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Abstract 
EjFcient synchronization primitives are essential for achieving 

high performance in he-grain, shared-memory parallel pro- 
grams. One function of synchronization primitives is to enable 
exclusive access to shared data and cn’tical sections of code. This 
paper makes three contributions. (1) We enumerate thej?ve sources 
of overhead that locking synchronization primitives can incul: (2) 
We describe four mechanisms (local spinning, queue-based lock- 
ing, collocation, and synchronizedprefetch) that reduce these syn- 
chronization overheads. (3) u”ith detailed simulations, we show the 
extent to which these four mechanisms can improve the perfor- 
mance of shared-memory programs. We evaluate the space of these 
mechanisms using seventeen synchronization constructs, which are 
formed from six base types of locks (T.!?.YT&Sn, Ti?iT&TEsrdiSR; 
MCS, LH, M, and QoD). We show that large performance gains 
(speedups of more than 1.5 for three ofjive benchmarks) can be 
achieved ifat least three optimizing mechanisms are used simulta- 
neously. We jnd that QOL& which incorporates all four mecha- 
nisms, outperforms all other primitives (including reactive 
synchronization) in all cases. Finally, we demonstrate the superior 
performance of a low-cost implementation of Qom, which runs on 
an unmodified cluster of commodiry workstations. 

1 Introduction 

Shared-memory multiprocessors are rapidly becoming the 
machines of choice for solving large, fine-grained scientific pro- 
grams. Multiple factors support this trend. The advent of afford- 
able desktop symmetric multiprocessors (SMPs) will increase the 
application base. The successful development of shared-memory 
multiprocessing standards [43] reduce the time to market by 
decreasing design time and by letting manufacturers use commod- 
ity parts. Both the Convex Exemplar [7] and the Sequent STING 
[27] relied on these standards. The emergence of low-cost, fine 
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grain software implementations of shared-memory, such as SHASTA 

[38] or TO 1351 further reduce the cost of supporting the shared- 
memory model. Finally, successful research prototypes such as the 
Stanford DASH [25] have shown that this class of machines can 
obtain excellent speedups for a wide range of programs that use 
fine-grained communication. 

Traditional message-passing programming models force the 
programmer to embed implicit synchronization with each commu- 
nication of data. Such a requirement restricts the parallclization 
strategy--dynamic task distribution becomes extremely difficult, 
for example. The shared-memory programming model, conversely, 
uses cache coherence protocols to keep shared data consistent. The 
programmer judiciously employs explicit synchronization to pro- 
vide mutual exclusion for data and code, as well as synchronlzlng 
processors between phases of computation. 

The two major classes of explicit synchronization opemtions fn 
shared-memory multiprocessors are barriers and locks. Although 
barriers are important to efficient shared-memory programs, they 
are well-understood, and many efficient implementations hnvc 
been proposed and/or built [15, 20, 23, 32, 441. In this study, WC 

focus on providing more efficient mutual exclusion through better 
locks. 

Locks provide individual processors with exclusive access to 
shared data and a critical section of code. This exclusive access is 
particularly well-suited to the fine-grained nature of many shnred- 
memory parallel programs. Fine-grained programs ideally associ- 
ate as little data or code as possible with a critical section, mini- 
mizing serialized processing, thus maximizing nvnilnblc 
parallelism. Since access to critical sections is by definition scrinl- 
ized among processors, large overheads when accessing a con- 
tested critical section degrade both parallel performnncc and 
potential scalability. To maximize both the performance of fine- 
grain parallel applications that use locking, and the potential to 
scale to larger numbers of processors, we must minimize the 
delays associated with the transfer of exclusively accessed 
resources. 

The act of transferring control of a critical section is a complex 
one, that may involve multiple remote transactions. Complex pro- 
tocols have been proposed that perform this transfer efficiently, 
&owing reasonable performance when there is high contention for 
a lock. The compIexity of these protocols causes unnecessary 
delays when accessing a lock that is not held. Conversely, simple 
Iocking schemes that can access a free lock quickly mny perform 
poorly in the presence of contention. This fundamental trndc-off 
has resulted in proposals of numerous primitives in the literature 
[3,13,16,26,28,30,37]. 

This paper contains a detailed and thorough evaluation of n 
range of locking primitives. To understand where the opportunities 
for optimization lie, we first decompose the time associated with n 
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complete locking period into three phases: Transfer, Load/Corn- 
pute, and Release. Together, these phases form a synchronization 
period, which determines the global throughput of synchronization 
operations and thus determines scalability for codes that rely 
heavily on locks. We then describe four mechanisms that locks 
may incorporate to reduce the time spent in the three phases: local 
spinning, queue-based locking, collocation (of a lock and data 
within the same cache line), and synchronouspreftch. 

Using detailed simulation with both microbenchmarks and real 
applications (drawn from the SPLASH and SPLASH-2 suites), we 
measure the performance of six base primitives: TEST&SET, 
TEST&TEST&SFT [37], LH locks [28], M locks [28], MCS locks [30], 
and Q~LB [13]. We extend these primitives with the mechanisms 
listed above, plus exponential backoff and prefetches inserted 
automatically by a compiler. We also measure the performance of 
reactive synchronization schemes. In all, we study a total of seven- 
teen primitive/mechanism combinations. We find that QOL.B, which 
can incorporate all of the mechanisms listed above, outperforms all 
other locks in all cases (including reactive synchronization). We 
also see that very efficient locking can double the speedup of real 
applications (for one of the five benchmarks that we measured). 
Although QOLB outperforms the other primitives, it requires mech- 
anisms that the others do not (which usually implies hardware sup- 

port). We discuss exactly what support QOLB requires, and show 
that much of the necessary support already exists in current sys- 
tems. Finally, we present performance results of an all-software 
implementation of QOLB running on an unmodified cluster of com- 
modity workstations, and we show that this low-cost implementa- 
tion still outperforms the alternatives. 

In Section 2, we explain our decomposition of a synchroniza- 
tion period in greater detail. In Section 3, we show how the four 
optimizing mechanisms that we identified can reduce different 
parts of the synchronization period. In Section 4, we explain the 
primitives that we study in detail, and discuss how each of them 
uses a different set of the four mechanisms. In Section& we 
describe our experimental methodology. In Section 6, we present 
and discuss our performance results from this experimental space. 
In Section 7, we discuss the cost of hardware-supported synchroni- 
zation. Finally, in Section 8 we provide a summary of our main 
results and conclude. 

2 Overhead of mutual exclusion 

From the perspective of an individual processor, the time asso- 
ciated with an access to a critical section consists of the time from 
which the processor first requests access to the corresponding lock, 
to the time at which the processor completes the release on that 
lock. This time period does not directly correlate with global per- 
formance, however. Multiple processors contending for entry to 
the same critical section may overlap the time from the issue of 
their requests to the first release of the lock. A good analogy to this 
distinction is the difference between the latency of an individual 
request to a memory system, and the throughput achievable by 
pipelined accesses to that same memory system. 

