The VLDB Journal(1998)7: 141-162

The VLDB Journal

© Springer-\érlag 1998

Integrated document caching and prefetching
in storage hierarchiesbasedon Markov-chain predictions

Achim Kraiss, Gerhard Weikum

Departmeniof ComputerScience University of the SaarlandP.O.Box 151150,D-66041 Saarbiicken, Germany;

E-mail: {kraiss,weikum@cs.uni-sh.deWWW: http://www-dbs.cs.uni-sb.de/

Editedby M. Jarke.ReceivedJanuaryl, 1998/ AcceptedMay 27, 1998

Abstract. Large multimediadocumentarchivesmay hold a
major fraction of their datain tertiary storagelibraries for
costreasonsThis paperdevelopsan integratedapproacho
the vertical datamigration betweenthe tertiary, secondary,
andprimarystoragdn thatit reconcilespeculativeprefetch-
ing, to maskthe high latencyof thetertiary storagewith the
replacemenpolicy of the documentachesat the secondary
and primary storagelevel, and also considersthe interac-
tion of thesepolicieswith thetertiary andsecondanstorage
requestscheduling.

Theintegratedmigrationpolicy is basednacontinuous-
time Markov chainmodelfor predictingthe expectechum-
ber of accesse$o a documentwithin a specifiedtime hori-
zon.Prefetchings initiated only if thatexpectatioris higher
than thoseof the documentghat needto be droppedfrom
secondarystorageto free up the necessaryspace.ln ad-
dition, the possibleresourcecontentionat the tertiary and
secondarystorageis takeninto accountby dynamicallyas-
sessinghe response-timéenefitof prefetchinga document
versusthe penaltythat it would incur on the responsdime
of the pendingdocumentrequests.

The parametersof the continuous-timeMarkov chain
model, the probabilitiesof co-accessingertaindocuments
and the interactiontimes betweensuccessiveaccessesare
dynamically estimatedand adjustedto evolving workload
patternsby keepingonline statistics.The integratedpolicy
for verticaldatamigrationhasbeenimplementedn a proto-
type system.The systemmakesprofitableuseof the Markov
chainmodelalsofor the schedulingof volumeexchangein
the tertiary storagelibrary. Detailedsimulationexperiments
with Web-server-likesynthetic workloads indicate signifi-
cantgainsin termsof clientresponseime. The experiments
also show that the overheadof the statisticalbookkeeping
andthe computationgor theaccesgredictionss affordable.

Key words: Performance- Caching- Prefetching- Schedul-
ing — Tertiary storage— Stochasticmodeling — Markov
chains

1 Intr oduction
1.1 Problemstatement

Internet/WWWandWeb-likeintranetinfrastructuregainin-
creasingmportanceasa mediumfor convenieninformation
accesswithin large enterprisesand acrossthe world. While
the narrowly restrictedbandwidthof the Internetcurrently
limits theamountandtype of datathatis offeredon the Web
(e.g.,in electronicproductcatalogs),a tremendouggrowth
of multimediadata(images,videos,animations.etc.)is ex-
pectedin the near future with rapidly increasingnetwork
bandwidth.We may soonseeWeb servers(probablywith a
full-fledged DBMS behindthem) that haveto manageter-
abytesor evenpetabyteof dataandprovideefficient access
to millions of clients.In the following, we will referto the
dataobjectsof sucha servergenericallyasdocuments

Among the multitude of documentsthat are held by a
server,typically only a small fraction is “hot”, thatis, fre-
quently accessedFurthermorethe hot fraction will evolve
over time; previously hot documentsbecome“cold” (i.e.,
requestednfrequently)but still needto be archivedfor oc-
casionalaccessFor cost/performanceeasongcf. [GP87]),
cold documentswhich may be accessednly once every
so many hoursor days,shouldresidein tertiary storageli-
braries.Such libraries provide “near-line” accessby keep-
ing data on magneto-opticalplattersor tapes,generically
referredto as volumes that residein a robot-serveduke-
box with a certainnumberof drives,typically one order of
magnitudefewer drives than volumes.So, in principle, all
documentsare availableonline, but the high latencyof pos-
sible volume exchangesn the drives may incur response
timesof morethan10s or evenminutes.Thus, it is crucial
that the currently hot documentsareindeedheld at leaston
the secondarystoragelevel (i.e., the disks) of the storage
hierarchy.

In the presenceof evolving documentpopularitiesand
accesgatterns the disks then essentiallyserveas a cache
with regardto thetertiary storageIn addition,somevery hot
documentsmay be held in an in-memory cacheat the pri-
mary storagdevel. Therefore goodcachereplacemenpoli-
ciesfor variable-lengthdocumentsare extremelyimportant
for the overall serverperformanceFurthermorethe vertical

142

datamigration betweenthe tertiary, the secondaryand the
primary storageand thus the cachehit rate can be further
improvedby employing“intelligent” prefetchingpolicies,so
that the high latencyof the tertiary storagecan be masked
from the client in many cases.

Designing good replacementand, especially, prefetch-
ing policiesfor the vertical datamigration betweentertiary,
secondaryand primary storageis substantiallymore diffi-
cult thanstandardBMS buffer managementTo realizethe
difficulties, considera straightforwardapproactthat eagerly
initiates the prefetchingof documentswhenevera tertiary
storagevolumeis online, andkeepsprefetchinguntil it runs
out of (secondarystorage)cachespace.Such a simplistic
approachs boundto fail, asit doesnot properly assesshe
variouspotentialbottlenecks.

1. Cache hit rate. Cache spaceis scarceand valuable,
so that only sufficiently worthy documentsshould be
prefetchedand/orkeptin the cache.This calls for poli-
ciesthat are basedon good estimatef the near-future
accesspatterns,which is far beyondthe usual DBMS
pageprefetchingon behalf of sequentialscans[TG84].
Threemajor problemsthat arisein this contextare:

a. We needto quantitativelyassesshe cache-worthiness
of a previouslyuncacheddocumentversusa cached
one. Standardalgorithmslike LRU lack appropriate
bookkeepingnformation aboutcurrently non-cached
data; hence,they are susceptibleto swampingthe
cachewith newly fetched,but unworthy documents
[OOW93].

b. The units of datamigration, the documentshave a
very high variancein their size. DBMS buffer man-
agements well understoodor pagegranularity,but
practicalwork on variable-sizegranulecachingpoli-
cies has beenlimited to outdatedoperatingsystem
architectureswith non-pagedmemory and would at
leasthaveto be re-assessetbr the new application
setting.

c. Overly aggressiveprefetchingmay havea detrimen-
tal effect on the cachereplacemenin that it possi-
bly reducesthe effectively exploited cachesize by
prefetchingdatathat may turn out not beingaccessed
atall or only in the far future. We needa quantitative
understandingf whento throttle the prefetchingac-
tivity andhow to identify the mostworthy prefetching
candidates.

2. Resouce contentionat the tertiary storage.Both cache
replacemenand prefetchinginterferewith the schedul-
ing policy of the tertiary storagelibrary. This involves
two issues:

a. The transferrate of the tertiary storageis fairly lim-
ited. So prefetchingcan lead to substantialqueuing
delaysin servingother, pendingdocumentrequests.
Therefore to control thesecontentioneffects, the uti-
lization of the tertiary storagedrives must be taken
into consideration.

b. The robot arm of the tertiary storagelibrary is a po-
tential bottleneck,asit incursa high latencyin every
volume exchange Throughputconsiderationsthere-
fore, suggesiminimizing volume exchangesbut this

may adverselyaffect respons¢ime. Sothe scheduling
of volume exchangeseedsto be plannedcarefully.
3. Resouce contentionat the secondarystorage.The ver-
tical migration of documentsalso interfereswith the
schedulingpolicy for the disk(s)on which the secondary
storagecacheresides.This hastwo aspects:

a. As the migration from tertiary storageinto the sec-
ondary storagecachegoesthrough primary storage,
it mayincur afairly high write 1/0 load on the cache
disk(s). On the other hand, client requestsare ulti-
matelyservedrom memory-residenmetworkbuffers;
so all secondary-storageachehits requireread!/Os
from the cachedisk(s). Thesetwo typesof disk activ-
ities needto be reconciledunderpossibly high con-
tention.

b. Sincethe primary storagealso providesa relatively
smallamountof evenfastercachespacethereplace-
ment decisionsat this storagelevel affect the inten-
sity of havingto readdocumentgrom the disk cache.
However,using memoryfor this extra cachingeffect
alone would potentially block the documentmigra-
tion path from tertiary onto secondarystorage,be-
causeof insuflicient intermediatebuffersin memory.
This tradeof needsto be consideredhoroughly.

The problemsoutlined above indicate the complexity of

managinga storagehierarchyin anintelligent manner.Our

approachin this paperis heuristicin that it addressegach
potential bottleneckseparately put eachone of the devel-
opedbuilding blocksis basedon rigorousmathematicaftea-
soningalong with a careful assessmertf its bookkeeping
and computationabverhead.

1.2 Contributionand outline

This paperdevelopsa unifiedapproacho cachereplacement
andspeculativeprefetching basedon a stochastianodelfor
predicting documentaccessesand integratesthis vertical
migrationpolicy with the schedulingpolicies of the tertiary
storagdibrary andthe secondanstoragecacheln doingso,
we aim to minimize the responsdime of client requestsTo
this end,our approactronsiderghe impactof the following
potentialbottlenecksthe cachehit rateat the secondarnand
primary storagelevel, the contribution of queuing delays
at the tertiary storagelevel, and the potential queuing at
the secondarystoragedisk cache.We are not awareof any
similarly comprehensivavork on managinglarge near-line
documentarchives.

In additionto advancingthe stateof the art from a sys-
tem designviewpoint, a major novelty of the paperlies in
usinga continuous-timeMarkov chainmodelandits under-
lying theory [Nel95, Tij94] for predictingfuture document
accessesThis model involves estimating, through access
monitoring, the transition probabilities betweendocuments
that are successivelyrequestedwithin a client sessionthat
is, the probability that a client requestsdocument; given
that its previousrequestaccessedlocumenti. We further
monitorthe interactiontimesbetweensuccessivesessiorre-
questsandalsothe arrival rate of new client sessionsFrom
theseparametersye utilize mathematicatesultson Markov

chainsto predictthe expectechumberof accesseo certain
documentswithin a specifiedtime horizon.

Obviously,a Markov chainmodelfits well with naviga-
tional accessesyherea client would starta new sessiorby
accessingome“entry document’andthenproceedalonga
hyperlink structure Navigationalaccesseemso be typical
for applicationssuchasteleteachingyirtual museumsand
the like. However,the Markov chainmodeldoesin no way
rely onthistypeof accessnode Whatit capturesarethepat-
ternsof co-accessesiccesdo a certaindocumentffectsthe
probability of accessing certainotherdocumenin the near
future. Thus,the Markov chain modelis applicableequally
well to a descriptiveaccessanodel with high-level queries;
for example the transitionprobabilitiesbetweendocuments
would reflectif two documentsontainsemanticallyrelated
informationandconsequentlypoth appeaiin the resultsetof
many queries.Furthermore client cachingof documentss
automaticallyfactoredout, as requestsservedby the client
cacheare not known to the server'sbookkeepingand are
thus not consideredn the parameterestimationswhich is
perfectlyadequate.

The Markov chain model pursuedhereis substantially
richer (in terms of capturing more workload information)
than a classof modelsthat merely aim to estimatethe sta-
tionary accesrobabilitiesof the variousdocumentspften
referredto asthe “heat” of a documen{Co88]. Takinginto
considerationthe current state of an active client session,
i.e., the last requestediocumentjeadsto much betterpre-
dictions than the simpler stationary-probabilitymodels.On
the other hand, it is evidentthat the parameterestimation
of a Markov chain model incurs much more bookkeeping
overhead We believe that this is one of the reasonswhy
Markov chain modelshave not receivedmore attentionfor
cachemanagemenbetweermemoryandsecondanstorage.
With the high latencyof tertiary storageit is worthwhile to
employa richerdecision-makingnodelevenif its overhead
may not be negligible.

Whereasdiscrete-timeMarkov chains have beenused
in the literature for characterizingthe accesspatternsof a
singleclient [TN91, CKV93, Be96], our approachproceeds
substantiallyfurther in that we

1. incorporate document-specificclient interaction times
between successivedocument requestsby using a
continuous-timerather than a discrete-time Markov
chain,

2. reconcilethe Markov-chaininduced accesspatternsof
all simultaneouslyactive client sessionsinto a global
prediction,and

3. takeinto account,within the mathematicaframework,
the dynamic“out-of-the-blue”arrivalsof newclient ses-
sions, whoseinitial stateis unknown so that accesses
cannotbe predictedbasedon the last requesteddocu-
ment,andalsothe termination(“departure”)of sessions.

Incorporationof time into the modelis crucial in orderto
capturethe very high varianceof client interactiontimes
amongdocumentsA usertypically spendsmuch lesstime
on overview-like HTML documentsthat merely contain
graphically enrichedanchorsthan on long text and image
documentswith complexand interestingcontents.Further-
more, somebrowsingtools supportthe automaticfollowing

143

of embeddedinks, which leadsto very short interaction
times.

Theapproachn this paperwasinitially suggestedh the
conferencepaper[KW97], but that paperdid not consider
primary storagecaching,nor did it takeinto accounthe per-
formanceissuesthat resultfrom writing cacheddocuments
ontosecondargtorageln the current,substantiallyextended
paper,we considertheseissues.Furthermorewe generally
extendthe quantitativecostmodelingof our methodin that
we capturethe replacementoststhat arisefrom droppinga
documentat a certainstoragelevel, and we capturethe re-
sourcecontentionin atertiary storaggukeboxwith multiple
drives more accuratelythanin [KW97]. Theseissueswere
not of interestin [KW97], aswe considerednly atwo-level
storagehierarchyanda single-drivejukeboxthere,but they
areof crucialimportancefor the generalthree-levelstorage
hierarchyof the currentpaper.

The restof the paperis organizedasfollows. Section2
discusseselatedwork. Section3 presentour assumptions
on the overall systemarchitecture.Section 4 developsa
continuous-timeMarkov chain model for predicting near-
future documentaccessesSection5 presentghe integrated
vertical migration policy that incorporatesprefetching,re-
placement,and the schedulingpolicies of the tertiary and
the secondarystorage.n Sect6, we discussthe bookkeep-
ing overheadof our policy in termsof CPU and memory
consumption.Section 7 gives an overview of our proto-
type implementation.Section8 presentsexperimentalper-
formanceresultsbasedon simulation. Section9 discusses
severalextensionsaand generalization®f the developedap-
proach.Section10 concludeshe paper.

