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SUMMARY 
 
As the number of sensors on the grid continues to grow rapidly, utilities' inability to deal with the 
resulting volume, velocity and variety of data limits their efforts to unlock the value in these 
measurements. A third generation, domain-specific big data platform is required to enable utilities to 
efficiently and effectively leverage grid data to gain the insights they need to operate successfully in 
an environment of increasing indeterminacy.  
 
In this work, we present such a platform architected to ingest, store, access, visualize, analyze, and 
learn from (train machine learning and deep learning algorithms with) data captured by an arbitrary 
number and type of sensors measuring the grid with nanosecond temporal resolution. Built with open-
source tools to prevent vendor lock-in and benefit from the work of thousands of engineers, the 
platform uses a novel time series database that gives unprecedented ingestion and querying speeds. 
The platform also handles data quality, generally a major issue in power grid measurements, which 
enormously improves the ease of working with the data. Furthermore, the platform is designed to 
enable the rapid prototyping, implementation and deployment of novel analytics, machine learning, 
and deep learning applications. Finally, the platform’s convenient APIs and open interfaces encourage 
innovation while its user-facing applications, like the multiresolution plotter, enable data exploration 
and the dispersal of results—essential steps in the development of insightful and valuable data use 
cases. We believe that this platform will provide utility engineers, industry experts, and academic 
researchers with the ability to use sensor data to build the data driven grid of the future.  
 
 
 
KEYWORDS 
 
Big data, scalable analytics, time series data, sensors, artificial intelligence, machine learning, PMU 

 
 

21, rue d’Artois, F-75008 PARIS CIGRE US National Committee 

http : //www.cigre.org  2018 Grid of the Future Symposium         



  2 
 

1. INTRODUCTION 
 
1.1 An Industry in Transition 
As the indeterminacy and uncertainty in the electric grid increase, deriving intelligence from large, 
multi-modal sensor data sets will become essential for utilities’ operation, reliability, safety, and 
project execution. However, leveraging this data is difficult, precisely for the reasons the data sources 
are so valuable: the (1) volume, (2) velocity, and (3) variety of available sensor data substantially 
exceeds utilities’ data handling capabilities and the available technology offered by incumbent 
vendors. 
 
(1) Volume - The number of sensors deployed on the grid has exponentially increased through specific 
utility programs, standardization, and industry market forces. Competition among vendors has driven 
product differentiation through the addition of sensing capabilities (i.e. multi-function relays) which 
do not dramatically increase the overall cost. This can be seen across asset types and vendors.  
 
(2) Velocity - The physical processes underlying the grid are continuous in nature. Higher frequency 
sampling allows sensors to capture faster grid dynamics, yielding previously unavailable information 
about the physical processes in question. This is in stark contrast to the industries in which data 
science arose where measurement data amounts to discrete events—a tweet will arrive at a particular 
time stamp and additional useful information cannot be captured between arrivals. However, there is a 
real drive to capture higher frequency data from physical processes such as the voltage and current 
waveforms on the grid. PMUs, whose technology is now several decades old, offer continuous 
monitoring of both the transmission and distribution grid at 30Hz up to 240Hz. Further, point-on-wave 
or continuous waveform monitoring was a much-discussed topic at the 2018 IEEE PES General 
Meeting in Portland, OR and sensors are capturing continuous, streaming measurements at 32 to 512 
samples per cycle (1920Hz to 30,720Hz). 
 
(3) Variety - Sensors have been deployed across the grid with dogged pragmatism and financial 
restraint. They were not intended to capture data for what-if scenarios or analyses that might be useful 
someday. Instead, sensors are deployed to address known, impactful issues, with each one designed, 
built, and installed to address a specific, known problem. To make matters worse, the hardware 
companies who design and build sensors often develop the associated software, which can only handle 
data from a particular sensor type or potentially from a single manufacturer. Thus, data from each 
sensor, all measuring different characteristics of the same grid, reside within a fragmented, siloed 
environment that cannot provide a cohesive or integrated view of the system being measured. 
 
