A Tutorial on Reed-Solomon Coding for Fault-Tolerancein RAID-like Systems

James S. Plank*

Department of Computer Science
University of Tennessee

February 19, 1999

Abstract

It is well-known that Reed-Solomon codes may be used to provide error correction for multiple failures in RAID-
like systems. The coding technique itself, however, is not as well-known. To the coding theorist, this technique is a
straightforward extension to a basic coding paradigm and needs no special mention. However, to the systems programmer
with no training in coding theory, the technique may be a mystery. Currently, there are no references that describe how to
perform this coding that do not assume that the reader is already well-versed in algebra and coding theory.

This paper is intended for the systems programmer. It presents a complete specification of the coding algorithm plus
details on how it may be implemented. This specification assumes no prior knowledge of algebra or coding theory. The
goal of this paper is for a systems programmer to be able to implement Reed-Solomon coding for reliability in RAID-like

systems without needing to consult any external references.

*pl ank@s. ut k. edu. Thismaterial isbased upon work supported by the National Science Foundation under Grant No. CCR-9409496, and by the
ORAU Junior Faculty Enhancement Award.

Problem Specification

Let there be n storage devices, D1, D, D,,, each of which holds k bytes. These are called the “ Data De-

vices! Lettherebem morestoragedevicesCy, Cs, . . ., Cyy,, €ach of which also holdsk bytes. Thesearecalled
the“ ChecksumDevices! The contents of each checksum devicewill be cal culated from the contents of the data
devices. Thegoal isto define the calculation of each C; suchthatif any m of Dy, Ds.....D,.C1,Cs, ..., Cp,

fail, then the contents of the failed devices can be reconstructed from the non-failed devices.

I ntroduction

Error-correcting codes have been around for decades [1, 2, 3]. However, the technique of distributing data among
multiple storage devices to achieve high-bandwidth input and output, and using one or more error-correcting devices for
faillurerecovery isrelatively new. It cameto the fore with “ Redundant Arrays of Inexpensive Disks’ (RAID) where batteries
of small, inexpensive disks combine high storage capacity, bandwidth, and reliability all at alow cost [4, 5, 6]. Since then,
the technique has been used to design multicomputer and network file systems with high reliability and bandwidth [7, 8],
and to design fast distributed checkpointing systems[9, 10, 11, 12]. We call all such systems“ RAID-like” systems.

The above problem is central to all RAID-like systems. When storage is distributed among n devices, the chances of
one of these devices failing becomes significant. To be specific, if the mean time before failure of one deviceis F, then the
mean timeto failure of a system of n devicesis % Thus in such systems, fault-tolerance must be taken into account.

For small values of n and reasonably reliable devices, one checksum device is often sufficient for fault-tolerance. This
isthe “RAID Level 5" configuration, and the coding technique is called “ n+ 1-parity” [4, 5, 6]. With n+1-parity, the i-th
byte of the checksum device is calculated to be the bitwise exclusive-or (XOR) of the i-th byte of each data device. If any
one of then+1 devicesfails, it can be reconstructed as the XOR of the remaining n devices. N +1-parity is attractive because
of itssimplicity. It requires one extra storage device, and one extra write operation per write to any single device. Its main
disadvantage isthat it cannot recover from more than one simultaneous failure.

Asn grows, the ability to tolerate multiple failures becomesimportant [13]. Several techniques have been developed for
this[13, 14, 15, 16], the concentration being small values of m. The most general technique for tolerating m simultaneous
failures with exactly m checksum devices is a technique based on Reed-Solomon coding. This fact is cited in almost all
papers on RAID-like systems. However, the technique itself is harder to come by.

The technique has an interesting history. It was first presented in terms of secret sharing by Karnin [17], and then
by Rabin [18] in terms of information dispersal. Preparata [19] then showed the relationship between Rabin’s method
and Reed-Solomon codes, hence the labeling of the technique as Reed-Solomon coding. The technique has recently been
discussed in varying levels of detail by Gibson [5], Schwarz [20] and Burkhard [13], with citations of standard texts on error
correcting codes[1, 2, 3, 21, 22] for compl eteness.

There is one problem with al the above discussions of this technique — they require the reader to have a thorough
knowledge of algebra and coding theory. Any programmer with a bachelor’s degree in computer science has the skills to
implement this technique, however few such programmers have the background in algebra and coding theory to understand

the presentations in these papers and books.

