
42

Paxos Made Moderately Complex

ROBBERT VAN RENESSE and DENIZ ALTINBUKEN, Cornell University

This article explains the full reconfigurable multidecree Paxos (or multi-Paxos) protocol. Paxos is by no
means a simple protocol, even though it is based on relatively simple invariants. We provide pseudocode
and explain it guided by invariants. We initially avoid optimizations that complicate comprehension. Next
we discuss liveness, list various optimizations that make the protocol practical, and present variants of the
protocol.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Syst-
ems—Network operating systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms: Design, Reliability

Additional Key Words and Phrases: Replicated state machines, consensus, voting

ACM Reference Format:
Robbert van Renesse and Deniz Altinbuken. 2015. Paxos made moderately complex. ACM Comput. Surv. 47,
3, Article 42 (February 2015), 36 pages.
DOI: http://dx.doi.org/10.1145/2673577

1. INTRODUCTION

Paxos [Lamport 1998] is a protocol for state machine replication in an asynchronous
environment that admits crash failures. It is useful to consider the terms in this
sentence carefully:

—A state machine consists of a collection of states, a collection of transitions between
states, and a current state. A transition to a new current state happens in response to
an issued operation and produces an output. Transitions from the current state to the
same state are allowed and are used to model read-only operations. In a deterministic
state machine, for any state and operation, the transition enabled by the operation
is unique and the output is a function only of the state and the operation. Logically,
a deterministic state machine handles one operation at a time.

—In an asynchronous environment, there are no bounds on timing. Clocks run arbi-
trarily fast, network communication takes arbitrarily long, and state machines take
arbitrarily long to transition in response to an operation. The term asynchronous as
used here should not be confused with nonblocking operations on objects; they are
often referred to as asynchronous as well.

—A state machine has experienced a crash failure if it will make no more transi-
tions and thus its current state is fixed indefinitely. No other failures of a state ma-
chine, such as experiencing unspecified transitions (so-called Byzantine failures), are

This work was supported in part by NSF grants CNS-1111698 and SA4897-10808PG (TRUST), DARPA
grant FA8750-10-2-0238 (CRASH), and AFOSR grant FA9550-11-1-0137.
Authors’ address: Robbert van Renesse and Deniz Altinbuken, Computer Science Department, Cornell
University, Ithaca, NY 14853.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/02-ART42 $15.00

DOI: http://dx.doi.org/10.1145/2673577

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

http://dx.doi.org/10.1145/2673577
http://dx.doi.org/10.1145/2673577
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2673577&domain=pdf&date_stamp=2015-02-17

42:2 R. van Renesse and D. Altinbuken

allowed. In a “fail-stop environment” [Schlichting and Schneider 1983], crash fail-
ures can be reliably detected. In an asynchronous environment, one machine cannot
tell whether another machine is slow or has crashed.

—State machine replication (SMR) [Lamport 1978; Schneider 1990] is a technique to
mask failures, particularly crash failures. A collection of replicas of a deterministic
state machine are created. The replicas are then provided with the same sequence
of operations, so they go through the same sequence of state transitions and end up
in the same state and produce the same sequence of outputs. It is assumed that at
least one replica never crashes, but we do not know a priori which replica this is.

Deterministic state machines are used to model server processes, such as a file
server, a DNS server, and so on. A client process, using a library “stub routine,” can
send a command to a server over a network and await an output. A command is a
triple 〈κ, cid, operation〉, where κ1 is the identifier of the client that issued the com-
mand and cid is a client-local unique command identifier (e.g., a sequence number).
In other words, there cannot be two commands that have the same client identifier
and command identifier but have different operations. However, a client can issue the
same operation more than once by using different command identifiers. The command
identifier must be included in the response from the server to a command so the client
can match responses with commands.

In SMR, the stub routine is replaced with another stub routine to provide the illusion
of a single remote server that is highly available. The new stub routine sends the
command to all replicas (at least one of which is assumed not to crash) and returns
only the first response to the command.

The difficulty comes with multiple clients, as concurrent commands may arrive in dif-
ferent orders at different replicas, and thus the replicas may take different transitions,
produce different outputs as a result, and possibly end up in different current states.
A protocol like Paxos ensures that this cannot happen: all replicas process commands
in the same order, and thus the replicated state machine behaves logically identical to
a single remote state machine that never crashes.

For simplicity, we assume that messaging between correct processes is reliable (but
not necessarily FIFO):

—A message sent by a nonfaulty process to a nonfaulty destination process is eventually
received (at least once) by the destination process.

—If a message is received by a process, it was sent by some (possibly faulty) process.
In other words, messages are not garbled and do not appear out of the blue.

Although Paxos can tolerate process crashes from the initial state, each process crash
reduces the ability of Paxos to tolerate more crashes. A solution is to reconfigure Paxos
after a crash to replace the crashed process with a fresh one.

This article gives an operational description of a reconfigurable version of the mul-
tidecree Paxos protocol, sometimes called multi-Paxos, and briefly describes variants
of the Paxos protocol. Single-decree Paxos is significantly easier to understand and is
the topic of papers by Lampson [1996] and Lamport [2001]. But the multidecree Paxos
protocol is the one that is used (or some variant thereof) within industrial-strength
systems like Google’s Chubby [Burrows 2006]. The article does not repeat any correct-
ness proofs for Paxos, but it does stress invariants for two reasons. First, the invariants
make it possible to understand the operational description, as each operation can be
checked against the invariants. For any operation and any invariant, the following can
be checked: if the invariant holds before the operation, then the invariant still holds

1As in Lamport [1998], we will use Greek letters to identify processes.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:3

Table I. Types of Processes in Paxos

Process Type Description Minimum Number

Replica

Maintains application state

f + 1

Receives requests from clients
Asks leaders to serialize the requests so all replicas see

the same sequence
Applies serialized requests to the application state
Responds to clients

Leader
Receives requests from replicas

f + 1
Serializes requests and responds to replicas

Acceptor Maintains the fault tolerant memory of Paxos 2 f + 1
Note: f is the number of failures tolerated.

after the operation. Second, invariants make it reasonably clear why Paxos is correct
without having to go into correctness proofs.

In Section 2, we start with describing a reconfigurable version of Paxos that main-
tains more state than strictly necessary and will not worry too much about liveness of
the protocol. Section 3 considers liveness. In Section 4, we describe various optimiza-
tions and design decisions that make Paxos a practical solution for SMR. In Section 5,
we survey important variants of the Paxos protocol. The article is accompanied by a
basic Python implementation, and Section 4.6 suggests various exercises based on this
code. Section 6 concludes the article.

2. HOW AND WHY PAXOS WORKS

Paxos employs leaders and acceptors—specialized processes that coordinate the repli-
cas. Table I summarizes the functions of each type of process and how many of each are
needed to tolerate f failures. Each such process is a deterministic state machine in its
own right, maintaining state and undergoing state transitions in response to incoming
messages. For each type of process, we will first describe what state it maintains and
what invariants need to hold for correctness. We then give an operational description
and discuss how the invariants are maintained.

2.1. Clients, Replicas, Slots, and Configurations

To tolerate f crashes, Paxos needs at least f + 1 replicas to maintain copies of the
application state. When a client κ wants to execute a command c = 〈κ, cid, op〉,
its stub routine broadcasts a 〈request, c〉 message to all replicas and waits for a
〈response, cid, result〉 message from one of the replicas.

The replicas can be thought of as having a sequence of slots that need to be filled
with commands that make up the inputs to the state machine. Each slot is indexed
by a slot number. Replicas receive requests from clients and assign them to specific
slots, creating a sequence of commands. A replica, on receipt of a 〈request, c〉 message,
proposes command c for its lowest unused slot. We call the pair (s, c) a proposal for slot s.

In the face of concurrently operating clients, different replicas may end up proposing
different commands for the same slot. To avoid inconsistency, a consensus protocol
chooses a single command from the proposals. The consensus protocol runs between
a set of processes called the configuration of the slot. The configuration contains the
leaders and the acceptors (but not the replicas). Leaders receive proposed commands
from replicas and are responsible for deciding a single command for the slot. A replica
awaits the decision before actually updating its state and computing a response to send
back to the client that issued the request.

Usually, the configuration for consecutive slots is the same. Sometimes, such as when
a process in the configuration is suspected of having crashed, it is useful to be able to

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:4 R. van Renesse and D. Altinbuken

change the configuration. Paxos supports reconfiguration: a client can propose a special
reconfiguration command, which is decided in a slot just like any other command. How-
ever, if s is the index of the slot in which a new configuration is decided, it does not take
effect until slot s + WINDOW. This allows up to WINDOW slots to have proposals pending—
the configuration of later slots may change [Lamport 1978, §6.2]. It is always possible to
add new replicas—this does not require a reconfiguration of the leaders and acceptors.