This is in strong contrast to the “tech” companies that started and advanced data science such as 
Google, Facebook, and Amazon. During the operation of these digital-by-default businesses, the 
fundamental act of delivering online products and services created data, without explicit sensors, 
regardless of intention to address a known problem. This “data exhaust” was often captured because 
the core competencies of these contemporary tech giants were handling data. 
 
Phasor Measurement Units - PMUs deployed across the transmission system are a notable example of 
the increased volume and velocity of grid sensor data. Official counts estimate the active US PMU 
fleet at approximately 5,000 active sensors. However, SEL has been incorporating phasor 
measurement capabilities into smart relays for nearly 15 years. The end result is that via SEL alone, 
there are over 500,000 smart relays deployed across North America that can serve as PMUs because of 
embedded functionalities. Further, many sensors now deployed are multi-functional in nature and can 
serve as two different types of sensor, often simultaneously. Thus, even smaller transmission utilities 
that have not made a concerted effort to deploy PMUs may already have hundreds of such devices 
installed and waiting to be turned on.  
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1. 1 The Problem 
The three “V”s described above compose a classic example of the big data problem that nearly every 
industry has or will ultimately face; eventually, the successful operation of the business requires an 
amount of data that 
exceeds the 
capabilities of a single 
machine (see Figure 1) 
and, more importantly, 
the software and data 
systems that have 
thrived in the industry 
to that point. Utilities 
face an essential 
transition to a new 
platform that can 
efficiently handle 
sensor data at scale and 
enable applications, 
especially ones using 
artificial intelligence 
(AI), that can extract 
value from this data. 
Tracing the evolution 
of the three 
generations of big data 
platforms highlights 
the solution to this 
problem. 
 
First Generation - First generation big data systems are exemplified by Hadoop, which was originally 
an open source implementation of Google’s distributed file system and MapReduce data processing 
model, first publicly described in 2003 and 2004 respectively [1, 2]. Hadoop took advantage of the 
relatively inexpensive hard drives of the day and the vast bandwidth available when reading and 
writing data in parallel across a number of machines and hard drives. These systems began the trend of 
attempting to simplify the traditionally difficult task of distributed computing programming to increase 
the productivity and effectiveness of software engineers processing large volumes of data. Hadoop 
was designed for batch analytics, with large but finite data sets, to enable traditional business 
intelligence. 
 
Second Generation - The rise of machine learning spurred the development of a second generation of 
general-purpose big data systems exemplified by Apache Spark [3]. Machine learning algorithms often 
require vast amounts of data to be successfully trained and the training process is inherently an 
iterative process, converging to an enhanced solution. Spark accelerates this process by keeping 
everything in memory, whereas Hadoop would write the results of each mapper and reducer to disk. 
Where Hadoop leveraged the relative low cost of hard drives, Spark took advantage of the relatively 
low cost and, therefore, plentiful RAM or main memory available at the time the platform was 
architected. During this generation, the need for systems capable of handling streaming data arose, 
with data sets continuously growing without bound and requiring immediate processing to produce 
actionable output. 
 
Third Generation Big Data Platforms - Each generation of big data platforms was built considering 
the economics of solving the relevant problems of its day given the constraints of contemporary 
computing hardware. The state of the art has moved beyond both first generation—Hadoop’s general-
purpose batch processing—and second generation—general purpose big datastores and processing 
frameworks such as Cassandra and Spark—big data platforms to third generation systems. Third 

Figure 1 - A heat map showing the annual data volume by frequency and the number 
of data streams. Note that 30 or 60Hz PMUs can generate terabytes of data per 

year by themselves. 
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generation platforms are purpose-built with specialized data structures and architectures optimized for 
a particular type of data, specific analytic use cases, and tailored to the eccentricities of particular 
industries. Not only are they far more efficient at processing their specific type of data and computing 
relevant analytics, they demand far less effort by the analysts and engineers faced with those highly 
specialized problems.  
 

Table 1 - A short summary of the three generations of big data platforms. 