To determine how these critical section accesses limit global 
performance and ultimately scalability, we define the notion of a 
synchnwkation period. The synchronization period is the length 
of time between completion of two successive synchronization 
operations (e.g., two successive releases) on the same variable. The 
successive synchronization operations may occur on different pro- 
cessors. This synchronization period is the service time that the 
processor incurs once the previous processor releases the lock. 
Since access to this critical section is by definition serialized, the 
synchronization period will place an upper bound on possible per- 
formance (codes that do not access critical sections heavily will 
see upper bounds on performance from other sources, of course). 

We depict our breakdown of a synchronization period in 
Figure 1. The figure shows events to synchronization variable X. 
The first event depicted is the completion of the release of lock X 
by processor A. Several processors are contending to gain access 
to X. We assume that processor B wins the ensuing arbitration. 
When the lock acquire completes, processor B enters the critical 
section. Upon finishing the work in the critical section processor B 
prepares to release X, and eventually completes this operation. Our 
breakdown of a synchronization period consists of three phases: 

. Transfer: the time at which processor A completes its release 
of the lock to the time processor B completes its acquire. At the 
point that the release completes; the releasing processor has atomi- 
cally written the “unlocked” value to the lock. The contending 
nodes may then issue or re-issue requests (depending on the lock- 
ing primitive) to obtain the lock. A period of arbitration may 
ensue. Once the next recipient of the lock is determined, the lock 
must be sent to that node. 

. Loaticompute: the time at which processor B completes its 
lock acquire to the time processor B issues its lock release. Once a 
processor obtains the lock, it enters the critical section. The pro- 
cessor will most likely have to read some locked data, perform 
some computation, and write some locked data. Accessing the data 
to read and write will likely incur some remote accesses. 

. Release: which is the time from processor B issuing the lock 
release to the completion of the lock release. When the processor 
issues a release operation for the lock, remote accesses may be 
necessary before that operation may complete. Other processors 
may have removed the lock from the releasing processor’s cache, 
for example, or the releasing processor may have to re-obtain write 
permission for the lock’s cache line. Some aggressive memory 
models [I, 121 may allow some overlap between the Load/compute 
and Release phases. 

In addition to illustrating this decomposition in Figure 1, we 
also list the components of each phase. The components marked 
with an asterisk are the only ones that are fundamental, which 
would be part of a truly minimal synchronization period. The com- 
ponents marked with a ‘I+” are overheads that cannot be elimi- 
nated, but whose latencies may be partially or entirely hidden. 
Unmarked components are ripe for elimination through optimiza- 
tion. 

3 Synchronization mechanisms 

We have isolated what we believe to be a fundamental set of 
four mechanisms that synchronization primitives may incorporate. 
In Table 1 we show the overheads (from Figure 1) reduced by each 

PA r&me of 
lock X completes 

4 

p”““i;” comp’etei 

requests issued + exclusive data loaded lode reobtaine.d 
arbitration * computation performed * lode r&asad 

* !c& sent to new owner +exclusive data written 

Time ’ 

Figure 1 Breakdown of one synchronization period. 
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PHASE OF THE swkx+oNmmoN PERIOD 

TRANSFER LOAD/COMPUTE RELEASE 

SYNCHRONIZATION MECHANISMS 

Local spinning 

Queue-based locking 

Collocation 

Arbitration Lock transfer Data read Data write Re-oblaln lock 

J J / 

J J 

Synchronous prefetch J maybe 

Table 1 How synchronization mechanisms reduce overhead. 

of these mechanisms. The definitions and explanations of each 
mechanism are as follows: 
. Local spinning: allows a requesting node to spin on a local 
copy of the lock. Although local spinning does not directly reduce 
overheads on the critical path of the synchronization period, it does 
greatly reduce the load on the network, particuIarIy for longer crit- 
ical sections. When the lock is released, the coherence mechanism 
will invalidate all local copies (since the releasing node needed an 
exclusive copy to modify that line), and when they next access the 
line, one requester will see that the lock has been freed and will 
acquire the lock. 

l Queue-based locking: eliminates arbitration overhead and 
reduces lock transfer time, both in the Transfer phase. This mecha- 
nism reduces synchronization overhead in the following ways: (i) 
creates a queue of waiting requesters, thus performing arbitration 
when the requests are received and not when the current holder 
releases the lock; (ii) reduces lock transfer time by restricting com- 
munication to be between the releasing node and the acquiring 
node only (although the number of remote accesses required to 
perform this transfer will vary among different primitives); (iii) 
eliminates the overhead of re-obtaining the lock in the Release 
phase, since no other nodes access the lock directly until the holder 
releases the lock. 

Collocation:’ lets protected data be transferred with the trans- 
ier of the lock itself. Since the data arrive with the lock, collocation 
eliminates read and write overheads in the Load/Store phase. The 
implementations we study in this paper achieve collocation by 
coupling a lock and critical data together in the same transfer block 
(a cache line). If the critical data are larger than one cache line, col- 
location will only partly reduce the read and write access over- 
heads. If the critical data are determined dynamically, effective 
colIocation is difficult. 

Synchronous prefetch: allows a processor to issue a request 
;br a particular lock in advance of its critical section. The memory 
system will effect the transfer of the lock from the holder to the 
prefetching requester only when the holder releases the lock. Thus 
this mechanism will not impede the current holder’s progress in 

1. col.lo.ca.tion (n) Ikal-*-‘ka-sh*n\: the act or result of placing or arrang- 
ing together; specif: a noticeable arrangement or conjoining of linguistic 
elements (as words) [45] (luordr in this context are 4-byte quantities of 
data). 

the critical section. If a node prefetches the lock and the holder 
releases it before the requester reaches its critical section, tho 
requester may be able to hide the lock transfer latency complctcly, 

4 Synchronization primitives 

The six base primitives we discuss in this paper are Tosr&Srsr 
(abbreviated TS), TEST&TEST&SET (abbreviated TTS), MCS locks, 
LH locks, M locks, and QOLB. Table2 shows which primltivcs 
incorporate which of the mechanisms described in Section 3. In 
Table3, we show the minimum number of remote mcssagcs 
required for acquiring a lock. The counts correspond to mcssngcs 
on the critica path only. Each pair of numbers shown represents 
the number of messages required for a DASH-like [25] and an SCI- 
like [43] protocol, respectively. In cases where the lock is not held 
(columns one and two), the number of transactions is from issue to 
completion of the lock acquire. If another node holds the lock, the 
number of remote transactions shown is the number from ~SSUC of 
the release by the lock holder to the completion of the acquire by 
the requester. In the rest of this section, we define each base primi- 
tive and describe each in terms of the mechanisms that it incorpo- 
rates, as shown in Table 2. 

