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The task of consistently and reliably replicating data is fundamental in distributed systems, and
numerous existing protocols are able to achieve such replication efficiently. When called on to
build a large-scale enterprise storage system with built-in replication, we were therefore surprised
to discover that no existing protocols met our requirements. As a result, we designed and deployed
a new replication protocol called Niobe. Niobe is in the primary-backup family of protocols, and
shares many similarities with other protocols in this family. But we believe Niobe is significantly
more practical for large-scale enterprise storage than previously-published protocols. In particular,
Niobe is simple, flexible, has rigorously-proven yet simply-stated consistency guarantees, and
exhibits excellent performance. Niobe has been deployed as the backend for a commercial Internet
service; its consistency properties have been proved formally from first principles, and further
verified using the TLA+ specification language. We describe the protocol itself, the system built
to deploy it, and some of our experiences in doing so.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and
Software—Distributed systems

General Terms: Reliability, Verification, Algorithms

Additional Key Words and Phrases: Replication, enterprise storage

1. INTRODUCTION

This paper describes our experience with designing and deploying a storage backend
for large scale web services. The backend was designed to replace an existing
backend that had been functioning well for some years, and a key objective was
to substantially reduce the system’s operations and hardware costs. Although the
new system was built with the existing web services in mind, the design principles
(especially the replication protocol) are more generally applicable and are not tied
to any proprietary service. The overall experience with our design choices in a
commercial environment serving customer data has so far been favorable.

The storage backend consists of three inter-related components: a high-performance
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full-text indexing and query engine, a flat storage subsystem, and a policy module
that uses the mechanisms provided by the storage subsystem to implement policies
specific to the service (e.g., controlling the degree of replication for classes of users).
In this paper, we will focus on the details of the storage subsystem. To aid in un-
derstanding, we provide sufficient detail about the indexing engine, which is fairly
conventional in design, and the policy module, which is specific to our particular
deployment.

A key component of our backend is a scalable replicated storage subsystem called
Niobe and the associated protocols.2 A primary objective of this paper is to describe
the design of Niobe. We have found our design to be sufficiently simple, yet efficient
and reliable to be deployed at scale in data centers serving real commercial work-
loads. In addition, we have proved certain correctness properties of the protocol
from first principles, and verified some related properties using TLA+ [Lamport
2002], a formal specification language. This gives us a precise understanding of
what guarantees the system can provide to its clients, which in turn enables us to
offer meaningful service level agreements (SLAs) to customers.

When we set out to design the storage backend, we were not trying to invent new
replication protocols. Indeed, three of the authors had substantial prior experience
in designing replication protocols [Lee and Thekkath 1996; Chang et al. 2002; Mac-
Cormick et al. 2004] and we believed we could use one of these designs that had
proven successful in the past. However, on closer evaluation, we discovered that
none of these (or other published protocols we were aware of) provided the features
we needed:

—Support for a flexible number of replicas (two or more).
—Strict consistency in the presence of network, disk, and machine failures: reads

and writes to a given data item must be atomic and reads must return the last
completed write.

—Efficient common case read and write operations without requiring potentially
expensive two- or three-phase commit protocols.

—Simplicity (must be easy to implement, deploy, and maintain; and have con-
sistency properties that are simply stated): these requirements were important
because our principal goal was deployment at scale by a sizable engineering team,
rather than a proof-of-concept implementation by a small group of researchers.

Because of the nature of our environment, we were able to make a few simplifying
assumptions:

—Single administrative domain. Since all replicas were expected to reside in data
centers owned and operated by a single company, there was little motivation to
deal with the complexities of data in multiple administrative domains.

—Non-byzantine failures. While we recognize that byzantine faults do occur in
systems, our experience with the existing deployment suggested that this type of
failure need not be the primary concern for the first release of the new system.

2We hope our system will be as successful at replication as the Niobe of Greek mythology, a
mortal woman who had 14 children. It should be noted, however, that Niobe’s children were all
slain by Apollo and Artemis after she boasted about her fecundity. We will therefore try to avoid
exaggerated claims about the Niobe storage system and replication protocol.
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The rest of the paper is structured as follows. We first provide an overview of the
system in the next section. Subsequent sections describe the details of the Niobe
protocol. We then describe our usage experience with deploying this system and
offer some conclusions based on our experience.

2. SYSTEM DESCRIPTION

This section provides a high-level system overview of Niobe and some of the related
components with which it interacts. The system provides facilities to store, index,
and retrieve data, while managing the data storage in a scalable, cost-effective way
in the face of failures and load imbalances.

External entities interact with the system via front ends that act as clerks and
provide connection management and caching facilities. For example, the external
entity might be an end-user’s browser, while the front ends might be application
servers interacting with the end-user’s data (such as Web pages, blog posts, instant
messages or e-mail messages) that happens to be stored in Niobe. From Niobe’s
perspective, front ends and external entities are outside the system; we will not
describe them any further in this paper. In particular, we do not describe the
details of how external entities locate an appropriate front end for their data.

Niobe software consists of three major pieces: an indexing and query engine,
a replicated storage substrate, and a policy manager as shown in Figure 1. A
Niobe installation consists of multiple machines (typically on the order of a few
hundreds) that act in concert to index, store, and retrieve data. Each machine runs
an instance of an indexing and retrieval engine, a distributed policy manager, and
a distributed storage subsystem. In addition to the machines hosting the indexer,
policy manager, and the storage system, we have a small number of machines (less
than 10) that run a global state manager (GSM) module. The GSM module uses a
consensus service (e.g., Paxos [Lamport 1998]) to reliably store critical global state
used by the storage and the policy manager subsystems.

The indexing machinery indexes received content and retrieves content based on
received queries. The indexing engine uses the facilities of the distributed storage
system to store its data and indices. The design of the indexing engine, though
challenging, follows established ideas from the literature [Barroso et al. 2003; Risvik
et al. 2003] and is not the focus of this paper.

The policy manager is distributed. It consists of a central service and a compo-
nent that runs on each machine, which works in concert with other instances on
other machines to implement service specific policies. The primary purpose of the
policy manager is to determine when and where a replica should be relocated (i.e.,
on which physical machine). Relocations can occur as a result of a failure or a
load imbalance. Therefore, the policy manager uses sub-components for detecting
failures and load imbalances. These are known as the failure detector service and
the load monitoring service, respectively. In addition, the policy manager includes
a controller service, which makes decisions on, and initiates, replica relocations,
based on inputs from the failure detector and load monitoring services.

The distributed storage subsystem works in concert with other instances of itself
on other machines to implement replicated, scalable, fault-tolerant storage. The
rest of the paper describes the details of the distributed storage system and the
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Fig. 1. Overview of the Niobe System Architecture

global state manager. For now, we will merely highlight Niobe’s basic replication
strategy and semantics and defer a fuller treatment until later.

In Niobe, every data item is replicated on multiple machines. The degree of
replication is a configurable parameter of the system. At any time, precisely one
of these replicas is designated the primary. All writes as well as reads are fielded
by the primary (in contrast to strategies such as chained declustering [Hsiao and
DeWitt 1990]) and uniform loading is achieved by having each machine act as the
primary for a roughly equal number of frequently accessed data items.

When a write is sent to a primary, it ensures, before declaring the write successful
and returning to the client, that a configurable number of replicas reliably store a
copy of the data, and that any replicas which may have failed to store the data are
declared dead. Reads of data items sent to the primary replica are immediately
satisfied. Read or writes sent to secondary replicas result in an error return to the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 2. Layout of data items or “slices”

caller.
The truth about the identity of the primary and which secondaries are up and

which are down is maintained in the global state manager (GSM) module. Status
changes in the replica set (e.g., takeover of a primary or the reincarnation of a dead
replica) are reliably recorded by the GSM before any new requests are accepted.

Normal case reads and writes do not require the services of the GSM. As a result,
they are efficient. Failures can cause in-flight writes to a data item not to be applied
at some replicas. Niobe uses a recovery mechanism based on a dirty-region log, and
the GSM ensures data is consistent before clients are allowed access to the affected
data item.

Niobe offers a data model that is very simple, straightforward, and adequate for
clients to implement a variety of complex semantics. Niobe provides access to a
non-hierarchical collection of data items, much like a disk. It offers single-copy
semantics on each data item, but does not offer any ordering guarantees between
concurrent writes to different items. If a write to a data item does not succeed,
the data item is guaranteed to have either the old value or the new value. In the
absence of a successful return from Niobe, a client has no way of knowing if a write
succeeded or failed except by successfully reading the value of the data item.

3. THE NIOBE PROTOCOL

This section describes the Niobe replication protocol. For simplicity, the description
will assume only one “data item” is being replicated, on some small fixed set of N
machines (say, N = 2 or 3). At any one time, one of these machines is the primary
and the others are the secondaries. In practice, an implementation of Niobe involves
at least tens, if not hundreds, of machines, with thousands of separate data items
being replicated—each machine acts as either the primary or a secondary for many
different data items at once, and the assignment of primary and secondary replicas
to individual data items is done in any suitable manner. In our deployment, for
example, replicas are assigned pseudo-randomly subject to the constraint that the
replicas of any one data item must be hosted by machines connected to distinct
network switches and power distribution units (PDUs). This ensures all data items
remain available after the failure of a switch or PDU. We refer to our data items
as “slices” of data; a possible layout is shown in Figure 2.

It would be impractical for every file, web page, blog post, or e-mail message in
the system to be a separate data item because we would have to keep global state
(to be described in the next section) about each of them in the GSM. Instead, we
aggregate data belonging to a fixed large collection of users into a “slice” to keep
the amount of data stored in the GSM manageable. Although we have found in
practice that a single GSM can support a large number of slices, it would be trivial
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to extend the system to multiple GSMs (using a fixed mapping of slices to GSMs)
if necessary.

3.1 The Niobe state machine

As already noted, the protocol description will restrict attention to a single data
item, so we may focus on only the N replicas of this data item, denoted R1, R2, . . . , RN .
The other entities participating in the protocol are the GSM and the front-end ma-
chines. The entities can send messages to one another, which can be arbitrarily
delayed, dropped or reordered. The entities are not malicious. They may operate
arbitrarily slowly (except for their clocks) and may halt or “reboot” (defined be-
low) at any time. The entities possess clocks whose drift is bounded by a known
constant factor. We assume every entity possesses two types of storage: “memory”,
which is lost on reboot, and “stable storage” which survives reboot. We formally
define reboot for replicas as follows: when a replica reboots, it executes the Reset()
algorithm of Section 4.1 using only its stable storage as input. Every entity uses
standard techniques3 to apply mutations to its stable storage atomically.

Formally, the protocol maintains a replicated state machine comprising:

—a vector of health bits H = (h1, h2, . . . , hN ), with each bit hi taking values in
{Alive, Dead}

—an epoch number E, which is a nonnegative integer

—a primary ID P , taking values in {1, 2, . . . , N}
—a data value D, taking values in some set of possible data values D.

An informal interpretation of this state is as follows. The health bits signify which
replicas are currently faulty or out-of-date. The epoch number is incremented
every time any change to the health bits occurs (so replicas can use it to check that
their view of the other replicas’ health is up-to-date). Replica RP is known as the
primary, and the other replicas are called secondaries. The data value D is the
current value of the data being replicated on behalf of the customers.

In contrast to many other implementations of replicated state machines, the
entire state is not stored at every entity participating in the protocol. In Niobe, only
the GSM stores the health bits, epoch number and primary ID in stable storage.
The replicas cache values of these quantities in memory, but need never commit
them to stable storage. The replicas store the data value D in stable storage – we’ll
sometimes refer to this stored value as the replica’s local data value, to distinguish
it from the ethereal D that resides in the replicated state machine. The GSM never
stores the data value, even in memory.

The state machine maintains the invariant that the primary is always alive i.e.
hP = Alive. The only permissible changes in the state machine are:

—“kill or reincarnate a secondary”: flip one of the non-primary health bits and
increment the epoch number i.e. atomically flip hr for some r 6= P , and set
E ← E + 1

3For example, write-ahead logging, with a local recovery protocol at reboot time.
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—“reassign the primary, killing old primary”: change the identity of the primary
to some other replica that is alive, and kill the old primary i.e. atomically set
P ← r, for some r 6= P such that hr = Alive, set hP = Dead, and set E ← E + 1.