2 Related work

Tertiary storagemanagementor long-termfile archivalhas
beenanimportantissuefor supercomputingentrespolicies
for the replacemenbf files on the secondarystoragehave
beenlimited to simpleheuristicshowever,basedn file age
or estimatesf the stationaryaccessprobabilities[Smi81].
More recentwork hasfocusedon dataplacemenbn tertiary
storagevolumes[FC91,CR94,TCG96,CTZ97] andrequest
schedulingHS96, NKT97]; this includeswork with special
considerationn the real-timerequirementsof video data
[GMW94, LLW95]. Motivated by the large datavolumein
datawarehousestertiary storagemanagemenhas also re-
ceivedattentionin the contextof relational DBMS queries
[Sto91,ML97, Sa95,J098].

Prefetchingn databaseystemshasbeenstudiedmostly
for applicationswvherefuture accesgatternsarelargely pre-
dictabledueto specificstructuref theunderlyingdatabases
and the programs accessingthem, especially in object-
orienteddatabasesystems[CK89, CH91, GK94], but also
in real-time and multimediaapplications[WZ86, MKK95,
TP97]. Theeffect of objectprefetchings implicitly achieved
(on a per-pagebasis)also by intelligently clusteringobjects
into pages[CK89, TN91, TN92, GKKM93]. In thefield of
mobile computing,[KP97] has pursueda similar approach
wherereference'distances”in userandprogramaccesgat-
ternsare usedfor predictivefile hoarding.

144

Thereis only little work on prefetchingbasedon prob-
abilistic models.Fundamentapropertiesof Markov chain-
basedpaging have beeninvestigatedin [KPR92] with the
focus on the asymptoticworst-casecompetitivenes®f on-
line algorithms.On the practicalside,[PZ91] hasproposed
an associativememory approachfor predicting object re-
guestsand initiating prefetching.A major disadvantagef
this approachis that the associativememory needsoffline
training, which rendersit infeasiblefor documentarchives
with evolving workload patterns [MKK95] hasproposeda
relevance-rankingchemefor the buffering of video frames
in multimediaapplicationghataimsto captureaccesgrob-
abilities, but relieson externalinput for determiningthe rel-
evancemeasuresln [CKV93], compressiorschemedased
on k™M-order Markov chainshavebeenappliedto the prob-
lem of prefetchingpages,and[Be96] hasuseda first-order
Markov chain for speculativeprefetchingin a distributed
system.All thesestrategiesaretailoredto supportinga sin-
gle accesssequenceunningwith dedicatedclient memory,
which is not applicablein our scenariowheremultiple, dy-
namicallyarriving anddepartingsessiongompetefor cache
spaceAlso, object-specifidnteractiontimeshavebeendis-
regardedandprefetchinghasbeenstudiedin isolationin the
above-mentioneavork, without consideringthe interdepen-
dencieswith cachereplacemenandstoragedeviceschedul-
ing.

Approachesthat aim to reconcilethe replacementand
prefetching policies for an in-memory page cache are
[GK94], [CFKL95a, CFKL95b], [AGL97], and [PGG+95],
but all of theseassumeperfect knowledgeof future page
accessethroughapplicationhints. [GK94] explicitly main-
tains, in a special data structure,the page accesshistory
of methodinvocationswithin object-orienteddatabasesand
useghisinformationfor prefetchingpagesnto themethod's
working spacen memoryandalsofor selectingreplacement
victims basedon the remainingnumberof accessesvithin
the methodexecution [CFKL95a, CFKL95b] and[AGL97]
developrules for when aggressiveprefetchingneedsto be
throttled in order to avoid adverseeffects on the pagere-
placement(e.g., prefetchinga pagethat causeghe replace-
mentof a previouslycachedpagethatwill bere-usedearlier
than the prefetchedpage).[CFKL95a, CFKL95b] analyzes
boundson the suboptimalityof variousheuristics,whereas
[AGL97] addresghe issueasan integeroptimizationprob-
lem andpresenta linear-programmingelaxationfor finding
anoptimumprefetchingscheduleFinally, [PGG+95]devel-
opsa simplecostmodelwith constantCPU anddisk access
time per pagerequestto heuristically control the dynamic
subdivisionof cachespaceinto an LRU-managedacheand
a separateprefetchingcache.All of theseapproachesare
gearedfor casesn which the application’saccesseareper-
fectly predictable(e.g.,a Unix grepcommandrunningon a
directory tree of files), and cannotbe usedin our problem
setting.

The only work known to us that considersappropriate
thresholdsfor the throttling of prefetchingactivitiesfrom a
stochasticviewpoint is [JK98], in the contextof prefetch-
ing datafrom Web serversBasedon a costmodel,a global
prefetchingthresholdis derivedin termsof minimum docu-
mentaccesgprobabilitiesso asnot to overloadthe network.
However, this approachfocuseson per-client prefetching

and does not addressserver cache managementFurther-
more, accesspredictionsare basedonly on discretedocu-
mentaccesprobabilitieswith a single-stedookaheadand
document-specificiserreactiontimesare not considered.

3 Systemarchitecture

We considera documentserverwith a three-tierstoragehi-
erarchy:

e primary storage (PS) in main memory (assumedto be
sharedamongall processorsf the serveris an SMP ma-
chine) which servesboth as a cachefor very hot docu-
mentsand transferbuffer for documentmigrations,

e secondarystorage(SS)on disk(s) asa cachefor hot and
warm documents,

o tertiary storage(TS)in theform of anoptical-diskjukebox
with oneor moredrivesanda robotarmfor the exchange
of volumeq(i.e., optical disk platters) which servesasthe
permanentomeof documents.

At anygiven pointthe TS hasloadeda subseDf its volumes
into its drives,which changeswith everyvolume exchange
of the jukebox. Thus,the TS itself constituteswo separate
accesdevels, altogethereadingto a four-tier storagehier-
archywith the following two lower-half levels:

e onlinetertiary storage(TS-on)and
o offline tertiary storage(TS-off)

We denoteby docs(i) the set of documentsthat reside at

level i of the storagehierarchy.We assumethat the upper
two levels of the storagehierarchyform true cachesof the

lower levelsin that a documentthat currently residesat a

higher level is still availablefrom the TS level(s). We do

not assumehowever,that docs(P.S) is alwaysa subsetof

docs(SS), asthe datatransferpathfrom TS to SSis through
PS.Then,it canoccurthat a documentis broughtfrom TS

to PS with the intention to write it onto SS, but, by the

time this disk write is about to start, the documentmay
have becomeunworthy of being cached.This situationis

not eventhatexceptionalronsiderfor example adocument
that is broughtinto PS due to a high probability that it is

requestedvithin the nearfuture by a single sessionOnce
it is loadedinto PS,the requestmay be servedfrom the PS
beforethe documents written to the SS. After thedocument
is requesteddy the sessionjt may becomefairly cold, so

that it shouldnot be keptin SS or PS after the requestis

satisfied.

The overall systemarchitectureof our approachis de-
pictedin Fig.1. The servercandeliverdocumentgo clients
only from its PS. To bring a documentinto PS, the server
alwaysretrievesthe documentrom the higheststoragdevel
at which (a copy of) the documentcurrently resides(possi-
bly the PScacheitself). So,in particular,documentghatare
requestedrom the SScachearefirst broughtinto PS.When
the documentis copiedbetweenstoragelevels or dropped
from a certainlevel, we speakof a datamigration. Upward
data migrations from a lower level to a higher level take
placeuponthe following events:

— fetching an explicitly requesteddocumentfrom TS-on
into PS,

Clients

A

145

| ship

TS-off

()
2

TS-on

fetch, prefetch
TTITTTIT

spool\v ffetch

D

Document Server

Fig. 1. Overviewof the systemarchitecture

— fetchingan explicitly requestedpreviouslycacheddoc-
umentfrom the SScacheinto PS,

— prefetchinga documentirom TS-oninto PSin the spec-
ulative anticipationof near-termrequests,

— spooling a previously fetched or prefetcheddocument
from PSonto SS (i.e., writing it onto disk), which can
beviewedasthe secondhaseof prefetchingadocument
from TS-ononto SSvia PS,

— loading a previously offline volume into a TS drive,
which canbe viewedasanimplicit migrationof a setof
documentdrom TS-off to TS-on.

Downwad data migration resultsimplicitly from dropping
a documentthat usedto resideat a higher level, or from
ejecting an online volume from a TS drive. The implicit
migrationsthatresultfrom volumeexchangesreperformed
by the TSscheduler For modularity,we assumehatthe TS
scheduleris a separatgand thus exchangeablefomponent
within the overall systemarchitectureWe generallyassume
that the TS is the most critical bottleneck,and that the SS
cachemay be performance-criticaloo, asits disk(s)need(s)
to sustaina very high read/writeload for the dynamic,more
or less continuoustransferof documentsbetweenPS and
SS. The transfer betweenPS and SS is managedby the
SSscheduler We disregardall other schedulingissues.In
particular,we do not considerCPU or network contention.
Such extensionswould be feasible within our framework,
but would complicatethe algorithms.

4 Stochasticmodel

In this section we describethe stochastianodelfor the pre-
diction of future documentaccessed/Ne assumehatclients
open sessionswith the serverand then proceedthrough a
numberof documentaccessebeforeterminatinga session,
which modelsaninteractivemultimediainformationsystem.
Let D denotethe documentset storedon a serverconsist-
ing of N documentsd; € D, i = 1...N. Furthermorelet
S denotethe set of currently active usersessionss; € 5,
j = 1...|5|, andlet d(s;) denotethe last (i.e., most re-
cent) documentthat the sessions; hasrequestedrom the
serverWe modeltherequespatternof asinglesessiorasa
continuous-timeMarkov chain[Nel95, Tij94], asdeveloped
in Sect4.1.We will thenshowin Sect4.2how multiple ses-
sionsand, particularly,the dynamicarrivalsof new sessions
canbeincorporatednto themodel. The Markov chainmodel
impliesthatinteractiontimesbetweersuccessiveequestof

the sameuserare exponentiallydistributed,which hasbeen
reasonablywell confirmedby the analysisof WWW server
tracesIn addition,we discusspossibleextensiongo capture
generaldistributionsin Sect4.3.

4.1 A continuous-timeMarkov chain model
for a singlesession

A continuous-timeMarkov chain (CTMC) is a stochastic
procesghat proceedghroughdifferentstatesin certaintime
epochslts basicpropertyis that the probability of entering
a statedependsonly on the currentstate,not on the previ-
oushistory (this is a first-orderMarkov chain; higher order
Markov chainsare not relevantto this paper).This property
hasthe mathematicaimplication thatthe time for which the
processresidesin a given state must be an exponentially
distributedrandomvariable; different statesmay have dif-
ferentmeanresidencdimes, however.Thus,a CTMC with
statesdenotedl, 2, ... N is uniquely describedoy a matrix
P = (pi;) of transition probabilitiesbetweenstates,and the
meanresidencetimes (or “state holding times”) H; of the
states Equivalently,one can specify the transitionratesw; ;
betweerstatesi andj, wherev; = - #p;; ; theterm1/H;
is alsoknown asthe statedeparturerate and denotedas v, .

In our applicationsetting,the stateof the CTMC corre-
spondsto a session(i.e., the stochasticprocess)accessing
a certaindocument.For eachdocumentd;, p;; denotesthe
probabilitythatwhena sessiorhasrequestediocumentd;, it
will nextrequestdocumentd; from the server.The stateres-
idencetime correspondso the time that the sessiorresides
at a documentthis captureghe actualinteractiontime, i.e.,
the time that a humanuserneedsto “digest” a document’s
contentsor a browserneedsto processhe documentefore
requestinghe nextone.

We are interestedin predictingthe future accessesf a
sessionln this prediction,we canexploit the knowledgeof
asession'surrentstate.Thus,thefirst relevantmeasurehat
we are interestedin are the probabilitiesp;;(¢) that a ses-
sionwill bein statej (i.e., will accessglocumentl;) attime
t from now, given that it currently residesin statei (i.e.,
documentd;). Thereare well-known methodsfor perform-
ing this type of transientanalysisof a CTMC. However,a
first difficulty in applyingthesemethodsis the fact that the
meanresidencetimes are not uniform acrossall states.To
overcomethis problem,we apply a methodthat is known
as uniformization[Tij94] to transformthe CTMC into an
equivalentCTMC with uniform meanresidencdimes.Here,

146

equivalencemeansthat both processewill bein the same
statewith the sameprobability for all times¢; so we have
pi;(t) = pi;(t), wherep;;(t) refersto the original CTMC
and p;;(t) to the uniformized CTMC. The uniformization
methodessentiallyadjuststhe statetransition probabilities
so asto factor out the different meanresidencetimes; this
involves introducingtransitionsback into the left stateand
is describedmathematicallyas follows:

_ — *Dij J#Z
Pij =)
! 1—ﬁ, j=1
v
where
v=max{vli=1...N} . (1)

The formal proof for this uniformization can be found in
[Tij94]. The central property that is exploited hereis that
the state-transitiorepochsof the uniformizedCTMC canbe
generatedoy a Poissonprocesswith rate v, the maximum
statedeparturerate of the original CTMC.

Next we considerthe m-steptransitionprobabilitiesp{””
of the uniformized CTMC, i.e., the probabilities that the
sessionwill bein statej after m transitions,given that it
currently is in statei. Thesecan be inductively computed
from the Chapman-KolmogoroequationgNel95, Tij94]

N
— —1)—
7= i Dy
k=1

Finally, we obtainthetime-dependertansitionprobabilities
pi;(t) by taking the productof the probability that m steps
areperformedin time ¢ with the m-steptransitionprobabil-
ity, and summingup theseproductsfor all possiblevalues
of m. Thisis exactlythe partof the derivationthatis greatly
simplified by the previousuniformization,and we obtain

1if 0=
with ;35‘;):{ A

0 otherwise.

(o]
o O™
pi;(t) = Ze th *7551}”)7

m=0

for all i, 7 andt > 0. (3)

We will showin Sect6 thattheseprobabilitiescanbe com-
putedefficiently in anincrementalmanner,i.e., without ac-
tually havingto approactthe infinite sum.The p;;(t) values
denotethe probability that a sessiorresideson documentd;
at time ¢ (from now on) underthe condition that the ses-
sion currently resideson documentd;. For the decisionon
whetherit is beneficialto prefetcha certaindocumentrom
tertiary storageonto disk and possibly drop anotherdocu-
mentfrom thesecondangtorageasareplacementictim, we
areinterestedn the expectechumberof requestgo a docu-
mentwithin a certainlookaheadime horizont. We postpone
the discussioron how to setandpossiblyfine-tunethevalue
of the lookaheadtiime until Sect5.6. Note that we are still
focusingon a single sessioronly, but estimatingthe expec-
tation of the numberof requeststo a documentwill later
allow us to reconcilemultiple, concurrentlyactive sessions
by essentiallysummingup theseexpectatiorvalues.