4.1 TEST&SET 

TEsT&sm (TS) was the sole synchronization primitive available 
on numerous early systems (such as the IBM 360 series [17])* TS 
performs an atomic read-modify-write on a memory location, It 
reads the vaIue contained therein, and unconditionally sets the 
value to be non-zero. TS returns the value that was obtained from 
the read. It may be implemented with an atomic swap of as little as 
one bit. 

We see in Table 3 that the TS primitive is efficient when a lock 
is not held; the primitive can immediately load the lock into the 
processor’s cache and lock it. TS is less efficient when there is con- 
tention for a lock, since the lock’s line is shifted from requester to 
requester in “‘exclusive” state. When the holder wishes to release 
the lock, it must re-obtain the lock from the requester that has 
moved the line into its cache. Concurrently, all requesters continue 
to send requests for writable copies of the lock. Although this 
scheme technically guarantees that some processor makes forward 
progress, it does not guarantee fairness, nor does it prevent stnrvn- 
tion, Worse, it generates continuous remote transactions from the 
requesters (if there are more than one), even while the lock is bdng 
held. We see from Table 2 that the only optimization (of thoso in 

SYNCHRONIZATION MECHANWA 

SYNCHRONlZATlON PRlMlllVE Local spinning Queue-based locking Collocation Synchronous prefetch 

TS no no oplfonal no 

-ITS yes no optional no 

MCS, LH, M yes yes partial no 
oow yes yes optional Yes 

Table 2 Synchronization primitives. For each synchronization primitive, this table shows which 
synchronization mechanisms it incorporates. We deemed collocation to be optional, since the programmer may 
choose not to exercise it. 



MINIMAL NUMBER OF REMOTE MESSAGES 

SY~~CHR~~~ZATI~N Pfls.4mva Lock idle in memory Unlocked, cached elsewhere Locked, single contestant Locked, N contestants 
TS 2.2 3-6 5,ll 511 
l-r.5 4,2 6.6 8,11 8,9+2xN 

MCS 2,2 386 7,15 5,g 
LH 2,2 9, 10 5,11 5,11 

M 282 388 5,11 5,ll 

0ol.e 292 3,4 131 181 

Table 3 Number of remote transfers for acquire. The numbers in the table represent the minimal number of messages needed to acquire 
a lock. The counts correspond to messages on the critical path only. We show numbers for several initial lock states and two cache-coherence 
protocols. Each number on the left assumes a DASH-like protocol [25], and each number on the right assumes an SCt-like protocol [43]. We 
assume that the acquiring node, the releasing node (if applicable), and the directory node are all different nodes. In cases where the lock is not 
held (columns one and two), the number of transactions is from issue to completion of the lock acquire. If another node holds the lock, the 
number of remote transactions is from issue of the release by the lock holder to the completion of the acquire by the requester. 

the table) that TS may implement is collocation. Collocation may 
be effective if requesters rarely attempt to obtain the lock while 
held. When a request for a held lock occurs, however, the requester 
and holder will ping-pong the lock (and collocated data) between 
their caches, as the holder accesses the data and the requester spins 
on the lock. The ping-ponging of the block will stall the holder, 
increasing the length of its critical section and thus increasing the 
global synchronization period. 

A policy often applied to TS is exponential backoff, in which 
after a failure to obtain the lock a requester waits for successively 
longer periods of time before issuing another request for a lock [3]. 
We implemented a backoff scheme closely following the guide- 
lines that appear in the original article: when an attempt to obtain a 
lock is unsuccessful, the requestor waits for an amount of time ran- 
domly selected from a uniform distribution; the algorithm doubles 
the mean of the distribution after each failed attempt up to a maxi- 
mum. At the start of a fresh synchronization period the initial mean 
corresponds to half of the mean used in the previous period. The 
maximum mean is set to 16K cycles, which is roughly the time 
required to service a simple write miss (i.e., three network round 
trips or approximately 600 cycles) times the number of nodes in 
the system. We initialize the mean to one cycle, which corresponds 
also to the minimum mean. 

4.2 TEST&TEST&SET 

Rudolph and Segall first proposed an extension to TS that per- 
forms a read of the lock before attempting the actual TS operation 
[37]. They called this primitive TEST&TEST&SET (lTS). This primi- 
tive enables waiting requesters to spin on shared, read-only copies 
of the lock (local spinning), waiting for the holder to release the 
lock. When the holder issues the release, the read-only copies are 
invalidated, the holder obtains a writable copy of the lock, and then 
releases it. The requesters load readable copies into their caches, 
and finding the lock released, attempt the TS. One of the requesters 
will succeed in obtaining a writable copy of the lock and locking it. 

Although ITS employs local spinning to reduce interconnect 
traffic while the lock is held, the time needed to acquire the lock is 
longer than TS (see Table 3), due to the requesters’ initial requests 
for mad-only copies (instead of an exclusive copy, as with TS). The 
contention when the lock is freed can be substantial, as all request- 
ers attempt to acquire the lock at that point, and then all attempt to 
upgrade the lock to a writable state. Exponential backoff may 
therefore improve ‘ITS as well as TS. Collocation with TTS may 
work better than with TS, since the lock holder can still read data 
allocated in the lock’s cache line, as it is shared with the request- 
ers. TTS collocation is not ideal, however, since the holder will 
ping-pong the cache line with requesters whenever it writes to the 
collocated data. 

4.3 MCS locks 

Several researchers have independently proposed locking prim- 
itives that incorporate both local spinning and queue-based locking 
in software [2,29,16]. One of them is the locking primitive called 
MCS, developed by Mellor-Crummey and Scott [29]. The MCS 
scheme inserts requesters for a held lock into a software queue at 
the time of the request, using atomic operations such as SWAP and 
COMPARE&SWAP to update the list correctly. With queue-based lock- 
ing, arbitration for the eventual recipient of the lock is therefore 
performed in advance, first-come, first-serve. Arbitration for TS 
and TTS, conversely, occurs at the time of lock release, increasing 
the synchronization period. 

The price of maintahring the requester queue in software is 
larger overhead, especially under contentionless conditions. When 
a lock is released, however, communication occurs only between 
the releaser and the requester at the head of the queue. Network 
traflic is thus reduced to a constant number of network traversals 
per synchronization access, while the other requesters in the queue 
continue to spin locally. 

Since each requester is spinning on a different address, these 
software queue-based algorithms cannot easily benefit from collo- 
cation. Partial collocation can be achieved by placing protected 
data along with the data structure that tracks the queue insertion 
point. If there is little contention, partial collocation may be effec- 
tive. A more sophisticated approach could better exploit colloca- 
tion by placing data either with the insertion pointer when there is 
no contention, or with the appropriate queue element when conten- 
tion exists. However, this approach requires copying of data which, 
done carelessly, may sacrifice their integrity (e.g., in the context of 
recursive data structures). We did not investigate this approach. 
These algorithms are also unable to prefetch data without signifi- 
cant changes that greatly add to their complexity. 