—“update the data item”: set D ← D′ for some D′ ∈ D. There may be implementation-
specific restrictions on what updates are permissible. For example, our deploy-
ment is optimized for appends and deletions. However, the protocol is useful and
efficient for arbitrary updates, including atomic “compare-and-swap” mutations
in which the new data value depends on the old one.

The GSM module ensures that all changes to the health bits, epoch number and
primary ID are serialized, legal, and atomic. We refer to any such change as a GSM
decree.

3.2 The Niobe services

It’s convenient to think of each Niobe replica running some subset of four indepen-
dent processes4, called the clerk process, the maintenance process, the coordinator
process and the reset process. The coordinator process is active only on replicas
that believe they are the primary; the maintenance process is active only on replicas
that believe they are secondaries; the clerk process is active on all replicas. The
reset process runs only at startup and during reconfiguration.

We can describe Niobe as comprising 4 distinct client-server services: the data
service, clerk service, liveness service, and health service. For each service, the client
is either a front-end or one of the above four processes, while the server is either the
GSM or one of the above four processes. Figure 3 gives a diagrammatic overview
of the services and their API functions, and Figure 4 gives further details.

Niobe entities (front-ends, replicas, and the GSM) communicate with each other
via messages. Each message is either a request or response, and has a type that
is one of the eight API functions listed in Figure 4. It is essential that the data
service places Update and Read requests in a single FIFO queue, processing them
in the order received. Consecutive Read requests may be processed in parallel, but
Updates must be processed in isolation: any Reads received before a given Update
u must be completed or aborted before u is processed, and any Reads received
after u may be processed only after u is completed or aborted. This behavior can
be implemented using a standard reader-writer lock. (In fact, these serialization
requirements can be substantially relaxed: requests that affect disjoint parts of the
data item can be reordered, but a detailed discussion of this would take us too far
afield here.)

4. NIOBE ALGORITHMS

This section gives complete descriptions of all algorithms used in the Niobe protocol.
The appendix gives additional formal details, including pseudocode.

4Of course, these do not have to be conventional processes; in our deployment, they are separate
threads executing in a single address space.
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Service name
and API

Clients Servers Primary purpose

Data service
(Update, Read)

Front-ends Coordinators Read and write data
for front-ends

Clerk service
(ApplyUpdate,
Reconcile)

Coordinators Clerks Persist or reconcile lo-
cal copy of data for co-
ordinator

Liveness service
(InitiateReconcilia-
tion,
Heartbeat)

Maintenance Coordinator Initiate recovery of a
dead secondary; re-
spond to heartbeats

Health service
(SetGSMInfo,
GetGSMInfo)

Maintenance,
Coordina-
tors, Reset

GSM Update and/or dissem-
inate replica health in-
formation

Fig. 4. Descriptions of Niobe services.

4.1 Resetting

A Niobe replica begins operations, or restarts after encountering a problem, by
executing an algorithm called Reset, which uses only the contents of stable storage.
Replica R performs a Reset by first canceling any pending requests (the requests
are simply eliminated – no responses need be sent), and doing local recovery to
ensure that any partially-complete updates to its local data value are rolled back.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Then R contacts the GSM to find out the current state of the Niobe state machine.
From this point, there are three possibilities: R could be a live primary, a live
secondary, or a dead secondary.

If R is a live primary, it first reconciles with all secondaries it believes are alive.
The objective of reconciliation is to ensure that every live secondary agrees with
R’s current local data value D. This can be achieved by an extremely simple
approach, such as sending D to each live secondary, or by using a more sophisticated
rsync-like reconciliation protocol that transmits only the differences between D and
a secondary’s data value. In any case, the outcome is eventually that each live
secondary has stably stored D as its local data value. Any secondary that fails to
achieve this in a timely fashion gets killed: R passes a GSM decree transitioning
the unresponsive secondary into the Dead state. Once reconciliation is complete, R
begins its normal operations as a primary: it responds to Update and Read requests
from front-ends, and to heartbeat messages from secondaries.

If R is a live secondary, it listens for ApplyUpdate requests from the primary, and
also periodically sends heartbeat messages to the primary. Heartbeats are tagged
with increasing sequence numbers, and at most one can be outstanding: R never
sends a new heartbeat until the primary has acknowledged the previous one (retries
with the same sequence number are permitted, however). These heartbeats, which
are sent at least every HeartbeatPeriod, serve a dual purpose in the Niobe protocol.
First, each heartbeat implicitly grants a read lease to the primary, permitting the
primary to perform Read operations on its local copy of the data without verifying
that the secondary R agrees – see the read algorithm described in Section 4.3 for
details on this. The second purpose of the heartbeats is to maintain liveness in the
face of a failed primary: if the primary becomes unresponsive and fails to respond
to a heartbeat, R will attempt to kill it and take over as primary itself. The details
of this takeover procedure are crucial for maintaining data consistency, and are
described below in Section 4.5.

If R is a dead secondary, it requests reconciliation from the current primary.
This results in the primary first suspending the processing of update requests, then
sending its latest data value to R (with the obvious optimizations of (i) sending
only the differences using a variant of the dirty region log, and (ii) delaying the
suspension of updates until R’s data value is almost perfectly up-to-date). Once R
has stably stored the primary’s data value, the primary passes a decree with the
GSM which reincarnates the dead secondary. The dead secondary R then Resets,
and will come back up as a live secondary. Processing of update requests can
now resume on the primary; they will now be replicated to the newly reincarnated
secondary as well as the other live replicas.

Every message from one replica to another replica or the GSM is stamped with
the sender’s cached epoch number. If R receives a message whose epoch number
is higher than its own, R knows that its GSM information is out of date, and
performs a Reset. On the other hand, if R or the GSM receives a message whose
epoch number is lower than its own, it responds with a special BadEpoch value
which will cause the sender to Reset.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.2 Updates

Suppose a replica R receives an Update request from a front-end, requesting that
some mutation M is applied to the data value. R first checks that it believes itself
to be the primary. If not, R responds with a hint suggesting the correct identity
of the primary. Otherwise, R acquires a write lock, guaranteeing that no other
Read or Update requests are being processed, then enters the core of the update
algorithm. In parallel, R sends an ApplyUpdate(M) request to the clerk service on
every replica (including itself) that it believes to be alive. Secondaries should check
that they agree with R’s epoch number (and Reset themselves if not), then apply
the mutation to their stable storage and return a success code to R.

Any secondary that fails to respond successfully gets killed: R passes a GSM
decree transitioning the unresponsive secondary into the Dead state. As with the
reconciliation and heartbeat messages, ApplyUpdate requests are tagged with R’s
cached epoch number, and if R receives a BadEpoch response from any of these
requests or from a GSM decree, it Resets itself.

If R, the primary, cannot get a timely and successful response from its own clerk
service, R does not attempt to kill itself via a GSM decree. Rather, it stops respond-
ing to heartbeats. This has the effect that one of the live secondaries will notice
a missing heartbeat response, and execute the takeover algorithm of Section 4.5.
After waiting for a suitable period, R then Resets.

Once every live replica has performed the update successfully (or alternatively,
been successfully killed via a GSM decree), R can respond to the front-end. In the
normal case, R will return Success, indicating that the mutation has been applied
to at least Q replicas, where Q ≥ 1 is a configuration parameter set by the system
administrator, expressing the minimum number of replicas on which a data item
must be stored. If there are excessive simultaneous failures and the mutation was
applied to fewer than Q replicas, R returns Failure.

Thus, the following invariant is maintained: a completed update operation,
whether successful or not, was applied successfully to the stable storage of every
replica believed to be alive by the primary at the end of the operation.

4.3 Reads

If a replica R receives a Read request from a front-end, it first acquires a lock for
reading, guaranteeing that no Update requests are being processed. (Other Read
requests may be processed in parallel, however.) Then, R checks that it believes
itself to be the primary, and if not, replies with an appropriate hint. Otherwise,
it checks that it holds a read lease from every secondary S it believes is alive, as
follows. The leasing mechanism employs a parameter GracePeriod, which is the
maximum amount of network or other delay that is permitted before we consider a
fault has occurred. (Note that the value chosen for GracePeriod affects performance,
but not correctness.) We define the lease period L by

L = HeartbeatPeriod + GracePeriod. (1)

If the primary R has received a heartbeat from secondary S within the last lease
period, its lease from S is still valid. If R has a valid lease from every secondary
it believes to be alive, R simply reads its local data value from stable storage and
ACM Journal Name, Vol. V, No. N, Month 20YY.
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returns it to the front-end.
On the other hand, suppose the read lease from some live secondary S has expired.

Then R attempts to kill S, by passing a GSM decree. Obviously, if the decree fails
with a BadEpoch response, R Resets itself. Otherwise, R succeeds in killing all
secondaries whose leases have expired, and it can return its local data value to the
front-end.

Note that the following invariant therefore holds for successful read operations:
for every secondary S that the primary believes to be alive at the end of the
operation, the primary held a valid read lease from S at some instant during the
operation.

4.4 Heartbeat processing at the primary

Recall that heartbeat requests are tagged with increasing sequence numbers by
the secondary that sends them, so a primary R that receives a heartbeat request
from some secondary S first checks this sequence number and rejects the request
if it is older than a previously-received request. Otherwise, R checks to see if the
time elapsed since the last heartbeat was received is less than the lease period L
(Equation 1). If so, the heartbeat is on time and R responds with a success code
to S. Otherwise, the heartbeat has arrived too late and R attempts to kill S by
passing a GSM decree. As usual, R Resets itself if the decree fails with a BadEpoch.

4.5 Takeover

As described in Section 4.1, a live secondary S ensures that it sends a heartbeat
request to its primary every HeartbeatPeriod. If the primary does not send a timely
and successful response, S attempts to kill the existing primary and take over as the
new primary. This “takeover” algorithm employs a parameter MaxClockDrift, which
expresses the maximum factor by which two clocks in the system can disagree, when
measuring an interval of real time. The key step in the takeover algorithm that
guarantees correctness is that S waits for the lease expiry time ∆ before attempting
to kill the primary, where the lease expiry time is given by

∆ = 2× L×MaxClockDrift. (2)

After waiting for time ∆, S submits a GSM decree killing the current primary and
appointing itself as the new primary. Whether or not this decree succeeds, S then
Resets itself.

The appendix shows rigorously how the value of ∆ in (2) leads to consistent
behavior; we summarize the argument here. Recall that there is only ever one
heartbeat outstanding between S and the primary, and heartbeats employ sequence
numbers to prevent out-of-order delivery. So if S sent its most recent heartbeat h at
time t, no earlier heartbeat from S is accepted at the primary after t. There are two
cases: (i) h arrives before t+L, and (ii) h arrives after t+L. In case (i), we know the
primary receives no heartbeat messages in the interval [t+L, t+2L]. In case (ii), the
primary receives no heartbeat messages in the interval [t, t + L]. Thus, by waiting
for at least two lease periods (1) without sending a heartbeat request, S guarantees
that the primary experiences at least one lease period without receiving a heartbeat
from S. The primary, having experienced a whole lease period without a heartbeat
from S, will never respond to a Read request without first successfully killing S –
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Fig. 5. A possible takeover sequence. Communication between R1 (the current primary) and
R2 (a secondary) has broken down. (1) R2 notices a missing heartbeat response from the primary
and tries to kill it via a GSM decree, which succeeds. (2) Meanwhile, the old primary R1 can
continue serving reads from the front-ends until its read leases expire. (3) After waiting the lease
expiry time ∆, R2 can Reset, which begins by getting the latest GSM information. (4) The new
primary R2 must reconcile with any live secondaries (in this case R3) before beginning to serve
read and update requests. (5) Meanwhile, the old primary’s read lease from R2 has expired, so
if the old primary receives a read request, it (6) tries to kill R2 – in this case the attempt fails
because R1’s epoch number is out of date.

either during the processing of a heartbeat (Section 4.4) or read (Section 4.3). Of
course this discussion assumed that clocks on the primary and secondary advance
at the same rate; the extra factor of MaxClockDrift in (2) allows for differing clock
rates.