 
 
For example, take the problem of hammering in a nail. While a Swiss Army knife may have a suitable 
attachment, a standalone hammer would be more efficient at the task because the knife is weighed 
down by its other capabilities. If the original problem is hammering in one thousand nails, the better 
tool would be a nail gun: a tool more complex than the simple hammer but purpose built for this scale 
of task to accelerate the worker’s capabilities. For this reason, general purpose big-data platforms 
provide lots of flexibility with little optimization for specific use cases at scale. The focus of a 3rd 
generation big data platform is to solve a particular industry’s unique problems in a highly cost-
effective fashion. The remainder of the paper describes one such third generation big data system 
designed to handle time series data streaming from an unlimited number of utility sensors. 
 
 
2. A UNIVERSAL SENSOR ANALYTICS AND AI PLATFORM 
 
The universal sensor analytics and AI platform is horizontally scalable and architected to ingest, store, 
access, visualize, analyze, and learn from (train machine learning and deep learning algorithms with) 
data captured by an arbitrary number and type of sensors measuring the grid with nanosecond 
temporal resolution. This platform’s system diagram is detailed in figure below. 
 
The platform can be decomposed into several functional areas. Moving from left to right in the 
diagram, it supports the ingestion of both streaming and historical data archives in a wide range of 
formats at scale via the ingest engine. Data is ingested into a database specifically designed for dense 
time series sensor data, the Berkeley Tree Database (BTrDB) whose development was funded by the 
ARPA-E Micro Synchrophasors for the Distribution System project. Further, the platform contains a 
distributed analytics and computational framework designed to operate across time series in parallel, 
executing significantly faster than real time to handle both real time and historical analyses and the 
training of machine learning and deep learning algorithms. The platform provides numerous APIs that 
provide not only a direct connection for web applications including a data explorer, dashboards, and 
Jupyter Notebooks for ad-hoc analytics but also to utility planning and operations software, allowing 
for the seamless integration of highly novel algorithms with the real world. The sections below will 
describe each component in detail.  
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Figure 2 – System diagram for a third-generation big data system architected for time series sensor data for the 

utility industry. 
 
Note that this platform extensively leverages open source software and non-proprietary data formats to 
prevent vendor lock-in and allow the community to develop and expand the available tooling. Using 
open source software is a necessity as it lowers the total cost of platform development by leveraging 
the efforts of literally thousands of software engineers at almost no cost. Further, these teams of 
programmers will continue to improve and evolve each software component over time. 
 
2.1 Ingest Engine 
The platform’s ingest engine handles two general types of data ingest each with unique requirements. 
The first type is data continuously streaming from real or virtual sensors. For streaming data ingest, 
the platform supports a broad range of standards including the nearly ubiquitous IEEE C37.118 for 
phasor measurement units and also file-based data transfers. The following transport and message 
protocols will be supported in the near future for data ingestion: GEP, IEC 61850, Modbus, DNP3, 
GOOSE, and GSSE. The platform’s open-source and modular nature allows for third-party 
contributions, speeding support of new protocols. As the number of sensor data formats is large, the 
ingest engine’s ability to rapidly develop and test data import from a new format is key. Equally 
important are tight, continuous data quality assessments of the actual sensor measurements to identify 
immediately any potential errors, including those in the ingestors. 
 
Large archives from historians and other legacy systems are the second type of data that must be 
ingested by the platform, often for retrospective data analyses or to pre-populate the platform before 
receiving new streaming data. These data files, often terabytes in size, arrive in archive formats such 
as COMTRADE, Open Historian version 1 (.d files) and version 2 (.d2 files), and comma separated 
value files (CSV). Along with these common formats are several vendor- or utility-specific formats 
like PDAT developed at Bonneville Power Authority (BPA). As these large archives often represent 
multiple years of data for an entire utility, ingest must occur significantly faster than real time. Even at 
100x real time, a year of historical data still requires over 3.5 days to be ingested into a platform. 
 