State and Invariants

Each replica ρ maintains seven variables:

—ρ.state: The replica’s copy of the application state, which we will treat as opaque. All
replicas start with the same initial application state.

—ρ.slot in: The index of the next slot in which the replica has not yet proposed any
command, initially 1.

—ρ.slot out: The index of the next slot for which it needs to learn a decision before it
can update its copy of the application state, equivalent to the state’s version number
(i.e., number of updates) and initially 1.

—ρ.requests: An initially empty set of requests that the replica has received and are
not yet proposed or decided.

—ρ.proposals: An initially empty set of proposals that are currently outstanding.
—ρ.decisions: Another set of proposals that are known to have been decided (also

initially empty).
—ρ.leaders: The set of leaders in the current configuration. The leaders of the initial

configuration are passed as an argument to the replica.

Before giving an operational description of replicas, we present some important
invariants that hold over the collected variables of replicas:

R1: There are no two different commands decided for the same slot:
∀s, ρ1, ρ2, c1, c2 : 〈s, c1〉 ∈ ρ1.decisions ∧ 〈s, c2〉 ∈ ρ2.decisions ⇒ c1 = c2.

R2: All commands up to slot out are in the set of decisions:
∀ρ, s : 1 ≤ s < ρ.slot out ⇒ ∃c : 〈s, c〉 ∈ ρ.decisions.

R3: For all replicas ρ, ρ.state is the result of applying the commands 〈s, cs〉 ∈ ρ.decisions
to initial state for all s up to slot out, in order of slot number.

R4: For each ρ, the variable ρ.slot out cannot decrease over time.
R5: A replica proposes commands only for slots for which it knows the configuration:

∀ρ : ρ.slot in < ρ.slot out + WINDOW.

To understand the significance of such invariants, it is useful to consider what would
happen if one of the invariants would not hold. If R1 would not hold, replicas could
diverge, ending up in different states even if they have applied the same number of
commands. In addition, without R1, the same replica could decide multiple different
commands for the same slot, because ρ1 and ρ2 could be the same process. Thus, the
application state of that replica would be ambiguous.

Invariants R2 through R4 ensure that for each replica ρ, the sequence of the first
ρ.slot out commands is recorded and fixed. If any of these invariants were invalidated,
a replica could change its history and end up with a different application state. The
invariants do not imply that the slots have to be decided in order; they only imply that
decided commands have to be applied to the application state in order and that there
is no way to roll back.

Invariant R5 guarantees that replicas do not propose commands for slots that have an
uncertain configuration. Because a configuration for slot s takes effect at slot s+WINDOW
and all decisions up to slot in−1 are known, configurations up to slot ρ.slot in+WINDOW−
1 are known.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:5

Operational Description

Figure 1 shows pseudocode for a replica. A replica runs in an infinite loop, receiving
messages. Replicas receive two kinds of messages: requests and decisions. When it
receives a request for command c from a client, the replica adds the request to set
requests. Next, the replica invokes the function propose().

Function propose() tries to transfer requests from the set requests to proposals. It uses
slot in to look for unused slots within the window of slots with known configurations.
For each such slot s, it first checks if the configuration for s is different from the prior
slot by checking if the decision in slot s − WINDOW is a reconfiguration command. If
so, the function updates the set of leaders for slot s. Then, the function removes a
request r from requests and adds proposal (s, r) to the set proposals. Finally, it sends a
〈propose, s, c〉 message to all leaders in the configuration of slot s (Figure 2).

Decisions may arrive out of order and multiple times. For each decision message,
the replica adds the decision to the set decisions. Then, in a loop, it considers which
decisions are ready for execution before trying to receive more messages. If there is a
decision c′ corresponding to the current slot out, the replica first checks to see if it has
proposed a command c′′ for that slot. If so, the replica removes 〈slot out, c′′〉 from the
set proposals. If c′′ �= c′, that is, the replica proposed a different command for that slot,
the replica returns c′′ to set requests so c′′ is proposed again at a later time. Next, the
replica invokes perform(c′).

The function perform() is invoked with the same sequence of commands at all replicas.
First, it checks to see if it has already performed the command. Different replicas may
end up proposing the same command for different slots, and thus the same command
may be decided multiple times. The corresponding operation is evaluated only if the
command is new and it is not a reconfiguration request. If so, perform() applies the
requested operation to the application state. In either case, the function increments
slot out.

Figure 2 presents an example of an execution involving two clients, two replicas, and
two leaders (in the same configuration). Both clients send a request to the replicas at
approximately the same time, and the replicas learn about the two requests in opposite
orders, assigning the commands to different slots. Both replicas send proposals to the
leaders, which run a protocol that is not shown—it will be described in detail later. The
result is that leaders decide which command gets assigned to which slot and replicas
receive decisions for the two slots, upon which both replicas end up executing the
commands in the same order and responding to the clients. It may happen that the
same command is decided for both slots. The Replica code will skip the second decision
and repropose the other command.

Maintenance of Invariants

Note that decisions is “append-only” in that there is no code that removes entries
from this set. Doing so makes it easier to formulate invariants and reason about the
correctness of the code. In Section 4.2, we will discuss correctness-preserving ways of
removing entries that are no longer useful.

It is clear that the code enforces Invariant R4. The variables state and slot out are
updated atomically in order to ensure that Invariant R3 holds, although in practice
it is not actually necessary to perform these updates atomically, as the intermediate
state is not externally visible. Since slot out is only advanced if the corresponding
decision is in decisions, it is clear that Invariant R2 holds. A command is proposed
for a slot only if that slot is within the current WINDOW, and since replicas execute
reconfiguration commands after a WINDOW of operations, it is ensured that Invariant R5
holds.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:6 R. van Renesse and D. Altinbuken

Fig. 1. Pseudocode for a replica.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:7

Fig. 2. The time diagram shows two clients, two replicas, and two leaders, with time progressing downward.
Arrows represent messages. Open arrows are messages concerning the request from client κ1. Closed arrows
are messages concerning the request from client κ2. Dashed arrows are messages that end up being ignored.
The clients broadcast to all replicas, who receive requests from the two clients in different orders. The replicas
forward proposals to the leaders, who decide on the ordering using the Synod protocol (message traffic not
shown) and inform the replicas. Finally, the replicas respond to the clients.

The real difficulty lies in enforcing Invariant R1. It requires that the set of replicas
agree on the order of commands. For each slot, the Paxos protocol chooses a command
from among a collection of commands proposed by clients. This is called consensus, and
in Paxos the subprotocol that implements consensus is called the multidecree protocol,
or just Synod protocol for short, as we do not consider the single-decree protocol in this
article.

2.2. The Synod Protocol, Ballots, and Acceptors

Replicas can propose multiple commands for the same slot. The Synod protocol chooses
from these a single command to be decided by all nonfaulty replicas. This is not a trivial
problem. A process might fail at any time, and because there is no bound on timing
for delivering and processing messages, it is impossible for other processes to know for
certain that the process has failed.

In the Synod protocol, there is an unbounded collection of ballots. Ballots are not
created; they just are. As we shall see later, ballots are the key to liveness properties in
Paxos. Each ballot has a unique leader. A leader can be working on arbitrarily many
ballots, although it will be predominantly working on one at a time. To tolerate f
failures, there must be at least f + 1 leaders, each in charge of an unbounded number
of ballots. A leader process has a unique identifier called the leader identifier. A ballot
has a unique identifier as well, called its ballot number. Ballot numbers are totally
ordered, that is, for any two different ballot numbers, one is before or after the other.
Do not confuse ballot numbers and slot numbers; they are orthogonal concepts. One

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:8 R. van Renesse and D. Altinbuken

Fig. 3. Communication pattern between types of processes in a setting where f = 2.

ballot can be used to decide multiple slots, and one slot may be targeted by multiple
ballots.

In this description, we will have ballot numbers be lexicographically ordered pairs of
an integer and its leader identifier (consequently, leader identifiers need to be totally
ordered as well). This way, given a ballot number, it is trivial to see who the leader
of the ballot is.2 We will use one special ballot number ⊥ that is ordered before any
normal ballot number but does not correspond to any ballot.