Figure 5 shows a possible sequence of events involving the takeover algorithm.

5. PERFORMANCE PROPERTIES

This section analyzes the cost of Niobe operations under normal, failure-free condi-
tions. We measure two types of cost, resource cost and latency cost, and conclude
that Niobe’s costs are optimal in several respects according to some simple defini-
tions of these costs. Caching effects are ignored for this worst-case analysis.

Latency is measured in terms of message delays and storage delays. A message
delay is the time for a message to be transmitted from one Niobe replica to another.
A storage delay is the time for a replica to read or update its data item. We define
the latency of an operation to be the number of delays of each type that must occur
between the arrival of the front-end’s request and the departure of the reply to the
front-end.

Resource cost is measured in terms of the number of messages, and the number
of stable storage accesses. We define the resource cost of an operation to be the
number of messages and storage accesses that must occur between the arrival of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the front-end’s request and the departure of the reply to the front-end.
First consider update operations. Under failure-free conditions, there is one mes-

sage delay for ApplyUpdate requests from the primary to the secondaries, one stor-
age delay for the secondaries to apply the update, and one message delay for the
secondaries to send an ApplyUpdate response to the primary. So the total latency
cost of an update is two message delays and one storage delay. The resource cost
is easily seen to be 2(N − 1) messages and N storage accesses, when there are N
replicas alive.

Read operations are even easier to analyze, since under failure-free conditions,
the primary simply reads its local data value and returns it to the front-end. The
latency cost is zero message delays and one storage delay; the resource cost is zero
messages and one storage access.

Clearly, the simplistic cost modeling above is not appropriate for all purposes.
One obvious improvement would be to acknowledge that messages transmitting
data (as opposed to just acknowledgments) are far more costly if the data size is
large. In this case one could distinguish between “data messages” and “regular
messages”. The latency cost of an update would then be one data message delay,
one regular message delay and one storage delay; its resource cost would be N − 1
data messages, N − 1 regular messages, and N storage accesses. For reads, the
costs would be unchanged.

We claim the above costs are optimal for reads, and optimal in terms of storage
delays and accesses for updates: this claim follows trivially from the fact that
the cost is exactly 1 storage delay or access in each case, and any other protocol
must also access the stable storage before it can return or update the data value.
On the other hand, Niobe is not optimal in terms of resource cost. For example,
Chain Replication [van Renesse and Schneider 2004] achieves resource cost of N−1
messages and N storage accesses. However, the storage accesses are serialized in
Chain Replication, resulting in a latency of N storage delays.

6. CONSISTENCY GUARANTEES

The software engineers who maintain a replicated storage service, and those who
write client software for it, are unlikely to be experts on the theory of distributed al-
gorithms. But it is precisely these engineers who must understand the properties of
the system so that they can use it correctly. Therefore, this section attempts to give
accurate but comprehensible guarantees on Niobe’s consistency properties, without
relying on the subtle distinctions between such notions as linearizability [Herlihy
and Wing 1990], sequential consistency [Lamport 1979], or one-copy serializabil-
ity [Papadimitriou 1979]. Section 6.1 explains a simple analogy between Niobe’s
properties and those of a hard drive. Section 6.2 gives mathematically rigorous
statements of Niobe’s properties, using language that we hope offers useful insights
to systems researchers and practioners. Section 6.3 compares with the established
notions of linearizability and strict linearizability. Section 6.4 describes our ef-
forts to verify the correctness of Niobe using the TLA+ specification language. A
complete description of the formal consistency guarantees is given in the appendix.
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6.1 “Just like a disk” consistency

The simplest way of describing Niobe’s consistency properties is that the system
behaves “just like a disk”: requests appear to be processed in the real-time order
in which they are received by the system. In particular, a read request reflects
the effects of all update requests received earlier. This guarantee applies even to
update requests that either (i) returned Failure, or (ii) did not return a value (i.e. are
still pending). In both cases, one may assume the failed or pending update request
either had the requested effect in its place in the real-time ordering, or had no effect
at all. The only way to determine which of these possibilities actually occurred is
to issue a read request after the failed or pending update. Alternatively, one can
eliminate the uncertainty by issuing another update request that, if successful, will
overwrite the uncertain existing data value. Note that this behavior is indeed “just
like a disk”: when a disk write returns a disk error, the only way to be sure about
the disk contents is to read it or overwrite it.

6.2 Formal Mathematical Guarantees

An operation o is a request-response pair of messages (oreq, oresp), resulting from a
front-end’s Update or Read request.5 Each of these messages arrives at, or leaves,
some Niobe replica machine at a particular instant in time. Let τ(oreq) be the
wall-clock time at which oreq is received by its destination, and τ(oresp) be the time
at which oresp is sent by its source.
Update and Read responses include a special Success code if they completed

successfully. Successful Read responses also include the data value that was read,
of course. For a completed Update operation that requested a mutation M, we define
the post-value of the update to be the local data of the primary that coordinated
the update, after the mutation M was applied.

Equipped with these definitions, we can now state the first important consistency
property of Niobe, termed causality : read requests only return values that were
previously written, and were not subsequently overwritten. Figure 6 depicts the
statement of the theorem graphically.

Theorem 6.1. (Causality property) “Every value read was written, but not over-
written.” Suppose the system’s history includes a read operation r = (rreq, rresp)
that returns (Success, D). Then there exists an update operation ũ that “wrote”
D, and there does not exist an update operation u′ that “overwrote” D. Formally,
there exists ũ = (ũreq, ũresp) such that

—the post-value of ũ is D

—the write arrived before the read:

τ(ũreq) < τ(rreq) (3)

—there does not exist an update operation u′ = (u′req, u
′
resp) such that

—u′ returns Success
—the post-value of u′ is D′ for some D′ 6= D

5For any request that does not receive a response in a given finite history of the system, we can
insert an artificial timeout response at the end of the history, so it is safe to assume that all
operations do indeed consist of a pair of messages.
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Fig. 6. Theorem 6.1 says that if a request r successfully reads a data value D, then some update
ũ must have previously written D, and no intervening update u′ overwrote D – even if all such
requests originate from and arrive at distinct front ends and distinct replicas.

—u′ is received after ũ and completed before r is received:

τ(ũreq) < τ(u′req) (4)

and

τ(u′resp) < τ(rreq). (5)

The next theorem states a second consistency property of Niobe: written values
are persistent. Figure 7 depicts this graphically.

Theorem 6.2. (Persistence property) “Written values are persistent: two reads
return the same value if there are no intervening or pending writes.” Let r =
(rreq, rresp) and r′ = (r′req, r

′
resp) be two read operations that return (Success, D) and

(Success, D′) respectively. Suppose that r completes before r′ begins:

τ(rresp) < τ(r′req). (6)

Suppose further that there are no intervening writes: there does not exist an update
operation u = (ureq, uresp) with

τ(rreq) < τ(ureq) < τ(r′resp). (7)

Finally, suppose there are no pending writes when r begins: there does not exist an
update operation6 u = (ureq, uresp) with

τ(ureq) < τ(rreq) < τ(uresp). (8)

Then D = D′.

Notice that the “persistent write” property of Theorem 6.2 does not hold when
there are pending updates. In principle, a pending update could be applied at any
future time, thus destroying any reasonable notion of persistence. Niobe has some
much stronger guarantees that eliminate this possibility, which are stated below.
Details and rigorous proofs are given in the appendix.

6Recall that for any actual, finite history of the system we can append Failure responses for any
unmatched request.
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Fig. 7. Theorem 6.2 says that two read requests r and r′ read the same value D provided there
are no intervening updates u – even if all such requests originate from and arrive at distinct front
ends and distinct replicas.

The first guarantee tells us that any successful read or update operation perma-
nently cancels any currently pending updates:

Theorem 6.3. (Operation Cancellation Effect) The value returned by any read
operation received after the completion of a successful read or update operation o is
not affected by pending updates u received before o: we may assume some response
uresp was sent before oreq was received.

The second guarantee tells us that if a resetting primary successfully completes its
reconciliation phase, currently pending updates are again permanently canceled:

Theorem 6.4. (Reconciliation Cancellation Effect) The value returned by any
read operation received after the completion of a primary’s reconciliation phase is
not affected by pending updates u received before the primary started the Reset

algorithm: we may assume some response uresp was sent before Reset started.

The proofs of Theorems 6.1-6.4 are given in the appendix, but it is easy to gain
intuition for why they hold. The theorems hold trivially during periods when the
primary’s identity is undisputed, since the primary serializes all reads and updates.
The GSM acts like a single, centralized process, ensuring that exactly one secondary
takes over as a new primary in any given epoch. Our lease mechanism (Section 4.5)
ensures the old primary will cease replying to all requests before the new one starts
processing new requests.

Note the guarantees given here all hold in the presence of network partitions.
Replicas in the same partition as a majority of GSM servers will continue to func-
tion, and any others will be killed off. Progress will cease altogether if no partition
contains a GSM majority.

Finally, note that as with any storage system that makes no assumptions about
the external network, the guarantees are given in terms of messages entering and
leaving the system (in this case, Niobe replica machines). Clients and front-ends
must implement reliable FIFO channels between themselves and Niobe machines
in order to push guarantees out to the clients. In practice, using TCP or standard
sequence number techniques would achieve this.
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6.3 Comparison with linearizability

Linearizability [Herlihy and Wing 1990] is a commonly-accepted notion for consis-
tency in replication protocols. However, as others have pointed out [Aguilera and
Frølund 2003], systems that support linearizability can, in principle, allow behavior
that may be counter-intuitive to users. Aguilera and Frølund [2003] give a power-
ful example of this. Consider an Automatic Teller Machine (ATM) that supports
linearizability. It might dispense money after checking a customer’s account for
sufficient funds, but encounter a fault before debiting the account. The account
is eventually debited after the fault is repaired, but it could be that the user does
not have sufficient funds at that time because of other successful withdrawals in
the interim. The ATM’s behavior is linearizable, but probably does not accord
with the account holder’s intuition. A standard solution of this problem is to use
database-style transactions, but this is too heavy-weight for a storage service such
as Niobe. Instead, Niobe’s guarantees resemble strict linearizability [Aguilera and
Frølund 2003], a stronger form of linearizability that includes the notion of op-
erations aborting before a customer could observe counter-intuitive effects. Theo-
rems 6.3 and 6.4 are the machinery that upgrades Niobe from regular linearizability
to a stricter form.

6.4 Verification with TLA+

Experience has shown that hand-crafted, conventional mathematical proofs about
the properties of distributed algorithms almost always contain errors. Model-
checking is a powerful tool that can be used in these situations to increase one’s
confidence about the properties of a distributed algorithm. Therefore, we speci-
fied Niobe in the formal specification language TLA+ [Lamport 2002], and checked
some of its properties using the model-checker TLC.

The specification consists of about 400 lines of TLA+, and results in a model
with approximately 250 million distinct states, which takes about 2 days to check
on a single-CPU machine. As with most specifications, it differs in some respects
from the ideal protocol. In our case, the specification does not permit out-of-order
message delivery and does not model the reincarnation of secondaries whose data
value is out-of-date. The specification does not model real time, so the read lease
mechanism is not incorporated – as will be seen below, this has some interesting
consequences. In order to restrict the state space to a reasonable size, only N = 3
replicas and two distinct data values are permitted.

It was impractical to store a history of all requests in the model, so we could not
directly verify Theorems 6.1 and 6.2, since both make statements about the entire
history of requests. Nevertheless, the model-checker was able to verify some useful
and encouraging invariants. For example, it was proved that the replicas remain in
sync:

Invariant 6.5. If there are no updates being processed, the stable storage of
every Alive replica possesses the same local data value.