2.2 Time Series Database 
High density telemetry or time series data, composed of measurements taken over regular time 
intervals with high resolution timestamps from electric grid sensors, provides a unique set of 
challenges for traditional relational databases and even scalable NOSQL data stores like Apache 
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Cassandra. One of the critical metrics is the number of sensor measurements or data points the 
database can read and write per second per compute resource. The top contemporary time series 
databases can write approximately 1M points per second per node. For perspective, two hundred 
PMUs, each with 40 streams of 120Hz high-precision timestamped measurements, generate nearly 1M 
points per second. Further, some utilities already have more than 5,000 PMUs, not counting other 
sensors. Even if existing databases could handle the raw throughput required by existing sensor 
deployments, they cannot satisfy queries over large time ranges efficiently let alone handle the 
analytical workloads particular to time series data. Thus, the heart of this universal sensor platform 
needed to be designed for at least this level of performance to ensure that the necessary capabilities - 
extremely high throughput, fast response times for queries across time scales from milliseconds to 
years, and the ability to handle messy, out-of-order, real world sensor data and its implications for 
analytics - are available [4]. 
 
To meet the requirements described above, a novel data structure for time series data was created—a 
time-partitioning, copy-on-write version-annotated k-ary tree shown in Figure 3—and implemented by 
the Berkeley Tree Database (BTrDB). Sensor data is intrinsically temporal data queried based on time 
ranges. The use of a time-partitioning tree not only allows for the efficient location of specific points 
but also creates an implicit index to the data without additional storage space, increasing overall 
system throughput [4].  
 
The raw measurements and timestamps are 
stored in the leaves at the bottom of this 
tree (see Figure 3). Each higher level of the 
tree summarizes the child nodes below it. 
These nodes store statistical aggregates that 
originally included the min, mean, max and 
count of the number of data points. As data 
changes, the relevant aggregates are all 
efficiently recomputed while in memory. 
As the tree itself represents time, querying 
higher levels of the tree is asking the 
database for aggregations (rollups in time 
series parlance) over larger and larger time 
intervals. Thus, sensor measurements over 
a year, a month, a week, a day, a second 
are available nearly instantaneously to any 
user or application [4]. 
 
The tree is copy on write; each time new 
data points are inserted a new copy of the 
tree is made accessible via a new root 
node. This allows the platform to retain all 
historical data and all versions of the tree 
require equal effort to access (there is no 
penalty for older versions of the data). A 
user can query the exact state of each and 
every data stream from any point in its 
past, much like version control for source 
code in such systems as Git. Thus, a data 
stream can literally be “rewinded” to learn 
how data flowed into the system. Further, the database can be queried for a “change set”—the changes 
that have occurred since a particular version—enabling performant answers to questions like “what 
data has arrived since yesterday?” 
 

Figure 3 - Graphic representation of the tree-based data 
structure used to efficiently store high density time series data. 
As the time-based index is implicit in the data structure itself, 

no extra data needs to be created or stored for it. Also note that 
the interior nodes provide near instantaneous access to time-
based rollups of data. Further, the database can easily store 

sensor data captured at different sampling rates such as PMU 
and AMI, and even handle sensor data that changes sampling 

rates. 
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All of these innovations have led to the creation of a time series database at the heart of the universal 
sensor platform that has state-of-the-art performance. Early benchmarks demonstrated a throughput of 
53 million inserted values per second and 119 million queried values per second on a small, four-node 
cluster. More recent testing has shown that the system can support over 100,000 simultaneous PMUs, 
each providing at least 20 streams of 60Hz data. Since these benchmarks were taken, numerous 
improvements have been made to the database and these numbers are considered a lower bound. 
Additionally, the database itself has been fully parallelized so that additional nodes can be added to 
handle extra sensors without any performance decrease.   
 