The goal of this paper is to provide a presentation that can be understood by any systems programmer. No background
in algebra or coding theory is assumed. We give a complete specification of the technique plus implementation details. A
programmer should need no other references besides this paper to implement Reed-Solomon coding for reliability from

multiple device failuresin RAID-like systems.

General Strategy

Formally, our failure model is that of an erasure. When a device fails, it shuts down, and the system recognizes this
shutting down. Thisis as opposed to an error, in which a device failure is manifested by storing and retrieving incorrect
valuesthat can only be recognized by sort of embedded coding [2, 23].

The calculation of the contents of each checksum device C; requiresafunction F; applied to all the datadevices. Figure 1
shows an example configuration using this technique (which we henceforth call “ RS-Raid”) forn = 8 and m = 2. The
contents of checksum devices C; and C5 are computed by applying functions 7, and F', respectively.

Fy(Dy, Dy, D3, Dy, Ds, D, D7, Ds)

= I5(D1, Dy, D3, Dy, D5, Dg, D7, Dg)

@ @E

Figure 1: Providing two-site fault tolerance with two checksum devices

The RS-Raid coding method breaks up each storage device into words. The size of each word isw bits, w being chosen
8 bits) (1 word) __ 8k

by the programmer (subject to some constraints). Thus, the storage devices contain! = (k bytes) (Tyie) =

words each. The coding functions #; operate on a word-by-word basis, asin Figure 2, where z; ; represents the j-th word
of device X;.
To make the notation simpler, we assume that each device holds just one word and drop the extra subscript. Thus we

view our problem as consisting of n datawordsd;. . . ., d,, and m checksumwordsc;. ..., ¢m Which are computed from

the data words in such away that the loss of any m words can be tolerated.

To compute a checksum word ¢; for the checksum device C;, we apply function F; to the datawords:

D1 DQ 01 CQ

di1 da 1 c1,1 = Fi(di1.d21) c21 = Fa(di1,d2,1)
di2 ds 2 c12 = Fi(d12.d22) c22 = Fa(di12,d22)
di3 da 3 c1,3 = F1(d13,d23) c23 = Fa(di13,d2.3)
dig da g c1g = Fi(dy,dag) e = Fa(dyg,day)

Figure 2: Breaking the storage devicesintowords(n = 2, m = 2,1 = Sw—’“)

If adataword on device D; is updated from d; to d’;, then each checksum word ¢; is recomputed by applying a func-
tion G; ; such that:
C;» = Gij(dj, d; Ci)~

When up to m devices fail, we reconstruct the system as follows. First, for each failed data device D;, we construct a
function to restore the words in D; from the words in the non-failed devices. When that is completed, we recompute any
failed checksum devices C; with F;.

For example, suppose m = 1. We can describe n+1-parity in the above terms. There is one checksum device C1, and

words consist of one bit (w = 1). To compute each checksum word ¢, we take the parity (XOR) of the data words:

Clel(dldn):dl@dg@@dn

If aword on data device D; changes from d; to d, then ¢, is recalculated from the parity of its old value and the two data
words:

Cll = Glj(dj:d‘/jtcl) =1 @d] @d;

If adevice D; fails, then each word may be restored as the parity of the corresponding words on the remaining devices:
dj:dl@...@dj_l@dj_},l@...@dnEBCl.

In such away, the system is resilient to any single device failure.
To restate, our problem is defined asfollows. We are given n datawordsd; , ds, d, al of sizew. We definefunctions

F and G which we use to calculate and maintain the checksum words ¢y, ¢s. . . ., ¢,,. We then describe how to reconstruct

the words of any lost data device when up to m devices fail. Once the data words are reconstructed, the checksum words

can be recomputed from the data words and F'. Thus, the entire system is reconstructed.

Overview of the RS-Raid Algorithm

There are three main aspects of the RS-Raid algorithm: using the Vandermonde matrix to cal culate and maintain check-
sum words, using Gaussian Elimination to recover from failures, and using Galois Fields to perform arithmetic. Each is
detailed below:

Calculating and Maintaining Checksum Words

We define each function F; to be alinear combination of the data words:
ci = Fi(di.ds,....dn) = Zdjfij
j=1

In other words, if we represent the data and checksum words as the vectors D and C, and the functions F; as rows of the

matrix F', then the state of the system adheres to the following equation:
FD=C.