Besides replicas and leaders, the protocol employs a collection of acceptors. Acceptors
are deterministic state machines, although they are not replicas of one another, because
they get different sequences of input. Think of acceptors as servers and leaders as
their clients. As we shall see, acceptors maintain the fault-tolerant memory of Paxos,
preventing conflicting decisions from being made. Acceptors use a voting protocol,
allowing a unanimous majority of acceptors to decide without needing input from the
remaining acceptors. Thus, to tolerate f crash failures, Paxos needs at least 2 f + 1
acceptors, always leaving at least f +1 acceptors to maintain the fault-tolerant memory.
Figure 3 illustrates the communication patterns between the various types of processes
in a setting where f = 2.

State and Invariants

An acceptor is quite simple, as it is passive and only sends messages in response to
requests. Its state consists of two variables. Let a pvalue be a triple consisting of a
ballot number, a slot number, and a command. If α is the identifier of an acceptor, then
the acceptor’s state is described by

—α.ballot num, a ballot number, initially ⊥; and
—α.accepted, a set of pvalues, initially empty.

Under the direction of messages sent by leaders, the state of an acceptor can change.
Let p = 〈b, s, c〉 be a pvalue consisting of a ballot number b, a slot number s, and a
command c. When an acceptor α adds p to α.accepted, we say that α accepts p. (An
acceptor may accept the same pvalue multiple times.) When α sets its ballot number
to b for the first time, we say that α adopts b.

We start by presenting some important invariants that hold over the collected vari-
ables of acceptors. Knowing these invariants is an invaluable help to understanding
the Synod protocol:

A1: An acceptor can only adopt strictly increasing ballot numbers.

2In the original Paxos protocol, the leader of a ballot is elected and some ballots may end up without a leader.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:9

Fig. 4. Pseudocode for an acceptor.

A2: An acceptor α can only accept 〈b, s, c〉 if b = α.ballot num.
A3: Acceptor α cannot remove pvalues from α.accepted (we will modify this impractical

restriction later).
A4: Suppose that α and α′ are acceptors, with 〈b, s, c〉 ∈ α.accepted and 〈b, s, c′〉 ∈

α′.accepted. Then c = c′. Informally, given a particular ballot number and slot
number, there can be at most one proposed command under consideration by the
set of acceptors.

A5: Suppose that for each α among a majority of acceptors, 〈b, s, c〉 ∈ α.accepted. If
b′ > b and 〈b′, s, c′〉 ∈ α′.accepted, then c = c′.

It is important to realize that Invariant A5 works in two ways. In one way, if all
acceptors in a majority have accepted a particular pvalue 〈b, s, c〉, then any pvalue for
a later ballot will contain the same command c for slot s. In the other way, suppose
that some acceptor accepts 〈b′, s, c′〉. At a later time, if any majority of acceptors accepts
pvalue 〈b, s, c〉 on an earlier ballot b < b′, then c = c′.

Operational Description

Figure 4 shows pseudocode for an acceptor. It runs in an infinite loop, receiving two
kinds of request messages from leaders (note the use of pattern matching):

—〈p1a, λ, b〉: Upon receiving a “phase 1a” request message from a leader with identi-
fier λ, for a ballot number b, an acceptor makes the following transition. First, the
acceptor adopts b if and only if it exceeds its current ballot number. Then, it returns
to λ a “phase 1b” response message containing its current ballot number and all
pvalues accepted thus far by the acceptor.

—〈p2a, λ, 〈b, s, c〉〉: Upon receiving a “phase 2a” request message from leader λ with
pvalue 〈b, s, c〉, an acceptor makes the following transition. If the current ballot
number equals b, then the acceptor accepts 〈b, s, c〉. The acceptor returns to λ a
“phase 2b” response message containing its current ballot number.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:10 R. van Renesse and D. Altinbuken

Fig. 5. In the Synod protocol, slot numbers and ballot numbers are orthogonal concepts. One ballot can be
used to decide on multiple slots, like in slot 1 and slot 2. A slot may be considered by multiple ballots, such
as in slot 3. A configuration can span multiple ballots and multiple slots, but they each belong to a single
configuration.

Maintenance of Invariants

It is easy to see that the code enforces Invariants A1, A2, and A3. For checking the
remaining two invariants, which involve multiple acceptors, we have to study what a
leader does first, which is described in the following sections.

An instance of the Synod protocol uses a fixed configuration C consisting of at least
f + 1 leaders and 2 f + 1 acceptors. For simplicity, assume that configurations have no
processes in common. Instances follow each other, creating a reconfigurable protocol.
Figure 5 shows the relation between ballots, slots, and configurations. A leader can use
a single ballot to decide multiple slots, as in the case for slots 1 and 2. Multiple leaders
might use multiple ballots during a single slot, as shown in slot 3. A configuration can
have multiple ballots and can span multiple slots, but each slot and each ballot has
only one configuration associated with it.

2.3. Commanders

According to Invariant A4, there can be at most one proposed command per ballot
number and slot number. The leader of a ballot is responsible for selecting a command
for each slot in such a way that selected commands cannot conflict with decisions on
other ballots (Invariant A5).

A leader may work on multiple slots at the same time. For each such slot, the leader
selects a command and spawns a new process that we call a commander. Although we
present it as a separate process, the commander is really just a thread running within
the leader. The commander runs what is known as phase 2 of the Synod protocol.

As we shall see, the following invariants hold in the Synod protocol:

C1: For any ballot b and slot s, at most one command c is selected and at most one
commander for 〈b, s, c〉 is spawned.

C2: Suppose that for each α among a majority of acceptors, 〈b, s, c〉 ∈ α.accepted. If
b′ > b and a commander is spawned for 〈b′, s, c′〉, then c = c′.

Invariant C1 implies Invariant A4, because by C1 all acceptors that accept a pvalue
for a particular ballot and slot number received the pvalue from the same commander.
Similarly, Invariant C2 implies Invariant A5.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:11

Figure 6(a) shows the pseudocode for a commander. A commander sends a
〈p2a, λ, 〈b, s, c〉〉 message to all acceptors and waits for responses of the form 〈p2b, α, b′〉.
In each such response, b′ ≥ b will hold (see the code for acceptors in Figure 4). There
are two cases:

(1) If a commander receives 〈p2b, α, b〉 from all acceptors in a majority of acceptors,
then the commander learns that command c has been chosen for slot s. In this
case, the commander notifies all replicas and exits. To satisfy Invariant R1, we
need to enforce that if a commander learns that c is chosen for slot s, and another
commander learns that c′ is chosen for the same slot s, then c = c′. This is a
consequence of Invariant A5: if a majority of acceptors accept 〈b, s, c〉, then for any
later ballot b′ and the same slot number s, acceptors can only accept 〈b′, s, c〉. Thus,
if the commander of 〈b′, s, c′〉 learns that c′ has been chosen for s, it is guaranteed
that c = c′ and no inconsistency occurs, assuming—of course—that Invariant C2
holds.

(2) If a commander receives 〈p2b, α′, b′〉 from some acceptor α′, with b′ �= b, then it
learns that a ballot b′ (which must be larger than b as guaranteed by acceptors) is
active. This means that ballot b may no longer be able to make progress, as there
may no longer exist a majority of acceptors that can accept 〈b, s, c〉. In this case, the
commander notifies its leader about the existence of b′ and exits.

Under the assumptions that at most a minority of acceptors can crash, that messages
are delivered reliably, and that the commander does not crash, the commander will
eventually do one or the other.

2.4. Scouts, Passive and Active Modes

The leader must enforce Invariants C1 and C2. Because there is only one leader per
ballot, Invariant C1 is trivial to enforce by the leader not spawning more than one
commander per ballot number and slot number. To enforce Invariant C2, the leader
runs what is often called phase 1 of the Synod protocol or a view change protocol for
some ballot before spawning commanders for that ballot.3 The leader spawns a scout
thread to run the view change protocol for some ballot b. A leader starts at most one of
these for any ballot b, and only for its own ballots.

Figure 6(b) shows the pseudocode for a scout. The code is similar to that of a com-
mander, except that it sends and receives phase 1 instead of phase 2 messages. A
scout completes successfully when it has collected 〈p1b, α, b, rα〉 messages from all
acceptors in a majority (again, guaranteed to complete eventually) and returns an
〈adopted, b,

⋃
rα〉 message to its leader λ. As we will see later, the leader uses

⋃
rα,

the union of all pvalues accepted by this majority of acceptors to enforce Invariant C2.
Figure 7 shows the main code of a leader. Leader λ maintains three state variables:

—λ.ballot num, a monotonically increasing ballot number, initially (0, λ);
—λ.active, a Boolean flag, initially false; and
—λ.proposals, a map of slot numbers to proposed commands in the form of a set of

〈slot number, command 〉 pairs, initially empty (at any time, there is at most one
entry per slot number in the set).

