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Because of the limited storage space available on portable computers, dis-
connected mobile users must restrict their work to a subset of the �les available
on their network. The list of �les needed to accomplish useful work is large,
non-intuitive, and constantly changing. Selecting a subset by hand is di�cult,
time-consuming, and error-prone, suggesting that an automated solution is de-
sirable.

Our thesis is that it is possible and practical to automate the process of
choosing �les to be stored on a portable computer. To validate this thesis, we
conducted a preliminary study in a live business environment, which demon-
strated that the approach was feasible.

We then developed a new metric, semantic distance, that quanti�es the re-
lationships among �les, so that the group of �les needed to work on a particular
project can be identi�ed. Using this metric, we built an automated system
named Seer, which dynamically analyzes user behavior to identify the �les
needed for various projects, predicts the projects on which the user will be
working, and then arranges to store the �les necessary for these projects on the
portable computer.

After building the system, we developed new metrics to characterize the
behavior of automated hoarding systems, and deployed Seer among a small
group of users. To our knowledge, ours is the �rst quantitative study of a
hoarding system that has been done anywhere. The results of the study showed
that Seer performed superbly, usually requiring only about a third of the hoard
space needed by previous algorithms, and generally performing within a few
percent of optimality. In live usage, Seer nearly always hoards 100% of the
�les needed by the user.
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Chapter 1

Introduction

The best pro�t [sic] of the future is the past.|Chinese fortune cookie

Two conicting trends in modern computing are the rise of networking and the advent of mobility.
The lack of inexpensive, ubiquitous, high-bandwidth mobile communication has made portable computing
inherently di�erent from its �xed-base equivalent by denying access to networked information. The necessity
for disconnected operation has led to a demand for systems designed to simplify this mode of use. Although
there are a number of approaches to this problem, to date a complete solution has not been created.

1.1 Network-Free Mobility

In the last few years, mobile (laptop) computing has become a dominant force in the personal-computing
market. At the same time, corporate and organizational computing have been moving in the direction of
increased connectivity. Where even �ve years ago personal computers and workstations were often stand-
alone machines, with limited �le exchange performed by carrying oppies from desk to desk, the modern
o�ce features tens or even thousands of computers connected by a high-speed network to �le servers, printers,
databases, and timesharing services.

As the o�ce worker moves more and more tasks onto his own computer, the importance of the network
constantly increases. Where once a spreadsheet was created by manually entering printed information
generated by a mainframe, \hot links" now automatically collect the latest data from the corporate accounting
department. Where once a salesman took orders without being sure of availability, he now updates the online
inventory system to reserve the requested items. But this same increased importance of the network is in
direct conict with the need for mobility. The modern salesperson wishes to enter orders directly on his
laptop while sitting in the customer's o�ce. The executive ying to a board meeting wants to have the latest
pro�t �gures to include in the report he is writing. Both of these workers have grown used to having on-line
information and begin to feel frustrated and handicapped when it becomes unavailable simply because they
have stepped away from their desks.

1.2 Mobile Data Availability

1.2.1 Communication

The obvious solution to the lack of mobile networking is to create mobile communications solutions, and
many researchers are working to do just that. Wireless communication is one of the most active topics in
computing today. Unfortunately, there are reasons to believe that we are a long way from a practical solution.

1



2 CHAPTER 1. INTRODUCTION

Wireless communication requires a signi�cant and ubiquitous infrastructure that does not currently exist. It
also requires nontrivial bandwidth, which is expensive in the context of a limited and non-expandable radio
spectrum, and consumes a large amount of power when a mobile station transmits. Furthermore, there are
always going to be places, such as airplanes, oceans, campgrounds, or underground structures, where it is
di�cult, expensive, or impossible to provide a high-bandwidth wireless connection.

An alternative solution to the lack of networking is to make the network completely unnecessary. Even
in a large installation, the primary purpose of a network is to provide access to resources. If we can arrange
for those resources to be locally available, then the network connection is superuous and can be dispensed
with, at least for a time.

1.2.2 Disk Space

However, most of the resources on the typical network are locally meaningful. In particular, shared data is
the lifeblood of modern interconnected computing. A natural solution to the problem, then, is to simply store
replicas of all the shared data, using a system such as Ficus [Guy 1991, Heidemann et al . 1992], Rumor
[Reiher et al . 1996], or Coda [Kistler and Satyanarayanan 1992].

This approach assumes that the portable machine has enough free space to store this data. In general,
even with the huge disks that are becoming available in small form factors, this assumption will not be true.
Throughout the history of computing, data has expanded to �ll the available disk space. There is no reason to
believe that this phenomenon will change. To the contrary, the advent of multimedia and ever-more-complex
applications, with their associated graphics and con�guration �les, will only exacerbate the shortage of disk
space.

Furthermore, even though portable disks are large, they are inherently incapable of storing as much data
as can be kept on a non-portable machine [Satyanarayanan 1996], and the very existence of a network means
that the total available data will be larger than can �t on any one disk. One need only browse the Internet
for a few minutes to realize what an incredible amount of data is available to a networked machine.

1.2.3 Local Storage

However, there is really no need to keep all of the world's data stored on a portable computer. In any given
day, the user accesses only a tiny fraction of what is available, and the portable machine must store only
what is actually accessed. It is still possible for this data to exceed the capacity of the local disk (especially
if the user is browsing the network or using large video or sound �les), but most of the time everything
will �t quite nicely. Using a system that supports selective replication [Ratner 1995], the user can store
copies of only the �les needed for a day's (or week's) work, propagating updates back to the network when
a connection is available.

The problem of selectively replicating �les on a small scale is well-understood and amenable to e�cient
solution. However, selective replication covers only part of the user's needs. It is one thing (albeit important)
to be able to store copies of �les in more than one place, propagate updates and changes, and detect conicts.
It is far more di�cult to decide which �les should be stored. This problem is especially important because,
as discussed above, it will not always be possible to use wireless communications to retrieve an important
�le once a disconnected hoard miss has occurred.

1.2.4 Predictive Hoarding

We have built an automated system that can predict short-term �le access patterns and use the predictions
to make decisions about which �les to cache, or hoard, on a mobile computer. This system works su�ciently
well to allow successful mobile use, in the absence of any network connection, for several days or even weeks.
The system is general enough to be applicable to a wide range of styles of mobile use, from the computer
science researcher to the computer-illiterate corporate executive. The system operates transparently, with
little or no user intervention required to control it.
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As will be discussed in Chapter 7, the traditional cache performance measure of miss ratio is inappro-
priate for this application, so we have developed alternative measures for characterizing the performance of
predictive hoarding schemes, and use these measures to evaluate both our system and those developed by
others.

As part of the system, we have built a simple yet portable replication substrate to support the selective
replication of the �les that the predictive system has chosen for hoarding.

1.2.5 Alternative Solutions

Of course, predictive hoarding is not the only solution to the problem of storing �les on the local disk.
Several other alternatives are available for consideration.

Huge Disks

One obvious approach would be to simply equip the portable computer with an extra-large disk that is
capable of storing any �le in which the user may be interested. However, although this method would
certainly simplify the problem of choosing �les (by allowing more sloppiness), it does not solve the basic
di�culty. As discussed above in Section 1.2.2, no portable disk is likely to be able to hold 100% of the data
that might interest a user.1 Since even the largest disk cannot hold all of the data in the world, this approach
still does not address the problem of selecting which subset of the world's data will actually interest the user.

Hand Speci�cation

Several previous researchers have solved the problem of choosing �les by leaving it up to the user. For
example, Coda [Kistler 1993] requires the user to build a list of all important �les, together with numerical
values that indicates their relative worth. Face [Alonso et al . 1990] and Little Work [Honeyman et
al . 1992, Huston and Honeyman 1993] are even more invasive, suggesting that immediately before discon-
nection the user must actually access all �les that will be needed until the next time a connection is achieved
(Face also supports user speci�cation in the manner of Coda, but with less exibility).

Hand speci�cation is at best a clumsy solution, and one acceptable only to the most knowledgeable and
dedicated of computer users. In the �rst place, hand speci�cation is inconvenient, distracting the user from
the real work that is the point of using a portable computer. In the second, hand speci�cation is di�cult and
error-prone. Many modern applications use �les of which the user is completely unaware [Kuenning 1994].
Kistler's dissertation tells of a incident in which even expert computer scientists were unable to explain
why a windowing system was sometimes unusable due to missing �les [Kistler 1993, p. 193]. If a computer
researcher cannot do the job accurately, it is certain that the average businessman will be helpless in the
face of such an exacting task.

The \access-all-�les" approach su�ers from the added drawback that the user is expected to be able to
predict and reproduce the exact manner in which he will use a particular application. Although it is nearly
impossible in practice to hand-construct a list of �les needed for a given task, it is at least true that once
such a list exists, it will continue to work in the future. Not so for \hoarding by example." Woe betide
the user who, just before leaving on a cross-country journey, neglects to access the only part of a particular
document that uses the italic font. Once he is on the airplane, he may be completely unable to even display
the page in question.

LRU Hoarding

Given that hand-speci�cation methods are unworkable or at best tremendously inconvenient, one might
still ask why a complex hoarding mechanism is necessary. Computer systems have been using the least-

1Users with minimal requirements may sometimes be able to �t into a relatively small disk footprint, but as application
packages grow, they will remain the exception rather than the rule.
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recently-used (LRU) cache-management method successfully for decades, usually with great success. Why
not implement a LRU hoarding system for the portable computer and be done with it?

The answer lies in the complexity of user behavior and the cost of hoard misses. In traditional caching
systems, an attempt to access an uncached object incurs only a small performance penalty. For many
applications, a miss ratio or failure rate of 10% or even 20% of all accesses is considered acceptable. In
disconnected operation, however, the cost of a hoard miss is nearly in�nite. In experience with the Coda
system, Kistler found that even a single hoard miss usually stopped work on the project, forcing the user
either to switch to a secondary task, or to cease computing altogether.2 Thus, an LRU-based system would
be required to perform to a much higher standard than such algorithms have been able to achieve in the
past.

In fact, we found that the requirements are so stringent that no LRU-based system can possibly perform
adequately. Consider the previous example of a report that requires a special font for one of its sections.
The user may work for days on a di�erent section of the document, never touching the part that needs the
second font. An LRU system would have no way of knowing that the font was needed.3 We will discuss this
question further in Section 8.2.2, p. 94.

Cluster-Based Hoarding

An ideal system would do more than just hoard the most recently referenced �les. Instead, it should recognize
the projects on which a user works, and hoard those projects as complete entities. By hoarding projects, the
system will ensure that the user has everything he needs to get a particular job done while disconnected.

We have built a system called Seer, which automatically predicts the �les a user will need while dis-
connected and ensures that they are hoarded. Seer is based on the concept of locating groups or clusters
of �les that are used together to work on a particular project. To locate such a cluster, Seer discovers the
relationships among the cluster's member �les by observing the user's actual behavior. The relationships
are used to infer the cluster (project) members, and the project is hoarded as a unit.

1.3 Overview of the Dissertation

It is our thesis that it is both possible and practical to predict the �les needed by a user, and to arrange for
these �les to be hoarded on a mobile computer before disconnection.

In Chapter 2 we describe a study of real-world user behavior that supports the hypothesis that predictive
caching is a feasible method of managing data on a laptop computer. Chapter 3 introduces the concept
of semantic distance, one of the fundamental ideas behind Seer. It formally de�nes relevant concepts,
speci�es algorithms to compute measures of distance, develops e�cient approximation methods, and proves
necessary underlying properties. Chapter 4 then discusses the clustering algorithms used to group related
�les for hoarding.

Chapter 5 discusses the design and implementation of our system. Since the real world is never as simple
as one would like, Chapter 6 discusses di�culties that had to be addressed to make Seer work.

Chapter 7 discusses the methodology used to quantify Seer's success at predicting user behavior, and
Chapter 8 gives the results of this analysis. In Chapter 9 we discuss the relationship of our work to other
mobile-hoarding systems. Finally, Chapter 10 presents ideas for future directions based upon this research.

In Appendix A, we briey describe the simple replication system we built to support Seer. Appendix B
provides details on the internal design and implementation of the system.

2An example of the impact of hoard misses occurred during the early testing of our system, in which the essential .cshrc
startup �le was omitted from the hoard because no login had occurred for a long time. The user was almost completely denied
use of the system after an unexpected reboot. The solution to this particular di�culty is outlined in Section 6.3, on page 65.

3
Little Work and Face are simple LRU systems, and Coda has a large LRU component underneath the user-speci�ed

lists of �les. All three systems su�er from the problem of failing to hoard important, but recently unused, �les. See Chapter 9
for details on these systems.
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1.4 Summary of Results

A complete performance analysis of our system, in terms of both its impact on the user and its predictive
success, is given in Chapter 8.

Overall, Seer predicts exceedingly well in the tests that were conducted. The predictions outperform
LRU-style algorithms using only 20% to 50% of the hoard space needed by those methods. Seer generally
needs hoard space that is only a few percent over the amount that would be required by an optimal algorithm.
In live tests, most users experienced only one or two hoarding failures over several months, far fewer than the
number that would be expected from an LRU-style approach. For all users, 95% or more of disconnections
operated without any hoarding failure whatsoever.

Finally, under normal operation, the analysis indicates that Seer has a negligible e�ect on the overall
performance of a modern laptop equipped with su�cient main memory.
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Chapter 2

Feasibility
1

The idea of automated prediction of user behavior is a seductive one, with applications far beyond simply
controlling a mobile hoard. But is it actually possible in the real world, or is user behavior simply too
complex to ever be predicted by a mere computer?

We cannot answer the latter question in the large, but we have strong reason to believe that the speci�c
problem of predictive hoarding is solvable, even outside the university environment. This chapter presents a
study undertaken in a business setting, which demonstrates that users behave in a consistent and tractable
manner, so that predictive hoarding is indeed feasible.

2.1 Motivation

The research described in this chapter was undertaken to investigate the practicality of hoarding for mobility
in a wide set of application domains. Our approach was to collect traces of �le-access activity in several
environments over a long period of time, and analyze them for feasibility and predictability of hoarding.

We chose to collect our own traces, rather than using existing traces, for three reasons. First, few
existing traces are long enough. Because most existing traces collect read/write activity, a few weeks of
data is su�cient to tax resource limits. We were interested in observing longer-term periodic behaviors such
as end-of-the-month billing work in an accounting department, which therefore required a several-month
trace to establish a pattern.

Second, existing traces have tended to be limited to an engineering application domain, usually program-
ming. We wanted to investigate the behavior of non-programmers as well, in the twin beliefs that this type
of user will eventually be the largest population of portable users, and that these users may behave quite
di�erently from programmers.

Third, most previous studies have generally been limited to analyzing working-set sizes, or �le-system
performance data [Baker et al . 1991, Blaze and Alonso 1992, Kistler 1993, Ousterhout et al . 1985, Satya-
narayanan et al . 1993]. The latter is not relevant to this research, and the former, while very important, is
not in itself su�cient to characterize the user behaviors critical to successful mobile hoarding.

Successful automated hoarding requires two characteristics in user behavior:

� The working set of �les, as observed over a period of days or weeks, must be small enough to �t on a
portable's disk.

� It must be possible to predict the working set in advance, using hints such as the current working set,
historical �le access patterns [Tait and Duchamp 1991], or known patterns in user behavior.

Analysis of the data we have collected shows that these characteristics are present in a number of di�erent
application domains.

1Most of the material in this chapter appeared previously as [Kuenning et al. 1994].

7
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2.2 Methodology

We collected our traces at Locus Computing Corporation, a software development and consulting �rm,
during the summer of 1993. One of Locus' products, PC/InterfaceTM (PCI) [Locus 1993], is a pseudo-
disk driver that makes the Unixr �le system available to MS-DOSr computers over an Ethernet. In the
environments monitored, the local MS-DOS �lesystem was used to store some applications software, but
all shared corporate data was accessed via PCI. The Unix server for PCI was modi�ed to log opens, closes,
and deletes of �les. By avoiding read/write logging, we minimized the performance impact and kept the log
�les small. Log entries contain an operation type and subtype (e.g., open for read), the Unix timestamp in
seconds, the Unix UID of the invoker, the process ID, the absolute pathname of the �le, and the size of the
�le.

Three di�erent user environments were monitored. In the �rst, referred to as \personal productivity," the
server was a machine that acted as the network �lesystem for 47 users running business-oriented applications
such as e-mail, project and calendar scheduling, and word processing. These users did not tend to store
important �les on their own machines, so they generated high activity at the server. This server was traced
for 1563 hours (65.1 days, or 9.3 weeks),2 recording 4,637,924 accesses.

In the second environment, referred to as \programming," the server was a cluster of 10 machines running
IBM's Transparent Computing Facility, an adaption of the Locus distributed operating system [Popek and
Walker 1985], which provides a single-system image to users of multiple machines. Each machine ran a
separate PCI server, and logs from these servers were later combined for analysis. Most of the users of
this server were programmers working on DOS-based software. Because they performed much of their work
locally, accessing the shared server mostly to retrieve or update shared source �les, they generated relatively
little server activity. The traces on this server essentially reect commits to a shared database, while omitting
most localized �le activity. This server was accessed by 64 users and was traced for 1693 hours (70.5 days,
or 10.1 weeks), recording 93,719 accesses.

In the third environment, referred to as \commercial," the server was a single machine used by the ac-
counting department to run a commercial accounting application. The master corporate accounting database
was kept on the Unix server, but all access to this (shared) database was via DOS workstations running the
commercial package. This server was accessed by 7 users and was traced for 1257 hours (52.4 days, or 7.5
weeks), recording 371,830 accesses.

The nature of the traced environment (local �les stored on PC's, with shared �les stored remotely)
parallels the expected behavior of mobile users, who will probably store heavily-used applications locally3

but make extensive use of shared resources when they are network-connected. However, based on preliminary
analysis of these traces, we also generated two modi�ed traces that omitted certain characteristics we felt
might be absent on portable platforms due to di�erent software and user behaviors. For the commercial
environment, we reduced all �le sizes to a maximum of 1 Mb, on the theory that very large databases would
be represented by smaller slices of the full database in a portable environment. This change primarily a�ected
the statistics on working-set sizes and the amount of data involved in write conicts and attention shifts,
which are measures of �le sharing and working-set variability that will be de�ned in Section 2.3 (p. 9). For
the productivity environment, we eliminated all references to fax spooling and mail �les, because such �les
are handled in a queued manner (as opposed to being shared) in disconnected environments. This change
a�ected all of the statistics we analyzed. These two data sets are referred to as the \reduced commercial"
and \reduced productivity" environments in the tables and graphs.

Once the traces were collected, we canonicalized them using a simple awk script that converts relative
pathnames to absolute form, correlates each close with the corresponding open and produces an output line
whose format is independent of the operation type, to make subsequent processing easier. These canonic-
alized �les were then compressed and used as the basis for our analysis. The largest of these �les (from
the productivity server) is nearly 18 megabytes in its compressed form, and about 10 times that size when

250 days into this trace, there was a data gap of approximately 48 hours due to an administrative error. It does not appear
that this gap a�ects the validity of the analysis.

3We expect that even active applications will eventually fall under the purview of an automated hoarding system.
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expanded.
The subsequent analysis is performed in two phases. First, a single-pass program reads the data and

extracts summary information of interest. (For example, for each 24-hour day in the collected data, the
extraction program writes a single line for each user giving the total size of that user's working set, meas-
ured in both megabytes and �les.) A second pass then analyzes these summary �les with general-purpose
statistical tools, generating the �nal tables and graphs presented in this paper.

2.3 Statistics

We generated the same statistics for each parameter in each environment: mean, standard deviation, and
maximum. Besides the traditional measure of working-set size, we looked at two measures that have special
application to mobility: write conicts and attention shifts.

We de�ne a write conict event to occur when two users write to the same �le within a relatively short
time span. In a mobile environment, a conicted �le might be replicated on two or more computers, and the
system would be required to automatically resolve these conicts after the fact in a manner similar to the
Coda or Ficus distributed �le systems [Kumar and Satyanarayanan 1995, Reiher et al . 1994], to force the
user to resolve them by hand [Kistler 1993], or to limit writing to only one user. We examined conicting
writes within a 24-hour period (corresponding to taking a machine home overnight) and a 7-day period
(corresponding to traveling with a machine).

An attention shift occurs when a single user radically changes his or her working set. We identi�ed
attention shifts by looking at the working sets in successive active n-hour time periods (which did not
necessarily represent adjacent days or weeks in cases where the user's machine remained idle, such as
weekends). Within each time period, we counted the total numbers of �les accessed, k1 and k2, and then
calculated k = min(k1; k2). Within the second period, we also counted the total number m of �les that had
not been referenced during the �rst period, but that had existed prior to either period.4 An attention shift
was de�ned to occur if m � pk, where 0 � p � 1. Attention shifts can be characterized by the parameters p,
expressed as a percentage, and n, the number of hours in the period. We use the notation p%=n to describe
an attention shift parameter pair. Based on a sensitivity analysis (see Figures 2.6{2.8), we chose p = 20%.
We chose n = 24 and n = 168 (1 week) because these represent typical disconnection periods for many
portable users.

A �nal characteristic of an attention shift is the age of the shift, which represents the amount of time that
has elapsed since the user last referenced one of the \new" �les.5 The age of an attention shift indicates when
the �les involved in the shift were last used. We estimated the age by locating the most recently-referenced
\new" �le (a �le included in count m), and subtracting its reference time from the start time of the second
period. This approximation tends to understate the age, since it assumes that the most-recently-referenced
�le is representative of the entire group m of \new" �les. For our purposes this choice is the conservative
one, since it assumes maximum e�ectiveness for a simple LRU-style hoarding system.

However, it was not always possible to �nd a �le to use in calculating the age of the shift. This would
happen when none of the \new" �les had ever appeared before in the trace. In this case, we conservatively
assumed that the \new" �les had been referenced exactly one second before the beginning of the entire trace.
Because of these two assumptions, the attention-shift ages reported in this paper are only a lower bound on
the true ages that would be encountered by a predictive hoarding system.

The bounded locality intervals discussed in [Majumdar and Bunt 1986] are similar to attention shifts,
but are parameterized on working-set sizes rather than on the expected length of a disconnection.

The statistics we report are:

Working-set statistics. For each day and week, we calculated the working set size in �les, Mb, and number
of accesses. Means and standard deviations were calculated by averaging data across time for each

4We eliminated �les that were created during the second period because they are not problematical for a hoarding system
that must predict which existing �les need to be stored.

5The ages of successive attention shifts can represent overlapping periods.
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WS Size WS Size
(Mb) (Files)

Environment Mean � Max Mean � Max

Productivity 1.0 (2.0) 134.5 39 (80) 3293
Reduced Productivity 0.7 (1.8) 41.1 7 (10) 547
Programming 0.3 (0.4) 18.0 10 (27) 2153
Commercial 18.2 (13.1) 65.0 294 (442) 1643
Reduced Commercial 10.9 (6.0) 33.6 294 (442) 1643

Table 2.1: Daily Working-Set Statistics

UID, and then calculating the mean and standard deviation across the per-UID means.

Attention-shift statistics. For each 1-day and 7-day attention shift, we examined the total size of the
working set needed to hold both the old and the new data (in �les and Mb). We also computed the
per-user attention shift rate per day and per week. Finally, we calculated the age of each shift.

Conict statistics. For each conict, we examined the number of users involved in the conict, and the
size of the �le on which the conict occurred. We also calculated the per-user conict rate per day
and per week.

Success in mobile computing depends on small values for all of these statistics. Clearly, the working
set must be small enough to �t comfortably on the typical portable's disk. The attention-shift rate should
remain low, both so that the longer-period working set remains small and so that it is easier to predict the
future working set based on recent behavior. The conict rate must remain low to allow convenient �le
updates.

2.4 Analysis

The results of our analysis are very encouraging for an hoarding system. As hoped, working sets are small
and attention-shift rates are low. Conict rates are generally low, and it is clear how one might handle
conicts in the environments that had high conict rates. However, attention-shift ages tend to be high,
indicating that a predictive hoarding system needs to exercise signi�cant intelligence to ensure that a portable
computer is prepared for attention shifts.

Each table given below lists the mean for the statistic, followed by the standard deviation (in parentheses)
and the maximum. For example, in Table 2.1, the mean daily working set for the productivity environment
was 1.0 Mb, with a standard deviation of 2.0 Mb and a maximum of 134.5 Mb.

With the exception of Figures 2.6{2.8, all �gures show the variation in a given measure over the duration of
the trace. For example, Figure 2.1 shows the daily and weekly working sets for the productivity environment,
for each day and each week captured during the trace.6

2.4.1 Working Sets

Tables 2.1 and 2.2 summarize the working-set sizes we observed. Figures 2.1{2.4 show the variation in
mean and maximal working set sizes with time.

6In these and all other graphs, the lines connecting data points are present only to make it easier to see associated points,
and are not meaningful in themselves. In particular, although the daily maxima in the right-hand sides of Figures 2.4 and 2.5
appear to exceed the weekly maxima, careful examination shows that only the connecting lines cross, and the actual data points
for weekly maxima are always larger than the daily values.
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WS Size WS Size
(Mb) (Files)

Environment Mean � Max Mean � Max

Productivity 2.7 (4.7) 148.4 110 (215) 3284
Reduced Productivity 1.4 (2.8) 43.6 19 (31) 548
Programming 0.6 (1.1) 18.3 22 (55) 2170
Commercial 26.8 (16.6) 65.7 374 (553) 1638
Reduced Commercial 16.8 (8.7) 33.8 374 (553) 1638

Table 2.2: Weekly Working-Set Statistics
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Figure 2.1: Working-Set Sizes for Productivity Environment
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Figure 2.2: Working-Set Sizes for Reduced Productivity Environment
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Figure 2.3: Working-Set Sizes for Programming Environment
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Figure 2.5: Working-Set Sizes for Reduced Commercial Environment

Mean working-set sizes tended to be small in all three environments, with the largest being about 18 Mb
per day and 27 Mb per week, in the commercial environment. Maximal working sets were very large (148 Mb
per week) only in the personal-productivity environment, apparently due to a single grep-style operation
that occurred in week 9. This \grep phenomenon" is clearly visible in Figure 2.1. Eliminating this single
maximum produced a secondary maximum of only 84 Mb. Maximal working sets in the other environments
ranged only to 66 Mb.

These working-set �gures indicate that it will be easy to store enough �les on a portable disk to satisfy
the average user,7 although some software or user behavior may have to change when disconnected. (For
example, instead of relying on a large grep, a user might use an inverted index to locate the �les containing
references to a particular string [Manber and Wu 1994].)

2.4.2 Attention Shifts

Tables 2.3 and 2.4 summarize the attention shifts observed. Figures 2.6{2.8 show the sensitivity of attention-
shift rates to the parameter p. Except in the commercial environment, the number of attention shifts steadily
decreases with increasing p, but the exact shape of the curve is quite inconsistent. In the absence of a clear-
cut change in curvature (a knee or cli�), to guide us in the selection of p, we chose p = 20%, which is near
enough to the peak of the curves that we will not tend to underestimate the number of attention shifts, yet
not so small that we will detect a shift every time a user accesses one or two new �les.

Figures 2.9{2.11 show the variations in attention-shift rates with time, for p = 20%. The amount of
data involved in attention shifts was generally small (33 Mb or less), though the maxima were large (up to
152 Mb; the maxima follow from the size of the maximal working set and the de�nition of an attention shift).
In all three environments, the number of attention shifts was surprisingly large and consistent, averaging up
to 0.6 per user per week. This high rate has serious implications for a predictive hoarding scheme, because
it shows that, as explained below, it is not su�cient to simply hoard the least recently used �les. Instead,
the system must be aware of attention shifts and store only the �les that will actually be used.

However, because of the small size of the working sets involved in the average attention shift, a well-
designed predictive hoarding system can a�ord to store both the old and the new set, so that attention shifts
need not a�ect the usability of a mobile computer if the hoarding system is su�ciently accurate.

7We expect working-set sizes to change dramatically over the next few years as users move towards multimedia applications,
but we also expect that disk sizes will increase su�ciently rapidly for portable computers to keep pace. In some sense, this
phenomenon is self-regulating, since users will not tend to use images and sounds extensively if doing so would tax their portable
storage capacity.
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Figure 2.6: Attention-Shift Sensitivity for Productivity Environment
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Figure 2.7: Attention-Shift Sensitivity for Programming Environment
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Figure 2.8: Attention-Shift Sensitivity for Commercial Environment
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Figure 2.9: 20% Attention-Shift Rates for Productivity Environment
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Figure 2.10: 20% Attention-Shift Rates for Programming Environment
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Figure 2.11: 20% Attention-Shift Rates for Commercial Environment

Daily Conicts Weekly Conicts
Environment Mean � Max Mean � Max

Productivity 1.20 (1.16) 4.28 6.08 (3.27) 10.11
Reduced Productivity 0.00 (0.01) 0.05 0.02 (0.03) 0.07
Programming 0.01 (0.02) 0.06 0.11 (0.09) 0.28
Commercial 4.35 (4.75) 16.29 12.32 (8.57) 24.57
Reduced Commercial 4.35 (4.75) 16.29 12.32 (8.57) 24.57

Table 2.5: Per-User Conict Rates

Of course, if there is space to store both the old and new working sets, the question arises whether a
simple LRU scheme would be su�cient to ensure that both working sets are available. The attention-shift age
�gures shown in Tables 2.3 and 2.4 belie this notion. For both the programming and the reduced productivity
environments, the mean age of an attention shift is over 4 weeks and the maximum is near the length of
the trace, indicating that an LRU hoard would very likely have been ushed by transient phenomena before
the older �les were re-referenced. This hypothesis is strengthened by the observation that the conservative
method of estimating the ages of previously-unreferenced �les, explained in Section 2.3, would produce a
mean age of approximately half the length of the trace (about 5 weeks) if there were absolutely no historical
data in the trace. In actuality, the new working set may not have been accessed for many months and thus
may have been ushed from even a very lengthy LRU hoard. Other methods will be needed to ensure that
a mobile machine will be prepared for an attention shift. The above data merely assures us that there will
be room to store both today's and tomorrow's working sets once they have been identi�ed.

2.4.3 Conicts

Tables 2.5 and 2.6 show statistics about conicts and their rate of occurrence, respectively. Figures 2.12{2.14
show the variations in conict rates with time. Conicts were very rare in the \programming" environment,
averaging 0.01 conict per user per day, and only 0.11 per week. In nearly every case only two users were
involved in a given conict, although occasionally a third would write to the same �le within 24 hours.

As expected, the 7 users of the \commercial" environment, with its shared accounting database, produced
a high conict rate of up to 25 per user per week, with up to 6 users writing to the same �le in a single
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Figure 2.12: Conict Rates for Productivity Environment
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Figure 2.14: Conict Rates for Commercial Environment

day. In a mobile environment, an automated resolver similar to those discussed in [Reiher et al . 1994] would
be required to handle these numerous conicts. Since accounting applications typically involve appending
records to a transaction database, we expect that such a resolver would be easy to write.

The surprise was the \personal productivity" environment, which produced conict rates averaging 1.2
per user per day, with up to 22 users writing to the same �le in a single 24-hour period. We examined
these conicts in more detail to discover the cause, and found that nearly all of them involved mailboxes or
fax-spooling �les.

Since both mailbox and spooling �les operate in a modi�ed append-only mode (all but one user appends to
the end of the �le, and a simple locking mechanismprevents update while other �le contents are modi�ed), the
conicts on mail �les do not present a problem for mobility. In fact, the retry-on-failure queuing algorithm
of most mailers would handle mailbox conicts with no software changes. In view of these observations,
we generated the \reduced productivity" trace, which omitted these �les from the statistics. With this
change, the conict rate dropped to a mean of only 0.02 per user per week, a number so small that it could
conceivably be handled even without the help of automatic resolvers.

2.5 Conclusions

The data gathered and analysis performed in this study strongly indicated that predictive �le hoarding would
be a feasible approach to automating disconnected operation for mobile computers. However, the data also
indicated that simple LRU hoarding would be insu�cient. Based on this data, we proceeded with the design
of a more complex algorithm, which is described in detail in the remainder of this dissertation.
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Chapter 3

Semantic Distance

The preliminary studies described in Chapter 2 indicate that predictive hoarding is possible, but that simple
LRU is not an adequate basis for a hoarding system. A successful hoarding system must be able to identify
�les that are of interest to the user as a coherent group. One way of doing so is for the system to be aware
of semantic relationships among �les.

In this chapter, we introduce the concept of semantic distance, a new measure that captures information
about �le relationships. We develop several variations of the measure, introduce algorithms to calculate it,
and prove a number of theorems about the measure and the complexity of the algorithms.

3.1 Semantic Relationships Among Files

As mentioned in Section 1.2.5, p. 4, the Seer system is based on the concept of locating clusters of �les
that are used together to work on a particular project. To identify these clusters, Seer must discover the
relationships among their member �les. Since these relationships are de�ned by the semantics of the �les
(rather than by their names, size, location, or similar attributes), we call them semantic relationships.

Although it is relatively easy for an expert human to look at a set of �les and decide whether they
are semantically related, automating this task is much more di�cult. One approach, which we will discuss
further in Section 5.4 (p. 56), is to know something about the format and internal contents of a �le. For
example, a source �le in a programming language often explicitly mentions the names of other �les and
libraries that it uses. A Unix makefile is little more than an explicit list of the relationships among the
various �les used to build a program or other object, and hot links in Windowsr provide yet another hint
about how a user perceives the importance and relationships among various �les.

3.1.1 Inferred Semantic Relationships

Although the above techniques are important and useful, they are also ad hoc and thus inapplicable in the
general case. In such situations, Seer must fall back on other methods. Since we do not wish to burden
the user with the task of speci�cation, the only choice is to infer the semantic relationships from other
information.

There are a number of choices for such inferences. Directory organization is a powerful hint (see Section
4.2.2, p. 50), but it is often only a hint, because many users either overcrowd a directory (e.g., putting all
presentations into a single location, as is encouraged by software such as PowerPointr), or store complex
projects in multiple directories.1

One of the few sources of information that is always available to an inferring program is the sequence of
the user's references to �les. If we could use this sequence to discover semantic interrelationships, we would

1As observed in [Tait et al. 1995], directory information is more useful for determiningwhat is unrelated than for discovering
close relationships.

23
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have a powerful tool for discovering clusters and thus for controlling the hoard contents. Seer uses this
clustering approach.

Time Sequences

When people work on a computer, they tend to do one task at a time. This behavior is an inherent side e�ect
of the fact that humans do not have parallel streams of consciousness. Thus, it is natural to consider the
sequence of �le references from a standpoint of elapsed time. If a user refers to two �les in quick succession,
it is likely that those �les are related, while if the �les are accessed several hours apart, the relationship is
likely to be more tenuous.

Although this idea is attractive, it also su�ers from a number of drawbacks. One is the inconsistent
nature of human time. If we are in the midst of developing a document and are interrupted by lunch or
a lengthy telephone call, the �les we access after the interruption are nevertheless related to the ones we
used before. Similarly, the gap between quitting time and the next morning's start time is often relatively
inconsequential from a semantic standpoint.

A second drawback is the di�culty of distinguishing the human from the computer time scale. Consider,
for example, a compiler and an editor. The compiler accesses a number of source �les within less than a
second, while the editor, limited by human typing speed, may only refer to one or two �les within an hour.
Yet from the user's point of view, those one or two �les may be as closely related as the many source �les
touched by the compiler. An automated system cannot easily discern that one program is behaving on its
own while another is limited by human behavior, and thus it is very di�cult to choose an appropriate time
base to use when evaluating the relationships among references.2

A �nal di�culty is the inherent irregularity of time-based measures. The rate at which a compiler reads
source �les is a�ected by the system load and the size and complexity of those �les, yet this rate has no
bearing on the true relationships among them.

Reference Sequences

However, all is not lost if we reject time as a basis for inference. We may still be able to glean information from
the ordered sequence of references. By eliminating all interval information, while keeping the sequencing,
we can obviate most of the di�culties discussed above yet take advantage of the important insight that two
�les that are accessed together are more closely related than two accessed separately.

In the remainder of this chapter, we will elaborate the concept of a sequence of references, developing sev-
eral di�erent ways to infer inter-�le relationships from the sequence, and will introduce practical algorithms
that can be used to implement those inferences.

3.2 Reference Sequences and Derived Data

We begin by de�ning basic notation for the reference stream observed by Seer and for the fundamental
semantic relationships implied by this stream.

3.2.1 Reference Sequences and Local Reference Distances

The most fundamental objects handled by Seer are �les and references to them. Let F = ff1; f2; : : : fF g
be the set of �les in the system. Let the user's stream of references to �les be R = fr1; r2; : : : : ri 2 Fg.3
Each ri is the name of a �le, e.g., f i. (A given �le fa may be referenced multiple times by elements of R.)
Although the sequence R is unbounded, we will often consider a �nite-time subset RT = fr1; r2; : : :rTg.

2It would be possible to use di�erent time bases for di�erent programs, but it is not clear how to specify the time base
without human intervention, nor how one would deal with irregularities in human behavior, such as co�ee breaks.

3On a multi-user system, this stream may be intermingled with references belonging to other users, or other tasks performed
by a single user. We assume that a separate mechanismwill separate these various references, so that our subsequent discussion
only needs to deal with a single user's activity. Appendix B presents a method for separating references.
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The basic local reference distance dij between two references ri and rj to distinct �les is de�ned as:

dij =

�
j � i if j > i ^ ri 6= rj;
unde�ned otherwise:

Example 3.2.1 Let

F = ff1; f2; f3g
and

R6 = ff1; f2; f1; f3; f2; f3g
Then the de�ned dij are:

dij =

0BBBBBB@
� 1 � 3 4 5
� � 1 2 � 4
� � � 1 2 3
� � � � 1 �
� � � � � 1
� � � � � �

1CCCCCCA
3.2.2 Basic Distance Multisets

There is a local reference distance de�ned between every pair of references in R. From the local reference
distances, we select those related to a particular pair of �les. We can further choose a subset of a �le pair's
distances, based on the positions of the various references. Each such choice will have a di�erent e�ect on
our �nal de�nition of semantic distance, giving greater or lesser weight to certain types of relationships.

