
Automated Hoarding for Mobile Computers*

Geoffrey H, Kuenning and Gerald J. Popekt

Abstract .I

A common problem facing mobile computing is &connected op-
eration, or computing in the absence of a network. Hoarding eases
disconnected operation by selecting a subset of the user’s files forlo-
cal storage. We describe a hoarding system that can operate without
user intervention, by observing user activity and predicting future
needs. The system calculates a new measure, semantic distance,
between individual liles, and uses this to feed a clustering algori-
thm that chooses which files should be hoarded. A separatereplica-
tion system manages the actual transport of data; any of a number
of replication systems may be used. We discuss practical problems
encountered in the real world and present usage statistics showing
that our system outperforms previous approaches by factors that can
exceed 1O:l.

1 Introduction
The face of computing today is rapidly being changed by the ad-
vent of mobility, but the utility of the portable computer is seriously
challenged by the problem of discohected operation, where use-
ful work must continue in the absence or near-absence (i.e., avail-
able only at high cost or low bandwidth) of the network Although
impressive resources are being devoted to research in wireless net-
working, with a goal of making communication continuously avail-
able, the problem is difficult, and it is likely to be along time before
the mobile user will have the same networking capabilities as we ex-
pect from a stationary computer today. In the interim, portable com-
puters will often find themselves either completely lacking commu-
nication or significantly restricted by battery power, bandwidth, or
cost.

In the absence of readily available high-quality communication,
users are often forced to operate disconnected from the network. But
in a world dominated by networking, this is a major drawback, be-
cause the computing paradigm has grown dependent on the avail-
ability of non-local resources. Lack of access to a remote file can
halt work on a particular task or even make the computer unusable.

A very attractive solution to the lack of communication is hoard-
ing, in which non-local files are cached on the local disk prior to dis-
connection. The local files can be managed and kept consistent by
a replication system [7,9,11].

The difficult challenge is the “hoarding problem” of selecting
wlrich files should be stored locally. Earlier solutions have simply
chosen the most recently referenced files [l, 91 or asked the user to
participate at least peripherally in managing hoard contents [11,211.
The former approach is wasteful of scarce hoard space, while the

*This work was partially supported by the Defense Advanced Research
Projects Agency under contract N00174-91-C-0107.

t The authors are affiliated with the Computer Science Department, Uni-
versity of California, Los Angeles. Gerald Popek is also affiliated with Plat-
inum technology. E-mail: geoff@fing.cs.ucla.edu, popek@platinum.com.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-16 10197 Saint-Malo, France
0 1997 ACM 0-89791-916~5/97/0010...$3.50

latter requires more expertise and involvement that most users are
willing to offer.

We have taken a fresh approach to this problem, and have suce
ceeded in creating a predictive hoarding system, called SEER, that
makes hoarding decisions without user interaction. SEER consld-
ers the user’s activities to be composed of projects, rather than lndl-
vidual files, which greatly enhances the accuracy of its predictions,
In daily use, the system has dramatically improved the achievable
quality of hoarding decisions, in general requiring a hoard that is
only slightly larger than the working set.

2 System Overview
Automated predictive hoarding is based on the idea that a system
can observe user behavior, make inferences about the semantic re-
lationships between files, and use those inferences to aid the user.
SEER consists of two major components built atop a replication sub-
strate. First, an observer watches the user’s behavior and Ale ac-
cesses, classifying each access according to type, converting path-
names to absolute format, and feeding the results to a correlator,
The correlator evaluates the file references, calculating the semantic
distances among various files (see Section 3. I). These semantic dls-
tances drive a clustering algorithm (Section 3.3.2) that assigns each
file to one or more projects.

When new hoard contents are to be chosen, the correlator ex-
amines the projects to find those that are currently active, and se-
lects the highest-priority projects until the maximum hoard size is
reached. Only complete projects are hoarded, under the assumption
that partial projects are not sufficient to make progress.

SEER does not itself do the file hoarding: instead an underly-
ing replication system performs this task. This design frees SEER
from the troublesome details of moving files back and forth between
computers, making sure updates are propagated to other replicas of
the files, and managing conflicts [17’j. It also makes SEER more
portable because very little is assumed about the underlying sys-
tem. SEER currently runs atop the RUMOR [6, 181 user-level repll-
cation system, acustom-built master-slave replication service called
CHEAP RUMOR, and CODA [ll], and it could easily be used with
other systems such as FICUS [7]and LITTLE WORK [9].

A feature critical to usability is that, unlike previous systems,
SEER normally operates without user intervention. There is no need
to build explicit lists of important files or to instruct the system that
certain activities are of interest. The only user interaction (beyond
any that might be required by the underlying replication system)
involves informing the computer that a disconnection is imminent,
and even this requirement can be eliminated by automated perlodlc
hoard filling if desired. Although SEER allows users to provlde cx-
elicit hoarding instructions, our experience shows that such inter-
vention is rarely necessary.

3 Underlying Concepts
The fundamental assumption of SEER is that there is semantic lo-
caky in user behavior. By detecting and exploiting this locality, a
system can make inferences about the relationships between vad-
ous files. Once these relationships are known, there is potential for
an automated hoarding system to perform much better than one that
is based on LRU-style caching algorithms.

264

3.1 Semantic Distance I A I I D I
To detect semantic locality, SEER defines a new concept known
as semanric disrunce. Conceptually, semantic distance attempts to
quantify a user’s intuition about the relationship between files. A
low semantic distance suggests that the files are closely related and
thus are probably involved in the same project, while a large value
indicates relative independence and different projects.

In our system, semantic distance is based on measurements of
individual file references, rather than looking at the files themselves.
Thedistance between references is then summarized (Section 3.1.2)
to produce a value that is relevant to the individual files.

In our system, a file reference is considered to be a high-level
operation, such as an open or status inquiry. We do not track individ-
ual reads and writes, partly for efficiency but primarily because we
believe that doing so would obscure the information we are trying
to extract. SEER is interested in whole files, rather than individual
bytes, so it is more informative to look at whole-file operations.

3.1.1 Measuring Semantic Distance

While the concept of semantic distance is simple, it is not so easy
to come up with a quantification that is both meaningful and imple-
mentable, The method we have chosen is based on the observation
that semantic locality is similar to temporal locality: files that are
referenced at the same time tend to be semantically related This
observation is not original to us [4,5,12,21], but to our knowledge
we are the first to formalize the notion of semantic locality and its
relationship to temporal locality.

This leads directly to a first definition of semantic distance (note
that all of our suggested measures are asymmetric):

Definition 1 Temporal semantic distance. The temporal semantic
distance between two fire references is equal to the elapsed clock
time behveen the references.

This definition has intuitive appeal: it is simple and easy to mea-
sure, and it nicely captures the fact that files referenced at the same
time tend to be semantically related. Unfortunately, it has a basic
flaw, which is the fundamental disparity between computer and hu-
man time scales. For example, during a compilation, object files
would be considered related to their respective sources, but two
source files that were components of the same program would be
less closely related because accesses to them during editing may be
separated by many minutes. Also, the definition is subject to arti-
ficial distortion due to anomalies such as telephone interruptions or
large variations in system load.

To avoid these difficulties, we can modify our definition to use
the sequence of file references, without regard to clock time:

Definition 2 Sequence-based semantic distance. The sequence-
based semantic distance behveen two fire references is equal to the
number of intervening references to otherjiles. ’

*In practice, there are several alternative ways of implementing this def-
inition. For example, in the sequence {A, A,. . . , B). SEER uses only the
closest pair of references in calculating the distance from A to B. Simi-
larly, in the sequence {A, C, C, C, B). a strict interpretation of the defini-
tion would result in a semantic distance of 3, which is the choice used by
SEER. However, it might beequally sensible to elide the repeated references,
so that the distaace was only 1. We chose not to do this partly for efficiency,
and partly to capture the phenomenon of intensive work on a single project.
The various options involved in calculating semantic distance are discussed
in detail in [IS].

IB
Time I-+

Figure 1: Sample flle access sequence.

This definition allows us to infer semantic relationships from
temporal locality without suffering distortions due to time-scale
anomalies. However, Definition 2 still needs improvement. If we
consider only wholefile references such as opens, an individual ref-
erence does not take place at a particular point in time. Instead, a file
reference can then be considered to have a lifetie reaching from
an open to a corresponding close. Our experiences suggest that it is
the relationship between these lifetimes, rather than the individual
point-in-time references, that is of semantic importance.

