
Design and Performance Evaluation of
Efficient Consensus Protocols for

Mobile Ad Hoc Networks
Weigang Wu, Jiannong Cao, Senior Member, IEEE, Jin Yang, and Michel Raynal

Abstract—Designing protocols for solving the consensus problem faces new challenges in mobile computing environments. Among

others, how we can achieve message efficiency for saving resource consumption has been the focus of research. In this paper, we

present the HC protocol, a message efficient consensus protocol for MANETs. We consider the widely used system model where the

hosts fail by crashes and the system is equipped with Chandra-Toueg’s unreliable failure detectors. Unlike existing consensus

protocols, the HC protocol uses a two-layer hierarchy based on clusters to achieve message efficiency. The messages from and to the

hosts in the same cluster are merged so as to reduce the message cost. However, adding such a hierarchy is not trivial. Due to host

movements and failures, the hierarchy changes from time to time and this may cause message loss. In designing HC, we also propose

methods to handle such message losses. Extensive simulations have been carried out to evaluate and compare the performance of

the HC protocol and similar protocols in a MANET environment. Simulation results show that, in most cases, our protocol can

significantly reduce both the message cost and time cost. With increases in the system scale or the percentage of faulty hosts, the

advantage of our protocol becomes more obvious.

Index Terms—Consensus, mobile ad hoc network, mobile computing, distributed algorithm, failure detector, fault tolerance.

Ç

1 INTRODUCTION

MOBILE wireless networks have properties fundamen-
tally different from traditional wired networks in the

aspects of communication, mobility, and resource con-
straints, which make the design of distributed algorithms
much more difficult than in traditional distributed systems.
Resource constraint, for example, low bandwidth, limited
power supply, or low process capability, is one of the
prominent features of mobile environments [2], [12]. Fewer
messages consume less bandwidth, power, and computa-
tion resources, so reducing message cost is a very important
issue in the design of distributed algorithms for mobile
wireless environments.

In this paper, we design efficient protocols to solve the

consensus problem in the context of a mobile computing

environment. Consensus is a fundamental problem for

many distributed computing applications, for example,

atomic commitment, atomic broadcast, and file replication

[14], [15], [16]. Broadly speaking, the consensus problem

involves getting a set of processes to agree on a value

proposed by one or more of the processes [7], [21]. In a

distributed system, especially a mobile network, processes

are prone to failure. A process is said to be correct if it

behaves according to an agreed specification in a run of a

consensus protocol; otherwise, a failure occurs and the

process is said to be faulty. More precisely, a correct

solution to a consensus problem should have three

correctness properties:

1. Termination. Every correct process eventually decides
upon some value.

2. Agreement. All of the decision values are equal.
3. Validity. Any decision value should have been

proposed by at least one process.

Unfortunately, it has been proven that, in asynchronous

distributed systems, consensus cannot be solved determinis-

tically, even with only one process crash [11]. To overcome

this impossibility result, Chandra and Toueg introduced

unreliable failure detectors (FDs) [5]. An FD gives (possibly

incorrect) hints about which process may have crashed so far.

It is constituted by modules local to each process and

periodically consulted by the corresponding process. FDs

can be classified according to their accuracy and complete-

ness properties. The accuracy property restricts the mistakes

that an FD can make, whereas the completeness property

represents the capacity of suspecting an actually crashed

process. Among all eight classes of FD,}S is the weakest but

strong enough to solve the consensus problem [4], [5]. }S is

defined using the following properties:

. Strong completeness. Eventually, each crashed process
is permanently suspected by each correct process.

. Eventually weak accuracy. There is a time after which
some correct process is not suspected by any correct
process.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007 1055

. W. Wu, J. Cao, and J. Yang are with the Department of Computing, Hong
Kong Polytechnic University, Kowloon, Hong Kong.
E-mail: {cswgwu, csjcao, csyang}@comp.polyu.edu.hk.

. M. Raynal is with IRISA, Campus de Beaulieu, Université de Rennes 1,
Avenue du Général Leclerc, 35042 Rennes Cedex, France.
E-mail: raynal@irisa.fr.

Manuscript received 17 Apr. 2006; revised 9 Nov. 2006; accepted 12 Feb.
2007; published online 10 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0149-0406.
Digital Object Identifier no. 10.1109/TC.2007.1053.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

Many consensus protocols based on FDs have been
proposed for distributed systems [5], [17], [18], [27].
However, the characteristics of mobile networks introduce
additional challenges in the design of consensus protocols
for the new environments.

There are two major types of mobile networks: infrastruc-
tured networks and mobile ad hoc networks (MANETs). The
infrastructured network consists of two distinct sets of
entities: a large number of mobile hosts1 (MHs) and relatively
fewer but more powerful mobile support stations (MSSs).
Each MH can only communicate with its local MSS. Some
protocols [1], [28] have been proposed to solve the consensus
problem in infrastructured mobile networks. The principle of
designing these protocols is to shift the operations of
achieving consensus from MH-based to MSS-based.

In a MANET, however, there is no MSS and each MH plays
the same role. Communications between MHs are peer-to-
peer and multihop in nature. Also, the topology of a MANET
is very arbitrary and can change dynamically. The principle
used in designing consensus protocols for infrastructured
networks is not applicable in MANETs, where all the work
must be done by the MHs themselves. Although some
probabilistic protocols for MANETs have been proposed [6],
[30], to our knowledge, no work has been reported on
deterministically achieving consensus in MANETs. Of
course, protocols for traditional networks can be used in
MANETs, but they are not efficient in terms of the message
cost, especially for large-scale MANETs [23], [32].

In this paper, we propose a message-efficient consensus
protocol for MANETs, which is named the “Hierarchical
Cluster-based” (HC) protocol. The HC protocol is based on
a variant of the versatile protocol proposed by Hurfin et al.
(HMR) [17], extending it to a hierarchical approach for
accommodating the design requirements of MANETs. A
two-layer hierarchy is imposed on the system by clustering
MHs into clusters. Clustering has been widely used in
MANETs to achieve message efficiency, stability, and
scalability. In the HC protocol, some hosts are selected to
act as clusterheads and each MH is associated with one
clusterhead. All messages to or from MHs are forwarded by
clusterheads. The messages with the same type are merged
by a clusterhead before they are forwarded to other hosts.
Similarly, when some messages of the same type need to be
sent to some hosts in the same cluster, these messages are
also first merged and then sent to the destination cluster-
head, which will unmerge these messages and deliver them.
This way, the message cost can be significantly reduced.

However, adding such a hierarchy is not trivial. First, the
messages are not simply forwarded by the clusterhead: A
cluster member needs to synchronize with its clusterhead in
the message exchange step. Due to the mobility and
clusterhead failure, an MH may need to switch between
clusterheads that are executing different steps. Therefore,
the switching procedure should be delicately handled in
order to maintain the synchronization between an MH and
its clusterhead. Second, nearly all consensus protocols,
including the CT protocol [5], HMR protocol [17], and BHM
protocol [1], require that no message can be lost. However,

the change of the hierarchy in a MANET may cause
message losses, even if the communication channel is
reliable. To distinguish such message losses caused by the
dynamics of the hierarchy from those caused by lossy
channels, we use two different terms: “switching message
loss” and “transmitting message loss.” To cope with
switching message losses, some redeeming messages
should be sent. What and when “redeeming messages”
should be sent depends on the execution state of the MH
and the clusterhead. We develop efficient mechanisms for
handling redeeming messages.

Besides the design of the HC protocol, another contribu-
tion of the paper is the performance evaluation of consensus
protocols in a MANET environment. We have conducted
extensive simulations to quantitatively evaluate the perfor-
mance of different consensus protocols, including our
proposed one. Through the evaluations, we obtained
insights into the effects of the main parameters on the
performance and the features of different protocols in the
MANET environment. This should be the first paper that
quantitatively and directly evaluates the performance of
consensus protocols by simulations. Such a simulation
study is valuable to the application of these protocols in a
real network.

The rest of the paper is organized as follows: In Section 2,
we briefly review existing FD-based consensus protocols,
including a variant of the HMR protocol, which is the basis
of our work. Following this, we describe our proposed
protocol in Section 3, including the system model, the data
structures, and the protocol itself. Section 4 proves the
correctness of the HC protocol. The performance evaluation
by simulations is reported in Section 5. We describe the
extension of our protocol to the context of lossy channels in
Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

Several }S-based consensus protocols have been proposed
for traditional fixed networks [5], [18], [27]. They all have
the same assumption that a majority of the processes are
correct, which has been proved to be a necessary condition
for achieving consensus in an asynchronous system [5]. All
of the protocols are based on the rotating coordinator
paradigm and executed in asynchronous rounds. A round
is usually divided into several phases. Each process has an
estimate of the final decision value. During each round, a
predetermined coordinator process attempts to impose its
own current estimate on others by sending its estimate to all
of the processes. On the reception of the proposal from the
coordinator, a process updates its own estimate and sends
the echo message to some or all of the processes. Based on
the echo messages received during a round, a process can
update its estimate and determine if it can make a decision.
These protocols mainly differ in the message exchange
pattern in a round. The protocol presented in [5] adopts a
centralized message exchange pattern, whereas the proto-
cols in [18], [27] use the fully distributed pattern. The latter
two protocols differ in the way in which they cope with
failures and the mistakes made by the underlying FD. More
precisely, the protocol in [18] “trusts” the FD, whereas the
protocol in [27] does not.

