
The VLDB Journal(1998)7: 141–162 The VLDB Journal
c© Springer-Verlag1998

Integrated document caching and prefetching
in storagehierarchiesbasedon Markov-chain predictions
Achim Kraiss, Gerhard Weikum

Departmentof ComputerScience,University of the Saarland,P.O.Box 151150,D-66041Saarbr̈ucken,Germany;
E-mail: {kraiss,weikum}@cs.uni-sb.de,WWW: http://www-dbs.cs.uni-sb.de/

Editedby M. Jarke.ReceivedJanuary1, 1998/ AcceptedMay 27, 1998

Abstract. Largemultimediadocumentarchivesmayhold a
major fraction of their data in tertiary storagelibraries for
costreasons.This paperdevelopsan integratedapproachto
the vertical datamigration betweenthe tertiary, secondary,
andprimarystoragein thatit reconcilesspeculativeprefetch-
ing, to maskthehigh latencyof thetertiarystorage,with the
replacementpolicy of thedocumentcachesat thesecondary
and primary storagelevel, and also considersthe interac-
tion of thesepolicieswith thetertiaryandsecondarystorage
requestscheduling.

Theintegratedmigrationpolicy is basedonacontinuous-
time Markov chainmodel for predictingthe expectednum-
ber of accessesto a documentwithin a specifiedtime hori-
zon.Prefetchingis initiatedonly if thatexpectationis higher
than thoseof the documentsthat needto be droppedfrom
secondarystorageto free up the necessaryspace.In ad-
dition, the possibleresourcecontentionat the tertiary and
secondarystorageis takeninto accountby dynamicallyas-
sessingthe response-timebenefitof prefetchinga document
versusthe penaltythat it would incur on the responsetime
of the pendingdocumentrequests.

The parametersof the continuous-timeMarkov chain
model, the probabilitiesof co-accessingcertaindocuments
and the interactiontimes betweensuccessiveaccesses,are
dynamically estimatedand adjustedto evolving workload
patternsby keepingonline statistics.The integratedpolicy
for verticaldatamigrationhasbeenimplementedin a proto-
typesystem.Thesystemmakesprofitableuseof theMarkov
chainmodelalsofor theschedulingof volumeexchangesin
the tertiary storagelibrary. Detailedsimulationexperiments
with Web-server-likesynthetic workloads indicate signifi-
cantgainsin termsof client responsetime. Theexperiments
also show that the overheadof the statisticalbookkeeping
andthecomputationsfor theaccesspredictionsis affordable.

Key words: Performance– Caching– Prefetching– Schedul-
ing – Tertiary storage– Stochasticmodeling – Markov
chains

1 Intr oduction

1.1 Problemstatement

Internet/WWWandWeb-likeintranetinfrastructuresgainin-
creasingimportanceasamediumfor convenientinformation
accesswithin large enterprisesandacrossthe world. While
the narrowly restrictedbandwidthof the Internetcurrently
limits theamountandtypeof datathat is offeredon theWeb
(e.g., in electronicproductcatalogs),a tremendousgrowth
of multimediadata(images,videos,animations,etc.) is ex-
pectedin the near future with rapidly increasingnetwork
bandwidth.We may soonseeWeb servers(probablywith a
full-fledged DBMS behindthem) that haveto manageter-
abytesor evenpetabytesof dataandprovideefficient access
to millions of clients. In the following, we will refer to the
dataobjectsof sucha servergenericallyasdocuments.

Among the multitude of documentsthat are held by a
server,typically only a small fraction is “hot”, that is, fre-
quently accessed.Furthermore,the hot fraction will evolve
over time; previously hot documentsbecome“cold” (i.e.,
requestedinfrequently)but still needto be archivedfor oc-
casionalaccess.For cost/performancereasons(cf. [GP87]),
cold documents,which may be accessedonly once every
so many hoursor days,shouldresidein tertiary storageli-
braries.Such libraries provide “near-line” accessby keep-
ing data on magneto-opticalplatters or tapes,generically
referredto as volumes, that residein a robot-servedjuke-
box with a certainnumberof drives,typically oneorderof
magnitudefewer drives than volumes.So, in principle, all
documentsareavailableonline,but thehigh latencyof pos-
sible volume exchangesin the drives may incur response
timesof morethan10s or evenminutes.Thus,it is crucial
that the currentlyhot documentsareindeedheld at leaston
the secondarystoragelevel (i.e., the disks) of the storage
hierarchy.

In the presenceof evolving documentpopularitiesand
accesspatterns,the disks then essentiallyserveas a cache
with regardto thetertiarystorage.In addition,somevery hot
documentsmay be held in an in-memorycacheat the pri-
marystoragelevel. Therefore,goodcachereplacementpoli-
cies for variable-lengthdocumentsareextremelyimportant
for theoverall serverperformance.Furthermore,thevertical

142

datamigration betweenthe tertiary, the secondary,and the
primary storageand thus the cachehit rate can be further
improvedby employing“intelligent” prefetchingpolicies,so
that the high latencyof the tertiary storagecan be masked
from the client in manycases.

Designinggood replacementand, especially,prefetch-
ing policiesfor the vertical datamigrationbetweentertiary,
secondary,and primary storageis substantiallymore diffi-
cult thanstandardDBMS buffer management.To realizethe
difficulties,considera straightforwardapproachthateagerly
initiates the prefetchingof documentswhenevera tertiary
storagevolumeis online,andkeepsprefetchinguntil it runs
out of (secondarystorage)cachespace.Such a simplistic
approachis boundto fail, as it doesnot properlyassessthe
variouspotentialbottlenecks.

1. Cache hit rate. Cache space is scarceand valuable,
so that only sufficiently worthy documentsshould be
prefetchedand/orkept in the cache.This calls for poli-
cies that arebasedon goodestimatesof the near-future
accesspatterns,which is far beyondthe usual DBMS
pageprefetchingon behalf of sequentialscans[TG84].
Threemajor problemsthat arisein this contextare:
a. We needto quantitativelyassessthecache-worthiness

of a previouslyuncacheddocumentversusa cached
one. Standardalgorithmslike LRU lack appropriate
bookkeepinginformationaboutcurrentlynon-cached
data; hence, they are susceptibleto swamping the
cachewith newly fetched,but unworthy documents
[OOW93].

b. The units of data migration, the documents,have a
very high variancein their size.DBMS buffer man-
agementis well understoodfor pagegranularity,but
practicalwork on variable-sizegranulecachingpoli-
cies has been limited to outdatedoperatingsystem
architectureswith non-pagedmemory and would at
leasthave to be re-assessedfor the new application
setting.

c. Overly aggressiveprefetchingmay havea detrimen-
tal effect on the cachereplacementin that it possi-
bly reducesthe effectively exploited cachesize by
prefetchingdatathatmay turn out not beingaccessed
at all or only in the far future.We needa quantitative
understandingof whento throttle the prefetchingac-
tivity andhowto identify themostworthyprefetching
candidates.

2. Resource contentionat the tertiary storage.Both cache
replacementand prefetchinginterferewith the schedul-
ing policy of the tertiary storagelibrary. This involves
two issues:
a. The transferrateof the tertiary storageis fairly lim-

ited. So prefetchingcan lead to substantialqueuing
delaysin servingother, pendingdocumentrequests.
Therefore,to control thesecontentioneffects,theuti-
lization of the tertiary storagedrives must be taken
into consideration.

b. The robot arm of the tertiary storagelibrary is a po-
tential bottleneck,asit incursa high latencyin every
volume exchange.Throughputconsiderations,there-
fore, suggestminimizing volumeexchanges,but this

mayadverselyaffect responsetime.Sothescheduling
of volumeexchangesneedsto be plannedcarefully.

3. Resource contentionat the secondarystorage.The ver-
tical migration of documentsalso interferes with the
schedulingpolicy for thedisk(s)on which thesecondary
storagecacheresides.This hastwo aspects:
a. As the migration from tertiary storageinto the sec-

ondarystoragecachegoesthroughprimary storage,
it may incur a fairly high write I/O loadon thecache
disk(s). On the other hand, client requestsare ulti-
matelyservedfrom memory-residentnetworkbuffers;
so all secondary-storagecachehits requirereadI/Os
from thecachedisk(s).Thesetwo typesof disk activ-
ities needto be reconciledunderpossiblyhigh con-
tention.

b. Since the primary storagealso providesa relatively
small amountof evenfastercachespace,the replace-
ment decisionsat this storagelevel affect the inten-
sity of havingto readdocumentsfrom thedisk cache.
However,usingmemoryfor this extracachingeffect
alone would potentially block the documentmigra-
tion path from tertiary onto secondarystorage,be-
causeof insufficient intermediatebuffers in memory.
This tradeoff needsto be consideredthoroughly.

The problems outlined above indicate the complexity of
managinga storagehierarchyin an intelligent manner.Our
approachin this paperis heuristicin that it addresseseach
potential bottleneckseparately,but eachone of the devel-
opedbuilding blocksis basedon rigorousmathematicalrea-
soningalong with a careful assessmentof its bookkeeping
andcomputationaloverhead.

1.2 Contributionandoutline

This paperdevelopsa unifiedapproachto cachereplacement
andspeculativeprefetching,basedon a stochasticmodelfor
predicting documentaccesses,and integratesthis vertical
migrationpolicy with the schedulingpoliciesof the tertiary
storagelibrary andthesecondarystoragecache.In doingso,
we aim to minimize the responsetime of client requests.To
this end,our approachconsidersthe impactof the following
potentialbottlenecks:thecachehit rateat thesecondaryand
primary storagelevel, the contribution of queuing delays
at the tertiary storagelevel, and the potential queuing at
the secondarystoragedisk cache.We arenot awareof any
similarly comprehensivework on managinglarge near-line
documentarchives.

In additionto advancingthe stateof the art from a sys-
tem designviewpoint, a major novelty of the paperlies in
usinga continuous-timeMarkov chainmodelandits under-
lying theory [Nel95, Tij94] for predictingfuture document
accesses.This model involves estimating,through access
monitoring, the transitionprobabilitiesbetweendocuments
that are successivelyrequestedwithin a client session,that
is, the probability that a client requestsdocumentj given
that its previousrequestaccesseddocumenti. We further
monitor the interactiontimesbetweensuccessivesessionre-
quests,andalsothearrival rateof newclient sessions.From
theseparameters,we utilize mathematicalresultson Markov

143

chainsto predicttheexpectednumberof accessesto certain
documentswithin a specifiedtime horizon.

Obviously,a Markov chainmodelfits well with naviga-
tional accesses,wherea client would starta new sessionby
accessingsome“entry document”andthenproceedalonga
hyperlink structure.Navigationalaccessseemsto be typical
for applicationssuchas teleteaching,virtual museums,and
the like. However,the Markov chainmodeldoesin no way
rely onthis typeof accessmode.Whatit capturesarethepat-
ternsof co-accesses:accessto a certaindocumentaffectsthe
probabilityof accessinga certainotherdocumentin thenear
future. Thus,the Markov chainmodel is applicableequally
well to a descriptiveaccessmodel with high-level queries;
for example,the transitionprobabilitiesbetweendocuments
would reflect if two documentscontainsemanticallyrelated
informationandconsequentlybothappearin theresultsetof
many queries.Furthermore,client cachingof documentsis
automaticallyfactoredout, as requestsservedby the client
cacheare not known to the server’sbookkeepingand are
thus not consideredin the parameterestimations,which is
perfectlyadequate.

The Markov chain model pursuedhere is substantially
richer (in terms of capturingmore workload information)
than a classof modelsthat merely aim to estimatethe sta-
tionary accessprobabilitiesof the variousdocuments,often
referredto asthe “heat” of a document[Co88]. Taking into
considerationthe current stateof an active client session,
i.e., the last requesteddocument,leadsto much betterpre-
dictions than the simpler stationary-probabilitymodels.On
the other hand, it is evident that the parameterestimation
of a Markov chain model incurs much more bookkeeping
overhead.We believe that this is one of the reasonswhy
Markov chainmodelshavenot receivedmore attentionfor
cachemanagementbetweenmemoryandsecondarystorage.
With the high latencyof tertiary storage,it is worthwhile to
employa richerdecision-makingmodelevenif its overhead
may not be negligible.

Whereasdiscrete-timeMarkov chainshave beenused
in the literature for characterizingthe accesspatternsof a
singleclient [TN91, CKV93, Be96],our approachproceeds
substantiallyfurther in that we

1. incorporatedocument-specificclient interaction times
between successivedocument requestsby using a
continuous-timerather than a discrete-timeMarkov
chain,

2. reconcilethe Markov-chaininducedaccesspatternsof
all simultaneouslyactive client sessionsinto a global
prediction,and

3. take into account,within the mathematicalframework,
thedynamic“out-of-the-blue”arrivalsof newclient ses-
sions, whose initial state is unknown so that accesses
cannotbe predictedbasedon the last requesteddocu-
ment,andalsothe termination(“departure”)of sessions.

Incorporationof time into the model is crucial in order to
capturethe very high varianceof client interaction times
amongdocuments.A usertypically spendsmuch lesstime
on overview-like HTML documentsthat merely contain
graphically enrichedanchorsthan on long text and image
documentswith complexand interestingcontents.Further-
more,somebrowsingtools supportthe automaticfollowing

of embeddedlinks, which leads to very short interaction
times.

Theapproachin this paperwasinitially suggestedin the
conferencepaper[KW97], but that paperdid not consider
primarystoragecaching,nor did it takeinto accounttheper-
formanceissuesthat result from writing cacheddocuments
ontosecondarystorage.In thecurrent,substantiallyextended
paper,we considertheseissues.Furthermore,we generally
extendthe quantitativecostmodelingof our methodin that
we capturethe replacementcoststhat arisefrom droppinga
documentat a certainstoragelevel, andwe capturethe re-
sourcecontentionin a tertiarystoragejukeboxwith multiple
drives more accuratelythan in [KW97]. Theseissueswere
not of interestin [KW97], aswe consideredonly a two-level
storagehierarchyanda single-drivejukeboxthere,but they
areof crucial importancefor the generalthree-levelstorage
hierarchyof the currentpaper.

The restof the paperis organizedas follows. Section2
discussesrelatedwork. Section3 presentsour assumptions
on the overall systemarchitecture.Section 4 developsa
continuous-timeMarkov chain model for predicting near-
future documentaccesses.Section5 presentsthe integrated
vertical migration policy that incorporatesprefetching,re-
placement,and the schedulingpolicies of the tertiary and
the secondarystorage.In Sect.6, we discussthe bookkeep-
ing overheadof our policy in terms of CPU and memory
consumption.Section 7 gives an overview of our proto-
type implementation.Section8 presentsexperimentalper-
formanceresultsbasedon simulation.Section9 discusses
severalextensionsandgeneralizationsof the developedap-
proach.Section10 concludesthe paper.