For every distinct pair of �les fa; fb where fa 6= fb, we de�ne four multisets based on the local reference
distance. First, the basic all-pairs distance multiset is de�ned as:

D�fa;fb = fdij : ri = fa ^ rj = fb ^ j > ig

This captures all local reference distances, regardless of what separates them.

Example 3.2.2 Using the local reference distances from Example 3.2.1,

D� =

To
From f1 f2 f3
f1 fd12; d15; d35g fd14; d16; d34; d36g
f2 fd23g fd24; d26; d56g
f3 ; fd45g

=

To
From f1 f2 f3
f1 f1; 4; 2g f3; 5; 1; 3g
f2 f1g f2; 4; 1g
f3 ; f1g

Second is the basic pairwise distance multiset , which is restricted to the rj most closely following each
ri:

D$fa;fb = fdij : dij 2 D�fa;fb ^ 8k; i < k < j; rk 6= fa ^ rk 6= fbg
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Example 3.2.3 Using the local reference distances from Example 3.2.1,

D$ =

To
From f1 f2 f3
f1 fd12; d35g fd34g
f2 fd23g fd24; d56g
f3 ; fd45g

=

To
From f1 f2 f3
f1 f1; 2g f1g
f2 f1g f2; 1g
f3 ; f1g

Third is the basic reference-to distance multiset that collects all dij following each reference to fa:

D!fa;fb = fdij : dij 2 D�fa;fb ^ 8k; i < k < j; rk 6= fag

Example 3.2.4 Using the local reference distances from Example 3.2.1,

D! =

To
From f1 f2 f3
f1 fd12; d35g fd34; d36g
f2 fd23g fd24; d56g
f3 ; fd45g

=

To
From f1 f2 f3
f1 f1; 2g f1; 3g
f2 f1g f2; 1g
f3 ; f1g

The �nal multiset is the complementary basic referenced-by distance multiset that collects all dij preceding
each reference to fb:

D fa;fb = fdij : dij 2 D�fa;fb ^ 8k; i < k < j; rk 6= fbg
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Example 3.2.5 Using the local reference distances from Example 3.2.1,

D =

To
From f1 f2 f3
f1 fd12; d15; d35g fd14; d34g
f2 fd23g fd24; d56g
f3 ; fd45g

=

To
From f1 f2 f3
f1 f1; 4; 2g f3; 1g
f2 f1g f2; 1g
f3 ; f1g

For convenience in subsequent development, we will usually drop the subscripts fa; fb and simply use D�,
etc. Unless otherwise speci�ed, it is to be understood that all discussions refer to the distance multisets for a
particular pair of �les designated fa and fb. We use D to refer to an unspeci�ed member ofD�;D$;D!;D .

Clearly, D$ � D! � D� and D$ � D � D�.

Theorem 3.2.1 D$ = D! \D .

Proof D! \ D = fdij : dij 2 D� ^ 8k; i < k < j; rk 6= fag
\fdij : dij 2 D� ^ 8k; i < k < j; rk 6= fbg

= fdij : dij 2 D� ^ 8k; i < k < j; rk 6= fa
^8k; i < k < j; rk 6= fbg

= D$.

Theorem 3.2.2 D� = D! [D .

Proof D! [ D = fdij : dij 2 D� ^ 8k; i < k < j; rk 6= fag
[fdij : dij 2 D� ^ 8k; i < k < j; rk 6= fbg

= fdij : dij 2 D� ^ (8k; i < k < j; rk 6= fa
_ 8k; i < k < j; rk 6= fb)g

= fdij : dij 2 D�
^ (8k; i < k < j; rk 6= fa _ rk 6= fb)g

Since it is always true that either rk 6= fa or rk 6= fb, the �nal condition is a tautology, and thus
D! [D = fdij : dij 2 D�g = D�.

For each distance multiset, we de�ne a shorthand for the cardinality:

N� = jD�j; N$ = jD$j; N! = jD!j; N = jD j

We use N to refer to the cardinality of an unspeci�ed multiset D.

3.2.3 Lengthy References

In an actual system, �le references do not take place at a single moment, but rather span a period of time.
For example, the executable binary of a program is referenced only at the beginning of execution, yet the
program may potentially remain active for days or even years. Files referenced by a program near the end
of its lifetime are probably as closely related to it as those referenced near the beginning. Similarly, if we
look at �le opens and closes (as opposed to reads and writes, which for our purposes are instantaneous), a
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�le has a �nite lifetime during which many closely-related �les may be referenced. This observation brings
up the possibility of de�ning a more complex reference distance based on the lifetime of a �le.

We will consider a new reference sequence S in which �le opens and closes are considered as separate
events, denoted so and sc respectively, with s being used to denote a reference that can be either an open
or a close. The elements of S will be numbered sequentially, as s1; s2; : : : We will write si = sj if si and
sj refer to the same �le. In particular, soi = scj if soi and scj refer to the same �le, even though one is
an open and one is a close. The number of elements of a particular type in a subsequence from si to sj,
inclusive, will be denoted N o

ij or N c
ij . Formally, these values are de�ned as N o

ij = jfsok : i � k � jgj and
N c
ij = jfsck : i � k � jgj. Of course, N o

ij +N c
ij = j � i + 1.

The number of open or close references to a particular �le fk in a subsequence from si to sj , inclusive,
is denoted N o

ij;k or N c
ij;k, respectively. Formally, N

o
ij;k = jfsom : i � m � j ^ som = fkgj, and similarly for

N c
ij;k. Note that N

o
1j;k � N c

j;k for all j.

De�nition 3.2.1 The lifetime local reference distance between two opens of distinct �les soi = fa and
soj = fb is de�ned as:

`ij =

8<:
0 if j > i ^N o

1j;a > N c
1j;a^ 6 9k : i < k < j ^N o

1k;a = N c
1k;a

j � i �N c
ij if j > i ^ 9k : i < k < j ^N o

1k;a = N c
1k;a

unde�ned otherwise

In other words, the distance is zero if fa is opened while fa remains continuously open, and equal to the
number of intervening open references (including the open of fb) otherwise.

The four lifetime distance multisets are then de�ned as:

L�fa;fb = f`ij : si = fa ^ sj = fb ^ j > ig
L$fa;fb = f`ij : `ij 2 D� ^ 8k; i < k < j; sk 6= fa ^ sk 6= fbg
L!fa;fb = f`ij : `ij 2 D� ^ 8k; i < k < j; sk 6= fag
L fa;fb = f`ij : `ij 2 D� ^ 8k; i < k < j; sk 6= fbg

Much of our subsequent development will be concerned with L$.

3.3 The Distance Histogram

Since the members of the distance multisets D and L are integers and may appear more than once, we can
de�ne a three-dimensional matrix H (resp. J ) that summarizes the important information in D (resp. L).
An element hijk of H is equal to the number of times dij = k in D, and similarly for J . Formally,
hijk = jdijj : dij = k. We call the matrices H and J the basic distance histogram and lifetime distance
histogram, respectively. Of course, there are multiple versions of these matrices, corresponding to the multiple
ways of calculating D and L.

To avoid unnecessary clutter, we will refer only to the basic distance histogram H in this section, with
the understanding that the same development applies equally well to J unless otherwise speci�ed.

The distance histogram is useful because it provides a uni�ed method for understanding various ap-
proaches to analyzing reference streams. For example, the cardinality of a distance multiset is equal to the
sum of the appropriate elements of H along the third dimension:

Nij =
X
k

hijk

Since the distance histogram H is very large, methods for compressing and summarizing the information
it contains are very attractive. We will review a previous approach to summarizing the information in H
before presenting our own methods.
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3.3.1 Appleton's Probabilities

Appleton [Gri�oen and Appleton 1994] has de�ned a set of probabilities characterizing which �le is likely to
be accessed soon, where \soon" is a parameter of the algorithm. In terms of the pairwise distance histogram
H$, Appleton's probabilities are de�ned as follows:

pij =

P
k�L

h$ijkP
j

P
k�L

h$
ijk

where L is the lookahead of the algorithm, representing the distance into the future for which predictions
are desired. The value pij represents an estimate of the local probability that �le j will be referenced within
L accesses of �le i. Since Appleton does not store zero values of pij , and since the value of L necessarily
limits the number of pij that must be stored, Appleton's method requires much less space than that required
to store H itself. This space e�ciency is a great strength of Appleton's method.

A simple extension of Appleton's method would be to keep more than one plane of H$, so that pij could
be easily calculated for di�erent values of L. If all planes up to a given LMAX were stored, then the storage
required would be only a constant multiple of that needed to store local probabilities for L = LMAX.

3.3.2 Arithmetic Mean Reference Distances

A simple way to summarize the elements of H is to take the arithmetic mean along the third dimension.
The arithmetic mean fall-pairs, pairwise, reference-to, referenced-byg reference distance between two

�les is denoted by faD�; aD$; aD!; aD g and is calculated as the arithmetic mean of the appropriate
multiset:

aD� =
1

N�

X
d2D�

d

aD$ =
1

N$

X
d2D$

d

aD! =
1

N!

X
d2D!

d

aD =
1

N 

X
d2D 

d

We use aD to refer to an unspeci�ed (arithmetic) mean reference distance, and we also de�ne a similar
measures aL for the lifetime distance multiset L.
Example 3.3.1 Using the multisets from Examples 3.2.2 through 3.2.5, it is easy to calculate:

aD� To

From f1 f2 f3

f1
7
3

3

f2 1 7
3

f3 1

aD$ To

From f1 f2 f3

f1
3
2

1

f2 1 3
2

f3 1

aD! To

From f1 f2 f3

f1
3
2

2

f2 1 3
2

f3 1

aD To

From f1 f2 f3

f1
7
3

2

f2 1 3
2

f3 1
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In terms of the distance histogram H, these distances can be calculated as a weighted arithmetic mean:

aDij =

P
k khijkP
k hijk

and similarly for the variant measures.

3.3.3 Geometric Mean Reference Distances

There is nothing special about the summarizing with the arithmetic mean; other mathematical summary
methods are also possible. In fact, the arithmetic mean has certain drawbacks for our purposes. For
example, consider two pairwise multisets, D$fa;fb = f1; 1; 1498g and D$fc;fd = f500; 500; 500g. Using the
arithmetic mean, aD$fafb =

aD$fcfd = 500, yet intuitively we would say that fa and fb are much more likely

to be related than fc and fd.4

A simple solution to this di�culty is to use the geometric mean, which gives greater weight to small
values than large ones. For example, the geometric mean of the �rst multiset above is 11.44, while the
second is 500.

The geometric mean fall-pairs, pairwise, reference-to, referenced-byg reference distance between two �les
is denoted by fgD�; gD$; gD!; gD g and is calculated as the geometric mean of the appropriate multiset.

gD� = N�

sY
d2D�

d

gD$ = N$

s Y
d2D$

d

gD! = N!

s Y
d2D!

d

gD = N 

s Y
d2D 

d

For most purposes, the geometric mean can be replaced by the arithmetic mean of the logarithms of the
distances, since we normally use the mean distances only in comparison with each other, and never make
direct use of the individual values.

We use gD to refer to an unspeci�ed (geometric) mean reference distance. For the lifetime distance
multiset L, the measure gL must be de�ned in a slightly di�erent manner, because ` can be zero, and a
single zero ` would make the geometric mean zero as well. To avoid multiplying by zero, we increment ` in
de�ning the geometric mean lifetime distance:5

gL� = N�

sY
`2D�

(1 + `)

gL$ = N$

s Y
`2D$

(1 + `)

gL! = N!

s Y
`2D!

(1 + `)

4This example was �rst suggested by Michial Gunter [Gunter 1995].
5This modi�cation does not a�ect the validity of the measure, since for our purposes we are interested in relative, rather

than absolute, values.
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gL = N 

s Y
`2D 

(1 + `)

In terms of the distance histogram H, these distances can be calculated as a weighted geometric mean:

gDij = K

sY
k

(hijk)k

where K =
P

k hijk, and similarly for the variant measures.

3.3.4 Algorithms

Observation 3.3.1 Any algorithm that calculates any of the distance measures aD, aL, gD, or gL for all
pairs of �les requires 
(F 2) space, where F is the number of �les. Any algorithm that calculates a distance
measure between a single �le and all other �les must use at least 
(F ) space. Any algorithm that calculates a
distance measure between a single pair of �les requires 
(1) space. All of these lower bounds hold regardless
of the method of calculation, because that much space is needed to hold the results. Algorithm 3.3.1 will
demonstrate that these are also upper bounds for calculating all arithmetic mean distances and the two
geometric mean distances gD$ and gD! for the basic distance multiset, and Algorithm 3.3.3 will develop
the same result for the lifetime distance measure.

Observation 3.3.2 Any algorithm that calculates any of the distance measures aD, aL, gD, or gL requires

(T ) time.

Algorithm 3.3.1 Simultaneous calculation of the measures aD$, aD!, aD , aD�, gD$, and
gD!. (Equivalent C-like pseudocode is given in Algorithm 3.3.2.)

The algorithm is constructed as two nested loops. The outer loop iterates once for each referenced �le,
referred to as f2. The inner loop is executed once for each known �le, which will be called f1 in the
exposition.

The algorithm makes use of a triple for each known �le, and a 12-tuple for each pair of �les. The per-�le
triple is denoted � = <t; nr; �r>, where t is the index of the most recent reference to the �le, nr is the total
number of references to the �le, and �r is the total of all past values of t. The �rst value is used to decide
when a reference should be included in D$. The latter two quantities are used in the calculation of aD 

and aD�.
The per-pair 12-tuple is denoted

� =<n�; ��; ��; n$; �$; �$; n!; �!; n ; � ; nf1 ; �f1 >

where the \n" elements are used to count the number of elements in the corresponding distance multiset, the
\�" elements are used to sum the elements, and the \�" elements are used to accumulate the product of the
distance multiset. The �nal two elements (those superscripted f1) are used in calculating D . nf1 counts
the total number of references to the �rst �le of the pair since the occurrence of the most recent reference to
the second �le. �f1 sums the times of reference (subscript of r) to the �rst �le.

At any time, the relevant arithmetic mean distances may be calculated as the quotient of a \�" element
divided by the corresponding \n" element, and the geometric mean distances may be calculated by taking the
appropriate \n" th root of a \�" element.

All elements of all tuples are initialized to zero, except \�" elements, which are initialized to 1.
For convenience in exposition, we will abbreviate identi�cation of members of the tuples. Unless otherwise

speci�ed, all references to elements of � will be understood to be elements of �f2 (not �f1), and all references
to elements of � will be understood to be elements of �f1 ;f2 . Thus, for example, n

r refers to nr 2 �f2 and
�� is �� 2 �f1;f2 , but tf1 refers to t 2 �f1 .

The algorithm:
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for ri 2 R
f2 := ri
for f1 2 F ^ f1 6= f2

d := i � tf1
if t < tf1
n$ := n$ + 1
�$ := �$ + d
�$ := d�$

n! := n! + 1
�! := �! + d
�! := d�!

n� := n� + nr

�� := �� + nri � �r

n := n + nf1

� := � + nf1 i� �f1

nf1 := 0
�f1 := 0

for f1 2 F ^ f1 6= f2
nf1 := nf1 + 1
�f1 := �f1 + i

nr := nr + 1
�r := �r + i
t := i

Algorithm 3.3.2 Simultaneous calculation of the measures aD$, aD!, aD , aD�, gD$, and
gD!. (A formal version is given in Algorithm 3.3.1.)

/*

* C-like pseudocode to calculate distance multisets. For

* simplicity of exposition, we ignore initialization and the code

* needed to deal with not-yet-referenced files.

*

* To avoid exceeding floating-point ranges, we calculate the

* product values as sums of logarithms. At any time, the

* arithmetic mean distances can be calculated as the quotient of

* the appropriate 'Sum' variable divided by the corresponding 'n'

* variable; the logarithms of the geometric means can be

* calculated by dividing the appropriate 'Prod' variable by the

* corresponding 'n' variable. The actual geometric mean can be

* determined by exponentiation if desired.

*/

struct PerFile {

int lastRefTime; /* Last time referenced */

int nRefs; /* Total number of references */

int sumRefs; /* Sum of all reference times */

} perFile[NFILES];

struct PerPair {

int nPairwise; /* Number of pairwise distances */

int pairwiseSum; /* Sum of pairwise distances */

double pairwiseProd; /* Log product of pairwise distances */

int nRefTo; /* Number of reference-to distances */

int refToSum; /* Sum of reference-to distances */
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double refToProd; /* Log product of ref-to distances */

int nRefBy; /* Number of reference-by distances */

int refBySum; /* Sum of reference-by distances */

int nAllPairs; /* Number of all-pairs distances */

int allPairsSum; /* Sum of all-pairs distances */

int nF1Refs; /* Number of references to f1 since f2 */

int f1Sum; /* Sum of times for nF1Refs */

} perPair[NFILES][NFILES];

for (<r = every reference>) {

f2 = file referenced

reftime = time of reference /* (index) */

for (<f1 = every file>) {

/* Note that f1 is the earlier-referenced file */

if (f1 == f2)

continue;

refdist = reftime - perFile[f1].lastRefTime;

/*

* Calculating pairwise. We only want to

* contribute to the mean if this is the first

* reference to f2 since the last reference to f1.

*/

if (perFile[f2].lastRefTime < perFile[f1].lastRefTime) {

perPair[f1][f2].nPairwise++;

perPair[f1][f2].pairwiseSum += refdist;

perPair[f1][f2].pairwiseProd += log(refdist);

}

/*

* Calculating refto. Just sum things up. This

* will automatically catch every reference to f2

* after the most recent reference to f1.

*/

perPair[f1][f2].nRefTo++;

perPair[f1][f2].refToSum += refdist;

perPair[f1][f2].refToProd += log(refdist);

/*

* Calculating allpairs. For every reference time

* to f1, t, from the beginning of time, we want

* to add in (reftime - t). We do this by

* distributing the multiplication.

*/

perPair[f1][f2].nAllPairs += perFile[f1].nRefs;

perPair[f1][f2].allPairsSum += perFile[f1].nRefs * reftime;

perPair[f1][f2].allPairsSum -= perFile[f1].sumRefs;

/*

* Calculating refby. For every reference time t

* from the last time f2 was referenced, we want

* to add in (reftime - t). We do this by

* distributing the multiplication.

*/

perPair[f1][f2].nRefBy += perPair[f1][f2].nF1Refs;

perPair[f1][f2].refBySum +=
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perPair[f1][f2].nF1Refs * reftime - perPair[f1][f2].f1sum;

perPair[f1][f2].nF1Refs = 0;

perPair[f1][f2].f1Sum = 0;

}

/*

* Update the sums used in calculating refby and allpairs.

*/

for (<f1 = every file>) {

if (f1 == f2)

continue;

perPair[f2][f1].nF1Refs++;

perPair[f2][f1].f1Sum += reftime;

}

perFile[f2].nRefs++;

perFile[f2].sumRefs += reftime;

perFile[f2].lastRefTime = reftime;

}

Algorithm 3.3.3 Simultaneous calculation of aL$, aL!, aL , aL�, gL$, and gL!. Modify
Algorithm 3.3.1 as follows: add to � a new element, o, which is incremented on each open reference and
decremented on each close.6 In the calculation of d (the reference distance between two �les), set d to zero
if the open count for f1 is nonzero. Also, when calculating �$ and �!, multiply by d+ 1 rather than d (to
protect against multiplication by zero). The remainder of the algorithm is the same.

Theorem 3.3.1 The distance measures aD$, aD!, aD , aD�, gD$, gD!, aL$, aL!, aL , aL�, gL$,
and gL! can be calculated in �(F 2) space.

Proof Immediate from Observation 3.3.1 and Algorithms 3.3.1 and 3.3.3.

Observation 3.3.3 Assuming F �les and T references, and with T > F , the time complexity of Algo-
rithms 3.3.1 and 3.3.3 is O(FT ).

Observation 3.3.4 The best algorithms we have found for calculating gD�, gD , gL�, and gL require
O(F 2T ) space and O(T 2) time. It is an open question whether better algorithms might be devised for
calculating these distance measures.

Observation 3.3.5 Since these are lower bounds, the only way to save space (and time) is to approximate
the distance measures by ignoring some �le pairs.

Observation 3.3.6 Since our primary purpose is to identify semantic clusters, we are only interested in
calculating distance measures in those cases where they will turn out to have a small value. However, we
do not know a priori which pairs of �les will satisfy this condition.

Observation 3.3.7 If we could predict a priori which �le pairs were relevant, we could calculate the distance
measures accurately for those pairs while discarding accuracy for others.

3.3.5 Choice of Distance Metrics

In Sections 3.2.2 3.2.3 we have outlined two di�erent methods of calculating semantic distance (basic and
lifetime), and for each method we have de�ned four di�erent distance types. The choice between the resulting

6The remaining operations could be performed for all references, rather than only for opens, at the designer's option, without
a�ecting the complexity of the algorithm.
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eight options depends on a number of factors, the most important of which are relevance, computability,
and e�ciency.

After analyzing and experimenting with the options, we felt that lifetime distance represents �le relation-
ships better than basic distance, because it better captures the behavior of programs that keep �les open
for long periods. We chose the pairwise distance over the other options both for e�ciency and because it
is nearby relationships, rather than historical ones, that best identify the semantic closeness of �les to one
another. Thus, Seer uses L$ to calculate inter-�le distances.

3.4 Distance Sequences

The sequence of open/close references S develops dynamically over time. Since L is derived from S, L also
develops over time. Each reference si generates up to F�1 distances, which we can consider as being created
simultaneously in an unspeci�ed order. In this section we will con�ne our attention to those distances that
are members of L$, unless otherwise speci�ed. We use foi and fci to refer an open or close, respectively, of
f i.

All following theorems also assume that the underlying system allows at most OMAX �les to be open at
the same time, unless otherwise speci�ed.

3.4.1 Restrictions on Distance Multisets

Although any reference sequence is possible, the same is not true of distance sequences. The following
theorems will demonstrate this fact.

Theorem 3.4.1 There exists an open/close reference sequence S such that 8a; b : a; b � OMAX : L$fa;fb =f0; : : :0g, where the cardinality N$ of L$ is 1 if b < a and 2 otherwise.

Proof The sequence
ffo1 ; fo2 ; : : : foOMAX

; fc1 ; f
o
1 ; f

c
2 ; f

o
2 ; : : : f

c
OMAX

; : : : fc2 ; f
c
1g

satis�es the requirements.

Theorem 3.4.2 For F > 2, no basic reference sequence R can produce D$ = f1g for all �les.
Proof Without loss of generality, we consider only sequences in which the �rst reference to each �le appears
in �le-number order and in which repeated adjacent references to the same �le are elided. Assume there is
a sequence that produces D$fi;fj = f1g for all i; j. By assumption the �rst two elements of R are f1 and f2,
respectively.

Now consider the position of f3. By assumption, it must appear after the �rst appearance of f2 in R.
If f3 immediately follows the �rst appearance of f2, the local pairwise distance between f1 and f3 will be
2, and the sequence R will not satisfy the requirements of the theorem. Since �les must �rst appear in
�le-number order, the only other choice is for f1 to reappear at least once following the �rst appearance of
f2 but before the �rst appearance of f3. In this case, the local pairwise distance between f2 and f3 is 2 or
more, and again R does not satisfy the requirements. Since there are only two possibilities for placing f3,
there is no sequence R that satis�es the requirements of the theorem.

Theorem 3.4.3 No open/close reference sequence can produce L$fafb = f0; : : :0g for more than OMAX �le
pairs fa; fb.

Proof Without loss of generality, we consider only sequences in which the �rst reference to each �le
appears in �le-number order. Assume that we have a sequence, not necessarily that used in Theorem 3.4.1,
which generates L$ = f0; : : :0g for all OMAX �les referenced in the sequence. We would like to extend
this sequence by inserting a new reference, soOMAX+1

, which will cause the distance from all other �les to

fOMAX+1
to be zero.
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Because of the restriction on the order of initial references, the new reference must be inserted following
the �rst reference to fOMAX

. Since only OMAX �les may be open at one time, the location of this insertion
means that some other �le f i must have been both opened and closed at least once before the appearance of
the new reference, and that this �le is still closed. Then, by De�nition 3.2.1, `fifOMAX+1 must necessarily

be nonzero.

Theorem 3.4.4 In any basic reference sequence R that refers to F �les, there will be at least one local
distance dij � F � 1.

Proof Without loss of generality, we consider only sequences in which the �rst reference to each �le
appears in �le-number order. Consider the �rst reference to �le fF . By hypothesis, every other �le in F
has already appeared at least once in R. When fF appears, some other �le f i must have appeared least
recently. Therefore, there must have been intervening references to all of the other F � 2 �les (excluding f i
and fF ) between the last reference to f i and the �rst reference to fF . The existence of these intervening
references requires that the distance between f i and fF be F � 1 or greater.

Corollary 3.4.1 In a basic reference sequence R referring to F �les, there is at least one distance d1ij such

that d1ij � F � 1, another d2ij such that d2ij � F � 2, etc., down to 1.

Proof Apply the proof of Theorem 3.4.4 to �les fF , fF�1, fF�2, etc.

Theorem 3.4.5 In any open/close reference sequence S that refers to F > OMAX �les, there will be at
least one local lifetime distance `ij � F �OMAX � 1.

Proof Without loss of generality, we consider only sequences in which the �rst reference to each �le appears
in �le-number order. Consider the �rst open of �le fF . By hypothesis, an open reference to every other �le
in F has already appeared at least once in S. When fF appears, some other �le f i must have been closed
least recently. Following the last open of f i (which must have preceded the close), there must have been
closes of all of the other F � 2 �les. Each of these closes must have had a corresponding open, and all but
OMAX of those opens must have followed the last open of f i. Thus, the distance between f i and fF must
be F �OMAX � 1 or greater.

3.4.2 Pathological Distance Multisets

The above development shows that some distance multisets are impossible. We now demonstrate that despite
this fact, there are other achievable distance sequences that can be troublesome to some approximation
algorithms that will be introduced in Section 3.5.3.

Theorem 3.4.6 For any number of �les F , there is at least one open/close reference sequence S that
generates N$ij = 1 for all �le pairs.

Proof Construct the sequence

S = fso1; sc1; so2; sc2; : : : soF ; scF ; soF�1; scF�1; : : : so1; sc1g

The ascending portion of the sequence generates exactly one `$ij for each �le pair for which j > i. The
descending portion does the same for pairs where j < i. Because the de�nition of L$ uses only the nearest
member of S for each �le, these distances will be the only members generated.

Corollary 3.4.2 There is also a basic reference sequence R that generates N$ij = 1 for all �le pairs.

Proof Modify the sequence used in Theorem 3.4.6 by dropping closes and converting opens into simple
references.
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Theorem 3.4.7 For a given open/close reference sequence ST , the arithmetic-mean pairwise lifetime dis-
tance aL$fa ;fb between two �les fa and fb can be made arbitrarily close to 0 by appending an appropriate
sequence.

Proof In the sequence ST there are N$fa;fb local distances `ij with a sum of
P

`2L$
`, so that aL$fa;fb =

1
N$

P
`2L$

`. To modify this sequence so that aL$fa;fb = � for some � > 0, we append n repetitions of ffoa ; fob ;
fca ; f

c
bg, where n will be chosen later. Each of these repetitions adds a `ij = 0 to ST . Then the new aL$fa;fb

is given by:

aL$fa;fb =

P
`2L$

`

N$ + n

We wish to choose n such that the desired � is achieved:

� =

P
`2L$

`

N$ + n

N$ + n =

P
`2L$

`

�

n =

P
`2L$

`

�
�N$

Thus, if we choose n �
P

`2L$

`

�
� N$, we will achieve the desired �.

Observation 3.4.1 The references appended to S in the proof of Theorem 3.4.7 may instead be inserted
in arbitrary locations, so long as each insertion consists of one or more pairs ffoa ; fob ; fca; fcbg. The proof of
the theorem requires only that each pair produce a `$ij = 1 and that the total number of pairs be su�ciently
large.

Theorem 3.4.8 For a given open/close reference sequence ST , the geometric-mean lifetime pairwise dis-
tance gL$fa;fb between two �les fa and fb can be made arbitrarily close to 1 by appending an appropriate
sequence.

Proof In the sequence ST there are N$fa;fb local distances `ij with a product of
Q

`2L$
(1 + `), so that

gL$fa;fb = N$

r Q
`2L$

(1 + `). To modify this sequence so that gL$fa;fb = � for some � > 1, we append n

repetitions of ffoa ; fob ; fca; fcbg, where n will be chosen later. Each of these repetitions adds a `ij = 0 to ST .
Then the new gL$fa;fb is given by:

gL$fa;fb = K

s Y
`2L$

(1 + `)

where K = N$ + n. We wish to choose n such that the desired � is achieved:

� = K

s Y
`2L$

(1 + `)

�K =
Y
`2L$

(1 + `)
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�N
$+n =

Y
`2L$

(1 + `)

�N
$

�n =
Y
`2L$

(1 + `)

�n =

Q
`2L$

(1 + `)

�N$

n = log�

0@
Q

`2L$
(1 + `)

�N$

1A
If we choose n greater than or equal to the value given above, we will achieve the desired �.

Theorem 3.4.9 If k new references are added to gL$fa;fb at distances

f`1; `2; : : : `kg
the ratio of the new to the old distance, denoted I, is given by:

I =

K

vuuut kQ
1

`N
$

i

(gL$)kN$

where K = N$(N$ + k).

Proof Before the k new references are added, gL$ = N$

r Q
`2L$

(1 + `). When the new references are

included, gL$ = N

s Q
`2L$

(1 + `)
kQ
1

`k, where N = N$+k. I is the ratio of the new to the old value. Taking

the logarithm of I,

ln I =

P
`2L$

ln `+
kP
1

ln `i

N$ + k
�

P
`2L$

ln `

N$

=

N$
� P
`2L$

ln ` +
kP
1

ln `i

�
� (N$ + k)

� P
`2L$

ln `

�
N$(N$ + k)

=

N$
kP
1

ln `i � k
P

`2L$
ln `

N$(N$ + k)

Letting K = N$(N$ + k) and exponentiating, we get

I =
K

vuuuuut (
kQ
1

`i)N
$

(
Q

`2L$
`)k

=

K

vuuut kQ
1

`N
$

i

(gL$)kN$
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Theorem 3.4.10 There exists a �nite basic reference sequence R in which

8i; j : i 6= j : gD$ij ! 1 as T !1:

Proof 7 Given F �les, consider each of the pairs ff i; fjg, where 1 � i < j � F . There are F (F � 1)=2
such pairs. For some arbitrary integer k, concatenate each pair with itself k times, forming a sequence
containing k repetitions of each �le pair, for a total length of kF (F � 1). We concatenate the subsequences
for k = 1; k = 2; : : : to produce an in�nite string. For any pre�x of this in�nite sequence, we will determine
an upper bound on the distance between any pair of �les. We will then show that this bound approaches 1
as the pre�x lengthens.

First, consider the contribution to the distance gD$ij from ff i; fjg pairs that terminate in the last portion
of the pre�x, the subsequence that contains each pair repeated k times. Call this subsequence the subject
sequence. If i < j, there are k instances of ff i; fjg, while if i > j, there are k � 1 instances. In either case,
there are at least k � 1 instances of ff i; fjg.

There are also instances of longer distances in the subject sequence. Any distance that terminates in the
subject sequence must terminate in an occurrence of fj . In F � 1 subsequences of the subject sequence,
fj appears as part of a repeated pair; in each of these subsequences, at most only the �rst repetition of fj
can terminate a distance that is greater than 1, since the remaining repetitions are \shielded" from earlier
instances of f i by the �rst instance of fj . The length of the subject sequence is kF (F �1), and the previous
sequence (all pairs for k � 1) is obviously shorter. So any distance terminating in the subject sequence is
less than 2kF (F � 1). We have seen that there are at most F � 1 such distances.

Now consider successively longer pre�xes of the in�nite sequence, starting at k = 1. There are at least
0 distances of 1 in the �rst sequence, 1 distance equal to 1 in the second, 2 in the third, etc. Adding these
values up to the (k � 1)st sequence, there are at least k(k � 1)=2 distances of length 1. (We deliberately
exclude the �nal sequence in the pre�x, so that our proof demonstrates an upper bound for the distance even
if the in�nitely long string is truncated in the middle of a sequence.)

We have seen that there are at most F � 1 instances of distances greater than 1 that end in the last
sequence, and all are less than 2kF (F � 1). So there are at most k(F � 1) such instances anywhere in the
pre�x, and all of them are shorter than 2kF (F � 1). (Note that we include the �nal sequence in this upper
limit, so as to be generous in our estimate of these contributions that would increase the upper bound.)

Given at least k(k � 1)=2 distances of length 1 and at most k(F � 1) distances of length less than
2kF (F � 1), the geometric mean of the distances must clearly be less than

(2kF (F � 1))
k(F�1)
k(k�1)=2

The numerator of the exponent represents the maximumnumber of distances greater than 1, and the denom-
inator represents the minimum number of distances of any length. In particular, we have been pessimistic
by counting only the distances of length 1 in the denominator, but that is su�cient for the proof.

The exponent simpli�es to 2(F � 1)=(k � 1), yielding

(2kF (F � 1))
2(F�1)
k�1

Taking the logarithm, we have
ln(2kF (F � 1))

2kF (F � 1)

Applying L'Hôpital's rule, we �nd the �rst derivative of the numerator and denominator with respect to k:

1=(2kF (F � 1))

2F (F � 1)

7This proof was kindly provided by Eric Postpischil.
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and �nd the limit as k!1, which is clearly zero. Since the limit of the logarithm of the distance is 0, the
limit of the distance itself is 1.

Corollary 3.4.3 There exists an open/close reference sequence S in which

8i; j : i 6= j : gL$ij ! 1 as T !1:

Proof Perform the same construction as in the proof of Theorem 3.4.10, using the sequence ffoa ; fob ; fca; foa ;
fcb ; f

c
ag in place of the pair ffa; fbg, and so forth. The quantity 2kF (F � 1) becomes 4kF (F � 1), but this

change does not a�ect the limit.

3.5 Estimates of Pairwise Reference Distance

Taking Observation 3.3.5 (the only way to save space and time is to ignore some �le pairs) as our guide, let
us consider the possibility of approximating a mean distance aL or gL through some unspeci�ed calculation
involving a chosen subset of the corresponding multiset L. Let faL and fgL be the approximations to aL and
gL, respectively. Let L+ be the subset of L that is included in the approximation, and L� be the excluded
subset, so that

L = L+ [L�
L+ \ L� = ;

(Following our usual convention, the cardinalities of L+ and L� will be denoted N+ and N�, respectively.)
Then

aL =
1

N

 X
`2L+

` +
X
`2L�

`

!

The relative error � in faL is

� =
faL� aL

aL

which can easily be seen to have a range of (�1;faL� 1) when 1 < faL <1^ 1 < aL <1. Similarly,

gL = N

s
(
Y
`2L+

`)(
Y
`2L�

`)

and the relative error is

� =
fgL� gL

gL

with a similar range of (�1;fgL � 1).

We will de�ne several approximations to aL and gL, identi�ed by subscripts as faL1;faL2; : : : and fgL1;fgL2; : : : and with errors denoted �1; �2; : : :

Some of the following theorems refer to the control we have over the membership of a multiset. By
this term we mean that we can select certain values to be included in that multiset according to some
criterion. For example, if we insist that all members of L+ be less than 10, the membership of L+ is
controlled. Either of L+ and L� may be controlled, but it is not possible to control the membership of
both multisets simultaneously because doing so would require controlling the membership of L, which would
imply a chosen reference stream. (Having both L+ and L� be uncontrolled is equivalent to selecting their
members at random; we will not consider this case.)
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3.5.1 Mean of a Subset

The simplest way to calculate faL or fgL is as the appropriate mean of L+:
faL1 = 1

N+

X
`2L+

`

and fgL2 = N+

s Y
`2L+

`

Observation 3.5.1 If the membership of L� is not controlled according to value, the error in faL1 and infgL2 is also uncontrolled, and thus has a range of

�1 � �1 � faL � 1 (3.1)

or
�1 � �2 � fgL� 1 (3.2)

respectively.

Observation 3.5.2 One way to attempt to reduce the absolute value of �1 or �2 would be to apply some
sort of correction based on the value of N . Unfortunately, it is not possible to do so, since recording N for
all �le pairs would require O(F 2) storage, which is exactly what we are trying to avoid.

Observation 3.5.3 Another way to reduce �1 or �2 is to control the membership of L� such that excluded
members do not make a large contribution to �1 or �2, respectively.

3.5.2 Fixed-Space Algorithms

Since the di�culty we are �ghting is the O(F 2) storage requirement, an obvious choice is to assign a �xed
amount of space to storing and calculating L+.

For simplicity of exposition, our subsequent development will be limited to algorithms for estimating gL.
All of these algorithms can be modi�ed to estimate aL as well, if desired.

Keep Smallest k Distances

The simplest variation on Algorithm 3.3.1 is to store only the smallest k distances, for some k. Since the
identity of the smallest distance varies depending on whether the arithmetic or geometric mean is used, we
will restrict ourselves to discussion of the latter, with the understanding that much of the development is the
same for arithmetic means.

At each step of the algorithm, the distances from f1 to f2 are sorted according to the value of n
p
�, and

all but k of these distances are discarded. Since each step can add at most one distance to the k already
stored, the computation for each step reduces to simply calculating the distance fgL, inserting it into the
proper place in the list of k distances, and discarding the k+1st. We will call this algorithm keep-smallest-k
(KSK) and the approximation generated by it fgL3. The results for fgL2 still apply, since

fgL3 = N+

s Y
`2L+

`

We have only changed the subscript to highlight the fact that we are now using a speci�c algorithm to select
the members of L+.

An important factor in this algorithm is the treatment of ties. If the new fgL being inserted is equal to
the current largest fgL, either may be legitimately kept. This condition arises frequently in practice when
both fgL and N+ are small. The complete algorithm for handling ties is discussed later, in Section 5.3.2
(p. 54). However, ties do not a�ect the following development.
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Theorem 3.5.1 For distances calculated by KSK, �1 < �3 < fgL3 � 1.