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

1. In this paper, the terms “process” and “host” are used interchange-
ably.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

The HMR [17] protocol presents a unifying approach of
achieving consensus with two orthogonal versatility dimen-
sions: the class of the underlying FD (class S or }S) and the
message exchange pattern (from a centralized pattern to a
fully distributed pattern) in each round. Similar to other
FD-based protocols, HMR uses the rotating coordinator
paradigm and executes in asynchronous rounds. In the first
phase of a round, the coordinator attempts to impose its
own current estimate on others by sending its estimate to all
the processes. However, in HMR, in the second phase of a
round r, the exchange pattern of echo messages is
determined by two sets: D and A. D (decision_makers) is
the set of hosts that needs to check the decision status, that
is, whether they can decide in the current round. A
(agreement_keepers) is used to ensure that, once a value has
been decided upon in some round, no other value can be
decided on in later rounds. In the second phase, each host
sends an echo message to all of the hosts in A [D.

Compared with other existing consensus protocols,
HMR is simple but versatile. There are only two types of
messages involved and the message processing in each
phase is very simple. These features make HMR suitable for
MANETs, where the system resources, including battery
power, memory space, and so forth, are very scarce.
Moreover, due to versatility, HMR can give rise to a large
and well-identified family of FD-based protocols [17].
However, HMR is not efficient in terms of message cost.
In each round, the coordinator needs to send the same
proposal to every MH and each MH needs to send the same
echo to every decision_maker/agreement_keeper. Therefore, we
propose the two-layer hierarchy to improve the message
efficiency.

All of the above protocols rely on reliable communica-
tion channels between hosts, that is, the channels that do
not create or duplicate messages and will eventually deliver
every message unless the receiver crashes. The protocols
reported in [8], [22] can tolerate transmitting message
losses. To do so, each host needs to periodically resend the
latest message that it has sent and, if a message sent from a
higher round is received, a host skips the current round.

Researchers have proposed some consensus protocols for
mobile environments. Based on the CT protocol [5],
Badache et al. [1] proposed the BHM protocol for infra-
structured mobile networks. The basic idea of BHM is to let
the MSSs achieve consensus for the MHs. MSSs collect
initial values from their local hosts and execute the CT
protocol to make the decision on some value collected. After
the MSSs achieve consensus, they propagate the decision
value to the MHs. A simple handoff mechanism is used to
handle the movements of MHs.

To some extent, the hierarchy in our protocol is similar to
that in the BHM protocol. The clusterheads (similar to MSSs
in BHM) act as privileged hosts and do more work than
ordinary MHs. However, there is great deal of difference
between BHM and HC. In BHM, the MHs only provide
initial values and do not participate in the protocol for
achieving consensus, but, in our HC protocol, all of the
hosts need to execute the rounds of message exchange and
processing. In terms of the function of privileged hosts, the
HMR protocol (or the CT protocol) and BHM protocol are

two extremes and our HC protocol is in between. More
importantly, our protocol is designed for MANETs, where
no infrastructure of MSSs exists. Although the clusterheads
play some privileged roles, they are also MHs intercon-
nected in an ad hoc manner.

The protocol in [28] extends the BHM protocol by
considering the dynamics of the set of MSSs. Using a group
membership protocol, the MSSs of the cells without any MH
are deleted from the set of MSSs executing the consensus
protocol. Since the group membership problem can also be
solved using a consensus protocol [16], there can be two
consensus protocols involved, which are executed concur-
rently. The solutions in [1] and [28] rely on the help of MSSs.
The principle is to shift the workload from the MHs to the
MSSs. In MANETs, however, there is no MSS and all of the
work has to be done by the MHs themselves.

Chockler et al. [6] developed a partition-based consensus
protocol for MANETs. The network is divided into
nonoverlapping grids, each of which is a single-hop
subnetwork. Single-hop consensus is first achieved within
each grid and, then, each host gossips its grid consensus
value. A host can decide after it has received a value from
every grid. Another consensus protocol for MANETs is
reported in [30]. Several fault-tolerant broadcast algorithms
for MANETs are designed and applied to a randomized
consensus protocol [10], which can only probabilistically
guarantee the termination property by using a random
number generator.

Both of the protocols in [6] and [30] are probabilistic with
respect to their approaches of achieving a global consensus
in MANETs. In this paper, we consider the message-
efficient protocol that can deterministically guarantee the
termination property.

3 THE HC PROTOCOL

3.1 System Model

The consensus problem is considered in a MANET
that consists of a set of n ðn > 1Þ MHs, with
M ¼ fm1;m2; . . . ;mng. All MHs are distributed into clus-
ters. Some of the MHs are selected as clusterheads and each
is in charge of one cluster. The number of clusterheads is
denoted by k. An MH can only fail by crashing, that is,
prematurely halting, but it acts correctly until it possibly
crashes. An MH that crashes in a run is a faulty host;
otherwise, it is correct. The maximum number of faulty
MHs in a run, denoted by f , is bounded by k and n=2, that
is, f < minimumðk; n=2Þ.

MHs communicate by sending and receiving messages.
Every pair of MHs is connected by a reliable channel that does
not create, duplicate, alter, or lose a message. It is important to
notice that the assumption on reliable channels can be
reduced to one on lossy channels, which is more feasible for
MANETs, but requires a much more complicated design.
This is discussed in Section 6. For simplicity, we assume
reliable channels in the description of our HC protocol.

The system is equipped with an unreliable FD of class}P ,
which is defined using the following properties:

. Strong completeness. Eventually, each crashed process
is permanently suspected by each correct process.

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1057

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

. Eventual strong accuracy. There is a time after which
every correct process is not suspected by any correct
process.

As mentioned before, among all eight classes of FDs
proposed by Chandra and Toueg, }S is the weakest, but it
is strong enough to solve the consensus problem [4], [5]. }P
has a stronger accuracy property than }S, but it has been
proven that }P and }S are equivalent in the power of
solving the consensus problem [13]. Although }P is
stronger than }S, existing implementations of }P [5], [20]
are not more complex than those of }S. Of course, }P may
take a longer time to reach a stable state.

Our protocol uses }P instead of }S because the
eventually strong accuracy property is necessary to guar-
antee the termination. There are two necessary conditions to
guarantee the termination of our HC protocol. First, there is
at least one correct host to act as a clusterhead. This can be
satisfied by including more than f MHs in the set of
clusterheads. Second, after some time, all of the correct
clusterheads must be no longer suspected by any correct
MH. The reason is twofold: 1) It can guarantee that at least
one correct and unsuspected clusterhead can act as the
coordinator and 2) it can prevent an MH from endless
clusterhead switches due to false suspicions. However, an
FD of class }S can only guarantee that at least one correct
host (may not be a clusterhead host) is never suspected after
some time. Therefore, }P is used to satisfy the second
condition (see the proof in Section 4 for more details).

3.2 Data Structures and Message Types

When executing the protocol, each host mi needs to
maintain necessary information about its state. Such
information is stored in the following variables:

. fli: The flag indicating whether mi has made the
decision.

. ri: The sequence number of the current round in
which mi is participating.

. phi: The phase number of the current phase in which
mi is participating.

. esti: The current estimate of the decision value.
Initially, it is set to the value proposed by mi.

. tsi: The timestamp of esti. The value is the sequence
number of the round in which mi receives esti from
the coordinator. The update of tsi is entailed by the
reception of estimate from a coordinator.

The message types involved in the proposed protocol are
listed as follows:

. PROP ðr; estccÞ: The proposal message sent from the
coordinator to the clusterheads or from a clusterhead
to the hosts in its cluster. estcc is the current estimate
kept by the coordinator. In each round, the coordi-
nator tries to impose estcc on other hosts by sending
proposal messages.

. ECHOLðr; esti; tsiÞ: The echo message from mi to its
clusterhead in round r.

. ECHOGðr; v; tsv; x; yÞ: The echo message from a
clusterhead to other clusterheads in round r. It is
constructed by merging the ECHOL messages from
the hosts in the same cluster. v is the estimate carried

by the ECHOL message with the highest timestamp
and tsv is the timestamp of v. x is the set of MHs that
sends the ECHOL message with tsv, whereas y is
the set of MHs that sends other ECHOL messages.

