
Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

Fixing the Embarrassing Slowness of OpenDHT on PlanetLab
Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker

University of California, Berkeley
opendht@opendht.org

1 Introduction
The distributed hash table, or DHT, is a distributed system
that provides a traditional hash table’s simple put/get in-
terface using a peer-to-peer overlay network. To echo the
prevailing hype, DHTs deliver incremental scalability in
the number of nodes, extremely high availability of data,
low latency, and high throughput.

Over the past 16 months, we have run a public DHT ser-
vice called OpenDHT [14] on PlanetLab [2], allowing any
networked host to perform puts and gets over an RPC in-
terface. We built OpenDHT on Bamboo [13] and shame-
lessly adopted other techniques from the literature—
including recursive routing, proximity neighbor selection,
and server selection—in attempt to deliver good perfor-
mance. Still, our most persistent complaint from actual
and potential users remained, “It’s just not fast enough!”

Specifically, while the long-term median latency of gets
in OpenDHT was just under 200 ms—matching the best
performance reported for DHASH [5] on PlanetLab—the
99th percentile was measured in seconds, and even the
median rose above half a second for short periods.

Unsurprisingly, the long tail of this distribution was
caused by a few arbitrarily slow nodes. We have observed
disk reads that take tens of seconds, computations that
take hundreds of times longer to perform at some times
than others, and internode ping times well over a second.
We were thus tempted to blame our performance woes on
PlanetLab (a popular pastime in distributed systems these
days), but this excuse was problematic for two reasons.

First, peer-to-peer systems are supposed to capitalize
on existing resources not necessarily dedicated to the sys-
tem, and do so without extensive management by trained
operators. In contrast to managed, cluster-based services
supported by extensive advertising revenue, peer-to-peer
systems were supposed to bring power to the people, even
those with flaky machines.

Second, it is not clear that the problem of slow nodes
is limited to PlanetLab. For example, the best DHASH
performance on the RON testbed, which is smaller and
less loaded than PlanetLab, still shows a 99th percentile
get latency of over a second [5]. Furthermore, it is well
known that even in a managed cluster the distribution of
individual machines’ performance is long-tailed. The per-
formance of Google’s MapReduce system, for example,
was improved by 31% when it was modified to account for
a few slow machines its designers called “stragglers” [6].

While PlanetLab’s performance is clearly worsened by the
fact that it is heavily shared, the current trend towards util-
ity computing indicates that such sharing may be common
in future service infrastructures.

It also seems unlikely that one could “cherry pick” a
set of well-performing hosts for OpenDHT. The MapRe-
duce designers, for example, found that a machine could
suddenly become a straggler for a number of reasons, in-
cluding cluster scheduling conflicts, a partially failed hard
disk, or a botched automatic software upgrade. Also, as
we show in Section 2, the set of slow nodes isn’t con-
stant on PlanetLab or RON. For example, while the 90%
of the time it takes under 10 ms to read a random 1 kB
disk block on PlanetLab, over a period only 50 hours, 235
of 259 hosts will take over 500 ms to do so at least once.
While one can find a set of fast nodes for a short experi-
ment, it is nearly impossible to find such a set on which to
host a long-running service.

We thus adopt the position that the best solution to
the problem of slow nodes is to modify our algorithms
to account for them automatically. Using a combination
of delay-aware routing and a moderate amount of redun-
dancy, our best technique reduces the median latency of
get operations to 51 ms and the 99th percentile to 387 ms,
a tremendous improvement over our original algorithm.

In the next section we quantify the problem of slow
nodes on both PlanetLab and RON. Then, in Sections 3
and 4, we describe several algorithms for mitigating the
effects of slow nodes on end-to-end get latency and show
their effectiveness in an OpenDHT deployment of approx-
imately 300 PlanetLab nodes. We conclude in Section 5.

2 The Problem of Slow Nodes
In this section, we study the problem of slow nodes in
PlanetLab as compared to a cluster of machines in our lab.
Our PlanetLab experiments ran on all the nodes we were
able to log into at any given time, using a slice dedicated
to the experiment.

