r1 is merged into w1 from (b) to (c).

w1
1 è X
w2

2 è X

r1
1 ç X

r2
2 ç X

(a) Execution

w2 r2

w1 r1

(b) Graph before merge.

w1 w2

(c) Graph after merge.

Figure 5: Total order anomaly. r1 and r2 are merged into w1 and w2 respectively.

handle these as we did before we collected a second trace.
When there are total order anomalies there can be multiple
sets of competing reads. Only one set can be marked as not
anomalous. Instead of picking the set of the first write to be
seen, like the pseudo-code, we pick the largest set, i.e., we
assume the majority of the reads correctly reflect the final
state of those concurrent writes.

The optimizations we omit include reducing the number
of edges and how we check for cycles. Our implementation
only adds edges that express new constraints, e.g., in Fig-
ure 4(b) we would not add the edge (w1, r1) because that
constraint is already expressed by the edges (w1,w2) and
(w2,r1). We check for cycles by checking if a read is being
merged into a write that is its ancestor (stale read anoma-
lies) and checking each set of concurrent writes to ensure
no more than one is observed by reads invoked after the set
returns (total order anomalies).

Per-Object Sequential and Read-After-Write Checkers
Linearizability is strictly stronger than per-object sequen-
tial and read-after-write consistency, meaning the anoma-
lies in linearizability are supersets of those in the weaker
models. We exploit this property by building the weaker
model checkers as add-on components to the linearizability
checker. Each operates only on the linearizable anomalies.

Per-object sequential consistency has two constraints on
the requests to each object: the order of requests is consistent
with the order that the users issue their requests and there
exists a total order. We check these two constraints against
each linearizable anomaly by checking the following condi-
tions that reflect those two constraints respectively. Case 1:
the linearizable anomaly is a stale read anomaly, and there
exists a write more recent than the matched write that is from
the same user who issued the read. Case 2: the linearizable
anomaly is a total order anomaly. The former case shows a
client does not observe her most recent write, and hence is
inconsistent with client’s order. The latter case is precisely
a total order violation. If either of these two cases matches,

Requests ObjectsTotal Reads Writes

Vertices 939 937 2.1 3.4
Edges 1,828 1,818 9.7 13.4

Table 1: High-level trace statistics in millions. Objects
indicate the number of unique groups of requests that
our checkers operate over. For vertices it is the count of
unique vertices in the trace. For edges it is the count of
unique source and edge type combinations.

then the linearizable anomaly is also flagged as a per-object
sequential anomaly.

Read-after-write consistency requires that all reads after a
committed write always reflect this write or later writes. This
constraint is equivalent to the real-time ordering constraint.
Hence, our checker simply flags all stale read anomalies
found by linearizable checker as read-after-write anomalies.
We check read-after-write violations in three levels: cluster,
region, and global. We check at the cluster/region level by
looking for a write in the cycle that is more recent than the
matched write, and has the same cluster/region as the read.
Global read-after-write anomalies are the same as the stale
read anomalies under linearizability.

3.3 Analysis
We ran our consistency checkers on a 12-day-long trace of
Facebook’s replicated storage. Each day is checked individ-
ually, and then the results are combined. The trace was col-
lected from August 20, 2015 to August 31, 2015 and in-
cluded all requests to 1 out of every million objects. This
sampling rate is low enough to avoid adversely impacting
the replicated storage system while being high enough to
provide interesting results. The trace contains over 2.7 bil-
lion requests. Table 1 shows more high-level statistics.

301

Anomalous
Reads

Percentage Of
Filtered Overall
(241M) (937M)

Linearizable 3,628 0.00151% 0.00039%
Stale Read 3,399 0.00141% 0.00036%
Total Order 229 0.00010% 0.00002%

Per-object Seq 607 0.00025% 0.00006%
Per-User 378 0.00016% 0.00004%

Read-after-Write
Global 3,399 0.00141% 0.00036%
Per-Region 1,558 0.00065% 0.00017%
Per-Cluster 519 0.00022% 0.00006%

Table 3: Anomalies for vertices. Filtered reads are those
remaining after preprocessing.

No Writes No Reads Both

Vertices
Objects 75.8% 13.5% 10.7%
Requests 74.2% 0.1% 25.7%

Edges
Objects 74.3% 21.6% 4.1%
Requests 76.2% 1.0% 22.8%

Table 2: Percentage of objects with no writes, no reads,
and with both reads and writes. The percentage of over-
all requests to objects of each category is also shown.
Only requests to objects that contain both reads and
writes can exhibit anomalies.

Preprocessing Results To reduce the computational over-
head as well as to better understand our workload, we pre-
process the trace to filter out objects whose requests follow
patterns that would never show anomalies. The two patterns
of requests we exclude are all reads and all writes. If an ob-
ject has only reads, then there are no updates for the storage
system to propagate around, and thus no possible anomalies.
If an object has only writes, then there are no reads that could
be marked as anomalies. Table 2 shows the preprocessing
results. This preprocessing quickly yields upper bounds of
25.7% of requests to vertices and 22.8% of requests to edges
that can exhibit anomalies.

Anomalies in Vertices Table 3 shows the results of our
checkers for requests to vertices. We see a very low percent-
age of requests to vertices, around 0.00039%, violate lin-
earizability. Most of these anomalies are stale read anoma-
lies, i.e., the read did not see the most recent update. A
smaller number of them are total order anomalies.

The stale read anomalies are identified in the stale read
row, the per-user row under per-object sequential, and all
of the read-after-write rows. The source of stale reads is
typically replication lag that includes master to slave wide-
area replication and asynchronous cache invalidations up the

Anomalous
Reads

Percentage Of
Filtered Overall
(417M) (1,818M)

Linearizable 12,731 0.00305% 0.00070%
Stale Read 9,831 0.00236% 0.00054%
Total Order 2,900 0.00070% 0.00016%

Per-object Seq 2,900 0.00070% 0.00016%
Per-User 0 0% 0%

Read-after-Write
Global 9,831 0.00236% 0.00054%
Per-Region 5,312 0.00127% 0.00029%
Per-Cluster 3,070 0.00074% 0.00017%

Table 4: Anomalies for edges. Filtered reads are those
remaining after preprocessing.

cache hierarchy. While this replication is still ongoing a read
may return an older, i.e., stale, version that it would not in
a system with stronger consistency. The replication lag can
thus be considered the vulnerability period during which
anomalies may occur. The effect of increasing replication
lag, and thus an increasing vulnerability period is shown in
the read-after-write results. Replication lag increases from
the cluster to the region and to then global level and we see
an increase from 519 to 1,558, and to 3,399 anomalies.

Total order anomalies are identified in the total order row.
They contribute to the overall linearizability and per-object
sequential counts. The source of these anomalies is also
typically replication lag. In this case, however, multiple users
are reading different versions of an object, i.e., one user in
the same cluster as a recent write is reading the new version
and one user in a different cluster is reading an old version.

