
42 COMMUNICATIONS OF THE ACM | MARCH 2010 | VOL. 53 | NO. 3

practice

would have to be revisited. There was
also the matter of scalability. This was
a file system that would surely need to
scale like no other. Of course, back in
those earliest days, no one could have
possibly imagined just how much scal-
ability would be required. They would
learn about that soon enough.

Still, nearly a decade later, most of
Google’s mind-boggling store of data
and its ever-growing array of applica-
tions continue to rely upon GFS. Many
adjustments have been made to the file
system along the way, and—together
with a fair number of accommodations
implemented within the applications
that use GFS—they have made the jour-
ney possible.

To explore the reasoning behind a
few of the more crucial initial design
decisions as well as some of the incre-
mental adaptations that have been
made since then, Sean Quinlan was
asked to pull back the covers on the
changing file-system requirements and
the evolving thinking at Google. Since
Quinlan served as the GFS tech leader
for a couple of years and continues now
as a principal engineer at Google, he’s
in a good position to offer that perspec-
tive. As a grounding point beyond the
Googleplex, Kirk McKusick was asked
to lead the discussion. He is best known
for his work on BSD (Berkeley Software
Distribution) Unix, including the origi-
nal design of the Berkeley FFS (Fast File
System).

The discussion starts at the begin-
ning—with the unorthodox decision to
base the initial GFS implementation on
a single-master design. At first blush,
the risk of a single centralized master
becoming a bandwidth bottleneck—or
worse, a single point of failure—seems
fairly obvious, but it turns out Google’s
engineers had their reasons for making
this choice.

MCKUSICK: One of the more interesting—
and significant—aspects of the original
GFS architecture was the decision to
base it on a single master. Can you walk
us through what led to that decision?

QUINLAN: The decision to go with a

DURING THE EARLY stages of development at Google, the
initial thinking did not include plans for building a new
file system. While work was under way on one of the
earliest versions of the company’s crawl and indexing
system, however, it became quite clear to the core
engineers that they really had no other choice—thus,
the Google File System (GFS) was born.

Given that Google’s goal was to build a vast storage
network out of inexpensive commodity hardware, it
had to be assumed that component failures would
be the norm—meaning that constant monitoring,
error detection, fault tolerance, and automatic
recovery must be an integral part of the file system.
Also, even by Google’s earliest estimates, the system’s
throughput requirements were going to be daunting
by anybody’s standards—featuring multi-gigabyte
files and data sets containing terabytes of information
and millions of objects. Clearly, this meant traditional
assumptions about I/O operations and block sizes

DOI:10.1145/1666420.1666439

 Article development led by
 queue.acm.org

Kirk McKusick and Sean Quinlan discuss the
origin and evolution of the Google File System.

GFS:
Evolution on
Fast-Forward

P
H

O
T

O
G

R
A

P
H

 B
Y

 S
T

E
P

H
E

N
 A

U
S

T
I

N
 W

E
L

C
H

MARCH 2010 | VOL. 53 | NO. 3 | COMMUNICATIONS OF THE ACM 43

44 COMMUNICATIONS OF THE ACM | MARCH 2010 | VOL. 53 | NO. 3

practice

ter performance, and it’s atypical of
Google to put a lot of work into tun-
ing any one particular binary. Gener-
ally, our approach is just to get things
working reasonably well and then turn
our focus to scalability—which usu-
ally works well in that you can generally
get your performance back by scaling
things. Because in this instance we had
a single bottleneck that was starting to
have an impact on operations, however,
we felt that investing a bit of additional
effort into making the master lighter
weight would be really worthwhile. In
the course of scaling from thousands
of operations to tens of thousands and
beyond, the single master had become
somewhat less of a bottleneck. That
was a case where paying more attention
to the efficiency of that one binary defi-
nitely helped keep GFS going for quite
a bit longer than would have otherwise
been possible.

It could be argued that managing to get
GFS ready for production in record time
constituted a victory in its own right and
that, by speeding Google to market, this
ultimately contributed mightily to the
company’s success. A team of three was
responsible for all of that—for the core
of GFS—and for the system being read-
ied for deployment in less than a year.

But then came the price that so often
befalls any successful system—that is,
once the scale and use cases have had
time to expand far beyond what any-
one could have possibly imagined. In
Google’s case, those pressures proved
to be particularly intense.