The expectecamountof time thata sessiorthatcurrently
residesn state: will spendn statej within atime horizonof
durationt is obtainedby the productof the meanresidence
time per visit of state j, which is 1/v, and the expected
numberof visits to j or, actually, departuresrom state j

within time ¢. We considerdeparturesrom j rather than
arrivals at j, so that we count only completevisits within
the time horizon ¢ (i.e., completeresidencetimes), where
thedifferencemattersin thetransientanalysisasopposedo
steady-statanalysesfor thetime horizont mayberelatively
short. The expectechumberof departuredrom j is in turn
obtainedby summingup, for all possiblevaluesn of the
total numberof transitionswithin time ¢, the productof the
probability that n transitionsare performedwithin time ¢
andthe probability thatstatej is reachedrom statei in less
thann steps.Sowe arrive at the following formula[Tij94]:

1 oo (Ut)n n—1
Eij(t) =~ * > <e—vfn! *]357;1)) . 4)
n=1 m=0

Finally, to derive the expectednumberof arrivals at state
k, or, equivalently,accesseso documentd;, we consider
all possiblepredecessostates; that have transitionsinto
k (with non-zeroprobability). E;;(t)/(1/v), the ratio of the
totaltime spentin j (duringcompletevisits) to themeantime
per visit, is the expectednumberof completevisits to and
thus departuredrom j, and we finally obtainthe expected
number of transitionsinto k& by multiplying the expected
numberof departuredrom the predecessostate; with the
transitionprobability p;; andsummingup thesevaluesover
all predecessostates;. This yields the following formula:

E[numberof accesseto dy in time t]

N
=Y v Ey(t) * pin (5)

J=1

So we finally have a mathematicallyfoundedpredictorfor

the near-futurenumberof accesseto a documentand,thus,
a basisfor assessinghe “worthiness” of a document,i.e.,

the benefitof prefetchingthe documentrom tertiary storage
and/orkeepingit in the secondary-storageache.

4.2 Incorporatingmultiple sessions
with dynamicarrival and termination

The predictionformula derivedin the precedingsubsection
holds only for a single sessionfor which we know its cur-
rent state(i.e., its last requestedilocument).For the overall
optimization of the server,we still needto reconcilethe
predictorsof multiple ongoingsessionsandwe alsohaveto
takeinto consideratiorthat new sessionarrive dynamically
and we do not know in advancetheir initial state(i.e., the
first requestedlocumentbf a session)Thefirst problemcan
be easily solvedby summingup, over all ongoingsessions,
the expectedraluesof the numberof accesse® adocument
within a session:

Nspeddi, t) = E[total numberof accesse$o dj, in time t]

N
=20 vx Baw (0 * D (6)

ses j=1

where d(s) is the documenton which sessions currently
resides(i.e., the currentsessionstate).We will referto this
expectationvalue asthe expectechumberof speculativere-
quests andwill denoteit as Ngpeddi, t).

In addition to the derived expectationvalue, a second
metric of potentialinterestis the probability that thereis at
leastonerequesto agivendocumentvithin timet. Thetran-
sientanalysisof CTMC modelsyields a closedformula for
this first-visit probability, too [Tij94]. However,this deriva-
tion is substantiallymore costly thanthe abovecalculation
of the expectechumberof accessedn particular,it involves
additionaltraversalsof pathsin the Markov chainto obtain
the probabilitiesthata certaindocumentwill notbeaccessed
within time ¢. To avoid this very costly computation,we
rather advocatethe following approximativeestimationof
the probability for at leastone accesgo a given document.
We view the overall processof requestgo a documentdy,
asa Poissonprocesswith rate

)_\(dk) = E[numberof accesseto dj, in time ¢] /¢ . @)

Thenwe can estimatethe first-visit probability for d within
time horizont as

HSpec{dk, t) =1- e_A(d)c)*t . (8)

Now considerthe issueof newly arriving sessionsDisre-
garding theseand focusing only on the ongoing sessions
would underestimatéhe numberof near-futureaccesseso
certain documentsjn particular, those documentsthat are
the first onesto be accessedy new sessionsAccessedo
these'entry” documentsrrive “out of the blue” soto speak.

Thereis anelegantway of incorporatingthesenewly ar-
riving sessiondnto the CTMC framework.We simply addto
the CTMC modeladditional fictitious statesN+1,..., N+c¢
thatrepresenall currentlypassiveclients(which donothave
asessiorin progressfrom which we expectthattheir arrival
probability within time ¢ is abovea giventhresholdpmin. We
assumethe overall arrival of new sessiondo be a Poisson
processwith rate . Then, the stateresidencetimes of the
¢ “passive-client’states(i.e., the time until a passiveclient
startsa newsessionpreidentically distributed following an
exponentialdistribution with meanvalue ¢/\. The number
of fictitious statesthat we considerto representhe entirety
of currently passiveclients can then be boundedby solv-
ing the following inequality for ¢, and this approximation
“misses” at most a fraction of pni, of the overall session
arrivals (with pmin setto 0.001,for example):

— At
1_@(xt) = Pmin - (9)

The transition probabilitiespy+; ; (¢ = 1...c) arethe sta-
tionary accesrobabilitiesfor the entry documentsof new
sessionsOncethe CTMC is extendedin this way, we can
directly apply the derivationof Sect4.1 with statesN +1
through V + ¢ addedto the variousformulas,andthe only
thingto doin additionis to logically addc fictitious sessions,
onesessiorresidingon eachof the statesNV +1,..., N +¢,
to the setS of session®verwhich the per-sessiorexpecta-
tions are summedup (formula 6). However,asthe number
of near-future“out-of-the-blue” accesseso a documentare
the samefor all ¢ sessionsthe computationof the overall
“out-of-the-blue” accessesan be greatly simplified by just
multiplying the expectechumberof accessedoneby a sin-
gle arriving sessionwith the numberof consideredsessions
c. Note that, for the samereasonthe transitionprobabilities
Pn+i,; haveto be keptonly once.

147

. P.
transitions y

into state d;

Py .
% transitions out

of state d

H

H

Fig. 2. Examplemodelingof stated; with generallydistributedstateresi-
dencetime

H

In contrastto sessionarrivals, thereis no explicit no-
tion of a sessiortermination.We simply considera session
asterminatedif it doesnot issueany further requestdor a
certaintimeout period. In termsof modelingthe impact of
terminations,however,the terminationof ongoingsessions
can be takeninto account,similarly to the aboveconsider-
ationson arrivals, by addingtransitionsbetweeneachstate
+ and an additional,fictitious (absorbing)state0, wherethe
transitionprobability p; o denotesthe probability that a ses-
sionterminategi.e., remainsinactivefor thetimeoutperiod)
after having accessedlocumentd;. Theseprobabilitiescan
be estimatedhroughcontinuousmonitoringin the sameway
asall othertransitionprobabilities.

4.3 Incorporatinggenerallydistributed
stateresidencdimes

Analysesof WWW servertraceshaveshownthat exponen-
tially distributedstateresidencetimes capturereal interac-
tion patternsreasonablywell. In addition, our model could

be easily extendedto considergeneraldistributionsby ap-

proximatingthe actualstateresidencdime distributionwith

a generalizedErlang distribution, which is a randomsum
of Erlang+ distributionswith the samescaleparameteibut

different k£ values[Tij94]. This way, a statewith a general
distributionof its residencdimescanbe mappednto a “su-

perstate”consistingof branchingsequence®f stateswith

exponentially distributed residencetimes. The “substates”
with exponentiallydistributedresidencetimes can then be
directly incorporatedinto the CTMC framework. Figure 2

depictsan exampleof a superstatel; with residencetime

following an £ ,, distribution,whichis arandom(i.e., prob-
abilistically weighted)sum of an Erlang-1and an Erlangs

distribution. The E1,, distribution can be usedfor a wide

spectrumof generaldistributionswith coeficient of varia-
tion ¢, in therange[Tij94]:

(10)

The branchingprobability p and the mean stateresidence
times H canbe determinedrom the momentsof the super-
state’sactualresidenceime distribution.

Oncethe substated;o, . . ., d;,, areincorporatednto the
CTMC model,the expectechumberof accesse$o the doc-
umentd; within time ¢ is obtainedby summingup the ex-
pectednumberof accessesvithin time ¢ over the “entry”
substatesl;o andd;.

Clearly, as this methodinvolves introducing additional
statesinto the CTMC, it incurs higher overhead However,
the mappingis only neededor documentsvhoseresidence

148

times cannotbe approximatedby an exponentialdistribu-
tion at all. Furthermore the numberof additional statesis
rathersmall for many unimodaldistributions(i.e., distribu-
tions whoseprobability density function hasa single max-
imum), which are the distributionsof mostinterestin our
applicationcontext.

5 Integrated migration policy

This sectionpresentur vertical migration policy thataims
to reconcilethe prefetchingfrom tertiary storageinto sec-
ondary and primary storage,the replacementon primary
and secondarystorage,and the schedulingof volume ex-
changesThe algorithmsare basedon the expectechumber
of near-futureaccesse$o a documentasderivedin Sect4.
We will first give an overview of the algorithm in Sub-
sect5.1. Then,we presentthe prefetchingand replacement
algorithmin Subsect5.2, the prefetchrequestschedulingat
the TS in Subsect5.3, and the write requestschedulingat
the SScachein Subsect5.4. Subsequentlyve elaborateon
thetertiary storageschedulingof volume exchange# Sub-
sect5.5.Finally, Subsects.6 discusseghefine-tuningof the
lookaheadime horizonusedby the CTMC predictions.

5.1 Overviewof the algorithm

Theoverallapproachs to quantitativelyassesghe near-term
worthiness(or “weight”) of eachdocumentwith respectto

improving the meanresponsetime of documentrequests.
To this end, the algorithm aims to place the most worthy

documentsn SSwith the highestrankeddocumentsamong
thesealso cachedin PS.This placementhowever,is not a

staticone,butis actuallytheresultof themigrationstepsthat
take into accountthe dynamicevolution of the serverload.

In measuringthe worthinessof a document,the following

threeaspectsare takeninto account.

e The near-termheat of a document,which is the docu-
ment’'saccessrequencyestimatedor a certainlookahead
time window of sizeT. In contrastto earlierwork based
on stationary long-termheat,our approachconsidershe
current state of the server'ssessionswith active clients
andreactsdynamicallyto change®f thesestatesandother
generalload parametersThe estimatechear-termheatof
adocumentd, N H(d, T), is theexpectatiorvalue E[total
numberof accesse$o d within time 7] thatwe derivedin
the previoussectionwithin the CTMC model.

e Giventhatwe dealwith variable-sizalocumentsye need
to normalizethe heatmetricin orderto obtainthe benefit-
per-spacaunit. To this end, we divide the heatof a doc-
umentd by the sizeof d, S(d), to derive the near-term
temperatue of d, NT'(d, T) = NH(d,T)/S(d). (Seealso
[Co88, SSV96]for similar considerations.)

e Finally, it may be worthwhile to discriminatedocuments
that reside on different levels of the storagehierarchy,
becausehis incursdifferentcostsin the retrieval of doc-
umentsif the documentsare not cachedat the highest
level(s). For example,when deciding the worthinessof
two documentswith regardto cachingthemin PS,it is
importantif one documentcanstill be fetchedfrom SS,

whereasthe otherresidesonly in TS, possiblyevenTS-
off. This considerations capturedoy thereplacementost
of a documentd, RC(d), which is the response-timeost
thatis incurredby retrievingd from the highestoneamong
the lower storagelevels at which (a copy of) it currently
resides.Then, the worthinessof a documentshould be
proportionalto its replacementost.

Puttingthesethreeaspectdogetheryields the following
definition of the weightmetric:

weight(d, T) = (N H(d, T)/S(d)) x RC(d) .

Basedon this weight metric, the rationaleof our approach
is the following. We maintain a list of “interesting” doc-
umentscontaining the top m documentsin terms of the
weight metric, where m is chosensuch that thesedocu-
mentswould togethercompletelyfill up the availablecache
spaceon SS(assuminghatthe SScacheis muchlargerthan
the PScache).A documentd from this list shouldthen be
prefetchednto PS (andthenfurther “spooled” onto SS) or
SS(via a short-termPS buffer), respectivelyjf andonly if
it is not yet cachedand its weight exceedsthe maximum
weightamongthe documentghatwould haveto be dropped
from PSor SSasreplacementictimsin orderto makespace
for d. Here,for d itself, thereplacementostrefersto its cur-
rent storagelevel before prefetchingit, whereasfor the PS
or SS replacementictims, the replacementost refers to
their higheststoragdevelsbelowthe level from which they
would be dropped.

Documentweight is the decisive metric for tentatively
identifying prefetchingcandidatesndthe correspondinge-
placemenvictims. However the prefetchingtself shouldbe
reconsideredhs late as possibleas input parameterghange
over time. Thus, when the TS is aboutto start the data
transferfor a prefetchingrequestthe weightsof the to-be-
prefetchedlocumentindthe selectedeplacementictimsin
PSandSSarere-evaluatedif it turnsout thatthe prefetch-
ing requestis no longerworthwhile, thenit is cancelledat
this point. A secondand even more important aspectthat
may leadto the cancellationof prefetchingrequestss that
overly aggressiveprefetchingmay leadto contentionat the
TS drives or the robot arm of the TS. Therefore,it is cru-
cial to consideralsothe potentialinterdependencidsetween
datamigrationsandthe TS requestscheduling.

The solution to this throttling problemis to assesdor
eachindividual prefetchingrequestwhenit is aboutto be
servedfrom anonlinevolume,the actualresponse-timéen-
efit of the prefetchingandthe penaltythatthis requestvould
incur for future requestsTo this end,we define

o the benefit of a prefetching requestas the aggregated
savingsin the responsetime of future requeststo the
prefetcheddocumentand

¢ the penaltyof a prefetchingrequestasthe aggregatedle-
lay of otherrequestsi.e., the productof the affected,i.e.,
delayed,requestsandtheir response-timelelay.

In Sect5.3, we will deriveformulasfor the benefitand
penaltymetrics.The benefitandthe penaltyof a prefetching
requestare computedwhenthe requestis aboutto be initi-
ated,to reflectup-to-datesession-statandload parameters.
Certainintermediateformulas may be precomputedat this

point to makethe benefit/penaltyassessmerdufiiciently ef-
ficient for online decisions.Then,the prefetchingrequestis
initiated if andonly if its benefitexceedsts penalty.Other-
wiseit is cancelled.

A similar consideratioron the needfor activity throttling
arisesatthe SS.Here,the potentialpoint of contentionis that
readrequestghat fetch cacheddocumentdrom SSinto PS
for delivery to the client may be delayedby write requests
that “spool” prefetchedor fetcheddocumentsfrom the PS
cacheonto SSfor further caching.Again, we addresshis
issueby assessinghe benefitand penalty of a document
write requestusingformulasthatwill bederivedin Sect5.4.

