Lineage File System

Can Sar and Pei Cao
Department of Computer Science
Stanford University

Abstract

We propose that file systems keep record of the
lineage information of each file. Lineage records
of files are easy to track, maintain and query.
With today’s exploding storage capacity and
ever-increasing amount of user data, lineage in-
formation helps users manage their files and fa-
cilitates a range of applications.

In this paper, we define a model of lineage
records for files, and describe an implementation
to track, store and query the lineage information.
We also list several applications, and provide ex-
perimental data for a particular application.

1 Introduction

We propose “Lineage File System”, which is a
file system that stores not only a file’s data and
its standard attributes, but also its lineage infor-
mation.

Loosely speaking, lineage information is the
“recreate” a file. By
“recreate”, we mean re-enact the series of actions
that generated the content of the file. For exam-
ple, the lineage information for file “paper.dvi”
is “run latex on paper.tex”. Though in extreme
cases, a lot of information needs to be recorded
to truly re-enact a process, for most applications
it suffices to record a few pieces of information,
including the executable, command line argu-
ments, and the list of (timestamped) input files
read by the process.

We motivate the need for Lineage File Sys-
tem with an application in the high-performance
computing community. Today, over 500 physi-
cists at 76 universities around the world study

information needed to

the data gathered by the BaBar experiment
at SLAC (Stanford Linear Accelerator Cen-
ter) [Mou03]. Over a period of four years,
the physicists have generated millions of data
products, i.e. datasets derived from the origi-
nal data through expensive computations. The
storage requirement is now over one petabyte.
For BaBar physicists, “automated tracking of
data provenance (i.e. lineage) and maximized
reuse of data products are becoming a require-
ment” [Mou03]. Without a system to track the
lineage of data files, physicists generate the same
data products repeatedly, wasting both time and
storage on the supercomputing cluster. While a
tool can be built specifically for the high-energy
physicists, there is no reason why the file server
cannot provide lineage information as a general
facility.

There are many other applications of lineage
information, including backups, storage manage-
ment, and security monitoring. Essentially, lin-
eage information is a form of ”structured” infor-
mation about “unstructured” file data, and aids
in the management of file data.

2 Lineage File System

2.1 Lineage Records

Ideally, a file’s lineage information should con-
tain all and only data that causally affect its con-
tent. Unfortunately, the operating system can-
not readily deduce such information.

One solution would be to record all potential
sources of causal information. Unfortunately,
the list of sources is very long. During the execu-
tion of a process, all of the following inputs could

affect its outputs: the executable, the command
line arguments, disk files read by the process,
external inputs from the user and the network,
system call return values, library call return val-
ues, kernel and compiler versions, etc. Capturing
all these data is neither practical nor necessary.

Instead, we observe that in most cases, three
pieces of information suffice to capture a file’s
lineage: the process executable, command line
arguments, and files read by the process. They
form the default components of lineage records in
our system. In addition, a system call is provided
for a process to insert specific data into a file’s
lineage record, so that applications such as the
browser can add the URL origin to the lineage
record of the local copy of a web page.

Access Control Determining who can access
a file’s lineage information is surprisingly tricky.
The simple choice, i.e. giving the lineage infor-
mation the same set of permissions as the file
itself, does not work in many cases. For exam-
ple, the lineage information of a person’s annual
performance review file might reveal who wrote
the reviews, which is undesirable!. The sophisti-
cated choice, which is to set the permission to be
the “intersection” (or “maximum lower bound”)
of the permission of the file and permissions of
all files in its lineage record, is difficult to imple-
ment, particularly since permissions of the in-
volved files can be changed at any time.

To keep things simple, we decide to use the
following access control model. The owner of a
file can view its lineage information. In addi-
tion, if the file is readable by all and all its input
files’ are readable by all, then the file’s lineage
information is also readable by all. We think
this model works for most cases. We also plan
to provide the means by which a file’s owner can
set permissions on its lineage record.

2.2 Implementation Modules

There are three aspects to the implementation of
lineage records: tracking, storing and querying.
In addition, for files that reside at a file server,

'We thank Dr. Drew Dean for giving us this example.

the lineage records need to be sent from the client
machines to the file server.