We were also able to prove that updates appear persistent to front-ends which
perform their reads at the “true” primary (i.e. the replica which is currently primary
according to the GSM):
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Invariant 6.6. If there are no updates being processed, a read at the true pri-
mary returns the post-value of the most recent successful update.

The fact that the read lease mechanism is not modeled means that more general
“persistence” invariants do not hold in the specified system. For example, it is
not true that all reads return the post-value of the most recent successful update.
Consider the following counterexample, which can result in what we call a “stale
read”. Replica R1 is the primary and R2 a secondary. The value D is written on
R1 and R2 because of an update request to R1. Then communication between R1

and R2 breaks down; R2 notices a missing heartbeat, kills R1 and becomes the true
primary. The value D′ is then written on R2 because of an update request to R2 (it
need not replicate D′ to R1, as R1 is believed dead). Then a read request arrives
at R1, which happily returns the stale value D. Of course, this cannot happen in
the real Niobe protocol: R2 must wait for a lease to expire before taking over as
primary, in which case R1 will notice the expiry of the lease before returning a stale
read value.

Despite the fact that the specification could not model leases, it gave us some
important guidance on this issue of stale reads, by encouraging us to carefully scru-
tinize the leasing mechanism and the mathematical arguments for its correctness.

7. EXPERIENCE AND RESULTS

Niobe is currently deployed, and serving real customer data. In this section we
provide details showing Niobe is efficient and effective in practice. The deployment
uses typical server-class rack-mounted machines, connected by a combination of
100 Mb and Gigabit ethernet in a data center. Each machine possesses multiple
processors, a modest amount of memory, and several terabytes of attached storage
in one or two disk arrays.

Two different hardware configurations are both attractive for our environment.
In one, the disk arrays employ RAID-5; in the other, they are configured in JBOD
(“just a bunch of disks”) mode. Specifically, RAID-5 with two replicas of each data
item (2xRAID-5), and JBOD with three replicas of each data item (3xJBOD), both
met our requirements in terms of mean time to data loss based on manufacturers’
specficiations. 2xRAID-5 is cheaper since it consumes less storage, but its perfor-
mance can be significantly worse for small writes and during the rebuild of a failed
drive. The first set of Niobe users opted for 2xRAID-5, but 3xJBOD deployments
are also likely in the future. This is one reason for the requirement that Niobe
should be flexible, offering excellent performance and guarantees for N = 2, 3 or
more.

Because the vast majority of operations can proceed in parallel without any cen-
tralized bottleneck, we expected that Niobe exhibit near-perfect scalability. Fig-
ure 8 demonstrates this unsurprising, but reassuring, result on our test cluster. The
experiment uses a simulated workload whose distribution of data sizes, updates, and
reads is identical to one of our major customers. The average data size of read and
write requests is 30 kB, but with huge variability from 500 bytes to about 50 MB.
This workload was run against Niobe clusters of 4, 8, and 16 back-end machines re-
spectively, using the 2xRAID-5 configuration described above. In particular, there
are N = 2 replicas for each data item, so each machine acts as the primary for
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Fig. 8. Throughput scalability of Niobe

approximately half of the data it stores. In each case, sufficient front-end machines
are used to saturate the back-ends (it turns out that over 30 front-end machines are
required when there are 16 back-ends), and each run takes between 1 and 4 hours
to complete. Figure 8 shows the average number of operations per second achieved
in each run. It is clear that the throughput scalability is very close to linear.

Figure 9 shows the latencies for read and write operations broken down according
to the data size of the operation. The workload and 2xRAID-5 configuration are
the same as in the scalability experiment, but now run on a minimal cluster of 2
back-ends. Figure 9 graphs the median latency for operations in a given size range,
with error bars representing the 5th and 95th percentiles respectively. There is a
painfully obvious performance cliff for writes below 4 kB in size: writes smaller
than this take around 200 ms to complete, whereas larger writes can take as little
as 40 ms. This is not the well-known “small write” performance issue with RAID-5,
as our RAID stripe size is 128 kB. Rather, this cliff may be due to additional read-
modify-writes being performed for write requests below the filesystem block size of
4 kB. For both reads and writes, the fixed cost of accessing the disk dominates for
data sizes less than about 50 kB, but the cost eventually becomes linear in the data
size (at around 100 kB for reads and 2 MB for writes). Large writes are significantly
faster than large reads. One possible reason for this is the use of NVRAM cache
in the RAID controllers: the reads in this workload are random and derive little
benefit from the cache, whereas large writes can safely return as soon as the data
is stored in NVRAM.

Figure 10 shows the performance of the same two-machine system over time, as
it undergoes a machine failure and subsequent recovery. At minute 16, one of the
machines is brought down, and all affected slices (i.e. all slices in this two-machine
system) must fail over, either killing off an unresponsive secondary or killing off an
unresponsive primary and promoting the secondary to primary. For technical rea-
sons that are irrelevant to the present discussion, the deployment currently enforces
a 2.5-minute delay before failover, so single-replica (or “degraded”) operations be-
gin in minute 19, with throughput quickly climbing to about 10% less than before
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the failure. We expect some drop in performance during degraded operation, since
the surviving machine is now acting as primary for all of its slices, and primaries
do more work than secondaries. (Primaries serve read and write requests, whereas
secondaries are impacted only by writes.) At minute 22, the failed machine is
brought back online. Normal operations continue during recovery, approximately
20% slower. The system returns to the original level of throughput at minute 23,
when recovery completes.

8. COMPARISON WITH EXISTING PROTOCOLS

Many of the techniques used in Niobe are adapted from previous work. For example,
Niobe uses the “primary-backup” or “primary copy” paradigm for fault-tolerance
(in which a primary receives an update from a customer, sends it to one or more
secondaries, and then replies to the customer). Primary-backup techniques have
been studied since at least the 1970s [Alsberg and Day 1976], are employed in nu-
merous commercial products, and many variants have been proposed and analyzed
(e.g. [Budhiraja et al. 1993]). The use of the GSM for ensuring the existence of
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exactly one legal primary at all times is strongly reminiscent of the “witness” used
by HARP [Liskov et al. 1991] the “auxiliary processor(s)” in Cheap Paxos [Lamport
and Massa 2004], the “global state module” in Petal [Lee and Thekkath 1996], the
“master” in Chain Replication [van Renesse and Schneider 2004], and has similar-
ities to the Chubby lock service as used in several of Google’s services [Burrows
2006]. GSM epochs are closely related to the “viewstamps” in Viewstamped Repli-
cation [Oki and Liskov 1988], and the “sessions” in Dynamic Voting [Dolev et al.
1997]. (Dynamic Voting is particularly relevant because the replication scheme in
Federated Arrays of Bricks (FAB) [Saito et al. 2004]—a relatively recent system
with goals similar to Niobe—is based on it.) Further, HARP and Chain Repli-
cation employ a read lease scheme similar to Niobe’s, permitting the primary to
perform most reads without contacting any secondary. Finally, our technique of
using the GSM to kill and reincarnate secondaries, while using all live replicas (but
not the GSM) for performing updates, is mathematically equivalent to the “wheel”
quorum system studied extensively in the quorum system literature (e.g. [Hassin
and Peleg 2006]).

So what is new and interesting about Niobe? In a nutshell, we believe Niobe
is more practical for large-scale data storage than previously-published replication
protocols that we are aware of. Our definition of “practical” comprises: simplicity,
flexibility, consistency and performance. We address each of these in turn.

Simplicity: Because Niobe is deployed commercially, we know that software engi-
neers and data center operators can implement, maintain, and write client software
for a Niobe-based system without any specialized knowledge of distributed systems
algorithms. This contrasts with many published replication protocols which may
appear simple, but in fact require one or more building blocks (for example, dis-
tributed leadership election, reconciliation, or reconfiguration algorithms) that are
not completely specified, and in themselves require considerable distributed sys-
tems experience for correct implementation or maintenance. Niobe avoids this by
using a centralized GSM to store and update the system configuration. Since the
GSM need not itself be extremely efficient or scalable (it is only accessed when
a component fails), we regard this as a previously-solved problem. One can use
either a commercial database, or a distributed consensus algorithm such as Paxos
running on a fixed set of nodes (dynamic quorums are not required). Chain Replica-
tion [van Renesse and Schneider 2004] also uses a GSM-like entity, and is arguably
even simpler than Niobe: the chained replica structure results in simple, elegant
reconfiguration algorithms with a clear proof of strong consistency. However, the
significant extra latency of the chain structure for large writes precludes the use of
this design for our application.

Flexibility: Reliability is important, but so is continuous service. Storage system
administrators should have the flexibility to determine what is most important.
Niobe delivers this flexibility, since the administrator can set both N , the number
of replicas on which data is stored during failure-free operation, and Q, the mini-
mum number of replicas on which data may be stored, even in the face of failures.
This covers a particularly important special case which has perhaps been given
insufficient attention in the literature: in some cases, cost is of such critical impor-
tance that N = 2 is the best choice. But in this case, many previously-published
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protocols will prevent any updates during a failure, since with only one remaining
replica, it is not possible to update a majority of the replicas. (It appears that
viewstamped replication and FAB both suffer from this problem, for example.) In
contrast, if the system administrators value continuous service highly enough that
the risk of single-replica updates is worth it, they can set Q = 1, and Niobe can
happily proceed to perform updates on the one remaining replica during a failure.
Consistency: Niobe has simply-stated consistency properties (Theorems 6.1 and
6.2) which have been proved correct, and some additional properties have been
verified using formal model-checking tools. In the notoriously buggy world of dis-
tributed algorithms, such correctness arguments constitute an important feature of
a protocol. FAB, Chain Replication, and Viewstamped Replication are examples
of other protocols that also provide clear statements and proofs of their consistency
guarantees, so Niobe is by no means unique in this respect.
Performance: As argued in Section 5, the cost of Niobe operations in the absence
of failures is optimal in certain important respects. This optimality is clearly irrele-
vant in many cases: if the data size dominates other messages, then extra rounds of
messages and/or piggybacking techniques result in indistinguishable performance
for non-optimal protocols. For example, it was recently shown that voting-based
reads, which require accessing a majority of replicas rather than just the primary,
can be efficient in practice despite the extra messages required [Saito et al. 2004].
However, there are situations in which the optimality of Niobe makes an important
difference, especially when the data items being stored are small. The performance
of protocols which use two-phase commit for updates, such as viewstamped repli-
cation and HARP, will suffer in such cases; the same applies to protocols which
contact more than one replica for reads, such as FAB. Chain Replication, as al-
ready mentioned, suffers a significant latency penalty for large writes, since each
replica in the chain must complete its write before forwarding the request to the
next replica.

It should be emphasized that some of the simplicity and flexibility of Niobe is due
to the deliberately limited read/update interface offered to the customers. Many
other replication protocols are more powerful: for example, viewstamped replication
and all commercial replicated databases permit arbitrary transactions on multiple
data items. On the other hand, designers of replicated file systems have sometimes
opted for weaker consistency than Niobe (e.g. the Google file system [Ghemawat
et al. 2003], Bayou [Petersen et al. 1997], Coda [Kistler and Satyanarayanan 1992]),
which is not appropriate for our customers. The previous work most similar to
Niobe is probably Chain Replication, which showed that a storage service can
provide high throughput and availability without sacrificing strong consistency.
Niobe shows that one can in addition achieve low latency, without sacrificing on
throughput, availability, or consistency; and Niobe further offers empirical proof
that the protocol is practical at scale.

As already stated, we believe the primary contribution of Niobe lies in tastefully
combining previously-published techniques to produce an extremely practical pro-
tocol. However, another possible source of novelty is the first detailed description of
a decentralized read lease mechanism with multiple replicas. The Google Accounts
service [Perl and Seltzer 2006] appears to use a similar approach, but does not spec-
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ify the duration of the leases required for correct operation, nor provide a proof of
this correctness. Another difference between Niobe and the Google Accounts ser-
vice is that Google Accounts relies on communication with a majority of replicas,
rather than the more flexible possibility of killing all unresponsive secondaries. The
basic technique of decentralized read leases is perhaps also implicit in HARP, but
the HARP paper describes the details of read leases only in the case of a single
secondary. And this case is degenerate: because there is only a single outstand-
ing lease, it is equivalent to the well-known centralized lease scheme of Gray and
Cheriton [1989]. In contrast, Niobe uses the fact that every live secondary grants
its own lease to the primary, which performs a read only if it succeeds in killing any
live secondary whose lease has expired. There is no need for a central lease server
or lock server.