In general, the low percentage of anomalies is primarily
due to the low frequency of writes, and the locality of re-
quests to an object. Both of these factors decrease the like-
lihood of having a read occur during the vulnerability win-
dow after a write. The low frequency of writes—i.e., only 1
in 450 operations was a write—directly decreases the like-
lihood a given read will be during a vulnerability period.
The locality of requests to an object also decreases the like-
lihood of anomalous behavior because Facebook’s clusters
provide read-after-write consistency, i.e., there is no vulner-
ability window within a cluster. Our results mostly validate
this claim as we see approximately 1 in 1.8 million requests
not receive per-cluster read-after-write consistency. The few
exceptions are likely due to cache machine failures.

Anomalies in Edges Table 4 shows the results of our
checkers for requests to edges. The rate of anomalies is
doubled compared to the anomaly rate of vertices, yet it is
still a very small number—we only observe 1 linearizability
anomaly out of 150,000 requests. The higher frequency of
edge anomalies is correlated to the higher frequency of write
operations on edges. As shown in Table 1, there is 1 write

302

Pete Keleher

Pete Keleher

Pete Keleher

��

���

���

���

���

����

�� ��� ����

�
�
�

�����������������

Figure 6: This figure shows the CDF of anomalies by edge
type in ranked order. For instance, the rank 1 edge type
has the highest number of anomalies.

in every ~188 operations on edges, while the write fraction
of vertex operations is about 1 out of 450. Intuitively, more
updates mean more frequent changes in system states. Each
write introduces a vulnerability window that allows anoma-
lous reads to happen.

The rate of the different types of anomalies for edges is
double what we observed for vertices, with the notable ex-
ception of total order violations, and per-user session viola-
tions. We see a rate of total order violations that is more than
ten times the rate we see with vertices and we see no per-user
session violations. We are still investigating the root cause of
both of these differences.

Figure 6 further breaks down anomalies by the type of
the edge. It shows a CDF of anomalies for types in rank
order, i.e., the type with the most anomalies is at position
1. The rank 1 edge type contributes ~60% of all observed
anomalies. This is the “like” edge type, which is frequently
updated and requested. The high update and request rate
of “likes” explains their high contribution to the number
of overall anomalies. The high update rate induces many
vulnerability windows during which anomalies could occur
and the high request rate increases the likelihood a read
will happen during that window. The top 10 types together
account for ~95% of the anomalies. These most-anomalous
edge types have implications for the design of systems with
strong consistency, which we discuss below, and for finding
programmer errors, which we discussion in Section 5.

Upper Bound Our analysis is primarily concerned with
identifying reads that would definitely return different re-
sults in systems with stronger consistency. As a result, when
there is uncertainty due to clock skew we err on the side
of reporting fewer anomalies and so our results are a lower
bound on the effect of stronger consistency models. In our
main results we have expanded the invocation and response
times of each request by 35ms (99.9th percentile clock

��

������

������

������

������

������

��� ����� �� ����� ���

�
��
�
��
��
��
��
��
��
��

�������������������

���������������
�������������������������
�������������������������

�����������������������
���������������������

Figure 7: The percentage of reads flagged as anomalies
by our checkers for different timestamp expansions for
vertices. Expanding timestamps Xms subtracts X from
the invocation time and adds X to response time.

skew). Figure 7 shows the effect of different choices for
expanding the invocation and response times for vertices.

An expansion of −35ms gives an upper bound on the ef-
fect of the stronger consistency models. Here 35ms is added
to the invocation time, 35ms is subtracted from the response
time, and we limit the response time to be no earlier than
the modified invocation time. We see anomaly rates that are
much higher for both −35ms and −17.5ms. This is because
in both cases an artificial and incorrect ordering of requests
is being enforced. The artificial ordering comes from the in-
vocation times of the many requests that completed in less
than 70ms/35ms and thus had their invocation to response
time windows shrunk to 0. In reality these requests were con-
current and could have been ordered either way, not only in
their invocation time order.

The results for 0ms give a more accurate view of the
true rate of anomalies because they mostly avoid artifi-
cially ordering concurrent requests. With no time expansion
we see 0.00066% linearizable anomalies, 0.00008% per-
object sequential anomalies, 0.00065% global read-after-
write anomalies, 0.00029% region read-after-write anoma-
lies, and 0.00010% cluster read-after-write anomalies.

3.4 Discussion
Our principled analysis gives us insight into the effect of de-
ploying replicated storage with stronger consistency at Face-
book. The primary benefits of stronger consistency are the
elimination of anomalous behavior that is confusing to users
and a simplified programming model. Our results here indi-
cate how often anomalies occur, i.e., how often a stronger
consistency model could help.

Quantifying the Benefit of Stronger Consistency Figure 8
shows a spectrum of consistency models and the rate of
anomalies for requests in them. Our observed values for

303

Pete Keleher

Linearizability
0.00039% (vertex)
0.00070% (edge)

(Region) Read-After-Write
0.00017% (vertex)
0.00029% (edge)

(Cluster) Read-After-Write
0.00006% (vertex)
0.00017% (edge)

Sequential (Global)

Causal

Per-Object Sequential
0.00006% (vertex)
0.00016% (edge)

(Global) Read-After-Write
0.00036% (vertex)
0.00054% (edge)

Strict Serializability

Causal with
Transactions

Figure 8: Spectrum of consistency models with arrows
from stronger to weaker models. Measured anomaly
rates are shown. Bounds on the anomaly rate in unmea-
sureable non-local consistency models can be inferred.

linearizability, per-object sequential consistency, and read-
after-write consistency are shown in the spectrum. In ad-
dition, the relationship between different consistency mod-
els is shown by arrows pointing from a model A to another
model B when A is is strictly stronger than B.6

These relationships allow us to bound the effect of non-
local consistency models that we cannot write checkers for,
namely (global) sequential consistency [34], and causal con-
sistency [1, 33]. For instance, because causal is stronger than
per-object sequential it would eliminate anomalies from at
least 0.00006% of vertex requests and because it is weaker
than linearizability it would eliminate anomalies from at
most 0.00039% of vertex requests.

We also show strict serializability and causal consistency
with transactions in the spectrum. Our results give lower
bounds for the anomalies each of these models would pre-
vent. We cannot provide upper bounds for them, which we
discuss further as a limitation later in this section.

An Interesting Direction Another result of the analysis
was identifying that a small number of edge types account
for the vast majority of anomalies. This points to two in-
teresting directions for future research into systems with
stronger consistency: (1) build system were non-anomalous
types have negligible overhead or (2) provide stronger con-
sistency for a small subset of a larger system. While the latter
would not prevent all anomalies, it would allow incremen-
tal deployment of these systems and significantly reduce the
rate of anomalies. Interestingly, such a subsystem that does
provide linearizability is used within Facebook for a small
set of object types, e.g., passwords.