The leader starts by spawning a scout for its initial ballot number and then enters
into a loop awaiting messages. There are three types of messages that cause transitions:

—〈propose, s, c〉: A replica proposes command c for slot number s.

3The term view change is used in the Viewstamped Replication protocol [Oki and Liskov 1988], which is
similar to the Paxos protocol [Van Renesse et al. 2014].

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:12 R. van Renesse and D. Altinbuken

Fig. 6. (a) Pseudocode for a commander. Here, λ is the identifier of its leader, acceptors is the set of acceptor
identifiers, replicas is the set of replica identifiers, and 〈b, s, c〉 is the pvalue for which the commander is
responsible. (b) Pseudocode for a scout. Here, λ is the identifier of its leader, acceptors is the identifiers of the
acceptors, and b is the desired ballot number.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:13

Fig. 7. Pseudocode skeleton for a leader. Here, acceptors is the set of acceptor identifiers, and replicas is the
set of replica identifiers.

—〈adopted, ballot num, pvals〉: Sent by a scout, this message signifies that the current
ballot number ballot num has been adopted by a majority of acceptors. (If an adopted
message arrives for an old ballot number, it is ignored.) The set pvals contains all
pvalues accepted by these acceptors prior to ballot num.

—〈preempted, 〈r′, λ′〉〉: Sent by either a scout or a commander, it means that some
acceptor has adopted 〈r′, λ′〉. If 〈r′, λ′〉 > ballot num, it may no longer be possible to
use ballot ballot num to choose a command.

A leader goes between passive and active modes. When passive, the leader is waiting
for an 〈adopted, ballot num, pvals〉 message from the last scout that it spawned. When
this message arrives, the leader becomes active and spawns commanders for each of
the slots for which it has a proposed command but must select commands that satisfy
Invariant C2. We will now consider how the leader goes about this.

When active, the leader knows that a majority of acceptors, say A, have adopted
ballot num and thus no longer accept pvalues for ballot numbers less than ballot num
(because of Invariants A1 and A2). In addition, it has all pvalues accepted by the
acceptors in A prior to ballot num. The leader uses these pvalues to update its own
proposals variable. There are two cases to consider:

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:14 R. van Renesse and D. Altinbuken

(1) If, for some slot s there is no pvalue in pvals, then prior to ballot num, it is not
possible that any pvalue has been chosen or will be chosen for slot s. After all,
suppose that some pvalue 〈b, s, c〉 were chosen, with b < ballot num. This would
require a majority of acceptors A′ to accept 〈b, s, c〉, but we have responses from a
majority A that have adopted ballot num and have not accepted, nor can accept,
pvalues with a ballot number smaller than ballot num (Invariants A1 and A2).
Because both A and A′ are majorities, A ∩ A′ is nonempty—some acceptor in the
intersection must have violated Invariant A1, A2, or A3, which we assume cannot
happen. Because no pvalue has been or will be chosen for slot s prior to ballot num,
the leader can propose any command for that slot without causing a conflict on an
earlier ballot, thus enforcing Invariant C2.

(2) Otherwise, let 〈b, s, c〉 be the pvalue with the maximum ballot number for slot
s. Because of Invariant A4, this pvalue is unique—there cannot be two different
commands for the same ballot number and slot number. In addition, note that
b < ballot num (because acceptors only report pvalues that they accepted before
adopting ballot num). Like the leader of ballot num, the leader of b must have
picked c carefully to ensure that Invariant C2 holds, and thus if a pvalue is chosen
before or at b, the command it contains must be c. Since all acceptors in A have
adopted ballot num, no pvalues between b and ballot num can be chosen (Invari-
ants A1 and A2). Thus, by using c as a command, λ enforces Invariant C2.

This inductive argument is the crux for the correctness of the Synod protocol. It
demonstrates that Invariant C2 holds, which in turn implies Invariant A5, which in
turn implies Invariant R1 that ensures all replicas apply the same operations in the
same order.

Back to the code, after the leader receives 〈adopted, ballot num, pvals〉, it deter-
mines for each slot the command corresponding to the maximum ballot number in
pvals by invoking the function pmax. Formally, the function pmax(pvals) is defined as
follows:

pmax(pvals) ≡ {〈s, c〉|∃b : 〈b, s, c〉 ∈ pvals
∧∀b′, c′ : 〈b′, s, c′〉 ∈ pvals ⇒ b′ ≤ b}.

The update operator � applies to two sets of proposals. x � y returns the elements of
y as well as the elements of x that are not in y. Formally,

x � y ≡ {〈s, c〉|〈s, c〉 ∈ y
∨ (〈s, c〉 ∈ x ∧ �c′ : 〈s, c′〉 ∈ y)}.

Thus, the line proposals := proposals � pmax(pvals); updates the set of proposals,
replacing for each slot number the command corresponding to the maximum pvalue
in pvals, if any. Now the leader can start commanders for each slot while satisfying
Invariant C2.

If a new proposal arrives while the leader is active, the leader checks to see if it
already has a proposal for the same slot (and has thus spawned a commander for that
slot) in its set proposals. If not, the new proposal will satisfy Invariant C2, and thus
the leader adds the proposal to proposals and spawns a commander.

If either a scout or a commander detects that an acceptor has adopted a ballot
number b, with b > ballot num, then it sends the leader a preempted message. The
leader becomes passive and spawns a new scout with a ballot number that is higher
than b.

Figure 8 shows an example of a leader λ spawning a scout to become active, and a
client κ sending a request to two replicas ρ1 and ρ2, which in turn send proposals to λ.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:15

Fig. 8. The time diagram shows a client, two replicas, a leader (with a scout and a commander), and three
acceptors, with time progressing downward. Arrows represent messages. Dashed arrows are messages that
end up being ignored. The leader first runs a scout to become active. Later, when a replica proposes a
command (in response to a client’s request), the leader runs a commander, which notifies the replicas upon
learning a decision.

3. WHEN PAXOS WORKS

It would clearly be desirable that if a client broadcasts a new command to all repli-
cas, that it eventually receives at least one response. This is an example of a liveness
property. It requires that if one or more commands have been proposed for a partic-
ular slot, that some command is eventually decided for that slot. Unfortunately, the
Synod protocol as described does not guarantee this, even in the absence of any failure
whatsoever.4

Consider the following scenario shown in Figure 9, with two leaders with identifiers
λ and λ′ such that λ < λ′. Both start at the same time, respectively proposing commands
c and c′ for slot number 1. Suppose that there are three acceptors, α1, α2, and α3. In
ballot 〈0, λ〉, leader λ is successful in getting α1 and α2 to adopt the ballot and α1 to
accept pvalue 〈〈0, λ〉, 1, c〉.

Now leader λ′ gets α2 and α3 to adopt ballot 〈0, λ′〉 (which has a higher ballot number
than ballot 〈0, λ〉 because λ < λ′). Note that neither α2 or α3 accepted any pvalues, so
leader λ′ is free to select any proposal. Leader λ′ then gets α3 to accept 〈〈0, λ′〉, 1, c′〉.

At this point, acceptors α2 and α3 are unable to accept 〈〈0, λ〉, 1, c〉, and thus leader
λ is unable to get a majority of acceptors to accept 〈〈0, λ〉, 1, c〉. Trying again with a
higher ballot, leader λ gets α1 and α2 to adopt 〈1, λ〉. The maximum pvalue accepted by
α1 and α2 is 〈〈0, λ〉, 1, c〉, and thus λ must propose c. Suppose that λ gets α1 to accept
〈〈1, λ〉, 1, c〉. Because acceptors α1 and α2 adopted 〈1, λ〉, they are unable to accept

4In fact, failures tend to be good for liveness. If all leaders but one fail, Paxos is guaranteed to terminate.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:16 R. van Renesse and D. Altinbuken

Fig. 9. The time diagram shows two leaders and three acceptors, with time progressing downward; the time
diagram on the right follows the one on the left. Arrows represent messages. Closed arrows are messages
concerning the proposal from leader λ. Open arrows are messages concerning the proposal from leader λ′.
Leaders try to get their proposals accepted by a majority of acceptors, but in each round one leader prevents
the other leader from obtaining a majority.

〈〈0, λ′〉, 1, c′〉. Trying to make progress, leader λ′ gets α2 and α3 to adopt 〈1, λ′〉, and gets
α3 to accept 〈〈1, λ′〉, 1, c′〉.