In summary, the integrated migration policy can be
viewed as a three-stagelecisionprocesswherethe second
andthird stageeachperformtwo comparisons.

e Stagel. Tentatively identify “speculative” prefetching
candidatesbasedon a ranking of documentdy descend-
ing weight, andinsertprefetchingrequestsnto the corre-
spondingqueueof the TS volume.

e Stage?2. Whena prefetchingrequesis aboutto be served
from anonlinevolumeof the TS, selectthe lowestranked
documentsof the tamet level (i.e., PS or SS) as re-
placementictims and comparethe weightsof the to-be-
prefetcheddocumentandthe choservictims. If the docu-
mentweightis smallerthanthe maximumweight among
the victims, then the prefetchingrequestis cancelled.If
the prefetchingrequestis still consideredvorthwhile, its
benefitandpenaltyarecomputedWhenthe penaltyof the
prefetchingrequest,in terms of delaying other requests,
exceedsits benefit, then the prefetchingrequestis can-
celled.

e Stage3. Whena prefetchedor fetcheddocuments about
to be written from PSto SS,the weight comparisonand
the benefit/penaltycomparisonare repeatedonce more,
andthe write requestis cancelledf oneof thesecompar-
isonsindicatethat the documentis no longer sufficiently
worthy.

5.1.1Examplescenario

As an examplefor the possibleactionsof this three-stage
policy considerthe following scenariodepictedin Fig. 3.
The figure shows(copiesof) documentsA through K that
residein PS,SS,andtheonlineTS. Documentntheonline
TS are shownin the orderin which they would be served
by a sequentialvolume scan.The near-termheat of these
documentds shownin parenthesedpr simplicity, assume
that all documentshavethe sameunit size.

Now considerwhat happenswhen clients explicitly re-
questthe documentsF, G, and C, and the TS scanhas
reachedthe position of documentH (Fig.3a). Document
H could be worth being cachedin PS, asthereare poten-
tial victim documentsB with lower near-termheatand A
which is cachedon disk. But now considerthe penaltythat
prefetching H at this point would incur on other requests.
We haveexplicit client requestdo F' and G pending;both
would be delayedby the prefetchingof H. So we needto
comparethe benefitof prefetchingH with its penalty (with
regardto F' andG) quantitatively Here,we needto consider
more detailedparameterswhich arenot givenin the figure.

149

So let us simply assumehat the benefitof H is lower than
its penalty. The decisionthenis to cancelthe prefetching
requestfor H.

Next, documentF’ must be fetchedinto PS, asthereis
an explicit, pendingrequesffor it. Sowe needto determine
a replacementictim. B hasthe lowest near-termheat, but
onceit is droppedit would haveto be retrievedagainfrom
TS (possiblyoffline TS), whereasA could still be retrieved
againat a much lower costfrom SS. Thus, taking into ac-
countthe replacementostsof A and B suggestsshoosing
A as the replacementvictim at the PS level. Now let us
focusfor anothermomenton what happendgurtherto docu-
ment F’ onceit is broughtinto PS (Fig. 3b). It is sentto the
requestinglient,andatthe sametime, the SSschedulecon-
siderswriting F' to the SScache whereit may be keptfor a
while. However this write I/O may delayfetchingdocument
C from the SS cache,which is also requesteddy a client
(think of the clientrequesfor C to arriveimmediatelyafter
the fetching of F' from TS). Now we needto tradeof the
benefitof keeping F' in the SS cache(i.e., avoiding future
TS accessesyersusthe penaltythatit incurson the reading
of C' from SS. One outcomeof this comparisoncould be
thattheresponse-timeéelayfor C would be so high thatthe
writing of F' shouldbe cancelled SinceC' alsoneedsspace
in PS,this decisionwould probablyimply that F' is dropped
from PSright after completingits deliveryto the requesting
client (Fig. 3c).

Now we have documentsB and C' in the PS cache,
andwe are aboutto prefetchdocumentk'. Its weightis re-
assessedgainstthat of the lowestrankedPSdocument(C,
and K is clearlyfoundto beworth beingprefetchednto PS.
Thefinal questionthenis whetherthis would havean overly
adverseeffect on further pendingrequestsnamely, the re-
questto document in our scenarioAgain, we comparethe
benefitof cachingK in PSversusthe response-tim@enalty
that this prefetchingrequestwould incur on the requestto
G. Here,let us assumehat the benefitexceedghe penalty.
So, K is prefetchedfirst into PS,wherewe needto reclaim
spaceby dropping C. Assumingthat the weight of K ex-
ceedsthe weight of £ and asthereis no pendingrequests
on SS, K is spooledto SS by droppingdocumentE from
SS(Fig.3d). If K is spooledto SSquickly enoughthenthe
final pendingrequesto G could immediatelyre-usethe PS
spacethat was temporarily occupiedby G (Fig.3e). Here,
we alsoseethatit is desirableto spoolPSdocumentdo SS
as fast as possiblein order to reclaim valuable PS space,
andin the currentsituationthereis no contentionwith any
outstandingSSread|/Os.

This scenaricshouldgive a moreconcrete albeitmerely
exemplaryand mostly qualitative impressionon the vari-
ousdecisionsthat needto be madein the overall migration
algorithm.

5.2 Prefetchingand replacemenbf documents

As the worst caseaccesgime to tertiary storageis orders
of magnitudehigher than a secondary-storagdisk access,
an importantinitial objectiveof our migrationpolicy (to be
revisedshortly) would be to maximizethe numberof docu-
mentrequestghatcanbe servedfrom thedisk cachethatis,

150

Pending

Pending ss PS
requests

requests

NNNENNE]

Fig. 3a—e.Examplescenariofor the integratedmigration pol-
icy. a Initial situation.b Situationafter fetching F' into PS.c
SituationafterfetchingC' into PS.d Situationafterprefetching

E ¥
1EM] E
T]
Pending Pending _
requests 88 PS requests TS-on
- = (HENENEN -
1[G E
JBM] E
T]
Pending Pending .
requests s PS requests TS-on
- o NN NN .
E -
J{BM) | E
T]
Pending Pending _
requests S8 PS requests TS-on
- _ (HNEENEN -
ELGa):
FLBM] E
TrTTTIT]
Pending Pending ~
requests SS PS requests TS-on
- INENNENN]
F(3
ﬁ A®)] [C) €6 [Far]
)

B(1)

TTTTTTTT

K into PSandspoolingit onto SS. e Situationafter fetching

TTTTTTTT [

maximizethe cachehit rate. Then, the cachingworthiness
of documentss reflectedby their near-termheat,which is

NH(d,T) = Nspedd, T) , (11)

where Ngpedd, T') denoteshe Markov-chainpredictednum-
ber of speculativerequestgo d, i.e., the expectationvalue
accordingto formula (6). By normalizingthe cachingwor-
thinesson a per-bytebasis,we derivethe near-termtemper-
ature:

NT(d,T) = Nspedd, T)/S(d) . (12)

If maximizing the cachehit rate were indeedour sole ob-
jective, then we would now rank documentsn descending
orderof the near-termtemperaturekeepingthe highesttwo
fractionsin the PSand SS cache respectively However,in
orderto minimize the meanresponsdime, we alsoneedto
factor the replacementostsof documentdnto the ranking
metric, which leadsto the weight of a documentgiven by

weighi(d, T) := NH(d, T) * RC(d)/S(d) . (13)

Then, at eachpoint of time, the ideal assignmenbf docu-
mentsto the PS and SS cachesshould reflect the ranking
of documentdy descendingveight. To approactthis ideal
ranking behaviorby an online decision-makingalgorithm,
our migration algorithm considersprefetchingrequestsfor

G into PS

those documentswhose weight exceedsthat of currently
SS-residentlocumentsThe algorithm actually maintainsa

rankedlist in descendingweight order, where the top m

documentsare consideredor prefetching.The value of m

is chosersuchthatthe spacecapacityof the SScachewould

be completelyexhaustedy thosem documentsEachdoc-

umentwhich is elementof the top m documentsandwhich

is not cachedon primary or secondarystoragehasto be

prefetchedfrom tertiary storage.At the time, a document
prefetchis scheduledtheweightof the documento prefetch
is comparedwith the weight of the correspondingeplace-
ment victims and the prefetchmay be cancelled.The re-

placemenvictims aredeterminedasedn ascendingveight
orderstartingfrom the bottom of the sortedlist.

At this point, let us consider,in more detail, the book-
keepingcostsof this policy. In assessinghe weight of doc-
uments,the information that is readily availableanywayis
the numberof pendingrequestandthe documentsize.The
(expectednumberof speculativerequestss derivedusing
the CTMC model. This is not exactly computationallyin-
expensiveput it is the core of our overall approach.Thus,
we assumethat this information is availableonline for all
relevantdocumentsFinally, considerthe replacementost
of adocumentThisis muchmoreproblematicthanit seems

at first glance.What we needhereis a bookkeepingof the
higheststoragelevel at which a cacheddocumentswould
resideif it were droppedfrom a cache,sincethe replace-
mentcostof sucha documentdepend®on that storagdevel.
This information is, of course,available,but is highly dy-
namic.In particular,whenevera TS volumeis ejectedfrom
a drive and thus changesits statusfrom online to offline,
the replacementostof a cacheddocumentchangequnless
we considerthe PS cacheand the documentalso resides
on SS). Unfortunately,this would imply that the ranking of
documentdn the SSand PS cacheshasto be re-computed
with every volume exchangeof the TS. Contrastthis with
the much more stablevaluesof the near-termheat, which
canalsobe evaluatedazily.

Theseconsideration®n the bookkeepingcostsfor the
weight metric lead us to the following simplifications.For
the documentsn the PS cache we maintainthe ranking by
theweightmetric. This appeardo bejustified,asthe number
of documentsn the PScacheis relatively low. (Recallthat
we expectfairly large documentsn a multimediaapplica-
tion.) Forthe SScache however wherethe numberof docu-
mentsis muchlarger,we maintaintherankingmerelyon the
basisof the more stablenear-termtemperaturanetric. This
holdsfor the stage-ongentativeidentificationof prefetching
candidatesLater,in stagetwo, whenthe prefetchingrequest
is aboutto be servedandits weightis comparedagainstthe
weights of the selectedreplacemenvictims, we apply the
more“accurate”’comparisorbasedn the full weightmetric.
The candidatedocuments prefetchedonly if its weight ex-
ceedsthe maximumweight amongthe replacementictims.
This way we avoid having to maintaina completeranking
of cacheddocumentdy weight.

Whatremaingo bedoneatthis pointis theactualderiva-
tion of the replacementostof a given documentWe need
to distinguishthreecases.

1. Documentcopy available from SS.If the documentis
droppedfrom the cache,it can be retrievedfrom SS.
(This is relevantonly whenwe considerthe PS cache.)
In this case,the costfor retrieving the documentback
againis themeanresponsdime of the SSconditionedoy
the probabilitythatit will beaccessedtleastoncein the
lookaheadime window. This replacementostis amor-
tized over Ngpedd, T) expectedaccessesthus yielding
the following per-accessost:

RCsg(d) = Hspec(dv T) * RTSS(d)/NSpe((d7 T), (14)

where RTsg(d) denotesthe empirically estimatedmean

responséime of the SSfor a documenbf size S(d) and

Ispedd, T') is the probability that d will be accessedne

or moretimeswithin time 7.

2. Documentcopyavailablefrom TS.If the droppeddocu-
mentneedsto be retrievedfrom TS, we needto further
distinguishthe online versusthe offline case.

a. Offline TS.If the documentis currently not online at
all, we assumethat this situationlastsfor the entire
lookaheadtime window. Thenthe cost of retrieving
it backagainis the meanresponsdime to an offline
document.This yields

RCrs—off(d) = RTr5off(d) - (15)

151

b. Online TS. If the documentis currently still online,
we needto determingtheremainingonlinetime of the
correspondingvolume, as the volume may become
offline at somepoint in the lookaheadime window.
Obviously,the remainingonline time is continuously
changingastime progresseslo avoid continuousre-
computing,we ratherestimatethe meanonline time,
Ton(v), of a volume v, which is derived as follows.
Supposethat the time betweentwo successivevol-
umeexchangess Tex. Underthe assumptiorthat the
TS robot arm is permanentlybusy exchangingvol-
umes,Tex can be viewed as a constantand can be
easilymeasuredFurtherassumefor tractability, that,
at each volume exchange,the robot arm makesa
random choice amongthe currently online volumes
to determinean “exchangevictim”. Then, with L
drives, the numberof volume exchangeghat a vol-
ume*“survives” (i.e., remainsonline) is geometrically
distributed:the probability of surviving i exchanges
is (£71)"+ 1, andthe expectatiorvaluefor the num-
ber of survived exchangeds L — 1. So, the mean
online time of a volumeis composedf L — 1 time
periodsof length T, plus the remainingtime of the
current Tgx period, which we estimateto be Tey/2.
This holds for volumesthat are not yet scheduledo
be ejected.For thosethat are already known to be
ejectedby the next volume exchanggi.e., the robot
arm is already moving to the correspondingdrive),
we setthe remainingonline time to zero.Puttingev-
erythingtogetheryields the following formulafor the
online time of volume v:

Tex/z + (L - 1) * Tex
Ton(v) = if v is not scheduledor ejection (1)

0 if v is goingto be ejectednext

Finally, the replacementostof an online document
d can be computedas the conditionedsum of two
components(1) Fortheremainingonlinetime Tyn(v),
the replacementostis given by the meanresponse
time of the online TS conditionedby the probability
that d will indeedbe accessedt least once within
this online time. But this costwould haveto be paid
only oncefor all Nspedd, T') expectedequestssowe
needto normalizeit on a per-requesbasis.(2) Forthe
fraction of the lookaheadtime window in which the
volumeis expectedo be offline, eachof the expected
requestswill haveto pay the costof the meanoffline
responsdime, but only with the probability that d is
not requestedat least once alreadyin its remaining
online period. This yields the formula

RCrs_on(d) = Hspec(d» Ton(v))
*RTTS—on(d)/Nspec(da T)
+ (1 — Ispec(d, Ton(v)))
*RTrs—off(d) - 17)

152

5.3 Prefetchrequesischedulingor online volumes
of thetertiary storage

We generallyassumethat the TS scheduleraims to max-
imize the I/O throughputof the TS by batching requests
into a Scan(alsoknown as Elevatoror Sweep)servicepol-
icy for eachvolume. The schedulemaintainstwo queues
for eachvolume, a queuefor the actually pendingrequests
that havebeenexplicitly issuedby clients,and a queuefor
the speculativeprefetchingrequestsfor which prefetching
is consideredworthwhile. When the Scanpolicy beginsa
forward or backwardsweepover the tracks of an online
volume, it memgesthe currentcontentsof thesetwo queues
into a single requestqueueorderedby track number.The
schedulerkeepsrepeatingsuch volume sweepsuntil it de-
cidesto exchangethe volume, i.e., ejectit from the drive
and load another,previously offline volume into the drive.
The policy for thesevolume exchangess intentionally sep-
aratedfrom the migrationpolicy for modularity. It could be
a simpletime-slice-basedound-robinpolicy, or a more ad-
vancedpolicy thatconsiderghe near-termheatof documents
(where,of coursewe favor the latterone,aswe will discuss
in Sect5.5). In any case,invoking a large numberof spec-
ulative prefetchingrequestn an online volume may result
in delayingthe requestgboth pendingand prefetchingre-
guests¥or anothewolumethatis notyetonline. This penalty
shouldbe recognizedand quantitativelyassessedtly the mi-
grationmanageiin orderto guaranteeappropriatethrottling
of the prefetchingactivity.