2 Related work

Tertiary storagemanagementfor long-termfile archivalhas
beenanimportantissuefor supercomputingcentres;policies
for the replacementof files on the secondarystoragehave
beenlimited to simpleheuristics;however,basedon file age
or estimatesof the stationaryaccessprobabilities[Smi81].
More recentwork hasfocusedon dataplacementon tertiary
storagevolumes[FC91,CR94,TCG96,CTZ97] andrequest
scheduling[HS96,NKT97]; this includeswork with special
considerationson the real-timerequirementsof video data
[GMW94, LLW95]. Motivatedby the large datavolume in
datawarehouses,tertiary storagemanagementhasalso re-
ceivedattentionin the contextof relationalDBMS queries
[Sto91,ML97, Sa95,Jo98].

Prefetchingin databasesystemshasbeenstudiedmostly
for applicationswherefutureaccesspatternsarelargely pre-
dictabledueto specificstructuresof theunderlyingdatabases
and the programs accessingthem, especially in object-
orienteddatabasesystems[CK89, CH91, GK94], but also
in real-timeand multimediaapplications[WZ86, MKK95,
TP97].Theeffectof objectprefetchingis implicitly achieved
(on a per-pagebasis)alsoby intelligently clusteringobjects
into pages[CK89, TN91, TN92, GKKM93]. In the field of
mobile computing,[KP97] haspursueda similar approach
wherereference“distances”in userandprogramaccesspat-
ternsareusedfor predictivefile hoarding.

144

Thereis only little work on prefetchingbasedon prob-
abilistic models.Fundamentalpropertiesof Markov chain-
basedpaging have beeninvestigatedin [KPR92] with the
focus on the asymptoticworst-casecompetitivenessof on-
line algorithms.On the practicalside,[PZ91] hasproposed
an associativememory approachfor predicting object re-
questsand initiating prefetching.A major disadvantageof
this approachis that the associativememoryneedsoffline
training, which rendersit infeasiblefor documentarchives
with evolving workloadpatterns.[MKK95] hasproposeda
relevance-rankingschemefor the buffering of video frames
in multimediaapplicationsthataimsto captureaccessprob-
abilities,but relieson externalinput for determiningtherel-
evancemeasures.In [CKV93], compressionschemesbased
on kth-orderMarkov chainshavebeenappliedto the prob-
lem of prefetchingpages,and [Be96] hasuseda first-order
Markov chain for speculativeprefetchingin a distributed
system.All thesestrategiesaretailoredto supportinga sin-
gle accesssequencerunningwith dedicatedclient memory,
which is not applicablein our scenariowheremultiple, dy-
namicallyarriving anddepartingsessionscompetefor cache
space.Also, object-specificinteractiontimeshavebeendis-
regarded,andprefetchinghasbeenstudiedin isolationin the
above-mentionedwork, without consideringthe interdepen-
dencieswith cachereplacementandstoragedeviceschedul-
ing.

Approachesthat aim to reconcile the replacementand
prefetching policies for an in-memory page cache are
[GK94], [CFKL95a, CFKL95b], [AGL97], and [PGG+95],
but all of theseassumeperfect knowledgeof future page
accessesthroughapplicationhints. [GK94] explicitly main-
tains, in a special data structure,the page accesshistory
of methodinvocationswithin object-orienteddatabases,and
usesthis informationfor prefetchingpagesinto themethod’s
working spacein memoryandalsofor selectingreplacement
victims basedon the remainingnumberof accesseswithin
the methodexecution.[CFKL95a,CFKL95b] and[AGL97]
developrules for when aggressiveprefetchingneedsto be
throttled in order to avoid adverseeffects on the pagere-
placement(e.g.,prefetchinga pagethat causesthe replace-
mentof a previouslycachedpagethatwill bere-usedearlier
than the prefetchedpage).[CFKL95a, CFKL95b] analyzes
boundson the suboptimalityof variousheuristics,whereas
[AGL97] addressthe issueasan integeroptimizationprob-
lem andpresenta linear-programmingrelaxationfor finding
anoptimumprefetchingschedule.Finally, [PGG+95]devel-
opsa simplecostmodelwith constantCPU anddisk access
time per pagerequestto heuristically control the dynamic
subdivisionof cachespaceinto anLRU-managedcacheand
a separateprefetchingcache.All of theseapproachesare
gearedfor casesin which theapplication’saccessesareper-
fectly predictable(e.g.,a Unix grepcommandrunningon a
directory tree of files), and cannotbe usedin our problem
setting.

The only work known to us that considersappropriate
thresholdsfor the throttling of prefetchingactivities from a
stochasticviewpoint is [JK98], in the context of prefetch-
ing datafrom Web servers.Basedon a costmodel,a global
prefetchingthresholdis derivedin termsof minimum docu-
mentaccessprobabilitiesso asnot to overloadthe network.
However, this approachfocuseson per-client prefetching

and does not addressserver cachemanagement.Further-
more, accesspredictionsare basedonly on discretedocu-
mentaccessprobabilitieswith a single-steplookahead,and
document-specificuserreactiontimesarenot considered.

3 Systemarchitecture

We considera documentserverwith a three-tierstoragehi-
erarchy:

• primary storage(PS) in main memory (assumedto be
sharedamongall processorsif the serveris an SMP ma-
chine) which servesboth as a cachefor very hot docu-
mentsandtransferbuffer for documentmigrations,

• secondarystorage(SS)on disk(s)asa cachefor hot and
warm documents,

• tertiary storage(TS)in theform of anoptical-diskjukebox
with oneor moredrivesanda robotarmfor theexchange
of volumes(i.e., opticaldisk platters),which servesasthe
permanenthomeof documents.

At anygivenpoint theTS hasloadeda subsetof its volumes
into its drives,which changeswith everyvolumeexchange
of the jukebox.Thus, the TS itself constitutestwo separate
accesslevels,altogetherleadingto a four-tier storagehier-
archywith the following two lower-half levels:

• online tertiary storage(TS-on)and
• offline tertiary storage(TS-off).

We denoteby docs(i) the set of documentsthat resideat
level i of the storagehierarchy.We assumethat the upper
two levelsof the storagehierarchyform true cachesof the
lower levels in that a documentthat currently residesat a
higher level is still availablefrom the TS level(s). We do
not assume,however,that docs(PS) is alwaysa subsetof
docs(SS), asthedatatransferpathfrom TS to SSis through
PS.Then,it canoccur that a documentis broughtfrom TS
to PS with the intention to write it onto SS, but, by the
time this disk write is about to start, the documentmay
have becomeunworthy of being cached.This situation is
not eventhatexceptional;consider,for example,a document
that is brought into PS due to a high probability that it is
requestedwithin the near future by a single session.Once
it is loadedinto PS,the requestmay be servedfrom the PS
beforethedocumentis written to theSS.After thedocument
is requestedby the session,it may becomefairly cold, so
that it shouldnot be kept in SS or PS after the requestis
satisfied.

The overall systemarchitectureof our approachis de-
pictedin Fig.1. The servercandeliver documentsto clients
only from its PS.To bring a documentinto PS, the server
alwaysretrievesthedocumentfrom thehigheststoragelevel
at which (a copy of) the documentcurrently resides(possi-
bly thePScacheitself). So,in particular,documentsthatare
requestedfrom theSScachearefirst broughtinto PS.When
the documentis copiedbetweenstoragelevels or dropped
from a certainlevel, we speakof a datamigration.Upward
data migrations from a lower level to a higher level take
placeuponthe following events:

– fetching an explicitly requesteddocumentfrom TS-on
into PS,

145

Fig. 3.1. Overview of the System Architecture

TS-off TS-on

PS

SS
eject/load

fetch, prefetch

fetchspool

Document Server

Clients

ship

Fig. 1. Overviewof the systemarchitecture

– fetchingan explicitly requested,previouslycacheddoc-
umentfrom the SScacheinto PS,

– prefetchinga documentfrom TS-oninto PSin the spec-
ulative anticipationof near-termrequests,

– spooling a previously fetchedor prefetcheddocument
from PS onto SS (i.e., writing it onto disk), which can
beviewedasthesecondphaseof prefetchingadocument
from TS-ononto SSvia PS,

– loading a previously offline volume into a TS drive,
which canbeviewedasan implicit migrationof a setof
documentsfrom TS-off to TS-on.

Downward data migration resultsimplicitly from dropping
a documentthat usedto resideat a higher level, or from
ejecting an online volume from a TS drive. The implicit
migrationsthatresultfrom volumeexchangesareperformed
by theTSscheduler. For modularity,we assumethat theTS
scheduleris a separate(and thusexchangeable)component
within theoverall systemarchitecture.We generallyassume
that the TS is the most critical bottleneck,and that the SS
cachemaybeperformance-critical,too,asits disk(s)need(s)
to sustaina very high read/writeload for thedynamic,more
or less continuoustransferof documentsbetweenPS and
SS. The transfer betweenPS and SS is managedby the
SSscheduler. We disregardall other schedulingissues.In
particular,we do not considerCPU or network contention.
Such extensionswould be feasiblewithin our framework,
but would complicatethe algorithms.

4 Stochasticmodel

In this section,we describethestochasticmodelfor thepre-
diction of futuredocumentaccesses.We assumethat clients
open sessionswith the serverand then proceedthrough a
numberof documentaccessesbeforeterminatinga session,
which modelsaninteractivemultimediainformationsystem.
Let D denotethe documentset storedon a serverconsist-
ing of N documentsdi ∈ D, i = 1 . . . N . Furthermorelet
S denotethe set of currently active usersessionssj ∈ S,
j = 1 . . . |S|, and let d(sj) denotethe last (i.e., most re-
cent) documentthat the sessionsj hasrequestedfrom the
server.We modeltherequestpatternsof a singlesessionasa
continuous-timeMarkov chain[Nel95, Tij94], asdeveloped
in Sect.4.1.Wewill thenshowin Sect.4.2howmultipleses-
sionsand,particularly,thedynamicarrivalsof newsessions
canbeincorporatedinto themodel.TheMarkovchainmodel
impliesthat interactiontimesbetweensuccessiverequestsof

the sameuserareexponentiallydistributed,which hasbeen
reasonablywell confirmedby the analysisof WWW server
traces.In addition,we discusspossibleextensionsto capture
generaldistributionsin Sect.4.3.

4.1 A continuous-timeMarkovchainmodel
for a singlesession

A continuous-timeMarkov chain (CTMC) is a stochastic
processthatproceedsthroughdifferentstatesin certaintime
epochs.Its basicpropertyis that the probability of entering
a statedependsonly on the currentstate,not on the previ-
oushistory (this is a first-orderMarkov chain;higherorder
Markov chainsarenot relevantto this paper).This property
hasthemathematicalimplication that the time for which the
processresidesin a given statemust be an exponentially
distributedrandomvariable;different statesmay havedif-
ferentmeanresidencetimes,however.Thus,a CTMC with
statesdenoted1, 2, . . . N is uniquelydescribedby a matrix
P = (pij) of transitionprobabilitiesbetweenstates,and the
meanresidencetimes (or “state holding times”) Hi of the
states.Equivalently,onecanspecify the transitionratesvij

betweenstatesi andj, wherevij = 1
Hi

∗pij ; the term1/Hi

is alsoknown asthe statedeparturerateanddenotedasvi.
In our applicationsetting,the stateof the CTMC corre-

spondsto a session(i.e., the stochasticprocess)accessing
a certaindocument.For eachdocumentdi, pij denotesthe
probabilitythatwhenasessionhasrequesteddocumentdi, it
will nextrequestdocumentdj from theserver.Thestateres-
idencetime correspondsto the time that the sessionresides
at a document;this capturesthe actualinteractiontime, i.e.,
the time that a humanuserneedsto “digest” a document’s
contentsor a browserneedsto processthe documentbefore
requestingthe next one.

We are interestedin predictingthe future accessesof a
session.In this prediction,we canexploit the knowledgeof
a session’scurrentstate.Thus,thefirst relevantmeasurethat
we are interestedin are the probabilitiespij(t) that a ses-
sionwill be in statej (i.e., will accessdocumentdj) at time
t from now, given that it currently residesin statei (i.e.,
documentdi). Thereare well-known methodsfor perform-
ing this type of transientanalysisof a CTMC. However,a
first difficulty in applyingthesemethodsis the fact that the
meanresidencetimes are not uniform acrossall states.To
overcomethis problem,we apply a methodthat is known
as uniformization [Tij94] to transformthe CTMC into an
equivalentCTMC with uniform meanresidencetimes.Here,

146

equivalencemeansthat both processeswill be in the same
statewith the sameprobability for all times t; so we have
pij(t) = p̄ij(t), where pij(t) refers to the original CTMC
and p̄ij(t) to the uniformized CTMC. The uniformization
methodessentiallyadjuststhe statetransition probabilities
so as to factor out the different meanresidencetimes; this
involves introducingtransitionsback into the left stateand
is describedmathematicallyasfollows:

p̄ij =







vi

v
∗ pij , j /= i

1 −
vi

v
, j = i

where

v = max{vi|i = 1 . . . N} . (1)

The formal proof for this uniformization can be found in
[Tij94]. The central property that is exploited here is that
thestate-transitionepochsof theuniformizedCTMC canbe
generatedby a Poissonprocesswith rate v, the maximum
statedeparturerateof the original CTMC.

Next we considerthem-steptransitionprobabilitiesp̄(m)
ij

of the uniformized CTMC, i.e., the probabilities that the
sessionwill be in statej after m transitions,given that it
currently is in statei. Thesecan be inductively computed
from the Chapman-Kolmogorovequations[Nel95, Tij94]

p̄(m)
ij =

N
∑

k=1

p̄(m−1)
ik p̄kj with p̄(0)

ij =

{

1 if i = j ,

0 otherwise.
(2)

Finally, weobtainthetime-dependenttransitionprobabilities
pij(t) by taking the productof the probability that m steps
areperformedin time t with them-steptransitionprobabil-
ity, and summingup theseproductsfor all possiblevalues
of m. This is exactlythepartof thederivationthat is greatly
simplified by the previousuniformization,andwe obtain

pij(t) =
∞
∑

m=0

e−vt (vt)m

m!
∗ p̄(m)

ij , for all i, j and t > 0 . (3)

We will showin Sect.6 that theseprobabilitiescanbecom-
putedefficiently in an incrementalmanner,i.e., without ac-
tually havingto approachthe infinite sum.Thepij(t) values
denotetheprobability thata sessionresideson documentdj

at time t (from now on) under the condition that the ses-
sion currently resideson documentdi. For the decisionon
whetherit is beneficialto prefetcha certaindocumentfrom
tertiary storageonto disk and possiblydrop anotherdocu-
mentfrom thesecondarystorageasareplacementvictim, we
areinterestedin theexpectednumberof requeststo a docu-
mentwithin acertainlookaheadtimehorizont. Wepostpone
thediscussionon how to setandpossiblyfine-tunethevalue
of the lookaheadtime until Sect.5.6. Note that we are still
focusingon a singlesessiononly, but estimatingthe expec-
tation of the numberof requeststo a documentwill later
allow us to reconcilemultiple, concurrentlyactivesessions
by essentiallysummingup theseexpectationvalues.