For example, consider the compilation of a C module that is
composed of a source file S and several included header files Hl,
Hz, . . . , H,. The header files will be opened and closed in se-
quence, yet the rz* header file is just as essential to compiling the
program as the first. To capture this important relationship, we can
define a measure based on file lifetimes by taking advantage of the
fact that S remains open during the entire process:

Definition 3 Lifetime semantic distance. The lifetime semantic
distance between an open ofjile A and an open ofjile B is dejned
as 0 ifA has not been closed before B is opened. and the number of
interveningfire opens (including the open of B) otherwise.

For example, considerthereferencesequence{A”, B”, B”, Co,
Cc, A”, Do, D”), where the superscripts o and c indicate opens
and closes respectively. This sequence is diagrammed in Figure 1,
where the extent of an access is indicated by the width of the en-
closing box. The lifetime-based semantic distance from A” to each
of B” and Co will be 0, while the distance from A0 to Do will be
3. Similarly, the distances B” + Co, B” + Do, and Co + Do
will be 1,2, and 1, respectively. All other distances (B’ + A’,
Co + Ao, Do -+ A”, Co + B”, Do + B’, and Do + Co) are
undefined in this brief example.

Finally, we need to consider file references other than opens or
closes. For example, a file rename may be an essential part of a
compilation and thus as semantically meaningful (in terms of hint-
ing at fde relationships) as an open. For most purposes, SEER treats
such references as if they were an open followed immediately by a
close. We discuss these other types of references in more detail in
Section 4.

3.1.2 Data Reduction
Semantic distance is calculated between two file-reference events
(normally iile opens). For SEER’S purposes, however, the more in-
teresting information is the semantic relationship between two files,
rather than between two references to those files. Tracking files in-
stead of reference-s reduces the amount of data that must be stored,
but brings up the issue of how to convert the multiple distances be-
tween events into a single distance between files.

The most obvious conversion method is to use a simple mathe-
matical summary, such as the arithmetic mean, to represent the en-
tire sequence of references. The particular summary chosen should
be easy to calculate, updatable on-line, small in storage require-
ments, and defensible as being a reasonable representation of the
actual semantic relationship between files.

The arithmetic mean, attractive for its simplicity, satisfies all of
these requirements, and was the first method we tried. However, we

265

found that the arithmetic mean produced undesirable results. For ex-
ample, if three event pairs produce distances of 1, 1, and 1498, the
arithmetic mean would be 500. But the user would very likely con-
sider the files involved to be more closely related than two other files
represented by semantic distances 500,500, and 500. The problem
is that small numbers aremuch more indicative of a relationship than
are large ones. Because of this disparity in significance, we turned to
the geometric mean, which gives smaller values more importance.

3.13 Practical Algorithms

Definitions 1 through 3 in Section 3.1.1 have the common charac-
teristic that they define a distance value between every pair of files
mentioned in a stream of references. Since SEER is designed to
process data from months or even years of references, encompass-
ing tens or hundreds of thousands of files, the O(N2) storage com-
plexity required to keep track of the distance between every pair
of files becomes prohibitive. Furthermore, each new reference to
a given file generates new distances between it and all previously-
referenced files, so that the cost of processing a single reference on-
line is O(N) in the number of files, which is also unacceptably high.
Even if a reference could be processed in 1 ps, keeping track of all
pairs would expend 10 ms of CPU time per open if only 10,000 files
were known. This is even higher than the base CPU cost of an open
in a modem system, and 10,000 files is a very small number for a
modem distributed system.

Fortunately, since we are interested in locating files that are se-
mantically close to each other, it is not necessary to store all N2 dis-
tances. Instead, SEER uses an approximation heuristic to calculate
semantic distances. The heuristic makes two compromises for the
sake of efficiency. First, rather than storing the distance between ev-
ery pair of files, only n distances (n = 20 in our current implemen-
tation; see Section 4.9 for more information on how the algorithm’s
constants were chosen) to a file’s closest neighbors are tracked. Sec-
ond, when processing a new file reference, the distances updated are
limited to those from files that are within a distance of M (currently
M = 100) of the current reference. Although these heuristics can
introduce a large error in pathological cases [15], in practice they
have produced acceptable results. A compensation algorithm de-
tects and partially adjusts for larger distances by inserting M when-
ever a value larger than M would have occurred.

From time to time, it is necessary to replace one of the n dis-
tances kept for each tile (i.e., when a new semantic distance arrives
with a small value). In this case, a priority system is used. The high-
est priority goes to a closely related file that is marked for deletion
from the internal table. If no such file exists, the list of n refer-
ences is scanned to locate the one with the largest current seman-
tic distance (with ties broken randomly). If this reference has a dis-
tance larger than that of the new candidate, it is chosen for replace-
ment. Finally, if there is still no candidate, an aging system is ap-
plied that allows very old and inactive references to be replaced by
newer ones; details are given elsewhere [15]. This aging system is
necessary to allow SEER to track fundamental changes in user be-
havior and to allow incorrectly inferred relationships to be removed
over time.

3.2 Other Distance Measures
Besides semantic distance, there is a wealth of other information that
can be gleaned from a running computer system to help an auto-
mated hoarding system achieve acceptable results. That information
includes:

Directory membership. As a general rule, files in the same direc-
tory are more closely related to each other than files in different
directories.

File naming conventions. Naming often provides clues to impor-
tant relationships. For example, C++ classes are often de-
scribed in header files and implemented in source Ales that dif-
fer only in the extension.

“Hot” links. The Object Linking and Embedding facility in WIN-
DOWS@(OLE) allows documents, graphs, and other objects to
be interlinked as necessary to build larger sttucturcs in a flcx-
ible manner. These so-called hot links provide valuable and
low-cost information about fundamental relationships among
members of a project. A programming-language analog is the
#include statement in C and C++, which also indicates a
very strong inter-file relationship.

To take advantage of directory membership, SEER incorporates
a directory-distance measure that is zero for files in the same dircc-
tory and increases for files in more widely-separated directories,

To handle the other two types of relationships, SEER provides
a generalized external investigator mechanism. An external inves-
tigator is an auxiliary program that can examine selected files and
extract application-specific information, which is then supplied to
the correlator as extra file relationship data. For example, we have
developed a simple script that can read C source files to discover
#include relationships that are then passed to the correlntor for
inclusion in the clustering decision. Theinfonnation is expressed as
groups of related files, together with an investigator-chosen weight
indicating the strength of the relation. The clustering algorithm dls-
cussed in Section 3.3.2 makes use of these relationships when spec-
ified, although it does not require them. The method of integrating
these relationships is described in Section 3.3.3.

If an external investigator can identify an entire project, this in-
formation can be communicated to SEER independently of the in-
ternal clustering algorithm. For example, a makef ile investlga-
tor could potentially identify every file needed to build a particular
program and create a cluster containing exactly these files.

3.3 Clustering Algorithm
Simply knowing the relationships among individual files SO~VCS
only half the problem of predictive hoarding. These pairwise rela-
tionships must be converted into meaningful groupings of files into
projects. To do so, we use a multidimensional clustering algorithm,

3.3.1 Requirements
Although clustering has been widely studied, relatively few known
clustering algorithms are appropriate for the problem at hand, In
particular, SEER needs the following characteristics:

Efficiency. SEER must cluster many thousands of files, so al&o&
thms that require exponential time or O(N2) storage are not
practical? Since clustering must be done shortly before dis=
connection, the algorithm must take only seconds, or at worst
a few minutes.

Partial Information. Because of space limitations, SEER does not
store the distance between every pair of files, and there is no
way to calculate this distance from the information that is kept,
so the algorithm must be able to make its decisions based on
limited data.

No Distance Metric. Although we call semantic distance a “dis-
tancemeasure,” it is not a distance metric as required by many
clustering algorithms [3]. In particular, it is asymmetric and
does not satisfy the triangle inequality.

*Optimal clustering is NP-hard [la.

266

Relationship 1 Action
k, < x I Clusters combined into one

lhble 1: Summary of clustering algorithm (x is number of shared
neighbors).