Although organizations don’t make
a habit of exchanging file-system sta-
tistics, it’s safe to assume that GFS is
the largest file system in operation (in
fact, that was probably true even be-
fore Google’s acquisition of YouTube).
Hence, even though the original archi-
tects of GFS felt they had provided ad-
equately for at least a couple of orders
of magnitude of growth, Google quickly
zoomed right past that.

In addition, the number of appli-
cations GFS was called upon to sup-
port soon ballooned. In an interview
with one of the original GFS architects,
Howard Gobioff (conducted just prior
to his untimely death in early 2008),
he recalled, “The original consumer of
all our earliest GFS versions was basi-
cally this tremendously large crawling

single master was actually one of the
very first decisions, mostly just to sim-
plify the overall design problem. That is,
building a distributed master right from
the outset was deemed too difficult and
would take too much time. Also, by go-
ing with the single-master approach, the
engineers were able to simplify a lot of
problems. Having a central place to con-
trol replication and garbage collection
and many other activities was definitely
simpler than handling it all on a distrib-
uted basis. So the decision was made to
centralize that in one machine.

MCKUSICK: Was this mostly about be-
ing able to roll out something within a
reasonably short time frame?

QUINLAN: Yes. In fact, some of the en-
gineers who were involved in that early
effort later went on to build BigTable,
a distributed storage system, but that
effort took many years. The decision to
build the original GFS around the single
master really helped get something out
into the hands of users much more rap-
idly than would have otherwise been
possible.

Also, in sketching out the use cases
they anticipated, it didn’t seem the sin-
gle-master design would cause much of
a problem. The scale they were thinking
about back then was framed in terms of
hundreds of terabytes and a few million
files. In fact, the system worked just fine
to start with.

MCKUSICK: But then what?
QUINLAN: Problems started to occur

once the size of the underlying storage
increased. Going from a few hundred
terabytes up to petabytes, and then up
to tens of petabytes…that really required
a proportionate increase in the amount
of metadata the master had to main-
tain. Also, operations such as scanning
the metadata to look for recoveries all
scaled linearly with the volume of data.
So the amount of work required of the
master grew substantially. The amount
of storage needed to retain all that infor-
mation grew as well.

In addition, this proved to be a bot-
tleneck for the clients, even though the
clients issue few metadata operations
themselves—for example, a client talks
to the master whenever it does an open.
When you have thousands of clients all
talking to the master at the same time,
given that the master is capable of do-
ing only a few thousand operations a
second, the average client isn’t able to

command all that many operations per
second. Also bear in mind that there are
applications such as MapReduce, where
you might suddenly have a thousand
tasks, each wanting to open a num-
ber of files. Obviously, it would take a
long time to handle all those requests,
and the master would be under a fair
amount of duress.

MCKUSICK: Now, under the current
schema for GFS, you have one master
per cell, right?

QUINLAN: That’s correct.
MCKUSICK: And historically you’ve had

one cell per data center, right?
QUINLAN: That was initially the goal,

but it didn’t work out like that to a large
extent—partly because of the limita-
tions of the single-master design and
partly because isolation proved to be
difficult. As a consequence, people gen-
erally ended up with more than one cell
per data center. We also ended up do-
ing what we call a multi-cell approach,
which basically made it possible to
put multiple GFS masters on top of a
pool of chunkservers. That way, the
chunkservers could be configured to
have, say, eight GFS masters assigned
to them, and that would give you at least
one pool of underlying storage—with
multiple master heads on it, if you will.
Then the application was responsible
for partitioning data across those differ-
ent cells.

MCKUSICK: Presumably each applica-
tion would then essentially have its own
master that would be responsible for
managing its own little file system. Was
that basically the idea?

QUINLAN: Well, yes and no. Applica-
tions would tend to use either one mas-
ter or a small set of the masters. We also
have something we called Name Spaces,
which are just a very static way of parti-
tioning a namespace that people can
use to hide all of this from the actual
application. The Logs Processing Sys-
tem offers an example of this approach:
once logs exhaust their ability to use
just one cell, they move to multiple GFS
cells; a namespace file describes how
the log data is partitioned across those
different cells and basically serves to
hide the exact partitioning from the ap-
plication. But this is all fairly static.