This ping-pong scenario can be continued indefinitely, with no ballot ever succeeding
in choosing a pvalue. This is true even if c = c′, that is, the leaders propose the same
command. The well-known “FLP impossibility result” [Fischer et al. 1985] demon-
strates that in an asynchronous environment that admits crash failures, no consensus
protocol can guarantee termination, and the Synod protocol is no exception. The ar-
gument does not apply directly if transitions have non-deterministic actions, such as
changing state in a randomized manner. However, it can be demonstrated that such
protocols cannot guarantee a decision either.

If we could somehow guarantee that some leader would be able to work long enough
to get a majority of acceptors to adopt a high ballot and also accept a pvalue, then
Paxos would be guaranteed to choose a proposed command. A possible approach could
be as follows: when a leader λ discovers (through a preempted message) that there is
a higher ballot with leader λ′ active, rather than starting a new scout with an even
higher ballot number, λ starts monitoring λ′ by pinging it on a regular basis. As long as
λ′ responds timely to pings, λ waits patiently. Only if λ′ stops responding will λ select
a higher ballot number and start a scout.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:17

This concept is called failure detection, and theoreticians have been interested in the
weakest properties failure detection should have to support a consensus algorithm that
is guaranteed to terminate [Chandra and Toueg 1991]. In a purely asynchronous envi-
ronment, it is impossible to determine through pinging or any other method whether
a particular leader has crashed or is simply slow. However, under fairly weak assump-
tions about timing, we can design a version of Paxos that is guaranteed to choose a
proposal. In particular, we will assume that both the following are bounded:

—the clock drift of a process, that is, the rate of its clock is within some factor of the
rate of real time; and

—the time between when a nonfaulty process initiates sending a message and the
message has been received and handled by a nonfaulty destination process.

We do not need to assume that we know what those bounds are—only that such
bounds exist. From a practical point of view, this seems entirely reasonable. Modern
clocks progress certainly within a factor of 2 of real time. A message between two
nonfaulty processes is likely delivered and processed within, say, a year.

These assumptions can be exploited as follows. We use a scheme similar to the one
described earlier, based on pinging and timeouts, but the value of the timeout interval
depends on the ballot number: the higher the competing ballot number, the longer a
leader waits before trying to preempt it with a higher ballot number. Eventually, the
timeout at each of the leaders becomes so high that some correct leader will always be
able to get its proposals chosen.

For good performance, one would like the timeout period to be long enough so that
a leader can be successful, but short enough so that the ballots of a faulty leader are
preempted quickly. This can be achieved with a TCP-like additive increase, multiplica-
tive decrease (AIMD) approach for choosing timeouts. The leader associates an initial
timeout with each ballot. If a ballot gets preempted, the next ballot uses a timeout that
is multiplied by some small factor larger than 1. With each chosen proposal, this initial
timeout is decreased linearly. Eventually, the timeout will become too short, and the
ballot will be replaced with another even if its leader is nonfaulty.

Liveness can be further improved by keeping state on disk. The Paxos protocol
can tolerate a minority of its acceptors failing, and all but one of its replicas and
leaders failing. If more than that fail, consistency is still guaranteed but liveness will
be violated. A process that suffers from a power failure but can recover from disk is
not theoretically considered crashed—it is simply slow for a while. Only a process that
suffers a permanent disk failure would be considered crashed.

For completeness, we note that for liveness we also assumed reliable communication.
This assumption can be weakened by using a fair links assumption: if a correct process
repeatedly sends a message to another correct process, at least one copy is eventually
delivered. Reliable transmission of a message can then be implemented by periodic
retransmission until an ack is received. To prevent overload on the network, the time
intervals between retransmissions can grow until the load imposed on the network is
negligible. The fair links assumption can be weakened further, but such a discussion
is outside the scope of this article.

As an example of how liveness is achieved, a correct client retransmits its request to
replicas until it has received a response. Because there are at least f + 1 replicas, at
least one of those replicas will not fail and will assign a slot to the request and send a
proposal to the f + 1 or more leaders. Thus, at least one correct leader will try to get a
command decided for that slot. Should a competing command get decided, the replica
will reassign the request to a new slot and retry. Although this may lead to starvation,
in the absence of new requests, any outstanding request will eventually get decided in
at least one slot.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:18 R. van Renesse and D. Altinbuken

4. PAXOS MADE PRAGMATIC

We have described a relatively simple version of the Paxos protocol with the intention
to make it understandable, but the described protocol is not practical. The state of the
various components, as well as the contents of p1b messages, grows much too quickly.
This section presents various improvements.

4.1. State Reduction

First, note that although a leader obtains for each slot a set of all accepted pvalues
from a majority of acceptors, it only needs to know if this set is empty or not, and if not,
what the maximum pvalue is. Thus, a large step toward practicality is that acceptors
only maintain the most recently accepted pvalue for each slot (⊥ if no pvalue has been
accepted) and return only these pvalues in a p1b message to the scout. This gives the
leader all information needed to enforce Invariant C2.

This optimization leads to a worrisome effect. We know that when a majority of
acceptors have accepted the same pvalue 〈b, s, c〉, then proposal c is chosen for slot s.
Consider now the following scenario. Suppose (as in the example of Section 3) that there
are two leaders λ and λ′ such that λ < λ′ and three acceptors α1, α2 and α3. Acceptors
α1 and α2 accept 〈〈0, λ〉, 1, c〉, and thus proposal c is chosen for slot 1 by ballot 〈0, λ〉.
However, leader λ crashes before learning this. Now leader λ′ gets acceptors α2 and α3
to adopt ballot 〈0, λ′〉. After determining the maximum pvalue among the responses,
leader λ′ has to select proposal c. Now suppose that acceptor α2 accepts 〈〈0, λ′〉, 1, c〉.

At this point, there is no majority of acceptors that store the same most recently
accepted pvalue, and in fact no proof that ballot 〈0, λ〉 even chose proposal c, as that
part of the history has been overwritten. This appears to be a problem. However, the
leader of any ballot b after 〈0, λ〉 can only select 〈b, 1, c〉. This is by Invariant C2 and
because acceptors α1 and α2 both accepted 〈〈0, λ〉, 1, c〉 and together form a majority.

4.2. Garbage Collection

In our description of Paxos, much information is kept about slots that have already
been decided. Some of this is unavoidable. For example, because commands may be
decided in multiple slots, replicas each maintain a set of all decisions to filter out such
duplicates. In practice, it is often sufficient if such information is only kept for a certain
amount of time, making the probability of duplicate execution negligible.

But some state, and indeed some work that results from having that state, is unnec-
essary. The leader maintains state for each slot in which it has a proposal. In addition,
when a leader becomes active, it spawns a commander for each such slot. Similarly,
even if the state reduction of Section 4.1 is implemented, each acceptor maintains state
for each slot. However, once at least f + 1 replicas have learned about the decision of
some slot, it is no longer necessary for leaders and acceptors to maintain this state—
replicas can learn decisions, and the application state that results from those decisions,
from one another.

Thus, much state, and work, can be saved if each replica periodically updates leaders
and acceptors about its slot out variable. Once a leader or acceptor learns that at least
f + 1 replicas have received all decisions up to some slot s, all information about lower
numbered slots can be garbage collected. However, we must prevent other leaders
from mistakenly concluding that the acceptors have not accepted any pvalues for the
garbage-collected slots. To achieve this, the state of an acceptor can be extended with
a new variable that contains a slot number: all pvalues lower than that slot number
have been garbage collected. This slot number must be included in p1b messages so
that leaders can skip the lower numbered slots.

Note that if there are fewer than 2 f + 1 replicas, the crash of f replicas would
leave fewer than f + 1 replicas to send periodic updates and no garbage collection

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:19

could be done. If having 2 f + 1 replicas is too expensive, the set of replicas could be
made dynamic so that suspicious replicas could be removed and fresh replicas could
be added. To do so, we add the set of replicas to configurations. Now, f + 1 replicas per
configuration suffices. Once all (f + 1 or more) replicas in a configuration have learned
the decision for a slot, the corresponding leader and acceptor state for that slot can
be garbage collected. If there are not enough responsive replicas, a new configuration
can be created whose replicas can learn the state from responsive replicas in the old
configuration. When done, the unresponsive replicas can be cleaned up.

4.3. Keeping State on Disk

There are two reasons for keeping state on disk. One is that the amount of state is
so large that it does not fit in memory. Another is to survive power outages. However,
keeping state on disk comes with its own set of problems. Disk access is slow relative to
memory access, and there are issues with updating data structures on disks atomically.
A pragmatic solution to these problems is Write-Ahead Logging [Mohan et al. 1992] in
which updates are logged sequentially to disk, and, separately, memory caches all or
part of the data structure that is also stored on disk. Periodically, the log is truncated
after checkpointing the current state of the data structure (i.e., the dirty entries in the
cache) to disk.