. DECISIONðestÞ: The message sent by an MH to
broadcast the decision value est.

. JOINðri; snÞ: The message sent by an MH to the
clusterhead of a new cluster that the MH wants to
join. sn is a sequence number to distinguish JOIN
messages from the same host.

. LEAVEðr; snÞ: The message sent by an MH to its
clusterhead to inform the clusterhead that the MH
wants to disassociate itself from the current cluster.
sn is the sequence number to distinguish different
LEAVE messages from the same host.

. PROPHðr; estccÞ: This is same as a PROP message,
except that this is for an MH that a new cluster joins.

3.3 Operations of the Protocol

A two-layer hierarchy is imposed on the network of MHs.
The Clusterhead layer consists of a predefined set H of MHs
which act as clusterheads to merge/unmerge and forward
messages for MHs. The Host layer consists of a set M of all
MHs, including those in set H.

Only the hosts in set H can act as coordinators or
decision_makers/agreement_keepers. To guarantee the termina-
tion of the protocol, at least one correct host should be
included in H, that is, jHj ¼ k � f þ 1. Each host associates
itself with the nearest2 unsuspected clusterhead in H. The
distance between two hosts is defined as the path length in
hops. Such distance information can be obtained through
the underlying routing protocol, which is in charge of the
establishment and maintenance of the path between any
two hosts.3 Obviously, a clusterhead host always chooses
itself as its clusterhead. The hosts that choose the same
clusterhead constitute a cluster. A host associated with a
clusterhead is called a “local host” of the clusterhead and,
correspondingly, the clusterhead is called the “local cluster-

head” of its local hosts.
To balance the workload and energy consumption, MHs

can take turns serving as the clusterhead for different runs
of the protocol. Since the only requirement for forming the
set H is that at least one clusterhead is correct, it does not
matter that a crashed host appears in H. Although H

remains unchanged for each run of the protocol, it can be
periodically reformed, for example, by using a predeter-
mined function so that an ordinary MH can switch to being
a clusterhead and vice versa.

The proposed protocol consists of four tasks. Like most
existing consensus protocols, Task 1 is the main body of the
protocol for making decisions and Task 2 is a simple
broadcast algorithm for propagating the value decided
upon. Other two additional tasks need to be performed in
our protocol. Task 3 is used to handle late ECHOL

messages arriving at a clusterhead and Task 4 is used for
a host to switch its cluster. The pseudocode of Tasks 1 and 2

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

2. A threshold of the difference between the distances to the old and new
clusterheads can be set.

3. For geographical routing protocols, the “distance” can be defined as
the geographical distance between two hosts.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

is shown in Fig. 1, and the pseudocode of Tasks 3 and 4 is

shown in Fig. 2.
Task 1. This task consists of two phases. At the beginning

of a round r, the current coordinator mcc sends

PROP ðr; estccÞ to the hosts in set H. Upon receiving the

PROP ðr; estccÞ message from mcc, a clusterhead forwards

the PROP message to all of its local hosts. If a clusterhead

suspects mcc before receiving PROP ðr; estccÞ, then it sends a

PROP ðr;?Þ message to its local hosts, where “? ” is a

value that can never be proposed or adopted. A host mi

waits until a PROP ðr;�Þ message is received from its local

clusterhead or its local clusterhead is suspected or its local

clusterhead is no longer the nearest one. The symbol “�” in

a message means any possible value. If a PROP ðr; vÞ
message with v 6¼? is received, then mi updates its

estimated value to v and timestamp to r. If its local

clusterhead is suspected or it is no longer the nearest one,

then mi invokes Task 4, which is the “switch” procedure, to

associate with another clusterhead, which will be presented

later. Then, Phase 1 is finished.
In Phase 2, the message exchange pattern is determined

by the set of decision_makers and agreement_keepers. As in

HMR, decision_makers are the hosts that need to check the

decision predication to know if they can decide during the

current round and agreement_keepers are the hosts that

should keep the updated estimate of the final decision.

Differently from HMR, we use a single set DA to store both

the decision_makers and the agreement_keepers. The roles of a

decision_maker and an agreement_keeper are the same in terms

of message exchange. Combining the sets D and A can help

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1059

Fig. 1. The proposed protocol: Task 1 and Task 2. Fig. 2. The proposed protocol: Task 3 and Task 4.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

increase the probability of making decisions in a round
without causing any additional overhead. Therefore, in HC,
each host in DA simultaneously plays two roles: decision_
maker and agreement_keeper. DA is defined by the function
dec_agr(r), which must satisfy three constraints:

1. dec_agr(r) is deterministic. Hence, during the same
round r, all hosts have the same DA.

2. dec_agr(r) returns only clusterheads, that is, DA � H.
3. dec_agr(r) returns at least the coordinator of rounds r

and rþ 1.

Phase 2 is started by sending ECHOL messages. Each
host first sends an echo message ECHOLðri; esti; tsiÞ to
its local clusterhead. If the host itself is not a clusterhead,
then it enters the next round rþ 1. Each clusterhead waits
for an echo message ECHOLðr;�;�Þ from each unsus-
pected local host. Then, each clusterhead constructs an
echo message ECHOGðr; v; tsv; x; yÞ by merging the
ECHOLðr;�;�Þ messages collected. v is the estimate
value carried by the ECHOLðr;�;�Þ message with the
highest timestamp and tsv is that timestamp. x is the set
of the hosts that sends the ECHOLðr;�;�Þ messages
with tsv, whereas y is the set of the hosts that sends
ECHOLðr;�;�Þ messages with other timestamps. The
clusterhead then sends the ECHOGðr; v; tsv; x; yÞ message
to the hosts in set DA. Each clusterhead in DA waits for
ECHOG messages until 1) the ECHOGðr;�;�;�;�Þ
messages received represent no less than n� f hosts or
2) an ECHOGð�;�; tsv;�;�Þwith tsv > r is received. Here,
“represent a host” means that the host is included in the set
x or y of the ECHOG message. A clusterhead in DA
updates its estimate to the value carried by the ECHOG
message with the highest timestamp, but keeps the time-
stamp unchanged. Finally, each clusterhead in DA checks
whether it can decide in the current round. If there are f þ 1
or more hosts in x sets of the ECHOGðr; v; tsv; x; yÞ
messages with tsv ¼ r, then it decides upon the value v
and broadcasts the final value.

Task 2. Task 2 simply broadcasts the decision value.
When a host that has not decided receives a DECISION
message, it forwards the DECISION message to all of the
other hosts except the sender and decides upon the value
carried by the DECISION message.

Task 3. Task 3 handles the late ECHOL messages. An
ECHOLmessage is “late” if it arrives at a clusterhead that has
sent out an ECHOG message for the corresponding round.
This happens when a clusterhead p suspects a correct local
host or a hostmi joins a new cluster whose clusterhead is in a
round greater than tsi. If a late ECHOL message is ignored,
then a clusterhead in setH may be blocked forever. To avoid
this, when a clusterhead p receives an ECHOLðri; esti; tsiÞ
with ri < rp or ri ¼ rp, but p has sent out an ECHOG for the
round ri, p constructs a redeeming ECHOG message for mi

and sends it to all hosts in H.
Task 4. This task is for an MH to switch its clusterhead. It

is invoked when a host mi suspects its current clusterhead p
or p is no longer the nearest clusterhead. mi chooses a new
clusterhead q, which is the nearest among the unsuspected
clusterheads, and then sends a message LEAVEðri; snÞ to p
and a message JOINðri; snÞ to q. Upon reception of the
LEAVE message, p deletes mi from its local host list. Upon

reception of the JOIN message, q adds mi to its local host
list. Then, if q is in Phase 2, it sends mi the same proposal
message PROPHðrq; estccÞ or PROPHðrq;?Þ, as sent in
Phase 1. Upon reception of the PROPHðrq; wÞ message
from q, the behavior of mi can be classified into three cases.

Case 1: ðri < rqÞ or (ri ¼ rq, phi ¼ 1). mi updates its round
number to rq and sends ECHOLðrr; esti; tsiÞ messages to q,
where tsi � rr < rq. If w 6¼? , then mi sets its estimate to w
and timestamp to rq. mi then resumes the normal execution
by entering Phase 2 of round rq.

Case 2: (ri > rq, phi ¼ 1). mi sends ECHOLðrr; esti; tsiÞ
messages to q, where tsi � rr < ri, and then resumes the
normal execution by continuing Phase 1 of round ri.