Overlapping Clusters. Perhaps the most troublesome characteris-
tic of the problem is the need for files to be. members of more
than one cluster. A compiler, for example, may be used to com-
pile programs for a number of different projects, and so should
be a member of more than one cluster. Relatively few cluster-
ing algorithms allow points to be members of multiple clusters
simultaneously; in fact, most algorithms assume that this char-
acteristic would be undesirable.

No Objective Criterion. There is no numerical measure that can
be used to characterize the “goodness” of a particular cluster
assignment, eliminating algorithms that seek to optimize such
a criterion.

3.3.2 Agglomerative Algorithm

The algorithm we have developed is based on one originated by
Jarvis and Patrick [lo]. This algorithm is bottom-up, or ugghzer-
alive, starting with each data point assigned to an individual cluster
and then combining clusters according to a shared-neighbors crite-
rion. In the original formulation, the algorithm first calculates the
n nearest neighbors to each point, where n is a parameter of the
algorithm. After the 12 nearest neighbors of each point have been
calculated, the Jarvis and Patrick algorithm compares the nearest-
neighbor list for each pair of points. If two points have more thank
of their n nearest neighbors in common, they are considered to be
members of the same cluster, and their clusters are combined. The
storage requirements are thus C(N), while the time complexity is
O(N’) since each point must be compared to every other point.

In our variation, we achieve O(N) time complexity by avoid-
ing the comparison of every possible pair of points to locate nearest
neighbors. Instead, we use the existing table of n nearby files cal-
culated by our semantic-distance heuristic. In addition, we use two
thresholds, kn (near) and kf (far), where k, > kf.3

If two tiles share at least k,, neighbors, their clusters are com-
bined into one, as in the Jarvis and Patrick algorithm. However, if
the files share fewer than k, but at least kf neighbors, their clus-
ters are not combined, but instead are overlapped. In the overlap-
ping operation, each of the closely-related files is added to the other
file’s containing cluster. These options are summarized in Table 1,
where x represents the number of shared neighbors.

For example, consider seven files, A, B, C, D, E, F, and G.
The number of shared neighbors between each pair of these seven
files is given in Table 2. In the table, a blank entry indicates that
the file heading the row does not list the paired file as related; thus,
even if they share neighbors, the clustering algorithm will not dis-
cover this fact. For simplicity, we list the other distances in terms of
the thresholds: 0, kf, or k,. Thus, for example, file A lists B as a
neighbor and shares k,, neighbors with it. A also lists C as related,
but the two files share only kf neighbors. None of the other four
tiles are mentioned in A’s relation list, so the algorithm will have
no knowledge of neighbors shared with them.

3The idea of “near” exceeding “far” may seem counterintuitive, but is
necessary because smaller thresholds are more lenient, so that the lower
value of kf allows more-distant relationships to be discovered.

From: A B C p E F G From: A B C D E F G
A A kz kf kz kf
B B kn kn
c C kf kf
D D kn kn
E E

z z
kn kn

kn k.,

Table 2: Example relationships among seven flies.

In the first phase, our algorithm looks for files that share at least
k, neighbors, and combines their clusters. In our example, files A
and B share k, neighbors, so they become a two-file cluster. No
other files are closely related to A, so the algorithm moves on to B.
Since this file shares k, neighbors with C, C is added to B’s clus-
ter. This step also clusters A with C, even though there is no direct
relationship between the two files. Since neither B nor C share k,
or more neighbors with any other files, no other tiles are added to
this cluster.

Continuing with files D through F, the same criteria are applied
to combine D and E into one cluster, and to combine F and G into
a second. At this point there are three clusters: (A, B, C}, (0, E},
and {F, G}. File G is then processed, noting that it shares at least k,
neighbors with D, the clusters containing these two files are com-
bined into a single four-member cluster, (D, E, F, G}. Phase one
is now complete.

In the second phase, the algorithm re-processes all files, looking
for pairs that share fewer than k, but at least kf neighbors. There
are two such pairs, {A, C} and {C, D}. Since A and C are already
in the same cluster, no further action is taken. For C and D, the
algorithm adds each of these files to its counterpart’s cluster, but
does not combine the entire clusters. Thus, the final clusters are
{A, B, C, D) and CC, D, E, F, Gl.

3.3.3 Incorporating Additional Information
The algorithm discussed in Section 3.3.2 is simple and effective, but
does not support the additional distance measures discussed in Sec-
tion 3.2. In the Jarvis and Patrick formulation, multiple measures
could be handled by calculating the Euclidean distance between po-
tential cluster measures. However, this calculation would require
that all measures be available between all file pairs, which is not
possible with the possibly limited information provided by external
investigators. Thus, SEER uses a more ud hoc approach.

When extra information is available, the shared-neighbor count
is incremented or decremented by the value of the additional in-
formation, optionally weighted by an administrator-chosen amount.
For example, since a large directory distance (as defined in Sec-
tion 3.2) tends to indicate a looser relationship, the directory dis-
tance is subtracted from the shared-neighbor count, causing widely-
separated files to be less likely to cluster together. Conversely, an in-
vestigated relationship is additional evidence of closeness between
files, so the strength of the relation as provided by the investigator
is added to the shared-neighbor count to increase the likelihood of
clustering.

Since it is the shared-neighbor count that is modified, the addi-
tional information does not modify the semantic distance, instead
acting more directly on the clustering algorithm. This allows the
tendency of two files to cluster together to be either enhanced or re-
duced, and also sidesteps the difficulties introduced by the asymme-
try of semantic distance. In addition, modifying the shared-neighbor
count allows the extra information to be given greater importance,
which is appropriate because external investigators can use their

267

application-specific knowledge to achieve more accuracy than is
available through the more general-purpose algorithms of semantic
distance.

An important point is that the investigated relationships are
tested regardless of whether SEER ha$ independently stored a se-
mantic distance between the files. By setting the strength of a rela-
tion sufficiently high, an external investigator can force two or more
files to be clustered together independently of other factors, so au-
tomated investigators can override the clustering algorithm if they
choose.

4 Real-World Intrusions
The previous sections have presented an elegant framework for the
design of an automated hoarding system. Unfortunately, the reali-
ties of an actual operating system are not so clean. During the de-
velopment of SEER, we repeatedly encountered real-world behav-
ior that made the system operate incorrectly. This section reviews
the most important of those practical intrusions. Although SEER
currently runs under the LINUX operating system, we have concen-
trated on difficulties that are common to most, if not all, software
platforms.

4.1 ,Meaningless Activities
Perhaps the most troublesome problem that arose during the devel-
opment of SEER is the existence of processes and programs that en-
gage in “meaningless” activity that provides no information about
semantic relationships. One of the best examples of this type of ac-
tivity is the UNIX@program find, which searches the disk looking
for a file with certain specified characteristics (most modem systems
have a similar function). Because find opens every directory and
looks at every file in sequence, the accesses it makes do not give
any hint about inter-file relationships. In addition, because find
accesses every file, it destroys any LRU history that might have been
useful in hoarding decisions. This problem is even more severe in
LRU-based systems such as CODA and LITTLE WORK.

As we gained experience with SEER, we learned that there were
many programs with similar behavior, and we spent a considerable
amount of time searching for the best solution to the problem. Ap-
proaches we experimented with included:

1. List programs such as find as special cases in a control file,
and ignore the accesses generated by such programs (by flag-
ging it as “meaningless”).

2. Detect that a process has opened a directory for reading (which
is a typical behavior of such programs) and use this fact to au-
tomatically mark it as meaningless for the rest of its lifetime.

3. Detect directory opens, and mark a process meaningless only
while the directory is open.

4. Apply a threshold-based heuristic to compare the number of
files a process might know about (from reading directories)
with the number of files it actually touches, marking it mean-
ingless if it touches the majority of files it has learned about.

The first approach is attractive due to simplicity of implementa-
tion, but places a heavy burden on the person responsible for creat-
ing and maintaining the control file. The second is almost as simple,
but failed in practice because many meaningful programs read direc-
tories. For example, many text editors do so to implement filename
completion.

The third solution is based on the assumption that a meaningless
program such as find will keep at least one directory open while it
descends the directory tree. Unfortunately, this assumption turned
out to be false, so that this solution, too, fails in practice.