Theexpectedamountof time thatasessionthatcurrently
residesin statei will spendin statej within a timehorizonof
durationt is obtainedby the productof the meanresidence
time per visit of state j, which is 1/v, and the expected
numberof visits to j or, actually, departuresfrom statej

within time t. We considerdeparturesfrom j rather than
arrivals at j, so that we count only completevisits within
the time horizon t (i.e., completeresidencetimes), where
thedifferencemattersin thetransientanalysis,asopposedto
steady-stateanalyses,for thetimehorizont mayberelatively
short.The expectednumberof departuresfrom j is in turn
obtainedby summingup, for all possiblevaluesn of the
total numberof transitionswithin time t, the productof the
probability that n transitionsare performedwithin time t
andtheprobability thatstatej is reachedfrom statei in less
thann steps.So we arrive at the following formula [Tij94]:

Eij(t) =
1
v

∗

∞
∑

n=1

(

e−vt (vt)n

n!
∗

n−1
∑

m=0

p̄(m)
ij

)

. (4)

Finally, to derive the expectednumberof arrivals at state
k, or, equivalently,accessesto documentdk, we consider
all possiblepredecessorstatesj that have transitionsinto
k (with non-zeroprobability).Eij(t)/(1/v), the ratio of the
total timespentin j (duringcompletevisits) to themeantime
per visit, is the expectednumberof completevisits to and
thus departuresfrom j, and we finally obtain the expected
numberof transitionsinto k by multiplying the expected
numberof departuresfrom the predecessorstatej with the
transitionprobabilitypjk andsummingup thesevaluesover
all predecessorstatesj. This yields the following formula:

E[numberof accessesto dk in time t]

=
N
∑

j=1

v ∗ Eij(t) ∗ p̄jk (5)

So we finally havea mathematicallyfoundedpredictor for
thenear-futurenumberof accessesto a documentand,thus,
a basisfor assessingthe “worthiness” of a document,i.e.,
thebenefitof prefetchingthedocumentfrom tertiarystorage
and/orkeepingit in the secondary-storagecache.

4.2 Incorporatingmultiplesessions
with dynamicarrival and termination

The predictionformula derivedin the precedingsubsection
holds only for a single sessionfor which we know its cur-
rent state(i.e., its last requesteddocument).For the overall
optimization of the server,we still need to reconcile the
predictorsof multiple ongoingsessions,andwe alsohaveto
takeinto considerationthatnewsessionsarrivedynamically
and we do not know in advancetheir initial state(i.e., the
first requesteddocumentof a session).Thefirst problemcan
be easilysolvedby summingup, over all ongoingsessions,
theexpectedvaluesof thenumberof accessesto a document
within a session:

Nspec(dk, t) := E[total numberof accessesto dk in time t]

=
∑

s∈S

N
∑

j=1

v ∗ Ed(s),j(t) ∗ p̄jk , (6)

where d(s) is the documenton which sessions currently
resides(i.e., the currentsessionstate).We will refer to this
expectationvalueasthe expectednumberof speculativere-
quests, andwill denoteit asNspec(dk, t).

147

In addition to the derived expectationvalue, a second
metric of potentialinterestis the probability that thereis at
leastonerequestto agivendocumentwithin time t. Thetran-
sientanalysisof CTMC modelsyields a closedformula for
this first-visit probability, too [Tij94]. However,this deriva-
tion is substantiallymore costly than the abovecalculation
of theexpectednumberof accesses.In particular,it involves
additionaltraversalsof pathsin the Markov chainto obtain
theprobabilitiesthata certaindocumentwill not beaccessed
within time t. To avoid this very costly computation,we
rather advocatethe following approximativeestimationof
the probability for at leastoneaccessto a given document.
We view the overall processof requeststo a documentdk

asa Poissonprocesswith rate

λ̄(dk) = E[numberof accessesto dk in time t]/t . (7)

Thenwe canestimatethe first-visit probability for d within
time horizon t as

Πspec(dk, t) = 1 − e−λ̄(dk)∗t . (8)

Now considerthe issueof newly arriving sessions.Disre-
garding theseand focusing only on the ongoing sessions
would underestimatethe numberof near-futureaccessesto
certain documents,in particular, thosedocumentsthat are
the first onesto be accessedby new sessions.Accessesto
these“entry” documentsarrive“out of theblue” soto speak.

Thereis anelegantway of incorporatingthesenewly ar-
riving sessionsinto theCTMC framework.Wesimplyaddto
theCTMC modeladditional,fictitious statesN +1, . . . , N +c
thatrepresentall currentlypassiveclients(whichdonothave
asessionin progress)from whichweexpectthattheirarrival
probabilitywithin time t is abovea giventhresholdpmin. We
assumethe overall arrival of new sessionsto be a Poisson
processwith rate λ. Then, the stateresidencetimes of the
c “passive-client”states(i.e., the time until a passiveclient
startsa newsession)areidenticallydistributed,following an
exponentialdistribution with meanvalue c/λ. The number
of fictitious statesthat we considerto representthe entirety
of currently passiveclients can then be boundedby solv-
ing the following inequality for c, and this approximation
“misses” at most a fraction of pmin of the overall session
arrivals(with pmin set to 0.001,for example):

1 − e(− λ

c
∗t) ≥ pmin . (9)

The transitionprobabilitiespN+i,j (i = 1 . . . c) are the sta-
tionary accessprobabilitiesfor the entry documentsof new
sessions.Oncethe CTMC is extendedin this way, we can
directly apply the derivationof Sect.4.1 with statesN + 1
throughN + c addedto the variousformulas,and the only
thing to do in additionis to logically addc fictitioussessions,
onesessionresidingon eachof the statesN + 1, . . . , N + c,
to the setS of sessionsover which the per-sessionexpecta-
tions aresummedup (formula 6). However,as the number
of near-future“out-of-the-blue”accessesto a documentare
the samefor all c sessions,the computationof the overall
“out-of-the-blue”accessescanbe greatlysimplified by just
multiplying the expectednumberof accessesdoneby a sin-
gle arriving sessionwith the numberof consideredsessions
c. Note that, for thesamereason,the transitionprobabilities
pN+i,j haveto be kept only once.

Fig. 2. Examplemodelingof statedj with generallydistributedstateresi-
dencetime

In contrastto sessionarrivals, there is no explicit no-
tion of a sessiontermination.We simply considera session
as terminatedif it doesnot issueany further requestsfor a
certaintimeout period. In termsof modelingthe impact of
terminations,however,the terminationof ongoingsessions
can be takeninto account,similarly to the aboveconsider-
ationson arrivals,by addingtransitionsbetweeneachstate
i andan additional,fictitious (absorbing)state0, wherethe
transitionprobability pi,0 denotesthe probability that a ses-
sionterminates(i.e., remainsinactivefor thetimeoutperiod)
after havingaccesseddocumentdi. Theseprobabilitiescan
beestimatedthroughcontinuousmonitoringin thesameway
asall other transitionprobabilities.

4.3 Incorporatinggenerallydistributed
stateresidencetimes

Analysesof WWW servertraceshaveshownthat exponen-
tially distributedstateresidencetimes capturereal interac-
tion patternsreasonablywell. In addition,our model could
be easily extendedto considergeneraldistributionsby ap-
proximatingtheactualstateresidencetime distributionwith
a generalizedErlang distribution, which is a randomsum
of Erlang-k distributionswith the samescaleparameterbut
differentk values[Tij94]. This way, a statewith a general
distributionof its residencetimescanbemappedinto a “su-
perstate”consistingof branchingsequencesof stateswith
exponentiallydistributed residencetimes. The “substates”
with exponentiallydistributedresidencetimes can then be
directly incorporatedinto the CTMC framework.Figure 2
depictsan exampleof a superstatedj with residencetime
following anE1,n distribution,which is a random(i.e.,prob-
abilistically weighted)sumof an Erlang-1andan Erlang-n
distribution. The E1,n distribution can be usedfor a wide
spectrumof generaldistributionswith coefficient of varia-
tion cx in the range[Tij94]:

1
n

≤ c2
x ≤

n2 + 4
4 ∗ n

. (10)

The branchingprobability p and the meanstateresidence
timesH canbe determinedfrom the momentsof the super-
state’sactualresidencetime distribution.

Oncethesubstatesdj0, . . . , djn areincorporatedinto the
CTMC model,the expectednumberof accessesto the doc-
umentdj within time t is obtainedby summingup the ex-
pectednumberof accesseswithin time t over the “entry”
substatesdj0 anddj1.

Clearly, as this methodinvolves introducingadditional
statesinto the CTMC, it incurs higher overhead.However,
the mappingis only neededfor documentswhoseresidence

148

times cannotbe approximatedby an exponentialdistribu-
tion at all. Furthermore,the numberof additionalstatesis
rathersmall for many unimodaldistributions(i.e., distribu-
tions whoseprobability density function hasa single max-
imum), which are the distributionsof most interestin our
applicationcontext.

5 Integrated migration policy

This sectionpresentsour verticalmigrationpolicy thataims
to reconcilethe prefetchingfrom tertiary storageinto sec-
ondary and primary storage,the replacementon primary
and secondarystorage,and the schedulingof volume ex-
changes.The algorithmsarebasedon the expectednumber
of near-futureaccessesto a documentasderivedin Sect.4.
We will first give an overview of the algorithm in Sub-
sect.5.1. Then,we presentthe prefetchingandreplacement
algorithmin Subsect.5.2, the prefetchrequestschedulingat
the TS in Subsect.5.3, and the write requestschedulingat
the SScachein Subsect.5.4. Subsequently,we elaborateon
the tertiarystorageschedulingof volumeexchangesin Sub-
sect.5.5.Finally, Subsect.5.6discussesthefine-tuningof the
lookaheadtime horizonusedby the CTMC predictions.

5.1 Overviewof thealgorithm

Theoverallapproachis to quantitativelyassessthenear-term
worthiness(or “weight”) of eachdocumentwith respectto
improving the meanresponsetime of documentrequests.
To this end, the algorithm aims to place the most worthy
documentsin SSwith the highestrankeddocumentsamong
thesealsocachedin PS.This placement,however,is not a
staticone,but is actuallytheresultof themigrationstepsthat
take into accountthe dynamicevolutionof the serverload.
In measuringthe worthinessof a document,the following
threeaspectsaretakeninto account.

• The near-termheat of a document,which is the docu-
ment’saccessfrequencyestimatedfor a certainlookahead
time window of sizeT . In contrastto earlierwork based
on stationary,long-termheat,our approachconsidersthe
current stateof the server’ssessionswith active clients
andreactsdynamicallyto changesof thesestatesandother
generalload parameters.The estimatednear-termheatof
a documentd, NH(d, T), is theexpectationvalueE[total
numberof accessesto d within timeT] thatwe derivedin
the previoussectionwithin the CTMC model.

• Giventhatwe dealwith variable-sizedocuments,we need
to normalizetheheatmetric in orderto obtainthebenefit-
per-spaceunit. To this end,we divide the heatof a doc-
umentd by the sizeof d, S(d), to derive the near-term
temperature of d, NT (d, T) = NH(d, T)/S(d). (Seealso
[Co88,SSV96] for similar considerations.)

• Finally, it may be worthwhile to discriminatedocuments
that resideon different levels of the storagehierarchy,
becausethis incursdifferentcostsin the retrievalof doc-
umentsif the documentsare not cachedat the highest
level(s). For example,when deciding the worthinessof
two documentswith regardto cachingthem in PS, it is
important if one documentcan still be fetchedfrom SS,

whereasthe other residesonly in TS, possiblyevenTS-
off. This considerationis capturedby thereplacementcost
of a documentd, RC(d), which is the response-timecost
thatis incurredby retrievingd from thehighestoneamong
the lower storagelevelsat which (a copy of) it currently
resides.Then, the worthinessof a documentshould be
proportionalto its replacementcost.

Puttingthesethreeaspectstogetheryields the following
definition of the weightmetric:

weight(d, T) = (NH(d, T)/S(d)) × RC(d) .

Basedon this weight metric, the rationaleof our approach
is the following. We maintain a list of “interesting” doc-
umentscontaining the top m documentsin terms of the
weight metric, where m is chosensuch that thesedocu-
mentswould togethercompletelyfill up the availablecache
spaceon SS(assumingthattheSScacheis muchlargerthan
the PS cache).A documentd from this list shouldthen be
prefetchedinto PS(and then further “spooled” onto SS)or
SS(via a short-termPSbuffer), respectively,if andonly if
it is not yet cachedand its weight exceedsthe maximum
weightamongthedocumentsthatwould haveto bedropped
from PSor SSasreplacementvictims in orderto makespace
for d. Here,for d itself, thereplacementcostrefersto its cur-
rent storagelevel beforeprefetchingit, whereasfor the PS
or SS replacementvictims, the replacementcost refers to
their higheststoragelevelsbelow the level from which they
would be dropped.

Documentweight is the decisivemetric for tentatively
identifying prefetchingcandidatesandthecorrespondingre-
placementvictims.However,theprefetchingitself shouldbe
reconsideredas late aspossibleas input parameterschange
over time. Thus, when the TS is about to start the data
transferfor a prefetchingrequest,the weightsof the to-be-
prefetcheddocumentandtheselectedreplacementvictims in
PSandSSarere-evaluated.If it turnsout that the prefetch-
ing requestis no longer worthwhile, then it is cancelledat
this point. A secondand even more important aspectthat
may lead to the cancellationof prefetchingrequestsis that
overly aggressiveprefetchingmay leadto contentionat the
TS drives or the robot arm of the TS. Therefore,it is cru-
cial to consideralsothepotentialinterdependenciesbetween
datamigrationsandthe TS requestscheduling.

The solution to this throttling problem is to assessfor
eachindividual prefetchingrequest,when it is about to be
servedfrom anonlinevolume,theactualresponse-timeben-
efit of theprefetchingandthepenaltythatthis requestwould
incur for future requests.To this end,we define

• the benefit of a prefetching requestas the aggregated
savings in the responsetime of future requeststo the
prefetcheddocument,and

• the penaltyof a prefetchingrequestasthe aggregatedde-
lay of otherrequests,i.e., theproductof theaffected,i.e.,
delayed,requestsandtheir response-timedelay.

In Sect.5.3, we will derive formulasfor the benefitand
penaltymetrics.Thebenefitandthepenaltyof a prefetching
requestarecomputedwhen the requestis aboutto be initi-
ated,to reflectup-to-datesession-stateandload parameters.
Certain intermediateformulasmay be precomputedat this

149

point to makethe benefit/penaltyassessmentsufficiently ef-
ficient for online decisions.Then,the prefetchingrequestis
initiated if andonly if its benefitexceedsits penalty.Other-
wise it is cancelled.

A similar considerationon theneedfor activity throttling
arisesat theSS.Here,thepotentialpointof contentionis that
readrequeststhat fetch cacheddocumentsfrom SSinto PS
for delivery to the client may be delayedby write requests
that “spool” prefetchedor fetcheddocumentsfrom the PS
cacheonto SS for further caching.Again, we addressthis
issueby assessingthe benefit and penalty of a document
write request,usingformulasthatwill bederivedin Sect.5.4.

In summary, the integrated migration policy can be
viewedasa three-stagedecisionprocess,wherethe second
andthird stageeachperformtwo comparisons.

