
175

Malacology: A Programmable Storage System

Michael A. Sevilla†, Noah Watkins†, Ivo Jimenez,
Peter Alvaro, Shel Finkelstein, Jeff LeFevre, Carlos Maltzahn

University of California, Santa Cruz
{msevilla, jayhawk, ivo}@soe.ucsc.edu, {palvaro, shel}@ucsc.edu, {jlefevre, carlosm}@soe.ucsc.edu

Abstract
Storage systems need to support high-performance for special-
purpose data processing applications that run on an evolving
storage device technology landscape. This puts tremendous
pressure on storage systems to support rapid change both in
terms of their interfaces and their performance. But adapt-
ing storage systems can be difficult because unprincipled
changes might jeopardize years of code-hardening and per-
formance optimization efforts that were necessary for users
to entrust their data to the storage system. We introduce
the programmable storage approach, which exposes inter-
nal services and abstractions of the storage stack as building
blocks for higher-level services. We also build a prototype
to explore how existing abstractions of common storage sys-
tem services can be leveraged to adapt to the needs of new
data processing systems and the increasing variety of stor-
age devices. We illustrate the advantages and challenges of
this approach by composing existing internal abstractions
into two new higher-level services: a file system metadata
load balancer and a high-performance distributed shared-
log. The evaluation demonstrates that our services inherit
desirable qualities of the back-end storage system, includ-
ing the ability to balance load, efficiently propagate service
metadata, recover from failure, and navigate trade-offs be-
tween latency and throughput using leases.

CCS Concepts • Information systems → Distributed
storage; •Software and its engineering → File systems
management; Software functional properties

Keywords Distributed Storage, Programmability, Ceph

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

c© 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064208

Figure 1: Scalable storage systems have storage daemons which store data,
monitor daemons (M) that maintain cluster state, and service-specific dae-
mons (e.g., file system metadata servers). Malacology enables the pro-
grammability of internal abstractions (bold arrows) to re-use and compose
existing subsystems. With Malacology, we built new higher-level services,
ZLog and Mantle, that sit alongside traditional user-facing APIs (file, block,
object).

1. Introduction
A storage system implements abstractions designed to per-
sistently store data and must exhibit a high level of cor-
rectness to prevent data loss. Storage systems have evolved
around storage devices that often were orders of magnitude
slower than CPU and memory, and therefore could dom-
inate overall performance if not used carefully. Over the
last few decades members of the storage systems commu-
nity have developed clever strategies to meet correctness re-
quirements while somewhat hiding the latency of traditional
storage media [12]. To avoid lock-in by a particular vendor,
users of storage systems have preferred systems with highly
standardized APIs and lowest common denominator abstract
data types such as blocks of bytes and byte stream files [4].

A number of recent developments have disrupted tradi-
tional storage systems. First, the falling prices of flash stor-
age and the availability of new types of non-volatile memory
that are orders of magnitude faster than traditional spinning
media are moving overall performance bottlenecks away
from storage devices to CPUs and networking, and pressure
storage systems to shorten their code paths and incorporate
new optimizations [21, 22]. Second, emerging “big data”
applications demand interface evolution to support flexible
consistency as well as flexible structured data representa-

† These authors contributed equally to this work.

176

tions. [3]. Finally, production-quality scalable storage sys-
tems available as open source software have established and
are continuing to establish new, de-facto API standards at a
faster pace than traditional standards bodies [31, 40].

The evolutionary pressure placed on storage systems by
these trends raises the question of whether there are princi-
ples that storage systems designers can follow to evolve stor-
age systems efficiently, without jeopardizing years of code-
hardening and performance optimization efforts. In this pa-
per we investigate an approach that focuses on identifying
and exposing existing storage system resources, services,
and abstractions that in a generalized form can be used to
program new services. This ‘dirty-slate’ approach of factor-
ing out useful code lets programmers re-use subsystems of
the back-end storage system, thus inheriting their optimiza-
tions, established correctness, robustness, and efficiency.
‘Clean-slate’ approaches could be implemented faster but
they do so at the expense of “throwing away” proven code.

Contribution 1: We define a programmable storage sys-
tem to be a storage system that facilitates the re-use and ex-
tension of existing storage abstractions provided by the un-
derlying software stack, to enable the creation of new ser-
vices via composition. A programmable storage system can
be realized by exposing existing functionality (such as file
system and cluster metadata services and synchronization
and monitoring capabilities) as interfaces that can be “glued
together” in a variety of ways using a high-level language.
Programmable storage differs from active storage [35]—the
injection and execution of code within a storage system or
storage device—in that the former is applicable to any com-
ponent of the storage system, while the latter focuses at the
data access level. Given this contrast, we can say that active
storage is an example of how one internal component (the
storage layer) is exposed in a programmable storage system.

To illustrate the benefits and challenges of this approach
we have designed and evaluated Malacology, a programmable
storage system that facilitates the construction of new ser-
vices by re-purposing existing subsystem abstractions of the
storage stack. We build Malacology in Ceph, a popular open
source software storage stack. We choose Ceph to demon-
strate the concept of programmable storage because it offers
a broad spectrum of existing services, including distributed
locking and caching services provided by file system meta-
data servers, durability and object interfaces provided by the
back-end object store, and propagation of consistent clus-
ter state provided by the monitoring service (see Figure 1).
Malacology is expressive enough to provide the functional-
ity necessary for implementing new services.

Malacology includes a set of interfaces that can be used as
building blocks for constructing novel storage abstractions,
including:

1. An interface for managing strongly-consistent time-
varying service metadata.

2. An interface for installing and evolving domain-specific,
cluster-wide data I/O functionality.

3. An interface for managing access to shared resources
using a variety of optimization strategies.

4. An interface for load balancing resources across the
cluster.

5. An interface for durability that persists policies using the
underlying storage stack’s object store.

Contribution 2: We implement two distributed services
using Malacology to demonstrate the feasibility of the pro-
grammable storage approach:

1. A high-performance distributed shared log service called
ZLog, that is an implementation of CORFU [6]

2. An implementation of Mantle, the programmable load
balancing service [37]

The remainder of this paper is structured as follows. First,
we describe and motivate the need for programmable storage
by describing current practices in the open source software
community. Next we describe Malacology by presenting the
subsystems within the underlying storage system that we
re-purpose, and briefly describe how those system are used
within Malacology (Section 4). Then we describe the ser-
vices that we have constructed in the Malacology framework
(Section 5), and evaluate our ideas within our prototype im-
plementation (Section 6). We conclude by discussing future
and related work.

2. Application-Specific Storage Stacks
Building storage stacks from the ground up for a spe-
cific purpose results in the best performance. For exam-
ple, GFS [18] and HDFS [38] were designed specifically
to serve MapReduce and Hadoop jobs, and use techniques
like exposing data locality and relaxing POSIX constraints
to achieve application-specific I/O optimizations. Another
example is Boxwood [32], which experimented with B-trees
and chunk stores as storage abstractions to simplify applica-
tion building. Alternatively, general-purpose storage stacks
are built with the flexibility to serve many applications by
providing standardized interfaces and tunable parameters.
Unfortunately, managing competing forces in these systems
is difficult and users want more control from the general-
purpose storage stacks without going as far as building their
storage system from the ground up.

To demonstrate a recent trend towards more application-
specific storage systems we examine the state of programma-
bility in Ceph. Something of a storage Swiss army knife,
Ceph simultaneously supports file, block, and object inter-
faces on a single cluster [1]. Ceph’s Reliable Autonomous
Distributed Object Storage (RADOS) system is a cluster of
object storage daemons that provide Ceph with data dura-
bility and integrity using replication, erasure-coding, and

177

scrubbing [50]. Ceph already provides some degree of pro-
grammability; the object storage daemons support domain-
specific code that can manipulate objects on the server that
has the data local. These “interfaces” are implemented by
composing existing low-level storage abstractions that exe-
cute atomically. They are written in C++ and are statically
loaded into the system.

The Ceph community provides empirical evidence that
developers are already beginning to embrace programmable
storage. Figure 2 shows a dramatic growth in the produc-
tion use of domain-specific interfaces in the Ceph commu-
nity since 2010. In that figure, classes are functional group-
ings of methods on storage objects (e.g. remotely computing
and caching the checksum of an object extent). What is most
remarkable is that this trend contradicts the notion that API
changes are a burden for users. Rather it appears that gaps
in existing interfaces are being addressed through ad-hoc ap-
proaches to programmability. In fact, Table 1 categorizes ex-
isting interfaces and we clearly see a trend towards reusable
services.