The fourth method, though more complex, has proven success-
ful. Each time a process opens a directory, SEER counts the total
numberoffiles the process could potentially access. Actual nccesses
are then recorded in a second counter. SEER tracks the historical be-
havior of a particular program and compares the relative values of
the counters to a threshold, based on that history. So, for example,
find will tend to have a history of accessing every possible file,
and thus would get marked as being a meaningless process, while
an editor will (on average) access far fewer than the maximum and
will remain meaningful.

There remains one more difficulty, however, which is the UNIX
getcwd library routine. getcwd deduces the full pathnamo of a
process working directory by climbing the directory tree and locat-
ing the individual components of the path. Doing so requires opcn-
ing and reading directories in a fashion that is very similar to the bc-
havior of find, so that the potential-access counter approach would
mark as meaningless any process that asked for the name of Its own
working directory. To address that problem, we installed another
heuristic that detects getcwd’s behavior pattern and temporarily
marks the process as being inside this function. During this period,
all file references are ignored, even for purposes of inferring mean-
inglessness).

These heuristics have made it possible for SEER to make the
right decision about the relevance of a process’ references in most
cases. However, we have retained the ability to hand-specify a few
processes as being meaningless! As in information retrieval, It is
necessary to filter out certain irrelevant relationships, rqd us in thnt
field, the current mechanisms are inelegant and could benefit from
further refinement.

4.2 Shared Libraries
Certain files on a modem computer are so fundamental that nearly
every program uses them. The most common example, though
hardly the only one, is the shared library.

Sharedlibraries present a serious problem for a system that t&s
to infer inter-file relationships from the sequence of opens. Since
every program’s reference sequence includes the shared library, the
library becomes a common link between otherwise unrelnted files.
For example, if S is the shared library, SEER might observe the se-
quences A, S, X and B, S, Y. S appears to be related to both X and
Y, even though they are actually members of unrelated sequcnccs,
This eventually causes the clustering algorithm to combine all tilts
into a single large cluster.

SEER’S solution is to apply a simple but effective heuristic. If
a particular file represents more than a given percentage (currently
1%) of all accesses, it is designated a “frequently-referenced” file
and is eliminated from the calculation of semantic distances and file
relationships. Since such a file is obviously important, it is always
included in the hoard regardless of its last reference time. On the
machine with the largest frequent-file list, 8 files fall into this class,
representing 2.3 MB of disk space, or about 5% of that user’s SO-MB
hoard.

4.3 Critical Files
Every system has some files that are essential to system operation,
such as files used in the bootstrap process or for personal startup
and configuration. Because modem laptops often support a SUS-
pendlresume mode that allows power to be conserved without re-
booting or repeatedly logging in and out, SEER may observe that
these startup files are rarely used, and incorrectly assume that the
user can do without them. The phenomenon of rare access to crit-
ical files is a fundamental problem with any completely automated
hoarding system.

4The current list is limited to xargs, rdis t, the replication substmto,
and the external investigators.

268

SEER addresses the problem in two ways. First, a system con-
trol file can be used to specify especially critical system files or di-
rectories (such as /etc in UNIX) that should beleft outside SEER’S
control. Second, a UNIX-specific heuristic applies a similar exclu-
sion to any file whose name begins with a period (e.g., . login).
We have found that such files tend to be relatively small compared
to the total hoard size, and that they usually contain important con-
trol and configuration information that the user cannot do without.

Although it is possible for the user to modify the system control
file to list other files that he considers critical to successful opera-
tion, this has not been necessary in practice. Out of nine SEER usen
in our initial deployment, only one even learned how to list special
files, and this was to correct an oversight by the system adminis-
trator. Nevertheless, we are unhappy with the necessity for explicit
specification and plan to seek alternatives in our future research.

4.4 Detecting Hoard Misses
When the user wishes to access a file that SEER has decided to omit
from the hoard, it is necessary to detect the hoard miss. This capa-
bility is important for two reasons. First, SEER needs to know of the
miss so that it can add the file (and all other members of its project)
to the hoard for future use. Second, because hoard misses are often
devastating to the user, causing a change in the work being done,
they provide the best statistics for measuring the success of SEER
(see Section 5.1) and tuning the algorithms.

Depending on the underlying replication system, detecting a
hoard miss can range from trivial to impossible. For example, FI-
cus supports so-called remote access, where an access to a non-
local object is automatically converted to an access to a remote one.
However, the success of this remote access depends on the avail-
ability of the remote replica(s) of the object. If the access succeeds,
SEER will be able to identify it as a remote access and can mark
the file to be hoarded later. If the access fails, however, and returns
an error code to the user, it is difficult or impossible (depending on
the replication system, the error code, and the state of SEER’S inter-
nal tables) to distinguish this case from an attempt to access a com-
pletely nonexistent file. Unfortunately, accesses to nonexistent files
are common in many programs, so that it is neither meaningful nor
efficient to assume that any failed access represents a hoard miss.

A further difficulty arises because some hoard misses are “im-
plied,” occurring without a direct attempt to access the file. For ex-
ample, a user might ask for a directory listing, note that the file is
missing, and never attempt to open it. Again, this is dependent on
the replication system, but because SEER is portable, it must deal
with the possibility.

Because of these problems, we have created a separate mecha-
nism for tracking hoard misses when the replication system is unable
to support this function. Whenever the user cannot access a file, he
runs a simple program to record the miss in a log file and arrange
for it to be hoarded in the future. This is a violation of our no-user-
burden design, but is forced upon us by deficiencies in some repli-
cation systems. For research purposes, the program also records the
time and date of the miss and a user-specified severity code, as fol-
lows:

0 The lack of the file has made the entire computer unusable, e.g.,
a critical startup file is unavailable. In this case the miss cannot
be recorded until a network connection is re-established.

1 The current task will change because of the missing file e.g.,
the user can log in but the primary source file for a program or
document isn’t hoarded.

2 The task will remain the same, but activity within the task will
be modified, e.g., an informational file is missing but work can
proceed on another part of the same task.

3 The lack of the file will cause little or no trouble.

4 The file isn’t actually needed right now, but the hoard should
be preloaded so that the file will be available in the future.

This manual recording of misses is subject to the vagaries of user
behavior, since it is possible that a user might neglect to record a
miss and thus perturb the statistics collected. It is for this reason that
we designed the system so that thesame user action both records the
miss and arranges for the file to be hoarded at the next reconnec-
tion. By combining the gathering of statistics with a function nec-
essary to the user, we were able to ensure that misses would not go
unrecorded. In addition, regular personal interaction with users in
our small-office environment allowed us to independently verify the
low failure rate.5

As a backup to themanual miss reporting, SEER also includes an
automated miss-detection system that notes when a user attempts to
access a file that is known to exist but is absent from the hoard. This
mechanism will sometimes detect misses that a user would consider
unimportant, and it cannot detect “implied” misses, but it is still a
useful feature.

4.5 Temporary Files and Directories
Many programs create temporary files to hold transient results. Be-
cause of their transient nature, semantic relationships between these
files and more permanent ones are not useful to an automated hoard-
ing system, yet the nature of how they are created causes them to
have a very small semantic distance, displacing other files from the
short list of n closely-related files kept by SEER.

The current implementation of SEER allows certain directories,
e.g. /trap, to be marked as transient in a control file (normally set
up by a system administrator, rather than a user . 5 Files created in
these directories are completely ignored by SEER. Similar pattem-
based detection methods could be used in other operating systems.

It would be much more elegant to detect temporary files auto-
matically, but the current design cannot accomplish this because by
the time a file can be recognized as temporary, it has already had the
opportunity to displace more important files in the list of n related
files that is kept for each file (see Section 3.1.3). We plan to pursue
automated algorithms in the future.

4.6 Non-Files
The LINUX filesystem supports a number of objects besides files,
including directories, symbolic links, and more exotic objects such
as device files and pseudo-filesystems. Many of these objects are
critically necessary for system operation; for example, the lack of a
device file for the console will probably render it impossible to log
in, or even to receive a Iogin prompt.

With the exception of directories and possibly some pseudo-
filesystems, these objects take almost no disk space. Because of
the importance of these objects and their minimal space require-
ments, SEER always includes them in the hoard. Many of these ob-
jects are also omitted from semantic-distance and clustering calcu-
lations, since they often vary depending on extraneous factors (e.g.,
/dev/ ttyxx). A control file, set up by the system administrator,
specifies which objects are ignored.