Case 3: (ri ¼ rq, phi ¼ 2) or (ri > rq, phi ¼ 2). mi sends
ECHOLðrr; esti; tsiÞ messages to q, where tsi � rr � ri, and
then resumes the normal execution by entering the next
round ri þ 1.

4 CORRECTNESS OF THE PROTOCOL

Since the validity property of the HC protocol is obvious, in
this section, we only present proofs for the termination
property and agreement property. The term “indirect

suspicion” used in the proof refers to the scenario that an
MH itself does not suspect the current coordinator, but it
receives a PROP ðr;?Þ from its local clusterhead.

4.1 Termination

Lemma 1. If no host decides in a round r0 � r, then all correct

hosts eventually start round rþ 1.

Proof. If some correct host blocks forever before round
rþ 1, then there must be a smallest round, say
rsðrs < rþ 1Þ, during which some correct host is blocked
forever. Therefore, we only need to prove that “no
correct host can be blocked forever in round rs.” The
proof is by contradiction.

Assume that some correct host mi is blocked forever
in round rs. Then, mi must be blocked in a wait
statement at line 7, 10, 35, 18, or 22 of round rs. Let us
analyze these cases one by one.

Case 1: mi is blocked at line 7. Obviously, mi is a
clusterhead. If the coordinator mcc is a correct host, then
mi eventually receives the proposal message from mcc. If
mcc is a faulty host, then mi eventually suspects mcc after
mcc crashes. Therefore, mi cannot be blocked forever at
line 7.

Case 2: mi is blocked at line 10. If mi is a clusterhead,
then it is the local clusterhead of itself. Since mi cannot
be blocked forever at line 7, it eventually receives the
PROP ðr;�Þ message sent by itself at line 8 or 9. If mi is
not a clusterhead, then there are two possible situations.
Let p be the local clusterhead of mi. If p is a correct host
and stays the nearest to mi, then it eventually sends out a
PROP ðr;�Þ message and mi eventually receives it.
Otherwise, mi eventually invokes the clusterhead switch
procedure. Therefore, mi cannot be blocked forever at
line 10.

Case 3: mi is blocked at line 35. Obviously, the
clusterhead switch procedure has been invoked. If the
new clusterhead selected is a faulty host, then mi

1060 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

eventually suspects it after it crashes and invokes the
clusterhead switch procedure again. Since at least one
clusterhead is correct ðk � f þ 1Þ, mi eventually finds a
correct clusterhead (by the accuracy of }P). Then, the
new clusterhead eventually sends a PROPHðr;�Þ
message to mi (no host is blocked at line 7 forever) and
mi eventually receives the message. Therefore, mi cannot
be blocked forever at line 35. It is important to notice
that, if an FD of }S is used here, then some correct
clusterheads in set H may always be suspected by correct
MHs from time to time. Consequently, a correct MH may
be entangled in endless switches between two or more
correct clusterheads falsely suspected from time to time,
which may prevent the protocol from termination.

Case 4: mi is blocked at line 18. Obviously, mi is a
clusterhead waiting for ECHOL messages from its local
MHs. All of the hosts in the local host list of mi can be
categorized into three classes: 1) faulty hosts, 2) correct
hosts that have left mi (but mi has not received their
LEAVE messages), and 3) the other hosts. For hosts in
class 1, mi eventually suspects them after they crash. For
hosts in class 2, each of them must have sent a LEAVE
message to mi before it leaves mi (line 33). mi eventually
receives the LEAVE messages and deletes them from
the local host list. For hosts in class 3, mi eventually
receives an ECHOL from each of them because they
cannot be blocked at line 7, 10, or 35. Therefore, mi

cannot be blocked forever at line 18.
Case 5: mi is blocked at line 22. Obviously, mi is a

decision_maker/agreement_keeper. There are two possible
conditions to unblock mi: 1) mi receives ECHOG
messages that can represent no less than n� f hosts
and 2) mi receives an ECHOG message with timestamp
ts > rs. We now prove that at least one of these
conditions is eventually satisfied. By assumption, rs is
the smallest round in which a correct host is blocked
forever, so at least n� f correct hosts eventually proceed
to the round rs and execute line 16. Then, we categorize
all of the correct hosts into two classes:

1. the hosts with correct clusterheads when they
execute line 16 and

2. the hosts with faulty clusterheads when they
execute line 16.

For a host mj in class 1, the local clusterhead of mj

eventually receives mj’s ECHOL message and includes
mj in an ECHOG message to mi.

For a host mj in class 2, after its clusterhead crashes,
mj eventually invokes the cluster switch procedure, finds
a correct clusterhead host q, and, after one or more
cluster switches, receives a PROPHðrq;�Þmessage from
q. Then, we consider different situations according to tsj:

2.a. If tsj � rs, then an ECHOLðr; estj; tsjÞ is sent to q
at line 39, 44, 48, 52, or 55.

2.b. If tsj > rs, then an ECHOLð�;�; > rsÞ is sent to q
at line 39, 44, 48, 52, or 55.

Considering that q is a correct host, it eventually
includes mj in an ECHOG to mi. Let us examine the
ECHOG messages received by mi in round rs. If some
host belongs to class 2.b, mi eventually receives an

ECHOGð�;�; > rs;�;�Þ and, consequently, condition 2
is satisfied; otherwise, all n� f correct hosts belong to
class 1 or 2.a and mi eventually receives enough
ECHOGðr;�;�;�;�Þ, that is, condition 1 is satisfied.
Therefore, mi cannot be blocked forever at line 22. tu

Lemma 2. For any round r, if the coordinator cr sends out a
PROP ðr; vÞ at time tr and less than n� f hosts suspect cr
directly or indirectly in Phase 1 of round r, then no
PROP ðr0; vÞ with r0 > r can be sent out before tr.

Proof. The proof is by contradiction. Assume that at least
one PROP ðr0; vÞ message with r0 > r has been sent out
by the time tr. Let rm be the greatest round number of all
of the PROP ðr0; vÞ messages that have been sent out by
time tr. Then, rm > r and rm� 1 � r. Obviously, the
coordinator of round rm, the host crm, must have
finished line 22 of round rm� 1 because it has sent out
PROP ðrm; vÞ before tr. Since the timestamp of the
estimate at any host can only be changed at line 12, 40,
or 45 and rm is the greatest round number in
PROP ðr0; vÞ messages by time tr, crm must not have
received an ECHOG with ts > rm� 1 in round rm� 1.
Therefore, crm must have received ECHOG messages
representing at least n� f hosts at line 22 of round
rm� 1. This means that at least n� f hosts sent out
ECHOLðrm� 1;�;�Þ messages in round rm� 1 before
time tr, so at least n� f hosts finished Phase 1 of round
rm� 1 before time tr. Since rm� 1 � r, at least n� f
hosts finished Phase 1 of round r before cr sent out
PROP ðr; vÞ in round r. Thus, at least n� f hosts
suspected cr directly or indirectly in Phase 1 of round r,
which contradicts the assumption in the lemma. tu

Corollary 1. In any round r, if the coordinator of round rþ 1,
crþ1, receives an ECHOG message with ts > r, then at least
n� f hosts suspect crþ1 directly or indirectly in Phase 1 of
round rþ 1.

Proof. By Lemma 2, the corollary obviously holds. tu
Theorem 1. If a host is correct, then it eventually decides.

Proof. If one host decides, then all correct hosts eventually
decide due to the reliable broadcast mechanism (lines 25
and 28). Therefore, we only prove that at least one host
decides. The proof is by contradiction.

Assume that no host decides. According to the
accuracy and completeness of }P , there is a time t after
which all correct hosts are never suspected by any
correct MH and all faulty hosts are permanently
suspected by every correct MH after they crash. Since
there is at least one correct host mx in H after time t,
every correct host eventually associates itself with a
correct clusterhead and does not suspect it any more. Let
r be the first round coordinated by mx and started after t.
By the assumption (“no host decides”) and Lemma 1,
eventually, all correct hosts enter round r and mx decides
in round r, which contradicts the assumption. The
theorem holds. tu

4.2 Agreement

Lemma 3. Let r be the first round in which f þ 1 hosts send
ECHOLðr; v; rÞ and r0 be any round that r0 � r. Then,

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1061

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

1. No host decides before r.
2. If the coordinator of r0 sends a PROP message, this

message carries the estimate value v.