MCKUSICK: What is the performance
like, in light of all that?

QUINLAN: We ended up putting a
fair amount of effort into tuning mas-

practice

MARCH 2010 | VOL. 53 | NO. 3 | COMMUNICATIONS OF THE ACM 45

and indexing system. The second wave
came when our quality team and re-
search groups started using GFS rather
aggressively—and basically, they were
all looking to use GFS to store large data
sets. And then, before long, we had 50
users, all of whom required a little sup-
port from time to time so they’d all keep
playing nicely with each other.”

One thing that helped tremendously
was that Google built not only the file
system but also all of the applications
running on top of it. While adjustments
were continually made in GFS to make
it more accommodating to all the new
use cases, the applications themselves
were also developed with the various
strengths and weaknesses of GFS in
mind. “Because we built everything, we
were free to cheat whenever we wanted
to,” Gobioff neatly summarized. “We
could push problems back and forth
between the application space and the
file-system space, and then work out ac-
commodations between the two.”

The matter of sheer scale, however,
called for some more substantial ad-
justments. One coping strategy had
to do with the use of multiple “cells”
across the network, functioning essen-
tially as related but distinct file systems.
Besides helping to deal with the im-
mediate problem of scale, this proved
to be a more efficient arrangement for
the operations of widely dispersed data
centers.

Rapid growth also put pressure on
another key parameter of the original
GFS design: the choice to establish
64MB as the standard chunk size. That,
of course, was much larger than the
typical file-system block size, but only
because the files generated by Google’s
crawling and indexing system were un-
usually large. As the application mix
changed over time, however, ways had
to be found to let the system deal ef-
ficiently with large numbers of files
requiring far less than 64MB (think in
terms of Gmail, for example). The prob-
lem was not so much with the number
of files itself, but rather with the mem-
ory demands all of those files made on
the centralized master, thus exposing
one of the bottleneck risks inherent in
the original GFS design.

MCKUSICK: I gather from the original GFS
paper [in Proceedings of the 2003 ACM
Symposium on Operating Systems Princi-

ples] that file counts have been a signifi-
cant issue for you right along. Can you
go into that a little bit?

QUINLAN: The file-count issue came
up fairly early because of the way peo-
ple ended up designing their systems
around GFS. Let me cite a specific ex-
ample. Early in my time at Google, I was
involved in the design of the Logs Pro-
cessing system. We initially had a model
where a front-end server would write a
log, which we would then basically copy
into GFS for processing and archival.
That was fine to start with, but then the
number of front-end servers increased,
each rolling logs every day. At the same
time, the number of log types was going
up, and then you’d have front-end serv-
ers that would go through crash loops
and generate lots more logs. So we end-
ed up with a lot more files than we had
anticipated based on our initial back-of-
the-envelope estimates.

This became an area we really had to
keep an eye on. Finally, we just had to
concede there was no way we were go-
ing to survive a continuation of the sort
of file-count growth we had been expe-
riencing.

MCKUSICK: Let me make sure I’m fol-
lowing this correctly: your issue with file-
count growth is a result of your needing
to have a piece of metadata on the mas-
ter for each file, and that metadata has
to fit in the master’s memory.

QUINLAN: That’s correct.
MCKUSICK: And there are only a finite

number of files you can accommodate
before the master runs out of memory?

QUINLAN: Exactly. And there are two
bits of metadata. One identifies the file,
and the other points out the chunks
that back that file. If you had a chunk
that contained only 1MB, it would take
up only 1MB of disk space, but it still
would require those two bits of meta-
data on the master. If your average file
size ends up dipping below 64MB, the
ratio of the number of objects on your
master to what you have in storage
starts to go down. That’s where you run
into problems.

Going back to that logs example, it
quickly became apparent that the natu-
ral mapping we had thought of—and
which seemed to make perfect sense
back when we were doing our back-of-
the-envelope estimates—turned out
not to be acceptable at all. We needed
to find a way to work around this by fig-

It could be argued
that managing to
get GFS ready for
production in
record time
constituted a victory
in its own right
and that, by
speeding Google
to market,
this ultimately
contributed mightily
to the company’s
success.