4.4 LH and M locks 

Magnusson, Landin, and Hagersten proposed two software 
queue-based locking primitives, LH and M [28] (Craig indepen- 
dently developed a lock identical to LH [S]). They claimed that 
their primitives would require one fewer remote access to transfer 
a lock than does MCS, enabling their schemes to outperform MCS 
when lock contention exists. The LH lock achieves this behavior at 
the expense of increased latency to acquire an uncontested lock. 
The M lock achieves the more efficient lock transfer without 
increased uncontested lock access latency, at the expense of signif- 
icant additional complexity in the lock algorithm. We implemented 
both locks according to the description in their paper, which pre- 
sents the actual algorithms in detail [28]. 
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4.5 Reactive synchronization 

In 1994, Lim and Agarwal proposed “‘reactive synchronization” 
schemes [26], which dynamically switch among software locks 
that perform well under various levels of contention. For instance, 
it may combine TS for low-contention phases of execution with 
MCS for periods of high-contention. Reactive synchronization 
attempts to achieve both low latency lock access and efficient 
transfer at low cost (e.g., using only all-software primitives). 

We implemented reactive synchronization, closely following 
the guidelines in the paper [26]. For low-contention phases, we 
used TS with exponential backoff. For high-contention phases, we 
used MCS (our results show that MCS is the best-performing soft- 
ware lock under high contention, of the locks that we measured). 
Our implementation switched to MCS after five consecutive lock 
acquisitions experienced higher levels of contention than a fixed 
threshold (a mean delay of 32 clock cycles). We switched from 
MCS to the low-contention lock when the queue was empty upon 
lock release five consecutive times. 

4.6 QOLB 

Goodman, Vernon, and Wocst proposed the Queue-On-Lock- 
Bit primitive (Qora--originally called QOSB) [13], which was the 
first proposal for a distributed, queue-based locking scheme. QOLB 
maintains a hardware queue of waiting processors, in which point- 
ers to adjacent queue entries are held in the cache line. Waiting 
processors spin locally on a “shadow” copy of the lock address, 
preventing unnecessary network traftic or interference wrth the 
lock holder. Because lock requesters spin on the same address as 
that of the lock; without evicting or downgrading the lock holder’s 
copy, effective collocation is possible (unlike the other primitives 
that we have discussed). When the holder releases its lock, the lock 
is sent directly to the requester at the head of the queue, incurring a 
total of one network crossing to transfer the lock (see Table 3). 

In addition to enabling local spinning, collocation, and efficient 
handoffs through queueing, QOLB is a non-blocking primitive. This 
characteristic permits a processor to use QOLB for performing syn- 
chronous prefetching, allowing the processor to overlap data and 
lock access times with other useful work. If the prefetch is issued 
sufficiently far in advance, it is possibIe for the requester to see no 
overhead associated with the critical section entry, either for 
accessing the lock or the data. Figure 2 shows an example of how 
QOLB is used to access data in a critical section. The first call to 
ENQOLB (a non-blocking operation) allocates a shadow copy of the 
cache line and sends a message that inserts the requester into the 
hardware requester queue. This early request allows the processor 
to overlap the fetch time with useful computation. The subsequent 
calls to ENQorn in the loop spin locally until the owner releases the 
lock and sends it directly to the waiting node. When ENQOLB 
returns “true:’ the processor enters the critical section. The proces- 
sor relinquishes the lock with the call to DEQOLB, at which point 
both the lock and any data in the lock’s cache line are sent directly 
to the next waiting processor. In this example, we assume that the 
critical section data can fit in 63 bytes. This will not always be the 
case, of course. Also, QOLB is fair in general, except in the unusual 
cases when a processor’s shadow copy of the lock is replaced from 
its cache, forcing the processor to rejoin the queue at its end. 

5 Experimental methodology 

We measured the performance of the six synchronization prim- 
itives discussed in Section 4, varying mechanisms from Table 2 
when possible, except that we did not simulate collocation in con- 
junction with the LH and M locks (we will show later that MCS 
generally performs better than LH and M, which are not inherently 
more amenable to collocation than MCS). We also measured the 
performance of reactive synchronization (also without collocation 
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struct Jocked data { 
char lock; 
char data16311 

1: 
I* 64-byte aache line l / 

VOid 

critical-section(struct -locked data l Ptr) ( 
I* Prefetch lock k data (assumao Droxmr alignment.) */ 
EnpOLB(&ptr->lock); 
/* Various computation here l / 
. . . 
while (IEnpOLB(&Dtr->lock)) I I* spin *I 
/* Critical section here */ 
. . . 
DepOLB(&Dtr->lOck); /* Releasa look */ 

1 

Figure 2 Qow code example. 

since reactive synchronization is not inherently amenable to collo- 
cation). Our seven main locking schemes (and their corresponding 
abbreviations) are thus as follows: TEST&SET (TS), TEsrsrSrirCSm 
(ITS), MCS locks, LH locks, M locks, reactive synchronization (R), 
and QOLB. We used the following abbreviations for optional mech- 
anisms or policies: collocation (+C), hand-inserted synchronous 
prefetch (+P), compiler-generated synchronous prefetch (+CP), and 
exponential backoff (+E). 

5.1 Simulation environment 

Our simulation platform was the Wisconsin Wind ‘Immcl 
(wWT) [33], which uses a 32-processor Thinking Machines CM-5 
[23] as its host machine. WWT executes SPARC binaries in nntfvc 
mode on the CM-5, only trapping into the simulator upon a CaChC 
miss. WWT assumes fixed execution time for the instructions (the 
actual values correspond to the instruction delays listed in the 
CY701 SPARC user’s guide [9]). WWT makes some assumptions 
about the target system to simplify simulation-it assumes both a 
perfect instruction cache, and that stack accesses always hit in tho 
data cache. 

The default WWT network model assumes a fully conncctcd 
point-to-point target network, in which messages take a constant 
number of cycles for a one-way network traversal. A large enough 
constant latency provides sufficient lookahead for efficient parallel 
simulation, as nodes stop and synchronize only once every C 
cycles, where C is the constant network latency, Using a small C 
(or variable-length messages) reduces the node lookahead, which 
causes severe increases in simulation time [6]. 