Proof. Proof for Part 1. The proof is by contradiction. If no host

decides at line 26, then no host can decide at line 28. We

therefore only consider the decision at line 26. Assume that

some host mj decided at line 26 in some round s before r,

that is, s < r, and the decision value is u. mj must have

received at least one ECHOG message carrying a time-

stamp equivalent to sand the union set of thex sets in those

ECHOG messages includes at least f þ 1 hosts. Since all

ECHOG messages are constructed based on ECHOL

messages, at least f þ 1 ECHOLðs; u; sÞ have been sent

out. From the definition of r (“. . . first round in which

. . . ”), we have r � s, which contradicts the assumption

s < r. Part 1 holds.
Proof for Part 2. In any round r, the timestamp ts of

the estimate at any host can only be changed to r at
line 12, 40, or 45. By the assumption in the lemma, a
PROP ðr; vÞ has been sent out by cr, which is the
coordinator of round r, and at least f þ 1 hosts have
received the PROP ðr; vÞ in Phase 1 of round r. Let tp be
the moment when cr sent out the PROP ðr; vÞ message.
Since n� ðf þ 1Þ < n� f , by Lemma 2, all PROP ðr0;�Þ
messages with r0 > r must be sent out after time tp. Let R
be the list of the round numbers of all PROP ðr0;�Þ
messages with r0 > r. Without loss of generality, we
assume that R ¼ ðr0 ¼ r; r1; r2; r3; . . . ri; . . .Þ, where the
round numbers are sorted in the ascending order of the
moments when the corresponding PROP messages are
sent out.

We now prove that, for each round ri in R, the
proposal value carried by PROP ðri; uÞ is equal to v, that
is, u ¼ v. The proof is by induction on the sequence
number i in R.

Base case: i ¼ 0. According to the HC protocol, a host
sends an ECHOLðr; v; rÞ only if it has received a
PROP ðr; vÞ or PROPHðr; vÞ. Therefore, the local cluster-
head of this host must have received a PROP ðr; vÞ. The
lemma holds.

Induction hypothesis: i > 0. Assume that the lemma
holds for any round ri such that 0 � i � k. We show that
the lemma holds for round rkþ1. We define two sets of
hosts:

. The set G includes all of the hosts that have
received a PROP ðri; wÞ or PROPHðri; wÞ mes-
sage with 0 � i � k. By the induction hypothesis,
8mj 2 G : estj ¼ w ¼ v, and tsj ¼ ri. Since at least
f þ 1 hosts have sent ECHOLðr; v; rÞ, we have
jGj � f þ 1.

. The set B includes the hosts that have not
received a PROP ðri; wÞ message with 0 � i � k.
Obviously, 8mj 2 B : tsj < r. Therefore, all time-
stamps of the hosts in set B are less than those of
the hosts in set G.

Now, let us consider the behavior of host crkþ1 in Phase 2
of the round ðrkþ1Þ � 1. By the definition of DA, we have
crkþ1 2 DA during round ðrkþ1Þ � 1, so crkþ1 waits for the

ECHOGmessages at line 22 of round ðrkþ1Þ � 1. There are
two conditions to end the waiting at line 22:

1. crkþ1 receives an ECHOGð�; u; tsm;�;�Þ with
tsm > ðrkþ1Þ � 1. Then, crkþ1 updates its estimate
to the value u at line 23. In fact, the value u
must come from an ECHOLð�; u; tsmÞ, so the
sender of this ECHOL must have received a
PROP ðtsm; uÞ or PROPHðtsm; uÞ. This means
that the local clusterhead of the sender of this
ECHOL message must have received a
PROP ðr; uÞ. By the definition of R and the
induction hypothesis, tsm 2 fr0; . . . ; rkg, so u ¼ v.

2. crkþ1 receives ECHOGððrkþ 1Þ � 1;�;�;�;�Þ
messages that can represent at least n� f hosts,
which means that at least n� f message
ECHOLððrkþ1Þ � 1;�;�Þ are merged. Let X de-
note the set of the hosts that sent these ECHOL
messages. Obviously, jXj � n� f . At line 23, crkþ1

updates its estimate to the value u carried by
the echo message ECHOLððrkþ 1Þ � 1; u; tsmÞ,
where tsm is the highest time stamp. Since
jGj � f þ 1, we have G \X 6¼ ;. Therefore, the
message ECHOLððrkþ1Þ � 1; u; tsmÞ must be sent
by a host in G. By the definition of G, u ¼ v.

Then, for both cases 1 and 2, the estimate value of
crkþ1 is updated to v in round ðrkþ1Þ � 1 and, conse-
quently, crkþ1 sends out a PROP ðrkþ1; vÞ in round rkþ1.
The lemma holds. tu

Theorem 2. No two hosts decide upon different values.

Proof. If a host decides upon a value at line 28, then this

value must have been decided upon by another host at

line 26. Therefore, we only consider values decided upon

at line 26.
Let mi be a host that decides upon a value vi in round

ri. Since mi decides in round ri, it has received at least
one ECHOGðri; vi; ri;�;�Þ message. Therefore, the
coordinator of round ri had sent out a PROP ðri; viÞ.
Similarly, if another host mj decided upon another value
vj in round rj, then the coordinator of round rj must
have sent out PROP ðrj; vjÞ. Let r be the round
characterized in Lemma 3 (the first round in which f þ
1 hosts send ECHOLðr; v; rÞ). By Lemma 3, r � ri and
r � rj, so v ¼ vi ¼ vj. The theorem holds. tu

5 PERFORMANCE EVALUATION

We have carried out extensive simulations to evaluate and

compare the performance of the proposed HC protocol, the

HMR protocol, and the BHM protocol in a MANET

environment. In this section, we report the simulation results.

5.1 Performance Metrics

The performance of a consensus protocol involves two

aspects: time cost and message cost. In the literature, the

“number of communication steps/rounds” is usually used

to analytically evaluate the performance of a consensus

protocol [18], [27]. This metric is closely related to both time

cost and message cost because, roughly speaking, more

rounds or communication steps mean longer time and more

1062 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

messages. However, this metric cannot precisely/directly
reflect either of the costs. Different rounds of an execution
may overlap and the duration of one round in different
protocols or scenarios may be different. Similarly, the
number of messages exchanged per round also significantly
affects the message cost.

Furthermore, in a MANET, the concepts of “message”
and “hop” must be distinguished. In traditional distributed
systems, the message cost is computed in terms of the
number of “end-to-end” messages. One message may take
one or more hops to reach the destination. One “hop”
means one network layer message, that is, a point-to-point
message. In traditional systems, the costs of messages
transmitted in different numbers of hops are regarded as
the same. In a MANET, however, the resource is seriously
constrained, so the cost must be measured more precisely.
In this paper, we use four metrics:

1. Number of rounds (NR): The average number of
rounds executed by the hosts to achieve the global
decision.

2. Execution time (ET): The actual time required to
achieve the global decision.

3. Number of messages (NM): The total number of
messages exchanged to achieve the global decision.
For the HC protocol, the additional messages for
cluster switch, including LEAVE, JOIN , late
ECHOL (in Task 4.1), and PROPH messages, are
also included.

4. Number of hops (NH): The total number of hops of the
messages exchanged to achieve the global decision.

5.2 Simulation Setup

The simulation system consists of three modules: the
network, the FD, and the consensus protocol. The main
parameters of the simulations are shown in Table 1.

All of the hosts are randomly scattered in a rectangular
territory. To evaluate the scalability of the protocols, we
varied the number of hosts, that is, the system scale, and,
accordingly, the territory scale in proportion so that the
performances under different numbers of hosts are compar-
able. We also varied f by changing the value of f=n from
10 percent to 50 percent. The lifetime of a faulty host
satisfies the exponential distribution. The MHs move
according to the well-known random waypoint mobility
model [3]. The mobility level, defined as the percentage of
the time during which a host moves over the total lifetime
of the host, is fixed to 50 percent.

For message routing, we implemented a simple protocol
based on the “least hops” policy, which is adopted in many
classical routing protocols in MANETs such as AODV [25],
DSDV [24], and DSR [19]. A routing table is maintained at
each host proactively. The message delay is also assumed to
satisfy the exponential distribution.

The FD is simulated using a heartbeat mechanism as in
nearly all implementations of unreliable FDs [20]. The FD
module randomly makes mistakes, with an average error
rate fderr. To guarantee the properties of }P , the network is
set to be partially synchronous [5]: the bounds on the
message delay and processing speed are unknown and hold
only after an unknown stabilization interval. After the
stabilization interval, the FD makes no mistake.

The consensus protocols are implemented as separate
modules that are attached to MHs. For the HMR protocol, a
single set DA of decision_makers and agreement_keepers is
used, as in our HC protocol. Due to the dependence on
MSSs, BHM cannot be directly implemented in a MANET.
We simulated a variant of BHM by selecting 2f þ 1 MHs as
privileged hosts which execute the HMR protocol. The rest
of the hosts only passively wait for the decision value
(because each privileged host has its own initial value, it
does not need to collect initial values from others). To get
stable results, each execution was repeated 100 times and
the average values are reported.

5.3 Simulations Results

Since HMR is the basis of the other two protocols, we first
study the HMR protocol. The performance of our
HC protocol and the comparison of the three protocols
are then presented. If there is no explicit indication, then
fderr is set to 10 percent in the simulations.