46 COMMUNICATIONS OF THE ACM | MARCH 2010 | VOL. 53 | NO. 3

practice

example, if you end up having to read
10,000 10KB files, you’re going to be do-
ing a lot more seeking than if you’re just
reading 100 1MB files.

My gut feeling is that if you design
for an average 1MB file size, then that
should provide for a much larger class
of things than does a design that as-
sumes a 64MB average file size. Ideally,
you would like to imagine a system that
goes all the way down to much smaller
file sizes, but 1MB seems a reasonable
compromise in our environment.

MCKUSICK: What have you been doing
to design GFS to work with 1MB files?

QUINLAN: We haven’t been doing any-
thing with the existing GFS design. Our
distributed master system that will pro-
vide for 1MB files is essentially a whole
new design. That way, we can aim for
something on the order of 100 million
files per master. You can also have hun-
dreds of masters.

MCKUSICK: So, essentially no single
master would have all this data on it?

QUINLAN: That’s the idea.

With the recent emergence within
Google of BigTable, a distributed stor-
age system for managing structured
data, one potential remedy for the file-
count problem—albeit perhaps not the
very best one—is now available.

The significance of BigTable goes
far beyond file counts, however. Spe-
cifically, it was designed to scale into
the petabyte range across hundreds or
thousands of machines, as well as to
make it easy to add more machines to
the system and automatically start tak-
ing advantage of those resources with-
out reconfiguration. For a company
predicated on the notion of employing
the collective power, potential redun-
dancy, and economies of scale inherent
in a massive deployment of commodity
hardware, these rate as significant ad-
vantages indeed.

Accordingly, BigTable is now used in
conjunction with a growing number of
Google applications. Although it repre-
sents a departure of sorts from the past,
it also must be said that BigTable was
built on GFS, runs on GFS, and was con-
sciously designed to remain consistent
with most GFS principles. Consider it,
therefore, as one of the major adapta-
tions made along the way to help keep
GFS viable in the face of rapid and wide-
spread change.

uring out how we could combine some
number of underlying objects into
larger files. In the case of the logs, that
wasn’t exactly rocket science, but it did
require a lot of effort.

MCKUSICK: That sounds like the old
days when IBM had only a minimum
disk allocation, so it provided you with
a utility that let you pack a bunch of files
together and then create a table of con-
tents for that.

QUINLAN: Exactly. For us, each appli-
cation essentially ended up doing that
to varying degrees. That proved to be
less burdensome for some applications
than for others. In the case of our logs,
we hadn’t really been planning to delete
individual log files. It was more likely
that we would end up rewriting the logs
to anonymize them or do something
else along those lines. That way, you
don’t get the garbage-collection prob-
lems that can come up if you delete only
some of the files within a bundle.

For some other applications, how-
ever, the file-count problem was more
acute. Many times, the most natural de-
sign for some application just wouldn’t
fit into GFS—even though at first glance
you would think the file count would
be perfectly acceptable, it would turn
out to be a problem. When we started
using more shared cells, we put quotas
on both file counts and storage space.
The limit that people have ended up
running into most has been, by far, the
file-count quota. In comparison, the un-
derlying storage quota rarely proves to
be a problem.

MCKUSICK: What longer-term strategy
have you come up with for dealing with
the file-count issue? Certainly, it doesn’t
seem that a distributed master is really
going to help with that—not if the mas-
ter still has to keep all the metadata in
memory, that is.

QUINLAN: The distributed master cer-
tainly allows you to grow file counts,
in line with the number of machines
you’re willing to throw at it. That cer-
tainly helps.

One of the appeals of the distributed
multimaster model is that if you scale ev-
erything up by two orders of magnitude,
then getting down to a 1MB average file
size is going to be a lot different from
having a 64MB average file size. If you
end up going below 1MB, then you’re
also going to run into other issues that
you really need to be careful about. For

MCKUSICK: You now have this thing called
BigTable. Do you view that as an appli-
cation in its own right?

QUINLAN: From the GFS point of view,
it’s an application, but it’s clearly more
of an infrastructure piece.

MCKUSICK: If I understand this correct-
ly, BigTable is essentially a lightweight
relational database.

QUINLAN: It’s not really a relational da-
tabase. I mean, we’re not doing SQL and
it doesn’t really support joins and such.
But BigTable is a structured storage sys-
tem that lets you have lots of key-value
pairs and a schema.