Data Quality - Sensors exist in the real world and the resulting measurements can suffer from 
numerous data quality issues arising from communication problems, misconfigurations, hardware 
errors, and more. Extensive analysis of early transmission PMU data highlighted that data quality was 
a pervasive problem across multiple utilities [5]. As the quality of the data impacts all downstream 
analyses and applications, some more sensitive than others, data quality must be an intrinsic part of the 
universal sensor platform. Current data quality reporting is primarily surfaced via bit flags contained 
within the C37.118 protocol. The universal sensor platform evaluates the measurements’ data quality 
directly and in real time before the data is persisted to storage. The results of this analysis are 
manifested as additional, sparse data streams also stored in the time series database. Thus, the data 
quality results are precomputed and co-located with the original sensor data, always available to 
inform those algorithms and applications dependent upon it.  
 
Data Compression - Lossless compression reduces the storage requirements and consequently the 
financial burden of high frequency sensor data while still preserving the full fidelity of the 
measurements for future use. While lossless time series compression is a well-developed field, many 
existing algorithms have not been applied to grid data. Compressing PMU data is a priority due to the 
associated data volume and the fact that the behavior of the underlying physical process follows well 
understood statistical distributions, offering high compressibility. Klump explores the performance of 
off-the-shelf algorithms on PMU data [6]; however, these algorithms compress complete data sets after 
the data has been collected (as is done on images). Other proposed algorithms for PMU data 
compression [7, 8], leverage the low dimensionality of PMU measurements to achieve high compression 
ratios but also require non-streaming data and are lossy.  A universal sensor analytics platform must be 
able to compress streaming, floating-point data in a lossless fashion, rather than compressing the 
complete data set after it is recorded. A scheme with these attributes is described by Andersen in 2016 
as part of the original BTrDB implementation. It achieves an average compression ratio of 2.9 for 
PMU sensor measurements. This algorithm has since been evolved using techniques from other fields 
to approach a lossless compression of up to 10 to 1.  
 
2.3 Analytics, Machine Learning, and Deep Learning 
Moving computation to the data is one of the hallmarks of big data systems and processing time series 
data at scale is no different. Thus, analytics and machine learning must be core components or “first-
class citizens” of the platform. This is one of the fundamental reasons why it is impossible to add or 
“bolt on” real time analytics, let alone machine learning capabilities, to legacy systems with non-
scalable architectures. Further, processing real world sensor data at scale brings additional, unique 
challenges for analytics.  
  
The analysis of sensor data occurs in one of two modes: (1) real-time, processing the data as it arrives 
(synchronously) or (2) retrospective or historical, processing a fixed amount of the data after it has 
arrived into the system (asynchronously). Both require rapid processing of the data. However, real 
time (1) processing establishes an explicit time budget for each computation, much like rendering a 
three-dimensional scene in a movie or video game at 30 frames per second. For the movie or game to 
not stutter, each frame must be completed within 1/30 of a second. A sensor analytics platform that 
offers real time processing must offer such processing to all streams. While processing a single stream 
in real time may seem trivial, handling a million streams in real time is not and requires orders of 
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magnitude additional computational resources and bandwidth. Retrospective or asynchronous 
processes often require the analysis of a large volume of data significantly faster than real time.  
 
Many traditional engineering analytics for sensor data apply a function to each data point or window 
of data points in one or more time series. A simple example of this is the calculation of frequency from 
phase angle data. Frequency is computed from a single input time series as the derivative of the phase 
angle measurement. A more complex analytic example is reactive power, which is computed from 
four measurement time series: the voltage and current phasors each consisting of a magnitude and a 
phase angle. However, analysis often requires the application of not one but a sequence of such 
functions. For example, a cleaning algorithm may first remove anomalous measurements from a 
voltage magnitude stream and then the “cleaned” version is passed through a function to compute the 
fundamental power. A universal sensor analytics platform must apply and orchestrate these types of 
functions in the appropriate sequence to thousands of data streams simultaneously while handling out-
of-order updates to the individual data streams all in real time or to large historical data sets. 
 
To meet these requirements, DISTIL was created enabling the rapid development of scalable analytics 
pipelines with strict guarantees on result integrity despite non-synchronous data changes [9].  DISTIL is 
composed of two separate components:  
 

1. distillers that implement the functions or transformations applied to the sensor data and 
2. the distillate processing framework that handles the performance optimizations and 

bookkeeping associated with multiple interleaved streams arriving at different rates, possibly 
out of order, chunking, buffering, scheduling and more.   
 