Figure 2: [source] Since 2010, the growth in the number of co-designed
object storage interfaces in Ceph has been accelerating. This plot is the
number of object classes (a group of interfaces), and the total number of
methods (the actual API end-points).

Category Example #
Logging Geographically distribute replicas 11
Metadata Snapshots in the block device OR 74Management Scan extents for file system repair
Locking Grants clients exclusive access 6
Other Garbage collection, reference counting 4

Table 1: A variety of object storage classes exist to expose interfaces to
applications. # is the number of methods that implement these categories.

The takeaway from Figure 2 is that programmers are al-
ready trying to use programmability because their needs,
whether they be related to performance, availability, consis-
tency, convenience, etc., are not satisfied by the existing de-
fault set of interfaces. The popularity of the custom object in-
terface facility of Ceph could be due to a number of reasons,
such as the default algorithms/tunables of the storage system
being insufficient for the application’s performance goals,

programmers wanting to exploit application-specific seman-
tics, and/or programmers knowing how to manage resources
to improve performance. A solution based on application-
specific object interfaces is a way to work around the tradi-
tionally rigid storage APIs because custom object interfaces
give programmers the ability to tell the storage system about
their application: if the application is CPU or I/O bound, if it
has locality, if its size has the potential to overload a single
node, etc. Programmers often know what the problem is and
how to solve it, but until the ability to modify object inter-
faces, they had no way to express to the storage system how
to handle their data.

Our approach is to expose more of the commonly used,
code-hardened subsystems of the underlying storage system
as interfaces. The intent is that these interfaces, which can
be as simple as a redirection to the persistent data store or
as complicated as a strongly consistent directory service,
should be used and re-used in many contexts to implement
a wide range of services. By making programmability a
‘feature’, rather than a ‘hack’ or ‘workaround’, we help
standardize a development process that now is largely ad-
hoc.

3. Challenges
Implementing the infrastructure for programmability into
existing services and abstractions of distributed storage sys-
tems is challenging, even if one assumes that the source code
of the storage system and the necessary expertise for under-
standing it is available. Some challenges include:

• Storage systems are generally required to be highly avail-
able so that any complete restarts of the storage system to
reprogram them is usually unacceptable.
• Policies and optimizations are usually hard-wired into

the services and one has to be careful when factoring
them to avoid introducing additional bugs. These poli-
cies and optimizations are usually cross-cutting solutions
to concerns or trade-offs that cannot be fully explored
at the time the code is written (as they relate to work-
load or hardware). Given these policies and optimiza-
tions, decomposition of otherwise orthogonal internal ab-
stractions can be difficult or dangerous.
• Mechanisms that are often only exercised according to

hard-wired policies and not in their full generality have
hidden bugs that are revealed as soon as those mecha-
nisms are governed by different policies. In our experi-
ence introducing programmability into a storage system
proved to be a great debugging tool.
• Programmability, especially in live systems, implies

changes that need to be carefully managed by the sys-
tem itself, including versioning and propagation of those
changes without affecting correctness.

https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/objclass-dev/visualize.ipynb

178

To address these challenges we present Malacology, our
prototype programmable storage system. It uses the pro-
grammable storage design approach to evolve storage sys-
tems efficiently and without jeopardizing years of code-
hardening and performance optimization efforts. Although
Malacology uses the internal abstractions of the underly-
ing storage system, including its subsystems, components,
and implementations, we emphasize that our system still ad-
dresses the general challenges outlined above.

The main challenge of designing a programmable storage
system is choosing the right internal abstractions and picking
the correct layers for exposing them. A programmable stor-
age system is not defined by what abstractions are exposed,
rather a programmable storage system adheres to the design
approach of exposing interfaces so administrators can have
better control of the storage system. The interfaces presented
in this paper are abstractions that we found useful for build-
ing our prototype services ZLog and Mantle, yet they may
not provide the best trade-offs for all higher-level services.
For example, if consensus is correctly exposed one could
implement high-level features like versioning, serialization,
or various flavors of strongly consistent data management
on top; but perhaps a low-level consensus interface is suited
well for a particular set of applications. These questions are
not answered in this paper and instead we focus on showing
the feasibility of building such a system, given advances in
the quality and robustness of today’s storage stacks.

The Malacology prototype we present has been imple-
mented on Ceph. While there are other systems on top of
which Malacology could be implemented (see Table 2), we
choose Ceph because it is a production quality system and
because it is open source. The large developer community
ensures that code is robust and the visibility of the code lets
us expose any interface we want. In the next section we de-
scribe the Ceph components that we expose as Malacology
interfaces.

4. Malacology: A Programmable Storage
System

The guiding principle is to re-use existing services and com-
pose them so that these services can be programmed. We
accomplish programmability of a service by exporting bind-
ings for an interpreted programming language so that pro-
gramming can occur without having to restart the storage
system (see also below, Section 4.4). Table 2 shows the in-
ternal services from Ceph that we expose in the Malacology
prototype via Lua [26] bindings and Figure 3 compares what
was already present in Ceph (gray boxes) to the Malacology
interfaces we added. Section 5 will describe the higher-level
services we built with these interfaces.

Lua is a portable embedded scripting language and we
choose it as the interpreted language for Malacology because
it offers superior performance and productivity trade-offs,
including a JIT-based implementation that is well known for

Figure 3: Malacology is implemented on the daemons and clients that run
in a Ceph cluster. Interfaces expose internal subsystems and are used as
building blocks for higher-level services.

near native performance. Additionally, Lua has been used
extensively in game engines, and systems research [45],
including storage systems where it has been effectively used
both on [17, 20, 48] and off [37] the performance critical
path. Finally, the flexibility of the runtime allows execution
sandboxing in order to address security and performance
concerns. We will now discuss the common subsystems used
to manage storage systems and how Malacology makes them
programmable.

4.1 Service Metadata Interface
Keeping track of state in a distributed system is an essential
part of any successful service and a necessary component in
order to diagnose and detect failures, when they occur. This
is further complicated by variable propagation delays and
heterogeneous hardware in dynamic environments. Service
metadata is information about the daemons in the system and
includes membership details, hardware layout (e.g., racks,
power supplies, etc.), data layout, and daemon state and
configuration. It differs from traditional file system metadata
which is information about files. For the rest of the paper
when we use the phrase “metadata server” or “metadata
service”, we are referring to the daemon(s) that manages file
system metadata (not service metadata).

Existing Ceph Implementation: a consistent view of clus-
ter state among server daemons and clients is critical to pro-
vide strong consistency guarantees to clients. Ceph main-
tains cluster state information in per-subsystem data struc-
tures called “maps” that record membership and status infor-
mation. A Paxos [30] monitoring service is responsible for
integrating state changes into cluster maps, responding to re-
quests from out-of-date clients and synchronizing members
of the cluster whenever there is a change in a map so that
they all observe the same system state. As a fundamental
building block of many system designs, consensus abstrac-
tions such as Paxos are a common technique for maintaining
consistent data versions, and are a useful system to expose.

179

Interface Section Example in Production Systems Example in Ceph Provided Functionality
Service Metadata §4.1 Zookeeper/Chubby coordination [13, 25] cluster state management [29] consensus/consistency
Data I/O §4.2 Swift in situ storage/compute [34] object interface classes [46] transaction/atomicity
Shared Resource §4.3.1 MPI collective I/O, burst POSIX metadata protocols serialization/batching
File Type §4.3.2 MPI supports architecture-specific code [42] file striping strategy data/metadata access
Load Balancing §4.3.3 VMWare’s VM migration [16, 23] migrate POSIX metadata [49] migration/sampling
Durability §4.4 S3/Swift interfaces (RESTful API) object store library [50] persistence/safety

Table 2: Common internal abstractions. The same “internal abstractions” are common across large-scale systems because they provide functionality that solves
general distributed systems problems. Here we list examples of what these internal abstractions are used for in “production systems” and in Ceph. Malacology
provides these internal abstractions as interfaces (Section 4) that higher level services (Section 5) can use.