• Stage1. Tentatively identify “speculative” prefetching
candidates,basedon a rankingof documentsby descend-
ing weight,andinsertprefetchingrequestsinto the corre-
spondingqueueof the TS volume.

• Stage2. Whena prefetchingrequestis aboutto beserved
from anonlinevolumeof theTS,selectthelowestranked
documentsof the target level (i.e., PS or SS) as re-
placementvictims andcomparethe weightsof the to-be-
prefetcheddocumentandthechosenvictims. If thedocu-
mentweight is smallerthanthe maximumweight among
the victims, then the prefetchingrequestis cancelled.If
the prefetchingrequestis still consideredworthwhile, its
benefitandpenaltyarecomputed.Whenthepenaltyof the
prefetchingrequest,in termsof delayingother requests,
exceedsits benefit, then the prefetchingrequestis can-
celled.

• Stage3. Whena prefetchedor fetcheddocumentis about
to be written from PSto SS,the weight comparisonand
the benefit/penaltycomparisonare repeatedonce more,
andthewrite requestis cancelledif oneof thesecompar-
isonsindicatethat the documentis no longersufficiently
worthy.

5.1.1Examplescenario

As an examplefor the possibleactionsof this three-stage
policy considerthe following scenariodepictedin Fig.3.
The figure shows(copiesof) documentsA throughK that
residein PS,SS,andtheonlineTS.Documentson theonline
TS are shownin the order in which they would be served
by a sequentialvolume scan.The near-termheat of these
documentsis shownin parentheses;for simplicity, assume
that all documentshavethe sameunit size.

Now considerwhat happenswhen clients explicitly re-
quest the documentsF , G, and C, and the TS scan has
reachedthe position of documentH (Fig.3a). Document
H could be worth being cachedin PS,as thereare poten-
tial victim documentsB with lower near-termheatand A
which is cachedon disk. But now considerthe penaltythat
prefetchingH at this point would incur on other requests.
We haveexplicit client requeststo F andG pending;both
would be delayedby the prefetchingof H. So we needto
comparethe benefitof prefetchingH with its penalty(with
regardto F andG) quantitatively.Here,we needto consider
moredetailedparameters,which arenot given in the figure.

So let us simply assumethat the benefitof H is lower than
its penalty.The decisionthen is to cancelthe prefetching
requestfor H.

Next, documentF must be fetchedinto PS,as thereis
an explicit, pendingrequestfor it. So we needto determine
a replacementvictim. B hasthe lowestnear-termheat,but
onceit is droppedit would haveto be retrievedagainfrom
TS (possiblyoffline TS), whereasA could still be retrieved
againat a much lower cost from SS.Thus, taking into ac-
count the replacementcostsof A andB suggestschoosing
A as the replacementvictim at the PS level. Now let us
focusfor anothermomenton what happensfurther to docu-
mentF onceit is broughtinto PS(Fig.3b). It is sentto the
requestingclient,andat thesametime,theSSschedulercon-
siderswriting F to theSScache,whereit maybekept for a
while. However,this write I/O maydelayfetchingdocument
C from the SS cache,which is also requestedby a client
(think of theclient requestfor C to arrive immediatelyafter
the fetching of F from TS). Now we needto tradeoff the
benefitof keepingF in the SS cache(i.e., avoiding future
TS accesses)versusthepenaltythat it incurson the reading
of C from SS. One outcomeof this comparisoncould be
that theresponse-timedelayfor C would besohigh that the
writing of F shouldbe cancelled.SinceC alsoneedsspace
in PS,this decisionwould probablyimply thatF is dropped
from PSright after completingits delivery to the requesting
client (Fig.3c).

Now we have documentsB and C in the PS cache,
andwe areaboutto prefetchdocumentK. Its weight is re-
assessedagainstthat of the lowestrankedPSdocument,C,
andK is clearlyfoundto beworth beingprefetchedinto PS.
Thefinal questionthenis whetherthis would haveanoverly
adverseeffect on further pendingrequests,namely,the re-
questto documentG in our scenario.Again,we comparethe
benefitof cachingK in PSversustheresponse-timepenalty
that this prefetchingrequestwould incur on the requestto
G. Here,let us assumethat the benefitexceedsthe penalty.
So,K is prefetched,first into PS,wherewe needto reclaim
spaceby droppingC. Assumingthat the weight of K ex-
ceedsthe weight of E and as thereis no pendingrequests
on SS,K is spooledto SS by droppingdocumentE from
SS(Fig.3d). If K is spooledto SSquickly enough,thenthe
final pendingrequestto G could immediatelyre-usethe PS
spacethat was temporarilyoccupiedby G (Fig.3e). Here,
we alsoseethat it is desirableto spoolPSdocumentsto SS
as fast as possiblein order to reclaim valuablePS space,
and in the currentsituationthereis no contentionwith any
outstandingSSreadI/Os.

This scenarioshouldgive a moreconcrete,albeitmerely
exemplaryand mostly qualitative impressionon the vari-
ousdecisionsthat needto be madein the overall migration
algorithm.

5.2 Prefetchingandreplacementof documents

As the worst caseaccesstime to tertiary storageis orders
of magnitudehigher than a secondary-storagedisk access,
an importantinitial objectiveof our migrationpolicy (to be
revisedshortly) would be to maximizethe numberof docu-
mentrequeststhatcanbeservedfrom thedisk cache,that is,

150

Fig. 3a–e.Examplescenariofor the integratedmigrationpol-
icy. a Initial situation.b Situationafter fetchingF into PS.c
SituationafterfetchingC into PS.d Situationafterprefetching
K into PSandspoolingit onto SS.e Situationafter fetching
G into PS

maximize the cachehit rate. Then, the cachingworthiness
of documentsis reflectedby their near-termheat,which is

NH(d, T) = Nspec(d, T) , (11)

whereNspec(d, T) denotestheMarkov-chainpredictednum-
ber of speculativerequeststo d, i.e., the expectationvalue
accordingto formula (6). By normalizingthe cachingwor-
thinesson a per-bytebasis,we derivethenear-termtemper-
ature:

NT (d, T) = Nspec(d, T)/S(d) . (12)

If maximizing the cachehit rate were indeedour sole ob-
jective, then we would now rank documentsin descending
orderof the near-termtemperature,keepingthe highesttwo
fractionsin the PSandSScache,respectively.However,in
order to minimize the meanresponsetime, we alsoneedto
factor the replacementcostsof documentsinto the ranking
metric,which leadsto the weight of a documentgiven by

weight(d, T) := NH(d, T) ∗ RC(d)/S(d) . (13)

Then,at eachpoint of time, the ideal assignmentof docu-
mentsto the PS and SS cachesshould reflect the ranking
of documentsby descendingweight.To approachthis ideal
ranking behaviorby an online decision-makingalgorithm,
our migration algorithm considersprefetchingrequestsfor

those documentswhose weight exceedsthat of currently
SS-residentdocuments.The algorithm actually maintainsa
ranked list in descendingweight order, where the top m
documentsare consideredfor prefetching.The value of m
is chosensuchthatthespacecapacityof theSScachewould
be completelyexhaustedby thosem documents.Eachdoc-
umentwhich is elementof the top m documentsandwhich
is not cachedon primary or secondarystoragehas to be
prefetchedfrom tertiary storage.At the time, a document
prefetchis scheduled,theweightof thedocumentto prefetch
is comparedwith the weight of the correspondingreplace-
ment victims and the prefetchmay be cancelled.The re-
placementvictimsaredeterminedbasedonascendingweight
orderstartingfrom the bottomof the sortedlist.

At this point, let us consider,in more detail, the book-
keepingcostsof this policy. In assessingthe weight of doc-
uments,the information that is readily availableanywayis
the numberof pendingrequestsandthe documentsize.The
(expected)numberof speculativerequestsis derivedusing
the CTMC model. This is not exactly computationallyin-
expensive,but it is the coreof our overall approach.Thus,
we assumethat this information is availableonline for all
relevantdocuments.Finally, considerthe replacementcost
of a document.This is muchmoreproblematicthanit seems

151

at first glance.What we needhereis a bookkeepingof the
higheststoragelevel at which a cacheddocumentswould
resideif it were droppedfrom a cache,since the replace-
mentcostof sucha documentdependson thatstoragelevel.
This information is, of course,available,but is highly dy-
namic.In particular,whenevera TS volumeis ejectedfrom
a drive and thus changesits statusfrom online to offline,
the replacementcostof a cacheddocumentchanges(unless
we considerthe PS cacheand the documentalso resides
on SS).Unfortunately,this would imply that the rankingof
documentsin the SS andPS cacheshasto be re-computed
with every volume exchangeof the TS. Contrastthis with
the much more stablevaluesof the near-termheat,which
canalsobe evaluatedlazily.

Theseconsiderationson the bookkeepingcostsfor the
weight metric lead us to the following simplifications.For
the documentsin the PScache,we maintainthe rankingby
theweightmetric.This appearsto bejustified,asthenumber
of documentsin the PScacheis relatively low. (Recall that
we expectfairly large documentsin a multimediaapplica-
tion.) For theSScache,however,wherethenumberof docu-
mentsis muchlarger,we maintaintherankingmerelyon the
basisof the morestablenear-termtemperaturemetric. This
holdsfor thestage-onetentativeidentificationof prefetching
candidates.Later,in stagetwo, whentheprefetchingrequest
is aboutto be servedandits weight is comparedagainstthe
weightsof the selectedreplacementvictims, we apply the
more“accurate”comparisonbasedon thefull weightmetric.
The candidatedocumentis prefetchedonly if its weight ex-
ceedsthemaximumweightamongthe replacementvictims.
This way we avoid having to maintaina completeranking
of cacheddocumentsby weight.

Whatremainsto bedoneat thispoint is theactualderiva-
tion of the replacementcostof a given document.We need
to distinguishthreecases.

1. Documentcopy available from SS. If the documentis
droppedfrom the cache,it can be retrieved from SS.
(This is relevantonly whenwe considerthe PScache.)
In this case,the cost for retrieving the documentback
againis themeanresponsetime of theSSconditionedby
theprobabilitythatit will beaccessedat leastoncein the
lookaheadtime window. This replacementcostis amor-
tized over Nspec(d, T) expectedaccesses,thus yielding
the following per-accesscost:

RCSS(d) = Πspec(d, T) ∗ RTSS(d)/Nspec(d, T) , (14)

whereRTSS(d) denotesthe empirically estimatedmean
responsetime of theSSfor a documentof sizeS(d) and
Πspec(d, T) is theprobability thatd will beaccessedone
or moretimeswithin time T .

2. DocumentcopyavailablefromTS. If the droppeddocu-
mentneedsto be retrievedfrom TS, we needto further
distinguishthe online versusthe offline case.
a. OfflineTS. If the documentis currentlynot online at

all, we assumethat this situation lasts for the entire
lookaheadtime window. Then the cost of retrieving
it backagainis the meanresponsetime to an offline
document.This yields

RCTS−off(d) = RTTS−off(d) . (15)

b. Online TS. If the documentis currently still online,
we needto determinetheremainingonlinetimeof the
correspondingvolume, as the volume may become
offline at somepoint in the lookaheadtime window.
Obviously,the remainingonline time is continuously
changingastime progresses.To avoid continuousre-
computing,we ratherestimatethe meanonline time,
Ton(v), of a volume v, which is derivedas follows.
Supposethat the time betweentwo successivevol-
umeexchangesis Tex. Underthe assumptionthat the
TS robot arm is permanentlybusy exchangingvol-
umes,Tex can be viewed as a constantand can be
easilymeasured.Furtherassume,for tractability,that,
at each volume exchange,the robot arm makes a
randomchoice amongthe currently online volumes
to determinean “exchangevictim”. Then, with L
drives, the numberof volume exchangesthat a vol-
ume“survives” (i.e., remainsonline) is geometrically
distributed:the probability of surviving i exchanges

is
(

L−1
L

)i
∗ 1

L , andtheexpectationvaluefor thenum-
ber of survived exchangesis L − 1. So, the mean
online time of a volume is composedof L − 1 time
periodsof lengthTex plus the remainingtime of the
current Tex period, which we estimateto be Tex/2.
This holds for volumesthat arenot yet scheduledto
be ejected.For thosethat are alreadyknown to be
ejectedby the next volume exchange(i.e., the robot
arm is alreadymoving to the correspondingdrive),
we set the remainingonline time to zero.Puttingev-
erythingtogetheryields the following formula for the
online time of volumev:

Ton(v) =







Tex/2 + (L − 1) ∗ Tex
if v is not scheduledfor ejection

0 if v is going to be ejectednext

(16)

Finally, the replacementcost of an online document
d can be computedas the conditionedsum of two
components.(1) For theremainingonlinetimeTon(v),
the replacementcost is given by the meanresponse
time of the online TS conditionedby the probability
that d will indeedbe accessedat least once within
this online time. But this costwould haveto be paid
only oncefor all Nspec(d, T) expectedrequests,sowe
needto normalizeit ona per-requestbasis.(2) For the
fraction of the lookaheadtime window in which the
volumeis expectedto beoffline, eachof theexpected
requestswill haveto pay the costof the meanoffline
responsetime, but only with the probability that d is
not requestedat least once alreadyin its remaining
online period.This yields the formula

RCTS−on(d) = Πspec(d, Ton(v))

∗RTTS−on(d)/Nspec(d, T)

+
(

1 − Πspec(d, Ton(v))
)

∗RTTS−off(d) . (17)

152

5.3 Prefetchrequestschedulingfor onlinevolumes
of the tertiary storage

We generallyassumethat the TS scheduleraims to max-
imize the I/O throughputof the TS by batching requests
into a Scan(alsoknown asElevatoror Sweep)servicepol-
icy for eachvolume. The schedulermaintainstwo queues
for eachvolume,a queuefor the actually pendingrequests
that havebeenexplicitly issuedby clients,anda queuefor
the speculativeprefetchingrequestsfor which prefetching
is consideredworthwhile. When the Scanpolicy beginsa
forward or backwardsweepover the tracks of an online
volume, it mergesthe currentcontentsof thesetwo queues
into a single requestqueueorderedby track number.The
schedulerkeepsrepeatingsuchvolume sweepsuntil it de-
cides to exchangethe volume, i.e., eject it from the drive
and load another,previouslyoffline volume into the drive.
The policy for thesevolumeexchangesis intentionallysep-
aratedfrom the migrationpolicy for modularity.It could be
a simpletime-slice-basedround-robinpolicy, or a moread-
vancedpolicy thatconsidersthenear-termheatof documents
(where,of course,we favor thelatterone,aswe will discuss
in Sect.5.5). In any case,invoking a large numberof spec-
ulativeprefetchingrequestson anonlinevolumemay result
in delaying the requests(both pendingand prefetchingre-
quests)for anothervolumethatis notyetonline.Thispenalty
shouldbe recognizedandquantitativelyassessedby themi-
grationmanagerin orderto guaranteeappropriatethrottling
of the prefetchingactivity.