Proof By Observation 3.5.1, it su�ces to prove that we do not have control over the membership of L�.
By Corollary 3.4.3, it is possible to have more than k �les, each of which have equal and minimum distance
from the �le in question, which we will call f i. Necessarily, then, there will be some �le that is omitted from
the list of k closest �les. Call this �le fj . All references to this �le will generate distances that are members
of L�.

Now modify the continuing reference sequence so that all of the k closest �les grow in distance. Then
insert a single reference pair, ff i; fjg. fj will now enter the list of closest k �les. However, the previous
membership of L� for `ij is completely uncontrolled, so the relative error is given by Equation 3.2.

Theorem 3.5.2 The time complexity of KSK is O(FT ).

Proof Each new reference to a �le fa in S updates the distances to all of the other F � 1 �les. It is
necessary to examine each of these �les to decide whether the distance between it and fa is currently being
stored and thus must be updated, or if the distance is smaller than some current distance and thus must be
inserted. Since there are T references in S, O(FT ) operations are necessary to perform the updates.

Theorem 3.5.3 The space complexity of KSK is O(F ).

Proof Immediate from the de�nition of the algorithm.

3.5.3 Variable-Space Algorithms

The algorithms in Section 3.5.2 use a �xed and predictable amount of storage for each �le, resulting in O(F )
space complexity. If we are willing to accept a worst case of O(F 2) and depend on statistical behavior to
lessen the storage requirement, then we can use variable-space algorithms.

Mean Threshold

One way to reduce the space requirements is the mean threshold method (MT), in which we calculate running
means and discard all mean distances that are currently greater than or equal to a threshold � > 1. We will
call the approximation calculated by this method fgL4.
Theorem 3.5.4 For distances calculated by the mean threshold algorithm, �1 < �4 � 0.

Proof By de�nition, distances kept by fgL4 are less than or equal to �. If the true distance gL is greater
than �, the error will be negative. It is easy to see that the lower bound can be achieved by setting the
distance sequence to fL�;L+g where the members of L� are arbitrarily large and L+ = f1g.

The only way a positive error could be achieved is to have fgL4 > gL. This condition is only possible if
some members of L� are less than �. But the only way these values could have been discarded is if they
were averaged with other values su�ciently greater than � to cause the resulting mean to exceed �. There
might have been multiple instances of discarding, in which fgL4 was �rst less than � and then grew to become

larger. For each such sequence, N

r Q
`2L$

(1 + `) > �, so
Q

`2L$
(1 + `) > �N . The geometric mean of these

sequences is equal to the (
P

N )-th root of their product. It is easy to see that this value would exceed �,
and thus that the geometric mean of L� would therefore be greater than �. Thus, it is not possible to havefgL4 > gL.

Theorem 3.5.5 The worst-case space requirement of MT is O(F 2).

Proof Immediate from Corollary 3.4.3.

Theorem 3.5.6 The worst-case time complexity of MT is O(FT ).
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Proof By Corollary 3.4.3, it is possible to generate reference sequences in which all pairwise distances are
less than �. Thus, each new reference can potentially update the distances to all F �les, without causing any
of these distances to exceed �. Since there are T references in S, these updates require O(FT ) operations.

Threshold

A variation of MT is the simple threshold (T) algorithm, in which we de�ne

L� = f`ij : `ij > �g
where � � 1, and thus

L+ = f`ij : `ij � �g
We will call this approximation fgL5. The algorithm can be easily implemented by keeping a history of the
last � �les referenced, and updating only the distances from those �les to the currently referenced �le; this
approach is attractive because the running time is proportional only to T .

Theorem 3.5.7 �1 < �5 � 0.

Proof Since every member of L+ is less than or equal to �, it is clear that N+

r Q
`2L+

` � �. Further, since

every member of L� is greater than �, it is also clear that N+

r Q
`2L+

` � N

rQ
`2L

` and thus

�5 =

N+

r Q
`2L+

`� N

rQ
`2L

`

gL

�5 �
N

rQ
`2L

`� N

rQ
`2L

`

gL
�5 � 0

By Observation 3.5.1, the lower bound is -1.

Theorem 3.5.8 The worst-case space requirement of T is O(F 2).

Proof The construction used in the proof of Corollary 3.4.3 generates an unbounded number of distances
equal to 1 for each pair of �les in F . Thus, for any � > 1, a distance must be stored for each pair of �les.

Theorem 3.5.9 The time complexity of T is O(T ).

Proof Since the `$ij are monotonically increasing, any member of S can only change the distance to the
� most recently-referenced �les. Updating these distances requires O(�) = O(1) time. Since there are T
members of S, the total complexity is O(T ).

Adjusted Threshold

In the adjusted threshold (AT) algorithm, we improve the error behavior of T by counting the size of L�.
Since every member of L� is greater than �, it is certain that the product of L� is at least (� + 1)N

�

. This

fact can be used to improve the accuracy of our approximation, which we will call fgL6:
fgL6 = N

s
(� + 1)N�

Y
`2L+

`
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Theorem 3.5.10 �5 < �6 � 0.

Proof Since AT estimates
Q

`2L�
` as (� + 1)N

�

, the estimate of
Q

`2L�
` can never exceed the true value.

Thus, fgL6 � gL, proving the upper bound.

For the lower bound, by de�nition fgL5 � fgL6. Furthermore, equality is achieved only when N� = 0,
and in that case �6 = 0 as well. So �5 must be strictly less than �6.

Theorem 3.5.11 The space complexity of AT is O(F 2).

Proof The count N� must be maintained for every �le pair.

Theorem 3.5.12 The time complexity of AT is O(FT ).

Proof Whenever a distance is discarded, the counts for all �les that have excluded that distance must be
updated. The number of �les that exclude a particular count will be approximately F � �, which is O(F ).
Thus, the time complexity to process a single reference is O(F ); since there are T references, the total time
complexity of AT is O(FT ).

The time and space complexity of AT are no better than Algorithm 3.3.1. The importance of AT is not
in superior performance but in its contribution to our �nal algorithm, to be outlined in Section 3.5.4.

3.5.4 Combination Algorithms

Noting that some of our approximations feature linear space complexity, while others have linear time be-
havior, we might combine appropriate features from multiple algorithms to try to achieve linear time and
space.

Threshold-Limited Keep Smallest k Distances

The obvious candidates for combination are threshold (T) and keep-smallest-k (KSK). In this algorithm, we
discard all `$ij > �, and also apply the sort-and-discard method used in KSK to limit the space requirements.

We will call this approximation fgL7, and refer to the algorithm as T-KSK.

Theorem 3.5.13 �1 < �7 < fgL7 � 1.

Proof Since T-KSK discards all distances discarded by either T or KSK, it has control no greater than
that of those two algorithms, and thus its relative error cannot be better than the worst of T and KSK. KSK
has the wider error bounds, and thus controls the maximum error of T-KSK.

Theorem 3.5.14 The space complexity of T-KSK is O(F ).

Proof Immediate from the de�nition of the algorithm.

Theorem 3.5.15 The time complexity of T-KSK is O(T ).

Proof Same as the proof of Theorem 3.5.9.



3.5. ESTIMATES OF PAIRWISE REFERENCE DISTANCE 45

Adjusted Threshold-Limited Keep Smallest k Distances

A transformation similar to that which converted T into AT can be applied to T-KSK, producing the Adjusted
Threshold-Limited Keep Smallest k Distances (AT-KSK) algorithm. In this modi�cation, a count is kept
of the membership of L�, but the count is maintained only for those �les that are members of the list of k
smallest �les. This change reduces the space requirements to O(F ), at the expense of a slightly wider error

bound. We denote the distance calculated by this algorithm fgL8.
To count the members of L�, we must keep track of the occurrence of each member. Since we are

interested in online algorithms, we must be able to calculate the semantic distance between two �les at any
point in the reference sequence. For example, consider the following two similar sequences (where each f i
represents an open/close pair):

ff1; f2; f1; : : :f1; f2g
and

ff1; f2; f1; : : : f2g
where the omitted references do not include either f1 or f2, and there are at least � omitted references.

In the �rst case, there are two pairwise local distances `$f1f2 , each with a value of 1, and T-KSK would
detect and record both. In the second case, T-KSK would see a single local distance `$f1f2 of 1. The second
`$f1f2 , which has an unknown value greater than �, would not be recognized or even counted, because f1 has
been dropped from the history before f2 is referenced.

In AT-KSK, we use an adjustment ag, which indicates that f1 was the last of the two �les to appear.
This ag is set when f1 is dropped from the history of � most recently-seen �les, but only if f1 has the most
recent reference time at that point. One adjustment ag is kept for each mean distance gL$f1f2 .

At the next reference to either f1 or f2, we apply a conditional correction to any agged gL$f1f2 , clearing
the ag in the process. If the reference is to f1, there is no correction, because the �rst case above applies
and a future reference to f2 will generate a local distance `f1f2 that will update

gL$f1f2 .
However, if the reference is to f2, then the second case applies. We know that a distance has appeared

that is a member of L�, and without knowing its precise value, we can estimate it as �+1 and use this value
to update gL$f1f2 .

As described, AT-KSK is expensive to implement, because on every reference to f2, all known mean
distances gL$f if2 must be located and adjusted. However, we can improve the performance by noting that
the adjustment can be done only when gL$f1f2 is examined for some other purpose, providing that we
can decide (a) whether an adjustment is needed, and (b) which of f1 and f2 was referenced �rst after the
adjustment ag was set.

A convenient time to make this decision is the next time f1 is referenced, since at that point all gL$f1fj
are readily accessible. The �rst condition is then true if the adjustment ag is set. The second decision
can be made by comparing the last reference times of f1 and f2. If f2 has been referenced since the last
reference to f1, then the second case applies and an adjustment is needed.

Theorem 3.5.16 �7 � �8 � 0.

Proof Since AT-KSK estimates
Q

`2L�
` as (� + 1)fN� , where gN� � N�, the estimate of

Q
`2L�

` can never

exceed the true value. Thus, fgL6 � gL, proving the upper bound.

For the lower bound, by de�nition fgL7 � fgL8. However, unlike AT, equality can be achieved if gN� is
zero. This situation can occur for a pair of �les f i and fj if fj is not added to f i's list of k nearest �les
until after all members of L� have appeared.

Theorem 3.5.17 The time complexity of AT-KSK is O(T ), and the space complexity is O(F ).

Proof AT-KSK is the same as T-KSK except for the adjustment phase. The information necessary to
perform the adjustments can be stored with each �le in constant space (only the adjustment ag is needed).
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The adjustment can be performed in constant time when f1 is next referenced. Thus, AT-KSK has the same
time and space complexity as T-KSK, or O(T ) and O(F ), respectively.

AT-KSK is the algorithm used by Seer. The complete implementation is described in Section B.2.3
(p. 142).



Chapter 4

Clustering Methods

One of the major contributions of Seer is the use of cluster analysis to infer information about the user's
projects. This chapter discusses the clustering process and the underlying algorithms.

4.1 Prior Art

The �eld of cluster analysis has a long and rich history. Cluster analysis is used for many applications, in
both business and science. The problem has been widely studied, and there have been numerous algorithms
proposed to attack it. Summaries of the �eld can be found in [Bock 1974, Duran and Odell 1974, Hartigan
1975, Sokal 1977, Sp�ath 1980, Zupan 1982].

The di�culty of cluster analysis is twofold:

1. Before clusters can be formed, a numerical metric must be found that can usefully distinguish related
from unrelated objects (a \distance metric"). For many algorithms, a second metric is required that
can be used to evaluate the quality of a cluster.

2. Cluster analysis is compute-intensive. If a cluster-quality metric is available, optimal clustering (as-
signing objects to an arbitrary set of clusters such that the metric is maximized) has been shown to
be NP-hard [Garey and Johnson 1979, p. 281].

Most of the research in clustering algorithms has concentrated on solving the second problem through
e�cient heuristics, although there has been a limited amount of investigation into the question of measuring
the distance between objects.

4.1.1 Classes of Clustering Methods

Traditional clustering methods can be roughly classi�ed into three types of algorithms:

Iterative Objects are assigned to clusters through some initial method (often randomly). The initial as-
signment is then perturbed according to some algorithm in an attempt to improve the overall quality
of the assignment.

Agglomerative Objects are assigned to clusters through some initial method (usually one cluster per ob-
ject). The original clusters are then combined into larger clusters based on an inter-cluster distance
measure. Sometimes multiple iterations are performed, so that a hierarchy of nested clusters is pro-
duced.

Divisive Objects are �rst assigned to clusters through some initial method (usually one cluster for all
objects). The initial clusters are then divided into smaller clusters. Sometimes, as in agglomerative
clustering, the process is repeated to produce a hierarchy.
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Iterative methods are probably the most popular of the three. One advantage of iterative methods is that
it is at least theoretically possible to achieve an optimal clustering. Another advantage, for the purposes of
Seer, is that a previous clustering could be used as a starting point for a future run, which could potentially
have a signi�cant impact on long-term e�ciency. The major disadvantages are that iterative methods are
expensive, sensitive to initial conditions, and sensitive to the accuracy of the distance and quality metrics.

Agglomerative methods are popular in situations where a hierarchical clustering is useful. Agglomerative
methods can also be fast. Since a cluster can often be represented by a single point (frequently the centroid),
combining two clusters reduces the total amount of future processing, and it is usually easy to compute the
new representative point. Since the aggregation operation is simple, the overall algorithm is usually e�cient.
Agglomerative algorithms are not normally sensitive to initial conditions. However, agglomerative methods
can be unstable, producing very di�erent clusters when certain parameters are varied slightly.

Divisive methods are the converse of agglomerative methods. Theoretically, any agglomerative algorithm
can be converted into a divisive one, and vice versa. However, it is usually more e�cient to combine two
clusters than to divide them. (For example, a combined centroid can be computed knowing two centroids
and the number of members in each cluster, while �nding the new centroids of a cluster divided in two
requires examining every member.) For this reason, divisive methods are rarely used.

4.1.2 The Algorithm of Jarvis and Patrick

The algorithm used by Seer is based on one developed by Jarvis and Patrick [Jarvis and Patrick 1973].
Because the Jarvis and Patrick algorithm is both simpler and more generalized than that used in Seer, we
summarize it here before describing our modi�cation.

The algorithm operates in two phases: neighbor �nding and clustering. The �rst phase locates and
records the n nearest neighbors of each point; the second uses these nearest-neighbor tables to compute a
distance measure that drives the clustering process. One major advantage of the Jarvis and Patrick algorithm
is that the clustering phase is single-pass; however, it does not produce a hierarchical clustering.

In the �rst phase, each point A is compared to every other point B and a distance (usually Euclidean)
is calculated. A running table of the k nearest neighbors to A is kept,1 and B is inserted into this table if
appropriate, dropping the farthest neighbor to make room. The same updating process can be applied to B
at the same time.

Since each point needs only a list of k neighbors, where k is a parameter of the algorithm, the space
complexity of this phase is O(N ). Since each pair of points must be compared, the time complexity is
O(N2).

The second phase begins by assigning each point to its own cluster. For each point A, the k nearest
neighbors are examined. For each such neighbor, B, a distance metric is calculated as follows: if A is
listed in B's nearest-neighbor list, and A and B have at least n other nearest neighbors in common (where
n < k is a parameter of the algorithm), then the two points are considered \close;" otherwise they are \far".
Whenever two points A and B are close, their containing clusters are combined. Since combination is done
based only on neighbor lists, which do not change, the algorithm is order-independent, idempotent, and
single-pass.

There are a number of ways of representing cluster membership. One simple method is to maintain a
linked list of members for each cluster. This data structure requires O(N ) space regardless of the number
of clusters. Combining clusters can then be done in constant time. Since each point must be examined only
once, and processing a single point requires constant time, the time complexity of the second phase is O(N ).
Thus, the complete algorithm requires O(N ) space and O(N2) time.

An interesting characteristic of this algorithm is that it does not incorporate assumptions about the shape
of a cluster. So long as there is an unbroken chain of nearby pairs of points, a cluster can be as irregular or
snakelike as one might imagine. This tolerance of odd shapes is unusual in the �eld of clustering, and turns
out to be very useful for Seer.

1In the original paper, the roles of k and n are interchanged. The notation used here is chosen for consistency with the
algorithms given in Chapter 3.
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4.2 Clustering in Seer

4.2.1 Requirements

As discussed previously, Seer forms clusters of �les as a fundamental part of the hoarding process. The
primary distance measure is semantic distance as de�ned in Chapter 3, although other information from
external investigators (Section 5.4, p. 56) must also be incorporable. The number of �les monitored by
Seer is typically in the tens of thousands. The chosen clustering algorithm must then satisfy the following
requirements:

E�ciency. Because of the number of points (�les) involved, algorithms that require O(N2) space or time
are unacceptable. (The restriction on time complexity might be relaxed).

Limited Information. The number of points implies that it is not practical to calculate a semantic distance
between every pair of �les, since that would require at least O(N2) time and space. A clustering
algorithm appropriate for Seer must therefore be able to operate without a complete distance matrix.

Overlapping Clusters. Some �les, such as utility programs, must be members of more than one cluster
(see Section 6.4, so the clustering algorithm must be able to generate partially disjoint clusters with
common members.

Non-metric distance measure. Semantic distance does not satisfy the triangle inequality, precluding
algorithms that depend on Euclidean spaces.

Multiple distance measures. Information from external investigators, usually expressed as distances
between some pairs of �les, must be usable. (This requirement cannot be satis�ed by the traditional
method of incorporating multiple measurements, which is to express each value as a position along an
axis in multidimensional space and then reduce these values using a Euclidean or similar distance met-
ric, because external investigators do not necessarily provide distances between every pair of points.)

The algorithm we have developed, which is described below, satis�es all of these requirements.

4.2.2 The Seer Algorithm

Basic Algorithm

The fundamental clustering algorithm used in Seer is a slight variation on the method of Jarvis and Patrick.
Rather than making an O(N2) pass through all pairs of points to calculate a nearest-neighbor list, we use
the list of the k closest �les calculated by Algorithm AT-KSK in Section 3.5.4 as a substitute. This design
reduces the time and space complexity to O(N ).

A minor but important di�erence from the original Jarvis and Patrick algorithm is that when we compare
two points A and B, we do not require that B include A in its nearest-neighbor list. This relaxation of the
design is required because the semantic-distance measure is not symmetric (it is possible for the semantic
distance from A to B to be small while the distance from B to A is large.)

Because we found that distance pairs observed only a few times tend to be unreliable, we insist that a
reference occur several times before we consider it as a shared neighbor. The threshold is user-settable, with
a default of 3 occurrences. Rejecting small sample sizes helps to suppress the poor clusterings that would
arise as a result of chance relationships.

Overlapping Clusters

To generate overlapping clusters, we run the clustering algorithm twice, using two parameters, n1 and n2,
with n2 < n1. The �rst pass operates as given in Jarvis and Patrick, with the modi�cations mentioned
in Section 4.2.2. The second pass, with the smaller (and thus looser) threshold, does not combine nearby
clusters into larger ones. Instead, each of the two �les involved in the comparison is inserted into the other's
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cluster. Thus, the �les at the boundaries of the two clusters tend to become members of each, without
causing the clusters to join into one unmanageably large group.

However, this design can produce identical and subset clusters to be produced. For example, consider a
two-�le cluster, fA;Bg and a single-�le cluster, fCg. If A is loosely related to C, each will be added to the
other's cluster, resulting in the cluster fA;B;Cg and fA;Cg. If B is also loosely related to C, adding each
to the other's cluster will result in two identical clusters.

Identical clusters are a problem because they interfere with the hoard-priority calculation described in
Section 5.3.4 (p. 56), so Seer detects and suppresses identical clusters before computing hoard priorities.

Subset clusters are potentially a useful phenomenon, because the system has the option of storing either
the smaller or the larger cluster, depending on hoard space. However, subset clusters add some complexity
to the process of calculating hoard priority; this process is discussed in detail in Section 5.3.4.

Incorporating Other Measures

As discussed in Section 4.2.1, other distance measures besides semantic distance need to be incorporated
besides semantic distance. One of these measures is the directory distance, which is zero for �les in the same
directory and positive for �les in di�erent directories, with larger values as the �les become farther apart
in the tree. Directory distance is the only measure that can be calculated between any pair of �les in the
database; Seer calculates it on demand for �les that have some other relationship recorded so that it does
not have an O(N2) e�ciency impact. We follow Tait [Tait et al . 1995] in assuming that being in a di�erent
directory implies that �les are unrelated, rather than assuming that being in the same directory implies a
relationship.

There may also be distances provided by external investigators; these distances are provided only for
some pairs of �les at the option of the particular investigators.

The extra distance measures must be incorporated into the clustering calculation in some way. One obvi-
ous method would be to use a standard distance-reduction method, such as Euclidean or Mahalanobis [Sp�ath
1980] distance, to combine these distances with the semantic distance. These modi�ed semantic distances
would then be used to form a new nearest-neighbor list for the clustering algorithm.

However, combining the investigated distances directly with the semantic distance introduces a di�culty:
the need to calculate a new nearest-neighbor list. Since the semantic distance is only known for the �les in
the current neighbor list, there is no way to insert new �les that have become closer than other neighbors
as a result of the incorporation of the additional information.

An alternative to applying the distance measures to the semantic distance is to combine them directory
with the count of shared nearest neighbors. For example, suppose a pair of �les A and B have i neighbors in
common, as determined by examining the list of semantically nearest �les maintained by AlgorithmAT-KSK
in Section 3.5.4. We modify i by considering it to be one axis in a multidimensional space, with the other
axes corresponding to the directory-distance measure and the various externally investigated values. By
careful de�nition of the various measures, we can safely assume that an unspeci�ed value is equal to zero.
However, it is still important to consider the signs of various measures (i is a \higher is better" metric in the
sense that larger values will make clustering more likely; external investigations have been de�ned so that a
larger value means that a pair of �les is more closely related, while directory distance should be treated in
the opposite sense because higher values mean that a pair of �les is more distant from one another).

We originally considered using Euclidean distance as a method for combining investigator data, but we
decided against Euclidean distance both for simplicity and so that investigators could have the option of de-
creasing the existing values (Euclidean distance can only produce an increase). Our current implementation
uses Manhattan distance: the directory distance and all external values are each multiplied by a measure-
speci�c constant (currently unity for all measures) so that it is easy to experiment with di�erent weightings
of the various measures.



Chapter 5

System Design

Seer is divided into several major parts:

� A small kernel hook into the operating system that allows system calls of interest to be traced. The
hook comprises about 2000 lines of C code, which contain about 400 semicolons.

� An observer that collects system calls, selects those that are of importance to a particular user, and
converts them into a generalized �le-reference trace. The observer is about 4600 lines of C++,
containing about 1400 semicolons. The observer also uses library routines totaling about 1200 lines,
850 semicolons.

� A correlator that receives �le references from the observer, deduces semantic relationships, forms
clusters, and makes hoarding decisions. The correlator is about 27,000 lines of C++, containing
about 6500 semicolons. It also uses 4300 lines of libraries totaling about 1200 semicolons; these
libraries are the same as those used by the observer.

� A controller for sending and receiving commands and information to and from the correlator. The
controller is about 2000 lines of C++, with about 500 semicolons.

� Several external investigators1 that evaluate information embedded in the �le system and to pass it
to the correlator (via the controller), for use in hoarding decisions. The existing investigators
represent about 500 lines of scripts and associated control �les.

� An underlying replication substrate that handles the details of moving �les between the portable and
�xed computers, and of keeping hoarded information consistent with other copies of the same �les.
Our prototype replication substrate, Cheap Rumor (described in Appendix A), is about 5400 lines
of Perl [Wall and Schwartz 1991] code.

� A hoarding interface that converts decisions by Seer into commands to the replication substrate. The
hoarding interface for Cheap Rumor is a single script of about 400 lines.

This chapter discusses these components, their interactions, and the rationale behind the choices made
in their design.

We also developed several auxiliary programs and scripts for dumping data structures, controlling sim-
ulations, and so forth. These utilities are not described here.

All told, the complete Seer system, including miscellaneous utilities but excluding Cheap Rumor,
totals about 7000 lines of scripts, 500 lines of make�les, and 40,000 lines of C and C++ code that contain
slightly over 10,000 semicolons.

1This term was suggested by Peter Reiher [Reiher 1995].
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5.1 Underlying Assumptions

The Seer system was designed to satisfy the following assumptions and goals:

� Seer is not responsible for replication or for �le consistency.

� The user's primary computing device will be the portable machine, but other machines may be used
as well.

� Each user will have only one portable, disconnectable computer.

� The underlying replication system will provide either a global namespace or one that allows easy
conversion of local �le names into their remote equivalent.

� The portable computer will have modern disk, memory, and CPU capacities, but will nevertheless
place a premium on disk space.

� Disconnected or weakly-connected operation will be common.

� Fully-connected operation will be available from time to time.

� E�cient operation of the Seer subsystem is of only secondary interest.

The last assumption (e�ciency) requires some justi�cation. We do not argue that the e�ciency of a
predictive hoarding system is unimportant in a production environment. To the contrary, we believe that
the overhead of the current system is higher than desirable and can be reduced. However, when we �rst
designed the system, we made a deliberate and conscious choice to concentrate on functionality and research
exibility, discarding e�ciency whenever it was clearly achievable but would add signi�cantly to development
e�ort. This allowed us to apply our limited resources to solving the signi�cant fundamental problems of
predictive hoarding. We plan to address e�ciency as an important issue in the future.

5.2 Observing User Behavior

To make inferences from user behavior, one must be able to observe that behavior. Since the behavior of
interest to Seer is embodied by system calls, our implementationmust be able to observe or infer what those
calls are. This information must then be collected and integrated to deduce �le relationships for hoarding
purposes.

In Seer, the information is collected through a small modi�cation to the operating system kernel. The
kernel hook builds trace packets, each of which contains a summary of a selected system call,2 and makes
the packets available to the observer, which performs the following functions:

� Selects packets that are relevant to one or more chosen users,

� Tracks process creations and terminations,

� Tracks process working directories,

� Classi�es references according to type,

� Converts relative pathnames into absolute ones (under Linux only; the conversion is done by the kernel
in SunOS),

� Converts �le handles into �le names when necessary,

2Not all calls are traced, and the traced calls tend to be infrequent, so the performance impact is minimal. See Section 8.3.1,
p. 101, and Section B.1.1, p. 132, for more information.
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� Passes chosen trace packets to one or more correlators in a standard form,

� Optionally writes incoming packets to a save �le for debugging or replay.

The observer is capable of watching the activities of more than one user, and of communicating with
more than one correlator. In the initial design, we expected to support shared workstations, so that an
observer might need to track the activities of more than one user. Since there can only be one correlator
per user, tracking multiple users required multiple output connections. As it turned out, we have never
found it necessary to this feature.

A closely related feature, also unused, allows the correlator to run on a di�erent machine from the
observer. This exibility was intended to support the common situation where a user maintains active
windows on several computers. The idea was that the user would have an observer on each of these
machines, each feeding information to a single correlator on the primary laptop. Limitations in the
underlying replication systems have precluded this mode of operation, but we have not found its lack to be
a signi�cant problem.

5.3 Correlating References

The heart of Seer is the correlator, and naturally it comprises the majority of the code. As outlined in
Section 5.2 and described in detail in Section B.1.2 (p. 133), the observer collects system trace packets,
turns them into standardized reference types with full pathnames, and passes them to the correlator. The
correlator in turn is responsible for:

� Communicating with the observer and controller,

� Tracking �le references,

� Calculating semantic distance,

� Maintaining the database of known �les, and

� Making hoarding decisions

Each of these activities is itself a complex process, discussed further in Section B.2, p. 134.

5.3.1 Managers

Because it is a research tool, the Seer correlator was designed to support multiple hoard managers. For
each �le known to the system, a manager makes a decision whether that �le should or should not be hoarded
(stored locally). Via the controller, the system can select a manager to be used and discover the hoarding
decisions that must be executed by the replication substrate.

There are currently �ve hoarding managers:

LRU The LRU manager �lls the hoard on a simple LRU basis. This hoarding algorithm is the same as that
used by Little Work [Huston and Honeyman 1993].

Bounded LRU The bounded LRU manager modi�es plain LRU by allowing the user to provide an in-
struction �le that speci�es bounds on the perceived LRU age of particular �les. Files older than their
bounds are treated by the manager as if the bound were their true age. This manager has not been
extensively used due to the di�culty of specifying appropriate bounds for large numbers of �les.

Weighted LRU The weighted LRU manager modi�es plain LRU by allowing the user to provide an
instruction �le that speci�es weights to be applied to the perceived LRU age of particular �les. The
weight is a real-valued multiplier on the age, so that di�erent �les will age at di�erent rates. No
existing system uses this scheme, but we believe that it would be more powerful and easier for users
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to understand than the calculation used in Coda. As with the bounded LRU method, we have been
unable to convince any users to exert the e�ort needed to exercise this manager fully.

Linear LRU The linear LRUmanager combines the ideas of bounding, weighting, andCoda-style o�setting
into a single bounded linear transformation. For each �le, the user may specify an o�set (y intercept),
weight (slope), and upper bound to be applied to the �le's LRU age. By appropriate selection of these
parameters, any of the other LRU-style managers, including the Coda method, can be supported.
Again, however, users have not proven receptive to amount of work required to use this system. In
addition, we have found it di�cult to express the linear transformation in intuitively simple terms.

Clustering The clustering manager uses an entirely new approach to making hoarding decisions, �rst
described in [Kuenning 1994]. Semantic distance and information from external investigators are
integrated by a clustering algorithm, which generates overlapping clusters that represent the user's
projects. Hoarding decisions are then made based an LRU age that is representative of the entire
cluster. Using the same age for the entire cluster ensures that all �les needed to work on a project are
simultaneously available. It also allows the user to signal an attention shift by simply referencing a
single �le within the project.

There are also three pseudo-managers; these are described in Section B.2.2, p. 136.

5.3.2 Calculating Semantic Distance

When a �le reference is recorded by the correlator, it is classi�ed according to type. If it is a type that is
involved in the semantic-distance calculation, a process-speci�c reference history (see Section B.2.2, p. 141)
is scanned for previously referenced �les. For each nonempty entry in the reference history, the semantic
distance is potentially updated. When all entries have been processed, the oldest entry is discarded, and a
record of the just-referenced �le is inserted at the head of the history.

In the following discussion, referenced �le refers to the �le that has just been referenced. History entry
refers to the entry in the history table that is being examined or updated, and history �le refers to the �le
mentioned in that entry.

To update a history entry, it is �rst checked to see whether it refers to the referenced �le. If so, the
older entry is discarded and the history-update loop is exited (since all previous entries were updated as
a result of the earlier reference). Otherwise, the local distance from the history entry to the current �le is
equal to the distance from current entry to the end of the history table, and this value is used to update the
semantic-distance list of the �le associated with the history entry.

Updating the semantic distance from a �le A (the history �le) to �le B (the referenced �le) involves
two steps. First, an entry for B must be created in A's semantic-distance list. If this step is successful,
the distance itself must be updated. The latter operation is quite simple: just increment the number of
references, and add either the latest distance (for arithmetic means) or the logarithm of one plus the distance
(for geometric means) to the total distance.

The �rst step, locating or creating an entry for B, is complicated by the need to replace an entry if the
list of related �les is already at the limit of k. The list is �rst searched to see if an entry already exists for
B. If so, the entry can simply be updated. If not, and the entry count is below k, a new entry can be created
and added to the list. Otherwise, an existing entry must be replaced, according to the following prioritized
heuristics:

1. Replace an entry whose target is in the FORGOTTEN, FORGETTING, or MISSING state (see Section B.2.2,
p. 140), with priority in that order.

2. Search for the entry whose average distance is largest, breaking ties randomly, and replace that entry
if the new semantic distance is less than the average distance of the replaced entry.

3. Replace an obsolete entry, as de�ned below.
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The reasoning behind replacing obsolete entries is that it is possible for a �le pair to be referenced a few
times, at a very small distance, and then never appear again. If these entries aren't replaced, they will take
up space in the semantic-distance list that could be better used for more frequently occurring entries. If
the target �le of a relationship hasn't been referenced within a certain number of references, Seer considers
the relationship \old" and makes it a candidate for replacement as discussed above. The exact threshold
is computed by adding a constant (currently 25,000 references) to a factor based on the average distance.
This factor is calculated by multiplying the average distance by a weight (currently 1.2) and by the number
of times this reference pair has been seen. The reasoning behind adding the average distance is that the �rst
�le of the pair has already been seen, so if the additive constant were zero, Seer could expect the second
�le to be referenced at approximately that interval. The �rst weighting factor allows for the uncertainty in
this prediction; the second modi�es the prediction by increasing the threshold for reference pairs that have
been seen more often, under the assumption that they are more likely to recur.

The last remaining task in maintaining the semantic distance is to apply a threshold adjustment.3 The
adjustment is implemented exactly as described in Section 3.5.4, except that the numerical adjustment is
made when the adjustment ag is set, and then backed out later if necessary.4

Special Cases of Semantic Distance

Most �le references can be handled as simple semantic-distance updates. A few require more specialized
treatment; these cases are discussed in detail in Section 6.9 (p. 68).

5.3.3 Clustering

Clustering is performed only when the clustering manager is asked to run (i.e., �ll the hoard). Clusters are
always recreated from scratch, using the algorithm described in Section 4.2 (p. 49).

During clustering, a threshold test is applied to the neighbors of a �le. We found rarely occurring
reference pairs to be unreliable, leading to poor clustering choices, so Seer insists that a pair appear at
least a minimum number of times (by default, 3 times) before it is counted as a nearest neighbor.

5.3.4 Hoard Filling

All managers use a similar algorithm for �lling the hoard. A table of hoard units is constructed and then
sorted according to priority. The table is then walked from the beginning, adding units to the hoard until
it reaches the required size. If a hoard unit will not �t, but there is still room in the hoard, that unit is
skipped and a lower-priority but smaller one will be chosen instead.

For all managers except the clustering manager, a hoard unit is the same as a �le. For the clustering
manager, a hoard unit is a cluster. (Since a �le might appear in more than one cluster, only the sizes of
previously-unhoarded �les in the cluster are considered during the post-sort hoarding walk.)

A minor but important point is that �les open at the time of hoarding have an \o�cial" reference time
equal to the time of the open, but for hoarding purposes they are treated as though their last reference time
were equal to the current time.

Hoard Priority in LRU Managers

The priority of a hoard unit depends on the particular manager. For the LRU manager, it is simply the
LRU age of the �le (the older the �le, the lower its priority). The bounded LRU manager modi�es this
algorithm by placing a �le-speci�c bound on the LRU age; �les with ages greater than their bound will have
the age forced equal to the bound for sorting purposes. The weighted LRU manager multiplies the LRU
age by a �le-speci�c weight, so that some �les grow old more quickly than others, before sorting. Finally,

3For historical reasons, the commentary in the code refers to threshold adjustment as \NPREV correction" (NPREV is the
constant de�ning the value of the threshold �.)

4There is no particular reason for doing it one way or the other; the choice is arbitrary.
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the linear LRU manager integrates both of these options with Coda's o�set method by applying a linear
transformation (slope and intercept) to the LRU age, and then applying an upper bound to the result.

Hoard Priority in the Clustering Manager

Hoarding priority in the clustering manager is considerably more complex to calculate. Our �rst approach
was to simply use the highest priority (youngest LRU age) of any �le in the cluster. This method would
cause the entire cluster to be hoarded if any �le in it was recently referenced, so that a user would only
need to reference one �le to bring in a project. However, we learned that it is not always desirable to use
the most recent reference as the cluster priority. For example, many clusters will contain the user's favorite
editor, and the editor will always have been referenced recently. In general, not all of these clusters should
be hoarded just because the editor has been referenced.

To deal with this phenomenon, we introduced a modi�cation of the simple algorithm. First, the cluster
is scanned for \single-use" �les. A single-use �le is de�ned as follows:

� A �le that is a member of no other cluster, or

� A �le that is a member of other clusters, but for which all other containing clusters are subsets or
supersets of this one.

If the cluster contains one or more single-use �les, its hoard priority is set based on the most recently
referenced of those �les. Otherwise, the cluster contains only multiple-use �les, so the hoard priority is set
based on the LRU age of the oldest �le in the cluster. This approach ensures that an accidental cluster of
utility programs will not be brought into the hoard unless all of the members are being used actively. (Since
multiple-use �les are by de�nition members of several clusters, there will nearly always be a cluster that will
cause an important multiple-use �le to be hoarded. As we show in Chapter 8, this algorithm works well in
practice.)

Communicating Hoarding Decisions

In an integrated production environment, Seer would communicate hoarding decisions directly to the un-
derlying replication system. To facilitate research development, however, the current implementation uses a
slightly di�erent method. When the user wishes to force hoarding decisions to be made, he runs a simple in-
terface script that is designed for his replication substrate. The script uses the controller to force hoarding
and copy the relevant hoarding decisions into a pipe. The information is then post-processed by the script
and turned into commands to the underlying replication system, which executes the actual storage changes.

5.4 External Investigators

While semantic distance provides a very powerful method for discovering relationships among �les, it is
a low-level inferred mechanism. Often, much more precise information is available at a higher level. An
example is is the well-known Unix Makefile, which lists explicit dependencies among the �les needed to
build a software package. In general, there is a rich variety of information available, the usefulness of which
will vary depending on the application and the user.

To support this richness, we included a facility to support arbitrary external investigators. The invest-
igators examine the �le system, infer relationships, and provide that information to the correlator. This
information is then incorporated into the clustering process as described in Section 4.2.2 (p. 50).

5.4.1 Interface to Investigators

Seer supports two types of external investigation. Relation investigators provide pairwise relationship
information between �les, which is then incorporated into the automated clustering algorithm. Cluster



5.4. EXTERNAL INVESTIGATORS 57

12.0 /u/geoff/lib++/memleaktest.cc /u/geoff/lib++/memleak.hh

12.0 /u/geoff/dmalloc/heap.c /u/geoff/dmalloc/dmalloc.h

12.0 /u/geoff/dmalloc/heap.c /u/geoff/dmalloc/conf.h

Figure 5.1: Output of a Relation Investigator

/u/geoff/xcron/fifotest /u/geoff/xcron/fifotest

/u/geoff/xcron/Makefile /u/geoff/xcron/fifotest.o

/u/geoff/xcron/fifo.o

Figure 5.2: Output of a Cluster Investigator (folded to �t page)

investigators locate entire clusters, which are then provided to the correlator as a complete unit. These
clusters are internally static, and are not further modi�ed by the correlator. However, when hoarding
decisions are made, the investigated clusters participate on an equal basis with the automatically generated
ones.