Tracking Our current implementation modi-
fies the Linux kernel to log all process creation
and file-related system calls in the printk buffer?.
A user-level daemon then wakes up periodically
to read the buffer and generate lineage records.
Specifically, the kernel logs the following infor-
mation:

e Upon process creation (i.e. fork and exec),
the pid, the executable name (i.e. abso-
lute pathname), and the command line ar-
guments are logged. Upon process exit, the
pid is logged.

e Upon file open, the file name (i.e. absolute
pathname), open mode, and the resultant
file descriptor are logged; upon file close, the
file descriptor is logged.

e When the process reads or writes a file, the
fact that the file descriptor is read from
or written to is logged once in the buffer.
This is implemented by adding a flag to the
file descriptor data structure to remember
whether a file descriptor has been logged or
not.

e For dup and pipe system calls, the involved
file descriptors are logged.

e In the case of the socket system call creating
a communication endpoint, the involved file
descriptor and the fact that the file descrip-
tor is a socket are logged.

e For link, symlink and unlink system calls,
the involved file names are logged. If unlink
results in the deletion of a file, that fact is
logged as well.

e If a file is truncated to zero byte, the in-
volved file name or file descriptor is logged.

The wuser-level daemon processes the log
records in the following fashion. For each pro-
cess, it uses an internal table to track, for each

2We increased the size of the printk buffer to 8MB.

file descriptor of the process, the file name and
whether the file was read or written. Sock-
ets and pipes are assigned specially constructed
unique names. When processing the fork call,
the parent process’ internal table is replicated to
the child process’ table, but with the “read” and
“written” bits cleared. The dup and pipe system
calls are also handled appropriately. Then, for
each file that is written by a process, the process
information, along with the list of files that have
been read by the process, constitute the lineage
record of the file.

The kernel modifications are mostly printk
statements and hence incur little overhead. Test-
ing with the file system micro-benchmark in lm-
bench [bit05] shows that only 15 microseconds
are added to the creation of 0-byte and 10KB
files. The user-level daemon is currently im-
plemented in perl. It can process about 2000
records each second; during our normal usage of
the desktop the daemon consumes about 10 sec-
onds of CPU time each hour. We have not felt
the need to optimize its implementation.

Storage There are basically two choices to
store lineage records. One is to store them as
meta files. Since the lineage record is an at-
tribute of the file, it can be stored in a “meta”
file along with the file. The advantage of this ap-
proach is that the file system can be used to en-
force access control on the lineage records. The
disadvantage is that querying is not supported
well. The alternative is to store records in a
SQL database, which provides flexible and ef-
ficient querying capabilities. Since most appli-
cations of lineage information rely on extensive
querying of the records, we decide to adopt this
approach and use MySQL as the backend.

The database has two tables, one for processes
and one for files. The schema are shown in
Table 1. The field “pid” is the key that links the
two tables, and is generated by appending the
timestamp of the process creation to the process
pid, so that it is a unique key. To obtain the
lineage record of a file “A”, all a user needs to
do is to run the following query:

SELECT prog.exec, prog.argv, input.name

FROM process_table AS prog, file_table
AS input, file_table AS output WHERE
input.mode = ’R’ AND output.mode = ’W’
AND output.name = "A" AND output.pid =
input.pid AND output.pid = prog.pid AND
input.open_t <= output.close_t;

Note that, though logically the lineage record of
a file is one “record”, to store the information in
SQL databases we need to break it up and store
the elements as multiple rows.

The user-level daemon inserts records into the
database. Upon seeing the last file write made
by a process, it writes the record about the pro-
cess and the records of all involved files to the
database. If a process did not write any file
or only wrote to a tty device, no record is in-
serted. Furthermore, when a file is deleted or
truncated to zero byte, its (old) lineage informa-
tion is deleted as well.

Thus, the size of the database is roughly pro-
portional to the number of files in the file system.
In our current implementation, tracking 1000
files’ lineage records consumes about 360KB of
storage.

Querying To implement access control, users
cannot query the MySQL database directly.
Rather, a phantom user, linfs, is created. The
MySQL database file is writable only by root
and readable only by linfs. A wrapper appli-
cation, owned by linfs and having the setuid bit
set, acts as a front-end to the MySQL query in-
terface and enforces access control based on the
owner information and permission bits of the file
being queried3.

SQL queries are quite versatile and can
a variety of questions. For

answer ex-

ample, to find all existing files that are
results of running “run_experiment” on
a particular input file A, the following

query can be used: SELECT output.name
FROM process_table AS prog, file_table
AS input, file_table AS output WHERE
prog.exec LIKE "Yexperiment" AND
input.mode = ’R’ AND output.mode = W’

3We have not yet implemented the wrapper applica-
tion. Rather, we currently use “sudo” to issue queries.

Field | pid | exec

SQL Schema, for the Process Table

argv | uid | euid

Type | long | blob

blob | int int

SQL Schema, for the File Table

Field | pid | name | mode | owner

permission open_t close_t

long | blob | char int

Type

short | timestamp | timestamp

Table 1: Schema for the process table and file table. “blob” is a MySQL type that means arbitrary

string.