MCKUSICK: Who are the real clients of
BigTable?

QUINLAN: BigTable is increasingly be-
ing used within Google for crawling
and indexing systems, and we use it a
lot within many of our client-facing ap-
plications. The truth of the matter is
that there are tons of BigTable clients.
Basically, any app with lots of small
data items tends to use BigTable. That’s
especially true wherever there’s fairly
structured data.

MCKUSICK: I guess the question I’m re-
ally trying to pose here is: Did BigTable
just get stuck into a lot of these appli-
cations as an attempt to deal with the
small-file problem, basically by taking
a whole bunch of small things and then
aggregating them together?

QUINLAN: That has certainly been one
use case for BigTable, but it was actually
intended for a much more general sort
of problem. If you’re using BigTable in
that way—that is, as a way of fighting
the file-count problem where you might
have otherwise used a file system to
handle that—then you would not end
up employing all of BigTable’s function-
ality by any means. BigTable isn’t really
ideal for that purpose in that it requires
resources for its own operations that are
nontrivial. Also, it has a garbage-collec-
tion policy that’s not super-aggressive,
so that might not be the most efficient
way to use your space. I’d say that the
people who have been using BigTable
purely to deal with the file-count prob-
lem probably haven’t been terribly hap-
py, but there’s no question that it is one
way for people to handle that problem.

MCKUSICK: What I’ve read about GFS
seems to suggest that the idea was to
have only two basic data structures: logs
and SSTables (Sorted String Tables).
Since I’m guessing the SSTables must

practice

MARCH 2010 | VOL. 53 | NO. 3 | COMMUNICATIONS OF THE ACM 47

be used to handle key-value pairs and
that sort of thing, how is that different
from BigTable?

QUINLAN: The main difference is that
SSTables are immutable, while BigTable
provides mutable key value storage, and
a whole lot more. BigTable itself is actu-
ally built on top of logs and SSTables.
Initially, it stores incoming data into
transaction log files. Then it gets com-
pacted—as we call it—into a series of
SSTables, which in turn get compacted
together over time. In some respects,
it’s reminiscent of a log-structure file
system. Anyway, as you’ve observed, logs
and SSTables do seem to be the two data
structures underlying the way we struc-
ture most of our data. We have log files
for mutable stuff as it’s being recorded.
Then, once you have enough of that, you
sort it and put it into this structure that
has an index.

Even though GFS does not provide
a Posix interface, it still has a pretty ge-
neric file-system interface, so people
are essentially free to write any sort of
data they like. It’s just that, over time,
the majority of our users have ended up
using these two data structures. We also
have something called protocol buffers,
which is our data description language.
The majority of data ends up being pro-
tocol buffers in these two structures.

Both provide for compression and
checksums. Even though there are
some people internally who end up re-
inventing these things, most people
are content just to use those two basic
building blocks.

Because GFS was designed initially to
enable a crawling and indexing system,
throughput was everything. In fact, the
original paper written about the sys-
tem makes this quite explicit: “High
sustained bandwidth is more impor-
tant than low latency. Most of our tar-
get applications place a premium on
processing data in bulk at a high rate,
while few have stringent response-time
requirements for an individual read
and write.”

But then Google either developed or
embraced many user-facing Internet
services for which this is most definite-
ly not the case.

One GFS shortcoming that this im-
mediately exposed had to do with the
original single-master design. A single
point of failure may not have been a di-

provision for automatic master failover.
It was a manual process. Although it
didn’t happen a lot, whenever it did, the
cell might be down for an hour. Even
our initial master-failover implementa-
tion required on the order of minutes.
Over the past year, however, we’ve taken
that down to something on the order of
tens of seconds.

MCKUSICK: Still, for user-facing appli-
cations, that’s not acceptable.

QUINLAN: Right. While these instanc-
es—where you have to provide for
failover and error recovery—may have
been acceptable in the batch situation,
they’re definitely not OK from a latency
point of view for a user-facing applica-
tion. Another issue here is that there are
places in the design where we’ve tried
to optimize for throughput by dumping
thousands of operations into a queue
and then just processing through them.
That leads to fine throughput, but it’s
not great for latency. You can easily
get into situations where you might be
stuck for seconds at a time in a queue
just waiting to get to the head of the
queue.