The investigator interface is provided by the controller. An investigator invokes the controller,
giving the name (chosen arbitrarily) and type (relation or cluster) of the investigated information. The
controller then reads lines from standard input, parses them to extract the investigated information, and
passes them on to the correlator. Outdated investigation information can be updated or deleted by reusing
an existing name.

Investigated relations are unidirectional, just like semantic distance. The description line for a relation
investigator contains a oating-point weight (higher values indicate a stronger relation, with zero being
reserved for deleting existing information) followed by a source and one or more targets. A relation of the
speci�ed weight is created from the source �le to each of the named targets.

Investigated clusters are unordered and unweighted. Each cluster is described by a single line of unboun-
ded length, consisting of a name to be given to the cluster and a list of member �les. The name is arbitrarily
chosen by the investigator to distinguish that particular cluster so that it can be updated later.

Figure 5.1 shows an extract of output from a relation investigator, which would normally be fed to the
controller to load the relations into Seer. In this case all of the relations have been given the same weight,
12.0. The �rst line indicates a relation between the source �le for memleaktest and a header �le it uses.
The second and third line record a similar relationship between a single source �le and two header �les (note
that the latter relationships could have been speci�ed on a single line if desired).

Figure 5.2 shows the output of a cluster investigator, which again would be fed to the controller. The
�rst �eld is a name given to the cluster; in this case it happens to be the same as the �rst �le in the cluster.
The remaining �elds name the cluster members. All of these �les are needed to work on the fifotest

project together.

5.4.2 Relation Investigators

To demonstrate the concept of external investigation, we have implemented three relation investigators and
a cluster investigator. The relation investigators are:

Name. An investigator that locates relationships based on common naming conventions, such as source
and object �les, source and revision-history �les, and C++ header and implementation �les. Files are
considered related if they di�er only in their su�x, or if they follow well-known relationships such as
SCCS or RCS [Tichy 1982] �les.
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fifotest: fifotest.o fifo.o

$(CC) $(CFLAGS) -o fifotest fifotest.o fifo.o

Figure 5.3: Makefile Input to a Cluster Investigator

C includes. An investigator that reads C and C++ source �les and determines relationships among source
and header �les. Unlike the name investigator, this program is capable of locating relationships in
di�erent directories and among �les with very di�erent names.

TEX includes. An investigator that reads TEX documents to discover required style �les, option �les, and
subsidiary documents.

The name investigator is implemented as a special-purpose awk script, while the latter two are based on
a generalized pattern-driven Perl [Wall and Schwartz 1991] program written by Andrew Louie.

5.4.3 Cluster Investigators

We also implemented a cluster investigator that examines Makefiles to discover clusters implied by the
dependencies. Figure 5.3 shows a typical Makefile dependency entry. The investigator invokes make in a
no-action mode5 so that it does not have to duplicate the complex processing of that program, captures the
output, and massages it to generate the appropriate clusters. The clusters generated by the above Makefile
line are shown in Figure 5.2. The cluster is given a name equal to the target program as a convenient way
to uniquely identify it. Note that the Makefile itself is included in the cluster, since compilation could not
proceed if the Makefile were not hoarded.

5.5 Replication Substrate

To be usable, a hoarding system (whether predictive or not) must be able to move �les between the laptop
and other networked machines, track and propagate updates, and provide the user with the illusion of a
single, complete �le system. Previous systems have devoted a major part of their implementation e�ort to
solving this single problem [Kistler 1993, Huston and Honeyman 1993].

However, with the advent of generalized replication systems such as Ficus, Coda, and Rumor, Seer
is able to separate the problem of choosing hoard contents from the problem of managing a selectively
replicated �le system. Seer depends upon an underlying replication substrate to handle the latter problem.
At a minimum, Seer requires that the substrate provide the following features:

Selective �le storage. Arbitrary choice of remote or local �le storage, manageable at the level of individual
�les.

File tracking. Internal tracking of the current location of each �le.

Redundant command �ltering. Ability either to query the current location of each �le so that redundant
location-change commands can be suppressed, or to ignore redundant requests.

Update propagation. Automatic transfer of updates (including deletions) from the computer on which
they occurred to any and all other copies of the �le, regardless of where the updates were initiated.

5Using the -p and -n switches.
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Note that the above list does not include replication. If the substrate wishes, �les may be merely moved
back and forth between the mobile machine and some other (networked) storage site, rather than being
replicated across several sites. So long as it is possible for Seer to inform the substrate that a �le must be
added to or removed from the portable computer, it does not care how many copies of the �le exist, what its
update history has been, or similar issues that cause di�culties for replication systems. Even the requirement
for internal tracking is a minor artifact of the current implementation that could be easily dispensed with
(the existing code �nds it convenient to make hoarding requests without considering the current storage
state of a �le, letting the replication substrate discard redundant commands).

Although the above is a minimal list, Seer can work with much more powerful replication substrates.
All of the following features can be supported or tolerated:

Multiple replicas. Multiple copies (replicas) of �les, with automated propagation of updates, so long as
�les can be added to or removed from the hoard on an individual basis.

Seer-independent hoard changes. Hoarding actions taken by the user or automated programs without
or in opposition to Seer's advice (a trivial interface script may be required to inform Seer of the
action, so that it doesn't work at cross purposes to the user).

Remote access. Transparent networked access to �les not kept in the hoard, so that the user sees a
consistent name space even if some �les are not stored locally.6

Security. Arbitrary security and authentication mechanisms.

Multiple substrates. Multiple, incompatible replication substrates managing di�erent portions of the name
space.

Finally, the following features are useful if available:

Conict detection. Automatic detection and reporting of conicting updates to multiple copies of a �le.

Conict resolution. Automatic resolution of conicts (e.g. by intelligent merging of conicting updates).

Status queries. Ability to determine the names and sizes of all unstored �les, at least while connected.
This feature is useful when replaying saved trace �les in a development environment. Note that it can
usually be implemented by running a recursive directory listing on a replica that stores copies of all
�les.

Location queries. Ability to discover the replication status of all �les in the volume while connected. This
feature allows the interface between Seer and the replication substrate to display only the changes in
�le status (similar to a �le di�erence listing).

Command batching. Ability to \batch" requests to the replication substrate for e�ciency.

Disconnected queries. A feature that allows the user to determine the names or attributes of �les that are
not locally stored. Users have found this feature convenient for distinguishing between hoard misses
and simple errors in recollection of �le names.7

Section 5.3.4 explains how Seer communicates its hoarding decisions to the chosen replication sub-
strate(s). Appendix A describes the simple substrate we built for testing Seer.

6
Seer can handle non-transparentname spaces, so long as there is a simple rule for detecting remote names and transforming

them into local ones. The automounter support discussed in Section 6.11 (p. 70) is an example of a non-transparent space.
7In some cases, this feature is more than just convenient. For example, if an RCS history �le [Tichy 1982] is not present, the

ci command will create one, causing a future conict with the correct history �le. This situation illustrates one of the pitfalls
of the concept of hoarding, albeit one that can be solved by a su�ciently powerful replication substrate.
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5.5.1 Other Replication Substrates

Some replication substrates (e.g., Coda) do not provide all of the necessary features listed above. Never-
theless, such systems can sometimes be supported by loosening Seer's control. For example, Seer can be
con�gured to produce .hoardrc �les [Kistler 1993, Section 5.3.1.4] that can then be loaded into Coda's
hoard manager. Although Coda does not allow Seer to directly control the hoard contents, careful selection
of hoard priorities can still produce hoard contents that will be satisfactory to the end user.

5.6 User Interface

Seer was designed to operate transparently, without user intervention. This goal has largely been achieved;
most of the current users do not tinker with or tune the system. However, as with most research systems, it is
often desirable to provide a control interface to allow parameters to be modi�ed and debugging information
to be extracted.

The basic interface to Seer is the controller. Among other options, this program allows the researcher
and the end user to query and set internal correlator parameters, force management, and preload size
information into the �le table. More details are give in Section B.3, p. 145.

During the development of Seer, two graphical interfaces were created to sugar-coat the Unix command-
line nature of the controller and to display manager output in a friendlier form. The �rst was written in
the TCL [Ousterhout 1990] scripting language, while the second was written using HTML forms and CGI
scripts, so that a Web browser would serve as a convenient interface. However, neither of these interfaces
are now actively maintained, because day-to-day use of Seer is so simple that no GUI is required.

5.6.1 Master Instruction File

General control information for the correlator is supplied in a special master instruction �le. This �le is
created by the system administrator, and is used to inform the correlator of important system information
such as critical directories required to bootstrap the computer.

Originally, Seer was intended to operate entirely automatically, without any human control whatsoever.
We have nearly achieved that goal, but have found that there are a few situations that either are fundamentally
intractable, or are too complex, subtle, or important for Seer to be trusted with.

An example of the former is �les that are used in the early part of the bootstrap process. A modern
operating system must perform a certain amount of setup before it is ready to start a complex program like
Seer; usually this setup requires special programs and control �les. For example, Unix-like systems must
generally verify the integrity of the �le system, which requires that the fsck program be available. This step
must be performed before Seer can be activated, which means that Seer will never observe fsck in action.
It would be disastrous if Seer decided that fsck did not need to be in the hoard since it never appeared to
be used.

An example of the latter is the X Windowing System. Although X is a user program that does not
execute until after Seer is running, it is complex and is critical to the operation of the computer. Because
it is consistently used and so important, there is little point in allowing Seer to control the hoarding of the
major components, since they must always be present anyway. Furthermore, the \suspend" modes available
on all modern laptop computers mean that a machine might be used for months at a time without X ever
being restarted. In such an environment, Seer might decide that critical startup �les can be dropped from
the hoard, since they haven't been used in a very long time, with obvious problems when the inevitable
reboot arrives.8

To provide for these and a few other situations, Seer supports an instruction �le, which is generally
created by a system administrator and transparent to users. Most entries in the instruction �le specify a
pathname; if the pathname refers to a directory, the instruction usually refers to everything in the subtree

8Note that Seer can still control less critical �les such as fonts, without risking the usability of the system.
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rooted at that point. There are also features allowing an instruction to apply to either a symbolic link or its
expansion.

The speci�c features supported by the instruction �le are described in Section B.2.4, p. 143.

5.6.2 Manager-Speci�c Instruction Files

Certain hoard managers (currently Bounded LRU, Weighted LRU, and Linear LRU) require the user to
specify hoarding parameters for each individual �le. This capability is supported through manager-speci�c
instruction �les, which are read when referenced by a command in the master instruction �le. The format
of a manager-speci�c instruction �le is the domain of the particular manager, but all current managers use
a similar format. Each instruction �le consists of a series of lines, one per �le or directory in the system.
The �rst �eld in the line is a pathname; the remaining �elds contain the parameter values to apply to that
path (e.g., the weight for the weighted LRU manager). If the pathname is a directory, the values apply to
the subtree rooted at that point (unless overridden by a later entry in the same instruction �le).

Since the controller provides a way to reread the master instruction �le at any time, a user can change
the hoarding parameters by writing them into the appropriate manager-speci�c �le and than asking that the
master �le be reread. A mechanism similar to Coda's merging of .hoardrc �les could be implemented using
simple wrapper scripts, if desired. However, as mentioned before, we have found that users do not want
to spend their time tinkering with arcane numerical parameters, nor to waste it with reloading speci�cation
�les every time they turn to a new project. Thus, the capability to dynamically reload instruction �les has
gone unused to date.

5.6.3 Interface to the Replication Substrate

We have already discussed, in Section 5.3.4, how hoarding decisions are communicated to the replication
substrate. There is also a need for communication in the other direction, so that Seer can be aware of
changes in replication. In particular, if the replication system removes �les from the local hoard through
the normal �le-deletion process (i.e., the unlink system call), Seer must �rst be informed of the action so
that it understands that the deletion is a change in hoard status, rather than the destruction of the �le. This
potential confusion is not a problem if the decision to remove the �le from the hoard was initiated by Seer,
but it is critical if the decision was initiated independently by the user.

The substrate can inform Seer of a change in storage status with the help of the controller, which
provides a facility for just this purpose (see Section B.2.1). The substrate provides a list of �les to be
hoarded or removed from the hoard, and they are passed on to the correlator. If the substrate was not
designed to work with Seer, a simple \wrapper" script or program can generate the �le list. The only
requirement is that the list be provided to the controller before the �les are removed from the hoard,
rather than after, so that the correlator will be aware of the impending action before it is taken.
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Chapter 6

Di�culties With the Real World

The previous chapters have presented a generally elegant framework for building an automated hoarding
system. Unfortunately, the realities of an actual operating system are not so clean. During the development
of Seer, we repeatedly encountered real-world behavior that made the system operate incorrectly. This
section reviews the most important of those practical intrusions. Although Seer currently runs under the
Linux operating system, we have concentrated on di�culties that are common to most, if not all, software
platforms.

6.1 Meaningless Activities

Perhaps the most troublesome problem that arose during the development of Seer is the existence of
processes and programs that engage in \meaningless" activity that provides no information about semantic
relationships. One of the best examples of this type of activity is the Unix program find, which searches the
disk looking for a �le with certain speci�ed characteristics (most modern operating systems have a similar
function). Because find opens every directory and looks at every �le in sequence, the accesses it makes do
not give any hint about what �les are of interest to the user, or about inter-�le relationships (other than
directory relationships, which are easy to discover anyway). In addition, because find accesses every �le,
it destroys any LRU history that might have been useful in hoarding decisions.

As we gained experience with Seer, we learned that there were many programs with behavior similar to
find, and we spent a considerable amount of time searching for the best solution to the problem. Approaches
we considered or experimented with included:

1. List programs such as find as special cases in a control �le, and ignore the accesses generated by such
programs (by agging them as \meaningless").

2. Ignore all PEEK accesses, which are the primary cause of the problem, and then use the instruction �le
to list as special cases the few programs, such as make, whose peeks are actually meaningful.

3. Detect processes that access a very large number of �les, and assume that these processes are mean-
ingless.

4. Detect processes that access �les at a high rate (relative to real time), and assume that they are
meaningless.

5. Detect that a process has opened a directory for reading (which is a typical behavior of meaningless
programs) and use this fact to automatically mark it as meaningless for the rest of its lifetime.

6. Detect directory opens, but mark a process meaningless only while the directory is open.
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7. Apply a threshold-based heuristic to compare the number of �les a process might know about (from
reading directories) with the number of �les it actually touches, marking it meaningless if it touches
the majority of �les it has learned about.

The �rst approach, hand-specifying meaningless programs, is attractive due to simplicity of implementa-
tion, but places a heavy burden on the person responsible for creating and maintaining the control �le. The
second, ignoring PEEKs and specifying meaningful programs by hand, su�ers from the same problem, and
also is more dangerous to the end-user because a failure in the control �le will cause important �les to fail
to be hoarded, rather than over�lling the hoard with unimportant ones. (However, it would still be possible
to implement a separate \this process is meaningful even though it is peek-intensive" instruction. To date,
we have not found it necessary to have such a capability.)

The third solution, using the number of �les accessed, assumes that meaningless programs open more
�les than meaningful ones. This assumption turns out to be untrue; for example, compilers often access
tens or even hundreds of header �les, while a search program such as grep may only open a few �les. If the
threshold is too low, long-running editors like emacs will be considered meaningless, while if it is too high,
many badly behaving programs will be missed.

The fourth approach (using access rates) seems plausible, but it is di�cult in practice to de�ne a threshold
rate. The proper value would depend on the speed of the individual machine, and would also vary depending
on system load. It might be possible to integrate scheduler information, such as the amount of CPU time or
the number of time slices accumulated, to infer a rate, but this would require more extensive intrusion into
the kernel.

The �fth approach, marking as meaningless any process that opens a directory, is almost as simple as
the �rst. We experimented with this method, but it failed in practice because many meaningful programs
read directories (for example, some text editors do so to implement �lename completion).

The sixth solution (marking a process meaningless while a directory is open) is based on the assumption
that a meaningless program such as find will keep at least one directory open while it descends the directory
tree. Unfortunately, some implementations choose to open a directory, read the contents into an internal
bu�er, and then close the directory before processing the bu�er, so that this solution, too, fails in practice.

The seventh method, comparing potential to actual accesses, though more complex, was much more
successful. Each time a process opens a directory, Seer counts the number of �les in the directory, which
represents the total number of �les the process could potentially access. Actual accesses are then recorded
in a second counter. Seer tracks the historical behavior of a particular program and compares the relative
values of the counters to a threshold, based on that history. For example, find will tend to have a history
of accessing every possible �le, and thus would be marked as being a meaningless process, while an editor
will access far fewer than the maximum and will remain meaningful.1

Although option 7 worked for nearly all programs, we found a few cases where it broke down. For this
reason, we also implemented the sixth option, considering all activity by a process to be meaningless while
it has a directory open. A process is considered meaningless if either condition is satis�ed; this works well
because the failure mode of both methods is to not detect meaninglessness in certain situations.

There remains one more di�culty, however, which is the Unix getcwd library routine. getcwd deduces
the full pathname of a process' working directory by climbing the directory tree and locating the individual
components of the path. Doing so requires opening and reading directories in a fashion that is very similar to
the behavior of find, so that the potential-access counter approach would mark as meaningless any process
that asked for the name of its own working directory. To address that problem, we installed another heuristic
that detects the pattern of behavior of getcwd (opening the directory named \.." for read) and temporarily
marks the process as being inside this function.2 During this period, all �le references are ignored (even for
purposes of inferring meaninglessness).

1Two importantdetails are that a process is never consideredmeaningless if the the potential-access counter is zero, indicating
that it has never read a directory, and that when the potential-access counter �rst goes nonzero, the actual-access counter is
reset to zero. Both of these features were added in response to observations of the behavior of real programs.

2An alternative would have been to modify the getcwd routine itself to notify Seer of its actions. We chose the pattern-
detection approach as being less invasive and simpler to implement.
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These heuristics have made it possible for Seer to make the right decision about the relevance of a
process' references in most cases. Nevertheless, we have retained the ability to hand-specify a few processes
as being meaningless.3 As in information retrieval, it is necessary to �lter out certain irrelevant relationships,
and as in that �eld, the current mechanisms could undoubtedly bene�t from further re�nement.

6.2 Shared Libraries

Certain �les on a modern computer are so fundamental that they are used by nearly every program. The
most common example of this phenomenon, though hardly the only one, is the shared library. In manyUnix
systems, the �rst several �les opened by a program are shared libraries of various sorts.

The use of shared libraries presents a serious problem for a system that tries to infer relationships among
�les from the sequence of opens. That every program accesses a particular library is not an issue in itself,
for it merely means (in terms of semantic distance) that those programs cannot run without it. The problem
lies in the following �le access: the Seer system, seeing an access to the shared library and then an open
of some other �le A, incorrectly concludes that the shared library is closely related to A. In fact, if it could
store enough relationships, it would eventually decide that the shared library is closely related to every �le
on the computer. A clustering algorithmwould then decide that everything belonged in a single large cluster.

Seer's solution is to apply a simple but e�ective heuristic. If a particular �le represents more than a
given percentage (currently 1%4) of all observed accesses, it is designated a \frequently referenced" �le and
is eliminated from the calculation of semantic distances and �le relationships. Since such a �le is obviously
of critical importance to the user, it is always included in the hoard, regardless of its last reference time or
clustering status.

An unexpected result of this heuristic is that when a user is working intensively on a single project, a
\normal" �le may become frequently-referenced. For example, during the development of Seer, one of its
C++ header �les became a frequently-referenced �le. However, the marking of a \normal" �le as frequent
causes few problems for the user, since the �le in question will still be hoarded. During the time that the �le
is considered frequently-referenced, it will not participate in semantic-distance calculations, but when the
user changes to a new project, it will return to \normalcy" and previously collected relationships will again
become active.

6.3 Critical Files

Every system has some �les that are essential to system operation. Many Unix systems cannot boot
without programs such as /etc/init. Similarly, MS-DOS requires CONFIG.SYS and AUTOEXEC.BAT to
operate correctly. Other �les may not be necessary to boot but may be of critical importance to the user:
the average Unix user is nearly helpless without his .cshrc or .profile �le.

Because modern laptops often support a suspend/resume mode that allows power to be conserved without
rebooting or repeatedly logging in and out, Seer may observe that these startup �les are rarely used, and
incorrectly assume that the user can do without them. This rare access to critical �les is a fundamental
problem with any completely automated hoarding system.

Seer addresses the problem in three ways. First, the system control �le discussed later in Section 6.6
can be used to specify especially critical system �les or directories (such as /etc in Unix) that should be
left outside Seer's control.

Second, a Unix-speci�c heuristic is used to apply a similar exclusion to any �le whose name begins
with a period (e.g., .login). We have found that such �les tend to be small, and that they tend to contain
important control and con�guration information that the user cannot do without.

3The current list is limited to xargs, rdist, the replication substrate, and the external investigators.
4This value was chosen by plotting the �les in a sample trace in order of their access counts, and then choosing a value

slightly above the \knee" of the curve.



66 CHAPTER 6. DIFFICULTIES WITH THE REAL WORLD

Finally, the user may specify a personal control �le listing any other �les that he considers critical to
successful operation. Generally, the only �les that need to be listed are scripts that are run at login time,
and only \power" users tend to use such scripts, so the average user is not burdened by this requirement.
Nevertheless, we are unhappy with the necessity for explicit speci�cation and plan to seek alternatives in
our future research.

6.4 Utility Programs

Many, if not most, programs executed in day-to-day computing are utilities that can be used on many
di�erent projects. The use of applications for multiple tasks can present di�culties for a clustering-based
hoard manager, because the program should properly be a member of several di�erent projects. For example,
a text editor might simultaneously be a member of a software development project and a document-writing
project. Seer deals with this issue by allowing overlapping clusters, which are generated as described in
Section 4.2.2, p. 49.

The presence of overlapping clusters introduces a secondary problem: how should a cluster be prioritized
when �lling the hoard? Recalling that the ideal of Seer is that a user should only have to reference a single
�le for a project to be hoarded, the hoard priority of any cluster should be equal to the priority of the most
recently referenced �le. However, this simple criterion is incorrect for utility programs, which are members
of many clusters. It should not be the case that a reference to an editor will cause hoarding of every cluster
that involves any sort of editing. Instead, only \target" �les should be able to control hoarding. But it is
still important to ensure that the editor is hoarded as part of the project.

Seer's solution to this problem is to set the hoard priority of a cluster based on the reference times
of �les that are members of only that cluster. Only if a cluster is comprised entirely of members shared
with other clusters will its priority be set based on the reference times of shared members. The complete
algorithm is described in Section 5.3.4, p. 56.

6.5 Detecting Hoard Misses

When the user wishes to access a �le that Seer has decided to omit from the hoard, it is necessary to detect
and record a hoard miss. This capability is important for two reasons. First, Seer should be informed of
the miss so that it can add the �le (and all other members of its project) to the hoard for future use. Second,
hoard misses provide statistics for measuring the success of Seer (see Section 7.1.3, p. 78) and tuning the
algorithms.

Depending on the underlying replication system, automatically detecting a hoard miss can range from
trivial to impossible. For example, Ficus supports so-called remote access, where an access to a non-local
object is automatically converted to an access to a remote one. However, the success of this remote access
depends on the availability of the remote replica(s) of the object. If the access succeeds, Seer will be able
to identify it as remote (because its internal tables will list the �le as unstored), and can mark the �le to be
hoarded later. If the access fails, however, and returns an error code to the user, it is di�cult or impossible
(depending on the replication system and the error code returned) to distinguish this case from an attempt
to access a completely nonexistent �le. Unfortunately, accesses to nonexistent �les are common in many
programs, so that it is neither meaningful nor e�cient to assume that any failed access represents a hoard
miss.

A further di�culty arises because some hoard misses occur without a direct attempt to access the �le.
For example, a user might ask for a directory listing (perhaps to verify the exact �le name), note that the �le
is missing, and never attempt to open it directly.5 Of course, some replication systems (e.g., Ficus) maintain
a complete list of directory members so that this problem does not arise, but others, such as Rumor, will
simply fail.

5Some programs, for example TEX, behave in a similar fashion, reading the contents of a directory to determine what �les
can be opened.
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Because of these problems, we have created a separate mechanism for tracking hoard misses when the
replication system is unable to support this function. Whenever the user is unable to access a �le, he can
run a simple program to record the miss in a control �le. For statistical purposes, the program also records
the time of the miss and a user-speci�ed severity code, as follows:

0. The entire computer is unusable because of the missing �le (e.g., a critical startup �le is unavailable).6

1. The current task will change because of the missing �le (e.g., the user can log in but the primary
source �le for a program or document isn't hoarded).

2. The task will remain the same, but activity within the task will be modi�ed (e.g., an informational �le
is missing but work can proceed on another part of the same task).

3. The lack of the �le will cause little or no trouble.

4. The �le isn't actually needed right now, but the hoard should be pre-loaded so that the �le will be
available in the future.

6.6 Temporary Files and Directories

Many programs create temporary �les to hold transient results or to pass information to closely related pro-
grams. For example, compilers often generate symbolic output and pass this symbolic form to an assembler
to produce the actual object �le. Because these �les are transient, semantic relationships between them and
other more permanent �les are not useful to an automated hoarding system, yet the nature of how they are
created causes them to have a very small semantic distance, displacing other �les from the short list of n
closely-related �les kept by Seer. If these �les could be detected as being temporary, they could be ignored
as if they had never existed, which would allow more e�ective analysis of other relationships.

We �rst considered attempting to automatically detect temporary �les based on their brief lifetimes.
However, this approach turned out to be impractical because other relationships have already been a�ected
when the temporary �le is deleted, marking the end of its life. The implementation would need a method of
\backing out" any relationships created during the lifetime of the �le, which is not possible in the context
of our current algorithms.

Instead, the implementation of Seer allows certain directories to be marked as transient in a control
�le (normally set up by a system administrator, rather than a user). Files created in these directories are
completely ignored by Seer.

In some operating systems, such as Windows, temporary �les are distinguished by a naming pattern
(e.g., *.TMP) rather than by their location in a directory. On such a system, Seer would have to modi�ed to
allow such patterns to be recognized, but the principle of ignoring temporary �les would remain the same.

6.7 Non-Files

The Unix �lesystem supports a number of objects besides plain �les, including directories, symbolic links,
and more exotic objects such as device �les and pseudo-�lesystems like /proc. Many of these objects are
critically necessary for system operation (for example, the lack of a device �le for the console will probably
render it impossible to log in.

With the exception of directories and possibly some pseudo-�lesystems, these objects take almost no
disk space. Because of their importance and minimal space requirements, Seer always includes them in
the hoard. Most such objects are also omitted from semantic-distance and clustering calculations, since
they tend to be either transient (i.e., members of /proc) or vary depending on extraneous factors (e.g.,
/dev/ttyxx ).

6In this case the miss cannot be recorded until the network connection is re-established.
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Two object types that deserve special attention are directories and symbolic links. Directories are the
only non-�le objects that may be moderately expensive to store. The need to store a directory both when
connected and when disconnected depends on the underlying replication system: some may require all
directories to be present to support remote access to �les not hoarded on the portable computer, and most
require that all directories leading to a hoarded �le be present [Kistler 1993, Ratner 1995] so that the �le
itself can be reached.

The directory structure can also convey valuable information to the user. If a �le is missing (not hoarded)
but the directory is present, the user can be more certain that he is attempting to access the correct pathname
than if the entire directory subtree is not hoarded. This capability can be important if, for example, the user
would like to insert a cross-reference into a document even though the referenced �le is currently missing.

Finally, a directory occupies space roughly proportional to the number of �les within it. Thus, it can be
relatively cheap to hoard a directory if the contained �les are not hoarded (as noted above, if there are any
contained �les, the directory must be stored anyway).

There are a number of choices that could be made regarding the hoarding of directories. In Seer, we
hoard all directories in managed subtrees, even if the contained �les are not hoarded, and even though this
decision has an impact (albeit small) on the total hoard size.

The situation with symbolic links is similar. A symbolic link is even cheaper to store than a directory, and
provides similar information to the user even if the target of the link is not hoarded (actually, the information
content is greater, because it identi�es the missing �le without possibility of typographical errors). Thus,
symbolic links are also hoarded automatically. (An alternative, which was included in our original design,
would be to hoard a symbolic link whenever its target was hoarded. We discarded this option because it
does not save a signi�cant amount of space, and always hoarding links simpli�es the implementation.)

6.8 Simultaneous Accesses

The formulations of semantic distance given in Chapter 3 assume that the user is generating only a single
stream of references. In a modern multi-tasking operating system, however, a typical user often simultan-
eously generates multiple independent reference streams. For example, it is common to use the time needed
to compile a large program more productively by editing a document, reading e-mail, or even playing a
game. The independent streams from these activities are intermixed when observed by Seer, and create
incorrect and spurious �le relationships if not properly handled.

We had originally hypothesized [Kuenning 1994] that the data reductions discussed in Section 3.3 (p. 28)
would provide a noise-�ltering mechanism adequate to eliminate the e�ects of these spurious relationships.
Unfortunately, experience proved this hypothesis incorrect: although noise was reduced, it was not elimin-
ated, and the resulting spurious relationships tended to cause poor hoarding decisions.

To address the problem, we found it necessary to separate the reference streams on a per-process basis in
a manner similar to that used by Tait et al.'s Spy Utility [Tait et al . 1995]. To do so, Seer follows every
program execution and termination, together with the creation of child processes (the fork system call in
Unix and similar systems). A separate reference-history list is maintained for each process, and semantic
distances are calculated on a process-local basis. The �le-open test mentioned in De�nition 3.2.1 is also
performed on a per-process basis.

When a process is created, its reference history is initialized from that of its parent, and at process
termination, the two history lists are merged (in reference-time order). This approach allows Seer to detect
extended relationships between �les referenced by a process and by its parent.

6.9 Non-Open References

There is a variety of ways in which a real program can refer to a �le. Besides being opened and closed in
various ways (e.g., for reading or writing), a �le may be executed as a process, deleted, created as a special
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�lesystem object (e.g., a directory), and have its attributes examined or modi�ed. Under some systems,
alternative names for a �le may also be created and used.

Many of these situations can be treated as a point-in-time reference, similar to an open immediately
followed by a close. Others require more complex treatment:

Process Execution and Termination. Execution of a new process is treated as if it were an open, and
process exit is treated as a close.7 Executions are also recorded as point-in-time read references in the
parent process; this extra pseudo-reference is needed so that the child executable will be recorded as
closely related to the parent that invoked it.

Descriptor Duplication. Since the correlator maintains an open count for each �le, duplications of �le
descriptors (dup system call) must increment the open count, so that the corresponding close can be
tracked properly. However, duplications are not otherwise recorded as references.

Process Forking. Process forking is handled entirely in the observer. As a side e�ect, falsi�ed DUP
records are generated to reect the �le descriptor duplication that is a side e�ect of forking. Under
Unix, falsifying DUPs also requires tracking the close-on-exec ag.

File Deletion. Deleted �les are removed from Seer's internal tables. However, because many programs
delete �les immediately prior to recreating them, Seer delays the actual removal for a short period so
that valuable clustering information won't be lost if the �le is immediately recreated.

Attribute Examination. Many programs examine �le attributes, perhaps to whether a �le exists or to
discover whether it can be written. In such cases, if the �le is actually of utility to the user, it will
be subsequently opened, and the actual examination can be ignored because the open will be seen as
a reference. However, other programs, such as make, base important decisions on the values of the
attributes, and the examinationmay indicate a close relationship between the examined �le and another
that is actually opened. Seer uses several heuristics to deal with this problem. In general, examination
of an attribute is treated as if it were a simultaneous open/close pair. However, if the examination
is immediately followed by an open or another examination of the same �le, the �rst examination is
discarded as being an insigni�cant reference. In addition, certain more complex heuristics, discussed
in Section 6.1 (p. 63), are applied in some cases.

Renaming. When a �le is renamed, there are several options for dealing with accumulated �le relationships.
There are two fundamentally di�erent uses for renames, which unfortunately have conicting needs
with respect to Seer: permanently changing the name of an object, and replacing an existing object
with a newly-created version.

In the �rst case, the �le relationships refer to the underlying object, and the name is incidental. In
the second, the relationships are associated with the name, and the speci�c identity of the object is
super�cial.

Seer handles this problem with an adaptive heuristic. If the target of a rename does not currently
exist, we assume that the �rst case applies, and arrange to move the relationship data from the old
name to the new. However, if the target exists (or is marked for deletion from the �le table), we assume
the second case, and keep the relationship data that was associated with the target name.

This heuristic works well in practice, but still does not handle certain cases properly. In particular,
some editors create backup �les by renaming the edited �le. After the second edit, the backup �le
will exist, and so its relationships will take priority. The important relationships of the source �le will
then be lost. This behavior has not caused problems in our usage to date, but we plan to investigate
alternative solutions in the future.

7Executions may also require recording a close of the previously executing �le in the same process.
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6.10 Script Interpreters

Most modern Unix systems provide kernel support for interpreted programs, such as shell and Perl scripts.
This support is activated when an exec is issued for the script. A unique character sequence on the �rst
line marks the �le as an interpreted program, and also identi�es the path to the interpreter. The kernel then
executes the interpreter, rather than the named script, and passes the name of the script as an argument to
the interpreter.

This feature poses a problem for Seer, because the observer only sees the argument to exec, which is
the name of the executed script. The result is that no relation will be recorded between the script and the
interpreter needed to execute it, and thus they may not be hoarded together.

One solution to the problem would be to further modify the kernel so that it generates an INTERPRET
record (see Section B.2.1, p. 134) whenever it performs a special interpreter execution. This design would
be desirable for e�ciency reasons, but implementing it turns out to be problematic. The �rst di�culty is
simply that it requires yet more hooks to be put into the kernel, making porting more di�cult. The second
is that some kernels implement the interpreter execution by making ad hoc changes in the parameters passed
to the exec system call, and it is relatively di�cult to capture the changes into an observer trace record.

Because of the di�culty of tracing script interpreter executions in the kernel, we chose a less e�cient
but much more exible solution. Whenever the observer sees an execution of a �le, it examines the �rst
few bytes to see if it is an interpreted script. If so, it internally generates a supplementary INTERPRET
packet to record the relationship between the script and its interpreter.

6.11 Automounted Pathnames

Unix o�ers a feature called the automounter, which is designed to simplify management of large networked
disk systems. The basic idea is that the automounter watches for references to certain special pathnames
that represent remote disks. When such a reference is seen, the remote disk is NFS-mounted if necessary,
and the referenced pathname is rewritten (using symbolic links) to point to the mounted location.

For example, suppose an automounter were con�gured to mount the root directories of remote machines
under the directory /root, giving them the machine names. If the user were to refer to /root/norgay/foo,
the automounter would NFS-mount Norgay's root under /tmp mnt/root/norgay, and then (appear to)
create a symbolic link from /root/norgay to the mount point.

Since Seer is aware of symbolic links, it will discover that the reference to /root/norgay/foo is ac-
tually a reference to /tmp mnt/root/norgay/foo. As it turns out, following the link can be problematic,
because there are circumstances when the correlator needs to refer to a �le independently of any other pro-
gram (e.g., to discover its size). The di�culty arises because the automounter will only respond to the
original pathname; paths beginning at /tmp mnt will not cause automounting. Thus, an attempt to reference
/tmp mnt/root/norgay/foowill fail unless /root/norgay has been already mounted for some other reason.

The obvious solution to the di�culty is to rewrite the pathname so that it will be processed by the
automounter. With an appropriate automounter con�guration, the rewriting can be done by simply stripping
o� the string \/tmp mnt". When the correlator attempts to discover the size of the �le it knows internally as
/tmp mnt/root/norgay/foo, it will actually refer to /root/norgay/foo, the automounter will get invoked,
and all will be well.

Unfortunately, the simple solution doesn't work in general. In particular, it fails when referring to the
automounted directory itself, something that is very common because of the correlator's internal pathname
canonicalization. For example, suppose the correlator wishes to discover whether /root/norgay is a directory
or a symbolic link. It issues a stat system call on that pathname, and the automounter intervenes to NFS-
mount the desired directory. The stat operation then informs the correlator that /root/norgay is a symbolic
link, which the correlator will follow to the path /tmp mnt/root/norgay. The next step in canonicalization
would be to issue a stat call on the target path. However, because of pathname stripping, the call would
actually be issued on /root/norgay, resulting in an in�nite loop.
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Component stat

Explored on Result
/ / Directory
/root /root Directory
/root/foo /root/foo Symbolic Link to

/tmp mnt/root/foo

* / / Directory
/tmp mnt /tmp mnt Directory

* /tmp mnt/root /root/. Directory
/tmp mnt/root/foo /root/foo/. Directory
/tmp mnt/root/foo/bar /root/foo/bar File

Figure 6.1: Exploration of an Automounted Path

To get around the problem, we use a Unix-speci�c trick. In certain places, when a stat call is made
on an automounted directory (determined by a nonzero strip length, Section B.2.2), the automounter pre�x
(/tmp mnt) is still removed, but the string /. is appended. Adding the period ensures that the automounting
will happen if necessary, but the stat operation will be performed on the actual automounted directory.

The complete exploration of the pathname /root/norgay/foo is summarized in Figure 6.1. Lines pre-
�xed with an asterisk are discovered from internal tables, without issuing a system call. Note that the
stat of /root/. should really be accessing /tmp mnt/root/., since the latter is an actual directory rather
than an automounter artifact, but the current approach works because all such directories are necessarily
replicated under both their true name and the automounter subtree.