AND input.name = ’A’ AND output.pid =
input.pid AND output.pid = prog.pid;

File Server Implementation In networked
file systems, the lineage information is tracked
by the client machine rather than the file server.
However, since lineage information is a kind of
file attribute, it should be stored at the file
server. Hence, the records need to be passed
from client machines to the file server, and
queries should be answered by the file server.

Our current design is that clients use a set
of RPC calls to send lineage records to the file
server, and to send users’ queries to the file
Standard authentication methods such
as Kerberos can be used to establish users’ iden-
tities to the file server, and the file server en-
forces access control on read/write of lineage
records. However, we have not yet implemented
this scheme.

server.

3 Applications of Lineage

Records

There are a variety of applications for lineage
records. Below, we list a few:

e Remembering what a file s about: Lineage
File System is motivated in part by the dif-
ficulty of managing our own files. Due to
the plunge in storage prices, there are fewer
and fewer occasions when we have to delete
files. As a result, our directories have files
from many years ago. While it’s easier to
figure out what a file is about if the file is
somehow readable by human (e.g. text), for

a binary file the only clue is its name. Un-
fortunately, since we tend to use short file
names, the names stopped making sense af-
ter a few years. Lineage records can help us
remember what a file is about and whether
it needs to be kept or deleted.

e Space management on small backup drives:
Many people use portable USB drives
or web-based network drives for backups.
These devices usually have limited capaci-
ties and cannot hold all files. Currently, the
users manually decide what files are backed
up. If lineage records are available, a tool
can be written to classify files into “root”
files, whose contents involve user input or
external events that are hard to replicate
(e.g. source codes), and “generated” files,
whose contents are generated from others
by applications (e.g. compiled object files).
Then, only “root” files need to be stored on
the USB drive or the web-based backup ser-
vice.

e Security monitoring and forensic analysis:
One can build a host-based intrusion de-
tection tool by observing normal patterns
of lineage records and sounding an alarm
when a pattern is broken. For example, if a
file (e.g. registry file) has always been writ-
ten by one particular executable (e.g. reg-
istry editor) but is suddenly being written
by a different executable (e.g. the virus), an
alarm can be triggered. Lineage records are
also very useful for forensic analysis, since
they capture which executable last changed
a file and what input files were used.

e Determining the type of a file: The name
of the executable that created and wrote a
file is an extended “type” information of the
file. This “type” information is much more
extensible and usually more reliable than file
typing using suffix or magic numbers. It can
be used in any application that uses “type”
information, for example, restricting search
results to files of a particular type, or apply-
ing a specific compression tool to all files of
a certain type.

o Automated “make”: In application domains
such as scientific computing, when a com-
monly used tool has been updated or has a
bug fixed, many simulations need to be re-
run. The lineage records allow the system to
do so automatically without asking users to
explicitly write makefiles. Of course, the au-
tomated make needs to be under user direc-
tion, so that it doesn’t inadvertently change
a file when it shouldn’t.

In essence, Lineage File System provides some
“structured” information for the “unstructured”
files, which can be used in a variety of storage
management applications.

Experience with one application We have
written a space management tool for our own
use. The tool uses a simplified criteria to deter-
mine whether a file is a “root” file; if the pro-
cess that modified the file read from its standard
input, then the file is considered a “root” file.
During a day when the main activities on the
desktop consisted of working on this paper and
making kernel changes, we found that out of the
314 MB of new data, only 2.5MB were root files
and needed to be stored on the USB.

4 Related Work

The file system research community have long
looked into making the file system more in-
telligent and easing the task of storage man-
agement. For example, the Elephant file sys-
tem [SFHT99] automatically retained all im-
portant versions of files to provide an undo

facility at the file system level and to pro-
tect against users’ accidental overwrites; disks
that provide time-travel capabilities [MGO3,
WCGO04] have been used to debug configura-
tion changes [WCGO04], among other applica-
tions. More recently, a number of projects fo-
cused on associating rich attributes with files (ei-
ther manually provided [DJ91, Bow97, XKTKO03]
or automatically derived though context anal-
ysis [SGO03]), and providing flexible querying
and view-constructing capabilities over the at-
tributes [DJ91, XKTKO03, GM99, SM, Neu92|.

While sharing the same high-level goals with
these projects, our work differs from them by fo-
cusing exclusively on lineage records and explor-
ing their potential applications. Lineage records
are a type of file attribute and can be managed
by file systems that handle rich attributes. In
practice, however, it is easier to centralize lin-
eage records in a MySQL database and lever-
age its rich query interface. Lineage File Sys-
tem is complimentary to other intelligent file sys-
tem efforts by providing more information about
files, for example, lineage records are a source of
information for automated file attribute assign-
ment [SGO3].