Limitations Our analysis has a few limitations to what it
can provide in terms of quantifying the benefits of stronger

6 See Section 4.5 for the definition of strictly stronger.

consistency. One limitation is that our analysis is limited to
the replicated storage at Facebook. Results for other even-
tually consistent systems could and would be different, but
Facebook is a large, important data point in this space.

Another limitation is that our measurements only report
anomalies we observed, not anomalies that could happen
but whose triggering conditions have not yet occurred. An
architectural change could trigger these anomalies, but our
principled anomaly checkers would alert us to the effects
of this change. In addition, it is likely that our practical
consistency checker would catch this effect in real-time. Our
sampled view of objects is also a limitation. There might
be rare objects with higher rates of inconsistencies that our
sampling misses that could shift the overall anomaly rates.

The biggest limitation to our analysis is that it cannot give
insights into the benefits of transactional isolation. Transac-
tional isolation is inherently a non-local property [29] and so
we cannot measure it accurately using only a sample of the
full graph. This unfortunately means we cannot quantify the
benefits of consistency models that include transactions, e.g.,
serializability [44] and snapshot isolation [11], or the benefit
of even read-only transactions on other consistency models.
For instance, while our results for causal consistency bound
the benefit of the COPS system [38], they do not bound the
benefit of the COPS-GT [38] system that also includes read-
only transactions.

4. Practical Consistency Analysis
Our practical consistency analysis has been used since 2012
at Facebook as a real-time cache-health monitoring system.
This section justifies why we need practical analysis, de-
fines φ -consistency, describes typical measurements of it,
discusses their implications, and finally describes how we
use φ -consistency to debug production issues.

4.1 Why We Need Practical Analysis
Our principled analysis is helpful for understanding the con-
sistency guarantees the current systems provide, identifying
consistency issues caused by weak consistency models, and
quantifying the benefits of a system with stronger consis-
tency. However, the principled analysis is neither designed
for real-time monitoring nor is a good fit. The principled
analysis requires access to all timestamped requests to each
sampled object. Retrieving and analyzing these requests in
real-time would be akin to implementing a replicated stor-
age system with strong consistency. Our principled analysis
avoid this overhead by only processing requests well after
they have occurred, typically once per day. This allows the
storage for the principled analysis trace to be eventually con-
sistent, and provides plenty of time for log entries to arrive.

In contrast, our practical consistency analysis is designed
to operate in real-time and to be lightweight. As a conse-
quence it does not trace all operations on a given object, and
thus does not give insights into how often principled consis-

304

tency models are violated. Instead, it uses injected reads to
track metrics that are designed to mirror the health of differ-
ent parts of the replicated storage.

4.2 φ(P)-consistency
The operational consistency metric we use is φ(P)-consis-
tency. The φ(P)-consistency of a set of replicas P is the fre-
quency that injected reads for the same data to all p ∈ P re-
ceive the same response from each p.

At Facebook our replicas can be a leaf cache, root cache,
or database. When performing a read for φ(P)-consistency,
we care about the data at the individual p ∈ P. Reads are
made with a flag to look only in cache for a cache layer,
avoiding any read-through nature of the system. A read-miss
indicates there is no cached data at p, so it is not considered
in the metric.

The injected reads are all issued from one server and the
responses are compared once all have returned. This does
not require clock synchronization, versioning, or logging on
either the issuing client or the replicated storage, and is very
lightweight. As a result, however, it is affected by network
and other delays. For instance, even if two replicas of an
object have the same old version of it when the reads are is-
sued, and change to the same new version at the same instant
in time, if one of the injected reads arrives before this instant
and the other afterwards, they will be φ(P)-inconsistent. De-
spite this and its theoretical incomparability to principled
consistency models that we will show in Section 4.5, φ(P)-
consistency is useful in practice.

φ(P)-consistency’s usefulness derives from how it quickly
approximates how convergent/divergent different parts of
the system are. Increases in network delay, replication de-
lay, misconfiguration, or failures all cause a drop in φ(P)-
consistency. An increase in the write rate of the system will
also cause a drop in φ(P)-consistency rate, because there
will be more writes in flight at any given time. These types
of changes can be detected within minutes by our φ -consis-
tency metrics.

We track two types of φ(P)-consistency regularly: φ(G)-
consistency and φ(Ri)-consistency. φ(G)-consistency is for
the global set G of all replicas, i.e., all leaf and root cache
clusters at Facebook. As a global system measure it is useful
for tracking the health of the overall system. φ(Ri)-consis-
tency is for the set of all cache clusters in region Ri. We track
φ(Ri)-consistency for all regions. It is useful for tracking the
health of each region and cluster individually.

4.3 Analysis
The practical analysis system that measures φ(P)-consis-
tency has been responsible for monitoring consistency is-
sues since it was deployed in 2012. This subsection describes
some results of this practical analysis.

Since φ -consistency rates are affected by the rate of up-
dates to data, we track φ -consistency rates for several types
of data with different access patterns. We expect φ(G)-con-

sistency to be lower than the φ(Ri)-consistency because all
results that count against any φ(Ri) also count against φ(G),
and because φ(G) measures across geographically distant
regions. Both rates exhibit diurnal and weekly patterns that
correspond to the level of user activity that occurs at Face-
book. However, the difference between peak and trough is
not significant.

Figure 9 shows φ(G)-inconsistency and φ(R0)-incon-
sistency rates for four different types of data. The φ(G)-
inconsistency rate for Type I is significantly higher than the
other three types. This is because Type I happens to be a type
of data that changes frequently due to user activity. Fortu-
nately, the φ(R0)-inconsistency of Type I data is much lower
than its φ(G)-inconsistency. Because users tend to consis-
tently be served out of the same region, any inconsistencies
tend to be undetectable by users.

One of the main goals in operating a system is to be
able to quickly identify and respond to operational prob-
lems. Issues such as misconfiguration, network failures, and
machine failures are all reasons that can cause performance
to suffer. In practice, a single global measure of φ(P)-con-
sistency is insufficiently sensitive. Instead, we use φ(Ri)-
consistency rates to give us insight into problems that oc-
cur within individual regions. φ(Ri)-consistency rates can
increase for a single region indicating that there is an issue
isolated to a specific region, this is shown in Figure 13 in
Section 5 where we discuss an example issue. In addition,
from experience, we have found that certain types of data
are more sensitive to operational issues than others. We use
their φ(G)-consistency levels as early warning systems.

One of the sensitive families of data we have found are
the objects that store photo comments. Intuitively, this makes
sense because of user behavior. When a user uploads a photo,
their friends may comment on the photo in interactive con-
versations. These conversations trigger a series of changes
on the same object, which will need to be invalidated mul-
tiple times over a relatively short time period. The same
object is read by all users who want to view the photo.
This effect is exaggerated by users who have a large social
graph, and those users’ photos, in particular, produce highly
consistency-sensitive objects.