5.3.1 Performance of HMR

The performance of HMR against the system scale is shown
in Figs. 3, 4, 5, and 6. Since the size of DA has a significant
effect on HMR’s performance, we use three representative
values: 2 (the current and next coordinator), n, and n=2. The
curves with different sizes of DA are labeled “SmallSetDA,”
“FullSetDA,” and “MiddleSetDA,” respectively.

The results show that NR, ET, NM, and NH all increase
with the increase of n. This is because a larger system scale
results in more messages and, consequently, more time in a
round. Then, more failures may occur in a round and more
time and messages are needed to achieve consensus.

Now, let us see the effect of the size of DA. When
jDAj ¼ n ðjDAj ¼ 2Þ, HMR needs the smallest (largest) NR
and, when jDAj ¼ n=2, NR is in the middle. A smaller DA

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1063

TABLE 1
Settings of the Simulations

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

results in a smaller probability of making a decision in a

round and, consequently, more rounds are needed to

achieve consensus. The effect of jDAj on ET and NM/NH

is more complex. When jDAj ¼ n ðjDAj ¼ 2Þ, HMR needs

the shortest (longest) time but the largest (smallest)

NM/NH. As discussed in Section 5.1, ET or NM/NH is

the accumulation of two values: the NR and the time/

message cost per round. A smaller DA results in fewer

messages and less time per round but more rounds. Since

the value of NR is much smaller than the NM per round

(Oð10Þ versus Oðn2Þ), the NM per round dominates the

change of NM/NH when jDAj changes, as shown in Figs. 5

and 6. However, Fig. 4 shows that the change of ET with

different sizes of DA is dominated by NR, which indicates

that the change of the time cost per round with different

sizes of DA is very small.
In general, with the change of jDAj, there is a trade-off

between the message cost and the time cost. A smaller DA

results in smaller message cost but larger time cost.

However, the effect on ET is not so significant as that on

NM/NH, so we fix jDAj ¼ 2 in the rest of the simulations.
Fig. 7 shows the effect of f=n clearly. When f=n

increases, more rounds are needed. This is because a large

f=n means a large probability that the round is coordinated

1064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 3. The NR of HMR.

Fig. 4. The ET of HMR.

Fig. 5. The NM of HMR.

Fig. 6. The NH of HMR.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

by a crashed host, which is prone to fail to make a decision.
Consequently, more rounds are executed to achieve con-
sensus. The sharp increase when f=n increases from
40 percent to 50 percent may be caused by the increase in
false suspicions of the coordinator. When f=n changes, ET

changes similarly to NR, but NM/NH is affected differently.
With the f=n increasing from 10 percent to 50 percent,
NM/NH first decreases and then increases again. On one
hand, more faulty hosts cause more rounds. On the other
hand, more faulty hosts result in fewer hosts actually
participating in the execution. As a joint result, the fewest
messages/hops are needed when f=n reaches about
40 percent.

5.3.2 Performance of HC

Besides the system scale, which affects the performance of
HC similarly as it does in HMR, the size of DA and the size
of H (that is, the parameter k) are other parameters that
significantly affect the performance of the HC protocol.
Based on the simulation results of HMR, we fixed jDAj to 2
in the simulation of HC.

The performance of HC against k=n is plotted in Fig. 8.
Due to the constraint of f < k, k=n cannot be varied to a
large extent under a large f=n, so, in Fig. 8, f=n is fixed to
10 percent.4 Fig. 8 shows that, with the increase of k=n, the
NR increases slowly, whereas the ET decreases. This can be
explained by the operation at line 22 in the HC protocol.
Upon the reception of an ECHOG message with a higher
timestamp, waiting at line 22 may be ended earlier, which
will shorten the average waiting time of a host at line 22, but
may miss a potential decision. A larger k=n means more
ECHOG messages exchanged in a round and, due to the

asynchrony of the network, more hosts end the wait at
line 22 earlier. Consequently, more rounds but shorter time
are needed to achieve consensus.

NM decreases very slowly when k=n increases. The effect
of k=n on NM is twofold. The increase of k=n causes the
increase of global messages (that is, messages between the
hosts in DA and the hosts in H), but reduces the number of
additional messages for cluster switch, as shown in Fig. 10a
(see later discussion). As a cumulative result, the NM
changes very little when k=n increases.

As with NM, NH also decreases very slowly with the
increase of k=n, but there is thorough in the middle
(especially when the system scale is large). NH is affected
by NM and the number of hops per message. When k=n

becomes large, the average distance between a host and its
clusterhead in hops is reduced and, consequently, the
average NH per message is reduced. As a cumulative result
of NM and the number of hops per message, NH becomes
the smallest when k=n is about 30 percent.

Fig. 9 shows the performance of HC against f=n with
k=n ¼ 50 percent. Comparing Figs. 7 and 9, we can find that
the effect of f=n on HC is nearly the same as that on HMR,
so Fig. 9 can be explained similarly as Fig. 7.

Now, let us examine the overhead of maintaining the
two-layer hierarchy, that is, the message cost for the cluster
switch. Fig. 10 shows the percentage of additional messages
for the cluster switch, including LEAVE, JOIN , late
ECHOL (in Task 4.1), and PROPH messages, under various
conditions. The overhead of the cluster switch increases as
f=n (Fig. 10b) or fderr (Figs. 10c and 10d) increase, but
decreases if k=n (Fig. 10a) increases.

When f=n increases, more MHs need to switch their
clusters due to crashes of faulty clusterheads and, therefore,
higher overhead of clustering is caused. The effect of fderr
on the overhead of the cluster switch comes from the effect
of false suspicions. The more the mistakes made by the FD,

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1065

Fig. 7. Performance of HMR versus f=n, with jDAj ¼ 2.

Fig. 8. Performance of HC versus k=n, f=n ¼ 10%.

4. In fact, due to the constraint of f < k, f is set to (n�10%Þ � 1, but, for
convenience, we still use “10 percent” to refer to the value of f=n. To
guarantee fairness of comparisons, the f of HMR and BHM is set in the
same way.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

the higher the probability that an MH falsely suspects its

current clusterhead and switches to another one. Conse-

quently, the percentage of messages for the cluster switch

increases. The effect of k=n can be explained as follows: A

clusterhead host always selects itself as its local clusterhead.

The more the hosts act as clusterheads, the fewer the hosts

need to switch their clusters and, therefore, the fewer the

messages caused by the cluster switch.
In general, the overhead caused by the cluster switch is

not high. In most cases, it is less than 20 percent of the total

NM, especially when the system scale is large and the FD

performs well. More importantly, even with the overhead of

the cluster switch, our proposed protocol can still achieve

improvement in performance due to the two-layer hier-

archy, as seen from the discussion in the following section.

5.3.3 Performance of BHM and Comparisons

Figs. 11, 12, 13, 14, 15, 16, 17, and 18 show the performance

of BHM and the comparisons of all three protocols.

Similarly to the other two protocols, BHM costs more

messages and longer time with the increase of n and f=n.

Now, let us compare the three protocols. Without loss of

generality, the k=n of HC is fixed to 50 percent in the

comparisons.

1066 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 10. Overhead of clustering.

Fig. 11. Performance comparison: NR.

Fig. 12. Performance comparison: ET.

Fig. 9. Performance of HC versus f=n, k=n ¼ 50%.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

Comparisons in NR and ET. Figs. 11 and 12 show the

NR and ET of all three protocols under different values of n

and f=n. When n and f=n are small, BHM can achieve

consensus with the fewest rounds and shortest time. Under

a small f=n, the BHM protocol involves many fewer hosts

in the procedure of achieving consensus, that is, it can be

viewed as an HMR protocol running in a much smaller

system. Therefore, BHM can achieve consensus with fewer

rounds and shorter time than HC and HMR do. However,

with the f=n increasing from 10 percent to 50 percent, the

number of hosts actually participating in the rounds of

message exchange in BHM gradually turns out to be the

same as in HMR and, consequently, the performance of

BHM becomes the same as that of HMR.
When the system scale becomes large, the NR and ET of

BHM increase sharply and become the largest among the

three protocols. As discussed above, BHM can be viewed as

an HMR protocol running in a system of 2f þ 1 hosts. The

actual percentage of faulty hosts in such a “smaller” system

may vary between 0 and f=ð2f þ 1Þ, though the average

percentage equals f=n. The larger the system scale is, the

higher the actual percentage of faulty hosts can vary. Since a

large percentage of faulty hosts results in the sharp increase

of NR in HMR (as shown in Fig. 7), the NR and ET of BHM

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1067

Fig. 13. Performance comparison: NM versus n, fderr ¼ 10%.