One �nal point regarding the rewriting of pathnames relates to the lack of generality in the current
design. Some automounters use a more general rewriting scheme than the simple prepending of a string.
There are also other remote-access and replication systems that use general pathname rewriting, which is
not supported by the current implementation. However, there is nothing to prevent such support from being
added; we omitted it only for simplicity. Were Seer to be ported to a system that required the more
powerful approach, it would be easy to add such a capability.

6.12 Parameter Setting

As discussed in Chapters 3 and 4, Seer's semantic-distance and clustering algorithms make use of a number
of parameters and thresholds to make their decisions. The correct settings for these parameters are not
obvious, and interactions among them are complex and di�cult to predict.

Any of a number of well-known methods can be used to search the parameter space to �nd optimal
combinations. The interesting problem is to de�ne the word \optimal" in a meaningful way. We used two
di�erent de�nitions to �nd the values we currently use.

Our �rst de�nition attempted to �nd parameters that would locate clusters meaningful to the user. To
do so, we speci�ed a group of �les that we felt should belong to the same cluster (e.g., all source and
object �les needed to build a particular program). A script then examined the clusters generated by Seer,
evaluating those that contain at least one of the speci�ed �les. A parameter setting was considered \good"
if it produced a cluster containing a large fraction of the speci�ed �les, with few extraneous ones.

While this de�nition produced some useful initial settings, it proved to be tedious to develop the correct
lists of desired �les. For example, the �les needed to compile a single program might appear to be neatly
contained in a single directory, but in actuality would also incorporate hundreds of system include �les.
Evaluating such a long list of �les to determine which ones \belonged" proved to be impractical.

We then developed a second de�nition in which a cluster was considered \good" if all �les within it were
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accessed within a small number of references from each other. Thus, a project accessed as a unit, but long
ago, would be a cluster, as would a project accessed yesterday.8 The clusters from a parameter setting were
sorted according to the variation in their reference times (measured from the sequence of references, not the
wall clock), and settings that produced smaller variation were then chosen. Because it requires no human
intervention, this method has been able to evaluate many more clusters and has produced the parameter
settings we are now using in the �eld.

A third method has become possible only recently, with the development of the miss-free-hoard-size
measure discussed in Section 7.1.3 (p. 78). This measure is ideally suited for comparative purposes, since it
is both objective and completely automated. The only drawback is that it is extremely expensive to compute
(the larger simulations take over 12 hours to run on our fastest machines). We hope to use this method to
re�ne our parameter settings in the future.

6.13 Deadlock

Since Seer both traces and issues system calls, the possibility of deadlock exists if the trace bu�er �lls.
To avoid this problem, the trace mechanism does not record calls made by the observer and correlator
themselves. However, experience showed that this step was not enough. Some of the system calls made
by Seer can activate daemons, notably those that support the Network File System (NFS) [Pawlowski et
al . 1994], and deadlock can occur due to calls made by these processes. We solved this problem by modifying
the kernel so that it doesn't trace most calls made by the superuser (\root"). However, we still trace �le
renames, �le destruction, and process exits performed by the superuser. The �rst two are captured because
it is critical to track �le names accurately and to keep the �le table clean, while the third is followed primarily
to ensure that the process table does not grow without bound in certain error cases.

An alternative approach would be to identify all processes that lead to deadlock, and arrange for Seer to
only avoid tracing those processes. Although this solution would have certain advantages, it would require
modi�cations to the source code of these system daemons, and would be less robust because it would depend
on accurately identifying the potential o�enders.

6.14 Tracing System Calls

As explained in Section B.1.1 (p. 132), most system calls are traced through their common dispatch point,
but a few calls require special treatment. The following list discusses unusual Unix system calls that need
special treatment:

exec Is traced both before and after the system call is performed. If exec fails, it returns via the normal
path, but if it succeeds, it uses an extraordinary return method. In the latter case, the name of the
executed �le is lost. The observer handles exec by caching the name of the �le being executed before
the system call is performed. If it fails, the cached name is discarded; otherwise, it is recorded as a
success when the process performs some other system call.

exit Is not captured as a system call, but instead is traced by a special-purpose hook in the process-
termination code. The hook is necessary because a process can exit without passing through the exit
system call (e.g., by being aborted).

fork Is handled normally on Linux but requires a special-purpose hook under most AT&T-derived Unix
implementations, because the new subprocess does not return to user mode via the normal path.

8Of course, the method depends on very LRU-like behavior from the user, as opposed to the more complex behavior actually
observed over long periods. Thus, we were careful to apply it only to carefully selected intervals in which the usage patterns
satis�ed this restriction.
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6.15 Debug Traces

Although it was not necessary for correct operation of the system, we found it useful to keep traces of the
input to Seer. Early in the development process, we would lose copies of the correlator database because
of bugs in the software, and �nd ourselves starting over from scratch. To avoid losing data, we installed
two logging facilities, one in the observer and one in the correlator. The observer trace simply logs the
input received from the kernel.9 The correlator log is somewhat more complex, recording not only the
inputs received from the observer but all other interactions with the operating system (primarily stat and
readlink system calls). Because it records the results of all system interactions, the correlator trace can be
replayed for debugging, exactly reproducing the input conditions that caused a particular problem.

The trace �les proved themselves valuable many times over. We included versioning information, so that
we could extend the trace format when necessary without discarding old traces.10 The traces helped us
�nd innumerable bugs and recover from damaged databases. When we evaluated Seer's performance, the
observer traces were available for replay into the system for simulation purposes.11

One minor detail is that the trace �les can grow very quickly. The observer monitors the size of the
trace �le, and when it becomes too large, it automatically creates a new one and compresses the old �le. We
found it useful to have a cron job that periodically moves compressed �les to an archive disk on the network
(when the machine is connected) so that the portable machine's disk would not �ll up with old trace data.

9Under Linux, the observer also inserts an occasional extra record when it discovers the current working directory of an
active process.

10Despite the versioning, we were twice forced to discard traces because they did not contain records that turned out to be
critical to correct operation. More commonly, we found it possible to synthesize or do without information we had previously
failed to collect.

11We did not normally save correlator traces, since they can always be reconstructed by replaying observer traces.
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Chapter 7

Experimental Methodology

One of the di�culties in any research e�ort is evaluating the level of success achieved. In the case of
predictive hoarding systems, evaluation turns out to be an especially di�cult problem, one worthy of its
own research project. In this chapter, we introduce metrics useful for measuring hoarding systems, and
outline the experimental methodology we used to investigate Seer's performance.

7.1 Metrics

There are many ways to evaluate caching and hoarding systems, some more appropriate than others. We
will introduce a number of possible metrics, discuss their applicability, and then justify those that we chose
for measuring Seer.

7.1.1 Previous Work

Although other predictive hoarding systems have been built [Alonso et al . 1990, Huston and Honeyman
1993, Kistler 1993, Tait et al . 1995], no one has attempted a quantitative evaluation of the e�ectiveness
of their algorithms. Some qualitative information is given in both [Kistler 1993] and [Satyanarayanan et
al . 1993], but there are no tables or graphs showing the e�ectiveness of the algorithms.1

A list of suggested evaluation methods is given in [Satyanarayanan et al . 1993, Section 7.2], although
there is no indication whether any were ever implemented. These include:

Time to �rst miss. The amount of time2 that elapses between disconnection and the �rst hoard miss.
This metric characterizes the length of time a user can operate (or the amount of work that can be
accomplished) before noticing adverse e�ects due to disconnection. Disadvantages: Sensitive to hoard
size (a su�ciently large hoard will make this metric in�nite, while a small enough one will make it
zero; minor variations in intermediate values may cause very large changes in the measured value, and
the changes will not necessarily even be monotonic.) Quantitative di�erences do not translate into
corresponding quality di�erences in hoarding methods.

Time to the nth miss. Similar to the time to the �rst miss, but allowing more misses. Disadvantages:
Sensitive to hoard size.

Time to the �rst \critical" miss. Similar to the time to the nth miss, but attempting to quantify the
severity of the miss. The authors do not de�ne what they mean by \critical." This measure character-

1Both publications contain analyses of working-set sizes and the performance of the underlying replication system, but the
success of the hoarding method is not quantitatively addressed.

2For all metrics, time can be measured either as clock time or as a number of references. The choice of method depends on
the particular measure.
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izes the amount of work a user can accomplish before disconnection becomes intrusive. Disadvantages:
Sensitive to hoard size. Requires a de�nition of \critical" and a method for evaluating it.

Time until cumulative e�ect of misses passes a threshold. Similar to time to the nth miss, but the
\e�ect" of misses is proposed as a more meaningful criterion. No method of measuring the e�ect
has ever been suggested. This metric characterizes the amount of work a user can accomplish before
disconnection makes the system unusable. Disadvantages: Sensitive to hoard size. Requires a de�nition
of \cumulative e�ect" and a method for evaluating it.

7.1.2 Potential Metrics

There is a host of metrics that could be used to evaluate the e�ectiveness of a hoarding system, whether
predictive or not. First are those suggested by prior researchers, already listed in Section 7.1.1. We will not
repeat the descriptions here.

Second, there are those metrics that have been traditionally used in studies of cache systems:

Number of misses. This is the number of references that are not satis�ed from the cache. Disadvantages:
Has little relevance to the actual usability of the system, since even a single miss can be catastrophic
during disconnected operation. Sensitive to the con�gured hoard size.

Miss ratio. This is the number of misses, divided by the total number of references. It is often useful to
instead consider the hit ratio, which is simply 1 minus the miss ratio. It is also possible to calculate
the miss and hit ratios in terms of disk blocks referenced, rather than number of �les. Disadvantages:
Since the miss ratio is another way to express the number of misses, it shares the same disadvantages.

Working set size. The size, either in number of �les or in megabytes, of the working set (all �les referenced)
for a given disconnection period. For disconnected operation, the working-set size characterizes the
minimum hoard size needed to operate without misses, or the space needed by an optimal \oracle"
algorithm.

Although the traditional metrics have been very useful in characterizing caching systems, where the cost
of a miss can be precisely quanti�ed as a time penalty, the miss count and miss ratio are not useful for
comparing hoarding systems where misses have a near-in�nite time cost. For this reason, we have invented
a number of new metrics that can be used to characterize various aspects of hoarding systems. We have
divided them into several categories to simplify discussion.

For metrics that can be calculated until one or more misses occur, we describe them for n misses, with
the understanding that n = 1 is a valid option.

Success Measures

The following metrics generally characterize aspects of system success (i.e., whether it performs as desired):

Miss-free hoard size. The amount of disk space that the hoard would have to occupy so that there would
be no misses during a disconnection period. In other words, if the hoard were at least this large, the
user would experience no misses under the chosen hoarding algorithm. It is easy to compare this value
to the optimum (which is the working-set size). Disadvantages: Requires after-the-fact knowledge of
actual user behavior, i.e., traces.

n-miss hoard size. The amount of disk space that the hoard would have to occupy so that there would
be no more than n misses during a disconnection period. Disadvantages: Requires after-the-fact
knowledge of actual user behavior. Measures a factor that is not very interesting to the user, who
doesn't want to see misses at all.
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Successful disconnections. The fraction of all disconnections that were completely free of misses.3 Dis-
advantages: Sensitive to hoard size.

Disconnections before nth miss. The number of successful (miss-free) disconnections before the nth miss
occurs. This metric is closely related to the previous one. Disadvantages: Sensitive to hoard size.

Excess space over working set. This is the di�erence between the miss-free hoard size and the working-
set size, which is the space needed by a perfect algorithm. It provides a metric that can be used to
rank the success of various hoarding algorithms. Disadvantages: Requires after-the-fact knowledge of
actual user behavior.

Di�erence from working set. This is the size or count of the number of �les whose automatically gen-
erated hoard state di�ers (in either direction) from their state in a \perfect" hoarding. It provides a
metric that can be used to rank the success of various hoarding algorithms. Disadvantages: Requires
after-the-fact knowledge of actual user behavior.

Cluster miss ratio. Similar to the traditional cache miss ratio, but calculated on a per-cluster rather
than a per-�le basis. It could be calculated based either on �le counts or on actual cluster sizes.
Disadvantages: Su�ers the same disadvantages as the �le miss ratio.

Cluster members hit. The fraction of a cluster's �les actually used during a disconnection period. Dis-
advantages: Sensitive to hoard size.

E�ciency Measures

The following metrics characterize aspects of system e�ciency (i.e., resource usage):

Wasted hoard space. The amount of disk space devoted to hoarding �les that are never actually refer-
enced. Disadvantages: Sensitive to hoard size.

Files unused before the nth miss. This is the total number of �les, minus the count of distinct �les
referenced before the nth miss. Disadvantages: Sensitive to hoard size.

Disk space unused before nth miss. Files unused before the nth miss, expressed in terms of �le sizes.
Disadvantages: Sensitive to hoard size.

Incorrectly hoarded clusters. The membership and size of clusters that were hoarded but not needed,
which could have been left out to make room for a missed cluster.

Hoarded siblings in missed clusters. The count or size of �les that are members of missed (unhoarded,
but referenced) clusters, but that are themselves hoarded (due to being members of other clusters.)

Space occupied by unreferenced �les, per cluster. This is the average space wasted by the clustering
algorithm, calculated on a per-cluster basis. Disadvantages: Sensitive to hoard size.

Unreferenced �les in referenced clusters, per disconnection. This is the number or size of �les that
were in clusters referenced during the disconnection, but that were not themselves needed in the hoard.
Disadvantages: Sensitive to hoard size.

3The complement of this, failed disconnections, is sometimes a more convenient way to express this metric.
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Ancillary Measures

The following metrics are do not relate directly to the performance of hoarding, but are useful in character-
izing other aspects of the system:

Total disconnections. The total number of disconnections observed during an experimental period.

Length of disconnection. This is the elapsed clock time for the disconnection. It is useful to subtract
out the amount of the time that the computer is not actually being used, which for laptops can be
estimated as the time the computer spent in a \suspend" mode. This metric gives insight into the
stress placed on the system by the user, and provides a context for interpreting the time to �rst miss.

Length of disconnection, in references. This is the number of references per disconnection. It gives an
indication of how active the user was during disconnected periods.

Files in the hoard. The number of �les actually hoarded.

Total disk space referenced before nth miss. The total sizes of all distinct �les referenced before the
nth miss. This metric characterizes the minimumhoard size needed until the nth miss. Disadvantages:
Sensitive to hoard size.

Time in and out of the hoard. The amount of time an individual �le spends in the hoard, versus the
time it spends not being hoarded, measured across all disconnections. Disadvantages: Sensitive to
hoard size.

Attention shifts. The number and timing of attention shifts (as de�ned in Section 2.3, p. 9). This metric
helps to characterize the di�culties facing the hoarding system. Disadvantages: Sensitive to the
attention-shift parameters.

Cluster size. The average size of clusters generated by the hoarding algorithm. This metric gives insight
into the behavior of the clustering algorithm. The cluster size should be neither too small nor too
large; instead, it should reect the project size.

Distinct clusters referenced before nth miss. Indicates the number of clusters that actually participated
in user activity, up until the nth miss. By implication, also indicates the number of unused clusters.
Disadvantages: Sensitive to hoard size.

Cluster working set. This metric is the total size of all clusters referenced during the disconnection.
Disadvantages: Sensitive to hoard size.

Sensitivity to hoard size. Many, if not most, of the preceding metrics are sensitive to hoard size. This
metric quanti�es that factor. Disadvantages: Can be very expensive to measure, since it requires
calculating the subject metric for many di�erent hoard sizes.

7.1.3 Preferred Metrics

The list of metrics in Section 7.1.2 is lengthy and incorporates far more options than can be reasonably
measured. Our primary purpose in listing them was to develop and illustrate the rich variety of metrics that
is available for measuring hoarding systems.

For our own experiments we selected a much smaller list of metrics that we feel best characterize the
performance of Seer. Our preferred metrics include:

Working-set size. Provides a lower bound on the achievable miss-free hoard size.

Miss-free hoard size. Gives a number that can easily be used to compare hoarding algorithms.
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Excess space over working set. Characterizes the absolute e�ciency of a hoarding method in comparison
with an optimal oracle algorithm.

Attention shifts. Characterizes the challenges presented to the hoarding system. We chose to report
20% attention shifts for both daily and weekly disconnections, to facilitate comparison with results in
Chapter 2.

Total disconnections. Indicates the amount of disconnected use experienced by a particular user.

Length of disconnection. Indicates the amount of user activity during disconnected operation.

Time to �rst miss. Characterizes the achieved performance of the system in actual use.

Failed disconnections. Characterizes the achieved performance of the system in actual use. We chose this
measure, rather than its complement \successful disconnections," because the number of failures was
so low that the high success rates tended to overwhelm the presentation, making it di�cult to evaluate
the numbers.

7.2 Experiments

Having selected metrics for evaluating performance, the next step is to choose a measurement method. For
the metrics above, there are two primary candidates: simulation and real-world deployment.

7.2.1 General Approaches

Simulation

In the simulation approach, the hoarding system is provided with a \canned" reference stream, either
arti�cially generated or based on traces captured from real users. Certain points in simulated time are
chosen to mark disconnection intervals, and appropriate statistics are calculated for those disconnections.

The great advantages of simulation are controllability and reproducibility. The disadvantage is that it
can sometimes be di�cult to validate the simulations against real-world performance. Simulations can also
su�er from inaccuracy if the assumptions made by the simulation do not su�ciently reect reality.

Real-World Deployment

The second candidate for experimentation is to simply deploy the system in a real-world environment, let
users live with it, and record the results. In the past, this approach has been used primarily for qualitative
evaluation [Kistler 1993, Tait et al . 1995]. The major advantage of this method is that it inarguably reects
the actual behavior of real users. The disadvantages are that deployment is sensitive to the hoard size, and
is subject to the vagaries of real life: uncooperative users, system crashes, software bugs, and stylized use
will all interfere with the collection of consistent data.

7.2.2 Experimental Procedure

Since both simulation and real-world deployment have advantages, we chose a combination of the two for
our analysis of Seer. The working-set size, miss-free hoard size, excess space over the working set, and
attention-shift statistics were evaluated with simulation; the total disconnections, length of disconnection,
and time to �rst miss were collected by observing actual user behavior.
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Simulation Methodology

For our simulations, we used traces collected from actual users. The tracing mechanism is one of the
debugging features of the observer. Each system call that is of interest to the Seer system is recorded in a
trace �le, including all information that is passed from the kernel in trace packets (see Section B.1.1, p. 131,
for more information). The traces are later replayed into a correlator that has been started in a special
simulation mode.

To ensure that the simulation was not a�ected by startup transients, we discarded the results from the
�rst two simulated disconnection periods. Surprisingly, the transients disappeared so rapidly that a longer
warmup interval was not required.

In simulation mode, the correlator does not have full information about the �les that existed when the
trace was collected, so certain assumptions must be made about these �les.

Correlator simulation mode di�ers from normal operation as follows:

� No actual hoard changes are communicated to the replication substrate.

� Files that exist when the simulation is started are assumed to have sizes equal to their current size
(this assumption tends to overestimate �le sizes, since most �les grow during their lifetimes). The
e�ect is to slightly overstate the hoard-size and working-set statistics.

� Files that no longer exist are assigned a size taken from a geometric distribution with a parameter
of 0.00007, for an average �le size of 14284 bytes. This value was chosen by examining the actual
distribution of �le sizes in traces observed by Seer.4 To the extent that this distribution does not
reect actual �le sizes, using it slightly distorts the hoard-size and working-set statistics.

� Files that have existed sporadically, and currently exist, will not be removed from the list of potential
hoard members during the simulation run, even during times when they should not exist. The inclusion
of these extra �les can cause the hoard-size statistics to be slightly larger than they would be in reality,
and can also cause some important �le relationships to be missed by the clustering manager.

� Disconnections are assumed to be of �xed length, beginning at a convenient time, and are separated
by in�nitesimal reconnections during which the simulated hoard is re�lled with a new set of �les.
Simulated daily (24-hour) disconnections were begun at midnight during standard time, or 1 AM
during daylight time. Weekly (7-day) disconnections were begun at midnight or 1 AM on Sunday
mornings (in the middle of the weekend). This assumption is much stronger than actuality, since our
real users normally connected to the network for a signi�cant part of each day and could not su�er a
hoard miss during that time.

� Managers that depend on user input (bounded LRU, weighted LRU, and linear LRU; see Section 5.3.1,
p. 53) are initialized from user data, but there is no provision for changing their parameters during
the simulation run.

� Investigator data is loaded at the beginning of the run, and is not changed thereafter.

Note that several of the di�erences from reality have the e�ect of slightly changing the apparent working
set or hoard size. However, since all managers are faced with the same list of �le sizes, we do not believe
that this small error a�ects the validity of our comparisons.

4The �t of this distribution is only fair, because actual �le-size distributions do not seem to follow a clean mathematical
model. We devoted considerable e�ort to investigating di�erent potential distributions and calculating their parameters before
settling on the geometric distribution.
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Simulation Conditions As discussed above, we simulated both daily and weekly disconnections, using
traces from each of 9 machines. For three of these machines we ran simulations assuming both the presence
and the absence of the external investigators described in Section 5.4 (p. 56). Based on early data from
these runs, we simulated the remaining 6 machines only in the absence of external investigators, since the
additional relationship and cluster information did not seem to produce a signi�cant performance di�erence.
The chosen conditions produced a total of 60 simulations of daily and 60 of weekly disconnections.

Since some �le sizes were drawn from a random distribution, our simulations had a random error com-
ponent. For each set of conditions, we ran the simulation �ve times with di�erent random seeds to reduce
the variance due to error and to provide information for estimating con�dence intervals. The random seed
was the same for each pair of simulated daily and weekly disconnections, so that the two simulations were
presented with the same �le sizes. The random number generator used was drand48, a 48-bit linear congru-
ential generator; the seeds were selected using the /dev/random device available on Linux. The experiments
were divided into two groups so that they could be run in parallel on two di�erent machines. Within each
group, experiments were chosen at random (again using /dev/random) to avoid introducing errors due to
unexpected trends in experimental conditions [Jain 1991].

Simulation of Hand Hoard Management Under our simulation methodology, the three parameterized
LRU-style managers (weighted, bounded, and linear LRU) performed more poorly than they would if the
user were actively managing the hoard, since the control information is not modi�ed for each disconnection
period. This fact might be cited as an argument to invalidate our data, because one of the modi�ed LRU
methods could potentially outperform an automated system.

We believe that this argument is not relevant, because it assumes that the user is willing to accept a far
greater burden than in our system. There is no question that an active, interested, and fully knowledgeable
user can do a better job of hoarding than any automated system. Only the user knows what projects he
plans to work on, and only the user can know that certain subsets of a large project are unneeded. Constant
micro-management of the hoard contents will outperform any automated system if the user is intelligent and
informed enough to make correct and complete decisions.

However, such hand management would call for far more knowledge and time than are available to all
but a tiny fraction of users. The LRU-style managers are minor optimizations of hand management, and as
such it is unrealistic to assume that the average non-expert user will do anything other than to create an
initial hoard pro�le and forget it. In such an environment, our simulation methodology accurately reects
user behavior. In addition, our results (see Chapter 8) suggest that a good clustering algorithm will work
better than all but the most diligent hand hoarding.

Measurement of Working Sets We considered two di�erent methods of measuring working sets. The
�rst reports the total sizes of all distinct �les that were referenced during a disconnection period and that
existed at the end of the period.5 The second measure, which is the one we report in Chapter 8, reduces
the �rst measure by the size of any completely new �les created during the period. This smaller value is
more relevant to the design of hoarding systems, since it is exactly equal to the size of the optimal hoard
that would be produced by an oracle algorithm.

Measurement of Attention Shifts To report attention shifts, we �rst applied the de�nition given in
Section 2.3 (p. 9). When we calculated the attention shifts, however, we discovered that the number of shifts
was implausibly high.

After extensive investigation, we learned that the excess shifts were the result of a fundamental problem
with the de�nition itself. A single period of inactivity can cause an attention shift to be registered, even if
there was no change in the long-term set of �les accessed. These \inactivity-caused shifts" because attention
shifts are calculated by comparing adjacent periods, and any sudden increase in the number of �les referenced

5The total size excludes temporary �les, and thus slightly under-reports the peak disk space needed during the period. The
underestimate is not a signi�cant drawback for our purposes.
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can legitimately be considered to be a shift. If the user works on a very large set of �les for one disconnection
period, becomes inactive for the next period, and returns to the original large set of �les, the increase will
be seen as a shift by the statistics-gathering process, even though neither the user nor Seer would consider
that anything unusual had happened.

We believe that this problem showed up only in our current measurements, rather than in the earlier
study reported in Chapter 2, because of user behavior di�erences. The earlier study was conducted in an
o�ce environment, using machines that did not run any background daemons. Users tended to work fairly
steadily during the week, and not at all on weekends. The rare weekend worker would engage in almost
as much activity as during the week. The result was that there were relatively few periods of light activity
(zero-activity periods were ignored completely in that study).

In the current study, carried out in an academic environment, user behavior was much more sporadic.
Some days would be devoted primarily to meetings, classes, reading, and other non-computer activities.
Users would occasionally run a di�erent operating system for part of the day, so that relatively little activity
appeared in the traces. In addition, users normally took their machines home on weekends, and might engage
in brief use in odd moments, either to do small amounts of work or for ancillary purposes such as retrieving a
telephone number from an online directory. Finally, machines that were left idle, but unsuspended, sometimes
ran cron daemons that would generate small amounts of activity. All of these factors contributed to the
presence of low-activity periods in our traces.

One way to deal with the problem of low-activity disconnection periods would be to calculate attention
shifts compared to the last (recent) period of similar size, essentially applying a smoothing function to the
daily working set. In our case, smoothing was impractical due to the structure of our measurement software,
so we chose a simpler alternative. We modi�ed the attention-shift calculation to ignore shifts in which the
�rst period contained references to a relatively small number of �les. Thus, a low-activity period could not
trigger an attention shift. This de�nition is imperfect, because a true attention shift preceded by an inactive
period will not be detected. However, after querying our users about their past behavior, we believe that
our measurements were not signi�cantly a�ected by a failure to detect this type of attention shift.

We chose a threshold of 300 �les accessed for daily disconnections periods, and 1000 for weekly periods.
These values were chosen by examining the traces and the e�ects of various thresholds on the attention-shift
counts. Although the values might seem high, they are actually a reection of the complexity of the behavior
of modern users and applications, and they work well in practice.

Live Methodology

To measure real users, we deployed Seer on the portable machines belonging to nine users working in the
o�ces of the File Mobility Group (a subgroup of UCLA's Travler Project). Each user's machine was initially
con�gured with a 50-Mb hoard, although one user later increased the hoard size to 98 Mb and another should
have increased it. No restrictions were placed on user behavior. As well as collecting the traces we used in
simulation, we installed several utility programs and daemons to gather statistics. These programs included:

� A daemon that pings a well-known site every 5 minutes, and records changes in accessibility in a log
�le. The results are used to detect network disconnections.

� A script that examines the cron logs6 to discover times when the computer was in \sleep" or \suspend"
mode. These times are subtracted from the record of disconnections, to get a better measure of when
the computer was actually being used in a disconnected mode.

� A simple shell script that the user can run when he experiences a hoard miss,7 which records the
identity of the missed �le and the perceived severity of the miss.

A post-processing script then examines the logs produced by these programs and generates the statistical
summaries reported in Chapter 8.

6We run a local version of cron that is aware of times when the CPU is inactive, whether due to reboots or any other reason.
7Hoard misses are independently recorded by the correlator, but without severity information.



Chapter 8

Results

In previous chapters, we have presented a complete design for our automated hoarding system. We now
review the results of experiments that demonstrate the e�ectiveness of our work.

8.1 Simulation Results

As discussed in Section 7.2.2, p. 80, we ran 120 simulations of disconnected operation with Seer under
various conditions. We report the results of the simulations here. The simulations were driven by traces
comprising approximately 2.5 Gb of collected data, and took about 17 days to run on a dedicated 200 MHz
Pentiumr Pro.

8.1.1 Working Sets

In our simulations, we calculated the working set for each disconnection period. As discussed in Section 7.1.2,
p. 76, the working set provides a lower bound on the hoard size needed to operate without misses.

Daily Working Sets

Figure 8.1 shows an example of the development of daily working sets over time on the machine for which
we have the longest trace, Norgay. This �gure is taken from the �rst simulation run, using information from
external investigators. The points labeled \daily" give the total size of �les referenced during a given day.
The points labeled \Cumulative" give the total size of �les referenced since the beginning of the trace; the
signi�cance of this curve will become clear when we examine required hoard sizes in Section 8.1.2.

As can be seen from the graph, daily working sets for this machine are relatively small. The cumulative
working set, on the other hand, increases steadily over time, with occasional jumps when a new project is
attacked. Attention shifts are marked by arrows. Not every jump in the cumulative working set is associated
with an attention shift; the lack of shifts at some jumps could be due either to our method of calculating
attention shifts (see Section 7.2.2, p. 80) or to the creation of large numbers of new �les, which do not
contribute to attention shifts.

Figure 8.2 shows the same information for a second machine, Aldrin, taken from the second simulation
run (without external investigators). This shorter trace shows similar characteristics, although with a less
consistent increase in the cumulative working set.

Table 8.1 shows means and 99% con�dence intervals (columns \C.I.") for daily working sets for all
simulation runs. (We also calculated medians and quartile information, to verify that the distribution is
approximately normal.) The column labeled \Inv.?" indicates whether external investigators were included
in the simulation; the di�erences between investigated and non-investigated �gures are caused by variations
in the random seed.
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Figure 8.1: Daily Working Sets For Machine \Norgay" Versus Time, Run 1 (With Investigators)
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Figure 8.2: Daily Working Sets For Machine \Aldrin" Versus Time, Run 2 (No Investigators)
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W.S. (Mb)
Machine Inv.? Periods Mean C.I.
Aldrin N 53 7 7 7
Chengho Y 37 9 9 10
Chengho N 37 9 9 9
Crockett N 61 7 7 7
Erasmus N 108 15 15 15
Muir N 13 13 13 14
Norgay Y 228 11 11 12
Norgay N 228 11 11 12
Sacajawea Y 112 20 20 21
Sacajawea N 112 21 21 21
Spaulding N 58 9 9 10
Yeager N 138 15 15 16

Table 8.1: Daily Working-Set Statistics

Weekly Working Sets

Figure 8.3 gives a graph similar to Figure 8.1, showing the development of weekly working sets over time on
machine Norgay. The graph contains no surprises; weekly working sets are similar to daily ones except for
being slightly larger.

Table 8.2 shows means and 99% con�dence intervals for weekly working sets for all machines.1 (Again,
the distributions approximate a Gaussian.)

8.1.2 Required Hoard Sizes

As discussed in Section 7.1.3, p. 78, one of the best ways to compare predictive hoarding systems is to
calculate the hoard size needed to operate entirely without misses.

Required Hoard Sizes for Daily Disconnections

Figure 8.4 shows the sizes needed by the clustering and (plain) LRU managers for machine \Norgay" for
simulated daily disconnections.2 It is clear that in general the LRU manager requires an increasing amount
of space over time for this user. We believe that this trend is partly due to the attention-shift phenomenon,
and partly because even when a user doesn't shift his attention, there is a tendency to refer to an occasional
old �le.

By contrast, the clustering manager requires relatively constant space, and much less than the LRU
manager. To make this di�erence easier to see, Figure 8.5 shows the same data, sorted by the LRU hoard
size required to operate without misses. (The X scale is not shown in this �gure because the ordinals are
meaningless.) This �gure makes it clear that the clustering manager requires essentially constant space even
in the face of \ancient" references that cause the LRU manager to perform badly. This pattern was observed
for all machines in the experiment; for example, Figure 8.6 shows a similar graph for machine Sacajawea.

Figure 8.7 shows a similar simulation run for machine Norgay, but without the bene�t of external invest-
igators. It is easy to see that even without investigators, the clustering manager signi�cantly outperforms
the LRU manager.

1The apparently contradictory results for machine \Muir," in which the daily working sets exceed the weekly ones, are an
artifact of the short traces for this machine and the size of the warmup period. In practice, there is little overlap between the
periods chosen for the daily and weekly traces, so that they are e�ectively two di�erent sets of data.

2This graph is for simulation run number 1; other simulations show essentially identical results.
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Figure 8.3: Weekly Working Sets For Machine \Norgay" Versus Time, Run 1 (With Investigators)

W.S. (Mb)
Machine Inv.? Periods Mean C.I.
Aldrin N 10 14 14 15
Chengho Y 4 17 17 18
Chengho N 4 17 17 17
Crockett N 12 14 14 14
Erasmus N 19 40 39 41
Muir N 3 8 8 8
Norgay Y 41 22 21 22
Norgay N 41 22 21 22
Sacajawea Y 17 50 49 50
Sacajawea N 17 49 48 50
Spaulding N 10 19 18 20
Yeager N 22 34 33 36

Table 8.2: Weekly Working-Set Statistics (Mb)
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Figure 8.4: Daily LRU and Clustering Hoard Sizes for Machine \Norgay," Sorted by Day Number
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Figure 8.5: Daily LRU and Clustering Hoard Sizes for Machine \Norgay," Sorted by LRU Hoard Size, Run
I-1
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Figure 8.6: Daily LRU and Clustering Hoard Sizes for Machine \Sacajawea," Sorted by LRU Hoard Size,
Run I-3
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Figure 8.7: Daily LRU and Clustering Hoard Sizes for Machine \Norgay," Sorted by LRU Hoard Size, Run
N-1
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Figure 8.8: Daily Working Sets vs. LRU and Clustering Hoard Sizes for Machine \Erasmus," Sorted by
Working Set Size, Run N-5

Perhaps the most impressive evidence of Seer's success can be seen by plotting the required hoard sizes
against the corresponding working-set size. Figure 8.8 shows these values, sorted by working-set size for
ease of comparison. It is easy to see that, while the LRU hoard manager generally requires far more hoard
space than the working set, the clustering manager nearly always falls very close to this minimum.

Table 8.3 summarizes this information by showing means and 99% con�dence intervals for required daily
hoard sizes for all machines. For each hoarding method, the columns labeled \Cost" indicate the percentage
of space required over the optimum (which is the working set). The column labeled \L" gives the length
of the simulation run, in disconnection periods, and \Inv.?" indicates whether external investigators were
used. The same table also shows the mean, con�dence interval, and range for the di�erence between the two
hoarding methods. The �nal column gives the percentage of days on which the LRU manager outperformed
the clustering manager (di�erence less than or equal to zero). It is interesting to note that, although the
LRU manager occasionally outperforms the clustering manager, it does so rarely and by only an extremely
small margin.

One surprising result in Table 8.3 is that the presence of external investigators did not signi�cantly
improve Seer's performance. It was this observation that caused us to modify our experimental plan to
discard external investigators in some of the simulation runs.

Required Hoard Sizes for Weekly Disconnections

Figure 8.9 shows the sizes needed by the clustering and (plain) LRU managers for machine \Norgay" for
simulated weekly disconnections, sorted by the LRU hoard size required to operate without misses. Note
the similarity of this graph to the equivalent daily graph in Figure 8.5. Again, the clustering manager
consistently and signi�cantly outperforms the LRU manager.

Table 8.4 summarizes this information in the same manner as Table 8.3. Note that the only machine
with a signi�cant percentage of LRU \victories" (Chengho) was also the one that had the shortest trace, so
that the absolute number of victories (1) was still small. Also note that, as with the daily results, the LRU
manager never outperformed clustering by a large amount.



90 CHAPTER 8. RESULTS

L
R
U

C
lu
st
er
in
g

D
i�
er
en
ce

%
L
R
U

M
ac
h
in
e

L

In
v
.?

M
ea
n

C
.I
.

C
os
t

M
ea
n

C
.I
.

C
os
t

M
ea
n

C
.I
.

M
in

M
ax

W
in
s

A
ld
ri
n

53

N

2
7

26

29

28
7

8

8

9

20

19

18

20

-2

58

4

C
h
en
gh
o

37

Y

2
9

28

30

21
1

1
0

10

10

8

19

18

19

-1

52

8

C
h
en
gh
o

37

N

2
9

29

29

21
5

1
0

10

10

8

19

19

19

-1

52

8

C
ro
ck
et
t

61

N

2
7

26

28

31
1

8

8

8

22

19

18

20

-3

47

8

E
ra
sm
u
s

1
08

N

9
1

91

91

49
4

1
8

18

18

16

73

73

73

3

1
5
7

0

M
u
ir

13

N

6
8

65

70

41
3

1
4

14

15

8

53

51

55

18

1
4
2

0

N
or
ga
y

2
28

Y

5
7

55

58

39
5

1
3

13

13

14

44

43

45

0

1
5
0

1

N
or
ga
y

2
28

N

5
7

56

58

39
5

1
3

13

13

12

44

43

45

0

1
5
1

1

S
ac
a
ja
w
ea

1
12

Y

1
10

10
7

11
4

44
2

2
4

23

24

15

87

84

90

-2
1

1
8
6

1

S
ac
a
ja
w
ea

1
12

N

1
12

11
2

11
2

44
1

2
4

24

24

15

88

88

88

-2
1

1
8
6

1

S
p
au
ld
in
g

58

N

2
8

26

29

19
9

1
0

10

10

9

18

17

18

0

55

0

Y
ea
ge
r

1
38

N

9
9

97

10
0

53
9

1
7

17

18

12

81

80

82

4

1
9
7

0

T
ab
le
8.
3:
D
ai
ly
H
oa
rd
-S
iz
e
S
ta
ti
st
ic
s



8.1. SIMULATION RESULTS 91

L
R
U

C
lu
st
er
in
g

D
i�
er
en
ce

%
L
R
U

M
ac
h
in
e

L

In
v
.?

M
ea
n

C
.I
.

C
os
t

M
ea
n

C
.I
.

C
os
t

M
ea
n

C
.I
.