The default behavior of the monitor can be seen as a
Paxos-based notification system, similar to the one intro-
duced in [13], allowing clients to identify when new values
(termed epochs in Ceph) are associated to given maps. Since
Ceph does not expose this service directly, as part of our
Malacology implementation, we expose a key-value service
designed for managing service metadata that is built on top
of the consensus engine. Since the monitor is intended to be
out of the high-performance I/O path, a general guideline is
to make use of this functionality infrequently and to assign
small values to maps.

Malacology: we expose a strongly-consistent view of time-
varying service metadata as an interface rather than a hidden
internal component. This is shown in Figure 4, where ob-
ject interfaces and load balancer policies use the Service
Metadata interface. Malacology provides a generic API for
adding arbitrary values to existing subsystem cluster maps.
As a consequence of this, applications can define simple
but useful service-specific logic to the strongly-consistent
interface, such as authorization control (just specific clients
can write new values) or triggering actions based on spe-
cific values (e.g. sanitize values). The higher-level services
we implement in Section 5 make use of this functionality to
register, version and propagate dynamic code (Lua scripts)
for new object interfaces defined in storage daemons (Sec-
tion 4.2) and policies in the load balancer (Section 4.3). Us-
ing this service guarantees that interface definitions are not
only made durable, but are transparently and consistently
propagated throughout the cluster so that clients are prop-
erly synchronized with the latest interfaces.

Impact: provides core functionality because it lets daemons
come to a consensus on system critical state. Bugs in the
internal subsystems or omitting this from services that need
this type of consistency affects correctness.

4.2 Data I/O Interface
Briefly described in Section 2, Ceph supports application-
specific object interfaces [50]. The ability to offload com-
putation can reduce data movement, and transactional in-
terfaces can significantly simplify construction of complex
storage interfaces that require uncoordinated parallel access.

Figure 4: Malacology allows users to dynamically define object/file system
metadata interfaces by composing the object storage daemon (OSD) and
metadata server (MDS) subsystems with an embedded Lua VM. It uses the
Service Metadata interface in the monitor (M) to propagate interfaces/ver-
sions across the cluster

Existing Ceph Implementation: an object interface is a plu-
gin structured similarly to that of an RPC in which a devel-
oper creates a named function within the cluster that clients
may invoke. In the case of Ceph each function is implic-
itly run within the context of an object specified when the
function is called. Developers of object interfaces express
behavior by creating a composition of native interfaces or
other custom object interfaces, and handle serialization of
function input and output. A wide range of native interfaces
are available to developers such as reading and writing to
a byte stream, controlling object snapshots and clones, and
accessing a sorted key-value database. These native inter-
faces may be transactionally composed along with appli-
cation specific logic to create semantically rich interfaces.
An example would be an interface that atomically updates a
matrix stored in the bytestream and an index of the matrix
stored in the key-value database.

Malacology: the implementation of Ceph’s object ab-
straction, although powerful, does not readily support pro-
grammability. Supporting only C/C++ for object interface
developers, Ceph requires distribution of compiled binaries
for the correct architecture, adding a large barrier of entry
for developers and system administrators. Second, having no
way to dynamically unload modules, any changes require a
full restart of a storage daemon which may have serious per-
formance impacts due to loss of cached data. And finally, the
security limitations of the framework limit the use of object
interfaces to all but those with administrative level access
and deep technical expertise.

180

To address these concerns, Malacology takes advantage
of Lua extensions contributed by the Ceph community. This
allows new object interfaces to be dynamically loaded into
the system and modified at runtime, resulting in a object
storage API with economy of expression, which at the same
time provides the full set of features of the original object
interface implementation. New object interfaces that are ex-
pressed in thousands of lines of code can be implemented in
approximately an order of magnitude less code [17]. While
the use of Lua does not prevent deployment of malicious
code, certain types of coding mistakes can be handled grace-
fully, and access policies are used to limit access to trusted
users [26].

Impact: helps applications optimize performance by push-
ing behavior to lower parts of the storage stack, thereby min-
imizing hops and distributing computation.

4.3 Distributed Metadata Interfaces
File systems provide clients with the familiar POSIX file ab-
straction. While this guarantees strong consistency it comes
at the cost of scalability, increased complexity, and lower
performance. In general, distributed file systems protect re-
sources by providing hierarchical indexing and distributed
locking services.

4.3.1 Shared Resource Interface
File system metadata servers manage client sessions, allow-
ing clients to obtain locks (e.g. file byte ranges), and capa-
bilities (e.g. to cache file data). Clients and metadata servers
use a cooperative protocol in which clients voluntarily re-
lease resources back to the file system metadata service in
order to implement sharing policies.

Existing Ceph Implementation: the locking service imple-
ments a capability-based system that expresses what data
and file system metadata clients are allowed to access as well
as what state they may cache and modify locally. While de-
signed for the file abstraction, indexing, locking, and caching
are all common services that are useful to a broad spec-
trum of applications. Distributed applications that share cen-
tralized resources (e.g. a database or directory) face similar
challenges which are often solved using application-specific
sharding.

Malacology: while the current policy for sharing access
and voluntarily releasing resources is largely best-effort,
Malacology supports generalized policies between metadata
servers and clients that can be used to implement fairness or
priority.

Impact: provides core functionality to protect and provide
exclusive access for any shared resource. May hurt perfor-
mance if the resource in question does not require strong
consistency.

4.3.2 File Type Interface
Applications that manage large amounts of file system meta-
data (e.g. users or database snapshots) often require a nam-
ing service. The metadata service exposes a POSIX file sys-
tem hierarchy where files and directories are represented as
inode data structures.

Existing Ceph Implementation: CephFS is the POSIX
compliant file system that uses Ceph. Inodes are quite large
(1KB for an inode, 400 bytes for a directory entry, and 700
bytes for a directory) and contain CephFS-specific policies
like how to stripe data across RADOS.

Malacology: allows new inode types to be defined such that
applications can create domain-specific interfaces to inodes
that may modify locking and capability policies. We will
show how this is used in Section 5.2.1 when we discuss a
distributed shared-log built on Malacology.

Impact: this interface is both a feature and a performance
optimization. It is a feature because it allows developers to
add support for different storage types, such as how to read
new file formats or what consistency semantics to use for a
specific subtree in the hierarchical namespace. It is also a
performance optimization because future programmers can
add optimizations for processing specific types of files into
the inode itself.

4.3.3 Load Balancing Interface
Many large scale storage systems separate file system meta-
data and data I/O so that the corresponding services can scale
independently. Metadata requests transfer small amounts of
data and they happen relatively frequently so many systems
employ separate file system metadata clusters.

Existing Ceph Implementation: addresses the challenge of
balancing file system metadata load with a separate metadata
cluster. This cluster uses load balancing policies to migrate
directory inodes around the cluster to alleviate overloaded
servers [49]. The policies use metrics based on system state
(e.g. CPU and memory utilization) and statistics collected
by the cluster (e.g. the popularity of an inode). Ceph uses
dynamic subtree partitioning to move variable sized names-
pace subtrees. These units can be shipped anywhere (i.e.,
to any metadata server of any capacity) at any time for any
reason. The original balancer was designed with hard-coded
policies and tunables.

Malacology: the existing load balancing mechanisms are
exposed through an API and programmers can customize the
behavior through a domain specific language. These mech-
anisms include the ability to migrate, partition, and mea-
sure load. Using the Service Metadata and Durability inter-
faces, this Load Balancing interface can safely version bal-

181

ancer policies, save balancer policies in the back-end object
store and centralize warnings/errors. When combined with
the File Type interface, the Load Balancing interface can ex-
press policies for handling a variety of multi-tenant work-
loads.

Impact: helps applications optimize performance by allow-
ing them to specify how to partition, replicate, and distribute
metadata in response to overloaded servers.

4.4 Durability Interface
Object stores protect data using techniques like erasure cod-
ing, replication, and data scrubbing. For scalability, many of
these features are implemented using a peer-to-peer protocol
that allows object storage daemons to operate autonomously
without a centralized coordinator.

Existing Ceph Implementation: provides storage by strip-
ing and replicating data across RADOS [50], the reliable dis-
tributed object store. RADOS protects data using common
techniques such as erasure coding, replication, and scrub-
bing. For example, when the number of placement groups
change, the object storage daemons re-balance and re-shard
data in the background in a process called placement group
splitting. During placement group splitting, object storage
daemons communicate directly with each other to converge
on a new data layout. In order to reduce load on the monitor-
ing service, the object storage daemons use a gossip protocol
to efficiently propagate changes to cluster maps throughout
the system, and autonomously initiate recovery mechanisms
when failures are discovered.