9. CONCLUSION

Niobe is a protocol and system for building large-scale replicated storage services
in practice. It follows the primary-backup paradigm, and separates reconfiguration
activity into a separate, highly-reliable Global State Manager module. Niobe has
simply-stated, rigorously-proven strong consistency properties which are of practi-
cal use to its clients. Reads and writes have optimal storage latency in theory, and
excellent performance in practice. Niobe is currently deployed as the backend of a
commercial Internet service. We hope it can serve as a useful model for building
storage services in the future.

APPENDIX

A. CLIENT-SIDE ALGORITHM DESCRIPTIONS

The next four subsections describe the API functions of the four Niobe services
from the point of view of their clients. A following section (Appendix B) describes
the algorithms used by the servers to implement the API functions. The services
and API functions described here are summarized in Figures 3 and 4.

The coordinator process employs a local, in-memory reader-writer lock (Read-
WriteLock), which will permit multiple parallel reads when held for reading, but
guarantees that when held for writing, only a single write and no reads are in-flight.
Recall that the coordinator maintains a FIFO queue of Read and Update requests,
and it is essential that ReadWriteLock is acquired on behalf of these requests in
this FIFO order. Finally, the coordinator also maintains maintains a local binary
variable in memory: Fitness, whose value can be either Good or Bad.

A.1 Data service

A coordinator process exports 2 data service API functions to the customers:
Update and Read.

Update(Mutation M). The customer calls this function to update the data value
according to some mutation M. The mutation can be any operation that can be im-
plemented atomically by a replica on its stable storage. Some obvious possibilities
are: (i) overwriting the data value, (ii) appending to the data value, or (iii) per-
forming a compare-and-swap on the data value. A Niobe implementation could
permit one or more of these possibilities.
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Updates can be sent to any replica, but they will fail unless sent to a replica that
believes it is the primary. Customers can cache their own belief about the primary’s
identity, and update it using the hint supplied whenever their belief is wrong (see
below).

The Update operation can return one of the 4 values Success, Failure, Invalid, or
(NotPrimary, hint = r). The interpretation of these return values is as follows:

—Success: the update operation was successfully applied to the Niobe state ma-
chine. Formal guarantees will be given later, but informally, this means that the
update reached stable storage on all Alive replicas, and that the number of such
replicas is at least the minimum update replication factor Q.

—Failure: the update operation may or may not have been applied to the Niobe
state machine, but consistency is nevertheless maintained. This “consistency”
is most easily explained as being “just like a disk” (see Section 6.1); a formal
definition and proofs are given in Appendix D.

—Invalid: the update operation was not permissible, and therefore wasn’t applied.
For example, perhaps a compare-and-swap operation returned false from its
“compare” phase.

—(NotPrimary, hint = r): the replica to which the update request was sent does not
believe it is the primary, and suggests trying replica r instead.

Customers can treat a timeout the same as a Failure, except that they might also
consider retrying at a different replica.

Read(). The customer calls this function to read the current data value D. As
with Update, the call should be sent to the primary. The possible return values are
(Success, Dval), Failure, or (NotPrimary, hint = r). Informally, Success means that
Dval is equal to the latest value of D that was written; a formal definition is given
Appendix D. Failure gives the client no information; it can only retry, perhaps at a
different replica. NotPrimary has the same interpretation as for Update.

A.2 Clerk service

The clerk process on each replica exports 2 clerk service API functions to the
coordinator processes: ApplyUpdate, and Reconcile. A coordinator process will
only issue these requests if it resides on a replica that believes it’s the primary.

ApplyUpdate(Epoch e, Mutation M). A coordinator process on a primary replica
sends this request to the clerk process on any replica (let’s call it the “target
replica”) in order to apply the mutation M to the target replica’s local data value.
The possible return values are Success, Failure, and BadEpoch. Success means that
the target replica has applied to the requested mutation and stored its result in
stable storage. Failure means that the mutation may or may not have been applied
(but recall that all replicas use standard techniques to make their mutations atomic,
so the target replica’s local data value is guaranteed to either be the old value or the
correct new value). BadEpoch means that the target replica’s cached epoch num-
ber is greater than the primary’s cached epoch number e—so the primary should
perform a Reset().
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Reconcile(Epoch e, Data d). A coordinator process on a primary replica sends
this request to the clerk process on a secondary replica (let’s again call it the “tar-
get replica”), in order to overwrite the target replica’s local data value with the
given data d. Note that this operation is an overwrite, not a general mutation: the
intention is that primary sends its own local data value as the parameter d, so on
successful completion, the secondary will be “reconciled” with the primary (and
can be brought back to life, if it was Dead). The possible return values are Success,
Failure, and BadEpoch; the interpretations of these values are very similar to those
in the ApplyUpdate function above.

Note that in a practical implementation, the data value might be very large, so
for efficiency, the reconciliation process might be achieved via an rsync-like proto-
col that transmits only the differences between primary and secondary local data
values. But the final effect of a more sophisticated reconciliation protocol would be
the same as the simple overwrite described above.

A.3 Liveness service

The coordinator process exports two liveness service API functions: Initiate-
Reconciliation (exported to the reset process), and Heartbeat (exported to the
maintenance process).

InitiateReconciliation(Epoch e). The reset process on a replica that be-
lieves itself dead sends this request to the primary when it’s ready to begin rec-
onciliation. The possible return values are Success, Failure, and BadEpoch, which
have very similar interpretations to the two functions above.

Heartbeat(Epoch e, Counter c). The maintenance process on a replica that
believes itself to be a secondary sends this request to the primary periodically.
More precisely, heartbeat messages are sent whenever necessary to ensure that
the primary and each secondary never allow more than HeartbeatPeriod to elapse
without exchanging a heartbeat (or alternatively, taking some remedial action).
The possible return values are Success, Failure, and BadEpoch. Success means that
the primary’s Fitness variable equals Good—so the primary is not aware of any
problems with its own operations. Failure means the primary’s Fitness equals
Bad—so the primary has encountered problems and is hoping that another replica
will take over as primary. BadEpoch has the same interpretation as above—the
requesting replica should Reset() itself. A timeout is treated like a Failure.

A.4 Health service

The GSM exports two health service API functions to the other processes on the
replicas: GetGSMInfo, and SetGSMInfo.

GetGSMInfo(). The maintenance process on a replica sends this request to the
GSM to update the replica’s cached copy of the epoch number, health bits and pri-
mary ID. The return values are either (Success, epoch = e, health = [h1, h2, . . . , hn],
primaryID = p) or Failure. Both are self-explanatory.

SetGSMInfo(newEpoch, newHealth, newPrimaryID). The maintenance process
on a replica (let’s call it the “source replica”) sends this request to achieve one of the
permitted transitions in the Niobe state machine by altering the GSM’s epoch num-
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ber, health bits, and primary ID. Specifically, two of the three types of transitions
listed in Section 3.1 can be achieved this way: (i) kill or reincarnate a secondary,
(ii) reassign the primary. Naturally, the proposed new values must conform to
the rules given in Section 3.1. In other words, newEpoch must be exactly 1 more
than the source replica’s cached epoch number, and exactly one of newHealth and
newPrimaryID can differ from the source’s cached copy: if the primary ID differs,
it must be set to the ID of a live replica, whereas if the health bits differ they must
do so by flipping only a single non-primary bit.

The possible return values of SetGSMInfo are Success, Failure, and BadEpoch.
Success means that the proposed newEpoch was indeed one more than the GSM’s
epoch number, so the proposal was deemed legitimate and the proposed new values
have been recorded on the GSM’s stable storage.7 Failure gives the source replica
no information; it should retry. BadEpoch means the proposed value of newEpoch
was illegitimate; the source replica should perform a Reset().

B. NIOBE’S SERVER-SIDE ALGORITHMS

The previous section described the four Niobe services and their APIs, as sum-
marized in Figures 3 and 4. This section completes the description of Niobe by
detailing the algorithms used to perform each API function in each service. We’ll
need some more notation for this. Denote the cached epoch number, health bits and
primary ID on replica Rk by Ek, Hk, and Pk respectively. The local data value on
Rk is Dk. The individual health bits cached on Rk are Hk = (hk,1, hk,2, . . . , hk,n).

The following four subroutines will be useful for describing the algorithms. Each
description assumes replica Rk is executing the subroutine.

CheckSelfIsPrimary(). If Pk 6= k, return (NotPrimary, hint = Pk), otherwise
return Success.

SynchronizeEpoch(Epoch e). While Ek 6= e,

—If Ek > e, return BadEpoch. If Ek < e, execute the Reset algorithm of Ap-
pendix C.

Once Ek = e, return Success.

CheckPrimaryLease(). Recall from Section 4.5 that the role of primary requires
a lease-like mechanism to prevent customers reading stale values. Informally, every
secondary periodically grants a lease to the current primary, which gives that pri-
mary permission to read and return data values to customers. If the lease issued
by a secondary has expired, then the primary must kill off that secondary before it
can return a data value to a customer.

The leasing mechanism is implemented as follows. The coordinator process on
replica Rk should keep, in memory, a record of the (local) time LastHeartbeat[j] at

7Note that for debugging and sanity purposes, the GSM would probably check the legitimacy of the
new health bits and primary ID, but this is not necessary for correctness of the Niobe protocol:
we assume that replicas are neither malicious nor Byzantine, so they follow the protocol. In
particular, if a replica proposes a legitimate new epoch number, its other proposed values are also
guaranteed to constitute a legitimate transition.
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which it received the most recent communication (a Heartbeat, or any other re-
quest) from each secondary Rj , j 6= k. It also employs two constants: GracePeriod,
and HeartbeatPeriod. HeartbeatPeriod is the maximum time a correctly-functioning
secondary will permit to elapse without communicating with the primary—as de-
scribed below, this is achieved by a secondary sending Heartbeat requests to the
primary whenever necessary. GracePeriod is the maximum amount of network or
other delay (such as scheduling delay on the secondary) that is permitted before
we consider a fault has occurred.8

Here, then, is the CheckPrimaryLease() algorithm:

(1) “Kill unresponsive secondaries”: Let the current time be t. For each j 6= k, if
t− LastHeartbeat[j] is larger than HeartbeatPeriod + GracePeriod, then:
(a) send the GSM a SetGSMInfo request killing secondary Rj .
(b) Reset if this request returns BadEpoch. If the request fails after sufficient

retries, return Failure.
(2) Return Success.

KillSecondary(Integer j)

(1) Send a SetGSMInfo request to the GSM, setting hk,j = Dead. Perform a
Reset() on BadEpoch. Retry a suitable number of times on Failure, and then
perform a Reset().

(2) If the SetGSMInfo request succeeds, set Ek and hk,j to their new values and
return Success.

B.1 Algorithms for the data service

Data service requests are received by a coordinator process on some replica, say
Rk.

Update(Mutation M)

(1) CheckSelfIsPrimary(). If this does not succeed, return NotPrimary, together
with the appropriate hint, to the customer.

(2) “Fail if we aren’t writable”: Acquire Rk’s local ReadWriteLock for writing.
Return Failure if this can’t be accomplished in a reasonable period.

(3) “Bail if the mutation’s invalid”: If the mutation M cannot validly be applied to
Dk, return Invalid.

(4) “Give up if our GSM state is stale”: If, at any time during the remainder
of the algorithm, we receive a BadEpoch response from any ApplyUpdate or
SetGSMInfo request: (i) return Failure, then (ii) perform a Reset().

(5) “Send the mutation to all alive replicas”: For each j such that hk,j = Alive,
send an ApplyUpdate(Ek, M) request to replica Rj .