Directories are the only objects that regularly require significant
disk space. However, the underlying repIication system may have
its own needs regarding directories (for example, RUMOR might
choose to store a directory so that its contained objecis are acces-
sible when disconnected). For this reason, SEER leaves hoarding

% early testing before statist&I collection was began, the first ma-
chine deployed did experience a single severity-0 failure due to the lack of
. cshrc; it was this failure that led us to install the UNIX-spcdic heuristic
discussed in Section 4.3.

269

decisions regarding directories up to the replication substrate. For
space calculations, however, it makes the conservative assumption
that all directories are hoarded.

4.7 Simultaneous Accesses
The formulations of semantic distance in Section 3.1 assume that
the user is generating only a single stream of references. In a mod-
em multi-tasking operating system, however, a typical user often si-
multaneously generates multiple independent reference streams, for
instance by reading email while waiting for a compilation. These
independent streams are intermixed when observed by SEER, and
create incorrect and spurious file relationships if not properly han-
dled.

We hadoriginally hypothesized [13] that thedatareductions dis-
cussed in Section 3.1.2 would provide a noise-filtering mechanism
that would eliminate the effects of these spurious relationships. Un-
fortunately, experience proved this hypothesis incorrect: although
noise was reduced, it was not eliminated, and the resulting spurious
relationships tended to cause poor hoarding decisions.

To address the problem, we found it necessary to separate the
reference streams on a per-process basis in a manner similar to that
used by Tait et al.‘s SPY UTILITY [21]. SEER maintains a separate
reference-history list for each process, and calculates semantic dis-
tances on a process-local basis. The file-open test mentioned in Def-
inition 3 is also performed on a per-process basis. Reference histo-
ries are inherited from parent processes and merged when children
exit, allowing SEER to detect extended relationships between files
referenced by a process and by its parent.

4.8 Non-Open References
A real program can refer to a file in a variety of ways. Besides be-
ing opened and closed, a file may be executed as a process, deleted,
created as a special filesystem object (e.g., a directory), and have its
attributes examined or modified. Under some systems, alternative
names for a file may also be created and used.

Many of these situations can be treated as a point-in-time ref-
erence, similar to an open immediately followed by a close. A few
require more complex treatment:

Process Lifetimes. Executions and terminations of processes are
treated as opens and closes, respectively.

FileDeletion. Because many programs delete and immediately
recreate files, SEER delays removal from its internal tables for
a short period (measured in terms of total deletions) so valu-
able relationship information won’t be lost if the file name is
immediately reused.

Attribute Examination. Many programs examine file attributes to
see whether a file exists or to discover whether it can be writ-
ten. Usually, the file will be subsequently opened. It would be
less correct to record this activity as two references to the file,
since from the user’s point of view there is only a single access.
However, other programs, such as make, base important deci-
sions on the values of the attributes, and the examination may
indicate a close relationship between the examined file and an-
other that is actually opened.

In general, SEER treats examination of an attribute as a simul-
taneous open/close pair. However, an examination immedi-
ately followed by an open is discarded as insignificant In addi-
tion, certain more complex heuristics, discussed in Section4.1,
are applied in some cases.

4.9 Parameter Settings
SEER’S semantic-distance and clustering algorithms make use of a
number of parameters and thresholds to make their decisions. The
correct settings for these parameters are not obvious, aud interac-
tions among them are complex and difficult to predict. Although
space precludes a detailed discussion, we found it necessary to dc-
vote significant effort to searching the parameterspace for the values
that would produce good results for all users. The search methods
and the parameters we used for our tests are detailed in [15].

4.10 Avoiding Deadlock
Since SEER issues its own system calls, deadlock can occur if these
calls are themselves traced. To avoid this problem, the trace mecha-
nism does not record calls made by the observer and correlator thcm-
selves. However, experience showed that this step was not enough,
Some of the system calls made by SEER can activate daemons, no-
tably those that support the Network File System (NFS), and dead-
lock can occur due to calls made by these processes, We solved this
problem by not tracing most calls made by the superuser ((‘root”).
This prevents SEER from being able to manage certain files needed
by supemser activities (e.g., programs invoked by cron). WC are
investigating alternative methods that will allow use to trace supe-
ruser operations and still avoid deadlock.

4.ll Tracing System Calls
We indicated in Section 2 that the observer watches the user’s file
accesses. Observation is implemented with a simple modification
to the operating system kernel that allows system calls to be tmced,
In general, calls are traced after they complete so that SEER can
observe their success or failure status. However, a few calls (on
LINUX, only exec and exit) are traced before execution to cap-
tureimportant information that will bedestroyed when thecall com-
pletes.

5 Evaluating Success

5.1 Measurement Methodology
As discussed in [Ill, traditional measures of cache performance,
such as miss rate, are inappropriate in a hoarding situation. In a
traditional caching system, a miss causes a relatively minor perfor-
mance penalty, and has no effect on the overall course of the corn-
putation. By contrast, a miss in a hoarding system is a very scvcrc
event, because there is usually no way to service the miss at a small
cost in performance. Instead, a hoard miss generally causes the user
to stop work on the current task and switch to a secondary one. In a
trace-driven simulation, a hoard miss invalidates the trace because
of this task-switching behavior.

51.1 Time to First Miss
An alternative measure, first suggested in [20], is the time to the first
hoard miss, measured as either elapsed time or number of tile rcfer-
ences. This is attractive because it quantifies the amount of work the
user was able to do before a hoard failure forced a change in activ-
ity. Weimplemented thismeasureinourliveexperiments, including
measuring the severity of the miss as discussed in Section 4.4.

Our experiments were conducted by deploying SEER on nine
486-based laptops used ‘in a software development environment.
Each laptop was associated with a single user and served as the pd-
mat-y platform for that person. The measurement period varied from
one to eight months, with most machines being examined over a 3-
month interval. Three of the machines (A, B, and E) wereusd only
occasionally in disconnected mode, while the remainder each gcn-
erated 75 or more active disconnection periods. The number of ob-
served disconnections is reported in Table 3. Four machines (B, C,

270

0, arm n) were not usea exrenslvely aurmg elmer connecreu orals-
connected mode, primarily due to outside commitments or the use
of alternative operating systems. Traces of user activity recorded a
low of about 40,000 operations for the least-used machines (C and
H) to a high of about 326,000,OOO operations for the most heavily
used (G).

To measure the time to first miss, we combined several tools.
A background daemon periodically pings a well-known site to de-
tect disconnection durations. The output of this daemon was post-
processed to remove disconnections or reconnections of less than
15 minutes. This eliminated brief disconnections in which hoard
misses would not he bothersome, and brief reconnections made to
transfer e-mail or service an important hoard miss. (The latter can
occur only after a miss is recorded, since the miss must be recorded
before the system can know that it needs to be serviced. By discard-
ing the reconnection and thus combining the adjacent disconnec-

tions, the total number of disconnections is reduced and the average
disconnection time increased, both of which perturb our statistics in
a direction detrimental to SEER.)

A second daemon detects suspension periods. This is impor-
tant because laptop computers are often placed into a power-saving
mode when no work is being done. It would be incorrect to report
a 16-hour overnight disconnection if the laptop were only in active
use for 2 hours; this is especially true when calculating the time to
first miss. By discarding suspensions, we ensured that our statistics
considered only times when the machine was being actively used.
Disconnections during which the machine was completely unused
(e.g., vacations) were also excluded from the statistics.

Finally, misses themselves were measured using the manual and
automated methods discussed in Section 4.4.

However, preliminary analysis revealed a severe flaw in this
measure. The time to first miss is very dependent on the relation-
ship of the chosen hoard size to the user’s working set. A user with
a small working set will almost never experience a miss, while one
whose configured hoard size is only slightly larger than his working
set will suffer an abnormally high failure rate. This flaw cannot be
rectified retroactively, since any traces collected will have been af-
fected by the presence or absence of hoard misses and thus cannot
be reanalyzed assuming a different hoard size.