To avoid the aboveform of contentionat the online TS,
we introducetwo decisionstepsthat allow us to cancela
prefetchrequestimmediatelybeforetheTS would startserv-
ing it.

1. We comparethe prefetchingcandidateand the PS re-
placementvictims in terms of the weight metrics, the
incentivebeingthat we want to basethis assessmenton
mostup-to-datenear-termheatstatistics.

2. We computethebenefitof thedocumentto beprefetched
that we would obtain, in terms of expectedresponse-
time gains, from having the documentavailable at a
higher level of the storagehierarchy.We also compute
the penalty that the prefetchingwould incur on other,
pendingrequeststo documentsof the sameonline TS
volume, as thesepending requestswould be delayed,
thusyielding an adverseimpacton the overall meanre-
sponsetime.Then,thesetwo metricsarecompared(note
that they havethe samedimension:(expected)number
of requeststimes responsetime improvementor degra-
dation),andwe decideto cancelthe prefetchingrequest
if its penaltyexceedsits benefit.

The benefitof prefetchingdocumentd from an online vol-
ume v is estimatedas follows. Prefetchingd savesus the
first fetch requestto the documentin that it masksthe la-
tency of the online TS. Further requeststhat arrive during
the remainingonline time of v would benefitequally from
eithertheprefetchingor thefirst explicit fetchrequest.How-
ever,this holdsonly if the first fetch requestwill be issued
while the volume is still online, or in probabilistic terms,
with theprobability that thereis at leastonefetchrequestto
d duringtheremainingonlinetime of v. The latterprobabil-

ity is exactlythe visiting probability,Πspec(d, Ton) analyzed
in Sect.4, wherethe time horizon is set to the meanonline
time of a volume, Ton, that we derived in Sect.5.2. Thus,
like in Sect.5.2, we replacethe remainingonline time of
a volumewith the overall meanonline time for tractability
reasons.The time delay that we saveby the prefetchingof
d is the responsetime of later having to fetch d from the
online TS, that is, the meanresponsetime for a document
of sizeS(d), RTTS−on(d).

Once the online time of volume v is passed,we need
to assumethat the volume may go offline immediately.
Thus, if we had prefetcheddocumentd before this point,
we could now potentially savethe delaysof a requestto
offline TS. The numberof requeststhat would benefitfrom
this prefetchingequalstheexpectationvalueNspec(d, T) de-
rived in Sect.4. However, this term is relevantonly with
the probability that d is not yet explicitly requestedduring
the online time of v. So, we needto condition it with the
factor1−Πspec(d, Ton). Altogether,this yields thefollowing
formula for the benefitof prefetchingd from v:

benefit(d) = Πspec(d, Ton(v)) ∗ RTTS−on(d)

+
(

1 − Πspec(d, Ton(v))
)

∗ Nspec(d , T)

∗RTTS−off(d) . (18)

In evaluatingthis formula,we canre-usebookkeepinginfor-
mationandcomputationsthatwe alreadyidentifiedasmajor
building blocks in Sect.5.2.

For estimatingthe penalty that the prefetchingrequest
incurson otheroutstandingrequests,we shouldfirst realize
that the prefetchingrequestfor d delaysall alreadypend-
ing requeststo otherdocumentson the samevolumev. The
lengthof thedelayis givenby theservicetime,STTS−on(d),
for readingd from the online TS. The abovepenaltiesall
refer to requeststo the volumethat holdsd andis currently
online. In addition,however,a secondcategoryof penalties
may arisefrom the fact that the prefetchingrequestpoten-
tially delaystheejectionof thevolume,namely,by delaying
thependingrequestswhich mustbeservedin the remaining
online time. Therefore,all pendingrequeststo currentlyof-
fline volumesmay be delayedaswell. However,this holds
only if the volumev is alreadyscheduledfor beingejected
next, so that the prefetchingrequestwould actually extend
its online time. Theseconsiderationslead to the following
estimationof the penaltythat arisesat the TS:

penaltyTS(d) =














∑

d′∈docs(v)∧d′/=d Npend(d′) ∗ STTS−on(d)

if v is not scheduledfor ejection,
∑

d′∈docs(v)∪docs(TS−off)∧d′/=d Npend(d′) ∗ STTS−on(d)

if v is going to be ejectednext,

(19)

whereNpend(d′) is thenumberof currentlypending,explicit
client requeststo documentd′.

5.4 Write requestscheduling
for thesecondarystoragecache

Similarly to the possiblecontentionat the TS, the SS may
alsobecomea bottleneckin the overall performance.Here,

153

the potential point of contentionis that read requeststhat
fetch cacheddocumentsfrom SS into PS for delivery to
the client may be delayedby write requeststhat “spool”
prefetchedor fetcheddocumentsfrom thePScacheontoSS
for furthercaching.This spoolingis thenaturaldatatransfer
path for documents,but it still needsto be dynamicallyre-
consideredwhenthedisk utilization at theSSlevel becomes
critical. In fact, it may occur that a documentis prefetched
on behalf of a single sessionto maskthe high TS latency,
but, by the time it is about to be written to the SS cache,
its near-termheathasdroppedsharply. In thesecases,the
write requestsshouldbecancelled.Making this decisionin-
volves the samekind of benefit/penaltyassessmentthat we
introducedabovefor the schedulingof prefetchingrequests
at the TS level. The only differenceis in the detailsof the
underlyingquantitativeformulas.

As for the benefit of a document,the assessmentis,
in fact, still identical to the one for the TS, as derived in
Sect.5.3. The benefit capturesthe expectedresponse-time
improvementthatresultsfrom cachingthedocumenton disk
insteadof accessingit on tertiarystorage.Thepenalty,how-
ever,is different from what we consideredin Sect.5.3. The
writing of a PS-residentdocumentonto SSdelaysall pend-
ing requeststo theSS,andthelengthof this delayis thedisk
servicetime for writing a documentof sizeS(d), denotedby
STSS(d). This yields the following formula for the penalty
at the SSlevel:

penaltySS(d) =
∑

d′∈docs(SS)

Npend(d
′) ∗ STSS(d) . (20)

The disk scheduleralways considersthosedocumentsfor
writing to SS that are likely to be removedfrom PS next.
Suchdocumentdroppingsfrom PS are causedby fetch re-
questsfrom TS or SS or prefetchingfrom TS into PS, re-
placing the documentsin PS with the lowest weight. To
savethesereplacement-”endangered”documentsontotheSS
cache,theSSschedulermaintainsa list of thecurrentlyPS-
residentdocumentsin ascendingweight order (i.e., starting
with thedocumentwith the lowestweight)anddeterminesa
setof spoolingcandidatesaccordingto thefollowing criteria.

• Whennofetchrequestis pendingat theSS,all PS-resident
documentsareconsidered“endangered”that could be re-
placedby the fetchor prefetchrequestsfor theTS drives.
With S̄ denoting the averagedocumentsize and L the
numberof TS drives,the overall PScachesize that may
haveto be freedup is L ∗ S̄.

• In the caseof fetch requestspendingat the SS, the PS
spacethatneedsto befreedup for thefirst SSreadrequest
must be consideredas “endangered”in addition to the
spacefor the TS reads(i.e., the first caseabove).So,
altogether,this requiresspoolingas many documentsto
SS as are neededto free up L ∗ S̄ + S(d) spaceunits in
PS,whereS(d) is the sizeof the first documentd that is
to be readfrom SS.

In both cases,the SS schedulerconsidersspooling PS-
residentdocumentsin ascendingweight order until their
total size exceedsthe required amount of PS space,and
initiateswrite requestsfor themin that order.Also, in both
cases,thesewrite requestsareassessedagainstthe pending
SSreadrequestsby performingthebenefit/penaltycompari-

sonfor eachspoolingcandidate(oneat a time).Notethat,in
the first caseabove,the first write requesthaszeropenalty
becauseof thecurrentlyemptydiskqueue.Also notethatthe
spoolingcandidatesmay still endup becomingoverwritten
in the PScachewithout first beingsavedonto SS,namely,
whentheir benefitis smallerthanthepenaltywith regardto
the pendingSSreadrequests.

5.5 Schedulingof volumeexchanges

Becauseof the very high delay incurred by volume ex-
changes,any reasonabletertiary-storageschedulingpolicy
mustattemptto batchrequestsfor thesamevolumesoasto
limit or even minimize the unproductivetime wastedby
volume exchanges.This holds for both pending requests
and speculativeprefetchingrequests,but pendingrequests
are critical in terms of responsetime, so that they should
not be postponedtoo muchfor the benefitof batching.The
schedulingpolicy that we advocate,therefore,keepstwo
queuesqpend and qspec of volume IDs, for which explicit,
pendingrequestsand speculativeprefetchingrequestshave
beenissued.As long asthe qpend queueis not empty,those
volumesareloadedinto driveswhich havependingrequests.
Naturally, preferenceshouldbe given to volumesv with a
high numberof pendingrequests,denotedNpend(v). On the
otherhand,settingvolumeprioritiesonly on thisbasiswould
causethedangerof requeststarvation.Thus,to preventstar-
vation,volumesareactuallyloadedinto drivesin descending
orderof theproductNpend(v)∗Twait(v), whereTwait(v) is the
longestwaiting time amongall pendingrequestsfor volume
v. Once a volume is loaded into a drive, all pendingre-
questsandprefetchingrequestsarecombinedandreordered
for being servedby a Scan-likesweepover the volume. It
is at this point when the benefit and penalty of serving a
prefetchingrequestarere-assessedandprefetchingrequests
may be cancelled(seeSect.5.3 above).Oncea volumebe-
comessubjectof ejection,a final sweepis performedfor this
volume,wherethe weightsof the documentsto prefetchas
well asthebenefitandpenaltyarere-adjusted(seeSects.5.2
and5.3 above).Requeststhat arrive during the final sweep
andwhosepositionon the volumehasalreadybeenpassed
are held back in their queueuntil the next time when the
volumeis loaded.

Whenevera drive is unusedwith regardto theexplicitly
issuedpendingrequests,the schedulingpolicy loadsa vol-
umesolely for servingspeculativeprefetchingrequests.The
volumeselectionpolicy thatweadvocatehereis to givepref-
erenceto volumeswith a high numberof expectedaccesses.
For eachvolume we simply sum up the expectednumber
of near-futureaccesses(formula 6) for all prefetchingcan-
didatedocumentsthat resideon the volume, and maintain
a queueof volumesin descendingorder of this total num-
ber of expectedaccesses.We refer to this algorithm as the
MEAT (most expectedaccessestop-priority) policy. So the
resultsfrom our stochasticmodel (seeSect.4) arenot only
useful for initiating prefetchingrequests,they alsoserveas
a heuristicsfor schedulingvolumeexchanges.

154

5.6 Fine-tuningof the lookaheadtimehorizon

So far it may appearthat the migrationpolicy crucially de-
pendson a propersettingof the lookaheadtime horizon t
that plays a prominent role in predicting the benefit of a
speculativerequest.It is indeedtrue that a carelesschoice
of this fine-tuningparametercancauseadverseperformance
effects:settingit too low meansthat evenhighly likely but
speculativerequestsare recognizedtoo late, and setting it
too high would overestimatethe benefitof speculativere-
questsand may causehigh contentionfor tertiary storage
drives.In particular,the secondcasemay leadto situations
wherea volume is loadedinto a drive solely on behalf of
speculativerequestsand an explicit pendingrequestthat is
issueda secondlateris delayedfor a long time,asthespecu-
lative requestqueuefor thevolumein thedrive maybevery
long. Furthermore,if secondary-storagespaceis scarceand
the prefetchingis too aggressive,the prefetcheddocuments
may causethe replacementof documentsthat turn out to be
(re-)usedearlier thanthe prefetchedones.

Fortunately,there is a simple rationale for setting the
lookaheadtime horizon. Considerthe averagetime period
betweenthesuccessiveejectionandloadingof thesamevol-
ume;this metriccanbemeasuredonlineandwill bedenoted
asTload. The final sweepafter a volumebecomessubjectof
ejection is the latestpoint in time where it is possiblefor
a documentto be prefetched.Once the volume is ejected,
all requestsfor a non-cacheddocumentresult in pending
requestsfor offline volumes.In order to avoid thesecache
“misses”, at least all speculativerequestsup to the time
when the volume is online again,which is Tload time units
later, haveto be considered.So, Tload is a lower boundfor
the lookaheadtime horizon. On the other hand,all specu-
lative requestsarriving after time Tload shouldnot be con-
sideredat all, as, for thoserequests,it would be sufficient
to prefetchthe documentwhenthe volumebecomesloaded
thenext time.For thosespeculativerequestsafter time Tload,
prefetchingthedocumentbeforethevolumebecomesloaded
againwould be a wasteof cachespace.This consideration
showsusthatTload is alsoanupperboundfor the lookahead
time of theaccesspredictor.So,Tload is indeeda reasonable
canonicalchoicefor the lookaheadtime.

6 Implementation of the bookkeeping

In this sectionwe discussthe implementationandthe over-
head of the bookkeepingfor the accesspredictions, the
prefetchingandreplacementof documents,andthe tertiary-
storagescheduling.We considerbothconsumptionof mem-
ory spaceandCPU time.

We keepmoving-averagestatisticsfor all statetransition
probabilitiesof theCTMC (i.e.,a dynamicallyagingcounter
of how frequenta transition from di to dj occurs)and all
stateresidencetimes(i.e., thetotal residencetime of the last
z visits to di, wherez is a fine-tuningparameterwhich we
setto 50). In principle,this incursspaceoverheadthatgrows
quadraticallywith the numberof documents.However,the
transitionprobabilitymatrixP of theCTMC is typically very
sparse,providedthat the workload exhibits spatial locality,
which hasbeenobservedfor Web servertraces[ABCO96]

and is a reasonableassumptionfor other document-archive
applications,too. All the statistical information is kept in
hashtablesindexedon statei.

Eachtime a sessionchangesits stateby requestingthe
next documentdi, the expectednumbersof near-futureac-
cessesto otherdocumentschangeaccordingto Eq.5. At this
point, the state-transitiongraphof the Markov chain is tra-
versed,starting from di and always proceedingalong the
highestprobability transitionof the statewith the currently
highestprobability of being reachedfrom di. During this
traversal,uponeachvisit of a statej, its Eij(t) valueis in-
crementedby the productof the meanresidencetime and
theaccumulatedprobabilityof reachingj within time t (see
Eq.4). The procedureis terminatedwhenthe probability of
reachinga statewithin the lookaheadtime t dropsbelow a
specifiedthresholdδ (which we havesetto 0.01).Note that
this stoppingthresholdallowsusto boundthecomputational
overheadof the traversal.Further,notethat the entirecom-
putationis incrementalin that it re-usesintermediateresults
to the mostpossibleextent.Finally, notethat the computed
Eij(t) valuesare actually sessionindependent;thus, they
are kept and re-usedfor all subsequentaccesspredictions
of other sessions,as long as the basic statisticalparame-
ters,thetransitionprobabilitiesandthestateresidencetimes
do not changemuch.In real applications,we would expect
exactlysuchquasi-stablebaseparameterswith major shifts
occurringonly occasionallyon a long-termscale.