Our cluster consists of 38 IBM xSeries 330 1U rack-
mount PCs, each with two 1.0 GHz Pentium III CPUs,
1.5 GB ECC PC133 SDRAM, and two 36 GB IBM Ul-
traStar 36LZX hard drives. The machines use a single
Intel PRO/1000 XF gigabit Ethernet adaptor to connect to
a Packet Engines PowerRail gigabit switch. The operating
system on each node is Debian GNU/Linux 3.0 (woody),

1

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

5 10 20 30 40 50

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 1: Time to compute a 128-bit RSA key pair on our cluster.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 2: Time to compute a 128-bit RSA key pair on PlanetLab.

running the Linux 2.4.18 SMP kernel. The two disks run
in software RAID 0 (striping) using md raidtools-0.90.
During our experiments the cluster is otherwise unused.

We study slowness with respect to computation time,
network round-trip latency, and disk read latency. For
each test, we wrote a simple C program to measure the la-
tency of the resource under test. Our computation bench-
mark measures the latency to compute a new 128-bit RSA
key pair, our network benchmark measures the round-trip
time (RTT) of sending a 1 kB request and receiving a 1 kB
response, and our disk benchmark measures the latency of
reading a random 1 kB block out of a 1 GB file.

Figures 1–4 present the results of the computation and
disk read tests; each line in these figures represents over
100,000 data points taken on a single machine. Figures 5
and 6 show the results of the network test; here each line
represents over 10,000 data points taken between a single
pair of machines.

Looking first at the cluster results, we note that oper-
ations we expect to be quick are occasionally quite slow.
For example, the maximum ping time is 4.8 ms and the
maximum disk read time is 2.5 seconds, a factor of 26 or
54,300 larger than the median time in each case.

Furthermore, there is significant variance between ma-
chines or pairs of machines (in the case of network RTTs).
For example, the fraction of disk reads served in under
1 ms (presumably out of the cache) varies between 47%
and 89% across machines. Also, one pair of machines
never sees an RTT longer than 0.28 ms, while another pair
sees a maximum RTT of 4.8 ms.

Based on these data, we expect that even an isolated
cluster will benefit from algorithms that take into ac-

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000 10000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 3: Time to read a random 1 kB disk block on our cluster.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 4: Time to read a random 1 kB disk block on PlanetLab.

count performance variations between machines and the
time-varying performance of individual machines. The
MapReduce experience seems to confirm this expectation.

Turning to the PlanetLab numbers, the main difference
is that the scheduling latencies inherent in a shared testbed
increase the unpredictability of individual machines’ per-
formance by several orders of magnitude. This trend is
most evident in the computation latencies. On the cluster,
most machines showed the same, reasonably tight distri-
bution of computation times; on PlanetLab, in contrast,
a computation that never takes more than 18 ms on one
machine takes as long as 9.3 seconds on another.

Unfortunately, very few nodes in PlanetLab are always
fast, as shown in Figure 7. To produce this figure, we ran
the disk read test on 259 PlanetLab nodes for 50 hours,
pausing five seconds between reads. The figure shows the
number of nodes that took over 100 ms, over 500 ms, over
1 s, or over 10 s to read a block since the start of measure-
ment. In only 6 hours, 184 nodes take over 500 ms at least
once; in 50 hours, 235 do so.

Furthermore, this property does not seem to be unique
to PlanetLab. Figure 8 shows a similar graph produced
from a trace of round-trip times between 15 nodes on
RON [1], another shared testbed. We compute for each
node the median RTT to each of the other fourteen, and
rank nodes by these values. The lower lines show the val-
ues for the eighth largest and second largest values over
time, and the upper line shows the size of the set of nodes
that have ever had the largest or second largest value. In
only 90 hours, 10 of 15 nodes have been in this set. This
graph shows that while the aggregate performance of the
15 nodes is relatively stable, the ordering (in terms of per-

2

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 1 10

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 5:Time to send and receive a 1 kB message on our cluster.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 1 10 100 1000 10000 100000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ilit
y

Latency (ms)

Figure 6: Time to send and receive a 1 kB message on PlanetLab.

formance) among them changes greatly.
In summary, with respect to network RTT and disk

reads, both the relative performance of individual ma-
chines and the performance of a single machine over time
can show significant variation even on an isolated cluster.
On a shared testbed like PlanetLab or RON, this variation
is even more pronounced, and the performance of compu-
tational tasks shows significant variation as well.

3 Algorithmic Solutions
Before presenting the techniques we have used to improve
get latency in OpenDHT, we give a brief overview of how
gets were performed before.