Figure 10 displays the spike in φ(G)-inconsistency rate
for photo comment keys after a site event that led to a sub-
stantial delay in site-wide invalidations. The rate eventually
stabilized at 10%, meaning that about 10% of all photo-
comment requests had a chance of returning different val-
ues depending on which caching tier the user was assigned
to. The plot also shows the φ(G)-inconsistency rates for an
aggregation of all objects(“All Objects”) is far less sensitive
than photo comment keys.

The invalidation slowdown depicted in Figure 10 also cre-
ated problems for another type of object. Figure 11 shows
the φ(G)-inconsistency rate for two different types of re-
quests: user profiles and friend lists. The user profile request

305

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Figure 4: This figure compares the f(G)-inconsistency,
on the left, to f(R0)-inconsistency (for the the single re-
gion R0), on the right, for four different types of data
with varying sensitivity to inconsistency. This figure
also shows that regional best effort invalidations result
in higher consistency than global invalidations.

all system will also cause a drop in Aqueduct’s f(G)-
consistency rate, since there will be more writes in flight
at any given time.

Measuring f(P)-consistency in Aqueduct is straight-
forward. For a sampled set of read queries to both
TAO and Memcache, we also issue queries to all cache
tiers p 2 P. We then measure the frequency with which
the results returned by p 2 P, excluding cache-misses,
for a particular query are identical. This frequency
over a rolling time window is the f(P)-consistency of
Aqueduct at any given time. In terms of the choice
of P, we regularly track f(G)-consistency and f(Ri)-
consistencies, where Ri is the set of all cache tiers in the
Ri region.

f(P)-consistency is inherently an aggregate concept,
in the sense that it measures consistency over the col-
lection of p 2 P. When there are inconsistencies, f(P)-
consistency does not identify where the problem is. For
example, if a single cache tier c always returns erroneous
values, both f(G)-consistency and f(R j)-consistency
where c 2 R j will be 0%. Therefore, Aqueduct also mea-
sures the f(S : P)-consistency of two sets of cache tiers
S = {si} and P = {pi}. We define f(S : P)-consistency
as the frequency with which queries to s 2 S return a
value that is identical to the most common value, ex-
cluding cache misses, returned by querying all p 2 P.2

2We recommend that the expression “f(S : P)-consistency = 95%”
be read as “f consistency for S given P is 95%”. Similarly, “f(G)-
inconsistency = 1%” can be read as “f -inconsistency for G is 1%”

Figure 5: Memcache photo comment keys are highly
sensitive to delays in the invalidation delivery pipeline.
Our monitoring framework generates an alert if photo
comment inconsistency rate spikes above 2%.

Thus, f({c} : G)-consistency is not affected by errors
from cache tiers t 2 G such that t 6= c. Therefore, mon-
itoring f({c} : G)-consistency 8c 2 G makes it straight-
forward to identify problematic cache tiers.

For operational flexibility, the consistency monitoring
system also supports different sampling rates for differ-
ent types of Memcache data, TAO query types, database
shards, cache machines, or database machines.

Beyond definitions, intuitive explanations, and mea-
surement methodology, there is clearly theoretical
relationships between between d -consistency, f(P)-
consistency and f(S : P)-consistency that needs to be ex-
plored. The extent to which each of these metrics cap-
tures failure modes in different consistency models is
also a topic of interest. However, these details are be-
yond the scope of this paper.

6.2 Operational Lessons
Aqueduct has been in operation at Facebook for 1.5
years and is the primary system responsible for main-
taining cache consistency. Here we discuss the lessons
we learned from operating the system and responding to
various issues that arose.

6.2.1 Overall consistency rate

Overall, Aqueduct maintains a fairly steady f(G)-
consistency rate of 99.7%. The f(Ri)-consistency rates
are significantly higher, as we would expect, and tend to
be around 99.99%. Both rates exhibit diurnal and weekly
patterns that correspond to the level of user activity that

10

Figure 9Figure 4: This figure compares the f(G)-inconsistency,
on the left, to f(R0)-inconsistency (for the the single re-
gion R0), on the right, for four different types of data
with varying sensitivity to inconsistency. This figure
also shows that regional best effort invalidations result
in higher consistency than global invalidations.

all system will also cause a drop in Aqueduct’s f(G)-
consistency rate, since there will be more writes in flight
at any given time.

Measuring f(P)-consistency in Aqueduct is straight-
forward. For a sampled set of read queries to both
TAO and Memcache, we also issue queries to all cache
tiers p 2 P. We then measure the frequency with which
the results returned by p 2 P, excluding cache-misses,
for a particular query are identical. This frequency
over a rolling time window is the f(P)-consistency of
Aqueduct at any given time. In terms of the choice
of P, we regularly track f(G)-consistency and f(Ri)-
consistencies, where Ri is the set of all cache tiers in the
Ri region.

f(P)-consistency is inherently an aggregate concept,
in the sense that it measures consistency over the col-
lection of p 2 P. When there are inconsistencies, f(P)-
consistency does not identify where the problem is. For
example, if a single cache tier c always returns erroneous
values, both f(G)-consistency and f(R j)-consistency
where c 2 R j will be 0%. Therefore, Aqueduct also mea-
sures the f(S : P)-consistency of two sets of cache tiers
S = {si} and P = {pi}. We define f(S : P)-consistency
as the frequency with which queries to s 2 S return a
value that is identical to the most common value, ex-
cluding cache misses, returned by querying all p 2 P.2

2We recommend that the expression “f(S : P)-consistency = 95%”
be read as “f consistency for S given P is 95%”. Similarly, “f(G)-
inconsistency = 1%” can be read as “f -inconsistency for G is 1%”

Figure 5: Memcache photo comment keys are highly
sensitive to delays in the invalidation delivery pipeline.
Our monitoring framework generates an alert if photo
comment inconsistency rate spikes above 2%.

Thus, f({c} : G)-consistency is not affected by errors
from cache tiers t 2 G such that t 6= c. Therefore, mon-
itoring f({c} : G)-consistency 8c 2 G makes it straight-
forward to identify problematic cache tiers.

For operational flexibility, the consistency monitoring
system also supports different sampling rates for differ-
ent types of Memcache data, TAO query types, database
shards, cache machines, or database machines.

Beyond definitions, intuitive explanations, and mea-
surement methodology, there is clearly theoretical
relationships between between d -consistency, f(P)-
consistency and f(S : P)-consistency that needs to be ex-
plored. The extent to which each of these metrics cap-
tures failure modes in different consistency models is
also a topic of interest. However, these details are be-
yond the scope of this paper.

6.2 Operational Lessons
Aqueduct has been in operation at Facebook for 1.5
years and is the primary system responsible for main-
taining cache consistency. Here we discuss the lessons
we learned from operating the system and responding to
various issues that arose.