M
in

M
a
x

W
in
s

A
ld
ri
n

1
0

N

4
3

4
2

45

20
6

15

15

16

8

28

2
7

29

16

5
0

0

C
h
en
g
h
o

4

Y

2
9

2
8

29

65

18

18

18

3

11

1
0

11

0

2
8

2
5

C
h
en
g
h
o

4

N

2
9

2
8

29

67

18

17

18

3

11

1
1

12

0

2
8

2
5

C
ro
ck
et
t

1
2

N

4
2

4
2

42

20
2

15

15

15

7

27

2
7

27

4

4
5

0

E
ra
sm
u
s

1
9

N

1
1
0

10
8

1
1
1

17
6

43

42

44

9

66

6
6

67

3

1
2
9

0

M
u
ir

3

N

8
9

8
9

89

10
41

9

9

10

2
1

79

7
9

79

46

1
2
7

0

N
or
ga
y

4
1

Y

7
2

7
1

73

23
3

24

23

24

9

48

4
8

49

1

1
2
6

0

N
or
ga
y

4
1

N

7
2

7
1

73

23
4

23

23

24

8

49

4
8

50

1

1
2
6

0

S
ac
a
ja
w
ea

1
7

Y

1
3
7

13
6

1
3
8

17
6

52

52

53

6

84

8
4

85

3

1
8
6

0

S
ac
a
ja
w
ea

1
7

N

1
3
5

13
0

1
3
9

17
6

52

50

53

5

83

8
0

86

3

1
8
7

0

S
p
au
ld
in
g

1
0

N

5
0

4
8

52

16
5

20

18

21

4

30

2
9

31

18

5
2

0

Y
ea
g
er

2
2

N

1
2
3

12
1

1
2
5

25
8

36

35

38

5

87

8
6

88

-3

1
8
3

2

T
ab
le
8.
4:
W
ee
k
ly
H
oa
rd
-S
iz
e
S
ta
ti
st
ic
s



92 CHAPTER 8. RESULTS

0

50

100

150

Size
(Mb)

LRU
Clustering
Attention Shifts

Figure 8.9: Weekly LRU and Clustering Hoard Sizes for Machine \Norgay," Sorted by LRU Hoard Size

Shifts Shift Unshift
Machine N % Di�. C.I. Wins Di�. C.I. Wins
Aldrin 4 8 30 28 31 0 18 17 19 10
Chengho 4 11 26 26 26 0 18 18 19 15
Crockett 0 0 | | | | 19 18 20 25
Erasmus 32 30 82 82 82 0 70 70 70 0
Muir 4 31 28 27 30 0 65 62 67 0
Norgay 82 36 50 49 51 0 40 39 41 10
Sacajawea 42 38 94 94 94 0 85 85 85 5
Spaulding 1 2 25 25 25 0 17 16 18 0
Yeager 36 26 85 84 87 0 80 79 81 0

Table 8.5: Attention Shifts for Daily Disconnections

8.1.3 Attention Shifts

Table 8.5 summarizes attention shifts for daily disconnections. For each machine, the table gives the number
and percentage of attention shifts observed, and breaks down the \Wins" column and the mean value
and con�dence intervals of the \Di�erence" column from Table 8.3 into separate values for days with and
without (\Unshift") attention shifts. Table 8.6 provides the same information for weekly disconnections. As
hypothesized, the LRU algorithm never outperforms the clustering method when attention shifts occur.

8.2 Usage Experience

8.2.1 Statistics

Table 8.7 gives statistics on the general disconnection behavior of actual users.3 There are a few important
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Shifts Shift Unshift
Machine N % Di�. C.I. Wins Di�. C.I. Wins
Aldrin 2 20 27 26 27 0 28 27 30 0
Chengho 1 25 10 10 10 0 11 11 12 5
Crockett 0 0 | | | | 27 27 27 0
Erasmus 8 42 83 82 84 0 54 54 55 0
Muir 0 0 | | | | 79 79 79 0
Norgay 9 22 45 45 46 0 50 49 51 0
Sacajawea 6 35 45 43 47 0 104 100 108 0
Spaulding 0 0 | | | | 50 48 52 0
Yeager 3 14 30 30 30 0 96 95 97 2

Table 8.6: Attention Shifts for Weekly Disconnections

Number
of Duration (Hours)

Machine Disconn's Mean Sdev Min Max Quartiles
Aldrin 38 11.16 15.82 0.26 71.89 1.03 3.24 15.33
Chengho 10 43.20 127.19 0.43 404.94 0.43 0.57 1.47
Crockett 75 9.94 40.87 0.26 348.20 0.35 1.12 4.88
Erasmus 90 3.01 4.46 0.26 26.50 0.60 1.38 3.19
Muir 25 1.87 2.54 0.26 12.08 0.52 0.81 1.62
Norgay 184 9.30 16.33 0.26 90.62 1.01 2.00 12.19
Sacajawea 107 8.06 38.29 0.26 390.60 0.78 1.47 4.34
Yeager 116 2.36 4.26 0.25 27.68 0.43 0.78 1.81

Table 8.7: Disconnection Statistics
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points to note about the measurement methodology and user behavior:

� Disconnection duration only considers the time that the computer is actively running while disconnec-
ted. This restriction is the reason for the relatively short disconnection intervals for some machines
(e.g., \Norgay" has a median disconnection time of only 2.00 hours, even though its user disconnected
overnight and across weekends on an almost continuous basis).

� Disconnections of less than 15 minutes were ignored in the analysis, for two reasons. First, short
disconnections tend to reect anomalous situations such as brief network failures rather than true dis-
connections (the shortest observed was a mere two seconds, which is hardly meaningful for a predictive
hoarding system). Second, we feel that a hoard miss during a short disconnection is rarely debilitating
to the user. (As it happened, none of the observed hoard misses occurred during disconnection periods
of less than 15 minutes.) However, the elimination of unreasonably short disconnections does have an
e�ect on the minimum-duration column in the table above.

� Some users rarely suspend their computers when not actively traveling, so their average disconnection
durations are much longer.

The most striking information in Table 8.7 is the highly skewed distribution (the median is far below the
mean in every case, and the maxima are far greater than the mean and usually much greater than the third
quartile). For this reason, we believe that it is better to characterize disconnection behavior with the median
rather than the mean.

Table 8.8 summarizes statistics on failed disconnections (those in which there was at least one hoard
miss). For each machine and severity level, the table gives the hoard size used (in megabytes), the absolute
number of failures and the percentage of the total failed disconnections, and the automatically detected
failure count and percentage (automatically detected failures do not depend on user input, but Seer cannot
detect failures where the user becomes aware of a missing �le by looking at a directory listing). The \Total"
column does not give the sum of all severity levels, but rather the total number of failed disconnections
(excluding automatically detected failures); this can di�er from the sum when a particular disconnection
experienced failures at more than one severity level.

Table 8.9 gives the time to �rst miss, in hours and in percentage of total disconnection period, for failed
disconnections (to save space, only nonzero rows are listed). Note that in some cases there were too few
misses to generate meaningful quartiles. The number of misses is listed in Table 8.8.

Table 8.10 gives statistics on the time to �rst miss, in hours and in percentage of total disconnection
period, averaged across all disconnections.4

8.2.2 Discussion

The simplest evidence of Seer's success is found in the \Percentage" columns of Table 8.8. Most users
reported zero or miniscule failure rates; even the automatically-detected failures (\Auto" column), which
went unnoticed by users, show that 94% or more of actual disconnections were miss-free. The sole exception
was machine \Norgay," whose user reported a total of 13% failures, although only 4.9% were at signi�cant
severities. When we investigated this high failure rate, we found that the user of this machine frequently
had a working set that exceeded the hoard size of 50 Mb (see Figure 8.1). In the light of this observation, a
13% failure rate is actually doing very well. The user of this machine has since increased his hoard size to
100 Mb, which has caused his failure rate to drop to the same negligible level reported by the other users.

From Table 8.9, it can be seen that users were generally able to work for signi�cant periods before being
a�ected by a hoard miss. It is interesting to note that the time to �rst miss usually increases as the severity
level becomes more intrusive (smaller severity codes), another indication that automated predictive hoarding
does not inconvenience the user signi�cantly.

3The live-usage data for machine \Spaulding" was lost through a system administration error.
4The \minimum" and \maximum" columns in this table primarily represent the minimum and maximum disconnection

times given in Table 8.7.
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The data in Table 8.10 is even more encouraging. Since the average disconnection is miss-free, the mean
time to �rst miss over all disconnections is nearly equal to the disconnection times given in Table 8.7. For
the same reason, all of the percentage quartiles are equal to 100%.

Tables 8.5 and 8.6 again highlight the superiority of the clustering algorithm over LRU. LRU performs
reasonably well when there are no attention shifts, and sometimes even outperforms clustering. When there
are shifts, however, LRU rarely outperforms clustering and, as seen in Tables 8.3 and 8.4, never by a
signi�cant margin. Furthermore, the clustering algorithm generally achieves performance that is within a
few percent of the optimum (\Cost" column), while the LRU manager often requires space several hundred
percent greater than the optimum.

The poor performance of LRU is due to its simplistic approach to the problem of hoarding. LRU is only
able to hoard all �les referenced since a certain time in the past. Thus, if a user wishes to work on a �le
last accessed several months previously, an LRU-style algorithmmust hoard every �le used since that point,
regardless of whether �les referred to in the interim are currently of interest. Thus, accessing a single \old"
�le will force LRU to hoard hundreds or thousands of unneeded �les, which in turn requires an overly large
hoard size. (In practice, a hoarding system usually starts with a given amount of space, and then works
backwards in time until the hoard is full. In this case, an LRU algorithm will not be able to hoard the \old"
�le unless the hoard is large enough to also contain all of the unwanted material.)

It is easy to see from the data in these tables that the system has been a success in actual use. This
conclusion is consistent with reports from users, who have generally been very pleased with Seer's ability
to correctly predict their future activities.

8.3 Performance Impact

Since Seer constantly collects information on user behavior so that it can make its predictions, there is an
unavoidable impact on performance. This section quanti�es that impact, dividing it into several components,
and discusses the implications for users.

All measurements were carried out on a Texas Instruments TravelmateTM 6030, which is a Pentium-
based laptop machine. The particular con�guration used operated at 133 MHz and had 64 Mb of RAM,
running the Linux operating system. Elapsed times within the kernel were collected using the kitrace

measurement tool [Kuenning 1995].

8.3.1 Kernel Performance

System Calls

As discussed in Section 5.2, p. 52, a small hook is placed into the operating-system kernel to allow Seer
to observe selected system calls. Due to the nature of this hook, it is executed for every system invocation,
whether or not the particular call will be traced.

The cost of this hook has several components. First, we investigated the average time added to the
system-call path, calculated by measuring the entry to and exit from the observation routine, without regard
to whether a trace entry was recorded. After subtracting out the overhead due to measurement,5 we found
that the average time was 0.42 �s, measuring both traced and untraced calls and weighting the average
by the observed frequency of traced calls.6 Although this average will vary depending on the exact mix of
traced and untraced calls, it is certainly safe to conclude that Seer adds only about half a microsecond to
the cost of an untraced system call on this computer.

Traced system calls are signi�cantly more expensive, costing 26 �s to capture the arguments into a
bu�er.7

5About 13.5 �s on this machine.
6The 99% con�dence interval was 0.3 �s about the mean, due primarily to inaccuracies in measurement.
7The 99% con�dence interval is 2.8 �s about the mean; the width is due to variations in the number of arguments captured.
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Trace Bu�er Access

Whenever system-call trace entries are recorded, the observer reads them from the kernel trace bu�er and
forwards them to the correlator. We measured the cost of reading entries from the trace bu�er by tracing
the routine that copies these entries into user space.8 The average size read was 34 bytes,9 with a narrow
con�dence interval of 1.4 bytes. The average cost of reading these entries was only 21.9 �s each.10

Summary

From the above �gures, we can see that the total kernel cost of tracing a system call is very small. An
untraced call su�ers a negligible slowdown. A traced call is more expensive, requiring a total of about 35
�s to capture a trace entry and later copy it to the observer. However, the only calls that are traced are
themselves relatively expensive in terms of elapsed time; for example, an open call must resolve a path name,
lock and modify several internal data structures, and usually access the disk. In this context, 35 �s does
not cause a noticeable performance impact for the user.

8.3.2 User-Level Impact

The user-level programs comprising Seer are not currently optimized for performance. Instead, they were
designed for research exibility, and many design decisions were made that sacri�ced performance in favor
of ease of development and modi�cation.

The most signi�cant example of this decision was the choice to store the �le table in the correlator's
memory, rather than on disk. We knew when we made this decision that it would speed development at the
cost of possible performance problems. As a result, the current correlator is something of a memory hog;
it requires about 1 Mb of virtual space for each 1000 �les, which translates to 10-20 Mb for the ten to twenty
thousand �les that it tracks on behalf of a typical user. Most of this size is occupied by data structures
needed by the clustering manager; LRU management alone would be signi�cantly less expensive.

The size of the database has been a problem on smaller machines, but current portables with 32 megabytes
or more of RAM are not noticeably a�ected by the large database. Nevertheless, we feel that a production
design should store the database more e�ciently and on disk, and we plan to do so with Seer's correlator.

Other than virtual memory, the observer and correlator do not consume signi�cant resources in
normal operation. The notable exception is during hoarding; the clustering manager needs about 2 minutes
of CPU time on a 133 MHz Pentium processor to complete its hoarding decisions (the LRU-style managers
generally take only a few seconds). However, our users have not found clustering performance to be a
signi�cant problem, because changing the state of the hoard is a relatively infrequent operation whose total
time is dominated by the time needed for the underlying replication system to transport �les and update
internal state. Nevertheless, we plan to optimize this operation in the future.

8There is a small additional overhead, which we did not measure, for dispatching the system call that reads the entries.
9The small read size implies that the observer was normally able to track the trace bu�er closely, reading each trace entry

as soon as it was collected.
10The 99% con�dence interval was extremely narrow, only 0.1 �s.



Chapter 9

Related Work

Predictive hoarding for mobility builds on two existing concepts. First is the idea of caching memory or
disk information to improve performance, including recent work intended to predict future access patterns
to reduce the impact of low bandwidth or long latencies for remote disk accesses. Second is the development
of updatable replicated �le systems. We will briey survey the work in each of these areas, which serves as
a foundation for disconnected operation and for our own research.

Several previous researchers have also built systems that allow disconnected operation, most of which
provide some sort of automated or semi-automated hoarding support, although none is as ambitious as Seer.
After considering the foundation work, we will discuss these other systems in detail.

9.1 Foundations

9.1.1 Predictive Caching

Caches are a fundamental concept in computer science, and much work has been done on the subject of
caching. Early work concentrated on improving the apparent speed of main memory with a small cache;
later systems (such as Unix) used the same idea to improve �le-system performance. Nearly every modern
computer system uses some form of cache as an integral part of its operation.

More recently, the advent of networked �le systems has increased the performance gap between local and
remote storage, with an attendant increase in the cost of a cache miss. Many researchers have investigated
the use of prediction to ameliorate this cost [Blaze and Alonso 1992, Gri�oen and Appleton 1994, Grimsrud
et al . 1993, Howard et al . 1988, Korner 1990, Kotz and Ellis 1990, Kroeger and Long 1996, Lazowska
et al . 1986, Lei and Duchamp 1997, Muntz and Honeyman 1992, Palmer and Zdonik 1991, Schroeder et
al . 1985, Staelin and Garcia-Molina 1990, Tait and Duchamp 1991, Vitter and Krishnan 1996]. These
schemes generally interpose an agent between the application software and the �le system. This agent
observes and records the disk access patterns of the applications. At a later time, when the beginning of a
pattern is repeated, the agent predicts that later accesses will continue in the same pattern, and pre-fetches
appropriate data from the �le system. The hope is that these accesses will retrieve data that will actually
be used, reducing apparent latency and increasing perceived performance. (This approach is also related to
the prefetching of instructions and data in conventional memory caches, but because of their dependence on
�xed-size objects and spatial reference patterns as a prediction factor, the methods produced by that work
are not easily applied to the current problem.)

Another closely-related �eld is �le migration in supercomputer centers [Buck and Coyne 1991, Drako-
poulos and Merges 1991, Foglesong et al . 1990, Foster and Habermehl 1991, Hogan et al . 1990, Kohl et
al . 1993, Kure 1988, Mecozzi and Minton 1991, Nydick et al . 1991, Peterson 1991, Smith 1981]. These in-
vestigators are generally concerned with creating the illusion of in�nite storage, rather than with improving
the apparent performance of a remote disk. As such, their interest tends to be centered more on the question
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of which �les should be discarded from the high-speed portion of the cache because they will be unused in
the next several hours or days, rather than predicting which �les or parts of �les will be needed in the next
few minutes. Although this problem is more closely related to hoarding, the concentration on ejection of
undesired data, rather than on selection of desired items, again makes it di�cult to directly apply this work.

A third approach to predictive caching is to ask the client process to provide extra information to the
caching subsystem [Cao et al . 1994, Ebling et al . 1994, Gibson et al . 1992, Patterson et al . 1995, Steere and
Satyanarayanan 1994]. Presumably, the client knows what �les it needs, and thus can make more intelligent
predictions than a system that tries to make inferences. However, this approach is impractical for hoarding,
for several reasons. First, it assumes that application designers are willing to modify their code to support
disconnected operation, an assumption unsupported by the realities of the commercial marketplace. Second,
it assumes that application designers are actually knowledgeable about the �les their application needs. In
the modern world of complex GUIs and powerful library functions, this assumption is frequently untrue.
Third, a system that depends on the application will break down if the user runs an application that does
not know how to cooperate. Since an alternative approach will still be needed to deal with this situation, we
believe that it is better to simply design the alternative approach well enough that the burden of speci�cation
can be completely lifted from the application designers.

9.1.2 Replicated File Systems

The whole idea of hoarding for mobility presumes that the physical location of a particular �le may change
from moment to moment, depending on the needs of its users. It also presumes that �les are shared, and
that shared updates are allowed without regard to location.

The �rst characteristic can be achieved by providing a location-independent �le naming service together
with an automated �le migration facility. Such systems are common in large supercomputer installations
[Buck and Coyne 1991, Drakopoulos and Merges 1991, Foglesong et al . 1990, Foster and Habermehl 1991,
Hogan et al . 1990, Kohl et al . 1993, Kure 1988, Mecozzi and Minton 1991, Nydick et al . 1991, Peterson
1991, Smith 1981]. However, shared accesses and updates in such a system are only possible if the physical
location of �le is dynamically accessible from any application that needs to use the �le.

In general, the only solution to making a �le available to multiple users in the face of a partitioned network
(such as a disconnected mobile computer) is to replicate the �le. If the �le is to be updatable regardless
of where the user is located, the replicated �le system must allow disconnected updates. Several such
systems have been built and proven workable in the last few years [Guy 1991, Kumar and Satyanarayanan
1995, Popek and Walker 1985, Reiher et al . 1994, Reiher et al . 1996, Satyanarayanan et al . 1990]. Most of
these systems could serve as a base for our predictive-hoarding work, since our system has been designed so
that it is largely independent of the underlying replication system.

9.2 Systems for Disconnected Operation

Several investigators have built prototype mobile systems based on existing replicated �le systems [Alonso et
al . 1990, Huston and Honeyman 1993, Kistler 1993, Skopp and Kaiser 1993, Tait et al . 1995]. However, with
the exception of Tait's Spy Utility [Tait et al . 1995], these systems place most or all of the �le-speci�cation
burden directly on the user.

9.2.1 Coda

The �rst system providing signi�cant support for disconnected operation appears to be Coda [Kistler and
Satyanarayanan 1992, Kistler 1993, Kumar and Satyanarayanan 1993, Mummert et al . 1995, Satyanarayanan
et al . 1993]. Much of the e�ort in Coda was directed toward replication, speci�cally the problem of allowing
disconnected writes as in Ficus [Guy 1991, Heidemann et al . 1992], but its most signi�cant contribution
was the provision of mechanisms that, while connected, could semi-automatically hoard �les that might be
used after disconnection. The Coda hoard manager decided which �les to keep by integrating LRU data
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with hints speci�ed by the user.1 Although the system placed nontrivial burdens on the user, who was
expected to guide the hoarding process, it was successful and exible enough to allow useful disconnected
work for periods of over a week. It was the success of Coda's semi-automated hoarding that encouraged
others, including us, to pursue a more automated approach.

Because Coda is the system most often discussed in the literature, we will devote more attention to it
than to other related work.

Overview of Coda

Coda was an outgrowth of the Andrew File System (AFS) [Howard et al . 1988], which was an early
distributed �le system that did not support optimistic replication. A major goal of the project was to
extend AFS to the mobile environment by supporting disconnected operation [Kistler 1993, Section 2.2.1].
Coda used a client/server architecture, with the servers replicated for reliability. Clients, which could be
�xed workstations or portable machines, cached whole �les retrieved from the servers. While clients were
connected, the server maintained a callback list of all clients who cached a particular �le; when the �le was
updated, the server noti�ed all clients that their local copy was no longer valid. (This part of the design was
inherited directly from AFS).

When a client was disconnected from the server network, callbacks were no longer possible. Instead, a
local pseudo-server emulated the server, and any �le changes were logged rather than being sent directly
to the server. When the connection returned, the log was replayed in a process called reintegration. If
conicting updates occurred during the disconnection period, they were resolved as part of the integration
process when possible, and otherwise postponed for later user resolution.

Before disconnection, Coda attempted to �ll the hoard with �les that would be useful to the user. These
�les were chosen according to a formula [Kistler 1993, Section 5.3.2.1] that combined LRU information
with user-provided adjustments. The hoard was automatically �lled (\walked") at regular intervals, or
alternatively the user could explicitly request that the hoard be �lled. The hoard was generally kept as full
as possible, within the limits of local disk space.

The user-provided adjustments to LRU information were speci�ed using so-called hoard pro�les, stored
in .hoardrc �les. The system supported dynamic loading and unloading of adjustments, and multiple
.hoardrc �les could be combined at will. There was a capability for recursive speci�cation, so that the same
adjustment could be applied to an entire directory tree.

The Coda Hoarding Formula

As mentioned above, Coda combined LRU information on all �les with user-provided adjustments from
one or more .hoardrc �les. The formula in [Kistler 1993] gives pf , the hoarding priority of �le f , in terms
of hf , the user-speci�ed hoard priority for that �le, and af , the time (in references) since the �le was last
referenced. af is set to 0 at the most recent reference to the �le and increases over time. Higher values of pf
indicate a higher probability that the �le f will be hoarded. We prefer a slightly di�erent characterization
of the Coda formula, as follows:

p0f = min(af ; (R� 1)�) � h0f

where R and � are global constants with values of 1000 and 16, respectively, and h0f is related to hf as:

h0f =
��

1� �
hf

where � = 0:75. The sense of p0f is the inverse of Coda's pf , so that smaller values indicate a higher
probability of hoarding.

The Coda approach can be summarized as setting a system-global upper bound on the LRU age (in
references) of the �le, and then subtracting a user-provided and �le-speci�c o�set. The constants and limits

1In practice, some important directories, such as /bin, were e�ectively locked in place, and were not dynamically managed.
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involved are chosen such that a �le given the lowest priority (hf near zero) will never displace one given the
highest allowable value, because the maximum o�set is somewhat greater than the age bound. In fact, this
same relationship applies to any pair of �les whose user-speci�ed hoard priorities hf di�er by more than
250 (the allowable range of values is 0 to 1000).

For �les whose hoard priorities di�er by less than 250, the e�ect of the formula is that a higher-priority
�le will stay in the hoard somewhat longer, even if it has been referenced less recently than a lower-priority
one. For example, if A has a higher priority than B, and the recent reference sequence included fA;Bg, the
algorithm would discard B from the hoard before A even though B has been more recently referenced.

However, the global bound on the LRU age (16000 references) causes this adaptive nature to take e�ect
only during relatively short or inactive periods. The trace-driven simulations reported in Chapter 8 showed
that most 24-hour periods involved fewer than 10000 references, but occasional extremely active periods
could generate up to two orders of magnitude more than that. Thus, even in an inactive period, �les that
had not been referenced in the past few days would be more than 16000 references old, and the global bound
would cause the �xed values from the .hoardrc �le to dominate. The relatively low bound means that if (1)
A has even a slightly higher hoard priority than B, (2) A has not been referenced in six months, and (3) B
was referenced only last week, then A will still be hoarded in preference to B. If A has a priority of 1000
and B is set at 1, the choice of A over B is probably what the user would prefer. But if A is set at 250 and
B at 249, it may be undesirable.

On the other hand, if there are three �les A, B, and C, with relative priorities of 200, 250, and 300
respectively, and all last referenced long ago, the Coda scheme will correctly capture their relative import-
ance. Similarly, if the same three �les were referenced within 800 references of each other and given these
priorities, Coda would tend to keep C in preference to A, which again probably reects the user's intentions.
(But if the �les were separated by 4000 references, the user-speci�ed priorities would dominate, regardless
of reference order.)

Published Experience with Coda

The published results on Coda [Kistler and Satyanarayanan 1992, Kistler 1993, Satyanarayanan et al . 1993]
have given relatively few quantitative results on the success of the hoarding methods. Most of the material
in [Kistler 1993] is concerned with the implementation of disconnected operation, and all of the quantitative
results in both [Kistler 1993] and [Satyanarayanan et al . 1993] involve measurements of the performance
of the disconnection/reintegration process and of user working sets (which are not signi�cantly a�ected by
disconnection, though as discussed in Chapter 2 they have a large impact on the feasibility of hoarding).
The earlier paper [Kistler and Satyanarayanan 1992] presents the material at a high conceptual level. These
results are discussed further below.

Several possible metrics for evaluating a hoarding system are suggested in [Satyanarayanan et al . 1993].
All of these metrics are repeated and discussed in Section 7.1.2 of this dissertation (p. 76). However, the
published results do not include evaluation of any of these measures.

Di�culty of Managing Hoard Pro�les The hoard pro�les (.hoardrc �les) necessary to use Coda
successfully were quite easy to understand, yet appear to have been di�cult to manage. The problem is that
modern applications make use of numerous �les, many of which are stored in multiple directories. The user
is often unaware of the complete list of �les involved in running a particular application.2

The developers of Coda were aware of this problem; for example, [Kistler 1993, Section 5.3.1.4] discusses
the challenges of generating cache \hints" for the bene�t of a hoard manager:

The cost of generating cache hints can be signi�cant. Hint generation may involve scanning
directories, gratuitously executing programs, even examining source code.

2For example, [Kistler 1993, p. 193] relates a situation in which the windowing system would hang when started in discon-
nected mode; this turned out to be because fonts were stored in a compressed format, requiring the uncompress program to
use them. A reference-tracing program was required to discover this hidden relationship so that uncompress could be added to
the list of �les needed by the windowing system.
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This level of e�ort may be beyond what one can expect of the average computer user; it may be better
to automate such an operation using a facility similar to our external investigators, discussed in Section 5.4
(p. 56).

An indication of the complexity of the problem is given in [Satyanarayanan et al . 1993, Section 5.1.1]:

Most users employ about 5-10 pro�les at any one time. Typically, this includes one pro�le rep-
resenting the `personal' data: the contents of his or her root directory, notes and mail directories,
etc. Several others cover the applications most commonly run by the user: the window system,
editors and text formatters, compilers and development tools, and so forth. A third class of pro�le
typically covers data sets: source code collections, publication and correspondence directories,
collections of lecture notes, and so on. A user might keep a dozen or more pro�les of this type,
but only activate a few at a time (i.e., submit only a subset of them to the local Venus). The
number of entries in most pro�les is about 5-30, with very few exceeding 50.

This implies that many users would set up their personal hoard pro�les on a per-directory basis, without
attempting to achieve a separation between important and unimportant �les in those directories, possibly
because of the di�culty of making this separation in an environment where the importance of any given �le
may be uid. It also appears that the users maintained a constant background awareness of their hoard
pro�les, so that the proper one could be submitted at the right time to ensure work could could continue.

The paragraph immediately following that quoted above states, \Contrary to our expectations, there
has been little direct sharing of hoard pro�les: : :We expect the degree of direct pro�le sharing will increase
as our user community grows, and as less sophisticated users begin to use Coda." However, increased
sharing has not been subsequently reported, possibly because writing a successful hoard pro�le is a di�cult,
user-speci�c task that is accessible only to the expert.3

Success of Coda Hoarding Section 5.1.2 of [Satyanarayanan et al . 1993] discusses experience with
hoard misses:

Many disconnected sessions experienced by our users, including many sections of extended dur-
ation, involved no cache misses whatsoever.

This observation is attributed to two factors: \Hoarding has been a generally e�ective technique for
our user population," and \most of our disconnections were of the voluntary variety, and users typically
embarked on those sessions with well-formed notions of the tasks they wanted to work on: : : [T]hey did not
normally disconnect with the thought of choosing among dozens of distinct tasks." The second point deserves
emphasis: Coda was a success partially because users tailored their behavior to it, and because they limited
their activity. This is a phenomenon common in computing. If a system responds in an undesirable fashion,
users quickly adapt their activities to avoid the problem.

Although this might seem to be a aw in Coda, we believe that it is not, and instead highlights a factor
that eases the design of many types of systems: users will adjust their behavior to make the system perform
better. In this case, mobility places certain restraints on the user, and just as a traveler is careful to put
airplane tickets in his briefcase before departure, he will tend to \tickle" his mobile computer in a fashion
that increases the probability of its being useful while disconnected. This observation applies to all hoarding
systems, including Seer, although one of the advantages of Seer is that it requires less user adaptation of
this sort.

The same section of [Satyanarayanan et al . 1993] also states:

When disconnected misses did occur, they often were not fatal to the session. In most such cases
the user was able to switch to another task for which the required objects were cached. Indeed,
it was often possible for a user to \fall-back" on di�erent tasks two or three times before they
gave up and terminated the session.

3Brian Noble [Noble 1997] has indicated that direct sharing has recently increased, partly due to use of a relatively unfamiliar
software package for which a single expert has created a standardized hoard pro�le..
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Although the adjectives in the above two passages are not quanti�ed, there is an implication that a
nontrivial fraction of disconnections experienced misses, and that when misses occurred, they sometimes
forced the user to switch to a new project, or even to cease work altogether. The discussion of falling back
on a di�erent task \two or three times" suggests a relatively high failure rate.

Coda was the �rst system to make disconnected operation a normal usage mode. Although Coda's
hoarding system required a high level of user involvement, the system made major contributions by imple-
menting the �rst client-server optimistic-replication system, and by demonstrating that disconnected opera-
tion could work at all.

9.2.2 Face, Little Work, and Laputa

Besides Coda, disconnected operation has also been supported in Face [Alonso et al . 1990] and Little
Work [Honeyman et al . 1992, Huston and Honeyman 1993]. However, the developers of these systems have
concentrated primarily on the problem of optimistic �le replication, and only secondarily on hoard loading.

Little Work uses a simple LRU scheme for choosing the �les to be cached. Before a user disconnects,
he or she is expected [Huston and Honeyman 1993]

: : :only to use the laptop on a network for a Little While: : : If she performs work similar to
what she intends to do on the road, the cache will contain all the �les necessary to support her
needs.

Although this statement minimizes the inconvienence of the approach, the method is surprisingly work-
able, if only because users of such a system will learn how to \tickle" the applications they use so that they
will access all necessary �les. Of course, the burden is placed even more heavily on the user than in Coda,
where it is at least true that once a .hoardrc �le has been created for a particular project, the user rarely
needs to worry about the project contents again. By contrast, every time a Little Work user disconnects,
she must perform the proper sequence of actions over again, without error. If the work procedure involves
more than a few steps, there is a high probability that one will be overlooked, especially if the user is in
a hurry, with attendant disastrous consequences for the ability to work disconnected. Like all LRU-based
systems, Little Work will also perform badly when attention shifts occur.

The designers of Face suggested a hybrid approach in which the LRU concept would be combined
with a .stashrc control �le to choose �les that belonged in the hoard. They also suggested automatically
interpreting a user's makefiles, although it is not clear whether this idea was ever implemented. This
work predates Coda, but it apparently was not carried to fruition, and no usage data of any sort has been
reported, so it has had less impact.

Finally, a planned system named Laputa was described in [Skopp and Kaiser 1993], though no further
results have been published to date. Laputa's hoarding system was not described in great detail, but
appeared to incorporate augmented LRU in the manner of Coda, plus a rule-based system that used
detailed knowledge of the user's work process, possibly generated by a human expert.

9.2.3 Spy Utility

To date, the most ambitious hoard-�lling project is the Spy Utility built by Tait et al. to run on the
OS/2r operating system [Tait et al . 1995], and now marketed by IBMr as part of their Mobile File
Sync product. Unlike Coda, Face, and Little Work, Tait attempted to detect an application's working
set automatically, building on his previous work in �le prefetching [Tait and Duchamp 1991].

The primary innovation of Spy Utility was the observation of process trees to generate projects for
hoarding. For each executable program in the system, a record was kept of the identity and ordering of
the �les accessed by that program. Subprocesses and their accesses were also tracked, producing a pattern
tree that characterized the behavior of a particular application, including child processes. Trees similar to
each other were collapsed to save space and help recognize common behaviors. Like Seer, access histories
were kept permanently, so that attention shifts could be handled gracefully. This latter feature was in sharp
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contrast to Coda and Little Work, which discarded any dynamic information beyond the LRU age of
�les currently in the hoard.

At hoard-�lling time, the application and its related �les were grouped and presented to the user as
possible hoarding selections. For each program, the user could choose either to hoard only the most recent
working set (i.e., to load the same �les that would be selected by an LRU algorithm), to hoard all working
sets ever observed for a given application, or to omit the application from the hoard entirely. Other options
allowed the user more low-level control of the hoard contents.

Spy Utility also introduced \generalized bookends," which were a convenient way for the user to inform
the system of the beginning and end of a user-de�ned activity|for example, an edit-compile-debug cycle.
This automation of Coda's spy program [Kistler 1993] was an improvement on that system's requirement
for expertise, though it still placed more burden on the user than one would like.

Spy Utility was a major step forward, but was still less ambitious than Seer. Some of its aws were
merely details of implementation: for example, it asked for more user interaction that may have been strictly
necessary, and it was somewhat inexible in asking the user to choose between hoarding the most recently
observed program tree or hoarding all trees ever observed (rather than the intermediate option of selecting
an arbitrary subset). Even more than Seer, Spy Utility was also hampered by having to work on top
of an uncooperative operating system, and its designers were forced to address many questions similar in
avor to those discussed in Chapter 6.

More seriously, Spy Utility su�ered from its top-down approach. Projects were de�ned in terms of the
top-level programs that invoked them, rather than by the cluster of data �les actually accessed by the user,
and there appears to have been no way of detecting relationships between the top-level programs themselves.4

Thus, for example, Spy Utility was incapable of noticing that the standard edit-compile-debug cycle was
a single project involving three separate utility programs, each spawned from a single shell. Nor could it
recognize relationships between two �les accessed by two related subprocesses, except through the existence
of those subprocesses themselves. Attention shifts were recognized only when a top-level executable �le was
activated [Tait 1997]. On the other hand, the bookend facility allowed users to provide hints that could go
a long way towards alleviating this di�culty.

4Tait has commented [Tait 1997] that \this was probably the biggest motivation for bookends."
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Chapter 10

Future Work

During any project of this magnitude, a number of ideas and suggestions arise that are not practical to
implement within the available time frame. In this chapter, we discuss the most important of these extensions
to the research.

10.1 Improvements to Seer

The �rst category of future work involves simple improvements to the existing design and implementation
of Seer. These improvements fall in turn into several sub-categories.

10.1.1 Improving Project Detection

Although Seer performs very well (see Chapter 8), there is a number of ways in which its detection of
projects could be further enhanced. This section discusses some of the possible modi�cations that could
help with project detection.

Extended-Activity Files. Some �les remain open for long periods of time; log �les and long-running
processes are two examples of this behavior. Such �les will have a very small lifetime reference distance
(De�nition 3.2.1) to a large number of other �les. It has been suggested that such �les should be treated
like often-referenced �les (Section 6.2, p. 65), being excluded from semantic-distance calculations and
instead hoarded automatically.

Popular Relatives. Some �les are related to by large numbers of other �les, in that many other �les
list them in their near-neighbor list. Such \popular relatives" are a problem because they can cause
excessive clustering. The frequent-�le detection discussed in Section 6.2 helps with this problem, but
does not necessarily eliminate it. Another approach would be for every �le to keep a \number pointing
at me" counter, and to refuse to participate in clustering if this counter exceeded some threshold. We
plan to investigate the severity of this problem and the e�ectiveness of such a solution.

This problem is very similar to the problem of noise words in information retrieval, and techniques
from that �eld may be applicable to our situation.

Other Approaches to Frequent Files. Currently, Seer detects frequently referenced �les by comparing
their reference counts to a threshold (Section 6.2, p. 65). An alternative method would be to base this
decision on inter-�le relationships. If a �le is related to (or related to by) a large number of other �les,
it is not useful for clustering, so it would be better to just ignore relationships involving this �le. This
modi�cation is closely related to the previous idea of \popular relatives."
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Extended Name Investigation. Our current name investigator detects only very simple patterns. It
might be useful to improve this detection; for example, a sequence of the form xaa, xab, : : : probably
represents related �les.

Process Trees for Project Detection. Besides clustering based on semantic distance, there are a number
of other approaches to detecting project membership. For example, Tait [Tait et al . 1995] de�nes a
project as every �le accessed by a process tree whose immediate parent is an interactive shell. (The
shell programs are listed in a control �le.) It would be instructive to implement this algorithm and
compare it to Seer using the miss-free hoard-size metric.

Clustering with Process Trees. Process trees could also be used to drive the clustering algorithm more
directly. Clusters would be based on the �le accesses observed directly below some high-level process,
usually one spawned by a shell. Special heuristics would be needed to handle processes that perform
multiple functions, such as compilers. However, it might be possible to handle these programs as
special cases.

Another option would be to use clusters developed from process trees as \seed" clusters, and then
expand them using semantic-distance information.

Task Boundaries. Another approach to project detection would be to automate Tait's \generalized book-
ends." If it were possible to detect the boundary between two tasks, identifying the task contents would
become trivial. One way to �nd boundaries without user interaction might be to detect a reference to
a �le that has been unused for a relatively long time.