Malacology: metadata service policies and object storage
interfaces are stored durability within RADOS and are man-
aged by storing references in the object server daemon maps.
Since the cluster already propagates a consistent view of
these data structures, we use this service to automatically
install interfaces in object storage daemons, and install poli-
cies within the metadata server daemons such that clients
and daemons are synchronized on correct implementations
without restarting.

Impact: this is a feature because it adds data safety and
persistence to system metadata; while nice to have it does
not necessarily effect correctness.

5. Services Built on Malacology
In this section we describe two services built on top of
Malacology. The first is Mantle, a framework for dynami-
cally specifying file system metadata load balancing poli-
cies. The second system, ZLog, is a high-performance dis-
tributed shared-log. In addition to these services, we will
demonstrate how we combine ZLog and Mantle to imple-
ment service-aware metadata load balancing policies.

5.1 Mantle: Programmable Load Balancer
Mantle [37] is a programmable load balancer that separates
the metadata balancing policies from their mechanisms. Ad-
ministrators inject code to change how the metadata clus-
ter distributes metadata. Our previous work showed how to
use Mantle to implement a single node metadata service, a
distributed metadata service with hashing, and a distributed
metadata service with dynamic subtree partitioning.

The original implementation was “hard-coded” into Ceph
and lacked robustness (no versioning, durability, or policy
distribution). Re-implemented using Malacology, Mantle
now enjoys (1) the versioning provided by Ceph’s monitor
daemons and (2) the durability and distribution provided by
Ceph’s reliable object store. Re-using the internal abstrac-
tions with Malacology resulted in a 2× reduction in source
code compared to the original implementation.

5.1.1 Versioning Balancer Policies
Ensuring that the version of the current load balancer is con-
sistent across the physical servers in the metadata cluster was
not addressed in the original implementation. The user had
to set the version on each individual server and it was triv-
ial to make the versions inconsistent. Maintaining consis-
tent versions is important for cooperative balancing policies,
where local decisions are made assuming properties about
other instances in the cluster.

With Malacology, Mantle stores the version of the current
load balancer in the Service Metadata interface. The version
of the load balancer corresponds to an object name in the bal-
ancing policy. Using the Service Metadata interface means
Mantle inherits the consistency of Ceph’s internal monitor
daemons. The user changes the version of the load balancer
using a new CLI command.

5.1.2 Making Balancer Policies Durable
The load balancer version described above corresponds to
the name of an object in RADOS that holds the actual Lua
balancing code. When metadata server nodes start balancing
load, they first check the latest version from the metadata
server map and compare it to the balancer they have loaded.
If the version has changed, they dereference the pointer to
the balancer version by reading the corresponding object in
RADOS. This is in contrast to the original Mantle imple-
mentation which stored load balancer code on the local file
system – a technique which is unreliable and may result in
silent corruption.

The balancer pulls the Lua code from RADOS syn-
chronously; asynchronous reads are not possible because
of the architecture of the metadata server. The synchronous
behavior is not the default behavior for RADOS operations,
so we achieve this with a timeout: if the asynchronous read
does not come back within half the balancing tick interval
the operation is canceled and a Connection Timeout error is

182

returned. By default, the balancing tick interval is 10 sec-
onds, so Mantle will use a 5 second second timeout.

This design allows Mantle to immediately return an error
if anything RADOS-related goes wrong. We use this imple-
mentation because we do not want to do a blocking object
storage daemon read from inside the global metadata server
lock. Doing so would bring down the metadata server cluster
if any of the object storage daemons are not responsive.

Storing the balancers in RADOS is simplified by the
use of an interpreted language for writing balancer code.
If we used a language that needs to be compiled, like the
C++ object classes in the object storage daemon, we would
need to ensure binary compatibility, which is complicated by
different operating systems, distributions, and compilers.

5.1.3 Logging, Debugging, and Warnings
In the original implementation, Mantle would log all errors,
warnings, and debug messages to a log stored locally on
each metadata server. To get the simplest status messages
or to debug problems, the user would have to log into each
metadata server individually, look at the logs, and reason
about causality and ordering.

With Malacology, Mantle re-uses the centralized logging
features of the monitoring service. Important errors, warn-
ings, and info messages are collected by the monitoring sub-
system and appear in the monitor cluster log so instead of
users going to each node, they can watch messages appear
at the monitor daemon. Messages are logged sparingly, so as
not to overload the monitor with frivolous debugging but im-
portant events, like balancer version changes or failed sub-
systems, show up in the centralized log.

5.2 ZLog: A Fast Distributed Shared Log
The second service implemented on Malacology is ZLog, a
high-performance distributed shared-log that is based on the
CORFU protocol [6]. The shared-log is a powerful abstrac-
tion used to construct distributed systems, such as metadata
management [7] and elastic database systems [8–10]. How-
ever, existing implementations that rely on consensus algo-
rithms such as Paxos funnel I/O through a single point in-
troducing a bottleneck that restricts throughput. In contrast,
the CORFU protocol is able to achieve high throughput us-
ing a network counter called a sequencer, that decouples log
position assignment from log I/O.

While a full description of the CORFU system is beyond
the scope of this paper, we briefly describe the custom stor-
age device interface, sequencer service, and recovery proto-
col, and how these services are instantiated in the Malacol-
ogy framework.

5.2.1 Sequencer
High-performance in CORFU is achieved using a sequencer
service that assigns log positions to clients by reading from
a volatile, in-memory counter which can run at a very high
throughput and at low latency. Since the sequencer is cen-

tralized, ensuring serialization in the common case is trivial.
The primary challenge in CORFU is handling the failure of
the sequencer in a way that preserves correctness. Failure
of the sequencer service in CORFU is handled by a recov-
ery algorithm that recomputes the new sequencer state using
a CORFU-specific custom storage interface to discover the
tail of the log, while simultaneously invalidating stale client
requests using an epoch-based protocol.

Sequencer interface. The sequencer resource supports
the ability to read() the current tail value and get the next()
position in the log which also atomically increments the tail
position. We implement the sequencer service in Malacol-
ogy using the File Type interface. This approach has the
added benefit of allowing the metadata service to handle
naming, by representing each sequencer instance in the stan-
dard POSIX hierarchical namespace. The primary challenge
in mapping the sequencer resource to the metadata service is
handling serialization correctly to maintain the global order-
ing provided by the CORFU protocol.

Initially we sought to directly model the sequencer ser-
vice in Ceph as a non-exclusive, non-cacheable resource,
forcing clients to perform a round-trip access to the resource
at the authoritative metadata server for the sequencer inode.
Interestingly, we found that the capability system in Ceph re-
duces metadata service load by allowing clients that open a
shared file to temporarily obtain an exclusive cached copy of
the resource, resulting in a round-robin, best-effort batching
behavior. When a single client is accessing the sequencer
resource it is able to increment the sequencer locally. Any
competing client cannot query the sequencer until the meta-
data service has granted it access.

While unexpected, this discovery allowed us to explore
an implementation strategy that we had not previously con-
sidered. In particular, for bursty clients, and clients that can
tolerate increased latency, this mode of operation may al-
low a system to achieve much higher throughput than a sys-
tem with a centralized sequencer service. We utilize the pro-
grammability of the metadata service to define a new pol-
icy for handling capabilities that controls the amount of time
that clients are able to cache the sequencer resource. This al-
lows an administrator or application to control the trade-off
between latency and throughput beyond the standard best-
effort policy that is present in Ceph by default.

In Section 6 we quantify the trade-offs of throughput and
latency for an approach based on a round-robin batching
mode, and compare this mode to one in which the metadata
server mediates access to the sequencer state when it is being
shared among multiple clients. Quantifying these trade-offs
should provide administrators with guidelines for setting the
tunables for different “caching” modes of the sequencer.

Balancing policies. As opposed to the batching mode
for controlling access to the sequencer resource, more pre-
dictable latency can be achieved by treating the sequencer
inode as a shared non-cacheable resource, forcing clients

183

to make a round-trip to the metadata service. However, the
shared nature of the metadata service may prevent the se-
quencer from achieving maximum throughput. To address
this issue we use the Load Balancing interface to construct
a service-specific load balancing policy. As opposed to a
balancing policy that strives for uniform load distribution, a
ZLog-specific policy may utilize knowledge of inode types
to migrate the sequencer service to provisioned hardware
during periods of contention or high demand.