To avoid the aboveform of contentionat the online TS,
we introducetwo decisionstepsthat allow us to cancela
prefetchrequesimmediatelybeforethe TS would startserv-
ing it.

1. We comparethe prefetchingcandidateand the PS re-
placementvictims in terms of the weight metrics, the
incentivebeingthat we wantto basethis assessmeran
mostup-to-datenear-termheatstatistics.

2. We computethe benefitof the documento be prefetched
that we would obtain, in terms of expectedresponse-
time gains, from having the documentavailable at a
higher level of the storagehierarchy.We also compute
the penalty that the prefetchingwould incur on other,
pendingrequeststo documentsof the sameonline TS
volume, as these pending requestswould be delayed,
thusyielding an adverseémpacton the overall meanre-
sponsdime. Then,thesetwo metricsarecomparednote
that they have the samedimension:(expected)number
of requestdimesresponsdime improvementor degra-
dation),andwe decideto cancelthe prefetchingrequest
if its penaltyexceedsts benefit.

The benefitof prefetchingdocumentd from an online vol-
ume v is estimatedas follows. Prefetchingd savesus the
first fetch requestto the documentin that it masksthe la-
tency of the online TS. Furtherrequestghat arrive during
the remainingonline time of v would benefitequally from
eitherthe prefetchingor thefirst explicit fetchrequestHow-
ever,this holdsonly if the first fetch requestwill beissued
while the volume is still online, or in probabilistic terms,
with the probability that thereis at leastonefetch requesto
d duringthe remainingonline time of v. The latter probabil-

ity is exactlythe visiting probability, ITspedd, Ton) analyzed
in Sect4, wherethe time horizonis setto the meanonline

time of a volume, Ty, that we derivedin Sect5.2. Thus,
like in Sectb.2, we replacethe remainingonline time of

a volume with the overall meanonline time for tractability
reasonsThe time delay that we saveby the prefetchingof

d is the responsdime of later having to fetch d from the

online TS, that is, the meanresponsdime for a document
of size S(d), RTrs_on(d).

Oncethe online time of volume v is passedwe need
to assumethat the volume may go offline immediately.
Thus, if we had prefetcheddocumentd before this point,
we could now potentially savethe delaysof a requestto
offline TS. The numberof requestghat would benefitfrom
this prefetchingequalsthe expectatiorvalue Ngpedd, T) de-
rived in Sect4. However, this term is relevantonly with
the probability that d is not yet explicitly requesteduring
the online time of v. So, we needto condition it with the
factor 1 — Ilspedd, Ton). Altogether this yields the following
formula for the benefitof prefetchingd from v:

benefitd) = spec(d, Ton(v)) * RTrs—on(d)
+ (1 — Ispec(d, Ton(v))) * Nspedd , T))
*RTrs—of(d) - (18)

In evaluatingthis formula, we canre-usebookkeepingnfor-
mationandcomputationghatwe alreadyidentifiedasmajor
building blocksin Sect5.2.

For estimatingthe penalty that the prefetchingrequest
incurs on otheroutstandingequestsyve shouldfirst realize
that the prefetchingrequestfor d delaysall alreadypend-
ing requestdo otherdocumenton the samevolumewv. The
lengthof the delayis givenby the servicetime, STrg_on(d),
for readingd from the online TS. The above penaltiesall
referto requestdo the volumethat holdsd andis currently
online. In addition,however,a secondcategoryof penalties
may arisefrom the fact that the prefetchingrequestpoten-
tially delaysthe ejectionof the volume,namely,by delaying
the pendingrequestsvhich mustbe servedin the remaining
online time. Therefore all pendingrequestgo currently of-
fline volumesmay be delayedaswell. However,this holds
only if the volumev is alreadyscheduledor beingejected
next, so that the prefetchingrequestwould actually extend
its online time. Theseconsiderationdead to the following
estimationof the penaltythat arisesat the TS:

penalty.¢(d) =
> edocguyndrzd Npendd') * STrs—on(d)
if v is not scheduledor ejection,
Zd’edocs(v)udocs(TS—oﬁ)/\d’#d Npendd') * STrs—-on(d)
if v is goingto be ejectednext,

(19)

where Npendd') is the numberof currently pending,explicit
client requestgo documentd’.

5.4 Wite requestscheduling
for the secondarystoragecache

Similarly to the possiblecontentionat the TS, the SS may
alsobecomea bottleneckin the overall performanceHere,

the potential point of contentionis that read requeststhat

fetch cacheddocumentsfrom SSinto PS for delivery to

the client may be delayedby write requeststhat “spool”

prefetchedr fetcheddocumentdrom the PScacheonto SS
for further caching.This spoolingis the naturaldatatransfer
pathfor documentshut it still needsto be dynamicallyre-

consideredvhenthe disk utilization at the SSlevel becomes
critical. In fact, it may occurthata documents prefetched
on behalf of a single sessionto maskthe high TS latency,
but, by the time it is aboutto be written to the SS cache,
its near-termheathas droppedsharply.In thesecasesthe

write requestshouldbe cancelled Making this decisionin-

volvesthe samekind of benefit/penaltyassessmerthat we

introducedabovefor the schedulingof prefetchingrequests
at the TS level. The only differenceis in the detailsof the

underlyingquantitativeformulas.

As for the benefit of a document,the assessmenis,
in fact, still identical to the one for the TS, as derivedin
Sect5.3. The benefit capturesthe expectedresponse-time
improvementhatresultsfrom cachingthe documenbn disk
insteadof accessingt on tertiary storage The penalty,how-
ever,is differentfrom what we consideredn Sect5.3. The
writing of a PS-residentiocumentonto SSdelaysall pend-
ing requestdo the SS,andthelengthof this delayis the disk
servicetime for writing a documenbf size S(d), denotecby
STsg(d). This yields the following formula for the penalty
at the SSlevel:

penaltygg(d) = Y Npendd') x STso(d) . (20)

d’ edocgSS)

The disk scheduleralways considersthose documentsfor
writing to SSthat are likely to be removedfrom PS next.
Suchdocumentdroppingsfrom PS are causedby fetch re-
guestsfrom TS or SSor prefetchingfrom TS into PS, re-
placing the documentsin PS with the lowest weight. To
savethesereplacement-"endangeredbcument®ntothe SS
cache the SSschedulemaintainsa list of the currently PS-
residentdocumentdn ascendingveight order (i.e., starting
with the documenwith the lowestweight) anddetermines
setof spoolingcandidatesccordingo thefollowing criteria.

¢ Whennofetchrequesis pendingatthe SS,all PS-resident
documentsare consideredendangeredthat could be re-
placedby thefetchor prefetchrequestgor the TS drives.
With S denotingthe averagedocumentsize and L the
numberof TS drives, the overall PS cachesize that may
haveto befreedupis L x S.

e In the caseof fetch requestspendingat the SS, the PS
spacehatneedgo befreedup for thefirst SSreadrequest
must be consideredas “endangered’in addition to the
spacefor the TS reads(i.e., the first caseabove). So,
altogether this requiresspooling as many documentsto
SSasareneededto freeup L x S + S(d) spaceunitsin
PS,where S(d) is the size of the first documentd thatis
to be readfrom SS.

In both cases,the SS schedulerconsidersspooling PS-
residentdocumentsin ascendingweight order until their
total size exceedsthe required amountof PS space,and
initiates write requestdor themin that order. Also, in both
casesthesewrite requestsare assessedgainstthe pending
SSreadrequestsdy performingthe benefit/penaltycompari-

153

sonfor eachspoolingcandidatgoneat atime). Notethat,in

the first caseabove,the first write requesthaszero penalty
becaus®f the currentlyemptydisk queue Also notethatthe
spoolingcandidatesnay still end up becomingoverwritten
in the PS cachewithout first being savedonto SS, namely,
whentheir benefitis smallerthanthe penaltywith regardto

the pendingSSreadrequests.

5.5 Schedulingof volumeexchanges

Becauseof the very high delay incurred by volume ex-
changesany reasonabléertiary-storageschedulingpolicy
mustattemptto batchrequestgor the samevolumeso asto
limit or even minimize the unproductivetime wasted by
volume exchanges.This holds for both pending requests
and speculativeprefetchingrequestsbut pendingrequests
are critical in terms of responsdime, so that they should
not be postponedoo muchfor the benefitof batching.The
schedulingpolicy that we advocate,therefore, keepstwo
gueuesgpend and gspec Of volume IDs, for which explicit,
pendingrequestsand speculativeprefetchingrequestshave
beenissued.As long asthe gpeng queueis not empty, those
volumesareloadedinto driveswhich havependingrequests.
Naturally, preferenceshouldbe given to volumesv with a
high numberof pendingrequestsgdenotedNpendv). On the
otherhand,settingvolumeprioritiesonly onthis basiswould
causethe dangerof requesttarvation.Thus,to preventstar-
vation,volumesareactuallyloadedinto drivesin descending
orderof the product Npendv) * Twait(v), whereZTyai(v) is the
longestwaiting time amongall pendingrequestgor volume
v. Once a volume is loadedinto a drive, all pendingre-
questsand prefetchingrequestsare combinedandreordered
for being servedby a Scan-likesweepover the volume. It
is at this point when the benefitand penalty of servinga
prefetchingrequestare re-assessednd prefetchingrequests
may be cancelled(seeSect5.3 above).Oncea volume be-
comessubjectof ejection,afinal sweepis performedfor this
volume, wherethe weightsof the documentdo prefetchas
well asthe benefitandpenaltyarere-adjustedseeSects5.2
and5.3 above).Requestghat arrive during the final sweep
and whosepositionon the volume hasalreadybeenpassed
are held back in their queueuntil the next time when the
volumeis loaded.

Whenevera drive is unusedwith regardto the explicitly
issuedpendingrequeststhe schedulingpolicy loadsa vol-
umesolely for servingspeculativeprefetchingrequestsThe
volumeselectionpolicy thatwe advocaténereis to give pref-
erenceto volumeswith a high numberof expectedaccesses.
For eachvolume we simply sum up the expectednumber
of near-futureaccesse¢formula 6) for all prefetchingcan-
didate documentghat resideon the volume, and maintain
a queueof volumesin descendingrder of this total num-
ber of expectedaccessesWe refer to this algorithm asthe
MEAT (most expectedaccessesop-priority) policy. So the
resultsfrom our stochastionodel (seeSect4) are not only
usefulfor initiating prefetchingrequeststhey also serveas
a heuristicsfor schedulingvolume exchanges.

154

5.6 Fine-tuningof the lookaheadime horizon

Sofar it may appearthat the migration policy crucially de-
pendson a proper setting of the lookaheadtime horizon ¢
that plays a prominentrole in predicting the benefit of a
speculativerequest.lt is indeedtrue that a carelesschoice
of this fine-tuningparametecancauseadverseperformance
effects: settingit too low meansthat evenhighly likely but
speculativerequestsare recognizedtoo late, and settingit
too high would overestimatehe benefitof speculativere-
guestsand may causehigh contentionfor tertiary storage
drives.In particular,the secondcasemay leadto situations
where a volume is loadedinto a drive solely on behalf of
speculativerequestsand an explicit pendingrequestthat is
issueda secondateris delayedfor along time, asthe specu-
lative requesgueuefor the volumein the drive maybevery
long. Furthermorejf secondary-storagspaceis scarceand
the prefetchingis too aggressivethe prefetcheddocuments
may causethe replacemenbf documentghatturn out to be
(re-)usedearlierthanthe prefetchedones.
Fortunately,thereis a simple rationalefor setting the
lookaheadtime horizon. Considerthe averagetime period
betweerthe successivejectionandloadingof the samevol-
ume;this metriccanbe measurednline andwill be denoted
asTioag- Thefinal sweepafter a volume becomessubjectof
ejectionis the latestpoint in time whereit is possiblefor
a documentto be prefetched.Oncethe volumeis ejected,
all requestsfor a non-cacheddocumentresult in pending
requestdor offline volumes.In orderto avoid thesecache
“misses”, at least all speculativerequestsup to the time
whenthe volume is online again,which is Tjoaq time units
later, haveto be consideredSo, Tiqaq is a lower boundfor
the lookaheadtime horizon. On the other hand, all specu-
lative requestsarriving after time Tj,5q Should not be con-
sideredat all, as, for thoserequestsjt would be sufficient
to prefetchthe documentwhenthe volume becomedoaded
the nexttime. For thosespeculativerequestaftertime Tigaq,
prefetchinghe documenbeforethe volumebecomedoaded
againwould be a wasteof cachespace.This consideration
showsusthatTjo4q is alsoan upperboundfor the lookahead
time of the accesgredictor.So, Tipaq is indeeda reasonable
canonicalchoicefor the lookaheadime.

6 Implementation of the bookkeeping

In this sectionwe discussthe implementationrandthe over-
head of the bookkeepingfor the accesspredictions, the
prefetchingandreplacemenbf documentsandthe tertiary-
storageschedulingWe considerboth consumptiorof mem-
ory spaceand CPU time.

We keepmoving-averagetatisticsfor all statetransition
probabilitiesof the CTMC (i.e.,adynamicallyagingcounter
of how frequenta transitionfrom d; to d; occurs)and all
stateresidencdimes(i.e., thetotal residencdime of thelast
z Visits to d;, wherez is a fine-tuningparametemhich we
setto 50). In principle,thisincursspaceoverheadhatgrows
guadraticallywith the numberof documentsHowever,the
transitionprobability matrix P of the CTMC is typically very
sparse providedthat the workload exhibits spatiallocality,
which hasbeenobservedfor Web servertraces[ABCO96]

andis a reasonableassumptiorfor other document-archive
applications,too. All the statisticalinformation is kept in
hashtablesindexedon states.

Eachtime a sessionchangests stateby requestingthe
next documentd;, the expectedhumbersof near-futureac-
cesseso otherdocumentshangeaccordingto Eq.5. At this
point, the state-transitiorgraphof the Markov chainis tra-
versed,starting from d; and always proceedingalong the
highestprobability transitionof the statewith the currently
highestprobability of being reachedfrom d;. During this
traversal,uponeachvisit of a statej, its F;;(t) valueis in-
crementedby the productof the meanresidencetime and
the accumulategbrobability of reachingj within time ¢ (see
Eq.4). The procedures terminatedwhenthe probability of
reachinga statewithin the lookaheadime ¢ dropsbelow a
specifiedthresholds (which we havesetto 0.01). Note that
this stoppingthresholdallows usto boundthe computational
overheadof the traversal Further,note that the entire com-
putationis incrementain thatit re-usesntermediateresults
to the mostpossibleextent.Finally, notethat the computed
E;;(t) valuesare actually sessionindependentthus, they
are kept and re-usedfor all subsequentaccesspredictions
of other sessionsas long as the basic statistical parame-
ters,the transitionprobabilitiesandthe stateresidencdimes
do not changemuch. In real applicationswe would expect
exactly suchquasi-stabldbaseparametersvith major shifts
occurringonly occasionallyon a long-termscale.