Distillers are the “user-facing” portion of DISTIL. At the heart of each distiller is a smaller kernel that 
contains two functions; (1) the precompute allows the user to specify the data needed for the (2) 
compute function that will operate on the data and return the computed values and associated time 
ranges.  Each distiller can emit one or more new time series called “distillates” that are fed back into 
BTrDB. This computational model covers a tremendous number of potential algorithms and 
operations that can be performed on time series data. 
 
This architecture focuses on efficient and reliable calculation and storage of these “distillates” in 
advance of queries, rather than just-in-time materialization. The advantage is that many months or 
years of analytical results can be queried in milliseconds. Moreover, everything is versioned: the data, 
the distillers, and the 
intermediate streams. 
As a change occurs, the 
framework determines 
what needs to be 
recomputed to produce 
consistent results with 
precise provenance and 
schedules the 
processing required to 
propagate the change 
through associated 
streams. Figure 4 
shows numerous 
distillers cleaning and 
transforming voltage 
and current phasors and 
feeding the generated 
data streams into 
additional distillers to 

Figure 4 - Diagram showing the DISTIL framework in action running eight different 
distillers, some sequentially and others in parallel, on voltage and current phasors 
for phase A. Note that time synchronized measurements from other sensors such as 

DFR and Power Quality meters can also be combined together and with other 
streams for novel data fusion applications. 
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facilitate more complex analytics and calculations. 
 
2.4 APIs and Open Interfaces 
While storing and archiving data to meet regulatory requirements is key, the platform must also make 
the data usable and consumable by other applications so that it is extensible not just by the software 
vendor but also by customers and users. The quality of an API is important because it will either 
encourage innovation and simplify application development or introduce persistent friction into 
development efforts. Excellent design, then, tends to mean two things. First, the system exposes a set 
of well thought out primitives that can be composed to create functionality and address present and 
future use cases. Ideally, the set of operations available to third party developers is the same set 
available to core developers. Second, this API should be broadly available in as many target 
environments and languages as possible, making it easy for applications to work with in an idiomatic 
way. 
 
The universal sensor analytics platform satisfies both requirements. All applications on the platform 
are built using the same robust set of operations available to any 3rd party application. The API is easy 
to consume via REST or gRPC. The RESTful interface provides a nearly universal method to access 
the data with results returned as JSON. This interface powers many web applications built atop the 
platform. gRPC, Google’s open source, modern, and high-performance remote procedure call (RPC) 
framework can run in any environment and provides a high-performance API for the platform 
allowing easy interactions with the underlying system for high performance services [10]. Further, 
gRPC’s nearly universal availability across languages powers an equally broad array of language 
bindings with the platform’s simple to use yet performant Python bindings being one such example. 
 
2.5 User-Facing Applications 
Users’ needs can vary broadly, driven by the specific demands of their business and workflow. As a 
simple example, some users will want to view the raw data via dashboards while others may want to 
explore the data as a precursor to programmatic analysis. In closed systems, this can lead to overly 
complex software in an effort to cover as many use cases as possible despite the steep cost to usability. 
In contrast, an open system can expose powerful primitives that enable the creation of specialized 
tools capable of making the best tradeoffs for their intended audience. The key to creating high-value, 
user-facing applications is two-fold. First, the underlying design of the platform must consider many 
use cases, even those not yet conceived of.  Second, a set of basic yet performant user-facing 
applications must come packaged with the platform for out-of-the-box usability. By default, the 
platform includes a multi-resolution plotter for interactive data exploration and Jupyter Notebooks for 
ad-hoc analytics to fully enable the end-to-end analytics pipeline.  
 