The algorithmsfor generatingprefetchingrequestsand
decidingon cachereplacementsaredriven by the following
sortedlists.

• lDoc: this list keepsthedocumentIDs, thedocumentsizes,
and the weights of all documentswhich have non-zero
weights.It is usedfor determiningthe tentativeprefetch-
ing candidates(stage1 in Sect.5.1) by traversingthe list
in weight-descendingorder until the aggregatedsize of
the inspecteddocumentsexceedsthe total spacecapac-
ity of the SS cache.For eachinspecteddocumentwhich
is not yet cachedon SS or PS, a prefetchingrequestis
generated.

• lPS: this list keepsthe documentIDs, the documentsizes,
andtheweightsof all documentswhich arecachedin PS.

• lSS: this list keepsthe documentIDs, the documentsizes,
andtheweightsof all documentswhich arecachedon SS.

All lists are sortedaccordingto the documentweights.
The sortinghasto be adjustedeachtime a sessionchanges
its state.In the caseof the rathersmall lPS list, the sorting
is additionallyadjustedwith eachexchangeof volumes(as
discussedin Sect.5.2). The two lists lPS and lSS are used
for determiningthe replacementvictims in PS and SS, re-
spectively.The sizesof theselists obviouslydependon the
numberof documentsresidingon thecorrespondingstorage
level andshouldincur only negligiblespaceoverhead.The
size of lDoc, on the other hand,is boundedby considering
only documentsfor which at leastonesessionis predictedto
accessthe documentwithin time t (with probability above
the aforementionedthresholdδ).

The overheadof the tertiary-storageschedulingalgo-
rithm, MEAT, is negligible. We merely have to track the
valuesof Nspec, Npend, andTwait on a per-volumebasis.

155

6.1 Recoveryof bookkeepingdata

Keepingthe bookkeepingdatain main memoryleadsto the
lossof thisdatauponaservercrash.As thebookkeepingdata
solely servesto control the cachingof documents,the loss
only resultsin futureperformancedegradations,but doesnot
affect the principal functionality of the documentarchive.

However, especially for infrequently accessed
documents,the reconstructionof lost CTMC bookkeeping
data (i.e., mean state residencetimes and state transition
probabilities)maytakea very long time, resultingin perfor-
mancedegradationsover an extendedtime period.For this
reason,theCTMC bookkeepingdatashouldbekeptalsoon
stablestorage(i.e., secondarystorage).

A background process periodically copies updated
CTMC bookkeepingdatafrom main memoryto stablestor-
age,giving preferenceto the datafor thosedocumentswith
ahighnumberof accessessincethelastsavingof theCTMC
bookkeepingdata.Suchfrequentlyaccesseddocumentsare
the only oneswherethe statisticsmay havechangedsignif-
icantly andwherethe lossof the statisticaldatawould have
the highestimpact. After a servercrash,the CTMC book-
keepingdatacan be loadedagain from stablestorageinto
main memory.

6.2 Cachingof bookkeepingdata

All statisticson meanstateresidencetimes and statetran-
sition probabilitiesof the CTMC arekept in main memory.
Fordocumentarchiveswith millions of documents,however,
this may not be possiblein all cases.Although the storage
requirementof thebookkeepingis very low comparedto the
documentdataitself, the bookkeepingoverheadof a multi-
terabytedocumentarchivemay reachtensor evenhundreds
of megabytes,which mayexceedtheamountof mainmem-
ory that is availablefor this purpose.Therefore,the server
may have to employ a cachereplacementstrategyfor the
CTMC bookkeepingdata.

The objectiveof the bookkeeping-cachereplacementis
to keepthoseCTMC bookkeepingdatain mainmemorythat
will be frequentlyusedby the algorithmfor computingthe
expectednumbersof near-futureaccessesto documents.As
thisalgorithmtraversesthestatisticsstartingfrom thecurrent
documentof a sessionand navigatingalong the document
transitionprobabilities,the frequentlyusedstatisticsarethe
statisticsfor thosedocumentsthat havea high expectation
of near-futureaccesses.Thus, the estimationof near-future
accessescan itself guide the cachingof CTMC bookkeep-
ing data.The weight of the CTMC bookkeepingdatafor a
documentis definedanalogouslyto the documentweight,
consideringnear-futureaccessesto the documentand the
sizeof the bookkeepingdata.The CTMC bookkeepingdata
with minimum weight will be chosenfor replacementfrom
main memory.

7 Prototype architecture

In this section,we describethe architectureand someim-
plementationdetailsof our documentarchiveprototype.Fig-
ure4 showsthegeneralarchitectureof thesystem,with data

structuresdepictedby ovalsanddynamicallyadjustedcon-
trol parametersdepictedby hexagons.At the top level, the
systemconsistsof the SessionManagerthat maintainsin-
formation about the stateof active sessions,the Migration
Managerfor predictingand schedulingdocumentaccesses,
andthe StorageManager.

TheSessionManagertracksthearrivalsof newsessions
and the current state of the active sessions,and also de-
cidesthata sessionis terminatedby meansof a timeoutand
then discardsall session-specificbookkeepinginformation.
The SessionManageris implementedasa threadreceiving
documentrequestsfrom the network,signallingthemto the
underlyingMigration Manager,and receivingsignalsfrom
the Migration Managerupon the completionof document
transfersto the client.

The Migration Managerorganizesthe migrationof doc-
umentsbetweentertiary storage,secondarystorageandpri-
mary storageservingboth prefetchingrequestsandpending
requests.It consistsof the Loaderwhich is responsiblefor
the schedulingof documentmigrationsfrom TS into PS,as
well as from SS into PS and from PS to SS. The Loader
is alsoresponsiblefor controlling the exchangeof volumes.
For eachof the devices,the Migration Managercontains
a thread that implementsthe scheduling.In addition, the
Loaderkeepstrack of someonline statisticsneededby the
Weight Watcherfor estimatingreplacementcostsand out-
weightingbenefitandpenaltyof documentmigrations.

The most important submoduleof the Migration Man-
ager is the Weight Watcher, which implements the ac-
cesspredictionsand managesthe lists sortedby document
weights.Furthermore,theWeightWatcherkeepsinformation
aboutvolumes,for example,the volume status(i.e., online
vs offline) and the numberof speculativerequeststo the
volume.Eachnew requestof a session,as well as session
arrivalsanddepartures,aresignalledto theWeightWatcher,
which then updatesthe volume information and document
weightsasdescribedin Sect.5. The Weight Watcheris also
responsiblefor thegenerationof prefetchingrequests.When
the Loader is about to prefetch a document,the Weight
Watcher is asked again if the migration should still be
performedor should be cancelled,taking the potential re-
placementsandbenefit/penaltyof themigrationinto account
(stages2 and 3 in Sect.5.1). The Weight Watcher is in-
formed aboutall performedmigrations,as well as volume
statuschanges.For theMEAT volume-exchangescheduling,
the Weight Watcheris consultedaboutthe next volumeex-
changeto perform. Concurrentupdateand retrieval of the
bookkeepingdataprovidedby theWeightWatcheris imple-
mentedusingstandardprimitivesfor threadsynchronization.

As a baselayer, the StorageManagerprovidesa block-
oriented interface to the secondarystoragedisks and the
tertiary storagejukebox and maintainsdirectory informa-
tion suchasaddress-mappingtables.Freespaceis managed
by a first-fit allocationalgorithmfor the two cachinglevels
andthe tertiary storagevolumes.The StorageManagercan
interact with real devices,or it can use simulateddevices
from a library of detaileddevicemodelsbasedon theCSIM
simulationpackage[DevSim,CSIM].The simulateddevices
includecontrollercaching,realisticseektimes,rotationalla-
tencies,headswitch times,andsoon [RW94]. In this paper,
we have consideredonly simulateddevicesfor better re-

156

readBlocks

Storage
Manager

Migration
Manager

Session
Manager

Jukebox

Disk

Session-
State

Weight Watcher

newState timeout

Loader

writeBlocks loadVolume ejectVolume

DocInfo

StorageInfo

getReplacementVictims

invokeAccess

lSS

TS
Scheduler

qspec

qpend

Fig. 7.1. Overview of the Prototype System

Npend(v)

RTTS-on

Tex

newVolumeState

approveMigration

migrationPerformed

getOnlineStatistics

lPS

lDOC

Volume-
Info

createDoc removeDoc

Main
Memory

newSessionState insertPendingRequest

insertPrefetchRequest

getNextVolumeExchange

Nspec(v)

Nspec(d)

RTTS-off

RTSSSTSS

STTS-on

Npend(SS)

SS
Scheduler

qpend
getNextDiskWrite

outOfTheBlue

Fig. 4. Overviewof the prototypesystem

producibility and statisticalconfidenceof the performance
results.

8 Experimental evaluation

In this section,we presentsimulationresultson the perfor-
manceand overheadof our vertical migration policy. We
restrictourselvesto studieswith syntheticworkloadswhose
keyparametershavebeenderivedfrom currentWebapplica-
tions. In contrastto trace-basedstudies,this givesus higher
statisticalconfidenceand the ability to systematicallyvary
certainparameterssoasto obtaininsightson workloadsthat
are expectedfor future applications.We comparedifferent
variantsof theMarkov-chainbasedmigrationpolicy against
purelytemperature-basedmigrationpolicies.All policiesuse
the MEAT policy for the schedulingof volumeexchanges.

McMin: Markov-chain basedMigration policies
for near-line storage
The McMin policies are all basedon the integratedverti-
cal migration policy that we havedevelopedin this paper.
The numberof speculativerequestsare derived using the
CTMC model.We haveinvestigatedthreedifferentvariants
of McMin.

• McMin. With this basic McMin variant, the document
weight considersonly the near-termtemperature.That
is, the replacementcosts in formula 13 are set to unit
costs:RC(d) = 1 for all d regardlessof the storagelevel
from whichd wouldhaveto beretrieved.Furthermore,the
basicMcMin policy eagerlyprefetchesdocumentsbased
only on the weight comparisonagainstthe replacement
victims. So it doesnot perform the benefit/penaltycom-
parisonand thus doesnot take into accountthe possible
contentionat the TS and SS devices(stages2 and 3 in
Sect.5.1).

• McMin+. The McMin+ policy extendsthe basicMcMin
policy by consideringdocument-specificreplacementcosts

in the weight metric and by adding the benefit/penalty
comparisons.So this full-fledged variant of McMin in-
cludesall the considerationsof Sect.5.

• McMin−. The McMin−policy is the basicMcMin vari-
ant with prefetchingswitched off. So this simpler and
presumablystrictly weakervariantcorrespondsto a pure
cachereplacementpolicy that usesthe CTMC-basedac-
cesspredictionsfor an intelligent choiceof replacement
victims.

TEMP: Temperature-basedmigration policies

In the temperature-basedmigrationpolicies,the weight of a
documentis its stationary,i.e., long-termtemperature(i.e.,
long-termheat/size).The long-termheatof a documentre-
flects its stationaryaccessprobability, and is dynamically
estimatedby tracking a moving averageof the interarrival
timesof thelast20 requeststo a document.This methodcan
be viewed as a straightforwardgeneralizationof the LRU-
K cachingalgorithm [OOW93, WHMZ94] to the caseof
variable-sizebuffering granules.We haveconsideredthree
differentvariantsof TEMP.

• TEMP. This basevariant is the counterpartto the basic
McMin algorithm,with thedecisivedifferencethatTEMP
initiatesprefetchingandselectsreplacementvictimsbased
on the documents’ long-term temperatureas opposed
to the near-termestimatesof McMin. Like McMin, no
document-specificreplacementcosts are consideredin
TEMP andno benefit/penaltycomparisonsareperformed.

• TEMP+. This variant extendsTEMP by consideringre-
placementcostsandby comparingthe benefitagainstthe
penaltyof the prefetchingrequests.So this is the station-
ary counterpartto McMin+.

• TEMP−. The TEMP−variant is a basic TEMP policy
whereprefetchingis switchedoff.

157

Table 1. Systemparametersof the simulationtestbed

Secondarystorage Tertiary storage
Parameter Value Parameter Value

Numberof disks 1 Numberof drives 3
Averageseektime 6ms Averageseektime 25ms
Averagerotationallatency 3ms Averagerotationallatency 10ms
Transferrate 13.5MB/s Transferrate 3.4MB/s
Controllercachesize 1MB Controllercachesize 1MB

Numberof volumes 10
Volumeexchangetime 10s

8.1 Experimentaltestbed

Theexperimentshavebeencarriedout on theprototypesys-
tem describedin Sect.7 with simulatedsecondaryand ter-
tiary storagedevices.The parametersof the devicesused
throughout all experimentsare given in Table 1; these
devicesreflect today’s high-end SCSI disks and low-end
magneto-opticaljukeboxes.The ratio of TS drives to vol-
umeshasbeenchosenratherhigh (3:10) to better capture
the influenceof the TS volume exchangescheduling.Ex-
perimentswith othersettingshavebeencarriedout, too, but
essentiallyshowthe sameeffectsandtrendsasreportedbe-
low. (Resultsfor the specialcasewith one TS drive were
alreadyreportedin [KW97], which focusedexclusivelyon
that case).

We haveconsideredan archivewith 40,000documents;
document sizes are exponentially distributed with mean
600KB. Thus,thetotal archivesizeis approximately23GB.
Thedocumentsareallocatedrandomlyacrossthevolumesof
thetertiarystoragelibrary. WehaveanalyzedtheWeb-server
tracesof two virtual museumsto characterizethe skewness
of transitionprobabilitiesand the distribution of stateres-
idence times. We have incorporatedtheseobservationsin
a syntheticworkload that we believe is realistic for large
archivesand also allows us to investigatea wide spectrum
of differentworkloads.The syntheticworkloadis generated
asfollows.

• Thedocumentsarefirst arrangedinto a treewith constant
fanout4. This treeservesasa skeletonfor generatingthe
statetransitions,which themselvesarenot treebasedand
may evenhavecycles.For eachdocumentdi (i.e., node
in the tree) the transitionprobabilitiesto all other docu-
ments(including ancestorsin the tree)aregeneratedby a
Gammadistributionwith a coefficient of variationgreater
than1 (namely,1.5, to bespecific)[All90]. This captures
a skewedranking of the transitionprobabilitiesfrom di

to all otherdocumentswhich startswith documentd4i−2
andproceedsby documentnumbermodulothetotal num-
berof documents.This meansthat thehighestprobability
transitionout of di leadsto its leftmostchild in the tree,
and transitionsto ancestorsare lesslikely than to nodes
further down in the tree.For leaf documents,the highest
probability transitiontarget is chosenrandomlyamongall
documents.

• The skewnessof the transitionprobabilitiesout of a doc-
umentdi is determinedby the expectationvalue of the
Gammadistribution from which the transition probabil-
ities are drawn. We assumethat thesevaluesare expo-
nentially distributedamongthe documentsand generate

this parameterof the document-specificGammadistri-
bution accordingly.The meanvalue for this exponential
distribution is set to 6, where the value 6 would imply
that 90% of the probability massamonga document’s
outgoingtransitionsis coveredby the 16 most probable
transitionsof a document.The fictitious documentsdN+1
throughdN+c (seeSect.4.2) aretreatedseparatelyastheir
successorsrepresentthe “entry” documentsof new ses-
sions;the meanvaluefor the Gammadistributionassoci-
atedwith thesestatesis set to 2, which implies that 90%
of the probability massamongthe outgoingtransitionsis
coveredby the six mostprobablesuccessorstates.