The database research community have long
studied data lineage issues, particularly reason-
ing the precision and correctness of derived data.
Recently, the Trio project [Wid05] tries to build
a database that manages not only data, but
also the accuracy and lineage of data. In these
studies, lineage means lineage through database
queries and constructions, which are much more
complex and have much richer semantics than
the “lineage” discussed in this paper. The “lin-
eage” discussed in this paper is only a generic lin-
eage in the operating system context. Thus said,
Lineage File System can use lineage databases to
manage its data, and lineage databases can use
Lineage File System to provide input about ex-
ternal dependencies.

Finally, unlike file systems that are imple-
mented on top of databases (e.g. the inversion
file system [Ols93] and the Microsoft Longhorn
file system), lineage file system does not make
changes to the underlying file system, and uses

databases only to store the lineage records.

5 Conclusions and Future

Work

Through a prototype implementation, we have
demonstrated that lineage records are easy to
obtain, store and query. We have also shown
that they enable a rich set of applications, and
provided data on a particular application.

There are two focuses for our future work.
One is to implement a way to track lineage
records without changing the kernel, as the ker-
nel changes are a deployment impediment. A
potential approach is to change the shell to trace
the file system calls of all its children processes,
and to implement a separate daemon to process
those calls to obtain lineage records. The second
focus is to explore ways to use lineage records
for security monitoring and intrusion detection.
We plan to build a tool that can be trained to
learn normal lineage patterns, detect abnormal
operations and issue alerts.

References

[bit05] tools

In

bitmover.com. Lmbench -
for performance analysis.
http://www.bitmover.com/lmbench/,
2005.

[Bow97] M. Bowman. Managing diversity in wide-
area file systems. In Second IEEE Meta-

data Conference, September 1997.

Mark A. Sheldon David K. Gifford, Pierre
Jouvelot and James W. O’Toole Jr. Se-
mantic file systems. Proceedings of the
13th ACM Symposium on Operating Sys-
tems Principles, pages 16-25, October
1991.

[DJ91]

[GM99] Burra Gopal and Udi Manber. Inte-
grating content-based access mechanisms
with hierarchical file systems. In Operat-
ing Systems Design and Implementation,

pages 265278, 1999.

[MGO03] C. B. Morrey and D. Grunwald. Peabody:
the time-travelling disk. In 20th

IEEE/11th NASA Goddard Conference

[Mou03]

[Neu92]

[Ols93]

[SFH*+99)

[SGO03]

[SM]

[WCG04]

[Wid05)

[XKTK03]

on Mass Storage Systems and Technolo-
gies, April 2003.

Richard P. Mount. High-engergy physics
data-storage challenges. In SuperCom-
puting 2003: Workshop on Storage on the
Lunatic Fringe: Beyond Peta-Scale Stor-
age Systems, 2003.

B. Clifford Neuman. The prospero file
system: A global file system based on the
virtual system model. Computing Sys-
tems, 5(4):407-432, 1992.

M. A. Olson. The design and imple-
mentation of the Inversion file system.
In Proceedings of the USENIX Winter
1993 Technical Conference, pages 205—
217, San Diego, CA, USA, 25-29 1993.

Douglas S. Santry, Michael J. Feeley, Nor-
man C. Hutchinson, Alistair C. Veitch,
Ross W. Carton, and Jacob Ofir. Decid-
ing when to forget in the elephant file sys-
tem. In Symposium on Operating Systems
Principles, pages 110-123, 1999.

Craig A.N. Soules and Greg Ganger. Why
can’t i find my files? new methods for
automating attribute assignment. In Pro-
ceedings of the 9th Workshop on Hot Top-
ics in Operating Systems, pages 145-150,
2003.

Stuart Sechrest and Michael McClen-
nen. Blending hierarchical and attribute-
based file naming. In International Con-
ference on Distributed Computing Sys-
tems (Yokohama, Japan, 9-12, June
1992.

Andrew Whitaker, Richard S. Cox, and
Steven D. Gribble. Configuration debug-
ging as search: Finding the needle in the
haystack. In Operating Systems Design
and Implementation, 2004.

Jennifer Widom. Trio: A system for in-
tegrated management of data, accuracy,
and lineage. In Proceedings of the 2005
CIDR Confernece, January 2005.

7. Xu, M. Karlsson, C. Tang, and
C. Karamanolis. Towards a semantic-
aware file store. In Proceedings of the
9th Workshop on Hot Topics in Operat-
ing Systems, pages 145-150, 2003.