Our user base has definitely migrated
from being a MapReduce-based world
to more of an interactive world that re-
lies on things such as BigTable. Gmail
is an obvious example of that. Videos
aren’t quite as bad where GFS is con-
cerned because you get to stream data,
meaning you can buffer. Still, trying to
build an interactive database on top of
a file system that was designed from the
start to support more batch-oriented
operations has certainly proved to be a
pain point.

MCKUSICK: How exactly have you man-
aged to deal with that?

QUINLAN: Within GFS, we’ve managed
to improve things to a certain degree,
mostly by designing the applications to
deal with the problems that come up.
Take BigTable as a good concrete ex-
ample. The BigTable transaction log is
actually the biggest bottleneck for get-
ting a transaction logged. In effect, we
decided, “Well, we’re going to see hic-
cups in these writes, so what we’ll do is
to have two logs open at any one time.
Then we’ll just basically merge the two.
We’ll write to one and if that gets stuck,
we’ll write to the other. We’ll merge
those logs once we do a replay—if we
need to do a replay, that is.” We tended
to design our applications to function

saster for batch-oriented applications,
but it was certainly unacceptable for
latency-sensitive applications, such as
video serving. The later addition of au-
tomated failover capabilities helped,
but even then service could be out for
up to a minute.

The other major challenge for GFS,
of course, has revolved around finding
ways to build latency-sensitive applica-
tions on top of a file system designed
around an entirely different set of pri-
orities.

MCKUSICK: It’s well documented that
the initial emphasis in designing GFS
was on batch efficiency as opposed to
low latency. Now that has come back to
cause you trouble, particularly in terms
of handling things such as videos. How
are you handling that?

QUINLAN: The GFS design model
from the get-go was all about achieving
throughput, not about the latency at
which that might be achieved. To give
you a concrete example, if you’re writ-
ing a file, it will typically be written in
triplicate—meaning you’ll actually be
writing to three chunkservers. Should
one of those chunkservers die or hiccup
for a long period of time, the GFS mas-
ter will notice the problem and sched-
ule what we call a pullchunk, which
means it will basically replicate one of
those chunks. That will get you back up
to three copies, and then the system will
pass control back to the client, which
will continue writing.

When we do a pullchunk we limit it to
something on the order of 5MB–10MB
a second. So, for 64MB, you’re talking
about 10 seconds for this recovery to
take place. There are lots of other things
like this that might take 10 seconds to a
minute, which works just fine for batch-
type operations. If you’re doing a large
MapReduce operation, you’re OK just
so long as one of the items is not a real
straggler, in which case you’ve got your-
self a different sort of problem. Still,
generally speaking, a hiccup on the or-
der of a minute over the course of an
hour-long batch job doesn’t really show
up. If you are working on Gmail, howev-
er, and you’re trying to write a mutation
that represents some user action, then
getting stuck for a minute is really going
to mess you up.

We’ve had similar issues with our
master failover. Initially, GFS had no

48 COMMUNICATIONS OF THE ACM | MARCH 2010 | VOL. 53 | NO. 3

practice

like that—which is to say they basically
try to hide that latency since they know
the system underneath isn’t really all
that great.

The guys who built Gmail went to a
multihomed model, so if one instance
of your Gmail account got stuck, you
would basically just get moved to an-
other data center. Actually, that capa-
bility was needed anyway just to ensure
availability. Still, part of the motivation
was that they wanted to hide the GFS
problems.

MCKUSICK: I think it’s fair to say that,
by moving to a distributed-master file
system, you’re definitely going to be able
to attack some of those latency issues.

QUINLAN: That was certainly one of our
design goals. Also, BigTable itself is a
very failure-aware system that tries to re-
spond to failures far more rapidly than
we were able to before. Using that as our
metadata storage helps with some of
those latency issues as well.

The engineers who worked on the earli-
est versions of GFS weren’t particularly
shy about departing from traditional
choices in file-system design whenever
they felt the need to do so. It just so hap-
pens that the approach taken to consis-
tency is one of the aspects of the system
where this is particularly evident.