6.2.1 Overall consistency rate

Overall, Aqueduct maintains a fairly steady f(G)-
consistency rate of 99.7%. The f(Ri)-consistency rates
are significantly higher, as we would expect, and tend to
be around 99.99%. Both rates exhibit diurnal and weekly
patterns that correspond to the level of user activity that

10

Objects

Figure 10

occurs on Facebook. However, the difference between
peak and trough is not significant.

The f(P)-consistency rates also vary by the type of
data that is being cached. Figure 4 shows f(G) �
inconsistency and f(R0)� inconsistency rates for four
different types of data. The f(G)-inconsistency rate for
Type I is significantly higher than the other three types.
This is because Type I happens to be a type of data that
changes frequently due to user activity. Fortunately, the
f(R0)-inconsistency of Type I data is much lower than
its f(G)-inconsistency. Since users tend to consistently
be served out of the same datacenter region, any incon-
sistencies tends to be undetectable by users.

6.2.2 Monitoring

One of the main goals in operating a system such as
Aqueduct is to be able to quickly identify and respond to
operational problems. Issues such as misconfiguration,
network failures, and machine failures are all reasons that
can cause Aqueduct’s performance to suffer. While we
use f(G)-consistency as a measure of the overall effi-
cacy of Aqueduct, in practice, a single global measure
of f(P)-consistency is insufficiently sensitive. Instead,
we use f(Ri)-consistency rates to give us insight into
problems that occur with individual regions. We also
use f({c} : G)-consistency to find problems in individ-
ual cache tiers. In addition, from experience, we have
found that certain types of data are more sensitive to op-
erational issues than others. As such, we use their f(G)-
consistency levels as early warning systems.

One of the most sensitive families of data we have
found are the Memcache keys that store photo comments.
Intuitively, this makes sense because of user behavior.
When a user uploads a photo, it is common for their
friends to comment on the photo. Interactive conversa-
tions between multiple users in the comment thread of
a photo are common. These conversations trigger a se-
ries of changes on the same Memcache key, which will
need to be invalidated multiple times over a relatively
short time period. The same key is read by all users
who want to view the photo. This effect is exaggerated
by users who have a large number of friends or follow-
ers, and those users’ photos, in particular, produce highly
consistency-sensitive Memcache keys.

Figure 5 displays the spike in f(G)-inconsistency rate
for photo comment keys after a recent site event that led
to a substantial delay in site-wide invalidations. The rate
would eventually stabilize at 10%, meaning that about
10% of all photo-comment queries had a chance of re-
turning different values depending on which caching tier
the user was assigned. The plot also shows the f(G)-
inconsistency rates for an aggregation of all Memcache
keys (“All MC Keys”) is far less sensitive than photo

Figure 6: TAO friend list queries are highly sensitive to
delays in the invalidation delivery pipeline.

comment keys.
The invalidation slowdown depicted in figure 5 also

created problems for TAO. Figure 6 shows the f(G)-
inconsistency rate for two different TAO queries: objects
and friend lists. The object query reads a user’s name and
birthday. The more sensitive friend list query pulls out a
user’s friend list. Not surprisingly, the friend list query is
more sensitive to invalidation delays because friend-lists
are modified far more often than a user’s basic informa-
tion.

6.2.3 Common Operational Issues

Human error. The most common root cause of prob-
lems in Aqueduct is human error. This often occurs in
the form of a misconfigured system that Aqueduct is de-
pendent on. We alleviate the impact of such issues by (i)
limiting the damage that can be caused by a single mis-
behaving system and (ii) quick detection and remediation
of issues when they occur.

For instance, in mid-2013, a bad MCRouter con-
figuration was deployed. This misconfiguration pre-
vented MCRouter from accepting invalidations sent
by Aqueduct-MC. Figure 7 shows the f(Ri : G)-
inconsistency rates for Memcache photo-comment keys
for each region during this event. Note that the absence
of invalidations only affected the 15% of users served
out of the problem region. The minor spike in f(R j : G)-
inconsistency rate is a result of the fact that the majority
value may sometimes be the stale value that is cached
in the failure region if the data item is not commonly
cached in other regions. Within the problematic region,
users are protected by local deletes which were still fully
functional. In other words, the only way a user would no-

11

Profile

Figure 11

Figure 9 show φ(G)-inconsistency, on the left, compared to φ(R0)-inconsistency (for the region R0), on the right. Four
types of data with varying sensitivity to inconsistency are shown. Figure 10 shows photo comment objects are sensitive
to delays in the invalidation delivery pipeline. Figure 11 shows friend list requests are also sensitive to delays.

reads a user’s name and birthday. The more sensitive friend
list request pulls out a user’s friend list. Not surprisingly, the
friend list request is more sensitive to invalidation delays be-
cause friend lists are modified far more often than a user’s
basic information.

4.4 φ(S : P)-consistency
φ(P)-consistency is inherently an aggregate concept, in that
it measures consistency over the collection of p ∈ P. When
there are inconsistencies, φ(P)-consistency does not identify
where the problem is. For example, if a single cache tier c
always returns erroneous values, both φ(G)-consistency and
φ(Ri)-consistency where c ∈ Ri will be 0%.

To give finer granularity to our measurements we also
use φ(S : P)-consistency. φ(S : P)-consistency is defined
over two sets of replicas, S and P, and is the frequency
with which requests to s ∈ S return a value that is identical
to the most common value returned by requesting all p ∈
P. This is a generalization of φ(P)-consistency as that is
equivalent to φ(P : P)-consistency. We often monitor φ(ci :
G)-consistency for all cache tiers ci. φ(ci : G)-consistency is
not affected by errors from cache tiers t ∈G such that t 6= ci.
This makes it straight-forward to identify problematic cache
tiers. In practice, φ(ci : G) is especially useful for helping
debug consistency issues.

The φ(P)-consistency checker monitors inconsistency
rate in real time and alarms when there is a spike in inconsis-
tency. These alarms are often the first indication of a prob-
lem. Engineers use the φ(P)-consistency checker together
with other consistency monitoring systems to further inves-
tigate root causes. We consider a study of these systems, and
how they work interactively to be interesting future work.

4.5 Where Principles Meet Practice
Consistency models can be compared theoretically by exam-
ining executions that are legal in one consistency model but
illegal in the other. For two consistency models, A and B, if
there is an execution that is acceptable in A but not B we say
A is weaker than B. Intuitively, A is weaker because it al-

lows behavior that B prohibits. If A is weaker than B, but B
is not weaker than A then we say B is strictly stronger than
A. For instance, linearizability is strictly stronger than per-
object sequential consistency.7 If A is weaker than B and B is
weaker than A, then A and B are incomparable. Intuitively,
this is because each permits behavior the other prohibits.

Linearizability and φ -consistency are incomparable
because there are executions that are linearizable but not φ
consistent and vice-versa. We show this through example
executions in both directions. Figure 12a shows an execu-
tion that is linearizable but not φ -consistent and Figure 12b
shows the reverse direction.