5.2.2 Storage Interface
The storage interface is a critical component in the CORFU
protocol. Clients independently map log positions that they
have obtained from the sequencer service (described in de-
tail in the next section) onto storage devices, while storage
devices provide an intelligent write-once, random read in-
terface for accessing log entries. The key to correctness in
CORFU lies with the enforcement of up-to-date epoch tags
on client requests; requests tagged with out-of-date epoch
values are rejected, and clients are expected to request a new
tail from the sequencer after refreshing state from an auxil-
iary service. This mechanism forms the basis for sequencer
recovery.

In order to repopulate the sequencer state (i.e. the cached,
current tail of the log) during recovery of a sequencer, the
maximum position in the log must be obtained. To do this,
the storage interface exposes an additional seal method that
atomically installs a new epoch value and returns the maxi-
mum log position that has been written.

Since the sequencer service does not resume until the
recovery process has completed, there cannot be a race with
clients appending to the log, and the immutability of the
log allow reads to never block during a sequencer failure.
Recovery of the sequencer process itself may be handled in
many ways, such as leader election using an auxiliary service
like Paxos. In our implementation, the recovery is the same
as (and is inherited from) the CephFS metadata service.
Handling the failure of a client that holds the sequencer state
is similar, although a timeout is used to determine when a
client should be considered unavailable.

6. Evaluation
Our evaluation demonstrates the feasibility of building new
service abstractions atop programmable storage, focusing
on the performance of the internal abstractions exposed by
Malacology and used to construct the Mantle and ZLog
services. We also discuss latent capabilities we discovered
in this process that let us navigate different trade-offs within
the services themselves. First, we benchmark scenarios with
high sequencer contention by examining the interfaces used
to map ZLog onto Malacology; specifically, we describe the
sequencer implementation and the propagation of object and
data interfaces interfaces. Next, we benchmark scenarios in

which the storage system manages multiple logs by using
Mantle to balance sequencers across a cluster.

Since this work focuses on the programmability of Mala-
cology, the goal of this section is to show that the com-
ponents and subsystems that support the Malacology inter-
faces provide reasonable relative performance, as well as to
give examples of the flexibility that Malacology provides to
programmers. This section uses a principled approach for
evaluating tunables of the interfaces and the trade-offs we
discuss should be acknowledged when building higher-level
services.

6.1 Mapping ZLog onto Malacology
We evaluate Malacology by exploring one possible mapping
of the ZLog implementation of CORFU onto Ceph in which
we re-use (1) the metadata service to manage naming and
synchronization of the sequencer resource by treating the re-
source as an inode, and (2) the monitoring sub-subsystem
to distribute and install application-specific I/O interfaces
required of the CORFU protocol. In Section 6.2 we then
demonstrate how the re-use of the inode abstraction for im-
plementing the sequencer resource enables load balancing
policies to migrate the sequencer resource in heavy-load sit-
uation.

6.1.1 Sequencer Implementation
We evaluate the feasibility of using the metadata service
to implement a sequencer resource that is responsible for
maintaining a total ordering of the log. Clients contact the
sequencer to obtain the tail of the log and then independently
initiate I/O, thus we measure both the throughput and latency
of obtaining new tail positions which bounds client append
performance.

The sequencer is implemented using the File Type inter-
face so that the sequencer state (a 64-bit integer) is embed-
ded in the inode of a file. A total ordering of the log is im-
posed by the re-use of the capability service that can be used
to grant exclusive access of inode state to clients. The meta-
data service is responsible for maintaining exclusivity and
granting access. Figure 5 (a) shows the behavior of the sys-
tem in which a best-effort policy is used. The two colors
represent points in time that the clients were able to access
the resource. The best-effort policy shows a high degree of
interleaving between clients but the system spends a large
portion of time re-distributing the capability, reducing over-
all throughput.

In order to control the performance of the system we
implement a policy that (1) restricts the length of time that
a client may maintain exclusive access and (2) limits the
number of log positions that a client may generate without
yielding to other clients waiting for access. The behavior
of these two modes is illustrated in Figures 5 (b) and (c),
respectively.

Figure 6 demonstrates a configurable trade-off between
throughput and latency. In the experiment two clients are run

184

Figure 5: [source] Each dot is an individual request, spread randomly
along the y axis. The default behavior is unpredictable, “delay” lets clients
hold the lease longer, and “quota” gives clients the lease for a number of
operations.

Figure 6: [source] Sequencer throughput by re-using various services.
The highest performance is achieved using a single client with exclusive,
cacheable privilege. Round-robin sharing of the sequencer resource is af-
fected by the amount of time the resource is held, with best-effort perform-
ing the worst.

each with a fixed 0.25 second maximum reservation on the
capability, and we vary the size of the log position quota
running each configuration for two minutes. The total op-
erations per second is the combined throughput of the two
clients, and the average latency is the number of microsec-
onds required to obtain a new log position. With a small
quota more time is spent exchanging exclusive access, while
a large quota reservation allows clients to experience a much
lower latency because they experience isolated access for a
longer period of time.

To get a better picture of latency, Figure 7 shows the CDF
of latency for each client in all experiment configurations. At
the 99th percentile clients accessed the sequencer in less than
a millisecond. The CDF is cropped at the 99.999th percentile
due to large outliers that we believe occur in instances in
which the metadata server is performing I/O while it is in
the process of re-distributing the capability to another client.

Malacology exposes the internal capability management
service and allows users to navigate latency and throughput
trade-offs. Other approaches to designing the sequencer ser-
vice also exist, such as using a centralized service in which
each access is a network round-trip. In contrast to the mech-

Figure 7: [source] The latency distribution shows that if the clients hold
their capabilities longer, performance decreases. Changing the delay can
help the sequencer and clients strike a balance between throughput and
latency.

anism we explored which is appropriate for clients with
bursty workloads, it may be easier to provide predictable
performance using a centralized service, and we will be ex-
ploring in the future how this can be achieved using the ca-
pability system.

6.1.2 Interface Propagation
Domain-specific data interfaces (Section 2) allow co-design
between applications and the storage system. Malacology
supports custom object interfaces in RADOS that require
interface implementations to be installed on the storage de-
vices in the system, supporting the evolution of interfaces
through automatic system-wide versioning and installation
through the service metadata interface (Section 4.1). We
evaluate the performance of installing a new interface ver-
sion in the cluster, which is an important metric for applica-
tions that frequently evolve interfaces.

We demonstrate the feasibility of utilizing the Ceph mon-
itoring sub-system by evaluating the performance of in-
stalling and distributing interface updates. Figure 8 shows
the CDF of the latency of interface updates. The interfaces
are Lua scripts embedded in the cluster map and distributed
using a peer-to-peer gossip protocol. The latency is defined
as the elapsed time following the Paxos proposal for an in-
terface update until each object storage daemon makes the
update live (the cost of the Paxos proposal is configurable
and is discussed below). The latency measurements were
taken on the nodes running object server daemons, and thus
exclude the client round-trip cost. In each of the experiments
1000 interface updates were observed.

Figure 8 shows the lower bound cost for updates in a
large cluster. In the experiment labeled “120 OSD (RAM)”
a cluster of 120 object storage daemons (OSDs) using an in-
memory data store were deployed, showing a latency of less
than 54 ms with a probability of 90% and a worst case la-
tency of 194 ms. These costs demonstrate the penalty of dis-
tributing the interface in a large cluster. In practice the costs
include, in addition to cluster-wide propagation of interface
updates, the network round-trip to the interface management
service, the Paxos commit protocol itself, and other factors
such as system load. By default Paxos proposals occur pe-
riodically with a 1 second interval in order to accumulate

https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/mds-zlog-seq-thruput-v-latency/results-reqdots-kill0-sameclient-capdelay-100-quota-100000/visualize.ipynb
https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/zlog-seqr-redux/viz.ipynb
https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/zlog-seqr-redux/viz.ipynb

185

Figure 8: [source] Cluster-wide interface update latency, excluding the
Paxos proposal cost for committing the Service Metadata interface.