8Correctness is not affected by the value of GracePeriod, but liveness and performance are both
affected. An excessively short GracePeriod will cause secondaries to be killed off unnecessarily
often, reducing the average number of replicas on which data is stored and causing extra GSM
traffic and resets. An excessively long GracePeriod will lead to a long delay before the system
becomes responsive after a failure.
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(6) “Kill off any faulty secondaries”: For each j 6= k with hk,j = Alive such that—
after a suitable number of retries—the ApplyUpdate request to Rj returned
Failure (or, equivalently, timed out), execute the KillSecondary(j) subroutine.

(7) “Commit suicide if we are faulty”: If the ApplyUpdate request to Rk (which
was sent to the primary’s own clerk process) returns Failure or times out after
suitable retries, return Failure, and set the local Fitness variable to Bad (this
has the effect that some secondary will try to take over as primary after the
next time it sends Rk a heartbeat).

(8) “Return if all alive replicas committed the mutation”: Once it is true that a
Success response from every currently alive replica (i.e. every Rj such that
hk,j = Alive) has been received, return Success if the number of such replicas
was no less than than the minimum update replication factor Q, and Failure
otherwise. In any case, release ReadWriteLock.

Read()

(1) Acquire ReadWriteLock for reading.
(2) CheckSelfIsPrimary(). If this does not succeed, return NotPrimary, together

with the appropriate hint, to the customer (after releasing ReadWriteLock).
(3) CheckPrimaryLease(). If this does not succeed, return Failure to the customer

(after releasing ReadWriteLock).
(4) “Read the local data value”: Read the local data value Dk, and release Read-

WriteLock.
(5) “Return the local data value”: Return (Success, Dk), if the value of Dk was

accessible. If it wasn’t (for example, suppose Dk had to be read from a disk
and the disk returned a read error after suitable retries), set the local Fitness
to Bad, and return Failure.

B.2 Algorithms for the clerk service

Clerk service requests are received by a clerk process on some replica, say Rk. This
clerk executes requests as follows.

ApplyUpdate(Epoch e, Mutation M)

(1) SynchronizeEpoch(e).
(2) Apply mutation M to the current local data value Dk, resulting in a new local

data value recorded in stable storage. Return Success if this was accomplished,
otherwise return Failure (this could be necessary if, for example, a disk or other
error was encountered). Recall that the clerk uses standard techniques to ensure
that the mutation is applied atomically, so that even when it returns Failure, the
stably-stored value of Dk is either the old or new value and not some corrupted
value.

Reconcile(Epoch e, Data d)

(1) SynchronizeEpoch(e)

(2) Atomically overwrite, in stable storage, the local data value Dk with d. If this
is accomplished successfully, return Success, otherwise return Failure.
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B.3 Algorithms for the liveness service

Liveness service requests are sent from the maintenance process on some replica,
say Rj , to a coordinator process on some replica, say Rk. Each coordinator process
maintains some local state in memory, for every j 6= k: LastHeartbeat[j], which is
the (local) time at which the most recent heartbeat from Rj was received in the
current epoch; and HeartbeatCounter[j], which is the counter value sent with that
most recent heartbeat.

The coordinator executes liveness service requests as follows.

InitiateReconciliation(Epoch e)

(1) SynchronizeEpoch(e)

(2) For debugging purposes, one could execute CheckSelfIsPrimary() here, but
it’s not necessary for correctness. The client will only send an InitiateRecon-
ciliation to a replica it believes is the primary. Since the client and server
both believe the same thing after SynchronizeEpoch, the server must also
believe it is the primary, so there is no need to check this. Furthermore, the
client requesting reconciliation should be a dead secondary, so hk,j = hj,j =
Dead, but there’s no need to check for this for the same reason.

(3) For efficiency, one could perform a preliminary reconciliation here before block-
ing updates during the “real” reconciliation. That prevents a long delay in
serving update requests. The preliminary reconciliation is easy to perform: just
consecutively issue Reconcile(Ek, Dk) requests to Rj until they are observed
to complete quickly enough (or some sensible maximum number of attempts is
reached).

(4) “Fail if we aren’t writable”: Acquire Rk’s local ReadWriteLock for writing.
Return Failure if this can’t be accomplished in a reasonable period.

(5) “Reconcile with the secondary”: Send a Reconcile(Ek, Dk) request to Rj . If
this Reconcile returns Failure, return Failure. If it returns BadEpoch, return
Failure and perform a Reset(). In both cases, release ReadWriteLock. Other-
wise, Reconcile returns Success, so continue.

(6) “Activate the reconciled secondary”: Issue SetGSMInfo to the GSM, reincar-
nating the reconciled secondary by setting hj = Alive. If this results in Failure,
retry; if BadEpoch, return Failure and perform a Reset(); otherwise the GSM
returned Success so do the following:
(a) Wait for a length of time specified by the parameter TypicalResetDuration,

which specifies how long a well-behaved secondary should take to reset itself
as an Alive secondary. The reason for this is that if we resume operations
too quickly, we may be tempted to kill the resetting secondary (it may
fail to send a heartbeat, or fail to respond to an ApplyUpdate). While
killing such a secondary causes no correctness problems, it does lead to
obvious performance problems (the secondary could be trapped in a cycle
of continuous death and reincarnation).

(b) Set hk,j = Alive
(c) Set LastHeartbeat[j] = current local time t.
(d) Set HeartbeatCounter[j] = 0.
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(e) Release ReadWriteLock.

Heartbeat(Epoch e, Counter c)

(1) SynchronizeEpoch(e)

(2) As above, CheckSelfIsPrimary() could be useful for debugging but is not
necessary.

(3) If c < HeartbeatCounter[j], abort without sending a response. (The request
must be a retry of some heartbeat to which we have already responded, and
Rj must have received that response.)

(4) If c = HeartbeatCounter[j], go to step 7. (The request is a retry of some
heartbeat to which we have already responded, but Rj might not have received
that response.)

(5) Otherwise, we have c > HeartbeatCounter[j]. Let the current local time be t.
If t − LastHeartbeat[j] > HeartbeatPeriod + GracePeriod, send no response and
instead execute KillSecondary(j). Otherwise, continue.

(6) Set LastHeartbeat[j] = t and HeartbeatCounter[j] = c.
(7) If Rk’s local Fitness is Good, return Success; otherwise return Failure.

B.4 Algorithms for the health service

The GSM’s algorithms for implementing the health service are very obvious. On
receiving a GetGSMInfo request, the GSM returns its current values for the epoch
number, health bits and primary ID. On receiving a SetGSMInfo request, the GSM
returns BadEpoch if the requester’s epoch number is out of date, and otherwise
the GSM updates its variables with the submitted values (recording them in stable
storage) and returns Success. If it encounters a problem doing so, it returns Failure.

C. THE RESET ALGORITHM

Apart from the four Niobe services described above, the only activity performed by
a Niobe replica is the reset algorithm. A reset occurs when a replica

—first begins operation
—restarts after a transient failure
—receives a BadEpoch response
—discovers its epoch number is out of date during SynchronizeEpoch().

The reset algorithm on replica Rk is as follows.

Reset()

(1) “Cease all activity”: kill any currently-running services. (If some requests
are currently being processed, we can either wait until they are finished or
terminate their processing. In practice, it is probably most graceful to give
requests a reasonable time to complete, then terminate any remaining ones.)

(2) “Do local recovery”: Perform any local recovery operations to ensure that the
stably-stored value Dk is valid. (For example, if the replica was halfway through
a long-running update to Dk when it encountered a failure and was rebooted,
it now uses standard logging and recovery techniques to revert Dk to its value
before the interrupted update.)
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(3) “Get GSM information”: Send the GSM a GetGSMInfo request, and assign the
result to Ek, Hk, Pk.

(4) “Launch clerk process”: Start the clerk process, which listens for clerk service
requests and acts on them.

(5) “Start primary or secondary operations”: If we are the primary (Pk = k), run
the StartPrimary() algorithm described below. Otherwise: if we are a live
secondary (Pk 6= k, hk,k = Alive) run the StartAliveSecondary() algorithm; if
we are a dead secondary (Pk 6= k, hk,k = Dead) run the StartDeadSecondary()
algorithm.

StartPrimary(). This algorithm consists of the following steps:

(1) Initialize:
(a) Fitness = Good
(b) LastHeartbeat[j] = current local time t for all j 6= k
(c) HeartbeatCounter[j] = 0 for all j 6= k

(2) “Reconcile with all alive secondaries”: For each i 6= k such that hk,i = Alive,
issue a Reconcile(Ek, Dk) request to Ri. If any of these requests returns
BadEpoch, perform a Reset().

(3) “Kill off any faulty secondaries”: For each Reconcile request that returns
Failure after suitable retries, attempt to kill the offending secondary Rj by
executing the KillSecondary(j) subroutine (see Appendix B).

(4) “Launch coordinator process”: Once it is true that a Success response from
every non-local currently alive replica (i.e. every Rj such that hk,j = Alive, j 6=
k) has been received, start the coordinator process (which does nothing but
listen for and act on data service and liveness service requests).

StartDeadSecondary(). This algorithm consists of a single step:

(1) “Reconcile with primary and reset”: send an InitiateReconciliation request
to replica Pk. If this returns Success, perform a Reset()—after resetting we
will be Alive and will be able to start normal operations. If the Initiate-
Reconciliation request returns BadEpoch, or does not return Success after
reasonable retries, perform a Reset() anyway.

StartAliveSecondary(). Alive secondaries maintain an in-memory counter called
SecondaryHeartbeatCounter.

(1) “Initialize”: set SecondaryHeartbeatCounter = 0
(2) “Launch maintenance process”: Start the maintenance process, which repeat-

edly runs the HeartbeatLoop described below.

HeartbeatLoop(). Each secondary must monitor its primary, and attempt to
take over if it appears the primary has failed. This is accomplished by repeatedly
executing the following algorithm, called HeartbeatLoop(). The secondary also
employs a parameter MaxClockDrift, which expresses the maximum factor by which
two clocks in the system can disagree, when measuring an interval of real time.

The HeartbeatLoop() algorithm is as follows:

(1) Sleep for HeartbeatPeriod.
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(2) Increment SecondaryHeartbeatCounter.

(3) “Send a heartbeat to the primary”. Let the cached epoch be n and Secondary-
HeartbeatCounter be c. Send a Heartbeat(n, c) request to the primary. If the
return value is Success, go to step 1. If the request times out, retry a suitable
number of times using the same value of c. Otherwise the heartbeat request
has either failed or timed out too many times, so continue to step 4.

(4) “Wait for the primary’s lease to expire”. Wait for the period of time 2 ×
(HeartbeatPeriod+GracePeriod)×MaxClockDrift. After waiting for this period,
we are guaranteed the primary will not respond to any further read requests
without first killing off any secondaries it considers unresponsive. Hence, we are
free to proceed to step 5, in which we will attempt to become the new primary.

(5) “Take over as new primary”. Issue a SetGSMInfo() request to the GSM, setting
hPk

= Dead, P = k, and of course incrementing the epoch number. This has
the effect of killing the unresponsive primary and assigning replica Rk as the
new primary. If the SetGSMInfo() returns Success, perform a Reset(), which
will cause us to read the new GSM state and start acting as a primary. Retry
the SetGSMInfo() if it fails; Reset() if it returns BadEpoch.

This algorithm can be augmented with an obvious optimization: piggyback vir-
tual heartbeats on any other communication between primary and secondary. In
this case the secondary maintains a value V , which is the local time at which the
most recent virtual or real heartbeat was sent. Step 1 then becomes “Sleep for
HeartbeatPeriod + V − t”, and Step 3 only sends its heartbeat request if t − V >
HeartbeatPeriod. (As usual, t here is the current local time.)

D. PROOFS OF FORMAL CONSISTENCY GUARANTEES

In this section we prove that Niobe possesses useful consistency guarantees.
A read operation is valid if it reaches step 4 of the Read algorithm of Ap-

pendix B.1. Suppose a valid read operation is executing on replica R, with cached
epoch number n. Suppose further that R’s local clock has value t when R begins
executing step 4 of the Read algorithm, and that at this moment R’s stable storage
contains the data value D. We define the pre-state of the read operation to be the
tuple (D, R, n, t).