Although we model contention at the node interfaces, memory, 
and memory directories, using a constant network latency ignores 
contention in the network itself. To account for network conten- 
tion, we used an analytical model [41] (which takes the network 
load as a parameter) to derive a different constant network latency 
for each benchmark. We estimated this aggregate network load 
from the traffic statistics of previous simulations and their totnl 
execution times. Since the network latency affects execution time 
and therefore aggregate load, we iterated this estimation until the 
difference between the network latency constant and the value pro- 
duced by the model converged to within one cycle (the final latcn- 
ties for the benchmarks ranged from 85 to 91 cycles). To valldntc 
this methodology, we simulated several points for each benchmark 
using the WWT extended with a detailed, event-driven SC1 network 
simulator. Our network simulator accurately simulates mcssago 
buffering, message retransmission, and flow control [5]. The tnrgct 
network that we used to derive the validation is an 8x4 mesh of 
rings that routes requests in increasing dimension order (x, y) nnd 
responses in decreasing order (y, x), The internal details of the 
simulated network correspond closely to those of the SC1 transport 
layer standard [43]. The mean difference between the execution 
time of simulations using the constant network model nnd simuln- 



tions using the detailed network simulator was 2%. The difference 
was always under 5% [18]. 

Using a global mean to model contention tends to underesti- 
mate execution time, since traffic often occurs in bursts that add 
more queueing delay than if the same traffic was evenly distributed 
over time. With our validation, we have bounded this discrepancy. 
Even so, since our more aggressive synchronization primitives 
(MCS, QOLB) generate less traffic than do the alternatives, accu- 
rately modeling contention in the network would only serve to 
increase the reported performance gap between the lower- and 
higher-performing primitives. Our results are therefore conserva- 
tive. 

5.2 Target systems 

The target systems that we simulate are all 32-processor, cache- 
coherent shared-memory systems that use the Scalable Coherent 
Interface (XI) [43] as their base cache-coherence protocol. SC1 is 
a particularly appropriate choice for our base platform, since two 
of the newest shared-memory multiprocessors on the market 
implement cache-coherent SC1 (the Convex EXEMPLAR [7] and the 
Sequent STING [27]), and numerous other vendors are exploring 
SC1 as an option. Each node in our CC-NUMA target system is 
workstation-like, containing a processor, a l-Mbyte four-way set- 
associative cache memory with 64byte lines, a 64-entry transac- 
tion queue, a network interface, and some fraction of the distrib- 
uted, globally-shared memory with the associated directory 
entries. The transaction queue is similar to a functionally extended 
write buffer. It supports the following asynchronous operations: 
writes, prefetches, coherence operations, and cache line flushes 
caused by replacement (rollouts). A complete description of the 
system parameters and their associated timings appears elsewhere 
[IS]. WwT allocates private target pages locally, and distributes 
shared target pages to the target nodes round-robin. Our simulated 
memory system supports release consistency [12]. 

5.3 Microbencbmark experiment description 

We repeat the method used by both Anderson [3] and Lim and 
Agarwal[26] to measure raw critical section throughput. We con- 
structed a microbenchmark that accesses a critical section in a loop 
repeatedly (the benchmark accesses the critical section a total of 
3,200 times; these accesses are distributed evenly among the pro- 
cessors). Once in the critical section, a processor waits 800 cycles 
before releasing the lock (this stall simulates access to, and compu- 
tation of, protected data). After release, the releasing processor 
waits for a random amount of time selected from a uniform distri- 
bution. The mean of the distribution is five times the critical sec- 
tion delay (4,000 cycles). As the number of nodes is increased, the 
contention for the lock increases, and eventually the reduction in 
execution time is stopped (and in some cases reversed) by the 
increasing lock contention. 

For this experiment we assumed a fixed network latency 
between any two nodes of 100 cycles. 

5.4 Macrobenchmark experiment descriptions 

The benchmark applications that we used for our experiments 
are Barnes, Mp3d, Ocean, Pthor, and Raytrace, drawn from the 
SPLASH and SPLASH-2 suites [42, 461. Descriptions of these 
benchmarks appear in the original articles. We compiled all bench- 
marks using GCC version 2.7.2 with the option -03. We padded 
data in each benchmark, where necessary, to eliminate false shar- 
ing [14]. We modified Ocean both by translating it to C and by 
skewing its array storage (slightly increasing the size of the work- 
ing arrays into arrays of prime size, from 128 to 131 elements in 
each dimension). We used the locking version of Mp3d for all 
experiments. Pthor assigns a descriptor to each element of the dig- 

BENCHMARK TYPE OF slh!utinoN 

Barnes Barnes-Hut N-body 

INPUT 

2,046 bodies, 11 iter. 

SYNCH. 
PERIOD 

1,840 

Mp3d 

Ocean 

Pthor 

- Hypersonic ilow 24,000 mols, 25 iter. 44 

Hydrodynamic 98x98.2 days 17,469 

Digital circuit RISC, 1,000 timesteps 7,633 

Raytrace 3-D rendering TEAFor 490 

Table 4 Macrobenchmarks. 

ital circuit being simulated. Only a few fields of this descriptor are 
frequently modified in the course of the simulation. To take advan- 
tage of automatic replication of read-only data and reduce cache 
misses, we collocated the frequently modified Pthor fields in a sin- 
gle cache line. 

We list the problems that the benchmarks solve and the inputs 
that we used in Table 4. The fourth column of Table 4 lists the 
period of critical section entry for each benchmark, computed by 
dividing the benchmark execution time (discounting initialization) 
by the total number of critical section entries (across all 32 proces- 
sors). We computed this statistic from the sequentially consistent 
mn of QOLEZ with all mechanisms enabled. The frequency at which 
locks are obtained is an important metric, since improving the syn- 
chronization primitive will have little benefit for an application that 
uses locks infrequently. 

For these macrobenchmarks, we varied the memory model as 
well as the synchronization primitive. By using two memory mod- 
els (sequential consistency and aggressive release consistency), we 
show that the performance gained by improving the synchroniza- 
tion primitive cannot also be gained solely by making the memory 
model more aggressive. The memory models that we simulated are 
two different implementations of release consistency: sequential 
consistency (denoted SE@, and an aggressive implementation that 
attempts to minimize the number of times that the processor is 
stalled by memory operations (denoted REL). For the latter memory 
model, we labeled all memory accesses as aggressively as possible 
according to the structure proposed by Gharachorloo and others 
[ll, 121, and inserted the appropriate memory fences to achieve 
release consistency on our simulated hardware platform. Although 
our system assumes blocking loads, we implement a merging write 
buffer of up to 64 non-blocking stores, which allows multiple 
stores to be combined and loads to be serviced by stores. This large 
buffer permits very aggressive relaxation of the consistency model 
for stores. 

5.5 Prefetcbing compiler algorithm 

We used an enhanced version of GCC that automatically inserts 
prefetch operations, developed locally by Aboulenein. This com- 
piler takes a critical section and the address of the associated lock 
variable, and automatically inserts the ENQOLB and DEQOLB 
instructions for the lock. More importantly, the compiler attempts 
to move an ENQOLB instruction to a prespecified distance above the 
entry point to the critical section, thus performing a synchronous 
prefetch. 