• The state residencetimes are exponentiallydistributed
with the document-specificmean values drawn from a
uniform distribution.New sessionsarrive accordingto a
Poissonprocesswith rateλ (i.e., exponentiallydistributed
interarrival timeswith mean1/λ).

• Thedurationof a sessionis specifiedin termsof thenum-
berof requeststhatasessionis goingto issue;thisnumber
is generatedaccordingto a normaldistribution.

We have consideredfour workloads which differ in
their sessionarrival rate and the distribution of meanres-
idencetimes. The workload LOW SLOW has low session
arrival rate and high stateresidencetimes, whereaswork-
loadLOW FAST haslower residencetimes.Theworkloads
HIGH SLOW andHIGH FAST bothhavehighersessionar-
rival rate but differ in their residencetimes.The workload
parametersare listed in Table2.

8.2 Experimentalresults

We concentrateon the four policies, McMin−, McMin,
McMin+, andTEMP+, andomit the resultsfor TEMP and
TEMP−, as they are consistentlyworse than thoseof the
otherfour variants.Theresponsetime resultsof the remain-
ing four policiesaredepictedin Fig.5 for eachof the four
differentworkloads.Thechartsshowthemeanresponsetime
of client requestswith different sizesof availableprimary
andsecondarystoragecachespace.Note that thedisk cache
sizesof 100MB and 500MB correspondto only 0.4 and
2% of the total archivesize, respectively.The usedcache
sizesmayappearvery small,but theyareof reasonablesize
relative to the archive size, which is also rather small for
the sakeof fast-runningexperiments(on our limited com-
puter resources).Note that theseresultscan be scaledup
andextrapolatedin a straightforwardmannerby increasing
both thearchiveandthecachesizeby a constantfactor,say

158

Table 2. Workloadparametersfor the simulationexperiments

Parameter LOW SLOW LOW FAST HIGH SLOW HIGH FAST

Meansessioninterarrival time 150s 150s 50s 50s
Meansessionlength 24 requests
Standarddeviationof sessionlength 12 requests
Minimum meanresidencetime 30s 10s 30s 10s
Maximum meanresidencetime 180s 60s 180s 60s

Table 3. Hit ratesandmeanresponsetimesat the storagelevels for the HIGH SLOW workload

Disk size Memory size Policy overall RT [s] HRPS [%] HRSS[%] RTSS [s] HRTS−on [%] RTTS−on [s] HRTS−off [%] RTTS−off [s]

McMin− 21.64 7.3 10.5 0.054 20.7 0.243 61.5 35.13
TEMP+ 18.33 4.0 30.4 0.066 14.1 0.277 51.5 35.47

8MB
McMin 9.31 14.6 47.0 0.690 7.0 0.903 31.4 28.43
McMin+ 8.47 9.9 55.7 1.142 6.0 1.207 28.4 27.32

500MB
McMin− 21.86 11.6 8.4 0.039 19.5 0.241 60.5 36.04
TEMP+ 18.41 10.5 23.5 0.122 14.0 0.275 52.0 35.25

40MB
McMin 8.24 31.1 34.8 0.773 5.7 1.25 28.4 27.86
McMin+ 6.36 28.9 42.9 0.776 4.2 1.36 24.0 24.92

1000,providedthat the skewnessin the accesspatternsre-
mainsinvariant in termsof fractionsof frequentlyfollowed
transitionsand that the numberof drives in the jukebox is
increased,too.

For more detailed information, Table 4 shows the hit
rates (HR) and mean responsetimes (RT) of each stor-
agelevel for the HIGH SLOW workloadwith 500MB disk
cacheandthetwo differentmemorycachesizes.For thePS,
the responsetime figuresare omitted, as they are close to
zeroandindeednegligiblerelativeto the responsetimesfor
the otherstoragelevels.

Overall, it is evident that the newly developedMcMin
and McMin+ policies with prefetchingconsistentlyoutper-
form the temperature-basedTEMP+ policy that includes
prefetching,too. The basic McMin already improves the
meanresponsetime by a factor between2 and4. The high-
estgainsareachievedfor theLOW SLOWworkload,asthis
hasthelowestinterarrivaltimeof explicit client requestsand
thusleavesmore“idle” time to prefetchdocumentsfrom ter-
tiary storage.Thedetailedresultsin Table3 showthatfor the
HIGH SLOW workloadwith 500MB disk cacheand40MB
memory cache,the “miss” rate, i.e., fraction of requests
that refer to offline tertiary storage(HRTS−off), is 52% for
TEMP+ andonly 24%for McMin. So,McMin significantly
increasesthehit ratesHRPS andHRSS of documentsin PS
and SS. TEMP+, on the other hand, is inherently limited
by its less informative knowledgeof merely stationaryac-
cessprobabilities.Thus,the TEMP+ policy fails to prefetch
relevantdocumentsin many cases,namely, thosethat are
fairly cold in termsof their stationaryaccessprobabilitybut
havea high near-futureaccessprobabilitybecausea session
currentlyresidesin thedocument’s“proximity”. This nicely
illustratesthe fundamentalsuperiorityof our Markov-chain-
basedapproachover a stationaryprobability model.

The McMin+ policy almostalways further reducesthe
meanresponsetime of the basic McMin policy by up to
20%.Especiallywith largesizesof disk andmemorycache,
the benefit/penaltyassessmentfor tentativeprefetchingre-
questsleadsto further improvements.The reasonis that the
prefetchingactivity increaseswith increasingdisk andmem-

ory cachesizes,potentiallyleadingto theprefetchingof doc-
umentswith a low expectednumberof speculativerequests
at the cost of delaying pendingrequests.Experimentsre-
portedin [KW97] haveshownthat comparingthe influence
of thebenefit/penaltycomparisonis evenmoresignificantin
thecasewith only oneTS drive,asin this casea prefetching
could delayall pendingrequestsof the entireserver.

In thecaseof a largediskcachesizeandasmallmemory
cachesize(i.e., the 500MB/8 MB combinationin Table3),
the PSbecomesthe bottleneckin the prefetching,and,con-
sideringthe replacementcostsof documents,becomesvery
beneficialhere.The hit rateat the PS is higher for McMin
thanfor McMin+. Thereasonis thatMcMin inherentlymax-
imizesthePShit rate,while McMin+ considersthereplace-
ment costsof documents.So, McMin+ prefers to replace
documentsfrom PSwhich arecachedon SSor which could
be loadedfrom anonlineTS volume.With this replacement
policy, the throughputof prefetchingrequestsis increased,
ascanbeseenfrom the increasedSShit rate(HRSS) in Ta-
ble 3. With both of the two investigatedPSsizes,McMin+
significantly reducesthe hit ratesof requeststo online and
offline volumes,HRTS−on andHRTS−off , respectively.The
drawbackof the higher prefetchingactivity is the high re-
sponsetime for fetch requeststhat are servedfrom SS or
onlineTS volumes.Especiallywith a smallPScache,docu-
mentswith high weight frequentlyhaveto bereplacedfrom
PS, making the spooling to disk more important. In these
situations,comparingthebenefitandpenaltyfor prefetching
a documentfrom TS and later spoolingit onto SSyields a
significantresponsetime improvement.Note that the fairly
high SS responsetimes are causedby the very high disk
utilization due to many SS hits, the large documentsizes,
and the intensivespoolingactivity from PS onto SS. This
high disk utilization is indeeddesirable,asthe SSservesas
a cacheto maskthemuchlarger latencyof theoffline TS to
the bestpossibleextent.

A comparisonof theMcMin− policy (i.e.,with prefetch-
ing switched off) to the TEMP+ policy shows that with
a large SS cache,TEMP+ benefitsfrom temperature-based
prefetchingand is able to outperformMcMin− (while still

159

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

0

5

10

15

20

25

30

D=100,M=8 D=100,M=40 D=500,M=8 D=500,M=40

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

0

5

10

15

20

25

30

D=100,M=8 D=100,M=40 D=500,M=8 D=500,M=40

HIGH_FAST HIGH_SLOW

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

0

2

4

6

8

10

12

14

16

D=100,M=8 D=100,M=40 D=500,M=8 D=500,M=40

LOW_FAST �
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

0

2

4

6

8

10

12

14

16

D=100,M=8 D=100,M=40 D=500,M=8 D=500,M=40

LOW_SLOW

Fig. 8.3. Response Time Results for the Four Workloads
 with Different Disk and Memory Cache Sizes

McMin McMin+TEMP+

Disk Size D [MB], Memory Size M [MB] Disk Size D [MB], Memory Size M [MB]

Disk Size D [MB], Memory Size M [MB] Disk Size D [MB], Memory Size M [MB]

M
ea

n
R

es
po

ns
e

T
im

e
[s

ec
]

M
ea

n
R

es
po

ns
e

T
im

e
[s

ec
]

M
ea

n
R

es
po

ns
e

T
im

e
[s

ec
]

M
ea

n
R

es
po

ns
e

T
im

e
[s

ec
]

���
McMin–

Fig. 5. Responsetime resultsfor the four workloadswith differentdisk andmemorycachesizes

losing against McMin and McMin+). With a small disk
cachesize, however,the SS hit rate of TEMP+ decreases
and McMin− benefits from the MEAT schedulingalgo-
rithm. When MEAT is basedon the Markov-chainpredic-
tions ratherthanstationaryheatasusedin conjunctionwith
TEMP+, the McMin− policy achievesa significantlybetter
hit rateon online TS volumes.

Additional experimentswith variationsof the workload
parametersessentiallyconfirmedthesefindingsandareomit-
ted herefor brevity. We also investigatedthe bookkeeping
overheadof the prototypeimplementation.The total space
overheadof all bookkeepingdata of the McMin policies
was about 10MB (for the 23GB documentarchive). The
CPU consumptionfor the predictionsper sessionstep, in-
cluding the Markov-chaincomputationsandthe adjustment
of thevarioussortedlists,wasabout200mson averageon a
Sparc20(i.e., a low-endworkstation).On a fastercommod-
ity server,this would translateinto a CPU time in the order
of thesecondarystorageaccesstime. This is clearlya small
price for achievingsuchsubstantialgainsin termsof client
responsetime. The CPU overheadcanbe reducedevenfur-
ther by keepinga moderatenumberof recently computed
predictionsin a speciallookup buffer.

9 Extensionsand generalizations

In this paper,we haveappliedaccesspredictionsbasedon
continuous-timeMarkov chains(CTMC) to the problemof
prefetchingdocumentsin a storagehierarchywith near-line
storage.In addition,the CTMC modelprovidesan interest-
ing and potentially promising approachto other optimiza-
tion issuesand also other applicationareaswherethe load

consistsof interactive accesspatternsembeddedin client
sessions.

• Documentclustering
In our experiments,the documentsof the archive were
randomlydistributedover thevolumesof theTS jukebox.
This randomdistribution typically leadsto an increased
numberof pendingrequeststo offline volumes.Using a
moreintelligentclusteringof documentson volumes(see,
e.g.,[CTZ97]) would increasethe numberof pendingre-
queststo online volumesand render the prefetchingof
the McMin policies even more effective. For clustering
documentsonto volumes,one could exploit the access
predictionsfrom the CTMC model. Considera scenario
wheremultiple sessionshavependingrequeststo a vol-
ume which is being loaded into a drive. Ideally, most
documentswith a high near-termheatwithin theseses-
sionsshouldresideon this samevolume.Suchclustering
approachesbasedon Markov chainpredictionshavebeen
studiedby [TN91, TN92] in thecontextof object-oriented
databasesystems(i.e., clusteringobjectsinto pages),but
were limited to discrete-timeMarkov chains.For inter-
active accesses,however,consideringdocument-specific
residencetimes and thus using CTMCs seemsto be a
morepromisingapproach.

• Incrementalreorganization
Documentarchivessuchasnewsarchives,electronicmu-
seums,etc. areusuallydynamicin that they arecontinu-
ously extendedby new documents.In addition, the con-
tentsof documentsmaychangeleadingto evolvingaccess
patterns.Oncea new documentis createdor updated,the
documentcan be held for sometime on secondarystor-

160

agefor being“watched”,that is, for collectingtheCTMC
bookkeepinginformationaftereachaccess.Notethatnew
documentsand updateddocumentsare typically popu-
lar documentswith frequentaccesses,so that collecting
theCTMC bookkeepinginformationfor thosedocuments
shouldnot takevery much time. Oncethe CTMC book-
keepingdataof an insertedor updateddocumenthassuf-
ficient significance,the documentmay be migrateddown
to tertiarystorage,accordingto theaccesspatterns.In ad-
dition, it maybedesirablethatotherdocumentsbereclus-
tereddueto their evolvingaccesspatterns.This recluster-
ing hasto be doneincrementallyandconcurrentlyto the
normal operationof the server.The reclusteringof doc-
umentscanbe basedon the sameprinciplesas the static
clusteringof documents(i.e., usingCTMC information).

• Data declustering
In parallel databasesystems,declusteringdata objects
across multiple devices is a standard performance-
enhancingtechnique.In the presenceof evolving work-
load patterns,horizontaldatamigration betweendevices
of the samestoragelevel may be needed,for example,
for dynamicandincrementalloadbalancingamongdisks.
As Markov-chainmodelsaresubstantiallyricher thanthe
stationary-probabilitymodelsthat havebeenexploredfor
thesepurposes[SWZ98], further performanceimprove-
mentsmay be possible.

• Prefetchingandcachingfor Webservers
Within the Internetand large intranets,proxy serversare
oftenusedfor thecachingof documentsthatarelikely to
be accessedby the local clients (see,e.g., [Be96]). One
reasonfor the cachingof documentsis to provide bet-
ter performanceby deliveringa requesteddocumentfrom
the (predictably)fast proxy serverratherthan depending
on the often poor network performanceand connectiv-
ity of the documents’sources.Another reasoncould be
to maskthe possibleunavailabilityof documentsources,
causedby computeror network failures or intentional
computerdowntime.In largeintranets,businessunits typ-
ically use serverswith different availability characteris-
tics. Then, a proxy-servercachemay be used also for
cachingdocumentswhosehomeserversare expectedto
be(come)unavailablewithin the near future. For exam-
ple, when a serverannouncesa prescheduleddowntime,
proxy serversmay start prefetching(or “hoarding”) doc-
umentsfrom that serverin order to maskthe announced
offline time. Obviously, an intelligent choice should be
madeas to which documentsare most worthy of being
prefetched.The CTMC-basedmigration strategydevel-
oped in this papercan be applied to this problem in a
fairly straightforwardmanner,as the notion of a server
going offline is similar to a TS volumebecomingoffline.