3.1 The Basic Algorithm
The key space in Bamboo is the integers modulo 2160.
Each node in the system is assigned an identifier from
this space uniformly at random. For fault-tolerance and
availability, each key-value pair (k,v) is stored on the
four nodes that immediately precede and follow k; we call
these eight nodes the replica set for k, denoted R(k). The
node numerically closest to k is called its root.

Each node in the system knows the eight nodes that im-
mediately precede and follow it in the key space. Also,
for each (base 2) prefix of a node’s identifier, it has one
neighbor that shares that prefix but differs in the next bit.
This latter group is chosen for network proximity; of those
nodes that differ from it in the first bit, for example, a node
chooses the closest from roughly half the network.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

U
ni

on
 s

iz
e

Time difference (hours)

Union size (>=100ms)
Union size (>=500ms)

Union size (>=1s)
Union size (>=10s)

Figure 7: Slow disk reads on PlanetLab over time.

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 10 20 30 40 50 60 70 80 90
 0

 0.05

 0.1

 0.15

 0.2

 0.25

U
ni

on
 s

iz
e

La
te

nc
y

(s
ec

on
ds

)

Time difference (hours)

Union size
Rank 14 RTT
Rank 8 RTT

Figure 8: Slow round-trip times on RON over time.

Messages between OpenDHT nodes are sent over UDP
and individually acknowledged by their recipients. A
congestion-control layer provides TCP-friendliness and
retries dropped messages, which are detected by a failure
to receive an acknowledgment within an expected time.
This layer also exports to higher layers an exponentially
weighted average round-trip time to each neighbor.

To put a key-value pair (k,v), a client sends a put RPC
to an OpenDHT node of its choice; we call this node the
gateway for this request. The gateway then routes a put
message greedily through the network until it reaches the
root for k, which forwards it to the rest of R(k). When
six members of this set have acknowledged it, the root
sends an acknowledgment back to the gateway, and the
RPC completes. Waiting for only 6 of 8 acknowledg-
ments prevents a put from being delayed by one or two
slow nodes in the replica set. These delays, churn, and In-
ternet routing inconsistencies may all cause some replicas
in the set to have values that others do not. To reconcile
these differences, the nodes in each replica set periodi-
cally synchronize with each other [12].

As shown in Figure 9, to perform a get for key k, the
gateway G routes a get request message greedily through
the key space until it reaches some node R ∈ R(k). R
replies with any values it has with key k, the set R(k),
and the set of nodes S(k) with which it has synchronized
on k recently. G pretends it has received responses from R
and the nodes in S(k); if these total five or more, it sends
a response to the client. Otherwise, it sends the request
directly to the remaining nodes in R(k) one at a time until
it has at least five responses (direct or assumed due to syn-
chronization). Finally, G compiles a combined response

3

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

R(k), S(k)

Client

G

m

get(k)

{v}

k, {v},

R(k), S(k)
k, {v},Other Nodes

R(k)
Gateway

Figure 9: A basic get request.

and returns it to the client.
By combining responses from at least five replicas, we

ensure that even after the failure of two nodes, there is at
least one node in common between the nodes that receive
a put and those whose responses are used for a get.

3.2 Enhancements
We have explored three techniques to improve the latency
of gets: delay-aware routing, parallelization of lookups,
and the use of multiple gateways for each get.

3.2.1 Delay-Aware Routing

In the basic algorithm, we route greedily through the key
space. Because each node selects its neighbors accord-
ing to their response times to application-level pings, most
hops are to nearby, responsive nodes. Nonetheless, a burst
in load may render a once-responsive neighbor suddenly
slow. Bamboo’s neighbor maintenance algorithms are de-
signed for stability of the network, and so adapt to such
changes gradually. The round-trip times exported by the
congestion-control layer are updated after each message
acknowledgment, however, and we can use them to select
among neighbors more adaptively.

The literature contains several variations on using such
delay-aware routing to improve get latency. Gummadi et
al. demonstrated that routing along the lowest-latency hop
that makes progress in the key space can reduce end-to-
end latency, although their results were based on simula-
tions where the per-hop processing cost was ignored [7].
DHASH, in contrast, uses a hybrid algorithm, choosing
each hop to minimize the expected overall latency of a
get, using the expected latency to a neighbor and the ex-
pected number of hops remaining in the query to scale the
progress each neighbor makes in the key space [5].