Interactive Data Exploration (Multi-Resolution Plotter) - “Overview first, zoom and filter, then 
details-on-demand.” - This short mantra from Shneiderman et al provides a terse summary of how 
users explore large data sets and provides an excellent framework for designing information 
visualization applications [11]. To enable this best practice, the platform enables high performance 
visualization and real time interaction on arbitrarily large data sets.  The classic trade-offs faced by 
visualizers between quantity of data and time-to-render are circumvented by taking advantage of key 
design decisions in the underlying database. Specifically, the ability to query data at variable time 
resolutions with consistently low latency allows the visualizer to request the ideal amount of data for 
display (1 data point per pixel). By breaking the relationship between the quantity of data and query 
latency, fully interactive visual exploration is possible. Furthermore, visualization of real time data and 
even updates to past data are trivially accomplished due to the database engine's decision to version 
streams. Finally, algorithms for intelligently prefetching the data a user is likely to view next as well 
as caching strategies further enhance perceived performance [12]. 
 
Customizable Real-time Dashboards (Grafana) - Many user-facing applications, regardless of the 
intelligence behind them, can and will take the form of a real-time dashboard. Dashboards are a quick 
and effective way both to prototype and deploy production interfaces for non-programming users such 
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as utility leadership and control room operators. There are also many great open source approaches to 
dashboarding, such as Grafana [13], that only require an integration layer to connect and thereby remain 
consistent with the platform design philosophies. 
 
Ad-Hoc Analytics (Jupyter) - Jupyter is an open source platform for “reproducible computational 
workflows” that has become the de facto tool and development environment for data science, machine 
learning, and deep learning [14]. The name Jupyter comes from the three programming languages it has 
long supported: Julia, Python, and R. Jupyter also supports numerous additional languages, including 
MATLAB, C, and Scala, all through different kernels that allow developers to work in the language in 
which they are most comfortable. Jupyter Notebooks contain both computer code (e.g. Python, R, 
MATLAB, or other languages) and rich text elements such as text paragraphs, equations, figures, URL 
hyperlinks, and even dynamic, interactive visualizations. Therefore, notebooks are human-readable 
and executable and include both the scripts used to perform data analysis as well as the results 
(figures, tables, etc.) and documentation text. These notebooks allow for rapid prototyping of new 
analytics use cases and provide a natural progression from exploration to report preparation for certain 
classes of analytics. 
 
 
3. CONCLUSION 
 
This paper has provided an overview of a state-of-the-art platform to ingest, store, clean, visualize, and 
process grid sensor data, making the data easily accessible to enable artificial intelligence analytics as 
a first-class citizen. The platform is horizontally scalable, able to ingest sensor data streams from 
millions of sensors simultaneously while also supporting asynchronous training and analytic tasks. 
The open platform is composed of open source software components with open data formats. It can be 
deployed both behind corporate firewalls as an appliance or run as a platform-as-a-service in a major 
enterprise cloud for reliability, resiliency, scalability, accessibility, and reduced cost.  
 
The word “universal” in the title of this paper has multiple, intended meanings. Most obviously, the 
platform was architected to be the platform for any and all sensor data that reports timestamped 
measurements that inform grid operators, planners, and designers. These sensors could range from 
digital fault recorders sampling the voltage and current waveforms at 100KHz to residential smart 
meters reporting measurements every 15 minutes. Thus, the platform is universal to include all 
different types of smart meter data.  
 
However, and of far greater importance, the word “universal” is an adjective directed at the intended 
user base. While utilities are the primary user of this platform for sensor analytics and artificial 
intelligence, universities, independent researchers, consulting firms, national laboratories, and other 
groups also have strong vested interest in helping to create the grid of the future. Therefore, in order to 
rapidly transfer new algorithms and analytics from theory to practice, it makes sense to have all of 
these groups inventing, prototyping, testing, and developing on the same platform. We want to create a 
large, inter-utility and inter-organization community that builds an ecosystem of shared and common 
tooling for leveraging data to enhance the efficient, resilient, and reliable operation of the grid. We 
seek to build a true platform, where the overall industry’s “[s]trategy has moved from controlling 
unique internal resources and erecting competitive barriers to orchestrating external resources and 
engaging vibrant communities. And innovation is no longer the province of in-house experts ... but is 
produced through crowdsourcing and the contribution of ideas by independent participants in the 
platform” [15]. 
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