Categorizing Files by Hand. A similar idea, �rst suggested in [Floyd and Ellis 1989], is to hand-categorize
users and their �les into gross major categories, and then to take advantage of these categories to
apply more specialized algorithms for project detection. For example, Floyd proposes that users be
separated into system daemons, \plain" users, and a few others; �les are categorized into temporary,
permanent, and log �les. Our current design supports the idea of temporary �les (see Section 6.6,
p. 67), but it might bene�t from also recognizing log �les. The user categorization could be extended
to support major behavior categories, such as software development, project management, and so forth
(see Chapter 2). The clustering algorithm might then use these categories to advantage.

Automatically Categorizing Files. The present design of Seer considers all �les as \equal" in terms of
clustering. An alternative would be to automatically categorize �les according to their function in the
system. Operators would be programs (e.g. make) that created or operated upon other �les. These �les
might be cluster members, but would not cause clustering and would not change the cluster priority.1

Objects would be �les that were operated upon; they would participate actively in clustering.2 Finally,
regenerable �les would be those that could easily be recreated upon demand, such as program object
�les. Regenerable �les might participate in clustering, but with less impact than objects.

It is an open question how these various categories might be detected. Clearly, operators must be
executable �les, but some executables might be objects or regenerable �les. In general, operator �les
would only be opened for read or execution, while objects would be occasionally opened for write, but
this approach ignores the case of database �les such as personal spelling dictionaries, which might be
better considered objects than operators.

Hand speci�cation, as discussed above, is a plausible approach, but one that is at odds with the goals
of Seer. Another approach would be to hand-classify �les into major types, as suggested above;
however, real systems have large numbers of types,3 so that hand classi�cation may be impractical.

1Jerry Popek has observed [Popek 1996] that utility programs are the \ands" and \ofs" of clustering.
2Some �les, such as programs in development, might be both operators and objects.
3For example, consider the number of types supported by the Apple Macintoshr , or the number of lines in /etc/magic

on Unix systems.
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A �nal di�culty with this approach is that the operator/object dichotomy inherently assumes that all
objects should be hoarded together with their associated operator(s). This assumption is not always
valid; for example, PowerPoint is a su�ciently large package that the user might prefer to hoard
only the subset that is actually being used for the current presentation.

Improved Categorization of Files. There are many clues to �le relationships that Seer does not cur-
rently use. For example, executable programs tend to operate on numerous target �les, while target
�les tend to be closely associated with a particular application (this observation is especially true in an
environment such as Windows, where �les often have an application-speci�c format). Furthermore,
public executables (e.g., those in /usr/bin) tend to be associated with more �les than those in the
user's working directories, which are more likely to be specialized utilities. There is a rich collection
of information that could be taken advantage of, for example in the calculation of overlapping clusters.

This information could also be used in the hoarding decision. For example, a reference to an editor
should not cause the hoard to be �lled with every edited �le, but a reference to a text �le should
also bring in the editor|and using the editor should ensure that any necessary fonts are available.
However, further research will be needed to develop algorithms for implementing these concepts.

Analyzing Variance in Semantic Distance. Tom Kroeger [Kroeger 1996] has suggested that the cor-
relator could dynamically monitor the variance of semantic-distance values, and then use the variance
to estimate the reliability of the measurement. Semantic distances with low coe�cients of variation
would be given more weight in the clustering algorithm.

WeightingDistance in Process Trees. In the current implementation, a process inherits its parent's �le-
reference history when it is created, and the history is merged into the parent's history at termination
time, allowing cross-process �le relationships to be detected. However, it is not necessary to apply
a unit weight to the merged distances. A non-unit weight could be used to give less importance to
relationships that were the result of deep process trees. Thus, for example, the subprocesses spawned
by a complex make, itself initiated from emacs, would not develop a spurious relationship with an
unrelated �le that had been edited just before the make began. (On the other hand, since process
execution is treated as a �le reference, a natural distance will tend to be introduced in this situation
anyway.)

Another option would be to modify hoard priority according to where a program appears in the process
tree. For example, command shells, which appear very high in the tree, are more important to the
user than deeper programs, and thus should receive a boost in hoard priority. (However, those shells
are also constantly in use, so perhaps an arti�cial boost is not necessary in this particular case.)

Alternate Measures of Meaninglessness. The inference of meaningless activity based on watching
directory opens and counting potential �le accesses, discussed in Section 6.1, p. 63, could be modi�ed
in various ways. For example, it might be useful to consider creates by meaningless processes to
be themselves meaningful, since �les that the user is writing are almost always of interest to him.
Another option would be to ignore only PEEK references from such processes, on the assumption that
most meaningless processes merely look at �le attributes, rather than opening the �les. Exceptions
such as tar would need to be listed in the instruction �le (Section B.2.4, p. 143). We plan to investigate
the e�ects of these alternatives in the future.

Process-Speci�c Distance Summaries. Although Seer calculates semantic distance separately for each
process, the value that is stored in the �le table is a summary of the distances for all processes. It
might be interesting to maintain a separate summary for each invoking program. Summarizing by
application would keep large distances generated by one program (e.g., an editor) from \polluting"
smaller values produced by another (e.g., a compiler). This approach is impractical with the current
data structures, but would be a fruitful area for further research.
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Automated Detection of Critical Files. The current approach to dealing with critical startup �les
(Section 6.3, p. 65) is unsatisfyingly ad hoc. We would prefer to invent an automated method, and
plan to investigate various options in our further research.

Other Relationship Hints. There are a few Unix system calls that are not currently traced, but could
be. For example, chmod and chown generate legitimate �le references. The lack of tracing for these
calls has not been a problem because they tend to occur in conjunction with other activity, but we
plan to add them to the trace list in the future. More interesting is the pipe call, which indicates an
unusually tight relationship between the processes at the ends of the pipe. Seer currently detects this
relationship as a side e�ect of other activity (primarily the parent/child relationship), but it might be
useful to treat pipe as a special case and use it to infer a tighter binding than is currently detected.

Improved Rename Handling. As discussed in Section 6.9, p. 68, important �le relationships can be lost
in certain renaming situations, such as backup-by-rename. It would be desirable to preserve the source
�le's relationships immediately after a rename, in case it was immediately recreated, discarding it later
through a garbage-collection algorithm similar to that used by the deletion manager.

10.1.2 Alternative Designs for Prediction

Seer predicts hoard needs through a combination of clustering based on semantic distance, and LRU
analysis of the clusters. There are other ways to predict; this section summarizes some of the more promising
approaches.

Text Compression. Several authors have suggested using text-compression techniques to drive predictive
caching algorithms [Curewitz et al . 1993, Kroeger and Long 1996, Vitter and Krishnan 1996]. Similar
techniques could be adapted to generating clusters: if the text-prediction table indicated that the
reference sequence fA;B;Cg is followed by D more than a certain percentage of the time, then it
would make sense to cluster D with the preceding three �les.

Incremental Clustering. When Seer develops its clusters, it always starts from scratch. This design is
wasteful, since most of the clusters do not change quickly, and the slowness of clustering suggests that
signi�cant performance bene�ts could be achieved if old information could be reused. An incremental
clustering algorithm would start with the previous clustering and try to improve it based on recent
the changes in �le relationships. Iterative clustering algorithms are amenable to this approach. We
would like to investigate adapting one of these algorithms to Seer's needs, in hopes of improving the
performance at clustering time.

Hierarchical Clustering. Clustering algorithms are generally divided into two classes: hierarchical and
non-hierarchical [Duran and Odell 1974, Hartigan 1975, Sp�ath 1980]. The former class naturally
produces a tree of \nested" clusters, generally rooted by a single cluster containing all objects. This
structure is attractive for a hoarding system, since one could start at the bottom of hierarchy and hoard
�les while climbing higher, until the hoard was full. This design would tend to �ll the hoard with the
maximal set of �les related to the important projects, possibly decreasing the chance of a work-stopping
hoard miss. Of course, such an algorithm would still have to tolerate overlapping clusters, which is a
requirement that is at odds with the characteristics of most existing algorithms. We plan to investigate
hierarchical algorithms in the future.

Cluster Merging. The agglomerative clustering algorithm is driven only by the distance between clusters.
It would be interesting to investigate an algorithm that merged several very similar clusters into a
single slightly larger one. For example, if two clusters each contained over 15 members and over 90%
of the members were held in common, it might be bene�cial to combine them into a single larger
cluster.
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However, one must be wary of pathological situations. For example, many compilation projects have
large numbers of include �les in common, but it would be unwise to combine these common �les into
larger clusters because of this sharing.

Decaying Relationships. The World Wide Web has the characteristic that the transitive closure ap-
proaches an all-ones matrix, because many high-level Web pages contain pointers to other major pages
that in turn lead indirectly to most of the Web. For example, the Yahoo directory service attempts to
catalog the Web comprehensively, so any page that contains a link to Yahoo will indirectly point at
millions of other pages. A clustering method that simply looked at link relationships would probably
generate a single cluster containing the entire Web. An alternative would be to use a method that
decayed in some manner as it transited links, so that no page would cluster with one that was more
than a few links away unless there were also a more direct path to that page. It is possible that this
decay could be implemented as an aspect of the distance measure calculated between Web pages.

Adaptive Distance Heuristics. When a hoard miss occurs, there is currently no way for the user to give
feedback that might improve Seer's internal algorithms. A more adaptive system might display an
access history to the user, allowing him to indicate a point where an inference about relationships
might have been made, but wasn't. This feedback could then be used to modify the parameters of the
semantic-distance or clustering algorithms so that they would perform better in the future.

Considering Communication Costs. Currently, Seer assumes that communication is cheap when chan-
ging hoard contents. Ashvin Goel [Goel 1996] has noted that if the hoard is being updated over a slow
link, �le size might be an important factor in the equation. It might be better to risk a hoard miss on
a medium-priority �le rather than spending a long time downloading it, if skipping it would make it
possible to use the time loading a larger number of other �les, even if they were of lower priority. This
additional consideration would be relatively easy to implement by simply adding �le size as a weighting
factor when �les were being sorted by priority, prior to hoarding (Section 5.3.4, p. 55). Ideally, the
weight would based on the cost of moving the entire cluster, which would be a�ected both by the sizes
of other members and by which members were already present in the local hoard.

Cluster Temperatures. Some other researchers [Salem et al . 1992, Staelin and Garcia-Molina 1990] have
suggested using a \temperature" to characterize the activity or popularity of a cache object. The idea
is that the temperature rises higher (usually in a linear fashion) whenever an object is accessed, and
decays over time, usually exponentially. An object that is used frequently will gain a high temperature,
which will then take a signi�cant time to decay. (LRU is a temperature algorithm in which the
temperature rises to a ceiling on each access, and decays linearly.) If a cluster temperature (without
a ceiling) were used to drive the hoard-�lling algorithm, the user might perceive better behavior than
the current LRU scheme, because a high-temperature cluster would remain in the hoard even if the
user worked on di�erent �les for a few days.

Other Methods of Incorporating Investigators. When clustering, Seer uses Manhattan distance to
combine information from external investigators with the shared-neighbor count from semantic-distance
measurements. We would like to investigate other methods of combining measures, including using
modi�ed Euclidean methods and doing the combination at a level other than the shared-neighbor count.

10.1.3 Implementation Improvements

As with any large software project, the �nal implementation of Seer is not ideal in all respects. This section
discusses major candidates for improvements in the code.

Pathname Rewriting. We have mentioned (in Section 5.2, p. 52) that the correlator can accept trace
information from multiple observers. This feature is designed to support users who may prefer to
use a larger desktop machine when it is available. In many installations, di�erent machines may use
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di�erent pathnames to access the same �les. For example, the user's home directory might be stored
under /h/users on one machine and under /home on another. In such situations, it would be desirable
for the correlator to be able to rewrite pathnames on a per-machine basis, so that a reference to
/h/users/geoff/foo on the desktop would cause /home/geoff/foo to be hoarded on the laptop.

A related issue is the question of multiple hardware architectures. Most versions of Unix require
executable �les to contain machine code for the executing host.4 If the user executes a program on
a Sparcr desktop, it would be useless for Seer to hoard the binary on a Pentium-based portable.
Instead, the corresponding binary for that architecture should be selected. On many networks, the cor-
rect choice can be achieved through pathname rewriting (for example, replacing the string \/sparc/"
with \/x86/").

External Predictors. Although Seer makes very successful predictions based on generalized inferences,
it is conceivable that a specialized predictor might be able to do better in certain circumstances. It
would be useful to have an interface, similar to that used for external investigators (see Section 5.4.1,
p. 56), that would allow an external prediction mechanism to feed information to the correlator for
use in hoarding decisions. Such an interface would need to include priority information in a form that
could be integrated with the internal priorities used to �ll the hoard.

An extension of this idea would be to create an external hoard manager. Currently, hoard-management
decisions are made internally in the correlator, and then fed to the replication substrate. It might
be more exible to have the correlator feed a prioritized list of �les to an external hoard manager,
which could then integrate other information in making the �nal hoarding decision. The drawback to
such an approach is that the current design makes hoarding decisions based on cluster membership,
rather than a simple per-�le priority, so that an external manager would also have to be aware of these
clusters. The extra communication overhead and complexity required for such an approach might
overshadow the bene�ts of exibility, so that a more e�cient alternative design might be preferable.

Investigation Requests. The current design for external investigators (see Section 5.4.1, p. 56) assumes
that the investigators are invoked by an unspeci�ed mechanism outside the purview of Seer, and that
they spontaneously feed information to the correlator. An alternative design would support a more
automated and interactive approach, in which the correlator could select a group of �les that were
of particular interest (perhaps because they were near the \boundary" of a hoarding decision), and ask
that various investigators be run on them. This capability would allow the investigators to respond to
the dynamic needs of the system, rather than gratuitously providing information that might never be
of practical value.

Trace Annotation. For development evaluation purposes, it would be useful to know the user's opinion
regarding the beginning and end points of various tasks. A utility similar to that described in [Tait et
al . 1995] would make it possible to record this information for later analysis, which could be invaluable
in comparing various parameter settings and clustering algorithms.

Maintaining Constant Free Space. To add control for research purposes, we implemented Seer so that
the total hoard size is �xed. For a production system, it would make more sense to attempt to maintain
a certain amount of free disk space, and let the hoard size vary as a function of the free space. If free
space became low while the machine was disconnected, Seer could ask the replication system to evict
the �les least likely to be needed. This decision would be made based on the most recently available
information, rather than being restricted to the hoarding priorities calculated before disconnection.

On-Disk Data Structure. To simplify the research implementation, we chose to store all of Seer's data
structures in the correlator's main memory, even though we knew that the database would be very
large. Seer would have signi�cantly less impact on small machines if the database were kept mostly

4Two notable exceptions are systems that provide automatic emulation of di�ering architectures, and the \fat" binaries
supported under NeXTStepTM.
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on disk, with only current �les kept in main memory. Moving the information to disk is primarily
an engineering problem, albeit a nontrivial one. One helpful characteristic is that most �les are not
actively referenced at any given time, and the database only needs to be accessed and updated when a
�le is referenced. If an incremental clustering algorithm were used, the on-disk portion of the database
could also be excluded from the clustering process. This observation leads us to believe that an on-disk
solution could be both practical and e�cient.

File Compression. At its most fundamental level, Seer is a disk-space manager. One of the most popular
ways of managing disk space is to compress �les. This fact leads to the idea, �rst suggested by An-
I Wang, that Seer could initiate �le compression and decompression rather then moving complete
�les between the hoard and some other replica. Ideally, such a facility would be integrated with the
replication system so that compression was an intermediate state between being stored and unstored.

Remote Correlation. The current correlator runs on the portable computer, which is wasteful of pre-
cious resources. It would be better to have a di�erent split of responsibilities, performing only minimal
activity on the portable, and moving the rest of the computation to a �xed machine on the host net-
work. However, since this approach would require extensive logging on the laptop and replay of the
logs at reconnection time, it is possible that the cost of logging and replay would exceed the cost of
running the correlator locally.5 We plan to investigate this tradeo� in detail in the future.

10.2 Further Studies

Although we have done extensive studies that show Seer works well in a real setting, there is ample oppor-
tunity for further investigation of the interaction of various factors.

Parameter Settings. The current values of internal parameters were chosen using relatively ad hoc meth-
ods (see Section 6.12, p. 71). Now that we have developed the miss-free-hoard-size measure (Sec-
tion 7.1.3, p. 78), it is possible to do a much better job of evaluating the e�ects of various parameters.
We plan to do extensive simulations to optimize the parameters in the future. At the same time, we
will investigate the sensitivity of the various hoarding methods to deviations of the parameters from
the optimum.

E�ect of Investigators. As discussed in Chapter 8, the external-investigator feature has proven disap-
pointing in that it does not seem to have the expected e�ect on system performance. Since the weights
assigned to external investigation are also system parameters, the same parameter-�nding techniques
discussed above can be used to optimize these weights. We hope that improved weight settings will
make a large di�erence in the utility of external investigators.

E�ect of Process Trees. Although we have adopted Tait's paradigm of tracking the Unix process tree
and separating references according to process (Section 6.8, p. 68), we have not yet compared Seer's
performance with and without this feature. Seer has a run-time option that allows this feature to be
disabled, so we plan to run further simulations to quantify its e�ect.

Cluster Stability. Currently, Seer rebuilds its clusters from scratch every time it needs to recalculate the
hoard. We have hypothesized above in the discussion of an on-disk data structure (Section 10.1.3) that
advantages could be gained from using an incremental clustering algorithm. However, an incremental
approach would only be useful if cluster membership tends to be stable. We plan to investigate the
stability of cluster membership in future studies before experimenting with incremental algorithms.

5Some replication systems, such as Coda and Little Work, already keep such logs for their own purposes. Remote
correlation might be especially attractive on these systems.
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Other Operating Systems. Although some of the issues addressed in Chapter 6 are applicable to all
operating systems, others are Unix-speci�c. A port to a dissimilar system such as Windows 95
would reveal many of these di�erences, and would highlight important questions for operating system
designers.

Other User Communities. A port to Windows 95 would also allow Seer to be deployed in other
application environments. Based on the studies reported in Chapter 2, we have strong reason to
believe that Seer would work well in these environments, and we plan to perform studies to quantify
this belief.

10.3 Other Applications of Predictive Hoarding

The ideas behind predictive hoarding can be applied to other arenas. This section discusses some of the
more interesting applications of the concept of prediction.

Directory Reorganization. Leonard Kleinrock has suggested [Kleinrock 1994] that Seer could be used
as an aid to directory reorganization. When a user had an overly large directory, or felt that his
�les were scattered among unrelated directories, the clustering information developed by Seer could
be displayed to the user or fed into an automated tool that would help the user �nd a more logical
organization. (Of course, the user would probably also need an auxiliary tool to help him �nd his �les
in their new locations!)

Disk Layout. Recent studies [Aky�urek and Salem 1995] have suggested that dramatic performance im-
provements can be achieved by rearranging blocks on the disk in response to access patterns. Current
work has concentrated on \hot" blocks without considering their interrelationships, but it is likely that
even more bene�t could be gained by using using Seer's high-level semantic awareness to drive a disk
reorganizer. The clusters generated by Seer could be placed physically close to one another on the
disk, potentially improving I/O performance. With appropriate changes to the on-disk data structures,
the I/O system could also take dynamic advantage of Seer's clusters to further enhance performance.

Access Control. In an environment with strict access controls, an approach similar to Seer might be
able to contribute to access management by detecting users who need access to certain groups of �les
(projects).6 It could also help with security auditing by detecting unusual inter-project relationships.

Higher-Level Adaptation. A side e�ect of managing a portable computer's hoard is that Seer is aware
of what applications a user is likely to (or indeed is able to) run. This information could be provided
to higher-level services so that they could optimize their behavior. For example, if the hoard contained
a large number of communication-dependent programs, a network manager might choose to maintain
more routing information so that a connection could be established more quickly.

Other PredictionEnvironments. The techniques pioneered by Seermay be applicable to a large number
of other environments that might bene�t from prediction. Some of these applications include Web
browsing, disk access, network routing [Krishna et al . 1997], ftp caching, process scheduling, and
network capacity planning. Outside computers, the ideas pioneered by Seer could be applied to �elds
such as logistics or warehousing.

Many of these applications pose signi�cant research problems of their own. For example, a Web
predictor should be able to draw inferences even in the face of the daily link-name changes used by a
number of information providers.

6This idea was �rst suggested by Mike Beresford [Beresford 1995].
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10.4 Ancillary Research

The development of Seer has raised several side issues that, while not directly relevant, are nevertheless
interesting in a larger context.

Hoard Residence Lifetimes. Ashvin Goel has suggested [Goel 1996] that it would be interesting to
track statistics on how long �les spend in and out of the hoard. There are actually two distributions of
interest: the time spent in the hoard, and the time spent as a member of the daily or weekly working set.
The shapes of these distributions might provide insight into both user behavior and the e�ectiveness
of various hoarding schemes.

Algorithms for Overlapping Clusters. Most past clustering research has concentrated on algorithms
for �nding distinct clusters. We believe that there are many applications for the overlapping clusters
employed by Seer. For example, clustering algorithms are sometimes used for biological classi�cation,
but recent research has suggested that it is not always bene�cial to separate species according to strict
boundaries. In the future, we plan further research to develop and characterize new algorithms that
can support the concept of overlapping clusters.
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Chapter 11

Conclusion

Our research has encompassed a number of signi�cant subproblems and produced a complex and successful
system for predictive hoarding. In this chapter, we will review the highlights and important contributions
of the project.

11.1 Summary of the Problem

The need for predictive hoarding arises because of the lack of adequate network connectivity for mobile
computers. Users who operate disconnected must be assured that they will have access to all necessary
�les while they are away from the network. There are a number of approaches to addressing this problem,
including limiting the user's working set to what will �t on a portable machine's disk, or requiring the user
to hand-specify the chosen �les in some fashion.

A third approach is to automate the �le selection, dynamically predicting the set of �les that the user
will need while disconnected, and hoarding only those �les on the laptop. Seer is a system designed to
accomplish this automation.

Two of the biggest di�culties facing any automated hoarding system are hoard misses and attention
shifts. Hoard misses, in which a required �le is found to be unavailable during disconnection, are very
damaging to the user's ability to get work done. Often, the lack of a single �le will be su�cient to stop work
on a particular task, and the user must respond by shifting to a less important task or even shutting the
computer down and stopping work. Even when work can continue on the main task, the character of the
work must usually change because of the lack of the desired �le.

Attention shifts occur when a user switches to a new task, one that has not recently been active. This
causes problems because the hoarding system must respond quickly and accurately to this behavior change
by hoarding the �les necessary to accomplish the new task.1

11.2 Seer's Approach to Hoarding

Seer addresses the problems of hoarding by considering the user's �les in terms of a set of projects, each of
which is treated as a unit. By grouping together all �les needed to work on a particular task, Seer is able to
take an all-or-nothing attitude towards hoarding: if a task is important to the user, he can be con�dent that
100% of the �les needed to accomplish that task are present when he disconnects. This greatly reduces the
probability of a hoard miss, because if a task is currently active, it will be hoarded in its entirety. A hoard

1Since hoard changes can only be accomplishedwhen the computer is connected, the system cannot respond well to attention
shifts that occur during disconnection. In this case, the system should recognize the desire to accomplish new work, and hoard
the appropriate �les at the next opportunity. However, our data indicates that most attention shifts begin while the computer
is still connected, so that the system can often recognize a shift and prepare for it prior to disconnection.
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miss can only occur if a task has been inactive and suddenly becomes of interest, which is the de�nition of
an attention shift.

No hoarding system can deal with attention shifts that occur while disconnected, but Seer's project-
based design lessens the impact of while-connected attention shifts. As soon as the user begins work on a
long-ignored project, Seer will recognize that the project is again active and arrange to hoard it. It is not
necessary for the user to explicitly notify the system of the new activity, nor is it necessary for him to access
every �le that is a member of the project. The user's normal work patterns will serve to ensure that the new
project is hoarded.

Seer discovers projects by observing the user's actual behavior. The �le reference stream is monitored
both to infer relationships among �les, and to learn which �les are currently in use. The inter-�le relationships
are then used to build clusters that represent projects. Finally, the projects represented by active �les are
chosen for hoarding, and a separate replication mechanism arranges for these projects to be present on the
mobile computer.

11.3 Contributions to the Hoarding Problem

The Seer research has addressed a number of signi�cant subproblems as part of building a predictive
hoarding system. These include:

Analysis of user behavior. To determine whether predictive hoarding was feasible, we conducted an
extensive long-term study of user behavior in the real world. We were fortunate to be allowed to
investigate three types of users in a business environment, rather than being limited to observing a
small software research group. This work is reported in Chapter 2.

Semantic distance. To allow Seer to infer �le relationships, we have invented a new measure, called se-
mantic distance, proved fundamental theorems to establish complexity bounds, and developed e�cient
estimation algorithms for the measure. Semantic distance and the associated algorithms are described
in Chapter 3.

Fast clustering algorithm. Seer's project-based approach uses semantic distance as input to a clustering
algorithm. Because of the amount of data involved and the requirement for overlapping clusters
discussed in Section 6.4 (p. 66), we developed a new algorithm to generate the necessary clusters. The
algorithm and its background are discussed in Chapter 4.

Predictive hoarding system. Building on the foundations of semantic distance and clustering, we de-
signed and implemented a working portable predictive hoarding system. This system is described in
Chapters 5 and 6, and Appendix B.

Measurement methodology. Previous studies of predictive hoarding have been hampered by the lack of a
standardized metric that can be used to summarize and compare the performance of di�erent systems.
We have invented a number of methods for characterizing hoarding systems, including several that
allow di�ering approaches to be compared in a controlled, scienti�c, and meaningful manner. These
measures are presented in Chapter 7

Successful results. Using our new metrics, we have analyzed the behavior of our own hoarding system,
�nding that it performs even better than we had hoped. In simulations, Seer was able to operate
miss-free with a hoard size only a few percent greater than the optimum, compared to an excess of
as much as 1000% required by LRU-style approaches. In live deployment with real users, 96% of all
disconnections were completely successful (in the sense of being free of misses), and there were no
instances where a user was forced to completely stop work because of missing �les. A detailed analysis
of Seer's performance is given in Chapter 8.
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11.4 Final Comments

Hoarding is a relatively new problem, having arisen only with the development of portable computers with
nontrivial capabilities. Earlier systems have attempted to ease this problem in various ways, but all have
placed some level of the burden on the user, and none have reported quantitative measures of success. Seer
extends this prior art by removing all requirements for user input and providing a numerical evaluation of
the e�ectiveness of the system.

We believe that the concept of prediction has applications far beyond mobile hoarding. Simple modi�c-
ations to the Seer concept can be applied to Web caching and disk performance, and further extensions
raise the possibility of insights in areas as diverse as multiprocessor schedulers and user interfaces. Seer is
a successful system, and may also be a pointer to a new direction for computer research.
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Appendix A

A Simple Replication System

Seer is designed to be able to operate on top of nearly any �le replication service. To demonstrate its
portability and exibility, and to simplify testing, a simple replication system called Cheap Rumor was
developed. This appendix describes the major features of that system.

A.1 Features of Cheap Rumor

As discussed in Section 5.5, p. 58, Seer places only very minimal requirements on the underlying replication
substrate. However, its usability will be greatly enhanced by the addition of a few extra features. Cheap
Rumor was designed to provide all of the features that were both easy to implement and necessary for
a reasonable level of user convenience. These features include all of Seer's basic requirements, plus the
following additions:

� Multiple replicas (limited to a master-slave con�guration, in which a master machine stores all �les
and a slave stores a selected subset)

� Seer-independent hoard changes

� Conict detection

� Status queries

� Location queries

� Command batching

� Disconnected queries

In addition to implementing only limited capabilities, Cheap Rumor does not address some of the more
subtle and complex issues handled by the Ficus [Guy 1991] and Rumor [Gunter 1997, Reiher et al . 1996]
systems. For example, Rumor goes to great lengths to detect and properly process rare pathological cases
involving �les that have changed and had their modi�cation times reset during a 1-second window while
Rumor is reading their contents. Cheap Rumor ignores situations of this sort, instead expecting that the
user will avoid Byzantine behavior.

A.2 Design of Cheap Rumor

Cheap Rumor consists of two simple programs, cheap_control and cheap_reconcile, both written in
the Perl [Wall and Schwartz 1991] scripting language. Cheap_control handles replication control (subset
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replication), status reporting, and the creation of new Cheap Rumor volumes, while cheap_reconcile

handles update propagation and conict detection.

A.2.1 Cheap Rumor Volume Organization

Files controlled by Cheap Rumor are organized into volumes consisting of selected subsets of directory
trees. A Cheap Rumor volume comprises a root directory and all �les within it, plus all �les and directories
contained in descendants of the root, but excluding any subtree that is itself a Cheap Rumor subvolume.

A Cheap Rumor volume is identi�ed by the presence of a directory named cheap_rumor_x_y in the
root of the volume, where x and y are the host names of the two machines storing copies of the volume.1

This directory contains control information used by the replication system. Currently, two control �les are
used:

parameters stores volume parameters, such as the location of the matching replica on the cooperating (�xed
or portable) machine.

filelist contains a database of all known �les in the volume, including attribute information needed to
control subset replication and support update and conict detection.

A.2.2 The Cheap Rumor Database

The heart of Cheap Rumor is the �le database, which is a Perl associative array indexed by the full path-
name of the �le on the local machine. For each known �le, Cheap Rumor stores the following information:

� A �le-existence ag, which indicates that the �le exists on one or both machines,

� A replication ag, indicating whether the �le is stored on both the master and slave machines, or only
on the master,

� An ignored ag that indicates that the �le is allowed to di�er between the two replicas, and updates
will not be propagated,

� The �le type (directory, plain �le, etc.),

� The �le permissions and ownership,

� The size of the �le in bytes,

� The last modi�cation time of the �le,

� A checksum of the �le's contents, and

� The link target, if the �le is a symbolic link.

This information is su�cient to detect new �les, updates to existing �les, and deletions. It cannot detect
renames (which are seen as a deletion and a creation of a new �le) and does not maintain \hard" links
(which are seen as a second �le containing the same data).

The \ignored" ag is of special interest, as to our knowledge Cheap Rumor is the �rst replication
system to support it. We feel that this feature is critical to to the usability of a replication system that runs
on dissimilar machines. For example, a user might wish to mark a con�guration �le as ignored so that the
portable machine can be set up slightly di�erently than the �xed workstation.

1To ensure consistency in naming, x is always the lexically �rst name.
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A.3 Cheap Rumor Algorithms

A.3.1 Terminology

As mentioned previously, Cheap Rumor supports a master-slave replication model. When an operation
requires both machines to be involved, the machine that begins the operation is called the initiating machine.
During a multi-machine operation, one machine is a client to the other's server. Usually the initiatingmachine
is the client, but the roles are reversed during the second phase of reconciliation.

A.3.2 Functions of cheap_control

As mentioned above, cheap_control handles the following functions:

� Volume creation

� Subset replication

� Status reporting

All of these functions are very simple, but only status reporting can be done without access to the remote
machine.

Volume Creation

Creation of a Cheap Rumor volume is very simple, because of the way unknown �les are handled by
cheap_reconcile. cheap_control merely creates the root directory of the volume (if necessary), the
cheap_rumor_x_y directory, and the parameters �le within it. These operations are carried out on both
of the computers that store the volume. The all-important database is then created by cheap_reconcile,
which is invoked automatically by cheap_control for this purpose.

Replication Changes

Changing the replication status of a �le involves looking up the �le in the Cheap Rumor database to
compare the current status against that desired. If they di�er and the �le is currently replicated on both
master and slave, cheap_control also compares the update status of the local and remote �les against the
database (using the server functions of cheap_reconcile, described in Section A.3.3, p. 129), and refuses
to change the replication status if information would be lost. Assuming all of the tests have been passed,
cheap_control then updates the database (both locally and remotely) and either deletes or creates the �le
on the slave machine, as appropriate, again using the reconciliation server to perform the operation remotely.

In addition, cheap_control runs the controller to notify the correlator of the change in replication
status. The noti�cation is done before the �le is deleted or created, which is critical because Seer does not
give any special treatment to cheap_control. (If the �le were deleted without �rst informing Seer, Seer
would remove the �le from its internal tables and lose all clustering information and awareness of the �le's
very existence. By keeping Seer informed, the internal tables are modi�ed to indicate that the �le exists
but is not stored locally, so that it can later be recovered when the user needs it.)

Status Reporting

Status reporting is the only Cheap Rumor function that can be done without contacting the remote replica.
Information from the database is simply extracted and formatted for presentation to the user.
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A.3.3 Functions of cheap_reconcile

cheap_reconcile handles the remaining functions of Cheap Rumor:

� Two-way update propagation

� Deletion propagation

� Conict detection

All of these functions are handled simultaneously by comparing the saved database with the current
status of both machines.

The Reconciliation Process

Reconciliation can be initiated on either the master or slave replica of a volume. Regardless of where the
process is initiated, there are two similar phases, the �rst controlled by the initiating machine and the
second by its partner. In each phase, the controlling machine operates as a client to a reconciliation server
running on the other side. During the two phases, a new database is built based on the old database and
the information discovered during the phase. At the end of reconciliation, the new database replaces the old
one.

The �rst reconciliation phase searches the entire Cheap Rumor volume on the initiating machine for
�les and directories, starting from the root of the volume. If a particular directory (other than the root)
contains its own cheap_rumor_x_y control directory, then it is the root of a sub-volume and is not examined
further. Otherwise, the database is checked to see if the �le is ignored. This check is done before descending
into a directory, so that marking a directory as ignored will suppress Cheap Rumor's control of an entire
subtree. If so, no further processing is done on the �le.

In all other cases, three sets of �le attributes are collected: one from the old database, one from the �le
on the client machine, and one from the �le on the server. These attributes are then compared and reduced
to six Boolean variables:

oldExists is true if the �le was listed in the database,

fullyReplicated is true if oldExists is true and the �le was marked as being replicated on both the
master and slave machines,

localSame is true if the client �le matches the recorded values in the database,

remoteExists is true if the �le exists on the server machine,

remoteSame is true if the server �le matches the recorded values in the database,

remoteMatchesLocal is true if the client and server �les match each other.

The reader will note that there is no variable named localExists, because it would always be true.2

The meaning of the term comparison of attributes varies with the �le type. It always includes the type
itself. For everything except symbolic links the ownership and permissions are also compared; for symbolic
links only the link targets are compared (after being adjusted to compensate for the di�erent pathnames of
the root of the volume on the two machines). In the case of ordinary �les, the modi�cation time, size, and
(if necessary) checksum are also considered.

Reconciliation involves analyzing and resolving the 64 states of these six variables. Of course, some of
the states are impossible; for example, if remoteMatchesLocal is true, then localSame and remoteSame

must necessarily be equal.
Briey, the important cases are as follows (the cases must be evaluated in the order listed). Boolean

negation is indicated with a preceding exclamation point.

2The implementation actually includes this variable, but only for clarity and consistency.
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remoteMatchesLocal Regardless of the previous state and whether the �le previously existed, it is now fully
replicated and is consistent across both copies. The current status of the �le is entered into the new
database.

Because this case is independent of the original state of the database, it handles both the common
situation of an unchanged �le and the case where a new �le is copied to the other machine by the user.
It also takes care of building the initial database when a new volume is created.

!remoteExists The �le exists on the client but not the server. The precise action to take depends on the
previous state in the database. If oldExists is true, then the �le must have been deleted, so we delete
it locally. Otherwise, a new �le has appeared on this replica. If it is the slave replica, the �le is copied
to the master (because all �les must appear on the master). Then the new information, including
partial-replication status, is entered in the database.

!localSame or !remoteSame The �le has been updated on one or both machines. If the update was on
both computers, a conict exists, which is reported to the user (who may optionally take immediate
action to resolve the problem). If the update occurred on only one computer, it is propagated to the
other by copying data and attributes.

In the second phase of reconciliation, the client and server switch roles.3 The actions of each are the
same, except that the new client does not need to re-examine any �le that was already tested during the �rst
phase. Thus, this phase will only discover �les that do not exist on the initiating side, i.e., �les for which
remoteExists will be false.

As an important side e�ect of the two-scan design and the fact that the new database is built from scratch,
�les that have been deleted from all replicas will simply disappear from the database with no special handling
by cheap_reconcile. Although this behavior is normally correct, it does mean that if the user marks a �le
to be ignored by Cheap Rumor, deletes that �le on both replicas, and later recreates it, Cheap Rumor
will forget that the �le should have been ignored. However, our experience has shown that this situation is
rare and does not cause problems for users.

One other important detail concerns the handling of directory removal. Unix does not allow a non-empty
directory to be destroyed. Cheap Rumor takes most actions immediately, while it is scanning the local
�lesystem in a breadth-�rst fashion. Thus, the deletion of a directory is detected before its children are
removed, which is problematical since a non-empty directory cannot be destroyed. To work around this
restriction, most directory deletions are pushed onto a pending-destruction list, which is processed just
before reconciliation terminates. To ensure that subdirectories are removed before their parents, the list is
sorted and processed in reverse order of pathname length.

The cheap_reconcile Server

We have mentioned that the computer that initiates reconciliation starts up a server process on the remote
machine. This server implements the following functions:

� Calculate and return the attributes or checksum for a given �le;

� Store new attributes for a �le in either the new or old database (the latter is used by the replication-
control facilities of cheap_control);

� Remove information regarding a �le from either the old or the new database;

� Read �le data and transfer it to the client, or accept �le data from the client and write it to the �le;

� Create a directory, named pipe, or symbolic link;

3Since both phases involve recursive scans of the local disk, it is theoretically possible to do both scans simultaneously to
reduce elapsed time. However, the current implementation does not take advantage of this inherent parallelism.
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� Destroy a �le or directory, optionally delaying the directory destruction until the end of reconciliation;

� Change the ownership, permissions, or modi�cation time of a �le or directory;

� Ask the user for guidance about an action to be taken (this function is used only during the second
phase when the user is physically present at the server machine and has chosen to work interactively);

� Inform the Seer system on the slave machine of changes in replication status;

� Terminate the server and enter the second phase of reconciliation.



Appendix B

Detailed Design of Seer

Chapter 5 gives a general overview of the structure of Seer and of important considerations in its design.
In this appendix, we discuss certain secondary details of the implementation that are nevertheless important
to a full understanding of the system.