φ -consistency is also incomparable with per-object se-
quential and read-after-write consistency. Because lin-
earizability is strictly stronger than per-object sequential and
read-after-write consistency, all linearizable execution also
satisfy the other models. Thus Figure 12a suffices to show
they are weaker than φ -consistency. The careful reader will
note that Figure 12b also shows the reverse direction of
this relationship as the φ -consistent execution is neither per-
object sequential nor read-after-write consistent.

5. Experience and Errors
This section qualitatively explores the impact of the in-
creased programming complexity of eventual consistency.
It describes why we saw few anomalies, common program-
mer errors, and anti-patterns we teach developers to avoid
that are common mistakes for uneducated programmers.

5.1 Few Anomalies
Our principled consistency analysis found fewer anomalies
than we initially expected. Upon reflection, we surmise that
it is due primarily to sensitive applications avoiding even-
tually consistent TAO. Sometimes sensitive applications—

7 There are executions that are per-object sequential but not lineariz-
able [29]. And there are no execution that are linearizable but not per-object
sequential by definition because the real-time order requirement in lineariz-
ability implies the process order requirement in per-object sequential.

306

Process 1	

Replica 1	

Replica 2	

Φ Checker	

write(x=1)	
 read(x)=1	

x=0	
 x=1	

x=1	
x=0	

read(x)=0	
 read(x)=1	

(a) Linearizable but not φ -consistent execution.

Process 1	

Replica 1	

Replica 2	

Φ Checker	

write(x=1)	
 read(x)=0	

x=0	
 x=1	

x=0	

read(x)=0	
 read(x)=0	

x=1	

(b) φ -consistent but not linearizable execution.

Figure 12: Executions that demonstrate that φ -consistency and principled consistency models are incomparable.

30 minutes 60 minutes 90 minutes
0

2

4

6

8

10

12

14

16

18

�
(R

i
:
G

)-
In

co
ns

is
te

nc
y

R
at

e
[%

]

Failure

Photo Comment �(Ri : G)-Inconsistency Rates

Failure Region R0

Non-Failure Regions Rj

Figure 13: φ(Ri : G)-inconsistency for the photo comment
type after a misconfiguration. This metric enables us
identify the geographic region to which the incorrect
configuration was pushed.

e.g., the login framework—mark reads as “critical” in TAO,
which then provides linearizability by forcing requests to go
through the master-root cache [14]. Other times, sensitive
applications will build their own infrastructure to exactly
match their consistency needs.

5.2 Human Errors
The most common root cause of problems we observe is
human error, usually in the form of a misconfiguration. We
alleviate impact of such issues by (1) limiting the damage
that can be caused by a single misbehaving system and (2)
quickly detecting and remediating issues when they occur.

Our web service deploys a large cache. In mid-2013, a
bad configuration in the system that determines which cache
machine to send a request to was deployed. This misconfigu-
ration implied that cache invalidations generated for cached
data were delivered to the wrong machine. Figure 13 shows
the φ(Ri : G)-inconsistency rates for photo comment keys
for each region during this event. Note that the absence of
invalidations only affected the 15% of users served out of the
problem region. The minor spike in φ(R j : G)-inconsistency
rate is a result of the fact that the majority value may some-
times be the stale value that is cached in the failure region,
if the data item is not commonly cached in other regions.
Within the problematic region, users are protected by local

deletes which were still fully functional. In other words, the
only way a user would notice a problem is by recognizing
that the content originating from other regions are not re-
flected in their requests.

5.3 Developer Error
Our focus throughout the paper has been on our write-
through cache that writes updated data into the database
and that ensures the cache reflects the latest updates. We
also have a look-aside cache for use cases where the write-
through cache is not a good fit. The look-aside cache re-
quires developers to manually write data to the database and
issue invalidations to the cache. In our experience, the look-
aside cache is far harder for programmers to reason about.
We next describe several common errors we observe in pro-
grams that use a look-aside cache. We use monitoring and
developer education to identify and fix these issues.

• Caching failures. The data fetching logic might return an
error code or failure of some type if a network disconnec-
tion or database request timeout occurs. If a program does
not validate the data it receives, an error code or empty re-
sult will be stored in the cache. This pollutes the cache,
and causes subsequent queries that could have succeeded
to also return failure.

• Negative caching. Another common error is what we term
negative caching where a program caches the lack of ex-
istence of data to save itself an expensive synchronous
request. However, given the look-aside nature of some
caches, when the underlying data is modified, this negative
cache value has to be explicitly deleted, so a future read
can demand fill the updated value. It is a common error to
forget to add invalidations for the negatively cached data.

• Caching time-dependent results. Some queries to the
database may give different results depending on the time
the request was issued. One such request, for instance,
would be “what site-wide announcements have not yet
expired?” A common error is to cache a time-dependent
result, and then reuse that result at a later time.

• Caching cached results. Another common error is for
program code to cache data that is derived from another
cached object–since the invalidation system is only aware

307

Pete Keleher

Pete Keleher

of the first level of cached objects, the program code will
often read stale data. This also decreases the available
storage space in cache due to duplicate data.

6. Related Work
We review related work that measures the consistency of
replicated storage, and work that specifies the consistency
model of production systems.

Measuring Consistency Many benchmarking tools now
include components that try to measure some form of the
consistency provided by the data stores they are benchmark-
ing. These systems include YCSB++ [45], BG [10], Wada
et al. [53], Anderson et al. [4], Rahman et al. [47], Zellag
et al. [55], Goleb et al. [28], and YCSB+T [20]. The most
closely related work to ours is from Anderson et al. [4],
which also takes traces of operations and runs offline check-
ers against them. Their checkers check safety, regularity,
and atomicity violations [35]. Atomicity is equivalent to lin-
earizability, regularity is equivalent to read-after-write con-
sistency, and safety is an unusual relaxation of read-after-
write consistency that permits an arbitrary value to be re-
turned when there are concurrent writes. Our work builds on
the checkers and methodology of these benchmarking tools.

All of these benchmarking tools generate a synthetic
workload, collect a global trace, and then measure inconsis-
tencies in that global, synthetic trace. In contrast, our work
examines sampled, real traces. Using sampled traces allows
us to analyze a production system running at large scale.
Using real traces gives us insights into what anomalies oc-
cur in the current eventually consistent system, and what the
benefits of stronger consistency would be.

Amazon measured how often their eventually consistent
Dynamo [19] system returned multiple (concurrently writ-
ten) versions of a shopping cart within a 24 hour period and
saw that 99.94% of requests saw one version. Multiple ver-
sions are possible because Dynamo uses sloppy quorums for
writes that may not always intersect. This type of divergence
is avoided by design at Facebook where there is a single mas-
ter per shard that serializes all updates. Our work measures
a different aspect of eventual consistency by looking at vio-
lations of many consistency models instead of divergence.