4.4. Colocation

In practice, leaders are typically colocated with replicas. In other words, each machine
that runs a replica also runs a leader. This allows some optimizations. A client sends
its proposals to replicas. If colocated, the replica can send a proposal for a particular
slot to its local leader, say λ, rather than broadcasting the request to all leaders. If λ
is passive, monitoring another leader λ′, it forwards the proposal to λ′. If λ is active, it
will start a commander.

An alternative not often considered is to have clients and leaders be colocated in-
stead of replicas and leaders. Thus, each client runs a local leader. By doing so, one
obtains a protocol that is much like quorum replication [Thomas 1979; Attiya et al.
1995]. Whereas traditional quorum replication protocols can only support read and
write operations, this Paxos version of quorum replication could support arbitrary (de-
terministic) operations. However, this approach would place a lot of trust in clients for
both integrity and liveness and is therefore not popular.

Replicas are also often colocated with acceptors. As discussed in Section 4.2, one
may desire as many replicas as acceptors in any case. When leaders are colocated with
acceptors, one has to be careful that separate ballot number variables are used.

4.5. Read-Only Commands

The protocol that we presented does not treat read-only commands any differently from
update commands, leading to more overhead than necessary since read-only commands
do not change any state. One would be naı̈ve to think that a client wanting to do a read-
only command could simply query one of the replicas—doing so could easily violate
consistency, as the selected replica may not have learned all updates yet and thus
have stale application state. Therefore, a read-only command should be serialized after
the latest completed update command that precedes it. There are, however, various
optimizations possible.

First, it is not necessary that a new slot is allocated for a read-only command;
in particular, it is not necessary that a majority of acceptors accept a pvalue. It is
necessary to ensure that the read-only command is assigned an appropriate slot s that
defines the state at which the read-only command is executed. Slot number s has to be
at least as high as the maximum among the slot out variables of the replicas, because
the read-only command should follow the latest update.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:20 R. van Renesse and D. Altinbuken

To obtain s, a replica ρ can ask each acceptor for the highest slot number for which
it has accepted a pvalue (returning 0 if it has not yet accepted any value). Replica ρ
awaits responses from a majority of acceptors and sets s to the maximum among the
responses. It is easy to see that s will be at least as large as the maximum slot out
among the replicas. Next, replica ρ proposes no-ops for all slots between ρ.slot in and
s, if any, and waits until ρ.slot out > s. Finally, ρ evaluates the read-only command
and responds to the client.

It is interesting to note that leaders do not need to be involved in read-only
commands—they only are involved in serializing the update commands. Indeed, differ-
ent replicas may end up computing a different value for s, and consequently a client
could receive different results for its read-only command. Any of these responses is
a correct response, serialized after the latest update that completed before the client
issued its command, so the client can just use the first response it receives.

This optimization still requires a round-trip latency to the acceptors. We can avoid
this round-trip by using so-called leases [Gray and Cheriton 1989; Lamport 1998].
Leases require an additional assumption on timing. Various options for leasing are
possible—the one that we describe here is based on the work described in Van Renesse
et al. [2011], which assumes that there is a known bound on clock drift but does not
assume that clocks are synchronized. For simplicity, we will assume that there is no
clock drift whatsoever. The basic idea is that at most one replica can have a lease at
a time, and that this replica handles all client requests, both read-only and update
commands. A lease is valid for a particular period of time δ.

To obtain a lease, a replica ρ notes its current clock c and, as before, sends a request
to each acceptor. The acceptor grants a lease for a period of time δ (on its local clock) to
ρ if it has no outstanding lease to another replica and, as before, returns the highest
slot number for which it accepted a pvalue. If the replica receives responses from a
majority of acceptors, it has a lease until time c+δ on ρ’s clock. Knowing that it has the
lease, a replica can directly respond to read-only commands assuming ρ.slot out > s,
where s is the maximum among the responses it received. Update commands still have
to follow the usual protocol, involving a leader and a majority of acceptors.

4.6. Exercises

This article is accompanied by a Python package (see the Appendix) that contains a
Python implementation for each of the pseudocode listings presented in this work. We
list a set of suggested exercises using this code:

(1) Implement the state reduction techniques for acceptors and p1b messages de-
scribed in Section 4.1.

(2) In the current implementation, ballot numbers are pairs of round numbers and
leader process identifiers. If the set of leaders is fixed and ordered, then we can
simplify ballot numbers. For example, if the leaders are {λ1, . . . , λn}, then the bal-
lot numbers for leader λi could be i, i + n, i + 2n, Ballot number ⊥ could be
represented as 0. Modify the Python code accordingly.

(3) Implement a simple replicated bank application. The bank service maintains a set
of client records; a set of accounts (a client can have zero or more accounts); and
operations such as deposit, withdraw, transfer, and inquiry.

(4) In the Python implementation, all processes run as threads within the same Python
machine and communicate using message queues. Allow processes to run in dif-
ferent machines and have them communicate over TCP connections. Hint: Do not
consider TCP connections as reliable. If they break, have them periodically try to
reconnect until successful.

(5) Implement the failure detection scheme of Section 3 so that most of the time only
one leader is active.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:21

(6) Colocate leaders and replicas as suggested in Section 4.4, and garbage collect un-
necessary leader state, that is, leaders can forget about proposals for commands
that have already been decided. Upon becoming active, leaders do not have to start
commanders for such slots either.

(7) To increase fault tolerance, the state of acceptors and leaders can be kept on stable
storage (disk). This would allow such processes to recover from crashes. Implement
this. Take into consideration that a process may crash partway during saving its
state.

(8) Acceptors can garbage collect pvalues for decided commands that have been learned
by all replicas. Implement this.

(9) Implement the leasing scheme to optimize read-only operations as suggested in
Section 4.5.

5. PAXOS VARIANTS

There have been many Paxos variants introduced over the years. These variants con-
centrate on making the basic Paxos algorithm more efficient. In this section, we cover
some of these variants chronologically and discuss their significant features.

5.1. Disk Paxos

Every replicated component in multidecree Paxos is a process, actively sending and
receiving messages. Disk Paxos [Gafni and Lamport 2003] is a variant of Paxos that
replaces acceptor processes with disks that support only read block and write block
operations to store the quorum state. This way, Disk Paxos does not need separate
acceptor processes.

In Disk Paxos, each leader owns a block on every disk to which it can write its
messages. To run phase 1 of the Synod protocol, a leader executes the following for
each disk. The leader writes a p1a message in its own block on the disk and reads the
blocks of other leaders on the same disk to check if there is a p1a message with a higher
ballot number. If the leader does not discover a higher ballot number on a majority of
disks, its ballot is adopted. If it discovers a p1a message with a higher ballot number,
it starts over with a higher ballot number. For phase 2, the leader repeats the same
process with p2a messages to determine if its proposals are accepted.

5.2. Cheap Paxos

Multidecree Paxos requires 2 f + 1 acceptors and f + 1 replicas to tolerate f failures.
Cheap Paxos [Lamport and Massa 2004] uses only f + 1 acceptors combined with
f cheap additional auxiliary acceptors that are kept idle during normal execution,
unless there is a failure. Cheap Paxos is a variation of the reconfigurable multidecree
Paxos algorithm that relies on the observation that a leader can send its p1a and p2a
messages to a fixed quorum of acceptors. As long as all acceptors in that quorum are
working and can communicate with the leaders, there is no need for acceptors not in
the quorum to do anything.

Cheap Paxos runs the multidecree Paxos protocol with a fixed quorum of f + 1
acceptors. Upon suspected failure of an acceptor in the fixed quorum, an auxiliary
acceptor becomes active so that there are once again f + 1 responsive acceptors that
can form a quorum. This new quorum completes the execution of any outstanding
ballots and reconfigures the system replacing the suspected acceptor with a fresh one,
returning the system to normal execution.

5.3. Fast Paxos

In Paxos, each decision takes at least three message delays between when a replica
proposes a command and when some replica learns which command has been chosen.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:22 R. van Renesse and D. Altinbuken

Moreover, if there are multiple leaders working concurrently, it takes four message
delays for colliding commands to be assigned to different slots. Fast Paxos [Lamport
2006] is a variant of Paxos that reduces end-to-end message delays experienced by a
replica to learn a chosen value. Learning occurs in two message delays when there is
no collision, and in three message delays when there is. The price paid is that 3 f + 1
acceptors are necessary instead of 2 f + 1.