Extremely similar definitions apply to update operations. An update operation
is valid if it reaches step 5 of the Update algorithm of Appendix B.1. Suppose
a valid update operation is executing on replica R, with cached epoch number n.
Suppose further that R’s local clock has value t when R begins executing step 5
of the Update algorithm, and that at this moment R’s stable storage contains the
data value D. We define the pre-state of the update operation to be the tuple
(D, R, n, t).

For any request message mreq, let τ(mreq) be the wall-clock time at which mreq

arrives at its destination. For any response message mresp, let τ(mresp) be the
wall-clock time at which mresp leaves its source.

We are ready to prove a crucial property of Niobe: non-overlapping operations
can be ordered naturally according to the epochs in which they were executed.
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Lemma D.1. “If an operation begins after another completes, the earlier oper-
ation is executed in an epoch no greater than the later one.” Let o = (oreq, oresp)
and o′ = (o′req, o

′
resp) be two non-overlapping valid operations, so

τ(oresp) < τ(o′req). (9)

Let their pre-states be (D, R, n, t) and (D′, R′, n′, t′) respectively. Then n ≤ n′.

Proof. Suppose n′ < n and argue for a contradiction. We first claim that R 6= R′:
this follows because if R = R′, then (9) implies t < t′ which contradicts n′ < n.
Hence we know that R′ was primary during epoch n′, and R was primary during
some later epoch n. Thus, R′ must have been killed by some other replica R∗,
and this killing must take place before oresp is sent. (Note that we are sure that
R′ 6= R∗, but it is possible that R∗ = R.) But when R∗ took over as primary,
it waited for R′’s lease to expire (step 4 of the HeartbeatLoop algorithm)—so R′

will never again perform a read during epoch n′. So operation o′ cannot be a Read
request. But can it be an Update request? Well, note that at the time R∗ kills R′,
R′ believes R∗ is alive. So in order to perform a write after this killing but still
during epoch n′, R′ will need to either complete a successful ApplyUpdate on R∗

(step 5 of Update) or kill R∗ (step 6 of Update). But R′ cannot do either of these
things, because its epoch number is out of date. Hence, o′ cannot be an Update
request, and the proof is complete. 2

Next we prove another important property of Niobe: all alive replicas stay “in
sync” with each other. But we must first formalize the concept of being “in sync”.
Consider the clerk service on a replica when it is about to apply a mutation to its
local data value D during its execution the ApplyUpdate algorithm (Appendix B.2).
The value of D before the update is applied is called the pre-value for this execution
of ApplyUpdate.

Lemma D.2. “Alive replicas are in sync with the primary.” In any execution of
step 5 of the Update algorithm, all executions of ApplyUpdate are applied to the
same pre-value.

Proof. When it Resets, a primary ensures all secondaries it believes are alive agree
with its data value (step 2 of StartPrimary, Appendix C) before it performs any
updates. So the Lemma certainly holds for the first Update request performed by
a given primary in a given epoch. Now apply induction on the number of updates
performed by a given primary R in a given epoch n: assume the previous Update
was applied to the same pre-value at each secondary that R believes is alive, and try
to prove this holds for the next Update on the same primary R in the same epoch
n. Well, if R’s belief about the set of alive secondaries does not change before
the next update, this is immediate—data values on the secondaries can’t have
changed, because if some secondary S did accept an update from some machine
other than R, it would need to have an epoch number other than n, and then R’s
next ApplyUpdate to S won’t succeed. That takes care of the case when R’s belief
about the set of alive secondaries does not change between updates. The only other
possibility is that R reincarnated one or more secondaries between updates. But
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during such a reincarnation, R forces the reincarnated secondary to agree with it, in
step 5 of InitiateReconciliation (Appendix B.3). And it does so while holding
ReadWriteLock for writing, so the data values on any other alive secondaries cannot
change while this reconciliation takes place. 2

That fact that updates are always applied to the same data value on all replicas
where they are executed has a very important consequence that will simplify our
analysis: rather than having to deal with general mutations, we can assume that
every update is in fact a simple overwrite. This is formalized in the following
corollary.

Corollary D.3. “We may assume all mutations are overwrites.” Suppose a
customer sends a valid Update(M) request to some replica. Let D be the unique value
(which is well defined, by the previous Lemma) to which M is applied successfully
during step 5 of the Update algorithm. Let D′ be the result of applying M to D.
Let OD′ be a special “overwrite” mutation that replaces any data value with D′.
Then the history of the system’s stable storage is identical to a history in which the
Update(M) request is replaced by Update(OD′).

Proof. This follows immediately from Lemma D.2: since every mutation is applied
to an identical value, the results are the same as simply overwriting with the value
that would have been produced by the mutation. 2

In the remainder of this section, we will make use of this corollary by writing all
Update operations as Update(OD) for some D. Corollary D.3 guarantees that no
generality is lost in doing so—all the remaining proofs apply equally well to general
mutations, but they are simplified by viewing all updates as simple overwrites.

Suppose that at some instant t (according to its own local clock), replica R has
cached epoch number n and local data value D. How could D have come to be
written on R’s stable storage? Informally speaking, the value D was “caused” by
some update request from a customer at some time in the past. We would like to
formally define this notion of causation, by tracking back through the history of the
system to find the update request which is the “original ancestor” of the observed
value D. The next few definitions enable us to do that.

We call the tuple (D, R, n, t) an instantaneous state. Looking through all the al-
gorithms in Appendices B and C, we see there are precisely two ways in which a local
data value can change: execution of ApplyUpdate, and execution of Reconcile.
Specifically, the D-value in the instantaneous state (D, R, n, t) was written by pre-
cisely one of the following possibilities:

—ApplyUpdate(n′, OD) executed on R at some epoch n′, beginning at (local
clock) time t′

—Reconcile(n′, D) executed on R at some epoch n′, beginning at (local clock)
time t′

In the first case, we say the immediate ancestor of (D, R, n, t) is the tuple (Apply-
Update, D,R, n′, t′), and write this as

(D,R, n, t) −→ (ApplyUpdate, D, R, n′, t′). (10)
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(The “−→” symbol can be read as “is the child of”.) In the second case, we say the
immediate ancestor of (D, R, n, t) is the tuple (Reconcile, D,R, n′, t′), and write
this as

(D, R, n, t) −→ (Reconcile, D, R, n′, t′). (11)

Any execution of ApplyUpdate is the result of a call from some execution of
the Update algorithm. So we can define the immediate ancestor of a tuple (Apply-
Update, D, R, n, t) to be the tuple (Update, D,R′, n, t′), where the ApplyUpdate(OD)
request was sent by the Update algorithm on replica R′, with cached epoch n, and
sent at time t′ (according to the local clock of R′). We write this as

(ApplyUpdate, D, R, n, t) −→ (Update, D, R′, n, t′). (12)

Similarly, any execution of Reconcile is the result of a call from some execution
of either the InitiateReconciliation or StartPrimary algorithms. In the for-
mer case, we can define the immediate ancestor of a tuple (Reconcile, D, R, n, t) to
be the tuple (InitiateReconciliation, D, R′, n, t′), where the Reconcile request
was sent by the InitiateReconciliation algorithm on replica R′, with cached
epoch n′, and sent at time t′ (according to the local clock of R′). In the lat-
ter case, the ancestor of (Reconcile, D,R, n, t) is defined in a similar fashion as
(StartPrimary, D, R′, n, t′), where here t′ is the local time at which StartPrimary
started execution on R′ with cached epoch n′. We write these cases as

(Reconcile, D, R, n, t) −→ (InitiateReconciliation, D, R′, n, t′)
(Reconcile, D, R, n, t) −→ (StartPrimary, D, R′, n, t′) (13)

respectively.
We continue defining immediate ancestors in a straightforward fashion. The

immediate ancestor of a tuple (InitiateReconciliation, D, R, n, t) or (Start-
Primary, D, R, n, t) is the immediate ancestor of the instantaneous state (D,R, n, t),
as in Equations (10) or (11).

On the other hand, a tuple (Update, D, R, n, t) has no ancestor: it is the direct
result of some customer sending the request Update(OD) to replica R. Since any
local data value on any replica originates with some customer request, we can make
the following definition. The original ancestor of an instantaneous state (D, R, n, t)
is the tuple (Update, D, R′, n′, t′) obtained by repeatedly finding immediate ances-
tors. This is written

(D, R, n, t) ; (Update, D, R′, n′, t′). (14)

The symbol ”;” can be read as “is descended from”.

Lemma D.4. “The epoch of an original ancestor is no greater than its descen-
dent’s epoch.” Suppose (D, R, n, t) ; (Update, D, R′, n′, t′). Then n′ ≤ n.

Proof. It’s easy to check that each application of the “immediate ancestor” operation
does not increase the epoch number. 2

The previous Lemma assures us that ancestors occur in earlier epochs, but do
they also occur earlier in real time? The answer is yes, as the following Lemma
states.
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Lemma D.5. “The original ancestor precedes its descendent.” Let (D, R, n, t)
be an instantaneous state on R, let (Update, D,R′, n′, t′) be the original ancestor of
(D, R, n, t), and write u′ = (u′req, u

′
resp) for the update operation executing at time

t′ on R′. Let τR(t) be the wall clock time when R’s local clock reads t. Then

τ(u′req) < τR(t). (15)

Proof. This is immediate, since every link in a chain of ancestors is produced by
a message which consumes a strictly positive amount of wall clock time, so the
elements of the chain are sequentially ordered according to their wall clock time.
2

The previous two lemmas tell us, roughly speaking, that ancestors precede their
descendents both in epoch number and in real time. The next lemma addresses a
different type of ordering: the ordering between a successful read operation on a
replica and the successful killing of that replica.

Lemma D.6. “A successful kill occurs after the start of a successful read.” Let
r = (rreq, rresp) be a successful read on replica R in epoch n, returning (Success, D).
Suppose another replica R′ successfully kills R in some epoch n′ ≥ n. Then the
SetGSMInfo that R′ uses to kill R occurs after r was received. More formally,
denote the SetGSMInfo operation by s = (sreq, sresp). Then

τ(rreq) < τ(sreq). (16)

Proof. The proof will make heavy use of the notation τR(t), which is the wall clock
time at which R’s local clock reads t.

The case n′ > n is easy due to serialization at the GSM: if R successfully issues
a SetGSMInfo (say, s∗ = (s∗req, s

∗
resp)) at epoch n, then τ(rreq) < τ(s∗req) < τ(sreq)

and we’re done; otherwise some other replica kills R at epoch n and we are reduced
to the case n′ = n.

So assume n′ = n. Write L = HeartbeatPeriod + GracePeriod. Consider the
“most recent” heartbeat h = (hreq, hresp) sent from R′ to R, defined formally as
follows: hreq is the heartbeat request immediately preceding the sending of sreq

by R′. Suppose hreq had sequence number c, and was sent at wall clock time T ,
measured as t on R and t′ on R′—so we have τR(t) = τR′(t′) = T . Note that R′

never sends a heartbeat request with a given sequence number until it has received
acknowledgments for all heartbeats in the current epoch with smaller sequence
numbers (see step 3 of HeartbeatLoop(), Appendix C). So the only heartbeat
requests that can arrive at R from R′ in the time interval between T and the
sending of sreq have sequence number c. Let H be the set of all such heartbeat
requests arriving at R in this interval of time. (In a typical scenario, there will be
at most one element in H, but there could be more than one if R′ has retried its cth
heartbeat multiple times.) If H is empty, then rreq must arrive before τR(t + L),
since otherwise CheckPrimaryLease will fail during the execution of r. Similarly,
if all members of H arrive after rreq, the same argument applies. So in both these
cases we have

τ(rreq) < τR(t + L). (17)
ACM Journal Name, Vol. V, No. N, Month 20YY.