We have explored several variations on this theme. For
each neighbor n, we compute !n, the expected round-trip
time to the neighbor, and dn, the progress made in the
key space by hopping to n, and we modified OpenDHT

R(k), S(k)

A

get(k)

{v}
Client

G k, {v},

k, {v},
R(k), S(k)

m

Other Nodes
R(k)
Gateway

Figure 10: An iterative get request.

to choose the neighbor n with maximum h(!n,dn) at each
hop, where h is as follows:

Purely greedy: h(!n,dn) = dn
Purely delay-based: h(!n,dn) = 1/!n
Linearly scaled: h(!n,dn) = dn/!n
Nonlinearly scaled: h(!n,dn) = dn/ f (!n)

where f (!n) = 1 + e(!n−100)/17.232. This function makes
a smooth transition for !n around 100 ms, the approxi-
mate median round-trip time in the network. For round-
trip times below 100 ms, the nonlinear mode thus routes
greedily through the key space, and above this value it
routes to minimize the per-hop delay.

3.2.2 Iterative Routing

Our basic algorithm performs get requests recursively;
routing each request through the network to the appro-
priate replica set. In contrast, gets can also be performed
iteratively, where the gateway contacts each node along
the route path directly, as shown in Figure 10. While it-
erative requests involve more one-way network messages
than recursive ones, they remain attractive because they
are easy to parallelize. As first proposed in Kademlia [9],
a gateway can maintain several outstanding RPCs concur-
rently, reducing the harm done by a single slow peer.

To perform a get on key k iteratively, the gateway node
maintains up to p outstanding requests at any time, and
all requests are timed out after five seconds. Each request
contains k and the Vivaldi [4] network coordinates of the
gateway. When a node m #∈ R(k) receives a get request, it
uses Vivaldi to compute !n relative to the gateway for each
of its neighbors n, and returns the three with the largest
values of h(dn,!n) to the gateway.

When a node m ∈ R(k) receives a get request, it returns
the same response as in recursive gets: the set of values
stored under k and the sets R(k) and S(k). Once a gate-
way has received a response of this form, it proceeds as in
recursive routing, collecting at least five responses before
compiling a combined result to send to the client.

4

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

3.2.3 Multiple Gateways

Unlike iterative gets, recursive gets are not easy to paral-
lelize. Also, in both iterative and recursive gets, the gate-
way itself is sometimes the slowest node involved in a re-
quest. For these reasons we have also experimented with
issuing each get request simultaneously to multiple gate-
ways. This technique adds parallelism to both types of
get, although the paths of the get requests may overlap as
they near the replica set. It also hides the effects of slow
gateways.

4 Experimental Results
It is well known that as a shared testbed, PlanetLab cannot
be used to gather exactly reproducible results. In fact, the
performance of OpenDHT varies on a hourly basis.

Despite this limitation, we were able to perform a
meaningful quantitative comparison between our various
techniques as follows. We modified the OpenDHT im-
plementation such that each of the modes can be selected
on a per-get basis, and we ran a private deployment of
OpenDHT on a separate PlanetLab slice from the public
one. Using a client machine that was not a PlanetLab node
(and hence does not suffer from the CPU and network de-
lays shown in Figures 2 and 6), we put into OpenDHT
five 20-byte values under each of 3,000 random keys, re-
putting them periodically so they would not expire. On
this same client machine, we ran a script that picks a one
of the 3,000 keys at random and performs one get for each
possible mode in a random order. The script starts each
get right after the previous one completes, or after a time-
out of 120 seconds. After trying each mode, the script
picks a new key, a new random ordering of the modes,
and repeats. So that we could also measure the cost of
each technique, we further modified the OpenDHT code
to record the how many messages and bytes it sends on be-
half of each type of get. We ran this script from July 29,
2005 until August 3, 2005, collecting 27,046 samples per
mode to ensure that our results cover a significant range
of conditions on PlanetLab.

Table 1 summarizes the results of our experiments.
The first row of the table shows that our original algo-

rithm, which always routes all the way to the root, takes
186 ms on median and over 8 s at the 99th percentile.