Probabilistically Bounded Staleness (PBS) [8] provides
expected bounds on staleness for replicated storage that uses
Dynamo-style sloppy quorums. It parameterizes a model
based on replication delays and uses that to predict how often
reads will return stale values and how stale those values
will be. Our work was partially inspired by PBS, which is
limited to sloppy quorums, is based on synthetic models, and
only considers PBS k-staleness and PBS monotonic reads. In
contrast, our work looks at a production single-master-per-
shared system, is based on real measurements, and considers
many principled and practical consistency models.

Production System Consistency Models Several publica-
tions from industry have explained the consistency model

their systems provide. We were informed by them and mea-
sure anomalies under most of these models. Amazon’s Dy-
namo [19] provides eventual consistency, this is the model
Facebook’s system provides globally. Google’s Spanner [17]
provides strict serializability. We measure anomalies under
linearizability, which is a special case of strict serializabil-
ity without transactions that provides a lower bound. Face-
book’s Tao system [14, 30] provides read-after-write consis-
tency and Yahoo’s PNUTS system [16] provide per-object
sequential consistency (also called per-record timeline con-
sistency). We measure anomalies under both models.

7. Conclusion
This paper studied the existence of consistency in the results
from Facebook’s TAO system and took a first step towards
quantifying the benefits of stronger consistency in a large,
real-world, replicated storage system. Our principled analy-
sis used a trace of all requests to a sample of objects to study
local consistency models. It identified when reads in TAO re-
turn results they would not in systems with read-after-write
consistency, per-object sequential consistency, and lineariz-
ability. One key finding was that TAO is highly consistent,
i.e., 99.99% of reads to vertices returned results allowed un-
der all the consistency models we studied.

Another key finding was that there were anomalies under
all of the consistency models we studied. This demonstrates
that deploying them would have some benefit. Yet, we also
found that these anomalies are rare. This suggests the over-
head of providing the stronger models should be low for the
trade-off to be worthwhile [2].

Our principled analysis used the relationship between
consistency models to infer bounds on the benefits of the
non-local consistency models that we could not directly
study, e.g., sequential consistency. A key takeaway from
this reasoning was that we could determine lower bounds,
but not upper bounds, on the benefit of consistency models
that include transactions, e.g., strict serializability or causal
consistency with transactions. This suggests work on pro-
viding stronger consistency should include transactions to
maximize its potential benefit.

Our practical consistency monitoring system tracks φ -
consistency, a new consistency metric that is ideally suited
for health monitoring. We showed that φ -consistency is the-
oretically incomparable to traditional consistency models,
and that it is useful for an early warning and monitoring sys-
tem. In addition, we gave insight into the effects of increased
programming complexity caused by weaker consistency by
discussing bugs our monitoring system has uncovered, and
anti-patterns we teach developers to avoid.

Acknowledgments We are grateful to the anonymous SOSP
reviewers for their extensive comments that substantially im-
proved this work.

This work was supported by funding from the National
Science Foundation Award CSR-1464438 (CRII).

308

References
[1] AHAMAD, M., NEIGER, G., KOHLI, P., BURNS, J., AND

HUTTO, P. Causal memory: Definitions, implementation, and
programming. Distributed Computing 9, 1 (1995).

[2] AJOUX, P., BRONSON, N., KUMAR, S., LLOYD, W., AND

VEERARAGHAVAN, K. Challenges to adopting stronger con-
sistency at scale. In HotOS (2015).

[3] ALMEIDA, S., LEITAO, J., AND RODRIGUES, L. Chainreac-
tion: a causal+ consistent datastore based on chain replication.
In EuroSys (2013).

[4] ANDERSON, E., LI, X., SHAH, M. A., TUCEK, J., AND

WYLIE, J. J. What consistency does your key-value store
actually provide? In HotDep (2010).

[5] ATTIYA, H., AND WELCH, J. L. Sequential consistency
versus linearizability. ACM TOCS 12, 2 (1994).

[6] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN,
J. M., AND STOICA, I. Scalable atomic visibility with RAMP
transactions. In SIGMOD (2014).

[7] BAILIS, P., GHODSI, A., HELLERSTEIN, J. M., AND STO-
ICA, I. Bolt-on causal consistency. In SIGMOD (2013).

[8] BAILIS, P., VENKATARAMAN, S., FRANKLIN, M. J.,
HELLERSTEIN, J. M., AND STOICA, I. Probabilistically
bounded staleness for practical partial quorums. VLDB
(2012).

[9] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J.,
KHORLIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD,
A., AND YUSHPRAKH, V. Megastore: Providing scalable,
highly available storage for interactive services. In CIDR
(2011).

[10] BARAHMAND, S., AND GHANDEHARIZADEH, S. BG: A
benchmark to evaluate interactive social networking actions.
In CIDR (2013).

[11] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J.,
O’NEIL, E., AND O’NEIL, P. A critique of ANSI SQL
isolation levels. In ACM SIGMOD Record (1995).

[12] BERNSTEIN, P. A., AND GOODMAN, N. Concurrency con-
trol in distributed database systems. ACM Computer Surveys
(1981).

[13] BREWER, E. Towards robust distributed systems. PODC
Keynote, 2000.

[14] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA,
P., DIMOV, P., DING, H., FERRIS, J., GIARDULLO, A.,
KULKARNI, S., LI, H., MARCHUKOV, M., PETROV, D.,
PUZAR, L., SONG, Y. J., AND VENKATARAMANI, V. Tao:
Facebook’s distributed data store for the social graph. In
USENIX ATC (2013).

[15] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,
WALLACH, D. A., BURROWS, M., CHANDRA, T., FIKES,
A., AND GRUBER, R. E. Bigtable: A distributed storage sys-
tem for structured data. ACM TOCS 26, 2 (2008).

[16] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U.,
SILBERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A.,
PUZ, N., WEAVER, D., AND YERNENI, R. PNUTS: Ya-
hoo!’s hosted data serving platform. In VLDB (2008).

[17] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,
FROST, C., FURMAN, J., GHEMAWAT, S., GUBAREV, A.,

HEISER, C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S.,
KOGAN, E., LI, H., LLOYD, A., MELNIK, S., MWAURA,
D., NAGLE, D., QUINLAN, S., RAO, R., ROLIG, L., SAITO,
Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND WOOD-
FORD, D. Spanner: Google’s globally-distributed database. In
OSDI (2012).

[18] COWLING, J., AND LISKOV, B. Granola: low-overhead dis-
tributed transaction coordination. In USENIX ATC (2012).

[19] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULA-
PATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMA-
NIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Ama-
zon’s highly available key-value store. In SOSP (2007).

[20] DEY, A., FEKETE, A., NAMBIAR, R., AND ROHM, U.
YCSB+T: Benchmarking web-scale transactional databases.
In ICDEW (2014).

[21] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W.
Orbe: Scalable causal consistency using dependency matrices
and physical clocks. In SOCC (2013).