Niobe: A Practical Replication Protocol · 37

On the other hand, if some element of H arrives before rreq, it must do so before
τR(t+L), since otherwise (again) CheckPrimaryLease will fail during the execution
of r9. But in this case, rreq must arrive within time L of the first heartbeat in H
(same reason again). That is, in this case we have

τ(rreq) < τR(t + 2L). (18)

Combining (17) and (18), we see that in all cases we have

τ(rreq) < τR(t + 2L). (19)

Now write M = MaxClockDrift, and observe that because of the waiting period
specified in step 4 of the HeartbeatLoop algorithm (Appendix C), sreq is sent after
τR′(t′ + 2LM):

τR′(t′ + 2LM) < τ(sreq). (20)

But because τR(t) and τR′(t′) represent the same instant T in wall clock time, and
M is the maximum factor by which two machines can disagree about the length of
an interval of time, we are guaranteed that τR(t+2L) is earlier than τR′(t′+2LM):

τR(t + 2L) < τR′(t′ + 2LM). (21)

Combining (19), (20), and (21) yields (16), completing the proof. 2

A primary replica is stable if it reaches step 4 of StartPrimary, and its stable
value is the local data value at the start of step 4. An epoch is stable if its primary
ever becomes stable.

Stable epochs are important because they provide a kind of temporal barrier to
the system: the unique stable value becomes visible to all subsequent epochs, and
any uncertainty about the outcome of pending or failed updates is removed. The
next lemma formalizes this notion of a “stable barrier”.

Lemma D.7. (Stable Barrier Lemma) “A chain of ancestors whose epochs bracket
a stable epoch has the same data value as the epoch’s stable value.” Suppose n is
a stable epoch with primary replica R and stable value D. Let (D′, R′, n′, t′) be an
instantaneous state on some Alive replica in an epoch no earlier than n, so n′ ≥ n.
Let (Update, D′, R̃, ñ, t̃) be the original ancestor of this instantaneous state, and
suppose that the ancestor is from an epoch strictly earlier than n, so ñ < n. Then
D′ = D.

Proof. Assume D′ 6= D and argue for a contradiction. Pick the earliest element in
the chain of ancestors with epoch at least n, say a∗ = (?, D′, R∗, n∗, t∗), and let its
immediate ancestor be ã∗ = (?, D′, R̃∗, ñ∗, t̃∗). Note that this implies ñ∗ < n ≤ n∗.
The proof splits into two cases, depending on whether R∗ is Alive in epoch n. If
R∗ is Alive during epoch n, replica R sends it the value D before becoming stable.
So the value D′ written by operation ã∗ in epoch ñ∗ was overwritten, contradicting
the fact that D′ survives until n∗.

9It’s also possible that R will kill R′ in step 5 of Heartbeat before CheckPrimaryLease fails—and
this contradicts our assumption that R′ kills R.
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In the other case, R∗ is Dead in epoch n. But from the statement of the lemma,
we know R∗ becomes Alive by epoch n′. So R∗ must be reincarnated in some epoch
N ≥ n. But this would mean R∗ receives a Reconcile in epoch N , contradicting
the fact that the immediate ancestor of a∗ was ã∗ in epoch ñ∗. 2

It turns out that successful updates provide a similar type of “barrier” to the
system, removing any uncertainty about all pending or previously failed updates.
This type of “update barrier” is formalized in the next lemma. Recall from Corol-
lary D.3 that any update operation u is equivalent to a customer request of the
form Update(OD) for some D. We call D the value of u.

Lemma D.8. (Update Barrier Lemma) “A chain of ancestors bracketing a suc-
cessful update has the same data value as the successful update.” Let (D′, R′, n′, t′)
be an instantaneous state in some stable epoch n′, and suppose (Update, D′, R̃, ñ, t̃)
is its original ancestor. Let u = (ureq, uresp) be a successful update in epoch n, with
value D. If ñ < n < n′, then D′ = D. Moreover, if ñ = n < n′ and τR̃(t̃) < τ(ureq),
then again D′ = D.

Proof. The proof is extremely similar to Lemma D.7. Let the instantaneous state
at step 8 of the Update algorithm executed on behalf of u be (D,R, n, t). Assume
D′ 6= D and argue for a contradiction. Pick the earliest element in the chain of
ancestors with epoch at least n, say a∗ = (?, D′, R∗, n∗, t∗), and let its immediate
ancestor be ã∗ = (?, D′, R̃∗, ñ∗, t̃∗). Note that this implies ñ∗ < n ≤ n∗. The proof
splits into two cases, depending on whether R∗ is Alive in epoch n. If R∗ is Alive
during epoch n, replica R certainly sends it the value D during execution of u (and
may subsequently overwrite D with some later updates in epoch n, also)—unless
ñ = n and τ(ureq) < τR̃(t̃). So the value D′ written by operation ã∗ in epoch ñ∗

was overwritten, contradicting the fact that D′ survives until n∗.
In the other case, R∗ is Dead in epoch n. But from the statement of the lemma,

we know R∗ becomes Alive by epoch n′. So R∗ must be reincarnated in some epoch
N ≥ n. But this would mean R∗ receives a Reconcile in epoch N , contradicting
the fact that the immediate ancestor of a∗ was ã∗ in epoch ñ∗. 2

Successful read operations provide the same type of barrier as successful updates
and resets:

Lemma D.9. (Read Barrier Lemma) “A chain of ancestors bracketing a suc-
cessful read has the same data value as the successful read.” Let (D′, R′, n′, t′) be
an instantaneous state in some stable epoch n′, and suppose (Update, D′, R̃, ñ, t̃) is
its original ancestor. Let r = (rreq, rresp) be a successful read in epoch n, return-
ing data value D. If ñ < n < n′, then D′ = D. Moreover, if ñ = n < n′ and
τR̃(t̃) < τ(rreq), then again D′ = D.

Proof. The proof is essentially identical to the proof of Lemma D.8, except that we
invoke Lemma D.2 to assert that if R∗ is Alive during epoch n, it must have local
data value D during the execution of r. 2

We are now ready to prove the first important property of Niobe: every value
read was written, but not overwritten.
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Proof of Theorem 6.1. Suppose r is executed on replica R, and the instanta-
neous state of R at the start of step 4 of the Read algorithm is (D, R, n, t). Let
(Update, D, R̃, ñ, t̃) be the original ancestor of (D, R, n, t), and take ũ = (ũreq, ũresp)
as the update operation being performed on R̃ at the instant t̃. Intuitively, ũ is the
operation that “caused” the value D to be read during operation r. We must now
show that no intervening updates could have successfully written a different value
between the start of ũ and the start of r.

Let us assume that such an “intervening overwrite” u′ exists, with the properties
given in the theorem, and argue for a contradiction. If there is more than one
such possible u′, choose the latest one in the latest epoch. Since u′ exists, its
Update algorithm must have executed on some replica R′. Let (D′, R′, n′, t′) be the
instantaneous state of R′ as it begins step 8 of this Update execution.

To summarize the assumptions and notation so far:

—r executed on R with cached epoch n, and returned (Success, D)

—ũ executed on R̃ with cached epoch ñ,

—u′ executed on R′ with cached epoch n′, and returned Success,

and the operations’ messages are ordered according to:

τ(ũreq) < τ(u′req) < τ(u′resp) < τ(rreq) < τ(rresp). (22)

By Lemma D.4, ñ ≤ n. But the case ñ = n is trivial (since updates in any one
epoch are processed in series, in receipt order), so we may assume ñ < n.

By Lemma D.1, n′ ≤ n. But n′ = n is also trivial, so we may assume n′ < n.
Hence, we are left with two possible cases: (i) ñ ≤ n′ < n, and (ii) n′ < ñ < n.
Case (i): ñ ≤ n′ < n. We apply the Update Barrier Lemma (Lemma D.8) to

the ancestral chain (Update, D, R̃, ñ, t̃) ; (D, R, n, t) which brackets the successful
update u′, obtaining the contradiction D′ = D.

Case (ii): n′ < ñ ≤ n. In this case we know R̃ considered R′ to be Dead when
it performed the update u (otherwise R′ would have had epoch number ñ when u
was performed). So there exists some replica R∗ (possibly equal to R̃) that killed
R′ at some epoch n∗, with n′ < n∗ ≤ ñ. But you can only be killed by a replica you
consider to be alive. So when it performs u′, replica R′ believes that R∗ is alive.
So to complete u′, R′ must either successfully ApplyUpdate on R∗, or kill R∗. But
R′ can do neither of these, because its epoch n′ is less than n∗, so its attempts will
be met with a BadEpoch response. 2

We are now ready to prove the second important property of Niobe: written
values are persistent.

Proof of Theorem 6.2. Suppose r executes on R and r′ executes on R′. Let
the instantaneous state at the start of step 4 of the Read algorithm for these two
operations be (D,R, n, t) and (D′, R′, n′, t′) respectively. Let the original ances-
tors of these instantaneous states be (Update, D, R̃, ñ, t̃) and (Update, D, R̃′, ñ′, t̃′)
respectively.

By Lemma D.1, n ≤ n′. But the theorem is trivially true if n = n′, so in fact
we may assume n < n′. By taking the “instantaneous state” of Lemma D.5 to
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be step 4 of r′, we conclude τ(ũ′req) < τR′(t′). And since τR′(t′) < τ(r′resp), we
conclude

τ(ũ′req) < τ(r′resp). (23)

Combining (23) and the no-intervening-updates assumption (7), we have

τ(ũ′req) < τ(rreq). (24)

We know from Lemma D.4 that ñ ≤ n and ñ′ ≤ n′. That leaves us with two
cases: either (i) n < ñ′ ≤ n′, or (ii) ñ′ ≤ n < n′.

Case (i): n < ñ′ ≤ n′. R was killed by some other replica, say R∗, in epoch
n∗ ≤ ñ′. By Lemma D.6, this employs a message s∗req after rreq, so rreq ≺ s∗req. But
ũ′ is a valid update, so ũ′req arrives after R̃′ has communicated with the GSM in
epoch ñ′, using, say, the message s̃′req. It might be that s∗req = s̃′req, but we certainly
have τ(s∗req) ≤ τ(s̃′req) since n∗ ≤ ñ′. So we have

τ(rreq) < τ(s∗req) ≤ τ(s̃′req) < τ(ũ′req), (25)

contradicting (24).
Case (ii): ñ′ ≤ n < n′. Let n∗ be the first stable epoch after n, so n < n∗ ≤ n′.

Let R∗ be the primary in n∗, and D∗ its stable value. By applying the Stable Barrier
Lemma (Lemma D.7) to the ancestral chain (Update, D′, R̃′, ñ′, t̃′) ; (D′, R′, n′, t′),
we immediately have

D∗ = D′. (26)

But now consider the sequence of primaries (each unstable, except for the first and
last) from R in epoch n to R∗ in epoch n∗. (By the way, R∗ and n∗ are not the
same as in case (i).) By a simple induction, each of the primaries after R in this
sequence has local data value D before it executes Reset. The initial inductive
step is provided by Lemma D.6: R is killed after rreq (when its local data value
is D), so its killer must also have local data value D on Reset (since the killer
was Alive during R’s StartPrimary and during any Update that wrote D on R).
The inductive step from each unstable primary to the following primary is also
clear, since no unstable primary can accept an update. Thus D∗ = D. Combining
with (26), we have the contradiction D = D′. 2

Finally, we provide proofs of Theorems 6.3 and 6.4.

Proof of Theorem 6.3. There are two cases depending on whether o is an update
or a read. First suppose o is an update, say, u′. By assumption, u′ was successful.
Let r be a read operation received after the completion of u′—so τ(rreq) > τ(u′resp).
The statement of the Theorem is equivalent to claiming that the original ancestor
of r cannot be u, unless u and u′ share the same data value. But this follows
immediately from Lemma D.8.

In the other case, o is a read. This case is similar, except that Lemma D.9 is
invoked in place of Lemma D.8. 2

Proof of Theorem 6.4. This is very similar to the two cases in the previous result,
except that this time Lemma D.7 is invoked in place of Lemmas D.8 or D.9. 2
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