Fig. 14. Performance comparison: NM versus fderr, f=n ¼ 30%.

Fig. 15. Performance comparison: NM versus fderr, n ¼ 60.

Fig. 16. Performance comparison: NH versus n, fderr ¼ 10%.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

under a large system scale become the largest among the
three protocols.

The difference in NR and ET between HMR and HC is also
affected by the value of f=n and n. Due to the message
forwarding at clusterheads, HC needs two more commu-
nication steps than HMR. Therefore, each round of HC lasts
longer than that of HMR and more failures may occur during
one round. Consequently, HMR achieves consensus earlier
and faster. However, whenf=n is large, HC performs better in
terms of NR and ET. This is also caused by the message
forwarding mechanism of the two-layer hierarchy. In the
HMR protocol, when an ordinary host (that is, a host that does
not belong toDA) suspects the coordinator, it proceeds to the
next round after sending echo messages. In the HC protocol,
however, a host outside H has to wait for its clusterhead to
forward the proposal message, so the proceeding of HC in the
first phase is determined by only clusterheads. Therefore, the
postponement of making decisions due to false suspicions
made by ordinary hosts is avoided and, consequently, fewer
rounds are needed to make decisions. With the increase of
f=n, the probability of such a false suspicion increases.
Therefore, the difference between HC and HMR is reversed
under a large f=n.

With the increase of n, the advantage of HC in NR and
ET also increases. This can also be explained based on the
discussion above. The proceeding of the first phase is
determined only by clusterheads, so the effect of the system
scale on NR in the HC protocol stems from the change of the
number of clusterheads, that is, jHj. Since jHj ¼ n=2, jHj
changes more slowly than n changes and, consequently, the
NR and ET of HC increase more slowly than those of HMR.

Comparisons in NM and NH. Figs. 13, 14, and 15 show the
results in NM under various conditions. Figs. 16, 17, and 18
show the results in NH corresponding to Figs. 13, 14, and 15.

The HC protocol performs badly only when very few
hosts can crash and the system scale is very small. With the

increase of n and f=n, HC performs much better. When

f=n ¼ 50% and n ¼ 100, HC achieves consensus with only

less than half of the hops cost by BHM or HMR.
As discussed before, both NM and NH are determined

by NR and the message cost per round. Comparing Fig. 13

with Fig. 11, we can see that the relationship among the

three protocols in NM is nearly the same as in NR.

Therefore, NR dominates the difference in NM.
The difference in NH between BHM and HMR is also

determined by NR. However, the difference between HC

and the other two is not dominated by only NR. When the

system scale is not very small, HC can achieve consensus

with the fewest hops, even if its NR is not the smallest. Such

an advantage comes from the two-layer hierarchy, which

reduces the message cost per round in hops by merging

messages. The larger the system is, the more messages are

merged and, consequently, the greater the cost savings. This

indicates that our objective of reducing the message cost by

using the two-layer hierarchy is fulfilled.
Besides n and f=n, we also varied the error rate of FD

fderr. The results show that all three protocols cost longer

time and more messages when more mistakes are made by

the FD. This, in fact, comes from the effect of false

suspicions. The more mistakes are made by the FD, the

more false suspicions may occur. As discussed earlier, more

suspicions may cause chances for postponing the decision

making in HMR and BHM and, consequently, longer time

and more messages are needed. Although HC can alleviate

such postponement with the help of the two-layer hier-

archy, the overhead of the cluster switch is affected by false

suspicions, as discussed in Section 5.3.2. Therefore, the cost

of all three protocols increases with the increase of fderr.

However, it is important to notice that the change of fderr

almost does not affect the advantage of our HC protocol

compared with the other two protocols.

1068 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Fig. 17. Performance comparison: NH versus fderr, f=n ¼ 30%.

Fig. 18. Performance comparison: NH versus fderr, n ¼ 60.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

6 TOLERANCE OF TRANSMITTING MESSAGE LOSS

As in most consensus protocols, our HC protocol assumes
reliable communication channels among hosts. However,
due to the characteristics of wireless communications,
transmitting message losses occur more frequently in
MANETs than in wired networks. To cope with transmit-
ting message losses, one direction is to design reliable
communication protocols [9], [29], [31]. However, how
reliable end-to-end channels can be provided is still a
challenging topic in MANETs. Here, we take an alternative
approach by enhancing the HC protocol to handle
transmitting message losses in the protocol operation. We
divide the channel failures into two types—permanent
failures and transient failures—and design solutions for
handling the two types of channel failures, respectively.

6.1 Handling Permanent Channel Failures as Host
Failures

If a channel fails by crashing, that is, permanently losing all
of the messages transmitted through it, then a permanent
failure occurs. To circumvent permanent channel failures, a
possible solution is to treat the transmitting message losses
as host crashes. If a channel between a pair of hosts loses
messages, then the sender, instead of the channel, is said to
be faulty. This way, the system only has host failures and all
channels can be thought of as reliable. Although the
correctness of the HC protocol will not be affected, the
resilience, that is, the capability of tolerating faults, of the
protocol is degraded. There can be at most t ðt <
minimumðk; n=2ÞÞ hosts that can crash or be viewed as
crashed due to channel failures.

6.2 Reducing Reliable Channels to Fair-Lossy
Channels

A channel with a transient failure only loses messages for
some finite time and then recovers to be a correct channel.
Such a failure may recur for the same channel. More precisely,
such a channel is defined as a fair-lossy channel [22], [26].

If a host mi sends an infinite NM to host mj, then the
channel attempts to deliver an infinite NM to mj.

Following the approach in [8], [22], our HC protocol can
be extended for use in a system with fair-lossy channels. To
tolerate transmitting message losses caused by channels
with transient failures, three rules are added:

1. When a clusterhead p enters a new round r that is
not coordinated by p, it sends a NEW(r) message to
all other clusterheads.

2. Each host periodically resends the latest message that
it has sent. For example, during the wait at line 10 of
round ri, a clusterhead periodically resends the
PROP ðri;� Þ message to its local hosts, that is, it
periodically repeats the execution of lines 8 and 9.

3. When a host mi, either an ordinary host or a
clusterhead, receives a message with a higher round
number r with r > ri, mi aborts its current round
and enters the round r.

With these rules, a correct host blocked due to a
transmitting message loss can eventually be unblocked
and the termination property can be guaranteed. Since the
validity and agreement are not affected by any message

loss, the enhanced HC protocol still satisfies the correctness
requirements of a consensus protocol. Due to space
limitation, we do not present the proof here.

7 CONCLUSION

In this paper, we proposed a message-efficient and scalable
consensus protocol for achieving consensus in MANETs,
based on Chandra-Toueg’s unreliable FDs of class }P . A
cluster-based two-layer hierarchy is imposed on the system
to reduce the message cost. A number k of all of the n MHs
are selected to act as clusterheads. Each MH is associated
with a clusterhead and all of the hosts associated with the
same clusterhead constitute a cluster. The MHs can fail by
crashing and the number of faulty hosts is bounded by f ,
where f < minimumðk; n=2Þ. With the hierarchy, a coordi-
nator sends proposal messages only to clusterheads and a
clusterhead unmerges and forwards the proposal to its local
hosts. Similarly, echo messages from hosts in the same
cluster are merged into one message before they are sent to
decision_makers and agreement_keepers. Therefore, the mes-
sage cost is significantly reduced.

To evaluate the performance of the proposed protocol
and similar ones, extensive simulations have been con-
ducted under various conditions. Through simulations, we
obtained insights into the effects of the main parameters on
the performance and the features of different protocols in a
MANET environment. The results show that the perfor-
mance of all of the consensus protocols is significantly
affected by the system scale and the percentage of faulty
hosts. Compared to existing protocols, the proposed
protocol can significantly reduce both message cost and
time cost, especially when the system scale or the
percentage of faulty hosts is large.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
valuable insights that helped to improve this paper. This
research is partially supported by the Hong Kong Uni-
versity Research Grant Council under the CERG grant
PolyU 5183/04E, the France/Hong Kong Joint Research
Scheme F-HK16/05T, and the China National “973”
Program Grant 2002CB312002.

REFERENCES

[1] N. Badache, M. Hurfin, and R. Macedo, “Solving the Consensus
Problem in a Mobile Environment,” Proc. IEEE Int’l Performance,
Computing, and Comm. Conf. (IPCCC ’99), 1999.

[2] B. Badrinath, A. Acharya, and T. Imielinski, “Designing Dis-
tributed Algorithms for Mobile Computing Networks,” Computer
Comm., vol. 19, no. 4, Apr. 1996.

[3] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models
for Ad Hoc Network Research,” Wireless Comm. and Mobile
Computing, vol. 2, no. 5, 2002.