[22] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL,
W. Gentlerain: Cheap and scalable causal consistency with
physical clocks. In SOCC (2014).

[23] ESCRIVA, R., WONG, B., AND SIRER, E. G. HyperKV: A
distributed, searchable key-value store for cloud computing.
In SIGCOMM (2012).

[24] FITZPATRICK, B. Memcached: a distributed memory object
caching system. http://memcached.org/, 2014.

[25] GIFFORD, D. K. Information Storage in a Decentralized
Computer System. PhD thesis, Stanford University, 1981.

[26] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News (2002).

[27] GLENDENNING, L., BESCHASTNIKH, I., KRISHNA-
MURTHY, A., AND ANDERSON, T. Scalable consistency in
Scatter. In SOSP (2011).

[28] GOLAB, W., RAHMAN, M. R., AUYOUNG, A., KEETON,
K., AND GUPTA, I. Client-centric benchmarking of eventual
consistency for cloud storage systems. In ICDCS (2014).

[29] HERLIHY, M. P., AND WING, J. M. Linearizability: A
correctness condition for concurrent objects. ACM TOPLAS
(1990).

[30] HUANG, Q., GUDMUNDSDOTTIR, H., VIGFUSSON, Y.,
FREEDMAN, D. A., BIRMAN, K., AND VAN RENESSE,
R. Characterizing load imbalance in real-world networked
caches. In HotNets (2014).

[31] KRASKA, T., PANG, G., FRANKLIN, M. J., MADDEN, S.,
AND FEKETE, A. MDCC: Multi-data center consistency. In
EuroSys (2013).

[32] LAKSHMAN, A., AND MALIK, P. Cassandra – a decentral-
ized structured storage system. In LADIS (Oct. 2009).

[33] LAMPORT, L. Time, clocks, and the ordering of events in a
distributed system. Comm. ACM (1978).

[34] LAMPORT, L. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans. Com-
puter (1979).

[35] LAMPORT, L. On interprocess communication. Part I: Basic
formalism and Part II: Algorithms. Distributed Computing

309

http://memcached.org/

(1986).
[36] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA,

N., AND RODRIGUES, R. Making geo-replicated systems fast
as possible, consistent when necessary. In OSDI (2012).

[37] LIPTON, R. J., AND SANDBERG, J. S. PRAM: A scalable
shared memory. Tech. Rep. TR-180-88, Princeton Univ.,
Dept. Comp. Sci., 1988.

[38] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND AN-
DERSEN, D. G. Don’t settle for eventual: Scalable causal con-
sistency for wide-area storage with COPS. In SOSP (2011).

[39] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND AN-
DERSEN, D. G. Stronger semantics for low-latency geo-
replicated storage. In NSDI (2013).

[40] MILLS, D., MARTIN, J., BURBANK, J., AND KASCH, W.
Network time protocol version 4: Protocol and algorithms
specification. Internet Engineering Task Force (IETF) (2010).

[41] MU, S., CUI, Y., ZHANG, Y., LLOYD, W., AND LI, J. Ex-
tracting more concurrency from distributed transactions. In
OSDI (2014).

[42] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI,
M., LEE, H., LI, H. C., MCELROY, R., PALECZNY, M.,
PEEK, D., SAAB, P., STAFFORD, D., TUNG, T., AND

VENKATARAMANI, V. Scaling memcache at Facebook. In
NSDI (2013).

[43] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIÈRES, D., MI-
TRA, S., NARAYANAN, A., ROSENBLUM, M., RUMBLE,
S. M., STRATMANN, E., AND STUTSMAN, R. The case
for RAMCloud. ACM SIGOPS Operating Systems Review
(2010).

[44] PAPADIMITRIOU, C. H. The serializability of concurrent
database updates. Journal of the ACM (1979).

[45] PATIL, S., POLTE, M., REN, K., TANTISIRIROJ, W., XIAO,
L., L’OPEZ, J., GIBSON, G., FUCHS, A., AND RINALDI,
B. YCSB++: benchmarking and performance debugging ad-
vanced features in scalable table stores. In SOCC (2011).

[46] http://project-voldemort.com/, 2011.
[47] RAHMAN, M. R., GOLAB, W., AUYOUNG, A., KEETON,

K., AND WYLIE, J. J. Toward a principled framework for
benchmarking consistency. In HotDep (2012).

[48] SHARMA, Y., AJOUX, P., ANG, P., CALLIES, D., CHOUD-
HARY, A., DEMAILLY, L., FERSCH, T., GUZ, L. A., KO-
TULSKI, A., KULKARNI, S., KUMAR, S., LI, H., LI, J.,
MAKEEV, E., PRAKASAM, K., VAN RENESSE, R., ROY, S.,
SETH, P., SONG, Y. J., VEERARAGHAVAN, K., WESTER,
B., AND XIE, P. Wormhole: Reliable pub-sub to support geo-
replicated internet services. In NSDI (May 2015).

[49] SHUTE, J., OANCEA, M., ELLNER, S., HANDY, B.,
ROLLINS, E., SAMWEL, B., VINGRALEK, R., WHIPKEY,
C., CHEN, X., JEGERLEHNER, B., LITTLEFIELD, K., AND

TONG, P. F1: The fault-tolerant distributed RDBMS support-
ing google’s ad business. In SIGMOD (2012).

[50] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.
Transactional storage for geo-replicated systems. In SOSP
(2011).

[51] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKR-
ISHNAN, M., AGUILERA, M. K., AND ABU-LIBDEH, H.
Consistency-based service level agreements for cloud storage.
In SOSP (2013).

[52] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K.,
SHAO, P., AND ABADI, D. J. Calvin: fast distributed trans-
actions for partitioned database systems. In SIGMOD (2012).

[53] WADA, H., FEKETE, A., ZHAO, L., LEE, K., AND LIU, A.
Data consistency properties and the trade-offs in commercial
cloud storage: the consumers’ perspective. In CIDR (2011).

[54] XIE, C., SU, C., KAPRITSOS, M., WANG, Y., YAGH-
MAZADEH, N., ALVISI, L., AND MAHAJAN, P. Salt: com-
bining acid and base in a distributed database. In OSDI
(2014).

[55] ZELLAG, K., AND KEMME, B. How consistent is your cloud
application? In SOCC (2012).

[56] ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y., AGUIL-
ERA, M. K., AND LI, J. Transaction chains: achieving serial-
izability with low latency in geo-distributed storage systems.
In SOSP (2013).

310

http://project-voldemort.com/

	Introduction
	Background
	Facebook's Replicated Storage
	Consistency Models

	Principled Consistency Analysis
	The Trace
	Anomaly Checkers
	Analysis
	Discussion

	Practical Consistency Analysis
	Why We Need Practical Analysis
	(P)-consistency
	Analysis
	(S:P)-consistency
	Where Principles Meet Practice

	Experience and Errors
	Few Anomalies
	Human Errors
	Developer Error

	Related Work
	Conclusion