• Data hoarding in mobilesystems
Another, similar examplewhereCTMC can be usedfor
maximizing data accessavailability and performanceis
theproblemof cachingandprefetchingdocumentsin mo-
bile computing(see,e.g., [KP97]). Here,CTMC predic-
tions could be usedto intelligently decideon which files
shouldbe “hoarded”on a mobile computerthat is about
to becomedisconnected.

• Data disseminationin broadcastarchitectures
Becauseof the often asymmetricnetwork bandwidthin

sendingversusreceivingdatabetweenmobile clientsand
a server, the server may broadcastinformation that is
likely to be useful for its mobile clients while they de-
pendon wireless(or otherwiseasymmetric)communica-
tion [AAFZ95, AFZ96]. So,broadcastingservesto mini-
mizeexplicit datarequestsof mobileclientsto theserver.
The idea is to broadcast“hot” data items with high fre-
quencyover the network, while colder data is sentwith
lower frequency.It would be interestingto investigate
CTMC predictionsfor adaptingthesebroadcastingfre-
quenciesto the dynamicallyevolving “sessionstates”of
mobile clients.

10 Concluding remarks

The vertical migration methodfor storagehierarchiespre-
sentedin this paperis basedon an integrated,quantitative
assessmentof the benefitsand coststhat arisein the cache
replacementdecisions,the initiation of speculativeprefetch-
ing, andtheschedulingof tertiaryandsecondarystoragede-
vices.The key to this reconciliationof the differentaspects
is the continuous-timeMarkov-chainmodel that we have
developedfor predictingnear-futureaccessesandits under-
lying mathematicaltheory.We believethat analyticmodels
of this kind deservemuchmoreattentionfor their ability to
drive online decisionsin the resourcemanagementof large-
scaleinformationsystems.Note that the developedmethod
is completelyself-reliantin thatit doesnot requireanyinter-
ventionby humanadministratorsor tuningexperts.All input
parametersare automaticallyestimatedby meansof online
statistics.Furthermore,althoughthemethodincludesa num-
ber of control parametersthat may be fine-tuned,we have
providedsimple, practically viable guidelinesfor choosing
appropriate,robustvaluesfor theseparameters.

Our experimentalstudies have shown that the richer
stochasticknowledgeof an Markov-chainmodel can sub-
stantially outperforma simpler model that is solely based
onstationaryprobabilities.Thus,it seemsintriguing to apply
thericherworkload-trackingapproachalsoto otherissuesin
storagesystems,suchas distributedcaching,to exploit the
aggregatememoryof NOWs(i.e.,networksof workstations)
[DWAP94, SW97, VLN97]. However,one hasto be care-
ful with regardto the overheadof an Markov-chainmodel.
When the responsegainsfrom a richer decisionmodel are
in the order of seconds,as is the casewith tertiary storage
libraries,a computationaloverheadin the orderof millisec-
onds and a spaceoverheadin the order of megabytesis
clearly worthwhile. On the other hand,for tuning the per-
formanceof disk accessesor remotememoryaccesses,both
in theorderof a few milliseconds,muchfasterdecisionsare
needed.This rulesout thesamesortof full-fledgedMarkov-
chainmodelthatwe havesuccessfullyemployedfor storage
hierarchieswith very high latencylevels in this paper.But
weaker,morelightweightformsof suchmodelsareconceiv-
able,too.Forexample,onecouldmakemoreintensiveuseof
cachingprecomputedestimations(i.e., cachingat the meta-
level) or combineMarkov-chainpredictionsfor specifically
interesting“dataregions”with simplerstationary-probability
accesspredictionsfor the majority of data.Encouragedby
the excellentexperimentalresultsof this paper,we believe

161

that this researchdirection towards intelligent, self-tuning
storagemanagementis worthwhile to be exploredfurther.

Acknowledgements.This work hasbeensupportedby the ESPRITLong-
Term ResearchProjectNo. 9141,HERMES(Foundationsof High-Perfor-
manceMultimedia InformationManagement)

References

[AAFZ95] Acharya S, Alonso R, Franklin M, Zdonik S (1995) Broad-
castDisks:DataManagementfor AsymmetricCommunication
Environments.In: ACM SIGMOD Conf., 1995,pp 199–210

[ABCO96] Almeida V, BestavrosA, Crovella M, De Oliveira A (1996)
CharacterizingReferenceLocality in the WWW. In: Int. Conf.
on ParallelandDistributedInformationSystems(PDIS),1996,
Miami Beach,Fla., pp 92–103

[AFZ96] Acharya S, Franklin M, Zdonik S (1996) Prefetchingfrom
BroadcastDisks.In: Int. Conf.onDataEngineering,1996,New
Orleans,La., pp276–285

[AGL97] AlbersS, Garg N, LeonardiS (1997)Minimizing Stall Time in
SingleandParallelDisk Systems.TechnicalReportMPI-I-97-
024.Max-PlanckInstitutefor ComputerScience,Saarbr̈ucken,
Germany

[All90] Allen AO (1990)Probability,Statistics,andQueueingTheory
with ComputerScienceApplications.AcademicPress,London

[Be96] BestavrosA (1996) SpeculativeData Disseminationand Ser-
vice in DistributedInformationSystems.In: Int. Conf. on Data
Engineering,1996,New Orleans,La., pp 180–187

[CFKL95a] CaoP, FeltenEW, Karlin AR, Li K (1995)A Studyof Inte-
gratedPrefetchingandCachingStrategies.In: ACM SIGMET-
RICS Conf., 1995,pp188–197

[CFKL95b] Cao P, FeltenEW, Karlin AR, Li K (1995) Implementation
andPerformanceof IntegratedApplication-ControlledCaching,
PrefetchingandDisk Scheduling.TechnicalReportTR-CS95-
493,PrincetonUniversity,Princeton,Calif.

[CH91] ChengJR, HursonAR (1991) On The PerformanceIssuesof
Object-BasedBuffering. Int. Conf. on ParallelandDistributed
InformationSystems(PDIS),1991,Miami Beach,Fla., pp30–
37

[CK89] ChangEE, Katz RH (1989) Exploiting Inheritanceand Struc-
ture Semanticsfor Effective Clustering and Buffering in an
Object-OrientedDBMS. In: ACM SIGMOD Conf.,1989,Port-
land,Ore.,pp348–357

[CKV93] CurewitzKM, KrishnanP, Vitter JS(1993)PracticalPrefetch-
ing via Data Compression.In: ACM SIGMOD Conf., 1993,
Washington,D.C., pp257–266

[CR94] ChenLT, RotemD (1994) Optimizing Storageof Objectson
Mass StorageSystemswith Robotic Devices. In: Int. Conf.
on ExtendingDatabaseTechnology(EDBT), 1994,Cambridge,
UK, pp273–286

[CTZ97] ChristodoulakisS, TriantafillouP, ZiogaF (1997)Principlesof
OptimallyPlacingDatain TertiaryStorageLibraries.In: VLDB
Conf., 1997,Athens,Greece,pp236–245

[Co88] CopelandG, AlexanderW, BoughterE, Keller T (1988)Data
Placementin Bubba.In: ACM SIGMOD Conf.,1988,Chicago,
III, pp99–108

[CSIM] MesquiteSoftwareInc, CSIM17 User’sGuide.MesquiteSoft-
wareInc, Austin, Tex

[DevSim] Gillmann M, GrossW (1996) User’s Guide of DevSim – A
Library of SecondaryandTertiaryStorageDeviceSimulations.
Universityof theSaarland,Saarbr̈ucken,Germany(in German)

[DWAP94] DahlinMD, WangRY, AndersonTE, PattersonDA (1994)Co-
operativeCaching:Using RemoteClient Memory to Improve
File SystemPerformance.In: 1stSymposiumonOperatingSys-
temsDesignandImplementation,1994,pp267–280

[FC91] FordDA, ChristodoulakisS(1991)OptimalPlacementof High-
ProbabilityRandomlyRetrievedBlockson CLV OpticalDisks.
ACM TransInf Syst9(1): 1–30

[GK94] Gerlhof CA, KemperA (1994) PrefetchSupportRelationsin
Object Bases.In: Int. Workshopon PersistentObject Stores
(POS),1994,pp 115–126

[GKKM93] Gerlhof CA, Kemper A, Kilger C, Moerkotte G (1993)
Partition-BasedClustering in Object Bases:From Theory to
Practice.In: Int. Conf. on Foundationsof Data Organization
andAlgorithms (FODO),1993,Chicago,III, pp301–316

[GMW94] GolubchikL, Muntz R, WatsonRW (1994)Analysisof Strip-
ing Techniquesin RoboticStorageLibraries.TechnicalReport.
University of California,Los Angeles,Calif.

[GP87] GrayJ,PutzoluF (1987)The5-MinuteRulefor TradingMem-
ory for Disc Accessesandthe 10-ByteRule for TradingMem-
ory for CPU Time. In: ACM SIGMOD Conf., 1987,SanFran-
cisco,Calif., pp395–398

[HS96] Hillyer BK, SilberschatzA (1996)RandomI/O Schedulingin
Online Tertiary StorageSystems.In: ACM SIGMOD Conf.,
1996,Montreal,Canada,pp195–204

[JK98] Jiang Z, Kleinrock L (1998) An Adpative Network Prefetch
Scheme.IEEE J Sel AreasCommun,pp 231–240

[Jo98] JohnsonT (1998)CoarseIndicesfor a Tape-BasedDataWare-
house.In: Int. Conf. on DataEngineering,1998,Orlando,Fla.

[KP97] KuenningGH, PopekGJ (1997)AutomatedHoardingfor Mo-
bile Computers.In: ACM Symposiumon OperatingSystems,
October1997,St. Malo, France,pp264–275

[KPR92] Karlin AR, Phillips SJ, RaghavanP (1992) Markov Paging.
In: Symposiumon Foundationsof ComputerScience,1992,
pp208–217

[KW97] KraissA, Weikum G (1997)Vertical DataMigration in Large
Near-Line DocumentArchives Basedon Markov-ChainPre-
dictions.In: VLDB Conf., 1997,Athens,Greece,pp 246–255

[LLW95] Lau SW, Lui JCS,WongPC(1995)A Cost-effectiveNear-line
StorageServerfor Multimedia System.In: Int. Conf. on Data
Engineering,1995,Taipei,Taiwan,pp449–456

[MKK95] Moser F, Kraiss A, Klas W (1995) L/MRP – A Buffer Man-
agementStrategyfor InteractiveContinuousData Flows in a
Multimedia DBMS. In: VLDB Conf., 1995, Zurich, Switzer-
land,pp275–286

[ML97] Myllymaki J,Livny M (1997)RelationalJoinsfor Dataon Ter-
tiary Storage.In: Int. Conf. on DataEngineering,1997,Birm-
ingham,UK, pp159–168

[Nel95] NelsonR (1995)Probability,StochasticProcesses,andQueue-
ing Theory– TheMathematicsof ComputerPerformanceMod-
eling. Springer,Berlin Heidelberg New York

[NKT97] NemotoT, KitsuregawaM, TakagiM (1997)Analysisof Cas-
setteMigration Activities in ScalableTape Archiver. In: Int.
Conf. on DatabaseSystemsfor AdvancedApplications,1997,
Melbourne,Australia,pp461–470

[OOW93] O’Neil EJ, O’Neil PE, Weikum G (1993) The LRU-K Page
ReplacementAlgorithm For DatabaseDisk Buffering. In: ACM
SIGMOD Conf., 1993,Washington,D.C., pp297–306

[PGG+95] PattersonRH, GibsonGA, Ginting E, StodolskyD, ZelenkaJ
(1995) Informed Prefetchingand Caching.In: Symposiumon
OperatingSystemsPrinciples,1995,pp79–95

[PZ91] PalmerM, ZdonikSB(1991)Fido:A Cachethatlearnsto fetch.
In: VLDB Conf., 1991,Barcelona,Spain,pp255–264

[RW94] RuemmlerC, Wilkes J (1994) An Introductionto Disk Mod-
elling. IEEE Comput27(3): 17–28

[Sa95] Sarawagi S (1995) Query Processingin Tertiary Memory
Databases.In: VLDB Conf.,1995,Zurich,Switzerland,pp585–
596

[Smi81] Smith AJ (1981)Long Term File Migration: Developmentand
Evaluationof Algorithms.CommunACM 24(8): 521–532

[SSV96] ScheuermannP, Shim J, VingralekR (1996)WATCHMAN: A
DataWarehouseIntelligent CacheManager.In: VLDB Conf.,
1996,Bombay,India, pp51–62

[Sto91] StonebrakerM (1991)ManagingPersistentObjectsin a Multi-
Level Store.In: ACM SIGMOD Conf., 1991, Denver,Colo.,
pp2–11

[SW97] Sinnwell M, Weikum G (1997) A Cost-Model-BasedOnline
Method for DistributedCaching.In: Int. Conf. on Data Engi-
neering,1997,Birmingham,UK, pp532–541

162

[SWZ94] ScheuermannP, Weikum G, ZabbackP (1994) Disk Cooling
in Parallel-DiskSystems.IEEE DataEng Bull 17(3): 29–40

[SWZ98] ScheuermannP, Weikum G, ZabbackP (1998)DataPartition-
ing andLoadBalancingin Parallel-DiskSystems.VLDB J7(1):
48–60

[TCG96] TriantafillouP,ChristodoulakisS,GeorgiadisC (1996)Optimal
DataPlacementon Disks: A ComprehensiveSolution for Dif-
ferent Technologies.HERMES TechnicalReport.Multimedia
SystemsInstituteof Crete,Greece

[TG84] Teng JZ, Gumaer RA (1984) Managing IBM Database2
Buffers to Maximize Performance.IBM SystJ 23(2): 211–218

[Tij94] Tijms HC (1994) StochasticModels – An Algorithmic Ap-
proach.JohnWiley & Sons,Chichester

[TN91] TsangarisMM, NaughtonJF(1991)A StochasticApproachfor
Clusteringin Object Bases.In: ACM SIGMOD Conf., 1991,
Denver,Colo., pp12–21

[TN92] TsangarisMM, NaughtonJF (1992) On the Performanceof
ObjectClusteringTechniques.In: ACM SIGMOD Conf.,1992,
SanDiego,Calif., pp144–153

[TP97] TriantafillouP,PapadakisT (1997)On-DemandDataElevation
in a HierarchicalMultimedia StorageServer.In: VLDB Conf.,
1997,Athens,Greece,pp226–235

[VLN97] VenkataramanS, Livny M, NaughtonJF(1997)MemoryMan-
agementfor ScalableWeb DataServers.In: Int. Conf. on Data
Engineering,1997,Birmingham,UK, pp510–519

[WHMZ94] Weikum G, HasseC, Moenkeberg A, ZabbackP (1994)The
COMFORT AutomaticTuningProject.Inf Syst19(5):381–432

[Wo83] WongCK (1983)Algorithmic Studiesin MassStorageSystems.
ComputerSciencePress,New York

[WZ86] Wedekind H, Zoerntlein G (1986) Prefetching in Realtime
DatabaseApplications.In: ACM SIGMOD Conf.,1986,Wash-
ington,D.C., pp215–226