The algorithmsfor generatingprefetchingrequestsand
decidingon cachereplacementsredriven by the following
sortedlists.

e Ipoc: thislist keepsthedocumentDs, thedocumensizes,
and the weights of all documentswhich have non-zero
weights.lt is usedfor determiningthe tentativeprefetch-
ing candidategstagel in Sect5.1) by traversingthe list
in weight-descendingrder until the aggregatedsize of
the inspecteddocumentsexceedsthe total spacecapac-
ity of the SScache.For eachinspecteddocumentwhich
is not yet cachedon SS or PS, a prefetchingrequestis
generated.

e [ps thislist keepsthe documentDs, the documentsizes,
andtheweightsof all documentsvhich arecachedn PS.

e [sg thislist keepsthe documentDs, the documentsizes,
andtheweightsof all documentsvhich arecachedn SS.

All lists are sortedaccordingto the documentweights.
The sorting hasto be adjustedeachtime a sessionchanges
its state.In the caseof the rathersmall /pg list, the sorting
is additionally adjustedwith eachexchangeof volumes(as
discussedn Sect5.2). The two lists Ips and lss are used
for determiningthe replacemenvictims in PS and SS, re-
spectively.The sizesof theselists obviously dependon the
numberof documentsesidingon the correspondingtorage
level and shouldincur only negligible spaceoverhead.The
size of Ipgc, ON the other hand,is boundedby considering
only documentgor which at leastonesessioris predictecto
accesghe documentwithin time ¢ (with probability above
the aforementionedhresholds).

The overheadof the tertiary-storageschedulingalgo-
rithm, MEAT, is negligible. We merely have to track the
valuesof Ngpeo Npena andTwait On a per-volumebasis.

6.1 Recovenof bookkeepinglata

Keepingthe bookkeepingdatain main memoryleadsto the
lossof thisdatauponaservercrash As thebookkeepinglata
solely servesto control the cachingof documentsthe loss
only resultsin future performancealegradationdyut doesnot
affect the principal functionality of the documentarchive.

However, especially for infrequently accessed
documentsthe reconstructionof lost CTMC bookkeeping
data (i.e., mean state residencetimes and state transition
probabilities)may take a very long time, resultingin perfor-
mancedegradation®ver an extendedime period. For this
reasonthe CTMC bookkeepingdatashouldbe keptalsoon
stablestorage(i.e., secondarystorage).

A background process periodically copies updated
CTMC bookkeepingdatafrom main memoryto stablestor-
age,giving preferenceo the datafor thosedocumentswith
ahigh numberof accessesincethelastsavingof the CTMC
bookkeepingdata. Suchfrequentlyaccessedlocumentsare
the only oneswherethe statisticsmay havechangedsignif-
icantly andwherethe loss of the statisticaldatawould have
the highestimpact. After a servercrash,the CTMC book-
keepingdatacan be loadedagainfrom stable storageinto
main memory.

6.2 Cachingof bookkeepinglata

All statisticson meanstateresidencetiimes and statetran-
sition probabilitiesof the CTMC are keptin main memory.
Fordocumengarchiveswith millions of documentshowever,
this may not be possiblein all casesAlthough the storage
requiremenbf the bookkeepings very low comparedo the
documentdataitself, the bookkeepingoverheadof a multi-

terabytedocumentarchivemay reachtensor evenhundreds
of megabyteswhich may exceedthe amountof mainmem-
ory thatis availablefor this purpose.Therefore the server
may haveto employ a cachereplacemenstrategyfor the
CTMC bookkeepingdata.

The objective of the bookkeeping-cacheeplacements
to keepthoseCTMC bookkeepinglatain mainmemorythat
will be frequentlyusedby the algorithm for computingthe
expectechumbersof near-futureaccesses documentsAs
this algorithmtraverseshe statisticsstartingfrom thecurrent
documentof a sessionand navigatingalong the document
transitionprobabilities,the frequentlyusedstatisticsare the
statisticsfor thosedocumentshat have a high expectation
of near-futureaccessesrThus, the estimationof near-future
accessesan itself guide the cachingof CTMC bookkeep-
ing data.The weight of the CTMC bookkeepingdatafor a
documentis definedanalogouslyto the documentweight,
consideringnear-futureaccesseso the documentand the
size of the bookkeepingdata. The CTMC bookkeepinglata
with minimum weightwill be chosenfor replacemenfrom
main memory.

7 Prototype architecture

In this section,we describethe architectureand someim-
plementatiordetailsof our documentrchiveprototype Fig-
ure4 showsthe generalarchitectureof the systemwith data

155

structuresdepictedby ovals and dynamicallyadjustedcon-
trol parameterglepictedby hexagonsAt the top level, the
systemconsistsof the SessionManagerthat maintainsin-
formation aboutthe stateof active sessionsthe Migration
Managerfor predictingand schedulingdocumentaccesses,
andthe StorageManager.

The SessiorManagertracksthe arrivalsof new sessions
and the current state of the active sessionsand also de-
cidesthata sessioris terminatedby meansof a timeoutand
then discardsall session-specifibookkeepinginformation.
The SessionManageris implementedas a threadreceiving
documentrequestdrom the network, signallingthemto the
underlying Migration Manager,and receiving signalsfrom
the Migration Managerupon the completionof document
transfersto the client.

The Migration Managerorganizesthe migration of doc-
umentsbetweentertiary storage secondarystorageand pri-
mary storageservingboth prefetchingrequestsand pending
requestslt consistsof the Loaderwhich is responsiblefor
the schedulingof documentmigrationsfrom TS into PS,as
well as from SSinto PS andfrom PSto SS. The Loader
is alsoresponsibldor controlling the exchangeof volumes.
For eachof the devices,the Migration Managercontains
a thread that implementsthe scheduling.In addition, the
Loaderkeepstrack of someonline statisticsneededby the
Weight Watcherfor estimatingreplacementostsand out-
weighting benefitand penalty of documentmigrations.

The most important submoduleof the Migration Man-
ager is the Weight Watcher, which implementsthe ac-
cesspredictionsand manageghe lists sortedby document
weights.Furthermorethe WeightWatcherkeepsinformation
aboutvolumes,for example,the volume status(i.e., online
vs offline) and the numberof speculativerequeststo the
volume. Eachnew requestof a sessionaswell as session
arrivalsanddeparturesaresignalledto the Weight Watcher,
which then updatesthe volume information and document
weightsasdescribedn Sect5. The Weight Watcheris also
responsibldor the generatiorof prefetchingrequestsWhen
the Loader is aboutto prefetch a document,the Weight
Watcher is asked again if the migration should still be
performedor should be cancelled,taking the potential re-
placementandbenefit/penaltyf the migrationinto account
(stages2 and 3 in Sect5.1). The Weight Watcheris in-
formed aboutall performedmigrations,as well asvolume
statuschangesForthe MEAT volume-exchangecheduling,
the Weight Watcheris consultedaboutthe next volume ex-
changeto perform. Concurrentupdateand retrieval of the
bookkeepingdataprovidedby the Weight Watcheris imple-
mentedusingstandardorimitivesfor threadsynchronization.

As a baselayer, the StorageManageprovidesa block-
oriented interface to the secondarystoragedisks and the
tertiary storagejukebox and maintainsdirectory informa-
tion suchasaddress-mappintables.Freespacels managed
by a first-fit allocationalgorithmfor the two cachinglevels
andthe tertiary storagevolumes.The StorageManagercan
interactwith real devices,or it can use simulateddevices
from a library of detaileddevicemodelsbasedon the CSIM
simulationpackagdDevSim,CSIM]. The simulateddevices
includecontrollercaching realisticseektimes,rotationalla-
tencies headswitch times,andsoon [RW94]. In this paper,
we have consideredonly simulateddevicesfor better re-

156

invokeAccess on .
S[ate Session
Manager

outOfTheBIue newState ti meout

newSessionState insertPendingRequest

Migration
Manager

Weight Watcher — insertPrefetchRequest —»

“ @ l&— getReplacementVictims — @
N

) L <Npend(SS) L oader
[getOnlineStatistics ——

<RTss> <Npena(V>
<STiso>

l@— getNextDiskWrite

@ l@— getNextVolumeExchange
Cooril| & |

l&— migrationPerformed ——| [Scheduler

- [¢— newVolumeState
" [¢— approveMigration — [TsS ss m

Scheduler m

| | 1
writeBlocks readBlocks createDoc

I [|
removeDoc loadVolume gjectVolume

Main |
o | v | =5

O Jukebox

Storage

Fig. 4. Overviewof the prototypesystem

producibility and statistical confidenceof the performance
results.

8 Experimental evaluation

In this section,we presentsimulationresultson the perfor-
manceand overheadof our vertical migration policy. We
restrictourselvedo studieswith syntheticworkloadswhose
key parametertiavebeenderivedfrom currentWebapplica-
tions. In contrastto trace-basedtudies this givesus higher
statisticalconfidenceand the ability to systematicallyary

in the weight metric and by adding the benefit/penalty
comparisons So this full-fledged variant of McMin in-

cludesall the consideration®f Sect5.

McMin—. The McMin—policy is the basicMcMin vari-

ant with prefetchingswitched off. So this simpler and

presumablystrictly weakervariantcorrespondgo a pure

cachereplacemenpolicy that usesthe CTMC-basedac-

cesspredictionsfor an intelligent choice of replacement
victims.

certainparametersoasto obtaininsightson workloadsthat ~ TEMP: Temperature-basedmigration policies

are expectedfor future applications.We comparedifferent

variantsof the Markov-chainbasednigrationpolicy against :jn the tempe_rature-_basem_gratllon policies, the weightof a
purelytemperature-basedigrationpolicies.All policiesuse ocumentss its stationary,i.e., long-termtemperaturdi.e.,

the MEAT policy for the schedulingof volume exchanges. lo

ng-termheat/size) The long-termheatof a documentre-

. i ST o flects its stationaryaccessprobability, and is dynamically
McMin: Markov-chain basedMigration policies estimatedby tracking a moving averageof the interarrival

for near-line storage

timesof thelast20 requestgo a documentThis methodcan

The McMin policies are all basedon the integratedverti- be viewed as a straightforwardgeneralizatiorof the LRU-

cal migration policy that we have developedin this paper. K

cachingalgorithm [OOW93, WHMZ94] to the caseof

The numberof speculativerequestsare derived usingthe variable-sizebuffering granules.We have consideredhree
CTMC model.We haveinvestigatedhreedifferentvariants differentvariantsof TEMP.

of McMin.

e McMin. With this basic McMin variant, the document ®
weight considersonly the near-termtemperature.That
is, the replacementostsin formula 13 are set to unit
costs:RC(d) = 1 for all d regardlesf the storagelevel
from which d would haveto beretrieved Furthermorethe
basicMcMin policy eagerlyprefetchesdocumentsdbased
only on the weight comparisonagainstthe replacement
victims. So it doesnot perform the benefit/penaltycom- ®
parisonand thus doesnot take into accountthe possible
contentionat the TS and SS devices(stages2 and 3 in
Sect5.1).

e McMin+. The McMin+ policy extendsthe basic McMin .
policy by consideringdocument-specifi,eplacementosts

TEMP. This basevariantis the counterpartto the basic
McMin algorithm,with thedecisivedifferencethat TEMP

initiatesprefetchingandselectseplacementictims based
on the documents’long-term temperatureas opposed
to the near-termestimatesof McMin. Like McMin, no

document-specificeplacementcosts are consideredin

TEMP andno benefit/penaltcomparisonsreperformed.
TEMP+. This variantextendsTEMP by consideringre-

placementostsandby comparingthe benefitagainstthe

penaltyof the prefetchingrequestsSo this is the station-
ary counterparto McMin+.

TEMP-—. The TEMP—variant is a basic TEMP policy

whereprefetchingis switchedoff.

Table 1. Systemparameter®f the simulationtestbed

157

Secondarystorage Tertiary storage
Parameter Value Parameter Value
Numberof disks 1 Numberof drives 3
Averageseektime 6ms Averageseektime 25ms
Averagerotationallatency 3ms Averagerotationallatency 10ms
Transferrate 13.5MB/s Transferrate 3.4MB/s
Controllercachesize 1MB Controllercachesize 1MB

Numberof volumes 10
Volume exchangdime 10s

8.1 Experimentatestbed

The experimentdavebeencarriedout on the prototypesys-
tem describedin Sect.7 with simulatedsecondaryand ter-
tiary storagedevices.The parametersf the devicesused
throughout all experimentsare given in Table 1; these
devicesreflect today’s high-end SCSI disks and low-end
magneto-opticajukeboxes.The ratio of TS drivesto vol-
umeshas beenchosenrather high (3:10) to better capture
the influenceof the TS volume exchangescheduling.Ex-
perimentswith othersettingshavebeencarriedout, too, but
essentiallyshowthe sameeffectsandtrendsasreportedbe-
low. (Resultsfor the specialcasewith one TS drive were
alreadyreportedin [KW97], which focusedexclusivelyon
that case).