A secondary, though still important, drawback is that it is diffi-
cult to compare hoarding methods using this real-world measure. To
properly compare two proposed algorithms, one should ask the user
to perform the same tasks twice, once with a hoard filled by each
algorithm. This is clearly impossible. The best one could do would
be to ask a user to live with each algorithm for a period of time, or to
ask two different users to use the algorithms in parallel. Either ap-
proach would introduce so much uncontrolled variation that dozens
or hundreds of experiments would be necessary to eliminate uncer-
tainty.

5.1.2 Miss-Free Hoard Size

For these reasons, we have invented a new measure that can be used
to quantify the difference between hoarding algorithms. This is the
ntiss-free hoard size, which is defined as the size a hoard would have
to be to ensure no misses. For example, under a strictly LRU algo-
rithm, the miss-free hoard size can be calculated as follows:

1. Sort all files according to their last reference time prior to the
current disconnection period, with the most recent file first.

2. Mark each file that was referenced during the current period.

3. Locate the last marked file in the list.

4. Sum the sizes of all files between this file and the beginning of
the list.

ueany, lr me noara slzc. is at least as large as me sum, an LKu
hoarding would have included all tiles that were referenced in the
disconnection period. A similar approach can be applied to any
hoarding algorithm to calculate the hoard size that would be needed
to avoid misses.

The miss-free hoard size offers several advantages over other
measures:

It quantifies the difference between algorithms in a linear, tine-
grained fashion.

It is not sensitive to current parameter settings.

It can be calculated using reference traces, so that simulation
becomes a viable analysis tool.

It reflects the behavior that the user desires: working as if con-
nected, with no awareness that only a selected subset of files is
present.

We have carried out extensive trace-driven simulations to mea-
sure the miss-free hoard size under various conditions; the results
are reported in Section 5.2.1. For each of a group of laptop comput-
ers, we collected tile reference traces, in both connected and discon-
nected mode, over a period of one or more months.

The question of whetherto use connected or disconnected traces
was a difficult one. Traces of connected operation include behav-
iors that cannot happen while disconnected, such as browsing the
Web. Traces of disconnected operation will at least occasionally in-
clude a period covering a hoard miss, which may change user be-
havior in some fashion. This will usually have the effect of placing
more stress on the hoarding system, since the attempted access to
the missed file will have been recorded in the trace, and the atten-
tion shift forced by the miss will now require the system to hoard
both the old and the new projects. Even in the absence of misses,
the user may have avoided some activity because he was aware that
it was not hoarded.

Because of the complexity of these considerations, we chose to
use complete traces, coveting both disconnected and connected op-
eration. Since our users experienced relatively few misses, and the
majority were at insignificant severities, we believe that the discon-
nected traces were generally valid even when they covered periods
with misses. The connected portions of the traces were included be-
cause we believe that although some activities might not occur dis-
connected, the general file-access patterns of these activities are still
representative of typical applications and thus serve as a reasonable
test of a hoarding system.

We then replayed the traces into the correlator running in a sim-
ulation mode. The simulation made use of actual file sizes when-
ever possible; when the size of a file was not available, the size was
randomly assigned from a geometric distribution with a parameter
of 0.00007, for an average tile size of 14284 bytes. This value was
chosen by examining the actual distribution of file sizes in traces ob-
served by SEER. To the extent that this distribution does not reflect
actual file sizes, it will slightly distort the hoard-size and working-
set statistics.

Each trace was replayed under up to four sets of conditions. We
simulated disconnection durations of both 24 hours and 7 days, with
each simulated disconnection separated by an infinitesimal recon-
nection during which the simulated user performed no work while
the hoard was recomputed. On three machines (B, F, and G), we
evaluated the impact of external investigators by simulating both
with and without the information they supplied. For each combina-
tion of conditions, the simulation was repeated several times with
different random seeds to reduce the variation introduced by ran-
domly assigning file sizes. The individual experiments were done
in random order to avoid possibly introducing outside trends.

271

loo

MB

50

0
A B* B C D E F* F G* G H I

Machine

Figure 2: Mean working sets and miss-free hoard sizes for two man-
agers. The left-hand bar of each pair represents daily disconnec-
tions, while the right-hand bar gives weekly values. Starred labels
represent the use of external investigators.

Each simulation generated comparative results for SEER’S clus-
ter-based management scheme, a strict LRU scheme, and three
schemes inspired by the formula used in CODA. However, the latter
three schemes performed more poorly than LRU, due the lack of the
ongoing hand management that they were designed to expect. (We
did not have the resources to apply such hand tuning to our simula-
tions.) Because these algorithms were not tested under conditions
appropriate to their design, we chose not to report results for them.

5.2 Results
We now have approximately 35 man-months of experience using
SEER in a live setting, with excellent results. We have also con-
ducted extensive simulations. In live use, SEER has performed even
better than expected; several users experienced no hoard misses at
all, no one suffered a significant percentage of failed discorinections,
and there were no severity-0 failures. In simulations, SEER’S clus-
tering algorithm essentially always outperforms LRU-style meth-
ods, and is usually so close to the optimum that we at first suspected
an error in our measurement procedures.

Our only disappointment has been analytical, rather than experi-
mental. The clusters produced by SEER often have contents that are
surprising to us, either by including apparently unrelated files or by
separating a single project into a few clusters rather than the single
grouping that would correctly represent it. However, this problem
can be mitigated by the use of external investigators. In any case,
this discrepancy has not affected the success of our live and simu-
lated experiments, so it is possible that it is only a theoretical diffi-
culty that will never bother real users.

52.1 Simulation

Figure 2 shows the miss-free hoard sizes graphically. Each pair of
stacked bars represents a single machine; the left-hand bar of each
pair is for daily disconnections and the right-hand bar is for weekly
activity. For three machines (B, F, and G), the effect of using exter-
nal investigators is shown by a bar pair marked with an asterisk. The
lowest element of each stack represents the mean working set for the
machine and period; the center element is the additional space re-
quired by SEER’S clustering algorithm to remain miss-free, and the
upper element shows the additional space needed by the LRU al-
gorithm. 99% confidence intervals were within 52 MB about the
mean for all measurements except the LRU hoard space, which al-
ways fell within -+ 5 MB about the mean.

It is remarkable in Figure 2 that the clustering algorithm con-
sistently requires space only slightly greater than the working set,
which represents the needs of an optimum algorithm. By con-
trast, the LRU approach frequently uses space several times greater.

Size
(MB)

3(10

ZMI

100

0

x Working Set
+ Seer AA A

A LRU
A ’

Sorted working set slza of mnchlns F

Figure 3: Performance of two hoard managers vs. working set sizes
for simulated weekly disconnections of machine F (sorted by work-
ing set size; X axis represents sort order).

This shows that SEER can be successfully used to hoard files in
near-optimal space, so that power users who normally operate with
nearly-full disks can work disconnected without inconvenience,

An interesting and unexpected result is that the external inves-
tigators did not make a significant difference in the required hoard
size. In every case, the 99% confidence durations show thnt the use
of external investigators had no statistically meaningful effect. In
future research, we plan to examine this anomaly to see whether wo
can devise parameter settings that will make external iqvestigatlon
more useful.

Figure 3 gives another view of the same material. Here, in&ad
of showing means, we give detailed data for a single machine and
simulated disconnection period. This graph shows the weekly work-
ing set sizes for the most heavily-used machine (F), plus the miss-
free hoard size needed by the clustering and LRU managers for each
week. To aid visualization, the X axis is sorted by working-set size,
Each X value represents a particular week, but consecutive values
do not represent consecutive weeks. Instead, the X values reflect the
ordering of the disconnection periods after sorting. Again, WC seo
that SEER’S clustering manager requires a hoard size only slightly
larger than the working set, while the LRU manager often rcquircs
significantly more space.

Another result of the simulations is that the working sets arcrel-
atively small. This is somewhat surprising in the face of the fre-
quently made observation that disks tend to be full. This is an in-
dication of the wastage on most systems: only a Small fraction of
all files are actually needed by the user on any given day. We also
note that the advent of multimedia, voice recognition, and shnilar
features can be expected to increase everyday disk requirements,
placing added pressure on hoarding systems and making the supc-
rior performance of SEER even more important.