Figure 9: [source] CephFS/Mantle load balancing have better throughput
than co-locating all sequencers on the same server. Sections 6.2.1 and 6.2.2
quantify this improvement; Section 6.2.3 examines the migration at 0-60
seconds.

updates. In a minimum, realistic quorum of 3 monitors us-
ing hard drive-based storage, we were able to decrease this
interval to an average of 222 ms.

6.2 Load Balancing ZLog Sequencers with Mantle
In practice, a storage system implementing CORFU will
support a multiplicity of independent totally-ordered logs for
each application. For this scenario co-locating sequencers
on the same physical node is not ideal but building a load
balancer that can migrate the shared resource (e.g., the re-
source that mediates access to the tail of the log) is a time-
consuming, non-trivial task. It requires building subsystems
for migrating resources, monitoring the workloads, collect-
ing metrics that describe the utilization on the physical
nodes, partitioning resources, maintaining cache coherence,
and managing multiple sequencers. The following experi-
ments demonstrate the feasibility of using the mechanisms
of the Malacology Load Balancing interface to inherit these
features and to alleviate load from overloaded servers.

The experiments are run on a cluster with 10 nodes to
store objects, one node to monitor the cluster, and 3 nodes
that can accommodate sequencers. Instead of measuring
contention at the clients like Section 6.1.1, these experiments
measure contention at the sequencers by forcing clients to
make round-trips for every request. We implement this us-
ing the Shared Resource interface that forces round-trips.
Because the sequencer’s only function is to hand out posi-
tions for the tail of the log, the workload is read-heavy.

First, we show how the ZLog service can orchestrate mul-
tiple sequencers using the Malacology Load Balancing in-
terface. Figure 9 shows the throughput over time of different

Figure 10: [source, source] In (a) all CephFS balancing modes have the
same performance; Mantle uses a balancer designed for sequencers. In (b)
the best combination of mode and migration units can have up to a 2×
improvement.

load balancers as they migrate 3 sequencers (with 4 clients)
around the cluster; “No Balancing” keeps all sequencers on
one server, “CephFS” migrates sequencers using the hard-
coded CephFS load balancers, and “Mantle” uses a custom
load balancer we wrote specifically for sequencers. The in-
creased throughput for the CephFS and Mantle curves be-
tween 0 and 60 seconds are a result of migrating the se-
quencer(s) off overloaded servers.

In addition to showing that migrating sequencers im-
proves performance, Figure 9 also demonstrates features that
we will explore in the rest of this section. Sections 6.2.1
and 6.2.2 quantify the differences in performance when the
cluster stabilizes at time 100 seconds and Section 6.2.3 ex-
amines the slope and start time of the re-balancing phase
between 0 and 60 seconds by comparing the aggressiveness
of the balancers.

6.2.1 Feature: Balancing Modes
Next, we quantify the performance benefits shown in Fig-
ure 9. To understand why load balancers perform differ-
ently we need to explain the different balancing modes that
the load balancer service uses and how they stress the sub-
systems that receive and forward client requests in differ-
ent ways. In Figure 9, the CephFS curve shows the perfor-
mance of the balancing mode that CephFS falls into most of
the time. CephFS currently has 3 modes for balancing load:
CPU mode, workload mode, and hybrid mode. All three
have the same structure for making migration decisions but
vary based on the metric used to calculate load. For this se-
quencer workload the 3 different modes all have the same
performance, shown in Figure 10 (a), because the load bal-
ancer falls into the same mode a majority of the time. The
high variation in performance for the CephFS CPU Mode
bar reflects the uncertainty of using something as dynamic
and unpredictable as CPU utilization to make migration de-
cisions. In addition to the suboptimal performance and un-
predictability, another problem is that all the CephFS bal-

https://github.com/michaelsevilla/malacology-popper/tree/v2.1/experiments/mon-paxos-update/viz.py
https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/mds-zlog-seq-migrate-redux-3client/results-mantle-runs/visualize.ipynb
https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/mds-zlog-seq-migrate-redux-3client/results-mantle-runs/visualize.ipynb
https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/mds-zlog-seq-migrate-redux-waves/results-paper/visualize.ipynb

186

Figure 11: In client mode clients sending requests to the server that houses
their sequencer. In proxy mode clients continue sending their requests to the
first server.

ancers behave the same. This prevents administrators from
properly exploring the balancing state space.

Mantle gives the administrator more control over balanc-
ing policies; for the Mantle bar in Figure 10 (a) we use
the Load Balancing interface to program logic for balanc-
ing read-heavy workloads, resulting in better throughput and
stability. When we did this we also identified two balanc-
ing modes relevant for making migration decisions for se-
quencers.

Using Mantle, the administrator can put the load balancer
into “proxy mode” or “client mode”. In proxy mode one
server receives all requests and farms off the requests to slave
servers; the slave servers do the actual tail finding operation.
In client mode, clients interact directly with the server that
has their sequencer. These modes are illustrated in Figure 11.
“No Balancing” is when all sequencers are co-located on
one physical server – performance for that mode is shown
by the “No Balancing” curve in Figure 9. In “Proxy Mode”,
clients continue sending requests to server A even though
some of the sequencers have been migrated to another server.
Server A redirects client requests for sequencer 2 to server B.
“Proxy Mode (Half)” is shown in Figure 9; in this scenario,
half of the sequencers have migrated off the first server.
Alternatively, “Proxy Mode (Full)”, which is not pictured, is
when all the sequencers migrate off the first server. “Client
Mode”, shown on the far right of Figure 11, shows how
clients for sequencer 2 contact server B without a redirect
from server A.

Figure 12 shows the throughput over time of the two
different modes for an environment with only 2 sequencers
(again 4 clients each) and 2 servers. The curves for both
sequencers in Figure 12(a) start at less than 1000 ops/second
and at time 60 seconds Mantle migrates Sequencer 1 to the
slave server. Performance of Sequencer 2 decreases because
it stayed on the proxy which now processes requests for
Sequencer 2, and forwards requests for Sequencer 1. The
performance of Sequencer 1 improves dramatically because
distributing the sequencers in this way separates (1) the
handling of the client requests and (2) finding the tail of the
log and responding to clients. Doing both steps is too heavy
weight for one server and sequencers on slave nodes can go
faster if work is split up; this phenomenon is not uncommon
and has been observed in chain replication [44].

Figure 12: [source] The performance of proxy mode achieves the highest
throughput but at the cost of lower throughput for one of the sequencers.
Client mode is more fair but results in lower cluster throughput.

Cluster throughput improves at the cost of decreased
throughput for Sequencer 2. Figure 12(b) is set to sequencer
mode manually (no balancing phase) and shows that the
cluster throughput is worse than the cluster throughput of
proxy mode. That graph also shows that Sequencer 2 has
less throughput than Sequencer 1. In this case, the scatter-
gather process used for cache coherence in the metadata
protocols causes strain on the server housing Sequencer 2
resulting in this uneven performance.

6.2.2 Feature: Migration Units
Another factor that affects performance in this environment
is how much load is on each server; these experiments quan-
tify that effect by programming the Load Balancing interface
to control the amount of load to migrate. We call this met-
ric a “migration unit”. Expressing this heuristic is not easily
achievable with outward facing tunable parameters (i.e. sys-
tem knobs) but with Mantle’s programmable interface, we
can force the load balancer to change its migration units. To
force the balancer into the Proxy Mode (Half) scenario in
Figure 11, which uses migration units equal to half the load
on the current server, we can use: targets[whoami+1] =

mds[whoami]["load"]/2 .
This code snippet uses globally defined variables and

tables from the Mantle API [37] to send half of the load
on the current server (whoami) to the next ranked server
(whoami + 1); the targets array is a globally defined table
that the balancer uses to do the migrations. Alternatively, to
migrate all load a time step, we can remove the division by
2.

Figure 10 (b) shows the performance of the modes using
different migration units. Recall that this setup only has 2 se-
quencers and 2 servers, so performance may be different at
scale. Even so, it is clear that client mode does not perform
as well for read-heavy workloads. We even see a through-
put improvement when migrating all load off the first server,
leaving the first server to do administrative tasks (this is com-

https://github.com/michaelsevilla/malacology-popper/blob/v2.1/experiments/mds-zlog-seq-migrate-redux-waves/results-paper/visualize.ipynb

187

mon in the metadata cluster because the first server does a
lot of the cache coherence work) while the second server
does all the processing. Proxy mode does the best in both
cases and shows large performance gains when completely
decoupling client request handling and operation processing
in Proxy Mode (Full). The parameter that controls the mi-
gration units helps the administrator control the sequencer
co-location or distribution across the cluster. This trade-off
was explored extensively in the Mantle paper but the experi-
ments we present here are indicative of an even richer set of
states to explore.