The compiler uses two methods for trying to insert the 
prefetching ENQOLB instructions. It first attempts to move the 
prefetch operation into a basic block that dominates [24] the basic 
block containing the entry point of the critical section. If the com- 
piler is unable to locate a basic block that dominates the critical 
section entry point, the compiler resorts to a technique similar to 
trace scheduling [lo], which inserts ENQOLB operations in non- 
dominating basic blocks. To ensure correctness, the compiler must 
also insert DEQOLB operations along all possible paths that do not 
include the critical section. 



6 Results 

In this section we present our microbenchmark and mac- 
robenchmark results. We then compare pairs of macrobenchmark 
runs in an attempt to identify the effect that the individual synchro- 
nization mechanisms have on performance. 

6.1 Microbenchmark results 

We plot completion time of the microbenchmark loop in 
Figure 3. Since there is no shared data used in the critical section, 
we do not explore collocation. We measure the throughput of TS 
and TTS both with and without exponential backoff, MCS, LH and 
M locks, QOLB, and reactive synchronization (using TS+E for the 
low-contention case and MCS for the high-contention case). We 
see that QOLB performs best in all cases, under both low and high 
contention. TS and TTS perform second- and third-best under low 
contention (one or two processors), but their performance quickly 
degenerates for more than four. Adding exponential backoff makes 
TS and ITS perform worse under low contention, but prevents a 
severe performance degradation in the presence of numerous 
requestors. The LH and M locks outperform all primitives other 
than QOLB under medium contention (four processors). 

Under high contention MCS outperforms both LH and M. The 
difference in performance is attributable to the cache behavior of 
these primitives and the cache coherence protocol we simulated. 
Under MCS, a processor always reuses the same queue element (Or 
memory address) to insert itself in the queue. Under both LH and 
M, queue elements tend to migrate from releasing to acquiring 
nodes [28]. In SCI, a write to a migrating cache block requires 
more network transactions than does a write to a block accessed 
mostly by one processor. Other cache-coherence protocols may not 
display this behavior. 

Magnusson, Landin, and Hagersten [28] state that under high 
contention, MCS generates one extra cache miss than do LH or M. 
Careful collocation of the MCS “next” pointer and the lock bit (as 
implied in the original article [29]) prevents this extra cache miss. 
Under high contention, this collocation permits two read accesses 
to be satisfied by a single miss instead of two. For all our experi- 
ments we assumed that the MCS tail pointer is indeed collocated 
with the lock bit, which improves its performance under high con- 
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Figure 3 Microbenchmark performance. 

tention but hinders performance slightly under medium contcnllon, 
In MCS, placing the lock bit and tail pointer together can result in 
extra remote accesses when a node is adding itself to a two-clc- 
ment queue at the same time the head of the queue is freeing the 
lock. Finally, we see that our reactive synchronization scheme is 
successful in that it closely tracks the performance of the best soft- 
ware alternative under both low- and high-contention conditions. 

6.2 Macrobenchmark results 

We present the results of the macrobenchmark experiments in 
Table5. TS is the base case for each benchmark and memory 
model. We list the simulated execution time of each base experi- 
ment (in millions of cycles) in parentheses in the TS row and SEQ 
column of Table 5. The other numbers in Table 5 are all speedups 
reIative to their particular base case. The running times that WC 
present correspond to the entire execution of the benchmarks. 

What is most striking about these results is the magnitude of 
the speedups, considering that the only parameter being varied is 
the synchronization primitives. Raytrace executes twice as fast in 

BENCHMARK 

BARNES MP3D OCEAN PTHOR RAVT~~~GE 

EXPERIMENT SEQ RR SEQ RR SEQ REL SE’2 REL SEQ REL 
TS (190) 0.94 (231) 1.02 (16.5) 1.19 w3) 1.16 (626) 1.22 
TStC 1.67 1.85 1.03 1.12 1.31 1.69 0.66 1.13 2.47 2.66 
TStE 1.17 1.40 0.66 1.21 1.12 1.37 0.66 1.22 2.06 2.16 
TStEtC 1.31 1.67 0.90 1.29 1.31 1.66 0.93 1.34 2.56 2-65 
-ITS 1.02 1.11 1.05 1.11 1.02 1.22 1.04 1.23 1.03 1.12 
l-rs+c 1.72 1.67 1.09 1.16 1.32 1.70 0.95 1.36 2.54 2.61 
TTStE 1.17 1.40 0.63 1.16 1.11 1.40 0.07 1.21 2.03 2,16 
TTStEtC 1.32 1.66 0.87 1.25 1.26 1.70 0.94 1.35 2.66 2.65 
MCS 1.57 1.61 1.18 1.30 1.24 1.55 1.06 1.25 2.31 226 
MCStC 1.58 1.63 1.25 1.36 1.25 1.65 1.17 1.37 2.29 2.33 
LH 1.21 1.48 0.81 1.12 1.24 1.55 0.67 1.22 2026 2931 
M 1.21 1.47 0.75 1.06 1.24 1.55 0.67 1.18 2.25 2.20 
R 1.19 1.47 0.76 1.08 1.19 1.49 0.07 1.20 2.26 2.35 
QOLB 1.79 1.83 1.46 1.60 1.31 1.65 1.11 1.34 2.56 2.64 
Q0LetC 1.89 1.92 1.65 1.75 1.34 1.70 1.25 1.51 2.62 2068 
QoLEtCtP 1.69 1.92 1.65 1.75 1.31 1.68 1.26 1.54 2.63 2.70 
QoLE3tCtcP 1.69 1.93 1.64 1.74 1.35 1.70 1.25 1.53 2.63 2.70 

Table 5 Speedups of different synchronization primitives. The numbers in parentheses represent the execution time (in millions of clock 
cycles) for the particular benchmark running on sequentially consistent hardware. The other numbers represent speedups, calculated as the 
ratio of the execution time of the base run to that of the optimized synchronization primitive. 
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30 cases. The smallest speedup, with all four mechanisms 
employed, is sequentially consistent Pthor with 25%. Although 
Pthor uses locks more than does Barnes or Ocean, Barnes has 
bursty streaks of accesses to locks. Lock accesses in Pthor are 
more evenly distributed, so they do not degrade performance 
nearly so much as in Barnes (thus leaving less opporhmity for 
improvement). The speedups for Ocean are small not because the 
mechanisms are ineffective, but because Ocean uses locks less fre- 
quently than do the other benchmarks (see Table 4). For all bench- 
marks, however, QOLB with collocation consistently captures the 
bulk of the performance improvement to be gained. Our imple- 
mentation of synchronous prefetching is generally ineffective, 
speeding up or slowing down the execution by at most 2%. 

Three of the benchmarks (Barnes, Ocean, and Raytrace) exhibit 
similar performance for QOLB and TS (or TTS) with collocation. 
This is untrue for Mp3d and Ptbor, however. Using collocation 
with ‘ITS improves the performance of Mp3d little, and makes the 
performance of Pthor deteriorate. The lower performance of Pthor 
with collocation results from the relatively long length of Pthor’s 
critical sections. These long critical sections give requesters the 
opportunity to attempt to obtain the lock, pulling both the lock and 
critical section data out of the holder’s cache. This behavior does 
not occur with QOLB because waiting nodes in a QOLB queue spin 
on shadow lines, not the actual addresses. 