5.2.2 Live Usage

Table 3 gives statistics on the general disconnection behavior of ac-
tual users, including thenumber of observed disconnections (which
reflects the machine’s usage level during the measurement period),
the mean (%), median (zo.~), and standard deviation (a) of the dis-
connection duration, and maximum duration. Fc minimum dura-
tion tends to be nearly constant approximately at 0.25 hours bccnusc
of the &minute minimum disconnection time mentioned in Sec-
tion 51.1.)

Table 4 summarizes statistics on failed disconnections, deflned
as those in which there was at least one hoard miss, For each ma-
chine, the table gives the hoard size used in megabytes, the absolute
number of failures at each severity level, the number of failures at
any severity, and the automatically detected failure count. To save
space, all-zero rows have been omitted from Table 4. Two apparent
anomalies in this table require further explanation. First, the num-
ber of failures at any severity can be smaller than the row sum if

272

Hoard
User Size
A
C zi
D 50
E 50
F 50
G 98
I 50

User
A
B
C
D
E
F
G
H
I

Days No. ot
Measured Disconnections

111 38
79 10

113 75
118 90
71 25

252 184
132 107
113 75
123 116

Disconnectron Duratron (Hours)
Total -

424 11716 ?ii 150.82
Max
71.89

431 43.20 0.57 127.19 404.94
745 9.94 1.12 40.87 348.20
271 3.01 1.38 4.46 26.50
47 1.87 0.81 2.54 12.08

1711 9.30 2.00 16.33 90.62
862 8.06 1.47 38.29 390.60
763 10.17 1.12 41.09 348.20
274 2.36 0.78 4.26 27.68

Table 3: Disconnection statistics.

Failures
0 1 2 3 4 Any Sev. Auto
000 00 0 2

000 00 0
000 00

:
000 00 ii 1
0 3 6 11 9 24 2
000 00 0 3
010 00 1 5

Table 4~ Summary of failed disconnections at various severities.

Hours
User Sev. f
A Auto 1.8
C Auto 1.6
D Auto 0.9
E Auto 11.0
F 1 10.6

2 6.6
3 3.4
4 6.2
Auto 20.4

G Auto 0.5
I 1 1.0

Auto 0.9

x0.5 Q

- 2.3
- -
1.0 0.5
- -
- 16.3

0.9 9.1
0.5 4.9
0.5 11.2
- 28.4
- 0.3
- -
0.6 0.6

Min Max
0.21 3.4

1.6 1.6
Z50 1.3
11.0 11.0
M 0 29.4
szo 21.5
0.1 12.9
0.1 29.3
0.3 40.5
0.2 0.8
1.0 1.0
0.1 1.8

Table 5: Hours until first miss for failed disconnections.

a particular disconnection experienced failures at multiple severi-
ties. Second, interviews with users and examination of traces have
shown that automatically detected failures are not always failures
from the user’s point of view, which is why they tend to exceed the
user-reported count.

Most users experienced very few failures. Only the most heav-
ily used machine (F) suffered a significant number of failed dis-
connections (13% of the total disconnections), and the majority of
those failures were at the unobtrusive severity levels 3 and 4. We
should also emphasize that we deliberately chose unrealistically
small hoard sizes to stress the system; in a real environment there
would have been no failed disconnections at all. This reduced hoard
size was the primary cause of the misses observed for machine F.
Post-analysis of the data revealed that this machine’s working set
often exceeded 50 MB, so that no hoarding system could have per-
formed miss-free with the configured hoard size. We have since in-
creased the hoard size to 100 MB for this machine, and the miss rate
is now comparable to that experienced by the other users.

Table 5 summarizes the time until the first miss, in hours, for

the failed disco~edions listed in Table 4. Here, the mean Q), me-
dian (x0.5). standard deviation (Q), and range are given. The me-
dian is omitted when there are fewer than 4 samples. This table also
omits rows for all severity levels that had a zero miss count, and for
machines that had no misses. Such rows would merely report the
disconnection-time statistics for those machines; interested readers
may refer to [151 for more information.

It is clear from these tables that the users of SEER did not suffer
greatly due to hoard misses. Misses were rare, although when they
did occur, they often occurred relatively soon after disconnection
(as shown by the median values in Table 5). However, when these
values are compared with the median disconnection times given in
Table 3, we can see that misses generally occurred well into the dis-
connection, and that users normally continued to work after the miss
occurred (shown both by the fact that the time to first miss is far less
than 100% of the disconnection period and by the severity levels of
the misses). It is also worth reiterating that no user experienced a
severity-0 miss (computer unusable).

We also calculated the time-to-first-miss statistics across all dis-
connections, both successful and failed. Under these conditions, the
time to first miss becomes essentially equal to the mean disconnec-
tion time. Again, this provides evidence to suggest that hoard misses

were not bothersome to our users.
It is worth noting that intelligent user behavior is an important

factor in the success of SEER. This same factor was previously ob-
served with CODA [11, Section 5.2.21. Before the advent of mobile
computing, a traveling businessperson would load his briefcase with
documents he expected to work on. While on an airplane, he would
not attempt to work on a project that he knew was not in the brief-
case. In a similar manner, users of SEER tend to be at least periph-
erally aware of the hoard contents, and do not attempt to work on
projects that they know are unavailable. Instead, they plan ahead
to some extent, devoting themselves to hoarded projects and later,
while connected, attaching the unhoarded ones, which has the side
effect of then causing them to become hoarded.

5.3 Implementation and Performance Impact
SEER is implemented primarily in C++, with a few auxiliary shell
and PERL scripts that help to support external investigators and in-
terface to the underlying replication system. All told, the system
comprises approximately 47,500 lines of code.

The cost of running SEER is twofold: CPUand memory require-
ments. The CPU cost of tracking system calls is minor, about 35
ps on a 133-MHz PENTIUM@prOcesSor [15], and the system Calls
traced are infrequent ones such as open, making tracing inexpen-
sive. Hoarding decisions are significantly more costly, requiring
about 2 minutes of CPU time to form the clusters, but this is a rela-
tively rare event that can bedelayed until a chosen time, so ourusers
have not found it troublesome.

273

The primary impact of SEER is in its memory usage, which yas
deliberately left unoptimized to simplify the research. The database
of known files is stored in virtual memory, requiring about 1 KB for
each of the approximately 20,000 files tracked on behalf of a typical
user. However, we believe that a few straightforward improvements
could cut this memory requirement by 50% or more. In addition, it
wouldbe relatively simple to modify thesystem to store thedatabase
on disk, rather than in virtual memory, since only a small fraction
of the information is active at any given time. We postponed these
optimizations because it was clear that they would not contribute di-
rectly to the research and could be added at a later date.

6 Related Work
There have been a number of previous systems supporting oiscon-
netted operation; however, it is difficult to compare them to SEER
because no quantitative results have been published.

6.1 Early Systems
Disconnected operation was first develop@ in the early 1990’s. ’
Early systems used an LRU mechanism to load the hoard [l, 91, or
left the problem to unspecified external mechanisms [S]. Some of
these systems were actually used for disconnected operation, but no
data on the performance of hoarding has ever been published. Our
own experiehce suggests that LRU is usually an adequate approach,
so that users would find these systems acceptable. It is only when an
attention shift occurs that LRU fails significantly, because the user
must individually reference each file involved in the shift. This is in
contrast to SEER’S clustering approach, where an attention shift will
quickly cause all members of a project to be loaded into the hoard.

6.2 CODA

The CODA system [I l] enhanced simple LRU by allowing the user
to specify an offset to be applied to the LRU age of a particular file,
as a means of indicating its importance. A global bound arranged
that for older files, the offset controlled the hoarding decision re-
gardless of the original reference order. In practice, CODA users do
not concern themselves with these details; instead they simply as-
sign a “hoarding priority” to each file or group of files based on their
perceived importance relative to other files.

When an attention shift occurred, users would change projects
by loading a new set of priorities, called a “hoard profile,” for that
project. According to [20], separate hoard profiles were normally
used for applications and data; a user would choose a subset of pos-
sible pro&s depending on the expected activity. Hoard profiles for
applications could potentially be created by a system administrator,
but the user was burden@ with both the specification of profiles for
his own data and with the task of choosing the proper subset of pro-
files that would reflect the work he planned to do. Mahadev Satya-
narayanan has commented [19] that this approach is similar to pro-
gramming in assembly language: it provides excellent control over
what happens, but is tedious and requires great expertise.