6.2.3 Feature: Backoff
Tuning the aggressiveness of the load balancer decision
making is also a trade-off that administrators can control
and explore. The balancing phase from 0 to 60 seconds in
Figure 9 shows different degrees of aggressiveness in mak-
ing migration decisions; CephFS makes a decision 10 sec-
onds into the run and throughput jumps to 2500 ops/second
while Mantle takes more time to stabilize. This conservative
behavior is controlled by programming the balancer to (1)
use different conditions for when to migrate and (2) using a
threshold for sustained overload.

We control the conditions for when to migrate using
when(), a callback in the Mantle API. For the Mantle curve
in Figure 9 we program when() to wait for load on the
receiving server to fall below a threshold. This makes the
balancer more conservative because it takes 60 seconds for
cache coherence messages to settle. The Mantle curve in Fig-
ure 9 also takes longer to reach peak throughput because we
want the policy to wait to see how migrations affect the sys-
tem before proceeding; the balancer does a migration right
before 50 seconds, realizes that there is a third underloaded
server, and does another migration.

The other way to change aggressiveness of the decision
making is to program into the balancer a threshold for sus-
tained overload. This forces the balancer to wait a certain
number of iterations after a migration before proceeding. In
Mantle, the policy would use the save state function to do
a countdown after a migration. Behavior graphs and perfor-
mance numbers for this backoff feature is omitted for space
considerations, but our experiments confirm that the more
conservative the approach the less overall throughput.

Malacology pulls the load balancing service out of the
storage system to balance sequencers across a cluster. This
latent capability also gives future programmers the ability
to explore the different load balancing trade-offs including:
load balancing modes to control forwarding vs. client redi-
rection, load migration units to control sequencer distribu-
tion vs. co-location, and backoffs to control conservative vs.
aggressive decision making.

7. Future Work
Malacology is a first step towards showing how general-
purpose storage systems can be adapted to target special-
purpose applications. By encapsulating storage system func-
tionality as reusable building blocks, we enable application
developers to leverage storage capabilities based on inter-
faces that are proven and understandable. However, creation
and composition of interfaces is complex; constructs must
be combined safely in order to provide correctness, perfor-
mance and security. We will study additional Malacology-
based services in order to learn techniques that support safe
composition.

Some higher-level services that we plan to build using the
interfaces in Table 2 are: an elastic cloud database, a data
processing engine, and a data layout manager. Approaches
proposed so far use the Data I/O interface to push down pred-
icates and computation, the File Type interface to maintain
access paths and metadata efficiently, and the Durability in-
terface to manage ingestion and movement. Using the pro-
grammable storage approach helps us build higher-level ser-
vices that work well with the storage system not in spite of
it.

Our experience with ZLog and Mantle demonstrates that
the labor of wrapping existing services in reusable interfaces
is justified by the power and flexibility that this encapsula-
tion affords to programmers. In exchange for this flexibil-
ity, however, programmers may forfeit the protection from
change afforded by narrow storage interfaces such as the
POSIX API. To implement applications on programmable
storage systems such as Malacology, programmers must find
solutions by navigating a complex design space, simulta-
neously addressing functional correctness, performance and
fault tolerance. Worse still, their solutions may be sensitive
to changes in the underlying environment, such as hardware
upgrades, software version changes and evolving workloads.
For example, a major version change in Ceph required us
to rewrite significant parts of ZLog to maintain acceptable
performance. Each such evolution costs developer time and
risks introducing bugs.

We are actively exploring the use of high-level declar-
ative languages based on Datalog [2] to program data ac-
cess and storage APIs. Using this approach, a systems pro-
grammer can specify the functional behavior in a relational
(or algebraic) language, allowing an optimizer to search
through the space of functionally equivalent physical imple-
mentations and select a good execution plan, re-optimizing
when storage characteristics or statistics change. Much like
query planning and optimization in database systems [24],
this approach will separate the concerns of correctness and
performance, protecting applications (which usually evolve
slowly) against changes in more dynamic storage system.

188

8. Related Work
Programmability of operating systems and networking re-
sources, including distributed storage systems is not new, but
we are not aware of work that makes generalization of exist-
ing services into programmable resources a key principle in
storage systems design.

Programmable storage systems can be viewed as an in-
frastructure for creating abstractions to better separate poli-
cies from mechanisms. This idea is not new. Software-
defined networks (SDNs) create such an abstraction by sep-
arating the control plane from the data plane (see for ex-
ample [27]). This notion of control/data separation was also
applied in software-defined storage (SDS) [41, 43]. Sim-
ilarly, IOStack [19] is providing policy-based provisioning
and filtering in OpenStack Swift. According to a SNIA white
paper [14], the primary goal of SDS is to control and facil-
itate flexible and dynamic provisioning of storage resources
of different kinds, including flash memory and disk drives,
to create a virtual mapping between common storage ab-
stractions (e.g. files, objects, and blocks) and storage de-
vices taking data service objectives in terms of protection,
availability, performance, and security into account. A pro-
grammable storage system exposes internal abstractions so
that end users (not necessarily operators) can create new
services on top of the storage stack. Thus, our notion of pro-
grammable storage differs from “software-defined storage”
(SDS) in terms of goals and scope, although definitions of
SDS are still in flux.

Another view of programmable storage systems is one
of tailoring systems resources to applications [5]. Related
efforts include the Exokernel [15], SPIN [11] and Vino [36]
projects; the latter two addressed the ability of injecting code
into the kernel to specialize resource management. Another
approach is to pass hints between the different layers of the
I/O stack to bridge the semantic gap between applications
and storage [5, 33, 39].

Malacology uses the same Active and Typed Storage
module presented in DataMods [47]; Asynchronous Service
and File Manifolds can be implemented with small changes
to the Malacology framework, namely asynchronous object
calls and Lua stubs in the inode, respectively.

9. Conclusion
Programmable storage is a viable method for eliminat-
ing duplication of complex error-prone software used as
workarounds for storage system deficiencies. We propose
that systems expose their services in a safe way allowing ap-
plication developers to customize system behavior to meet
their needs while not sacrificing correctness. To illustrate the
benefits of this approach we presented Malacology2, a pro-
grammable storage system that facilitates the construction

2 http://programmability.us

of new services by re-purposing existing subsystem abstrac-
tions of the storage stack.

Acknowledgments
We thank the EuroSys reviewers for their hard work, atten-
tiveness, and genuinely helpful suggestions. We especially
thank Mahesh Balakrishnan for shepherding the paper. This
work was partially funded by the Center for Research in
Open Source Software3, the DOE Award DE-SC0016074,
and the NSF Award 1450488.

Note: this paper follows The Popper Convention4 [28].
All the experiments presented here are available on the
repository associated to this article5. For every figure, a
[source] link points to a Jupyter notebook that shows the
analysis from where the graph was obtained; its parent folder
contains all the associated artifacts.

References
[1] Ceph Architecture. URL http://docs.ceph.com/docs/master/

architecture.

[2] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency Analysis in Bloom: A CALM and Collected Ap-
proach. In Proceedings 5th Biennial Conference on Innova-
tive Data Systems Research, CIDR ’11, Asilomar, CA, Jan-
uary 2011.

[3] Apache Parquet Contributors. Parquet Columnar Storage For-
mat, http://parquet.io.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A View of Cloud Computing. Communications
of the ACM, vol. 53, 2010.

[5] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information
and Control in Gray-box systems. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles, SOSP ’01,
Banff, Alberta, Canada, 2001.

[6] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,
M. Wei, and J. D. Davis. CORFU: A Shared Log Design for
Flash Clusters. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI ’12,
San Jose, CA, April 2012.

[7] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.
Tango: Distributed Data Structures Over a Shared Log. In
Proceedings of the 24th ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, Farmington, PA, November 2013.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder – A Transac-
tional Record Manager for Shared Flash. In Proceedings 5th
Biennial Conference on Innovative Data Systems Research,
CIDR ’11, Asilomar, CA, January 2011.