Partial collocation with MCS improves the performance of all 
benchmarks, except for Barnes and the sequentially consistent runs 
of Ocean and Raytrace. In these cases collocation either has little 
impact (Ocean and Barnes) or degrades performance slightly (Ray- 
trace). Unlike TS, MCS causes only a fixed number of memory 
operations to be issued per synchronization access, thus limiting 
the disturbance caused by collocation. 

Raytrace exhibits much larger speedups than does any other 
benchmark. The Raytrace base case (TS) is extremely slow (as is 
‘ITS). Adding any other mechanism besides local spinning 
improves the performance of Raytrace substantially. These two 
primitives perform so poorly because much of the locking is for 
very small critical sections, for which there is heavy contention. 
Collocation makes the small critical sections extremely fast. 

Queue-based locking eliminates the large relative overhead that 
occurs due to contention when the lock is released. 

Adding exponential backoff improves performance moderately 
for all benchmarks but Mp3d and Pthor in the sequentially consis- 
tent runs, in which we observed slowdowns of up to 20%. 

Reactive synchronization is generally within 25% of the best 
performing synchronization primitives (disregarding the colloca- 
tion mechanism and the QOLB runs). The exceptions are the 
sequentially consistent run of Barnes and Mp3d, where reactive 
synchronization is 32% and 53% slower than MCS, respectively. 

6.3 Individual mechanisms 

This section isolates the performance contributions of the indi- 
vidual mechanisms in Section 3. Figure 4 shows performance dif- 
ferences between eight pairs of experiments (for each benchmark). 
Each pair of experiments isolates one particular mechanism. There 
is doubtless interaction between an “isolated” mechanism and the 
other components of the synchronization primitive. This decompo- 
sition is not intended to quantify the performance contribution of 
individual mechanisms definitively, but to aid in understanding of 
how their combinations affect performance. We also isolate the 
exponential backoff policy. We list the isolated mechanisms or pol- 
icies below, along with their corresponding experiment pairs: 

EXPERIMENT PNR 

tSOlATE0 MECHANISM OR POLICY With 

Local spinning l-m 

without 

TS 
Exponential backoff 

Queue-based locking 

Collocation 

Synchronous prefetch 

lTStE Trs 

MCS l-l-S 

mu3 TL9 

TS+C TS 

lTStC TLS 

c?oLe+c Qcxe 

QCiBtC+CP CQLEtc 

All runs in Figure 4 assume a sequentially consistent memory 
model. The y-axis plots speedup. Figure 4 shows that local spin- 

67% 147% 106% 69% 146% 53% 124% 75% 150% 
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Figure 4 Effects of individual mechanisms. 
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ning is generally ineffective. Queue-based locking (using MCS) 

increases speedup for’all benchmarks. Using collocation with TS 
and ‘ITS causes very different behavior across the benchmarks: 
reducing speedup (Pthor), having a negligible effect (Mp3d), caus- 
ing a moderate increase (Ocean), and causing a large increase 
(Barnes and Raytrace). This high variance with collocation exists 
because requesters may either steal the data from the lock holder, 
hurting performance, or prevent extra remote transfers into a net- 
work filled with arbitration traffic, thus mitigating exceptionally 
poor performance. 

Synchronization prefetching is ineffective, never affecting the 
IUMing time by more than 2%. We suspect that there is much more 
opportunity for improvement with synchronous prefetch, as the 
compiler algorithm was not as aggressive as possible, and we did 
not restructure the codes or algorithms to exploit the power of the 
QOLB prefetch operator. 

7 Cost of QOLB 

In Section 6, we showed that QOLB outperforms all other syn- 
chronization primitives in all cases. This performance comes with 
an associated cost. Most of the other primitives that we discuss can 
be implemented almost entirely in software, requiring only an 
atomic memory operation, such as SWAP, in hardware. QOLB, con- 
versely, requires additional hardware support In this section, we 
enumerate the additional mechanisms that QOLB requires, discuss 
the cost spectrum of possible implementations of these mecha- 
nisms, and present performance results of a low-cost implementa- 
tion of QOLB that runs on a cluster of commodity workstations. 

QOLB requires four mechanisms for a fully functional imple- 
mentation: non-blocking synchronizing instructions, direct node- 
to-node transfer of the lock (from lock releaser to acquirer), stor- 
age of the queue state information (such as the next node in the 
queue), and the capability for multiple nodes to perform operations 
on the same address without invoking the coherence protocol (the 
“shadow line” described in Section 4.6). The highest-performance 
implementation of QOLB requires hardware support in both the pro- 
cessor and the memory system: specialized non-blocking QOLB 

instructions in the processor, plus extra state, direct cache-to-cache 
transfer of the lock, and “shadow copy” support in the cache. The 
SC1 standard’s implementation of QOLB incorporates the latter three 
mechanisms,’ for example, and leaves the processor implementa- 
tion undefined. 

Much lower-cost implementations, which achieve much of the 
potential performance of QOLB, are possible. QOLB instructions in 
the processor may be replaced with generic non-blocking loads or 
stores, eliminating the need to modify a commodity processor. To 
use generic memory operations, the memory controller must be 
able to recognize the issued instructions as synchronization opera- 
tions. These operations may be “flavored,” if the processor sup- 
ports such loads and stores, or they may be memory-mapped into a 
special “synchronization space.” These operations must also be 
marked uncachable, lest they hit in on-chip caches and never reach 
the memory controller. 

In addition to the processor support, low-cost memory system 
alternatives for QOLB exist. Recent multiprocessor implementations 
have begun to use protocol processors at individual nodes to han- 
dle inter-node communication. These implementations may use a 
custom protocol engine, such as Wisconsin ‘typhoon [34], Stanford 
FLASH [21], or Sequent STrNG [27], or a commodity protocol pro- 
cessor with some additional off-chip hardware support [35]. These 
protocol engines can store the QOLB state in either specialized stor- 
age or main memory, send direct messages to ship the lock bit to 

1. To our knowledge the SC1 standard is the only design that includes QOLB. 

the next waiting processor in a queue, and bypass (or supplement) 
the global coherence protocol to permit shadow spinning. 