We haveconsideredan archivewith 40,000documents;
documentsizes are exponentially distributed with mean
600KB. Thus,thetotal archivesizeis approximatel\23GB.
Thedocumentareallocatedrandomlyacrosghe volumesof
thetertiary storagdibrary. We haveanalyzedhe Web-server
tracesof two virtual museumsgo characterizehe skewness
of transition probabilitiesand the distribution of stateres-
idencetimes. We have incorporatedtheseobservationsn
a syntheticworkload that we believe is realistic for large
archivesand also allows us to investigatea wide spectrum
of differentworkloads.The syntheticworkloadis generated
asfollows.

e Thedocumentsarefirst arrangednto atreewith constant
fanout4. This tree servesasa skeletonfor generatinghe
statetransitions which themselvesre not tree basedand
may evenhavecycles.For eachdocumentd; (i.e., node
in the tree) the transition probabilitiesto all other docu-
ments(including ancestorsn thetree)aregeneratedy a
Gammadistributionwith a coeficient of variationgreater
thanl (namely,1.5, to be specific)[AlI90]. This captures
a skewedranking of the transition probabilitiesfrom d;
to all otherdocumentswvhich startswith documentdy;_»
andproceeddy documennumbermodulothe total num-
berof documentsThis meanghatthe highestprobability
transitionout of d; leadsto its leftmostchild in the tree,
and transitionsto ancestorsare lesslikely thanto nodes
further down in the tree. For leaf documentsthe highest
probability transitiontargetis choserrandomlyamongall
documents.

e The skewnes®f the transitionprobabilitiesout of a doc-
umentd; is determinedby the expectationvalue of the
Gammadistribution from which the transition probabil-
ities are drawn. We assumethat thesevaluesare expo-
nentially distributedamongthe documentsand generate

this parameterof the document-specifi?lGammadistri-

bution accordingly. The meanvalue for this exponential
distribution is setto 6, wherethe value 6 would imply

that 90% of the probability massamonga document’s
outgoingtransitionsis coveredby the 16 most probable
transitionsof a document.The fictitious documentsi 1

throughdy+. (SeeSect4.2) aretreatedseparatelhastheir

successorsepresenthe “entry” documentsof new ses-
sions;the meanvaluefor the Gammadistribution associ-
atedwith thesestatesis setto 2, which implies that 90%
of the probability massamongthe outgoingtransitionsis

coveredby the six mostprobablesuccessostates.

e The state residencetimes are exponentially distributed
with the document-specifianean values drawn from a
uniform distribution. New sessionsrrive accordingto a
Poissorprocesawith rate A (i.e., exponentiallydistributed
interarrivaltimeswith meani/\).

e Thedurationof a sessioris specifiedin termsof the num-
berof requestshata sessioris goingto issuethis number
is generatedhccordingto a normaldistribution.

We have consideredfour workloads which differ in
their sessionarrival rate and the distribution of meanres-
idencetimes. The workload LOW_SLOW haslow session
arrival rate and high stateresidencetimes, whereaswork-
load LOW_FAST haslower residencdgimes. The workloads
HIGH_SLOW andHIGH_FAST bothhavehighersessiorar-
rival rate but differ in their residenceimes. The workload
parametersrelistedin Table 2.

8.2 Experimentakesults

We concentrateon the four policies, McMin—, McMin,

McMin+, and TEMP+, and omit the resultsfor TEMP and
TEMP—, as they are consistentlyworse than those of the
otherfour variants.The responsdime resultsof the remain-
ing four policies are depictedin Fig.5 for eachof the four
differentworkloads.Thechartsshowthe meanresponsd¢ime
of client requestswith different sizesof available primary
andsecondarstoragecachespace Note thatthe disk cache
sizesof 100MB and 500MB correspondto only 0.4 and
2% of the total archive size, respectively.The usedcache
sizesmay appeawery small, but they are of reasonableize
relative to the archive size, which is also rather small for

the sakeof fast-runningexperimentgon our limited com-
puter resources)Note that theseresults can be scaledup
and extrapolatedn a straightforwardmannerby increasing
boththe archiveandthe cachesize by a constanffactor, say

158

Table 2. Workload parameterdor the simulationexperiments

Parameter LOW_SLOW LOW_FAST HIGH.SLOW HIGH_FAST
Meansessioninterarrivaltime 150s 150s 50s 50s
Mean sessiorlength 24 requests

Standarddeviationof sessiorlength 12 requests

Minimum meanresidencdime 30s 10s 30s 10s
Maximum meanresidenceime 180s 60s 180s 60s

Table 3. Hit ratesand meanresponsdimesat the storagelevelsfor the HIGH_SLOW workload

Disk size Memory size Policy

overallRT [s] HRps[%] HRsd%] RTss[s] HRrs—on [%] RTrs_on[S] HRrs—oft [%] RTrs_of [S]

McMin— 21.64 7.3 10.5 0.054 20.7 0.243 61.5 35.13
8MB TEME+ 18.33 4.0 30.4 0.066 141 0.277 51.5 35.47
McMin 9.31 14.6 47.0 0.690 7.0 0.903 31.4 28.43
McMin+ 8.47 9.9 556.7 1.142 6.0 1.207 28.4 27.32
500MB
McMin— 21.86 11.6 8.4 0.039 19.5 0.241 60.5 36.04
40MB TEMP+ 18.41 10.5 235 0.122 14.0 0.275 52.0 35.25
McMin 8.24 311 34.8 0.773 5.7 1.25 28.4 27.86
McMin+ 6.36 28.9 42.9 0.776 4.2 1.36 24.0 24.92

1000, providedthat the skewnessn the accesgatternsre-
mainsinvariantin termsof fractionsof frequentlyfollowed
transitionsand that the numberof drivesin the jukeboxis
increasedtoo.

For more detailed information, Table 4 showsthe hit
rates (HR) and mean responsetimes (RT) of each stor-
agelevel for the HIGH_SLOW workloadwith 500MB disk
cacheandthetwo differentmemorycachesizes.Forthe PS,
the responsdime figures are omitted, as they are closeto
zeroandindeednegligiblerelativeto the responsdimesfor
the other storagelevels.

Overall, it is evidentthat the newly developedMcMin
and McMin+ policieswith prefetchingconsistentlyoutper-
form the temperature-basedEMP+ policy that includes
prefetching,too. The basic McMin already improves the
meanresponsdime by a factor between2 and4. The high-
estgainsareachievedor the LOW_SLOW workload,asthis
hasthelowestinterarrivaltime of explicit clientrequestand
thusleavesmore*“idle” time to prefetchdocumentgrom ter-
tiary storage Thedetailedresultsin Table3 showthatfor the
HIGH_SLOW workloadwith 500MB disk cacheand40MB
memory cache,the “miss” rate, i.e., fraction of requests
that refer to offline tertiary storage(H Rrs_of), IS 52% for
TEMP+ andonly 24% for McMin. So, McMin significantly
increaseshe hit ratesH Rps and H Rss of documentsn PS
and SS. TEMP+, on the other hand, is inherently limited
by its lessinformative knowledgeof merely stationaryac-
cessprobabilities.Thus,the TEMP+ policy fails to prefetch
relevantdocumentsin many cases,namely, thosethat are
fairly cold in termsof their stationaryaccessprobability but
havea high near-futureaccesgrobability because session
currentlyresidesn the document’s‘proximity”. This nicely
illustratesthe fundamentakuperiorityof our Markov-chain-
basedapproachover a stationaryprobability model.

The McMin+ policy almostalways further reducesthe
meanresponseime of the basic McMin policy by up to
20%. Especiallywith large sizesof disk andmemaorycache,
the benefit/penaltyassessmerfor tentative prefetchingre-
guestdeadsto furtherimprovementsThe reasonis thatthe
prefetchingactivity increasesvith increasingdisk andmem-

ory cachesizes potentiallyleadingto the prefetchingof doc-
umentswith a low expectechumberof speculativerequests
at the cost of delaying pendingrequests.Experimentsre-
portedin [KW97] haveshownthat comparingthe influence
of the benefit/penalticomparisoris evenmoresignificantin
the casewith only oneTS drive, asin this casea prefetching
could delayall pendingrequestsf the entire server.

In the caseof alargedisk cachesizeanda smallmemory
cachesize (i.e., the 500MB/8 MB combinationin Table 3),
the PSbecomesghe bottleneckin the prefetching,and, con-
sideringthe replacementostsof documentspecomesrery
beneficialhere. The hit rate at the PSis higherfor McMin
thanfor McMin+. Thereasoris thatMcMin inherentlymax-
imizesthe PShit rate,while McMin+ considerghereplace-
ment costsof documents.So, McMin+ prefersto replace
documentdrom PSwhich arecachedon SSor which could
be loadedfrom anonline TS volume.With this replacement
policy, the throughputof prefetchingrequestss increased,
ascanbe seenfrom the increasedsShit rate (H Rsg) in Ta-
ble 3. With both of the two investigatedPS sizes,McMin+
significantly reducesthe hit ratesof requestgo online and
offline volumes,H Rrs_on andH Rs_of, respectivelyThe
drawbackof the higher prefetchingactivity is the high re-
sponsetime for fetch requeststhat are servedfrom SS or
online TS volumes.Especiallywith a small PS cachedocu-
mentswith high weightfrequentlyhaveto be replacedrom
PS, making the spoolingto disk more important.In these
situations,comparingthe benefitand penaltyfor prefetching
a documentfrom TS and later spoolingit onto SSyields a
significantresponsdime improvement.Note that the fairly
high SS responseimes are causedby the very high disk
utilization due to many SS hits, the large documentsizes,
and the intensive spooling activity from PS onto SS. This
high disk utilization is indeeddesirableasthe SSservesas
a cacheto maskthe muchlarger latencyof the offline TS to
the bestpossibleextent.

A comparisorof the McMin— policy (i.e., with prefetch-
ing switched off) to the TEMP+ policy shows that with
a large SS cache, TEMP+ benefitsfrom temperature-based
prefetchingandis ableto outperformMcMin— (while still

159

HIGH_SLOW

30 30
HIGH_FAST
8 8
2 £
= -
g g
8 §
s =
) 5
g B
b E
i 8
o c
g &
x X
8 §
= =

Disk Size D [MB], Memory Size M [MB]

McMin- [_]JTEMP+ [McMin

Disk Size D [MB], Memory Size M [MB]

Il VcMin+

Fig. 5. Responséime resultsfor the four workloadswith differentdisk and memorycachesizes

losing againstMcMin and McMin+). With a small disk

consistsof interactive accesspatternsembeddedn client

cachesize, however,the SS hit rate of TEMP+ decreases sessions.

and McMin— benefitsfrom the MEAT schedulingalgo-
rithm. When MEAT is basedon the Markov-chainpredic-
tions ratherthan stationaryheatasusedin conjunctionwith

TEMP+, the McMin— policy achievesa significantly better
hit rate on online TS volumes.

Additional experimentswith variationsof the workload
parametergssentiallyconfirmedthesefindingsandareomit-
ted herefor brevity. We also investigatedthe bookkeeping
overheadof the prototypeimplementation.The total space
overheadof all bookkeepingdata of the McMin policies
was about 10MB (for the 23GB documentarchive). The
CPU consumptionfor the predictionsper sessionstep, in-
cluding the Markov-chaincomputationsand the adjustment
of thevarioussortedlists, wasabout200ms on averageon a
Sparc2((i.e., a low-endworkstation).On a fastercommod-
ity server,this would translateinto a CPUtime in the order
of the secondarystorageaccesdime. This is clearly a small
price for achievingsuchsubstantiagainsin termsof client
responsdime. The CPU overheadcanbe reducedevenfur-
ther by keepinga moderatenumberof recently computed
predictionsin a speciallookup buffer.

9 Extensionsand generalizations

In this paper,we haveappliedaccessredictionsbasedon
continuous-timeMarkov chains(CTMC) to the problem of
prefetchingdocumentsn a storagehierarchywith near-line
storagen addition,the CTMC model providesan interest-
ing and potentially promising approachto other optimiza-
tion issuesand also other applicationareaswherethe load

e Documentlustering
In our experimentsthe documentsof the archive were
randomlydistributedoverthe volumesof the TS jukebox.
This randomdistribution typically leadsto an increased
numberof pendingrequestdo offline volumes.Using a
moreintelligent clusteringof documentn volumes(see,
e.g.,[CTZ97]) would increasehe numberof pendingre-
gueststo online volumesand renderthe prefetchingof
the McMin policies even more effective. For clustering
documentsonto volumes, one could exploit the access
predictionsfrom the CTMC model. Considera scenario
where multiple sessionshave pendingrequestdo a vol-
ume which is being loadedinto a drive. Ideally, most
documentswith a high near-termheatwithin theseses-
sionsshouldresideon this samevolume. Suchclustering
approachebasedon Markov chainpredictionshavebeen
studiedby [TN91, TN92] in the contextof object-oriented
databasesystemg(i.e., clusteringobjectsinto pages)but
were limited to discrete-timeMarkov chains.For inter-
active accesseshowever,consideringdocument-specific
residencetimes and thus using CTMCs seemsto be a
more promisingapproach.

e Incrementalreomanization
Documentarchivessuchasnewsarchives electronicmu-
seums etc. are usually dynamicin that they are continu-
ously extendedby new documentsin addition, the con-
tentsof documentsnay changdeadingto evolvingaccess
patternsOncea new documents createdor updatedthe
documentcan be held for sometime on secondarystor-

160

agefor being“watched”, thatis, for collectingthe CTMC
bookkeepingnformationaftereachaccessNotethatnew
documentsand updateddocumentsare typically popu-
lar documentswith frequentaccessesso that collecting
the CTMC bookkeepingnformationfor thosedocuments
shouldnot take very muchtime. Oncethe CTMC book-
keepingdataof aninsertedor updateddocumenthassuf-
ficient significance the documentmay be migrateddown
to tertiary storage accordingto the accessatternsin ad-
dition, it may be desirablehatotherdocumentdbereclus-
tereddueto their evolving accesgatternsThis recluster-
ing hasto be doneincrementallyand concurrentlyto the
normal operationof the server.The reclusteringof doc-
umentscan be basedon the sameprinciplesasthe static
clusteringof documentgi.e., using CTMC information).

e Data declustering
In parallel databasesystems,declusteringdata objects
across multiple devices is a standard performance-
enhancingtechnique.ln the presenceof evolving work-
load patterns,horizontal datamigration betweendevices
of the samestoragelevel may be needed for example,
for dynamicandincrementaload balancingamongdisks.
As Markov-chainmodelsare substantiallyricher thanthe
stationary-probabilitynodelsthat havebeenexploredfor
thesepurposes[SWZ98], further performanceimprove-
mentsmay be possible.

e Prefetchingand cachingfor Web servers
Within the Internetandlarge intranets,proxy serversare
often usedfor the cachingof documentghatarelikely to
be accessedy the local clients (see,e.g.,[Be96]). One
reasonfor the cachingof documentsis to provide bet-
ter performanceby deliveringa requestediocumentrom
the (predictably)fast proxy serverratherthan depending
on the often poor network performanceand connectiv-
ity of the documents’sources.Another reasoncould be
to maskthe possibleunavailability of documentsources,
causedby computeror network failures or intentional
computerdowntime.In large intranets businessunitstyp-
ically use serverswith different availability characteris-
tics. Then, a proxy-servercachemay be usedalso for
cachingdocumentswhosehome serversare expectedto
be(come)unavailablewithin the near future. For exam-
ple, when a serverannounces preschedulediowntime,
proxy serversmay start prefetching(or “hoarding”) doc-
umentsfrom that serverin orderto maskthe announced
offline time. Obviously, an intelligent choice should be
madeas to which documentsare most worthy of being
prefetched.The CTMC-basedmigration strategydevel-
opedin this papercan be appliedto this problemin a
fairly straightforwardmanner,as the notion of a server
going offline is similar to a TS volume becomingoffline.

e Data hoarding in mobilesystems
Another, similar examplewhere CTMC can be usedfor
maximizing data accessavailability and performanceis
the problemof cachingandprefetchingdocumentsn mo-
bile computing(see,e.qg.,[KP97]). Here, CTMC predic-
tions could be usedto intelligently decideon which files
shouldbe “hoarded” on a mobile computerthat is about
to becomedisconnected.

o Data disseminatiorin broadcastarchitectues
Becauseof the often asymmetricnetwork bandwidthin

sendingversusreceivingdatabetweenmobile clientsand
a server, the server may broadcastinformation that is

likely to be useful for its mobile clients while they de-
pendon wireless(or otherwiseasymmetric)communica-
tion [AAFZ95, AFZ96]. So, broadcastingervesto mini-

mize explicit datarequestof mobile clientsto the server.
The ideais to broadcasthot” dataitems with high fre-

guencyover the network, while colder datais sentwith

lower frequency.It would be interestingto investigate
CTMC predictionsfor adaptingthese broadcastingfre-

guenciesto the dynamically evolving “sessionstates” of

mobile clients.