Rows 2–5 show the performance of the basic recursive
algorithm of Section 3.1, using only one gateway and each
of the four routing modes described in Section 3.2.1. We
note that while routing with respect to delay alone im-
proves get latency some at the lower percentiles, the linear
and nonlinear scaling modes greatly improve latency at
the higher percentiles as well. The message counts show
that routing only by delay takes the most hops, and with
each hop comes the possibility of landing on a newly slow

Parameters Latency (ms) Cost per Get
Row GW I/R p Mode Avg 50th 90th 99th Msgs Bytes

1 1 Orig. Alg. 434 186 490 8113 not measured
2 1 R 1 Greedy 282 149 407 4409 5.5 1833
3 1 R 1 Prox. 298 101 343 5192 8.7 2625
4 1 R 1 Linear 201 99 275 3219 6.8 2210
5 1 R 1 Nonlin. 185 104 263 1830 6.0 1987
6 1 I 3 Greedy 157 116 315 788 14.6 3834
7 1 I 3 Prox. 477 335 1016 2377 33.1 6971
8 1 I 3 Linear 210 175 422 802 18.8 4560
9 1 I 3 Nonlin. 230 175 455 1103 18.3 4458

10 1 R 1 Nonlin. 185 104 263 1830 6.0 1987
11 2 R 1 Nonlin. 174 99 267 1609 6.0 1987
12 1–2 R 1 Nonlin. 107 71 171 609 11.9 3973
13 1 I 3 Greedy 157 116 315 788 14.6 3834
14 2 I 3 Greedy 147 110 294 731 14.6 3834
15 1–2 I 3 Greedy 88 70 195 321 29.3 7668
16 1–2 I 1 Greedy 141 96 289 638 13.9 4194
17 1–2 I 2 Greedy 97 78 217 375 22.5 6181
18 1–3 R 1 Nonlin. 90 57 157 440 16.8 5332
19 1–4 R 1 Nonlin. 81 51 142 387 22.4 7110
20 1–2 I 2 Greedy 105 84 232 409 20.2 5352
21 1–2 I 3 Greedy 95 76 206 358 26.5 6674
22 1–3 I 2 Greedy 86 62 196 332 30.3 8028

Table 1: Performance on PlanetLab. GW is the gateway, 1–4
for planetlab(14|15|16|13).millennium.berkeley.edu. I/R is for
iterative or recursive. The costs of the single gateway modes are
estimated as half the costs of using both.

node; the scaled modes, in contrast, pay enough attention
to delays to avoid the slowest nodes, but still make quick
progress in the key space.

We note that the median latencies achieved by all
modes other than greedy routing are lower than the me-
dian network RTT between OpenDHT nodes, which is ap-
proximately 137 ms. This seemingly surprising result is
actually expected; with eight replicas per value, the DHT
has the opportunity to find the closest of eight nodes on
each get. Using the distribution of RTTs between nodes in
OpenDHT, we computed that an optimal DHT that magi-
cally chose the closest replica and retrieved it in a single
RTT would have a median get latency of 31 ms, a 90th
percentile of 76 ms, and a 99th percentile of 130 ms.

Rows 6–9 show the same four modes, but using itera-
tive routing with a parallelism factor, p, of 3. Note that
the non-greedy modes are not as effective here as for re-
cursive routing. We believe there are three reasons for
this effect. First, the per-hop cost in iterative routing is
higher than in recursive, as each hop involves a full round-
trip, and on average the non-greedy modes take more hops
for each get. Second, recursive routing uses fresh, di-
rect measurements of each neighbor’s latency, but the Vi-
valdi algorithm used in iterative routing cannot adapt as
quickly to short bursts in latency due to load. Third, our
Vivaldi implementation does not yet include the kinds of
filtering used by Pietzuch, Ledlie, and Seltzer to produce
more accurate coordinates on PlanetLab [10]; it is possi-
ble that their implementation would produce better coor-
dinates with which to guide iterative routing decisions.

5

Proceedings of the Second Workshop on Real, Large Distributed Systems (WORLDS ’05)

Despite their inability to capitalize on delay-awareness,
the extra parallelism of iterative gets provides enough re-
silience to far outperform recursive ones at the 99th per-
centile. This speedup comes at the price of a factor of two
in bandwidth used, however.

Rows 10–12 show the benefits of using two gateways
with recursive gets. We note that while both gateways are
equally slow individually, waiting for only the quickest
of them to return for any particular get greatly reduces
latency. In fact, for the same cost in bandwidth, they far
outperform iterative gets at all percentiles.

Rows 13–15 show that using two gateways also im-
proves the performance of iterative gets, reducing the 99th
percentile to an amazing 321 ms, but this performance
comes at a cost of roughly four times that of recursive
gets with a single gateway.