To determine if low-cost implementations of Qot.o will still out- 
perform other primitives, we compared the performance of QOLD, 
MCS, and a message-based centralized queue lock (CQL) [39] 
implemented on an unmodified cluster of commodity worksta- 
tions. The workstations used the Blizzard run-time system [40] to 
provide the illusion of shared memory. Blizzard is an implementa- 
tion of the Tempest interface [34] which, through user-level soft- 
ware, lets users customize the behavior of shared memory to suit 
the needs of their parallel applications. MCS and CQL arc part of 
the locally available Blizzard distribution and arc implcmcntcd 
directly on top of the Tempest interface. We implemented QOLU 

using the Tempest interface. Our implementation follows closely 
the QOLB specification in the SC1 standard [43]. Specific details on 
the lock implementations are described elsewhere [ 191. Our cluster 
of workstations consist of 40 unmodified dual processor Sun 
SPARCStation 2Os, each with two 66-MHz HyperSPARC procc~- 
sors [36] and a Myricon Myrinet interface [4]. For our measurc- 
ments, we used only a single processor per node; that processor is 

responsible for executing both the program and the Tempest hnn- 
dlers. The detection of message arrival is achieved through polling, 
A binary rewriting tool [22] automatically inserts polling instruc- 
tions in the parallel program.2 The time spent polling is minimized 
by exploiting the coherence protocol in the memory bus, The poll- 
ing code checks the status of the network interface through no 
access to a cachable location, thus limiting the number of these 
accesses that require the bus to complete. The network interface 
uses its DMA interface to update the polled location [31]. WC set 
the cache block size to 128 bytes. 

To evaluate these implementations, we used a microbenchmnrk 
similar to that described in Section 5.3. To explore the impact of 
collocation, this mlcrobenchmark does not wait a fixed amount of 
time in the critical section; instead, it writes a value into a shnrcd- 
memory location. If the synchronization primitive permits collocn- 
tion, this Iocation may be collocated with the lock. As before, once 
a processor exits the critical section, it waits for a randomly gcncr- 
ated amount of time (seIected from n uniform distribution with n 
mean of approximately 135Oi.@. The benchmark executes tho loop 
body 100,000 times, divided evenly among the contending nodes, 

In Figure 5, we show the elapsed time (in seconds) of the 
microbenchmark loop under contention levels ranging from one to 
16.3 The figure depicts the elapsed time for four synchronization 
configurations: MCS, CQL, QOLB, and QOLB with the lock and the 
variable collocated (QoLBtC). When there is no contention, MCS 
performs better than either CQL or QOLB. The difference is due to 
the fact that the latter two implementations require invocation of 
protocol handlers to acquire or release a lock, while MCS cnn pcr- 
form the same operations using simple loads and stores that hit in 
the cache. Under high contention, QoLBtC outperforms the other 
primitives. In the 16-node configuration, QoLBtC complctcs the 
loop 5.6 as fast as MCS and 2.6 times ns fnst as CQL. CQL and QoLu 
perform similarly, with CQL being nbout 10% fnstcr thnn QoLn 
(without collocation) under high contention. 

Considering message counts only we could conclude thnt QOLU 
should clearly outperform CQL. Indeed, under high contention, 
QOLB has a single message on the critical path (see lhblc 3), while 
CQL has two (one message from the releaser to the lock mnnngcr 
and another one from the manager to the acquirer). The observed 
behavior is due to the transmission times of the messages used by 
these implementations; CQL uses short messages to communicntc 

2. That tool is also responsible for inserting checks before ench shnrcd- 
memory access [39]. 
3. Due to a shortcoming in the Myrinet interface we could not cokct mm- 
hers with more than 16 nodes. 
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Figure 5 Performance of software QOLB. 

with the node managing the centralized queue, while QOLB trans- 
fers entire cache lines of 128 bytes. On our system, the round trip 
time of a message carrying a cache line is roughly twice the round 
trip of a short message. 

8 Summary and conclusion 

This paper focused on providing efficient locking primitives to 
improve the performance and scalability of fine-grain shared- 
memory parallel programs. Instead of focusing on the individual 
latencies associated with mutually exclusive accesses to critical 
sections, we focused on the global throughput of critical section 
accesses. We defined the notion of a synchronization period: one 
“cycle” of multiple serialized accesses to a critical section. We 
broke this time into three phases (Transfer, LoaaP’compute, and 
Release), and classified the components of each of these phases as 
either unavoidable latencies or removable overheads. We identified 
four optimizing mechanisms (local spinning, queue-based locking, 
collocation, and synchronous prefetch) that can assist in eliminat- 
ing the removable overheads of critical section accesses. 

We performed a thorough evaluation of this space, simulating 
the performance of seventeen locking constructs (formed from six 
base primitives: TEST&SET, TEST&TEST&SET, MCS, LH, M, and 
QOLB) in detail with both real parallel applications and the more 
traditional microbenchmarks. We also demonstrated the perfor- 
mance of our synchronous prefetching compiler. Finally, we com- 
pared the performance of three queue-based locking schemes 
running on an unmodified cluster of workstations, the results of 
which support our simulation results. 

Our results showed that local spinning consistently aids perfor- 
mance but not very much. Queue-based locking was very effective, 
except in the cases where the overhead of MCS, LH, and M locks 
hurt low-contention critical section access latencies. Collocation of 
the lock and locked data in the same cache line showed wildly dif- 
ferent effects with Tasr&Sar and Tusr&TEsT&Srrr; collocation may 
greatly increase or decrease performance, depending on the bench- 
mark. Collocation consistently improved the performance of QOLB. 
Synchronous prefetching was the least effective of any of the 
mechanisms. 

The most important result of our experiments is the consistent 
and large performance gain that Qorn achieves, which is further 
increased by collocation. Graunke and Thakkar [16] concluded 
that I‘... elaborate hardware [synchronization] schemes are unnec- 
essary even when considering larger non-bus-based [systems].” 
Mellor-Crummey and Scott stated [30] that “special purpose syn- 
chronization mechanisms, such as QOLB, are unlikely to outper- 

form our MCS lock by more than 30%: Our results refute these 
assertions; QOLB outperforms MCS by 40% for Mp3d. 

Lim and Agarwal claimed [26] that reactive synchronization 
“reduces the motivation for providing hardware support for queue 
locks.” Since QOLB outperforms the best software locks under 
either low- or high-contention conditions, it should also outper- 
form reactive synchronization schemes. Our results confirm this 
hypothesis-QoLa speedups were from 10% to 92% higher than 
reactive synchronization, and this disparity only increased by add- 
ing collocation and synchronous prefetch to QOLB. 

Finally, we claim that the inherent cost requirements of QOLB 
are not prohibitive. Hardware queue-based locking is not prohibi- 
tively expensive, as DASH implemented one such synchronization 
scheme [25] (it differs from QOLB in that the centralized memory 
directory kept track of queued requesters). QOLB is an integral part 
of the SC1 standard [43], and uses many of the same mechanisms 
needed to implement the coherence protocol. As we showed in 
Section 7, many current- and next-generation multiprocessors 
already contain most of the hardware support needed to implement 
hardware-supported QOLB. We also showed that a low-cost, lower 
performance version of QOLB can be implemented on current sys- 
tems with no additional hardware support and still outperform the 
alternatives. 
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