In Fast Paxos, the replica sends its proposal directly to the acceptors, bypassing the
leader. Fast Paxos distinguishes fast and classic ballots. In fast ballots, after completing
the first phase, the leader sends a p2a message without a value to the acceptors.
Concurrently, replicas send their proposals directly to acceptors. When an acceptor
receives such a p2a message, it can choose any replica’s proposal as a value to accept.
In the absence of collisions, the acceptors end up accepting the same proposals and the
end-to-end message delay for a replica is reduced from three message delays to two
message delays.

This scheme can fail if replicas send different proposals concurrently and the accep-
tors accept conflicting pvalues. In that case, a classic ballot—which works the same as
in ordinary Paxos—can be used to recover.

5.4. Generalized Paxos

As noted, Fast Paxos does not handle collision efficiently. Generalized Paxos [Lamport
2005] improves upon Fast Paxos by allowing independent commands to be executed
in any order. Generalized Paxos generalizes the traditional consensus problem, which
chooses a single value, to the problem of choosing monotonically increasing, consistent
values. The traditional consensus problem creates a growing sequence of commands
by assigning every command to a slot one-by-one. This problem can be abstracted by
using command structures, or c-structs that are formed from a null element, ⊥, by the
operation of appending commands. This way, c-structs are used to abstract command
sequences. By abstracting the problem using c-structs, it can be shown that different
c-structs can belong to the same equivalence class, that is, if a given set of commands
do not have a dependency, multiple c-structs that are equivalent to each other can
be constructed using this set of commands in different orders. Consequently, if we
use a generalized consensus algorithm that decides on sequences of commands rather
than the assignment of a single command to a specific slot, command collisions, as
they happen in Fast Paxos, need not be resolved unless there is a direct dependency
between the concurrent commands. Different command sequences can be accepted by
different acceptors if they are in the same equivalence class, where the ordering of
specific commands do not change the end state.

5.5. Stoppable Paxos

Stoppable Paxos [Lamport et al. 2008] implements a stoppable replicated state machine.
The execution of a stoppable replicated state machine can be stopped with a special
command—once decided, no more commands are executed. This variant provides an
alternative reconfiguration option: stop the current replicated state machine and start
a new one using the final application state of the previous one. This way, the replicated
state machine can be thought of as a sequence of stoppable state machines, each
running with a fixed configuration.

5.6. Mencius

Mencius [Mao et al. 2008] tries to solve the single leader bottleneck experienced in
multidecree Paxos. In Mencius, replicas, acceptors, and leaders are colocated, organized
in a logical ring, and preassigned slot numbers to propose their commands. This way,

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:23

Fig. 10. In Horizontal Paxos, configurations can change only as we move horizontally from one slot to
another; they are unchanged when we move vertically, within a single slot. In Vertical Paxos, configurations
change when we move vertically but remain the same as we move horizontally from a ballot in one instance
to the ballot with the same number in any other slot.

leaders take turns proposing commands, increasing throughput especially when the
system is CPU bound.

Because the initial leader for a slot is known, there is no need for phase 1 and
the leader only needs to execute phase 2. If it has no command to propose, the leader
proposes a no-op command. If the leader is faulty or slow, the other leaders can take over
the slot by executing phase 1, but they can only propose a no-op command. Leveraging
this knowledge, Mencius allows replicas to learn about a no-op command proposed by
a nonfaulty leader in a single message delay.

In normal execution without process failures, the performance of Mencius is similar
to multidecree Paxos with a stable leader, without the leader bottleneck. However,
idle and slow leaders can diminish overall performance. To limit the number of no-op
messages generated by leaders, Mencius uses leases between leaders, where leaders
can lease their ballots to other leaders for all slots less than a specified slot number.
This can be done voluntarily by an idle leader giving up its ballots or aggressively by
a fast leader taking over the ballots of a slow leader.

5.7. Vertical Paxos

Vertical Paxos [Lamport et al. 2009] is a Paxos variant that enables reconfiguration
while the replicated state machine is active and deciding on commands. Vertical Paxos
uses an auxiliary master to decide on reconfiguration operations, which determines the
set of acceptors and the leader for every configuration.

In Vertical Paxos, the leader is set for every configuration, and different ballot num-
bers have different configurations. Unlike standard “horizontal” Paxos algorithms, ev-
ery configuration has exactly one ballot number and a leader associated with it, and
a slot can have more than one configuration, as shown in Figure 10. In Horizontal
Paxos algorithms, configurations can only change when we move horizontally from one
slot to another, as in slot 3 in Figure 10(a). In Vertical Paxos, configurations change
when we move vertically, as in slot 3 in Figure 10(b), but remain the same as we move
horizontally.

After a leader becomes active in a configuration of Vertical Paxos, it has to commu-
nicate with the acceptors from lower-numbered ballots to access old state. To limit the
number of acceptors with which a leader has to communicate, Vertical Paxos uses two
distinct quorums: read and write quorums. When there is a configuration change, reads

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:24 R. van Renesse and D. Altinbuken

happen from the read quorum in the old configuration until this state is transferred
to all live acceptors in the new configuration. Once the state transfer is complete, the
new leader informs the master and the read and write quorums are unified.

Vertical Paxos can also be viewed as a special case of the Primary-Backup protocol
[Budhiraja et al. 1993], where the leader for a given configuration acts as a Primary.

5.8. Egalitarian Paxos

Egalitarian Paxos (EPaxos) [Moraru et al. 2013] is another Paxos variant that tries to
solve the single leader bottleneck by allowing all replicas to receive values from clients
and letting them propose values with one message delay when there is no dependence
between commands. This allows the system to evenly distribute the load to all replicas;
in addition, it offers better performance for geo-replicated state machines by enabling
clients to send command requests to the replicas closest to them.

Unlike other Paxos variants, EPaxos orders commands dynamically and in a decen-
tralized fashion. EPaxos assumes that replicas, acceptors, and leaders are colocated. In
the process of proposing a command for a slot number, a replica attaches ordering con-
straints to that command, so every replica can use these constraints to independently
reach the same ordering locally.

EPaxos runs in two phases: preaccept and accept. The preaccept phase establishes the
ordering constraints for a command c. Upon receiving c from a client, a replica becomes
the command leader and sends a preaccept message including c, its dependencies
depc, and a sequence number seqc to 2 f replicas. depc is the list of all instances that
contain commands that interfere with c, and seqc is a sequence number greater than
the sequence number of all interfering commands in depc. When a replica receives a
preaccept message, it updates its local depc and seqc attributes according to its state
and replies to the command leader with this state. The command leader might receive
replies from the quorum with depc and seqc matching in all replies—in this case, it
can commit c and send a commit message to all other replicas and reply to the client.
In the other case, the command leader might receive nonmatching depc and seqc in
the replies. Then, the command leader updates its state and goes on to the accept
phase.

In the accept phase, the command leader sends an accept message including c, depc,
and seqc to at least f other replicas. Upon receiving the accept message, the replicas
update their state and send a reply to the command leader including c. When the
command leader receives at least f replies, it can send the commit message to all
replicas and reply to the client.

Following this protocol, every replica creates a local dependency graph for every
command and executes every command recursively in accordance with this dependency
graph.

6. CONCLUSION

In this article, we presented a reconfigurable version of Paxos as a collection of special-
ized processes, each with a simple operational specification that includes invariants.
We started with an impractical but relatively easy implementation to simplify com-
prehension, then showed how various aspects can be improved to render a practical
protocol. We also presented variants of the Paxos protocol.

The article is the next in a long line of papers that describe the Paxos protocol,
present the experience of implementing it, or make it easier to understand. A partial
list follows. The Viewstamped Replication protocol by Oki and Liskov [1988] is a
protocol that is similar to multidecree Paxos (similarities and differences are discussed
in Van Renesse et al. [2014]). Lamport’s seminal “Part-Time Parliament” paper

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:25

[Lamport 1998] is the first paper describing Paxos. Lampson presents ways to derive
the single-decree Paxos algorithm and pragmatic optimizations [Lampson 1996,
2001]. De Prisco et al. [2000] present an implementation of Paxos in the general
timed automaton formalism. In Paxos Made Simple, Lamport [2001] gives a simple
invariant-based explanation of the protocol. Boichat et al. [2003] give a formal account
of various variants of Paxos along with extensive pseudocode. Lorch et al. [2006]
present their Paxos SMR implementation SMART that supports high performance
through parallelization, dynamic membership changes and migration. Bolosky et al.
[2011] describe their high-performance data store that uses SMART. Chandra and
Toueg [1991] describe Google’s challenges in implementing Paxos. Li et al. [2007] give
a novel simplified presentation of Paxos using a write-once register. In Paxos Made
Practical, [Mazières 2007] gives details of how to build replicated services using Paxos.
Kirsch and Amir describe their Paxos implementation experiences in [Kirsch and Amir
2008b], along with detailed pseudocode [Kirsch and Amir 2008a] (intended for develop-
ers, not so much for educational purposes). Alvaro et al. [2010] describe implementing
Paxos in Overlog, a declarative language. Meling and Jehl [2013] published a tutorial
on Paxos [Meling and Jehl 2013]. Ongaro and Ousterhout [2014] present a protocol
similar to Paxos and Viewstamped Replication but designed for understandability.