Rows 16–17 show that we can reduce this cost by re-
ducing the parallelism factor, p, while still using two gate-
ways. Using p = 1 gives longer latencies than recursive
gets with the same cost, but using p= 2 provides close to
the performance of p = 3 at only three times the cost of
recursive gets with a single gateway.

Since iterative gets with two gateways and p = 3 use
more bandwidth than any of the recursive modes, we ran
a second experiment using up to four gateways per get re-
quest. Rows 18–22 show the results. For the same cost,
recursive gets are faster than iterative ones at both the me-
dian and 90th percentile, but slower at the 99th.

These differences make sense as follows. As the gate-
ways are co-located, we expect the paths of recursive gets
to converge to the same replica much of the time. In the
common case, that replica is both fast and synchronized
with its peers, and recursive gets are faster, as they have
more accurate information than iterative gets about which
neighbor is fastest at each hop. In contrast, iterative gets
with p > 1 actively explore several replicas in parallel
and are thus faster when one discovered replica is slow or
when the first replica is not synchronized with its peers,
necessitating that the gateway contact multiple replicas.

5 Conclusions
In this work we highlighted the problem of slow nodes in
OpenDHT, and we demonstrated that their effect on over-
all system performance can be mitigated through a combi-
nation of delay-aware algorithms and a moderate amount
of redundancy. Using only delay-awareness, we reduced
the 99th percentile get latency from over 8 s to under 2 s.
Using a factor of four more bandwidth, we can further
reduce the 99th percentile to under 400 ms and cut the
median by a factor of three.

Since performing this study, we have modified the pub-
lic OpenDHT deployment to perform all gets using delay-

aware routing with nonlinear scaling, and we have en-
couraged users of the system to use multiple gateways for
latency-sensitive gets. The response from the OpenDHT
user base has been very positive.

Looking beyond our specific results, we note that there
has been a lot of collective hand-wringing recently about
the value of PlanetLab as an experimental platform. The
load is so high, it is said, that one can neither get high
performance from an experimental service nor learn in-
teresting systems lessons applicable elsewhere.

We have certainly cast some doubt on the first of
these two claims. The latencies shown in Table 1 are
low enough to enable many applications that were once
thought to be outside the capabilities of a “vanilla” DHT.
For example, Cox et al. [3] worried that Chord could not
be used to replace DNS, and others argued that aggressive
caching was required for DHTs to do so [11]. On the con-
trary, even our least expensive modes are as fast as DNS,
which has a median latency of around 100 ms and a 90th
percentile latency of around 500 ms [8].

As to the second claim, there is no doubt that PlanetLab
is a trying environment on which to test distributed sys-
tems. That said, we suspect that the MapReduce design-
ers might say the same about their managed cluster. Their
work with stragglers certainly bears some resemblance to
the problems we have dealt with. While the question is
by no means settled, we suspect that PlanetLab may dif-
fer from their environment mainly by degree, forcing us
to solve problems at a scale of 300 nodes that we would
eventually have to solve at a scale of tens of thousands
of nodes. If this suspicion is correct, perhaps PlanetLab’s
slowness is not a bug, but a feature.

References
[1] http://nms.csail.mit.edu/ron/data/.
[2] A. Bavier et al. Operating system support for planetary-scale network ser-

vices. In NSDI, Mar. 2004.
[3] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a peer-to-

peer lookup service. In IPTPS, 2002.
[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized

network coordinate system. In SIGCOMM, 2004.
[5] F. Dabek et al. Designing a DHT for low latency and high throughput. In

NSDI, 2004.
[6] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In OSDI, 2004.
[7] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Sto-

ica. The impact of DHT routing geometry on resilience and proximity. In
SIGCOMM, Aug. 2003.

[8] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the
effectiveness of caching. In SIGCOMM IMW, 2001.

[9] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the XOR metric. In IPTPS, 2002.

[10] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordinates on
PlanetLab. In WORLDS, 2005.

[11] V. Ramasubramanian and E. G. Sirer. The design and implementation of a
next generation name service for the Internet. In SIGCOMM, 2004.

[12] S. Rhea. OpenDHT: A public DHT service. PhD thesis, U.C. Berkeley, Aug.
2005.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.
In USENIX Annual Tech. Conf., 2004.

[14] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, , and H. Yu. OpenDHT: A public DHT service and its uses. In
SIGCOMM, 2005.

6