Part of this, of course, was driven by
necessity. Since Google’s plans rested
largely on massive deployments of
commodity hardware, failures and
hardware-related faults were a given.
Beyond that, according to the original
GFS paper, there were a few compatibil-
ity issues. “Many of our disks claimed
to the Linux driver that they supported
a range of IDE protocol versions but
in fact responded reliably only to the
more recent ones. Since the protocol
versions are very similar, these drives
mostly worked but occasionally the
mismatches would cause the drive and
the kernel to disagree about the drive’s
state. This would corrupt data silently
due to problems in the kernel. This
problem motivated our use of check-
sums to detect data corruption.”

That didn’t mean just any check-
summing, however, but instead rigor-
ous end-to-end checksumming, with an
eye to everything from disk corruption
to TCP/IP corruption to machine back-
plane corruption.

Interestingly, for all that checksum-

ming vigilance, the GFS engineering
team also opted for an approach to
consistency that’s relatively loose by
file-system standards. Basically, GFS
simply accepts that there will be times
when people will end up reading slight-
ly stale data. Since GFS is used mostly
as an append-only system as opposed
to an overwriting system, this gener-
ally means those people might end up
missing something that was appended
to the end of the file after they’d already
opened it. To the GFS designers, this
seemed an acceptable cost (although
it turns out that there are applications
for which this proves problematic).

Also, as Gobioff explained, “The risk
of stale data in certain circumstances is
just inherent to a highly distributed ar-
chitecture that doesn’t ask the master
to maintain all that much information.
We definitely could have made things a
lot tighter if we were willing to dump a
lot more data into the master and then
have it maintain more state. But that
just really wasn’t all that critical to us.”

Perhaps an even more important is-
sue here is that the engineers making
this decision owned not just the file sys-
tem but also the applications intended
to run on the file system. According
to Gobioff, “The thing is that we con-
trolled both the horizontal and the
vertical—the file system and the appli-
cation. So we could be sure our applica-
tions would know what to expect from
the file system. And we just decided to
push some of the complexity out to the
applications to let them deal with it.”

Still, there are some at Google who
wonder whether that was the right call
if only because people can sometimes
obtain different data in the course of
reading a given file multiple times,
which tends to be so strongly at odds
with their whole notion of how data
storage is supposed to work.

MCKUSICK: Let’s talk about consistency.
The issue seems to be that it presumably
takes some amount of time to get every-
thing fully written to all the replicas. I
think you said something earlier to the
effect that GFS essentially requires that
this all be fully written before you can
continue.

QUINLAN: That’s correct.
MCKUSICK: If that’s the case, then how

can you possibly end up with things that
aren’t consistent?

The engineers
who worked on
earliest versions
of GFS weren’t
shy about departing
from traditional
choices in file-
system design
whenever they felt
the need to do so.
It just so happens
that the approach
to consistency is
one aspect of the
system where
this is evident.

practice

MARCH 2010 | VOL. 53 | NO. 3 | COMMUNICATIONS OF THE ACM 49

QUINLAN: Client failures have a way of
fouling things up. Basically, the model
in GFS is that the client just continues
to push the write until it succeeds. If the
client ends up crashing in the middle of
an operation, things are left in a bit of
an indeterminate state.

Early on, that was sort of considered
to be OK, but over time, we tightened
the window for how long that incon-
sistency could be tolerated, and then
we slowly continued to reduce that.
Otherwise, whenever the data is in that
inconsistent state, you may get differ-
ent lengths for the file. That can lead to
some confusion. We had to have some
backdoor interfaces for checking the
consistency of the file data in those in-
stances. We also have something called
RecordAppend, which is an interface
designed for multiple writers to append
to a log concurrently. There the consis-
tency was designed to be very loose. In
retrospect, that turned out to be a lot
more painful than anyone expected.

MCKUSICK: What exactly was loose?
If the primary replica picks what the
offset is for each write and then makes
sure that actually occurs; I don’t see
where the inconsistencies are going to
come up.

QUINLAN: What happens is that the
primary will try. It will pick an offset, it
will do the writes, but then one of them
won’t actually get written. Then the pri-
mary might change, at which point it
can pick a different offset. RecordAp-
pend does not offer any replay protec-
tion either. You could end up getting the
data multiple times in the file.

There were even situations where you
could get the data in a different order.
It might appear multiple times in one
chunk replica, but not necessarily in all
of them. If you were reading the file, you
could discover the data in different ways
at different times. At the record level,
you could discover the records in differ-
ent orders depending on which chunks
you happened to be reading.