[4] T. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure
Detector for Solving Consensus,” J. ACM, vol. 43, no. 4, July 1996.

[5] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, Mar. 1996.

[6] G. Chockler, M. Demirbas, S. Gilbert, C.C. Newport, and T. Nolte,
“Consensus and Collision Detectors in Wireless Ad Hoc Net-
works,” Proc. ACM Symp. Principles of Distributed Computing
(PODC ’05), July 2005.

WU ET AL.: DESIGN AND PERFORMANCE EVALUATION OF EFFICIENT CONSENSUS PROTOCOLS FOR MOBILE AD HOC NETWORKS 1069

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

[7] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design, third ed. Addison-Wesley, 2001.

[8] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, “Failure
Detectors in Omission Failure Environments,” Technical Report
TR96-1608, Dept. of Computer Science, Cornell Univ., Sept. 1996.

[9] H. Elaarag, “Improving TCP Performance over Mobile Net-
works,” ACM Computing Surveys, vol. 34, no. 3, Sept. 2002.

[10] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal, “Randomized
Multivalued Consensus,” Proc. Fourth IEEE Int’l Symp. Object-
Oriented Real-Time Computing (ISORC ’01), May 2001.

[11] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM,
vol. 32, no. 2, Apr. 1985.

[12] G. Forman and J. Zahorjan, “The Challenges of Mobile Comput-
ing,” Computer, vol. 27, no. 4, Apr. 1994.

[13] R. Friedman, A. Mostefaoui, and M. Raynal, “On the Respective
Power of }P and }S to Solve One-Shot Agreement Problems,”
Technical Report 1547, IRISA, July 2003.

[14] R. Guerraoui, M. Hurfin, A. Mostefaoui, R. Oliveira, M. Raynal,
and A. Schiper, “Consensus in Asynchronous Distributed
Systems: A Concise Guided Tour,” Lecture Notes in Computer
Science, vol. 1752, 2000.

[15] R. Guerraoui and A. Schiper, “Consensus: The Big Misunder-
standing,” Proc. Sixth IEEE Workshop Future Trends of Distributed
Computing Systems (FTDCS ’97), 1997.

[16] R. Guerraoui and A. Schiper, “The Generic Consensus Service,”
IEEE Trans. Software Eng., vol. 27, no. 1, Jan. 2001.

[17] M. Hurfin, A. Mostefaoui, and M. Raynal, “A Versatile Family of
Consensus Protocols Based on Chandra-Toueg’s Unreliable Fail-
ure Detectors,” IEEE Trans. Computers, vol. 51, no. 4, Apr. 2002.

[18] M. Hurfin and M. Raynal, “A Simple and Fast Asynchronous
Consensus Protocol Based on a Weak Failure Detector,” Dis-
tributed Computing, vol. 12, no. 4, Sept. 1999.

[19] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” Mobile Computing, chapter 5, Kluwer Aca-
demic, 1996.

[20] M. Larrea, A. Fernandez, and S. Arevalo, “On the Implementation
of Unreliable Failure Detectors in Partially Synchronous Systems,”
IEEE Trans. Computers, vol. 53, no. 7, July 2004.

[21] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[22] R. Oliveira, “Solving Consensus: from Fair-Lossy Channels to

Crash-Recovery of Processes,” PhD dissertation 2139, Swiss
Federal Inst. of Technology (EPFL), 2000.

[23] T. Park and K.G. Shin, “Optimal Tradeoffs for Location-Based
Routing in Large-Scale Ad Hoc Networks,” IEEE/ACM Trans.
Networking, vol. 13, no. 2, Apr. 2005.

[24] C. Perkins and P. Bhangwat, “Highly Dynamic Destination-
Sequenced Distance-Vector (DSDV) Routing for Mobile Compu-
ters,” Proc. ACM SIGCOMM, Aug. 1994.

[25] C. Perkins and E. Royer, “Ad-Hoc On-Demand Distance Vector
Routing,” Proc. Second IEEE Workshop Mobile Computing Systems
and Applications (WMCSA ’99), Feb. 1999.

[26] M. Raynal, “A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems,” ACM SIGACT News, Dis-
tributed Computing Column, vol. 36, pp. 53-70, Mar. 2005.

[27] A. Schiper, “Early Consensus in an Asynchronous System with a
Weak Failure Detector,” Distributed Computing, vol. 10, no. 3, Oct.
1997.

[28] H. Seba, N. Badache, and A. Bouabdallah, “Solving the Consensus
Problem in a Dynamic Group: An Approach Suitable for a Mobile
Environment,” Proc. Seventh Int’l Symp. Computers and Comm.
(ISCC ’02), 2002.

[29] K. Sundaresan, V. Anantharaman, H. Hsieh, and R. Sivakumar,
“ATP: A Reliable Transport Protocol for Ad Hoc Networks,” Proc.
ACM MobiHoc ’03, June 2003.

[30] E. Vollset and P.D. Ezhilchelvan, “Design and Performance-Study
of Crash-Tolerant Protocols for Broadcasting and Reaching
Consensus in MANETs,” Proc. 24th IEEE Symp. Reliable Distributed
Systems (SRDS ’05), Oct. 2005.

[31] X. Yu, “Improving TCP Performance over Mobile Ad Hoc
Networks by Exploiting Cross-Layer Information Awareness,”
Proc. MobiCom 2004, Sept. 2004.

[32] Q. Zhao and L. Tong, “Energy Efficiency of Large-Scale Wireless
Networks: Proactive versus Reactive Networking,” IEEE J. Selected
Areas in Comm., vol. 23, no. 5, May 2005.

Weigang Wu received the BSc degree in
materials science in 1998 and the MSc degree
in computer science in 2003, both from Xi’an
Jiaotong University, China, and the PhD degree
in computer science from Hong Kong Polytech-
nic University, Hong Kong, in 2007. He is
currently a postdoctoral fellow in the Department
of Computing at Hong Kong Polytechnic Uni-
versity. His research interests include parallel
and distributed computing, networking, mobile

and wireless computing, and fault tolerance. His recent research has
focused on distributed coordination algorithms in mobile environments
and mobility management in wireless mesh networks. He has published
a number of papers in conferences and journals and served as a
reviewer for many international journals and conferences.

Jiannong Cao received the BSc degree in
computer science from Nanjing University, Nanj-
ing, China, in 1982 and the MSc and PhD
degrees in computer science from Washington
State University, Pullman, in 1986 and 1990,
respectively. He is currently a professor in the
Department of Computing at Hong Kong Poly-
technic University, Hung Hom, Hong Kong. He is
also the director of the Internet and Mobile
Computing Laboratory of this department. He is

also a member of the IEEE Technical Committee on Distributed
Processing, IEEE Technical Committee on Parallel Processing, and
IEEE Technical Committee on Fault-Tolerant Computing. He has served
as a member of the editorial boards of several international journals, as
a reviewer of international journals/conference proceedings, and also as
an organizing/program committee member of many international
conferences. His research interests include parallel and distributed
computing, networking, mobile and wireless computing, fault tolerance,
and distributed software architecture. His recent research has focused
on mobile and pervasive computing systems, developing testbeds,
protocols, middleware, and applications. He has published more than
200 technical papers in the above areas. He is a senior member of the
China Computer Federation, a senior member of the IEEE, and a
member of the IEEE Computer Society, the IEEE Communication
Society, and the ACM.

Jin Yang received the MSc degree from
Xia’men University, China, and the PhD degree
in computer science from Hong Kong Polytech-
nic University in 2006. He has worked at Lucent
Technologies Optical Networks Research Cen-
ter for three years. His current research interests
include fault-tolerant distributed computing, mo-
bile computing, failure detectors, and agreement
protocols. Besides academic research, he also
has a close relation with the industrial commu-

nity. Currently, he is focusing on implementing distributed/mobile
computing in Linux kernel to support network elements in mesh
networks.

Michel Raynal received the “doctorat d’Etat”
degree in computer science from the University
of Rennes, France, in 1981. He is currently a
professor of computer science at IRISA (CNRS-
INRIA-University joint computing research la-
boratory located in Rennes), where he founded
a research group on distributed algorithms in
1983. His research interests include distributed
algorithms, distributed computing systems, and
dependability. He has published more than 99

papers in journals and more than 210 papers in conferences. He has
also written seven books devoted to parallelism, distributed algorithms,
and systems (MIT Press and Wiley). His main interest lies in the
fundamental principles that underlie the design and the construction of
distributed computing systems. He belongs to the editorial boards of
several international journals. He has served on the program
committees of more than 85 international conferences and chaired
the program committees of more than 15 international conferences. He
received the IEEE ICDCS Best Paper Award three times in a row: in
1999, 2000, and 2001.

1070 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 10,2020 at 22:29:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