APPENDIX: PYTHON SOURCE CODE LISTING

Python source code corresponding to the pseudocode in this article is available at
http://www.paxos.systems. The code can be run using the “python env.py” command.
For archival purposes, we also include the code in the following sections.

utils.py

A ballot number is a lexicographically ordered pair of an integer and the identifier of
the ballot’s leader.

A pvalue consists of a ballot number, a slot number, and a command.
A command consists of the process identifier of the client submitting the request, a

client-local request identifier, and an operation (which can be anything).
A reconfiguration command consists of the process identifier of the client submitting

the request, a client-local request identifier, and a configuration.
A configuration consists of a list of replicas, a list of acceptors, and a list of leaders.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:26 R. van Renesse and D. Altinbuken

process.py

A process is a thread with a process identifier, a queue of incoming messages, and an
“environment” that keeps track of all processes and queues.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:27

message.py

Paxos uses a large variety of message types, collected as follows.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:28 R. van Renesse and D. Altinbuken

replica.py

This is the Python code for a replica, corresponding to Figure 1.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:29

acceptor.py

Implementation of the acceptor process, closely corresponding to Figure 4.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:30 R. van Renesse and D. Altinbuken

commander.py

Implementation of the commander process in Figure 6(a).

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:31

scout.py

Implementation of the scout process in Figure 6(b).

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:32 R. van Renesse and D. Altinbuken

leader.py

Implementation of the leader process in Figure 7.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:33

env.py

This is the main code in which all processes are created and run. This code also
simulates a set of clients submitting requests.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

42:34 R. van Renesse and D. Altinbuken

ACKNOWLEDGMENTS

Many people provided invaluable input to this description of Paxos, including Lorenzo Alvisi, Mark Bickford,
Robert Constable, Danny Dolev, David Guaspari, Chi Ho, Annie Liu, Stavros Nikolaou, Fred Schneider, Emin
Gün Sirer, Scott Stoller, and the anonymous reviewers of ACM Computing Surveys.

REFERENCES

Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, and Russell Sears. 2010. I do declare:
Consensus in a logic language. SIGOPS Operating Systems Review 43, 4, 25–30.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing memory robustly in message-passing systems.
Journal of the ACM 42, 1, 124–142.

Romain Boichat, Partha Dutta, Svend Frølund, and Rachid Guerraoui. 2003. Deconstructing Paxos. SIGACT
News 34, 1, 47–67.

William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and Peng Li. 2011. Paxos
replicated state machines as the basis of a high-performance data store. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation (NSDI’11). 141–154.

Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. 1993. The primary-backup approach. In
Distributed Systems (2nd ed.), S. Mullender (Ed.). ACM Press/Addison-Wesley, New York, NY, 199–216.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

Paxos Made Moderately Complex 42:35

Mike Burrows. 2006. The chubby lock service for loosely-coupled distributed systems. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation (OSDI’06). 335–350.

Tushar Deepak Chandra and Sam Toueg. 1991. Unreliable failure detectors for asynchronous systems
(preliminary version). In Proceedings of the 10th Annual ACM Symposium on Principles of Distributed
Computing (PODC’91). ACM, New York, NY, 325–340.

Roberto De Prisco, Butler W. Lampson, and Nancy Lynch. 2000. Revisiting the Paxos algorithm. Theoretical
Computer Science 243, 1–2, 35–91.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32, 2, 374–382.

Eli Gafni and Leslie Lamport. 2003. Disk Paxos. Distributed Computing 16, 1, 1–20.
Cary G. Gray and David R. Cheriton. 1989. Leases: An efficient fault-tolerant mechanism for distributed

file cache consistency. In Proceedings of the 12th ACM Symposium on Operating Systems Principles
(SOSP’89). ACM, New York, NY, 202–210.

Jonathan Kirsch and Yair Amir. 2008a. Paxos for System Builders. Technical Report CNDS-2008-2. Johns
Hopkins University, Baltimore, MD.

Jonathan Kirsch and Yair Amir. 2008b. Paxos for system builders: An overview. In Proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and Middleware (LADIS’08). ACM, New York, NY, Article
No. 3.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communations of the
ACM 21, 7, 558–565.

Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2, 133–169.
Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News 32, 4, 51–58.
Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report MSR-TR-2005-33. Microsoft

Research, Mountain View, CA. Available at http://research.microsoft.com/pubs/64631/tr-2005-33.pdf
Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19, 2, 79–103.
Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2008. Stoppable Paxos. Technical Report. Mi-

crosoft Research, Mountain View, CA. Available at http://research.microsoft.com/apps/pubs/default.
aspx?id=101826

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical Paxos and primary-backup replication. In
Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC’09). ACM, New
York, NY, 312–313.

Leslie Lamport and Mike Massa. 2004. Cheap Paxos. In Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN’04). IEEE, Los Alamitos, CA, 307–315.

Butler W. Lampson. 1996. How to build a highly available system using consensus. In Proceedings of the
10th International Workshop on Distributed Algorithms (WDAG’96). 1–17.

Butler W. Lampson. 2001. The ABCD’s of Paxos. In Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing (PODC’01). ACM, New York, NY, 13–14.

Harry C. Li, Allen Clement, Amitanand S. Aiyer, and Lorenzo Alvisi. 2007. The Paxos register. In Proceedings
of the 26th IEEE International Symposium on Reliable Distributed Systems (SRDS’07). IEEE, Los
Alamitos, CA, 114–126.

Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur, and Jon Howell. 2006. The
SMART way to migrate replicated stateful services. In Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006 (EuroSys’06). ACM, New York, NY, 103–115.

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building efficient replicated state
machines for WANs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). 369–384.

David Mazières. 2007. Paxos Made Practical. Technical Report. Stanford University, Stanford, CA. Available
at http://www.scs.stanford.edu/∼dm/home/papers/paxos.pdf

Hein Meling and Leander Jehl. 2013. Tutorial summary: Paxos explained from scratch. In Principles of
Distributed Systems. Lecture Notes in Computer Science, Vol. 8304. Springer, 1–10.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992. ARIES: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems 17, 1, 94–162.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in egalitarian
parliaments. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13).
ACM, New York, NY, 358–372.

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

http://research.microsoft.com/pubs/64631/tr-2005-33.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=101826
http://research.microsoft.com/apps/pubs/default.aspx?id=101826
http://www.scs.stanford.edu/protect $elax sim $dm/home/papers/paxos.pdf

42:36 R. van Renesse and D. Altinbuken

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped replication: A new primary copy method to support
highly-available distributed systems. In Proceedings of the 7th Annual ACM Symposium on Principles
of Distributed Computing (PODC’88). ACM, New York, NY, 8–17.

Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In Proceed-
ings of the 2014 USENIX Annual Technical Conference (ATC’14). 305–319.

Richard D. Schlichting and Fred B. Schneider. 1983. Fail-stop processors: An approach to designing fault-
tolerant computing systems. ACM Transactions on Computer Systems 1, 3, 222–238.

Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys 22, 4, 299–319.

Robert H. Thomas. 1979. A majority consensus approach to concurrency control for multiple copy databases.
ACM Transactions on Database Systems 4, 2, 180–209.

Robbert van Renesse, Nicolas Schiper, and Fred B. Schneider. 2014. Vive la différence: Paxos vs. Viewstamped
Replication vs. Zab. IEEE Transactions on Dependable and Secure Computing PP, 99, 1.

Robbert van Renesse, Fred B. Schneider, and Johannes Gehrke. 2011. Nerio: Leader Election and Edict Or-
dering. Technical Report. Cornell University, Ithaca, NY. Available at http://hdl.handle.net/1813/23631

Received August 2013; revised June 2014; accepted September 2014

ACM Computing Surveys, Vol. 47, No. 3, Article 42, Publication date: February 2015.

http://hdl.handle.net/1813/23631