10 Concluding remarks

The vertical migration methodfor storagehierarchiespre-
sentedin this paperis basedon an integrated,quantitative
assessmertf the benefitsand coststhat arisein the cache
replacementiecisionsthe initiation of speculativeprefetch-
ing, andthe schedulingof tertiary andsecondarystoragede-
vices. The key to this reconciliationof the differentaspects
is the continuous-timeMarkov-chain model that we have
developedor predictingnear-futureaccesseandits under-
lying mathematicatheory. We believethat analytic models
of this kind deservemuchmore attentionfor their ability to
drive online decisionsin the resourcemanagementf large-
scaleinformation systemsNote that the developedmethod
is completelyself-reliantin thatit doesnotrequireanyinter-
ventionby humanadministratorsr tuning experts All input
parametersare automaticallyestimatedoy meansof online
statistics Furthermorealthoughthe methodincludesa num-
ber of control parameterghat may be fine-tuned,we have
provided simple, practically viable guidelinesfor choosing
appropriateyobustvaluesfor theseparameters.

Our experimentalstudies have shown that the richer
stochasticknowledgeof an Markov-chainmodel can sub-
stantially outperforma simpler model that is solely based
on stationaryprobabilities.Thus,it seemsntriguing to apply
thericherworkload-trackingapproachalsoto otherissuesn
storagesystems suchas distributedcaching,to exploit the
aggregatenemoryof NOWSs (i.e., networksof workstations)
[DWAP94, SW97,VLN97]. However,one hasto be care-
ful with regardto the overheadof an Markov-chainmodel.
When the responsegainsfrom a richer decisionmodel are
in the order of secondsasis the casewith tertiary storage
libraries,a computationabverheadn the orderof millisec-
onds and a spaceoverheadin the order of megabytess
clearly worthwhile. On the other hand, for tuning the per-
formanceof disk accessesr remotememoryaccessedjoth
in the orderof a few milliseconds muchfasterdecisionsare
neededThis rulesout the samesort of full-fledgedMarkov-
chainmodelthatwe havesuccessfullyemployedfor storage
hierarchieswith very high latencylevelsin this paper.But
weaker,morelightweightforms of suchmodelsareconceiv-
able,too. Forexample pnecouldmakemoreintensiveuseof
cachingprecomputecestimationg(i.e., cachingat the meta-
level) or combineMarkov-chainpredictionsfor specifically
interesting‘dataregions”with simplerstationary-probability
accesgredictionsfor the majority of data. Encouragedy
the excellentexperimentakesultsof this paper,we believe

that this researchdirection towardsintelligent, self-tuning
storagemanagemenis worthwhile to be exploredfurther.

AcknowledgementsThis work hasbeensupportedby the ESPRITLong-
Term ResearchProjectNo. 9141, HERMES (Foundationsof High-Perfor-
manceMultimedia Information Management)

References

[AAFZ95] AcharyaS, Alonso R, Franklin M, Zdonik S (1995) Broad-
castDisks: DataManagementor AsymmetricCommunication
Environmentsin: ACM SIGMOD Conf.,1995,pp 199-210

[ABCO96] Almeida V, BestavrosA, CrovellaM, De Oliveira A (1996)

CharacterizingReference_ocality in the WWW. In: Int. Conf.

on Paralleland DistributedInformation SystemgPDIS), 1996,

Miami Beach,Fla., pp 92-103

Acharya S, Franklin M, Zdonik S (1996) Prefetchingfrom

BroadcasDisks.In: Int. Conf.on DataEngineering1996,New

Orleans,La., pp276—285

Albers S, Gag N, LeonardiS (1997)Minimizing Stall Time in

Singleand ParallelDisk SystemsTechnicalReportMPI-1-97-

024. Max-Plancklnstitute for ComputerScience Saarbiicken,

Germany

Allen AO (1990) Probability, Statistics,and QueueingTheory

with ComputerScienceApplications.AcademicPressL.ondon

BestavrosA (1996) SpeculativeData Disseminationand Ser-

vice in DistributedInformation Systemsin: Int. Conf. on Data

Engineering,1996,New Orleans,La., pp 180-187

[CFKL95a] CaoP, FeltenEW, Karlin AR, Li K (1995)A Study of Inte-
gratedPrefetchingand CachingStrategiesin: ACM SIGMET-
RICS Conf., 1995,pp188-197

[CFKL95b] Cao P, FeltenEW, Karlin AR, Li K (1995) Implementation

andPerformancef IntegratedApplication-ControlledCaching,

Prefetchingand Disk Scheduling.TechnicalReportTR-CS95-

493, PrincetonUniversity, Princeton,Calif.

ChengJR, HursonAR (1991) On The Performancdssuesof

Object-Baseduffering. Int. Conf. on Paralleland Distributed

Information SystemgPDIS), 1991, Miami Beach,Fla., pp30—

37

ChangEE, Katz RH (1989) Exploiting Inheritanceand Struc-

ture Semanticsfor Effective Clusteringand Buffering in an

Object-OrientedBMS. In: ACM SIGMOD Conf.,1989,Port-

land, Ore., pp348-357

CurewitzKM, KrishnanP, Vitter JS (1993) PracticalPrefetch-

ing via Data Compressionln: ACM SIGMOD Conf., 1993,

WashingtonD.C., pp257-266

ChenlLT, RotemD (1994) Optimizing Storageof Objectson

Mass Storage Systemswith Robotic Devices. In: Int. Conf.

on ExtendingDatabas&echnology(EDBT), 1994,Cambridge,

UK, pp273-286

ChristodoulakisS, Triantafillou P, ZiogaF (1997)Principlesof

Optimally PlacingDatain Tertiary Storage_ibraries.In: VLDB

Conf., 1997, Athens,Greece pp236—-245

CopelandG, AlexanderW, BoughterE, Keller T (1988) Data

Placemenin Bubba.ln: ACM SIGMOD Conf.,1988,Chicago,

I, pp99-108

MesquiteSoftwarelnc, CSIM17 User’s Guide. MesquiteSoft-

warelnc, Austin, Tex

[DevSim] Gillmann M, GrossW (1996) User’s Guide of DevSim— A
Library of Secondaryand Tertiary StorageDevice Simulations.
University of the SaarlandSaarbiicken,Germany(in German)

[DWAP94] DahlinMD, WangRY, AndersonTE, PattersorDA (1994)Co-

operativeCaching:Using RemoteClient Memory to Improve

File SystemPerformanceln: 1stSymposiunon OperatingSys-

temsDesignand Implementation 1994,pp267-280

FordDA, ChristodoulakisS (1991)Optimal Placemenbf High-

ProbabilityRandomlyRetrievedBlocks on CLV Optical Disks.

ACM TransInf Syst9(1): 1-30

[AFZ96]

[AGL97]

[All90]

[Be96]

[CHO1]

[CK89]

[CKV93]

[CRO4]

[CTZ97]

[Co88]

[CSIM]

[FC91]

161

[GK94] Gerlhof CA, KemperA (1994) PrefetchSupportRelationsin
Object Bases.In: Int. Workshopon PersistentObject Stores
(POS),1994,pp 115-126
[GKKM93] Gerlhof CA, Kemper A, Kilger C, Moerkotte G (1993)
Partition-BasedClusteringin Object Bases:From Theory to
Practice.In: Int. Conf. on Foundationsof Data Organization
and Algorithms (FODO), 1993, Chicago,lll, pp301-316
[GMW94] GolubchikL, Muntz R, WatsonRW (1994) Analysis of Strip-
ing Techniquesn Robotic Storagel ibraries. TechnicalReport.
University of California, Los Angeles,Calif.
Gray J, PutzoluF (1987) The 5-Minute Rulefor TradingMem-
ory for Disc Accessesindthe 10-Byte Rule for TradingMem-
ory for CPU Time. In: ACM SIGMOD Conf.,1987,SanFran-
cisco, Calif., pp395-398
Hillyer BK, SilberschatzA (1996) Randoml/O Schedulingin
Online Tertiary StorageSystems.In: ACM SIGMOD Conf.,
1996, Montreal, Canadapp195-204
Jiang Z, Kleinrock L (1998) An Adpative Network Prefetch
SchemelEEE J Sel AreasCommun,pp 231-240
JohnsonT (1998) Coarselndicesfor a Tape-BasedataWare-
house.In: Int. Conf. on DataEngineering,1998, Orlando,Fla.
KuenningGH, PopekGJ (1997) AutomatedHoardingfor Mo-
bile Computers.in: ACM Symposiumon OperatingSystems,
October1997, St. Malo, France,pp264-275
Karlin AR, Phillips SJ, RaghavanP (1992) Markov Paging.
In: Symposiumon Foundationsof ComputerScience,1992,
pp208-217
Kraiss A, Weikum G (1997) Vertical Data Migration in Large
Near-Line DocumentArchives Basedon Markov-Chain Pre-
dictions.In: VLDB Conf.,1997,Athens,Greecepp 246-255
Lau SW, Lui JCS,WongPC (1995)A Cost-efective Near-line
StorageServerfor Multimedia System.In: Int. Conf. on Data
Engineering, 1995, Taipei, Taiwan, pp449-456
Moser F, Kraiss A, Klas W (1995) L/IMRP — A Buffer Man-
agementStrategyfor Interactive ContinuousData Flows in a
Multimedia DBMS. In: VLDB Conf., 1995, Zurich, Switzer-
land, pp275-286
Myllymaki J, Livny M (1997)RelationalJoinsfor Dataon Ter-
tiary Storage.n: Int. Conf. on DataEngineering, 1997, Birm-
ingham,UK, pp159-168
NelsonR (1995) Probability, Stochastid’rocessesand Queue-
ing Theory— The Mathematicof ComputerPerformanceviod-
eling. Springer,Berlin Heidelbeg New York
NemotoT, KitsuregawaM, TakagiM (1997) Analysisof Cas-
sette Migration Activities in ScalableTape Archiver. In: Int.
Conf. on DatabaseSystemsfor AdvancedApplications,1997,
Melbourne,Australia,pp461-470
[OOW93] O'Neil EJ, O'Neil PE, Weikum G (1993) The LRU-K Page
ReplacemenAlgorithm For Databasd®isk Buffering. In: ACM
SIGMOD Conf., 1993, WashingtonD.C., pp297-306
[PGG+95] PattersorRH, GibsonGA, Ginting E, StodolskyD, ZelenkaJ
(1995) Informed Prefetchingand Caching.In: Symposiumon
OperatingSystemsPrinciples, 1995, pp79-95
PalmerM, Zdonik SB (1991)Fido: A Cachethatlearnsto fetch.
In: VLDB Conf., 1991, BarcelonaSpain,pp255-264
RuemmlerC, Wilkes J (1994) An Introductionto Disk Mod-
elling. IEEE Comput27(3): 17-28
Sarawagi S (1995) Query Processingin Tertiary Memory
Databasedn: VLDB Conf.,1995,Zurich, Switzerland pp585—
596
Smith AJ (1981) Long Term File Migration: Developmentand
Evaluationof Algorithms. CommunACM 24(8): 521-532
Scheuermanf®, Shim J, VingralekR (1996) WATCHMAN: A
Data Warehousdntelligent CacheManager.In: VLDB Conf.,
1996,Bombay, India, pp51-62
StonebrakeM (1991) ManagingPersistenObjectsin a Multi-
Level Store.In: ACM SIGMOD Conf., 1991, Denver, Colo.,
pp2-11
Sinnwell M, Weikum G (1997) A Cost-Model-Basednline
Method for Distributed Caching.In: Int. Conf. on Data Engi-
neering,1997, Birmingham,UK, pp532-541

[GP87]

[HS96]

[JK98]
[J098]

[KP97]

[KPR92]

[KW97]

[LLW95]

[MKK95]

IML97]

[Nel95]

INKT97]

[PZ91]
[RW94]

[Sa95]

[Smig1]

[SSV96]

[Sto91]

[SW97]

162

[SWZ94]

[SWZ98]

[TCGY6]

[TG84]

[Tij94]

[TN91]

Scheuermant?, Weikum G, ZabbackP (1994) Disk Cooling
in Parallel-DiskSystemslEEE DataEng Bull 17(3): 29-40
Scheuermani?, Weikum G, ZabbackP (1998) Data Partition-
ing andLoadBalancingin Parallel-DiskSystemsVLDB J7(1):
48-60

TriantafillouP, ChristodoulakisS, GeogiadisC (1996)Optimal
Data Placemenbn Disks: A Comprehensivé&olutionfor Dif-
ferent TechnologiesHERMES Technical Report. Multimedia
Systemdnstitute of Crete,Greece

Teng JZ, Gumaer RA (1984) Managing IBM Database2
Buffersto Maximize PerformancelBM SystJ23(2):211-218
Tijms HC (1994) StochasticModels — An Algorithmic Ap-
proach.JohnWiley & Sons,Chichester

TsangarisMM, NaughtonJF (1991)A StochasticApproachfor
Clusteringin Object Bases.In: ACM SIGMOD Conf., 1991,
Denver,Colo., pp12-21

[TN92]

[TP9I7]

[VLN97]

TsangarisMM, NaughtonJF (1992) On the Performanceof
ObjectClusteringTechniquesin: ACM SIGMOD Conf.,1992,
SanDiego, Calif., pp144-153

Triantafillou P, Papadakid (1997)On-DemandataElevation
in a HierarchicalMultimedia StorageServer.In: VLDB Conf.,
1997, Athens,Greece pp226—235

Venkataramar$, Livny M, NaughtonJF (1997) Memory Man-
agemenfor ScalableWeb DataServersin: Int. Conf. on Data
Engineering, 1997, Birmingham,UK, pp510-519

[WHMZ94] Weikum G, HasseC, Moenkebeg A, ZabbackP (1994) The

[Wo83]
[Wz86]

COMFORT AutomaticTuning Project.Inf Syst19(5): 381-432
WongCK (1983)Algorithmic Studiesn MassStorageSystems.
ComputerSciencePressNew York

Wedekind H, Zoerntlein G (1986) Prefetchingin Realtime
Databaseé\pplications.In: ACM SIGMOD Conf., 1986, Wash-
ington, D.C., pp215-226