MCKUSICK: Was this done by design?
QUINLAN: At the time, it must have

seemed like a good idea, but in retro-
spect I think the consensus is that it
proved to be more painful than it was
worth. It just doesn’t meet the expecta-
tions people have of a file system, so they
end up getting surprised. Then they had
to figure out work-arounds.

MCKUSICK: In retrospect, how would

All in all, the report card on GFS nearly
10 years later seems positive. There
have been problems and shortcom-
ings, to be sure, but there’s surely no
arguing with Google’s success and GFS
has without a doubt played an impor-
tant role in that. What’s more, its stay-
ing power has been nothing short of
remarkable given that Google’s opera-
tions have scaled orders of magnitude
beyond anything the system had been
designed to handle, while the applica-
tion mix Google currently supports is
not one that anyone could have possi-
bly imagined back in the late 1990s.

Still, there’s no question that GFS
faces many challenges now. For one
thing, the awkwardness of supporting
an ever-growing fleet of user-facing,
latency-sensitive applications on top
of a system initially designed for batch-
system throughput is something that’s
obvious to all.

The advent of BigTable has helped
somewhat in this regard. As it turns out,
however, BigTable isn’t actually all that
great a fit for GFS. In fact, it just makes
the bottleneck limitations of the sys-
tem’s single-master design more appar-
ent than would otherwise be the case.

For these and other reasons, engi-
neers at Google have been working for
much of the past two years on a new dis-
tributed master system designed to take
full advantage of BigTable to attack some
of those problems that have proved par-
ticularly difficult for GFS.

Accordingly, it now seems that be-
yond all the adjustments made to ensure
the continued survival of GFS, the new-
est branch on the evolutionary tree will
continue to grow in significance over the
years to come.

 Related articles
 on queue.acm.org

A Conversation with
Jeff Bonwick and Bill Moore
http://queue.acm.org/detail.cfm?id=1317400

The Five-Minute Rule 20 Years Later:
and How Flash Memory Changes the Rules
Goetz Graefe
http://queue.acm.org/detail.cfm?id=1413264

Standardizing Storage Clusters
Garth Goodson, Sai Susharla, Rahul Iyer
http://queue.acm.org/detail.cfm?id=1317402

© 2010 ACM 0001-0782/10/0300 $10.00

you handle this differently?
QUINLAN: I think it makes more sense

to have a single writer per file.
MCKUSICK: All right, but what happens

when you have multiple people wanting
to append to a log?

QUINLAN: You serialize the writes
through a single process that can en-
sure the replicas are consistent.

MCKUSICK: There’s also this business
where you essentially snapshot a chunk.
Presumably, that’s something you use
when you’re essentially replacing a
replica, or whenever some chunkserv-
er goes down and you need to replace
some of its files.

QUINLAN: Actually, two things are go-
ing on there. One, as you suggest, is the
recovery mechanism, which definitely
involves copying around replicas of the
file. The way that works in GFS is we ba-
sically revoke the lock so the client can’t
write it anymore, and this is part of that
latency issue we were talking about.

There’s also a separate issue, which
is to support the snapshot feature of
GFS. GFS has the most general-purpose
snapshot capability you can imagine.
You could snapshot any directory some-
where, and then both copies would be
entirely equivalent. They would share
the unchanged data. You could change
either one and you could further snap-
shot either one. So it was really more of
a clone than what most people think of
as a snapshot. It’s an interesting thing,
but it makes for difficulties—especially
as you try to build more distributed sys-
tems and you want potentially to snap-
shot larger chunks of the file tree.

I also think it’s interesting that the
snapshot feature hasn’t been used
more since it’s actually a very power-
ful feature. That is, from a file-system
point of view, it really offers a pretty
nice piece of functionality. But putting
snapshots into file systems, as I’m sure
you know, is a real pain.

MCKUSICK: I know. I’ve done it. It’s ex-
cruciating—especially in an overwriting
file system.

QUINLAN: Exactly. This is a case where
we didn’t cheat, but from an imple-
mentation perspective, it’s hard to cre-
ate true snapshots. Still, it seems that
in this case, going the full deal was the
right decision. Just the same, it’s an in-
teresting contrast to some of the other
decisions that were made early on in
terms of the semantics.