There are very few published results on the hoarding behavior of
CODA. Although both [ll] and [20] give quantitative information,
the data presented relates to the size of working sets and the perfor-
mance of the replication system. The only discussion of hoarding
success is couched in general terms. For example, from [20, Sec-
tion 52.21:

Many disconnected sessions experienced by our
users, including many sections of extended duration,
involved no cache misses whatsoever.

and

When disconnected misses did occur, they often were
not fatal to the session. In most such cases the user was
able to switch to another task for which the required ob-
jects were cached. Indeed, it was often possible for a user
to “fall-back” on different tasks two or three times before
they gave up and terminated the session.

6.3 SPY UTILITY
To date, the only other attempt to automate the hoarding process is
Tait et aL’s SPY UTILITY [21]. Like SEER, this system tracks pro-
cess execution trees and infers the contents of projects based on fllo
accesses. It differs in that it restricts itself to loading unions of ac-
cess trees, rather than attempting to create project clusters at a highor
semantic level. This mechanism is much more limited. There IS
no facility for providing multidimensional semantic information, as
SEER does via the external investigators discussed in Section 3.3.3,
The system allows for certain other types of user input, but theso aro
not integrated with the process-tree information.

Unfortunately, there is even less published data for SPY UTIL-
ITY than for CODA. The primary description appeared soon after
the system was deployed, without quantitative results, and no sub-
sequent data has been made available to date.

7 Future Work .
SEER is running successfully in our Workgroup. In the future, WC
would like to collect performance data for a larger user community.
We plan to conduct further studies with the CODA user base and to
port SEER to the WINDOWS environment. The latter port will make
SEER available to business and management users, who often havo
very different behavior than computer scientists [141. As part of this
porting effort, we plan to analyze the performance of SEER in other
settings and to compare this to our current data.

There are also significant opportunities for further development
of the underlying mechanisms. The clustering algorithms, in partic-
ular, are more parameter-sensitive than one would like, and provldo
fruitful soil for study of more stable methodologies.

In addition, the predictive and inferential methods pioneered by
SEER hold promise for other applications, such as Web caching, nct-
work file systems, and directory reorganization. We are currently
investigating ways to apply our work to these and similar arcns.

8 Conclusion
SEER has shown that fully-automated predictive hoarding is fcad-
ble, though the engineering challenges involved are daunting. Tho
system is capable of supporting disconnected operation for lengthy
periods with only occasional hoard misses, giving the user tho illu-
sion that the network is still present even in the complete abscncc of
communication. This level of automation enables the entire virtrral~
networking paradigm of mobile operation [2].

An especially important contribution of SEER is the freedom
from manual user configuration. While previous systems required
the hoard contents to be specified partially or entirely by hand, SnflR
is able to infer project contents and make its hoarding decisions
without intruding on the user’s work. Such automated opcrddon IS
critical with modem systems, since there is no practical way for lhc
user to identify all files that will be required during disconnection.

Acknowledgments
We would like to express our thanks to the members of UCLA’s File
Mobility Group, whose willingness to try an unproven hoarding SYS=
tern made it possible to evaluate our software in a real-world con4
text, and to Peter Reiher for innumerable discussions and suggcs-
tions on the design of the system. We would also like to acknowl-
edge the contributions of the anonymous referees, and especially the

274

patience and help of our shepherd, Karin Petersen, whose guidance
was instrumental in achieving a coherent, readable result.

References .
I: 11 Rafael Alonso. Daniel Barbar& and Luis L. Cova. Using stash-

ing to increasd node autonomy in distributed file systems. In
Proceedings of the Ninth IEEE Symposium on Reliability in
Distributed SofMare andDak&ase Systwns, pages 12-21, Oc-
tober 1990.

121

r31

[41

[63

171

Rajive Bagrodia, Wesley W. Chu, Leonard Kleinrock, and
Gerald Popek. Vision, issues, and architecture for no-
madiccomputing. IEEEPersonal CommunicationsMagazine,
2(6):14-27, December 1995.

Benamin S. Duran and Patrick L. Odell. Cluster Analysis: A
Survey, volume 100 of Lecture Notes in Economics andMath-
ematical Systems. Springer-Verlag, New York, 1974.

James Griffioen and Randy Appleton. Performance measure-
ments of automatic prefetching. In Proceedings of the ZSCA In-
ternational Conference on Parallel and Disti’buted Comput-
ing Systems, September 1995.

Knut Stener Grimsrud, James K. Archibald, and Brent E. Nel-
son. Multiple prefetch adaptive disk caching. IEEE Trans-
acrions on Knowledge and Data Engineering, 5(l):%?-103,
February 1993.

Michial Allen Gunter. Rumor: A reconciliation-based user-
level optimistic replication system for mobile computers.
Master’s thesis, University of California, Los Angeles, Los
Angeles, CA, June 1997.

Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W.
Page, Jr., Gerald J. Popek, and Dieter Rothmeier. Implemen-
tation of the Ficus replicated file system. In USENIX Confer- -
ence Proceedings, pages 63-71. University of California, Los
Angeles, USENIX, June 1990.

[8] John S. Heidemann, Thomas W. Page, Jr., Richard G. Guy,
and Gerald J. Popek. Primarily disconnected operation: Ex-
periences with Ficus. In Proceedings of the Second Workshop
on Managernenr of Replicated Data, pages 2-5. University of
California, Los Angeles, IEEE, November 1992.

[9] L. B. Huston and Peter Honeyman. Disconnected operation
for AFS. In Proceedings of the USENIXSymposium on Mobile
and Location-Independent Computing, pages l-10. USENIX,
1993.

[IO] R. A. Jarvis and E. A. Patrick Clustering using a similarity
measure based on shared near neighbors. IEEE Transactions
on Compurers, C-22(1 1): 1025-1034, November 1973.

[II] James J. Kistler and Mahadev Satyanarayanan. Disconnected
operation in the Coda file system. ACMTransactions on Com-
puter Systems, 10(1):3-25, 1992.

[12] Thomas M. Kroeger and Darrell D. E. Long. Predicting file
system actions from prior events. In USENIX Conference
Proceedings, pages 319-328, San Diego, California, January
1996. USENIX.

[I3] Geoffrey H. Kuenning. The design of the SEER predictive
caching system. In Proceedings of the Workshop on Mobile
Compuring Systems and Applications, Santa Cmz, CA, De-
cember 1994.

[14] Geoffrey H. Kuenning, Gerald J. Popek, and Peter Reiher. An
analysis of trace data for predictive file caching in mobile com-
puting. In VSENIX Conference Proceedings, pages 291-306.
USENIX, June 1994.

[15] Geoffrey Houston Kuenning. Seer: Predictive FiIe Hoard-
ing for Disconnected Mobile Operation. PhD thesis, Univer-
sity of California, Los Angeles, Los Angeles, CA, May 1997.
Also available as UCLA CSD Technical Report UCLA-CSD-
970015.

[16] Mirko KiXnek. Algori&ic and GeometricAspects of Clus-
terdnalysis. Academia Praha, Prague, 1991.

[17] Peter Reiher, John S. Heidemann, David Ratner. Gregorv
Skinner, and.Gerald J. Popek. Re&ving file con&s in’th’k
Ficus file system. In USENZ Conference Proceedings, pages
183-195. University of California, Los Angeles, USENIX,
June 1994.

WI

WI

PO1

WI

Peter Reiher, Jerry Popek, Michial Gunter, John Salomone,
and David Ratner. Peer-to-peer reconciliation based replica-
tion for mobile computers. In Proceedings of the ECOOP
Workshop on Mobility and Replication, July 1996.

Mahadev Satyanarayanan, January 1997. Personal communi-
cation.

Mahadev Satyanamyanan, James J. Kistler, Lily B. Mummert,
Maria R. Ebling, Puneet Kumar, and Qi Lu. Experience with
disconnected operation in a mobile computing environment.
In Proceedings of the USENIX Symposium on Mobile and
Location-Independent Computing, pages 11-28, Cambridge,
MA, August 1993. USENIX.

Carl D. Tait, Hui L.ei, Swamp Acharya, and Henry Chang. In-
telligent file hoarding for mobile computers. In Proceedings of
MobiCom ‘95: The First International Conference on Mobile
Computing and Networking, pages 119-125, Berkeley, CA,
November 1995.

275