[9] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimistic
Concurrency Control by Melding Trees. In Proceedings of

3 http://cross.ucsc.edu
4 http://falsifiable.us
5 https://github.com/michaelsevilla/malacology-popper/tree/v2.1

http://programmability.us
http://docs.ceph.com/docs/master/architecture
http://docs.ceph.com/docs/master/architecture
http://cross.ucsc.edu
http://falsifiable.us
https://github.com/michaelsevilla/malacology-popper/tree/v2.1

189

the 37th International Conference on Very Large Data Bases,
VLDB ’11, August 2011.

[10] P. A. Bernstein, S. Das, B. Ding, and M. Pilman. Optimiz-
ing Optimistic Concurrency Control for Tree-Structured, Log-
Structured Databases. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD ’15,
Melbourne, Australia, May 2015.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers. Extensibil-
ity Safety and Performance in the SPIN Operating System. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, SOSP ’95, Copper Mountain, CO, December
1995.

[12] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. T’so.
Disks for Data Centers. Technical Report, Google, 2016.

[13] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, OSDI ’06,
Seattle, WA, November 2006.

[14] M. Carlson, A. Yoder, L. Schoeb, D. Deel, C. Pratt, C. Li-
onetti, and D. Voigt. Software Defined Storage. SNIA
Whitepaper, January 2015.

[15] D. R. Engler, M. F. Kaashoek, and J. J. O’Toole. Exoker-
nel: An Operating System Architecture for Application-Level
Resource Management. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles, SOSP ’95, Copper
Mountain, CO, December 1995.

[16] Epping, Duncan and Denneman, Frank. VMware
vSphere 5.1 Clustering Deepdive, accessed 03/21/2014,
http://www.vmware.com/product/drs.

[17] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy, and
H. M. Levy. Comet: An Active Distributed Key-Value Store.
In Proceedings of the 9th USENIX conference on Operating
Systems Design and Implementation, OSDI’10, Vancouver,
Canada, October 2010.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of the 14th ACM Symposium
on Operating Systems Principles, SOSP ’03, Bolton Landing,
NY, October 2003. ACM.

[19] R. Gracia-Tinedo et al. IOStack: Software-Defined Object
Storage. IEEE Internet Computing, 20(3):10–18, May-June
2016.

[20] M. Grawinkel, T. Sub, G. Best, I. Popov, and A. Brinkmann.
Towards Dynamic Scripted pNFS Layouts. In Proceedings
of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, Salt Lake City,
UT, November 2012.

[21] J. Gray. Tape is Dead,Disk is Tape, Flash is Disk, RAM
Locality is King. CIDR 2007 - Gong Show Presentation,
January 2007.

[22] J. Gray and B. Fitzgerald. Flash Disk Opportunity for Server
Applications. Queue, vol. 6, Juy 2008.

[23] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad.
Cloud-Scale Resource Management: Challenges and Tech-
niques. In Proceedings of the 3rd USENIX Conference on

Hot Topics in Cloud Computing, HotCloud ’11, Portland, OR,
June 2011.

[24] J. M. Hellerstein and M. Stonebraker. Anatomy of a Database
System. Readings in Database Systems, January 2005.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free Coordination for Internet-Scale Systems. In Pro-
ceedings of the USENIX Annual Technical Conference, ATC
’10, Boston, MA, June 2010.

[26] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho.
Lua - An Extensible Extension Language. Software Practical
Experiences, 26(6):635–652, 1996.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle,
S. Stuart, and A. Vahdat. B4: Experience with a Globally-
Deployed Software Defined WAN. In Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’13,
Hong Kong, China, August 2013.

[28] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead,
K. Mohror, R. Arpaci-Dusseau, and A. Arpaci-Dusseau. Pop-
per: Making Reproducible Systems Performance Evaluation
Practical, UCSC-SOE-16-10. Technical Report UCSC-SOE-
16-10, UC Santa Cruz, May 2016.

[29] L. Joao. Ceph’s New Monitor Changes. URL https://ceph.
com/dev-notes/cephs-new-monitor-changes.

[30] L. Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[31] Linux Foundation. Kinetic Open Storage Project, 2015. URL
https://www.openkinetic.org/.

[32] J. MacCormick, N. Murphy, M. Najork, andramohan
A. Thekkath, and L. Zhou. Boxwood: Abstractions as the
Foundation for Storage Infrastructure. In Proceedings of the
6th USENIX Symposium on Operarting Systems Design and
Implementation, OSDI ’04, San Francisco, CA, December
2004.

[33] M. Mesnier, F. Chen, and J. B. Akers. Differentiated Storage
Services. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, SOSP ’11, Cascais, Portugal,
October 2011.

[34] Rackspace. ZeroVM and OpenStack Swift. URL http://www.
zerovm.org/zerocloud.html.

[35] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage For
Large-Scale Data Mining and Multimedia. In Proceedings of
the 24th international Conference on Very Large Databases,
VLDB ’98, New York, NY, July 1998.

[36] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with Disaster: Surviving Misbehaved Kernel Extensions. In
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, OSDI ’96, Seattle, WA, October
1996.

[37] M. A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. A. Brandt,
S. A. Weil, G. Farnum, and S. Fineberg. Mantle: A Pro-
grammable Metadata Load Balancer for the Ceph File Sys-
tem. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’15, November 2015.

https://ceph.com/dev-notes/cephs-new-monitor-changes
https://ceph.com/dev-notes/cephs-new-monitor-changes
https://www.openkinetic.org/
http://www.zerovm.org/zerocloud.html
http://www.zerovm.org/zerocloud.html

190

[38] K. V. Shvachko, H. Kuang, S. Radia, and bert Chansler.
The Hadoop Distributed File System. In Proceedings of the
26th Symposium on Mass Storage Systems and Technologies,
MSST ’10, Incline Village, NV, May 2010.

[39] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dussea.
Semantically-Smart Disk Systems. In Proceedings of the 2rd
USENIX Conference on File and Storage Technologies, FAST
’03, San Francisco, CA, March 2003.

[40] SNIA. Implementing Multiple Cloud Storage APIs, Novem-
ber 2014. URL http://www.sniacloud.com/?p=88.

[41] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska.
sRoute: Treating the Storage Stack Like a Network. In Pro-
ceedings of the 15th USENIX Conference on File and Storage
Technologies, FAST ’16, Santa Clara, CA, February 2016.

[42] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proceedings of
the th Workshop on I/O in Parallel and Distributed Systems,
IOPADS ’99, Atlanta, Georgia, May 1999.

[43] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Row-
stron, T. Talpey, R. Black, and T. Zhu. IOFlow: A Software-
Defined Storage Architecture. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, November 2013.

[44] R. van Renesse and F. B. Schneider. Chain Replication for
Supporting High Throughput and Availability. In Proceedings
of the 6th Conference on Symposium on Opearting Systems
Design and Implementation, OSDI ’04, San Francisco, CA,
December 2004.

[45] L. Vieira Neto, R. Ierusalimschy, A. L. de Moura, and
M. Balmer. Scriptable Operating Systems with Lua. In
Proceedings of the 10th ACM Symposium on Dynamic Lan-
guages, DLS ’14, New York, NY, 2014.

[46] N. Watkins. Dynamic Object Interfaces with Lua. URL
http://ceph.com/rados/dynamic-object-interfaces-with-lua.

[47] N. Watkins, C. Maltzahn, S. Brandt, and A. Manzanares.
DataMods: Programmable File System Services. In Proceed-
ings of the 6th Workshop on Parallel Data Storage, PDSW
’12, Salt Lake City, Utah, November 2012.

[48] N. Watkins, C. Maltzahn, S. Brandt, I. Pye, and A. Man-
zanares. In-Vivo Storage System Development. In Euro-
Par: Parallel Processing Workshops, Aachen, Germany, Au-
gust 2013.

[49] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic Metadata Management for Petabyte-Scale File Sys-
tems. In Proceedings of the 17th ACM/IEEE Conference on
Supercomputing, SC ’04, Pittsburgh, PA, November 2004.

[50] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn. RA-
DOS: A Scalable, Reliable Storage Service for Petabyte-Scale
Storage Clusters. In Proceedings of the 2nd International
Workshop on Petascale Data Storage, PDSW ’07, Reno, NV,
November 2007.

http://www.sniacloud.com/?p=88
http://ceph.com/rados/dynamic-object-interfaces-with-lua