B.1 Details of observer Design

To make inferences from user behavior, one must be able to observe the user in action. Since the behavior of
interest to Seer is embodied by system calls, our implementationmust be able to observe or infer what those
calls are. This information must then be collected and integrated to deduce �le relationships for hoarding
purposes.

B.1.1 Observing System Calls

As discussed in Section 5.2 (p. 52), a small kernel hook is used to collect information on system calls and
feed them to an observer that tracks user behavior. In this section, we discuss the rationale behind this
design and the details of our method.

Design Options

There are several ways to track the system calls made by a user application. There is also a subsidiary
question of the amount of processing that is to be done at the time of collection. The choice of methods will
have a signi�cant e�ect on the e�ciency and reliability of the system.

Options include:

1. Modify the application to report the necessary information.

2. Run the application under a tracing or debugging facility, interrupting it at appropriate times to collect
system calls and their parameters [Alexandrov et al . 1997].

3. Implement a pseudo-NFS �le system that traces I/O operations as a side e�ect of executing them [Duch-
amp 1997].

4. Replace the shared library containing the system-call routines with one that collects the information.

5. Modify the operating-system kernel to collect the information.

We rejected the �rst option, modifying applications, as being too di�cult and inexible. There is no
single point in an application where the necessary information can be collected, so changes would have to
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be sprinkled throughout the application code. Worse, this approach requires access to the source code, so
that it would not work with third-party applications.

The second option, using a tracing facility, is very exible, does not require invasive modi�cation of
existing code, and can trace all applications. Unfortunately, tracing can have a very signi�cant impact on
the performance of the traced program. Although we chose to make e�ciency a secondary goal, we felt that
we could not ignore the issue entirely, and this choice would have made the system too slow to be acceptable
to users.

The third option (a pseudo-NFS server) su�ers from a similar e�ciency drawback. There is no way to
intercept only opens and closes, without also intercepting reads and writes. Since we were not willing to
pay a hefty performance penalty for every I/O operation, we rejected this choice.

Option 4, replacing the shared library, is very attractive for a number of reasons. By avoiding kernel
changes, it greatly simpli�es development. Also, potential users are often much more willing to accept a
replacement library than a completely di�erent kernel. However, Unix implementations generally contain
some programs that do not use the shared library, so these programs would either have to be re-linked,
or would remain untraced. Worse, this approach would require every application to have some sort of
communication path between itself and the Seer software. Under Unix, establishing this path is di�cult
and time-consuming, and may cause unexpected side e�ects for applications that make assumptions about
the values or availability of �le descriptors.

The reader will note that the objections to option 4 are Unix-speci�c. We have not rejected this option
for other potential implementations, such as Windows, where modi�cation of Dynamically Loaded Lib-
raries (\DLLs") is a standard method for accomplishing such tasks. However, for our current Unix-based
implementation, this approach does not satisfy our requirements.

The �nal option, modifying the kernel, presents greater implementation di�culties, but also o�ers signi-
�cant advantages. The tracing can usually be done by capturing system calls at a single common point (with
minor exceptions; see Section 6.14, p. 72), and maximum e�ciency is possible because all of the required
information is already available as part of the system call. Communication with the rest of Seer can be
implemented through \extracurricular" means without a�ecting the traced processes. All applications can
be traced, regardless of provenance, and the cost of tracing is paid only for those calls that are actually
captured. Because of these considerations, we chose to add tracing code directly to the kernel for our Unix
and Linux implementations.

Observation under Unix

Kernel Hook As discussed above, the implementation we chose for Unix involves modifying the kernel.
However, we were careful to limit and encapsulate these modi�cations to ease portability to other systems.

Most Unix and Unix-like systems use a single point of entry into the kernel to provide system-call
services to client applications. The user-level process provides a system-call number and a list of arguments
speci�c to the particular operation. The format and manner of passing the system-call number and arguments
vary between Unix implementations and processor architectures, but they are always readily available to
kernel code.

It is the common point of dispatch that greatly eases the task of observing system calls. In our modi�c-
ation, we added a new routine, observer_syscall, which is called both before and after every system call
is executed. Arguments to observe_syscall include the system-call number, a ag indicating the circum-
stances of the call (before or after dispatch, or a special-case call), a pointer to the arguments of the call,
and return values from the call (if the trace is collected after the call is executed).

The tracing routine performs a table lookup on the system-call number and circumstances to determine
whether a trace should be collected. If so, it is placed in a bu�er for later delivery to the observer. If the
bu�er is full, and an observer is actually running, the traced process is blocked until space is available. If
there is no observer, however, the oldest saved trace is simply discarded, preventing deadlock at startup or
if the observer crashes.

Table B.1 lists the system calls traced under Unix.
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access chdir chroot close creat

dup2 dup execveb execvb exitc;e

fchdir fchroot fcntl forkd link

lstat mkdir mknod open readlink

renamee rmdir stat symlink truncate

unlinke utimes vforkd

aTraced before system call executes.
bTraced both before and after system call executes.
cNot traced through the common dispatch routine.
dTraced through common dispatch under Linux but not SunOS.
eTraced even for the super-user.

Table B.1: Tracing of Unix System Calls.

The variable-length trace packet is designed to minimize space requirements. For each traced call, the
kernel records an internal code indicating the system call invoked, the return value of the call, the error code
(if it failed), the exact time in microseconds, the user ID, the ID of the invoking process, and a set of ag
bits. In addition, one or more selected arguments, usually �lenames, are captured.

Special-Case Traces Certain Unix system calls do not lend themselves to tracing via the common point
of dispatch, for reasons related to the internal implementation of the kernel. These calls are discussed more
extensively in Section 6.14 (p. 72). To capture them, we were forced to modify the call-processing routines
themselves. Fortunately, only a very small number of calls need such treatment (see notes c and d in
Table B.1).

Untraced Processes Because tracing is done in a blocking fashion, deadlock is a possibility if any process
in the Seer subsystem is itself traced. For example, the system calls made by the observermust be ignored
by the tracing subsystem.

Seer uses several mechanisms to avoid deadlock. First, all system calls made by the observer are
ignored. Second, any process may suppress tracing by opening a special pseudo-device, /dev/seer_notrace.
Third, because certain system daemons are invoked indirectly by Seer, most calls made by the super-user
(root) are also ignored (see Section 6.13, p. 72, for more information).

Trace Driver The traces collected in the kernel are made available to the user-level observer via a
standard Unix driver interface. Each read call returns one or more complete trace records to the observer,
removing them from the bu�er in the process. The driver does not support writes.

B.1.2 Trace Packet Processing

The trace packets are read from the kernel and processed by the observer, as outlined in Section 5.2, p. 52,
before being passed on to the correlator.

Most of the packets sent from the observer to the correlator are changed very little from what the
kernel provides. However, there are three notable exceptions:

File Handles Some system calls (e.g. close) operate on �le handles returned by the open call, rather than
�le names. To simplify processing in the correlator, the observer keeps track of the relationship
between �le names and �le handles, and converts between the two.1

1Under Unix, this tracking is complicated by the dup system call and by the replication of �le descriptors when processes
are spawned.
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Relative Pathnames When a �le is referenced by a user process, the programmer has the option of specify-
ing a pathname relative to the so-called current working directory of the process. Again, the observer
simpli�es processing for the correlator by converting these relative names into their absolute equi-
valents.

Canonicalization Normally, the pathnames sent to the correlator are absolute, but are not necessarily
in their simplest form, and they may contain references to symbolic links. Canonicalization is handled
by code inside the correlator itself. However, if the correlator is not running on the same machine
as the observer, some of this canonicalization may need to be done locally (because the symbolic links
may not exist on the remote machine).

Packets are sent to the correlator using standard inter-process communication facilities. To ensure that
no traces are lost, they are sent in blocking mode. If the correlator is talking to multiple observers (see
Section 5.2, p. 52), it will read and process packets in timestamp order. Ordered processing assumes that
clocks are synchronized fairly well, which is true in modern systems that run a protocol such as NTP [Mills
1989, Mills 1994]. Timestamp synchronization is discussed further in Section B.2.2.

B.2 Correlator Design

As outlined in Section 5.3 (p. 53), the correlator is the heart of Seer and has many responsibilities, which
are reviewed in that section. Details of these operations are given below.

B.2.1 Interprocess Communication

The various parts of Seer communicate with each other using standard networking facilities. For simplicity,
all communication is done via reliable bidirectional streams; in Unix, sockets are used for this purpose.
The correlator is the master process and operates in a \server" mode, accepting connections from other
processes as necessary.

Observer/Correlator Communication

When the observer starts up, it attempts to open connections to one or more correlators. Each cor-

relator is chosen based on command-line arguments that identify the location of the correlator and the
user it is monitoring. At the same time, the observer also opens up the Seer kernel device and begins
reading trace packets. Each packet is distributed to zero or more correlator connections, depending upon
the characteristics of the packet and the user observed by each correlator.

From time to time, the observer/correlator connection may be lost. For example, a correlator

running on a portable machine may be removed from the network when the user takes it home. Upon
disconnection, the observer will continue to run and to provide packets to any still-connected correlators.
Packets destined for disconnected correlators are discarded.2 The observer makes frequent attempts to
reconnect to disconnected correlators, and when an attempt is successful, begins delivering packets again.

The assumption underlying this behavior is that the user serves as a human \activity token" that follows
the correlator through the world. Thus, when the machine with the correlator is disconnected from the
network, the user is also disconnected, and therefore he or she will generate no signi�cant activity. This
inactivity makes it acceptable to discard the few packets destined for that user. A more ambitious system
might wish to preserve these packets for later delivery, but we chose to avoid that complication.

The correlator is capable of accepting simultaneous input from multiple observers and controllers.
Under Unix, multiple inputs are implemented by using the select system call. Control commands are
generally executed immediately. If there are multiple observers (presumably running on di�erent machines),
their packets are queued briey and processed in timestamp order. However, this timestamp sorting applies

2However, they are still written to the debugging save �le, if any.
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only to observers that actually have input ready. If a particular connection does not have an incoming
packet, the correlator does not wait for the next packet before comparing timestamps. This skipping of
empty connections is necessary to prevent the correlator from blocking for arbitrarily long periods, which
would eventually cause the system to hang when the connections to other observers backed up.

Since observers (and controllers) may run on machines with a di�erent architecture than the cor-

relator, the latter program will perform byte swapping when necessary.
The observer generates packets of the following types:

CONTROL A \fake" packet generated by the observer to communicate control information, such as whether
the observer is replaying a saved debugging �le or reporting packets in real time.

NEWPROC Creation of a new system process, e.g. via fork.

EXEC Execution of a �le by a running process.

INTERPRET Execution of a script interpreter. Scripts require two �les, the script itself and an interpreter to
run it. The script is reported by the kernel as an EXEC, but the interpreter is discovered and reported
by the observer.

EXIT Exit of a running program.

PROCEXIT Termination of a system process. The di�erence between EXIT and PROCEXIT is that the former
is like a close, indicating that the �le referenced by the last EXEC is no longer active. The latter records
the �nal destruction of the process itself, and allows the correlator to remove that process from its
internal tables.

READ Read access to a �le without opening it (e.g., chdir).

RW Read/write access to a �le without opening it (e.g., an attempt to open an unhoarded �le for read/write).

CREATE Create (write) access to a �le without opening it.

DESTROY Destruction of a �le or directory.

RENAME Rename or move of a �le or directory.

OPENREAD Open of a �le for reading.

OPENWRITE Open of a �le for reading and/or writing.

OPENCREATE Open of a �le for creation (truncate/rewrite).

CLOSE Close of a previously opened �le.

PEEK Query regarding a �le's attributes (e.g., permissions or modi�cation time).

MAKELINK Creation of a symbolic link.

PEEKLINK Access to the contents of a symbolic link (in Unix, readlink).

DUP Duplication of an existing �le descriptor, creating a second reference to the open �le.

In addition, the following reference types are not generated by the observer, but are used internally by
the correlator:

UNKNOWN Reference of an unknown type, used to detect uninitialized packets.

FOLLOW Access to the target of a symbolic link, e.g. by opening the �le that the link points to.
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Controller/Correlator Communication

Like the observer, the controller must communicate with the correlator so that the user may set
parameters, query status, and perform various control functions. The controller uses the same cli-
ent/server mechanisms as the observer, but it does not attempt to force its commands and responses
into the observer's packet format. Instead, an ad hoc communication format is used.

Each interaction is introduced by a single command byte, followed by optional parameters whose format
is speci�c to the command. Usually, these optional parameters use a compact binary encoding.

If the command requires a response, the correlator generally provides it in an ASCII stream format
(which is convenient because the controller can just copy it to its own standard output device, if desired).
The correlator allows multiple commands to be sent sequentially over a single connection, although the
controller does not currently take advantage of the capability.

The correlator accepts the following commands from the controller:

EXIT Save the correlation database to a �le and terminate the correlator.

RESTART Save the database to a �le and then re-execute the correlator, maintaining all connections to
observers. This function is useful for debugging, to invoke a new version of the correlator after
changes have been made, while ensuring that no packets are lost.

SAVE Checkpoint the correlation database to a �le.

GETPARMS Retrieve the manager-speci�c parameters of a named hoard manager, or of all hoard managers.

SETPARMS Set one or more manager-speci�c parameters.

MANAGE Run all hoard managers.3

MANAGE DUMP Run a particular hoard manager and print manager-speci�c information (usually results) to
the stream connection.

READ INSTRUCTIONS Read or reread a �le containing special instructions for the correlator.

SET INVESTIGATION Read relations or clusters provided by an external investigator and add them to or
remove them from the database.

SET STORAGE Inform the correlator of changes in the storage status of �les that are to be made by the under-
lying replication system. This command is an important part of the interface between the correlator
and some replication substrates, and will be discussed further in Section 5.5, p. 58.

B.2.2 Data Structures

Like any large program, the Seer correlator has a number of important internal data structures. This
section discusses those structures and their contents.

Manager Table

As discussed in Section 5.3.1, p. 53, the correlator supports multiple hoard managers to control hoarding
decisions. The manager facility has also turned out to be convenient for certain other purposes. For
example, the save manager makes no hoarding decisions, but periodically causes the internal database to be
checkpointed to a �le so that it will be preserved against crashes.

All manager classes are derived from a common base class. Managers that make hoarding decisions are
derived from an intermediate base class that provides additional abstractions relevant to hoarding.

3This option is now little-used.
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The manager base class maintains a table of all known managers, and provides facilities for locating a
manager by name, querying and setting parameters, deciding whether hoard management is due, running the
management or pseudo-management routines, tracking �le references, and collecting and displaying statistics.
Hoarding managers also provide routines for locating their private data in the �le table and for inheriting
information from the parent directory when a �le is �rst entered into the table.

There are currently eight managers, �ve of which actually make hoarding decisions. The hoarding
managers are described in Section 5.3.1. The remaining three managers are:

Global The global manager maintains parameters that are common to multiple managers, such as the total
size of the hoard. All functions other than those related to parameters are no-ops.

Deletion The deletion manager handles garbage collection in the �le table. It is invoked either periodically
or when the number of deleted �les grows beyond a threshold parameter.

Save The save manager periodically checkpoints the �le table to disk, to protect against crashes.

Initially, we followed the design of Coda [Kistler and Satyanarayanan 1992] in allowing management
to be initiated either periodically or by explicit user request. However, we found that the periodic feature
was not useful in our environment, and it added unnecessary system load, so we disabled it. We do not
believe that automatic management is an inherently bad idea, but we found that users will only accept it if
the imposed load is low. Periodic initiation is still used by the save and deletion managers.

Management is scheduled from the main loop of the correlator, by calling a virtual function that decides
whether the manager should run. The base class provides a function to handle time-based management; more
complex decisions can be made by the derived class. Currently, only the deletion manager uses this feature.
Deletion management is run either when a �xed interval expires, or when the number of �les marked for
deletion exceeds a threshold. (There are several phases of deletion, so the threshold is applied to the total
number of �les ready to enter each phase. The current threshold is 200 �les per phase.)

File Table

The most important data structure in the correlator is the �le table, which tracks information about all
known �lesystem objects. The �le table is hashed on the absolute pathname of the �le,4 but most internal
access is done using pointers to particular �les.

As discussed in Section 5.1, p. 52, we chose to simplify the research implementation by choosing exibility
over performance. One of the most important consequences of this decision is that we store the �le table
in main memory. A production version of Seer would probably store the �le table on disk to minimize
memory requirements.5

General File Information The entry for a particular �le stores general information about the �le, plus
data needed to track �le relationships and information used by particular hoard managers. The general
information includes:

File pathname. The absolute pathname of the �le, canonicalized by removing unnecessary slashes, \." and
\.." references, and symbolic links. If the �le resides on an automounted NFS volume, the pathname
includes the temporary mount point (usually named tmp mnt).

Strip length. For automounted �les, it is sometimes necessary to refer to the �le by its user-visible name,
which causes the automounter to mount the volume if necessary. The \strip" length gives the number
of characters to strip from the front of the pathname to get the user-visible name. This limited form of

4Files are identi�ed internally by their pathname, rather than an implementation-speci�c identi�er such as the i-node number.
Using the pathname adds some complexity, but enhances portability.

5An ideal system would probably store all Seer-speci�c information as �le attributes similar to the data stored in the Unix
i-node.
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pathname rewriting has proven su�cient to date, although it is possible that a more complex form will
be needed in the future. The issue of whether to use the stripped or unstripped name in a particular
case is discussed further in Section 6.11 (p. 70).

Flags. Various bit ags, discussed below.

Type. The �le type (plain �le, directory, symbolic link, etc.).

State. The current \state" of the �le-table entry. Legal states include unknown (certain �le-table �elds are
not valid), known (�le exists and all �elds have been �lled in), unstored (�le exists but is not stored
locally), and three deletion-related states (see Section B.2.2).

Size. The number of blocks the �le would require in the hoard.

Parent Directory. A pointer that can be used to locate the parent directory.

Children. If this object is a directory, a list of the known children, and a count of the number of unknown
children. (The latter is used to decide whether a process is engaging in meaningless activity; see
Section 6.1, on page 63, for more information.)

Link Target. If this object is a symbolic link, a pointer to the target of the link.

The one-bit ags in the �le entry include:

Ignore. Completely ignore all references to this �le. This feature is useful for temporary �les, which are
too transient to contribute useful information to Seer. See Section 6.6, p. 67, for more information.

Meaningless. If this �le is executed as a process, consider its references to be meaningless. See Section 6.1,
p. 63, for more information.

Controlled. This �le is controlled by the automated hoarding mechanism. (This bit is set for most �les,
but can be left unset for certain critical system �les.)

Must save. Even if this �le disappears, its �le-table entry must remain because it contains important ag
bits.

Writing. This �le is currently being written. When it is closed, the correlator will recalculate its size.

Fake size. The size of this �le was falsi�ed for debugging purposes.

Directory size discovered. For directories, the correct number of children is known.

Storage set. The storage status of this �le was set externally. This ag is used in simulations to help
distinguish (simulated) unstored �les from those that have been deleted.

Marked. A scratch bit used by internal algorithms.

The ignore, meaningless, and controlled ags are inherited by children of a directory when they are �rst
created. Thus, for example, /tmp can be marked with the ignore ag so that all temporary �les will be
ignored.
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Tracking Reference Activity A number of �elds in the �le table track general reference activity. These
�elds are not speci�c to any particular hoard manager, although not all managers use all of the �elds. They
include:

Open count. A count of the number of times the �le has been opened, less the number of times it has been
closed. This value can be used by managers to determine if any process currently has the �le open
(although managers can also use a similar process-speci�c �eld; see Section B.2.2). It is also used in
conjunction with the writing ag to decide when to recalculate a �le's size.

Total references. The total number of references to this �le observed since the beginning of time. Note
that this �eld, like many other reference-related �elds, is persistent across reboots and re-invocations
of Seer.

Last reference. The reference number of the last reference to this �le, counted since the beginning of time,
and the type of that reference (open for read, etc.; see Section B.2.1).

Peek count. If the �le represents an executable process, the number of PEEK references that have been
performed in all executions of the process.

Potential peeks. If the �le represents an executing process, the number of children in all directories that
have been examined by the process in all execution lifetimes. This value, together with the peek count,
is used to infer meaninglessness (see Section 6.1, p. 63).

File Relations The basis of Seer's operation is the detection of �le relationships. To support this
capability, the �le table provides a very general mechanism for describing relations between �les. Each �le
contains a list of all related �les (the relations are one-way: if A lists B as related, B may or may not list
A).

Relations are classi�ed into various types. For example, a particular manager could choose to create
a manager-speci�c relationship type, meaningful only to itself, and add such a relation between selected
�le pairs. Relation types can also be created by external investigators (Section 5.4, p. 56). Each type is
identi�ed uniquely by a type-control object that names the type and serves as an access point for code that
needs to iterate through all relation types. The type-control object also provides a function that can be
called to record a reference to a particular �le; this function can be used by individual relation types to
implement concepts such as semantic distance.

In the following discussion, if �le B appears in �le A's related-�le list, B is called the target of the
relation, and A is the source �le.

Each element on the related-�le list is of class RelatedFile. This entry identi�es the target and contains
a list of relations, of di�erent types, between the source and target. The structure is designed to allow
a single pair of �les to be examined quickly for multiple relation types, and to easily support arbitrary
relationships.

File relations are represented by objects derived from a common base class. The base class contains only
a back-pointer to the associated RelatedFile object. The relation type can be inferred using a C++ virtual
function; all other data is speci�c to the individual derived classes. Two relation iterators are also provided
by the File class: one walks all of a �le's related-�le entries, while the other limits itself to relations of a
selected type.

File References The most heavily used relation is the �le reference, which tracks the semantic-distance
information discussed in Chapter 3. The derived class provides three �elds: a reference count, a total
distance, and a \corrected" ag. These �elds are used to implement the semantic-distance calculation of
Section 3.5.4 (p. 45), all of which is done by the reference-recording routine for the �le-reference relation.
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Investigated Relations Relations created by external investigators cause a named relation type to be
created, with the name provided externally. Because the precise type (name) is not implied by the virtual
function call, an investigated relation stores a reference to the underlying type object so that it may be
located when necessary. It also keeps a weight, again provided by the external software, which is used by
the clustering algorithm to integrate this relation into its decisions.

Clusters The clustering manager forms �les into clusters. A cluster is represented as a linked list of �les,
a storage state (stored, unstored, etc.), a hoard weight, a �le count, and the total size (in blocks) of all �les
in the cluster.

Clusters can be created by arbitrary means, but the cluster class provides some facilities for use in
hoarding. In particular, the hoard-weight �eld can be set by a manager to indicate the desirability of
keeping this particular cluster in the hoard. The clustering manager creates clusters dynamically, using the
algorithm described in Section 4.2 (p. 49).

External investigators may also create clusters. The mechanism is very similar to that used for externally
investigated relations. When a cluster of a given type is encountered, a new type object is created to support
it, and then the cluster is built using a special derived class. The clustering manager will then integrate
these clusters into its decisions.

Manager-Speci�c Data Besides generic data, the �le table also stores information on behalf of individual
managers. For e�ciency, a generalized implementation was not chosen for this purpose. Instead, the �le
class embeds the manager-speci�c data directly in the �le object. Virtual functions provided by the managers
allow access to this data (as an opaque object) when necessary.

LRU-Based Managers Seer provides four LRU-style managers: simple LRU, bounded LRU, weighted
LRU, and linear LRU. These managers are described in Section 5.3.1, p. 53. The simple LRU manager does
not require any manager-speci�c data; the other three store integer or oating-point parameters appropriate
to their particular transformation.

One of the virtual functions provided by the manager-data base class is parental inheritance. When a
�le is �rst created, each manager's inheritance routine is called so that the manager may derive data from
the �le's parent directory, if desired. It is this feature that allows the user to specify parameters for an
entire subtree by simply mentioning the root. The inheritance routine is called before any value from the
instruction �le is applied, so that upper-level values can be overridden by the instruction �le for �les deeper
in the hierarchy.

ClusteringManager The clustering manager is the most complex hoard manager, but most of the data it
needs is already provided by the �le object. (Although the clustering manager is currently the only one that
makes use of �le-reference information, it is not inherently speci�c to that manager, so it is kept generally
rather than privately.) The private data consists of several ags that are used in the clustering process (for
e�ciency rather than as a fundamental part of the algorithm), plus a list of clusters of which this �le is a
member.

Deletion Manager As mentioned in Section B.2.2, several pseudo-managers do not make hoarding de-
cisions, but use the general management mechanism to achieve other goals. One of these pseudo managers
handles deletion of entries from the �le table. It does not keep any data of its own in the �le object, but it
is discussed here because it is responsible for garbage collection in the �le table.

Deletion takes place in two or three stages. The �rst stage, MISSING, is entered under two conditions:

� Failure to stat a �le. This case usually occurs when a saved log is being replayed, and there is
a reference to a �le (usually a temporary �le) that has since been deleted. It can also occur if the
correlator has been delayed in its reading of observer packets, so that it �rst learns of the existence
of a very short-lived �le after that �le has disappeared.
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� A �le has inherited an ignored (see Section B.2.4) status from its parent. Such �les take up unnecessary
space in the �le table, since the status can be reconstructed as needed.

The MISSING stage was originally designed to allow for certain cases when a �le might be transiently deleted.
However, it is now obsolete and remains only for historical reasons.

The second stage of deletion, FORGETTING, is entered under the following conditions:

� When the deletion manager encounters a MISSING �le in the table.

� When a �le is renamed (for implementation reasons, some renames are handled by creating an entry
under the new name, marking the old name for deletion, and copying appropriate semantic data).

� When an unlink or rmdir operation is observed for the �le (except when such calls are generated by
the underlying replication system).

The purpose of the second stage is to allow destruction of all pointers to the to-be-deleted entry. For
e�ciency, many internal classes maintain pointers to various �les (for example, the �le relations discussed
in Section B.2.2 use such pointers heavily). When a �le-table entry must be deleted, these pointers must
be invalidated. Rather than keep back pointers to all such structures (which is clumsy and wasteful of
space), or walk all such structures at the moment of deletion (which is wasteful of time), Seer batches the
pointer-invalidation operation with its multi-stage deletion.

For most purposes, FORGETTING �les are treated as nonexistent. However, since they are still present in
the table, pointers to them are still valid. When the deletion manager runs, it walks through the �le table and
all classes that maintain pointers to �les, invalidating all pointers that refer to FORGETTING or FORGOTTEN
�les. At the same time, it converts FORGETTING �les to FORGOTTEN, and deletes those that were previously
FORGOTTEN. This batched design amortizes the cost of the table walk across a large number of �les. At the
end of the walk, any �le marked FORGOTTEN is guaranteed to have no pointers targeted at it, and can be
safely deleted in the next table walk.

A fortuitous side e�ect of this approach is that destroyed �les remain in the �le table for a brief period.
Since many programs delete and immediately recreate �les, the delay allows the semantic relationships
regarding those �les to be maintained after their disappearance, in case they return. If not, they will be
removed shortly.

Deletion management is run periodically (once an hour in the current implementation), plus whenever
the number of pending deletions exceeds a threshold. The latter condition was added to protect against
excessive table growth in certain situations where very large numbers of �les enter the chain of deletion
states in a short period of time.

Process Table

As discussed in Section 6.8 (p. 68), references generated by various processes must be separated so that the
calculation of semantic distance does not su�er from undesirable noise e�ects. The observer reports the
Unix process ID of the process generating each reference. The correlator then maintains a table, hashed
by process ID, of all known processes. The most important element of the process object is a process-speci�c
history of �les referenced. When a new reference arrives, the correlator evaluates it using only the history
of the current process.

Besides the reference history, the process-table entry contains a ag �eld, a pointer to the �le-table entry
for the currently running program, a list of open �les, and a count of directories that the process has open.
The open-�le list is used to determine whether the process has a particular �le open (the �le table only
records whether some process has opened the �le). The directory-open count and the pointer to the running
program are used to infer meaninglessness (see Section 6.1, p. 63). Finally, a pointer to the parent process
allows the a process's �le history to be merged with the parent's when the process exits. The merging allows
Seer to infer semantic relationships among �les referenced by a child on behalf of a parent (for example, it
will correctly handle the �les referenced by commands spawned from a shell script).
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The process table currently supports two ags. The MEANINGLESS ag is set if the currently running
program has been marked as meaningless in the instruction �le; this indicates that the correlator should
ignore all references generated by this process and its children. The IN GETCWD ag indicates that the
correlator has inferred that the process is currently performing a getcwd library operation, which generates
a short stream of references that are lacking in semantic information and should be ignored. Both of these
ags are discussed further in Section 6.1.

Connection Table

Since the correlator can accept information from multiple observers on multiple machines, a connection
table tracks all observers. For historical reasons, the primary class in the connection table is named Packet.
This class contains the most recent packet received on the connection (including a timestamp supplied by
the observer), the process table for the connection, and miscellaneous bookkeeping �elds. The process table
is kept on a per-connection basis because each observer is assumed to be running on a separate machine
with a separate process history (this restriction is enforced because /dev/seer will only accept a single
open).

When the correlator is ready to accept a new packet from an observer, it chooses the lowest timestamp
from the pending packets on all connections. If a connection does not currently have a pending packet, the
correlator skips it in this computation. This design assumes that the clocks on the observed machines are
reasonably well synchronized, which will be true if they are running a time-synchronization protocol such as
NTP [Mills 1989, Mills 1994]. If they are not, it is possible that the correlator will see some packets that
are out of timestamp order,6 but the validity of the results will not be a�ected because the timestamps are
not used in the actual semantic-distance calculations. The primary purpose of this feature is to ensure fair
treatment of all machines and proper ordering of complex tasks that span multiple machines.

If no connection has a pending packet, the correlator will wait until at least one connection is ready,
a new connection is created, or a timer expires to indicate that management should be run.

The connection table only records connections from observers. Controller connections are handled
separately.

B.2.3 Tracking File References

When an incoming packet arrives on an observer connection, the correlator extracts the packet type and
parameters, and then processes the packet according to type. Most packets are passed directly to the File
class, although process-related packets (new process and process exit) receive special treatment.

The work of reference tracking is divided between the File class and the various relation classes. The
File class tracks �le opens, updates the last reference type and time, and tracks meaninglessness (see
Section 6.1) and getcwd activity. It then passes the reference on to each relation type and to each manager
for further processing.

The reference-recording routine for the investigated-relation types is null, but the FileReference class
does substantial work, implementing Algorithm AT-KSK (Section 3.5.4, p. 45) to track reference histories
and update semantic distances. The semantic distance calculation is discussed further in Section 5.3.2, p. 54.

The existing managers only track �le references for statistical purposes, recording whether a hoard miss
occurred. This feature is used during simulation.

All �le reference types that are involved in the semantic-distance calculation are processed as described
in Section 5.3.2.

6In extreme cases, the machine with the fastest clock could be delayed because its observer would have to block waiting
for packets to read.
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B.2.4 Control Files

When Seer is installed on a system, the setup scripts create a number of control �les to contain parameters,
logs, etc. Many of these �les are artifacts of the current implementation and are not interesting from either
a research or an engineering standpoint, but a few are worth consideration. They include:

� A save �le for the correlator database, used to ensure that �le relations are persistent in the long
term (see Section B.2.2).

� A list of subtrees controlled by the underlying replication substrate; these are the trees that Seer can
work with to manage the hoard contents.

� Various log �les used to collect statistics regarding hoard misses, the disconnection history of the
machine, recent error messages, etc.

� Trace �les that record all packets sent from the observer to the correlator. These logs are unne-
cessary in a production environment, but were collected so that di�erent hoard-management methods
could be simulated and analyzed. They have also proven invaluable in debugging and in recovery from
serious failures.

� The master instruction �le, outlined in Section 5.6.1, p. 60, and further described below.

� Manager-speci�c instruction �les, described in Section 5.6.2, p. 61.

Instruction File

An overview of the master instruction �le is given in Section 5.6.1. Speci�c features of the instruction �le
include:

� Specify that a particular subtree should or should not be managed as part of the hoard. Usually,
the root tree is speci�ed as unmanaged, and then the replication substrate lists its subtrees as being
controlled by Seer. The system administrator might also choose to explicitly list certain critical
directories, such as /etc, as uncontrolled (not managed by Seer).

� Specify that accesses to a particular �le or subtree should be ignored by Seer. For example, /tmp is
usually listed as an ignored tree, since �les in that directory are so short-lived that there is no point
in tracking them (and attempting to do so would interfere with semantic-distance calculations). See
Section 6.6 (p. 67) for more information on this feature.

� Specify that a particular program is meaningless (see Section 6.1, p. 63). The meaningfulness or
meaninglessness of most programs can be automatically inferred by Seer, but a few are tricky enough
to require hand speci�cation. Our current instruction �les list only one standard Unix program
(xargs) as meaningless. In addition, most of the programs of the Seer system itself and the underlying
replication system are so listed. This latter speci�cation is not strictly necessary but serves as a safety
check when debugging.

� Specify a falsi�ed size for a �le. This feature is used for debugging, so that the hoarding of large �les
can be tested without actually wasting disk space by creating them.

� Specify a string to be stripped from a pathname under certain conditions, to work around problems
caused by automounters (see Section 6.11, p. 70).

� Specify instructions or parameters speci�c to a particular manager.



144 APPENDIX B. DETAILED DESIGN OF SEER

B.2.5 Manager Parameters

As discussed in Section B.2.2, Seer's managers maintain various parameters that can be used to control
their behavior. Many of these parameters were chosen using the techniques explained in Section 6.12, p. 71.
The complete list of parameters and their current values is given below.

Global Manager

Age Weighting Factor = 1.2. A weighting factor used in aging references when choosing one to replace;
see Section 5.3.2, p. 54, for more information.

Aging Threshold = 25,000. A threshold used to decide when an reference is old enough to consider
replacing with a newer one; see Section 5.3.2, p. 54, for more information.

Often-referenced �le threshold = 1%. A threshold used to decide when a �le is so frequently referenced
that it should not participate in semantic-distance calculations; see Section 6.2, p. 65, for details.

Peek threshold = 40%. A threshold used to decide when a program has looked at so many �les (compared
to the number it could potentially access) that its activity must be meaningless. See Section 6.1 (p. 63)
for more information.

Hoard size = 50 Mb. The maximum amount of space to use for the hoard. This varies from user to user;
see Table 8.8, p. 95 for a list of the hoard sizes chosen by the users in our study.

Maximum related �les = 20. The number of relationships to keep for any given �le. This is the parameter
k in AT-KSK, described in Section 3.5.4, p. 45.

Use process trees = true. This Boolean variable allows the correlator to be run without considering
references from di�erent processes to be independent, as discussed in Section 6.8, p. 68. It is used for
comparing di�erent hoarding approaches.

Deletion Manager

Deletion trigger = 200. A threshold used to decide when to run the deletion manager. If there are more
than this many �les waiting for deletion processing, the manager will run.

Management interval= 1 hour. The minimumtime between deletion manager invocations. The manager
will run at least this often even if the trigger threshold has not been reached.

Save Manager

Management interval = 1 hour. The minimum time between saves of the correlator's �le database.

Clustering Manager

Use shared-neighbor similarity measure = true. A Boolean variable allowing an alternate, obsolete
measure of �le similarity to be used in place of the measure described in Section 4.2.2, p. 49.

Management interval = 0. The time between automatic invocations of the clustering manager. The zero
value suppresses these periodic invocations, which we have found to be unnecessary.

Directory distance weight = 1.0. The weight given to the directory-distance similarity measure; see
Section 4.2.2 (p. 50) for more information.

Investigated relation weight = 1.0. The weight applied to information acquired from external invest-
igators. This is a global value for all investigators; each investigator can also specify an overall weight
(currently 1.0) as well as the weights for individual �les. See Section 4.2.2 for more information.



B.3. CONTROLLER DESIGN 145

Minimum references for distance calculation = 3. The minimum number of �le references that the
correlator must see before it will attempt a semantic-distance calculation. See Section 4.2.2, p. 49,
for more information.

Threshold for tight clustering = 14. The threshold for clustering �les together tightly. This is n1 in
Section 4.2.2 (p. 49).

Threshold for loose clustering = 12. The threshold for generating overlapping clusters. This is n2 in
Section 4.2.2.

In addition, the clustering manager supports several other parameters related to the obsolete clustering
method mentioned above; we will not discuss those here.

LRU-Style Managers

All of the LRU-style managers support only a single parameter, the management interval that selects the
amount of time between automatic management runs. The parameter is set to zero (no automatic manage-
ment) for all of these managers.

B.3 Controller Design

As discussed in Section 5.6 (p. 60), a program called the controller provides facilities allowing interaction
with the correlator. The controller supports the following functions:

� Display or set any correlator parameter.

� Read or reread an instruction �le (see Section 5.6.1).

� Load information into the correlator from an external investigator (Section 5.4).

� Write the correlator's internal database to a save �le, optionally exiting after the save completes.

� Run a speci�c manager, returning the results of management to standard output in a concise ASCII
format.

� Run all managers in sequence.

� Set falsi�ed reference times for a speci�ed list of �les.

� Restart the correlator from a recompiled executable without dropping any connections or losing
observer trace packets.

� Inform the correlator of the current storage status (locally hoarded or not) of one or more �les,
simultaneously telling it the sizes of any that are not locally accessible.

All of these functions are implemented primarily in the correlator, with the controller providing
interface and communication functions. The controller accepts information from the command line or its
standard input and converts it into packets appropriate for communication across a socket to the correlator.
Similarly, responses or results are extracted from the IPC socket and copied to standard output for display
or further processing.
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Trademarks

Unix is a registered trademark of Unix System Laboratories, Inc. NeXTStep is a trademark of Next Com-
puter, Inc. Macintosh is a registered trademark of Apple Computer, Inc. IBM is a registered trademark
of IBM Corporation. OS/2 is a registered trademark of IBM Corporation. PC/Interface is a trademark
of Platinum technology, Inc. Pentium is a registered trademark of Intel Corporation. Sparc is a registered
trademark of Sparc International, Inc. Travelmate is a trademark of Texas Instruments, Inc. MS-DOS
is a registered trademark of Microsoft Corporation. Windows is a registered trademark of Microsoft Cor-
poration. PowerPoint is a registered trademark of Microsoft Corporation.
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