We define F' to be them x n Vandermonde matrix: f; ; = 7=, and thus the above equation becomes:

f1¢1 f1¢2 f1¢n dl

f2¢1 f2¢2 f2¢n d?

fm¢1 fm¢2 fmm dn
1 1 1 1 dq C1
1 2 3 n ds 2
1 2m—1 3m—1 nm—l dn Cm

When one of the data words d; changes to d’;, then each of the checksum words must be changed as well. This can be
effected by subtracting out the portion of the checksum word that correspondsto d;;, and adding the required amount for d’;.
Thus, G; ; is defined asfollows:

c; = Gy j(d;. d;», ¢) =ci+ fm-(d;» —dj).

Therefore, the calculation and maintenance of checksum words can be done by simple arithmetic (however, it is a specia

kind of arithmetic, as explained below).

Recovering From Failures

To explain recovery from errors, we define the matrix A and the vector F asfollows: A :{ ; } ,and E :[2 } . Then
we have the following equation (AD = E):

(1 o o ... o | [a4,]
0 1 0 ... 0 da
dq
0 0 0o ... 1 d2 || dy
11 1 1 S R PR
1 2 3 n d, Co
1 om-t gm-l nm~! Crm

We can view each device in the system as having a corresponding row of the matrix A and the vector £. When a device
fails, we reflect thefailure by deleting the device's row from A and from E. What results anew matrix A’ and a new vector
E' that adhere to the equation:

AD=F.
Suppose exactly m devicesfail. Then A’ isan x n matrix. Because matrix F' is defined to be a Vandermonde matrix, every
subset of n rows of matrix A is guaranteed to be linearly independent. Thus, the matrix A’ is non-singular, and the values
of D may be calculated from A’ D = E’ using Gaussian Elimination. Hence all data devices can be recovered.

Once the values of D are obtained, the values of any failed C; may be recomputed from D. It should be obvious that
if fewer than m devicesfail, the system may be recovered in the same manner, choosing any n rows of A’ to perform the

Gaussian Elimination. Thus, the system can tolerate any number of device failuresup to m.
Arithmetic over GaloisFields

A magjor concern of the RS-Raid algorithm is that the domain and range of the computation are binary words of a fixed
length w. Although the above algebrais guaranteed to be correct when al the elements are infinite precision real numbers,
we must make surethat it is correct for these fixed-size words. A common error in dealing with these codesisto perform all
arithmetic over the integers modulo 2*. Thisdoes not work, asdivisionis not defined for all pairs of elements (for example,
(3 + 2) is undefined modulo 4), rendering the Gaussian Elimination unsolvable in many cases. |nstead, we must perform
addition and multiplication over afield with more than n + m elements[2].

Fieldswith 2* elements are called Galois Fields (denoted G F'(2v)), and are a fundamental topic in algebra (e.g. [3, 21,
24]). This section defines how to perform addition, subtraction, multiplication, and division efficiently over a Galois Field.
We give such a description without explaining Galois Fieldsin general. Appendix A contains a more detailed description
of Galois Fields, and provides justification for the arithmetic algorithmsin this section.

The elements of GF(2") are the integers from zero to 2 — 1. Addition and subtraction of elements of GF(2) are
simple. They are the XOR operation. For example, in G F(2%):

114+7=1011¢ 0111 = 1100 = 12.

11—-7=1011¢ 0111 = 1100 = 12.

Multiplication and division are more complex. When w is small (16 or less), we use two logarithm tables, each of

length 2% — 1, to facilitate multiplication. Thesetablesaregf | og and gf i | og:

e int gflog[]: Thistableis defined for theindices 1 to 2% — 1, and maps the index to its logarithm in the Galois
Field.

e int gfilog[]: Thistableisdefined for theindices0to 2% — 2, and mapsthe index to its inverse logarithm in the
GaloisField. Obvioudly, gf | og[gfil og[i]] =4i,andint gfilog[gflog[i] =:.

With these two tables, we can multiply two elements of G F(2*) by adding their logsand then taking theinverselog, which
yields the product. To divide two numbers, we instead subtract the logs. Figure 3 shows an implementation in C: This
implementation makes use of the fact that the inverse log of an integer 7 is equal to the inverse log of (: mod (2% — 1)).
Thisfact is explained in Appendix A. Aswith regular logarithms, we must treat zero as a special case, as the logarithm of

ZEerois —oc.

#define NW (1 << w) /* In other words, NWequals 2 to the wth power */

int nult(int a, int b)

{

int suml og;

if (a==0]] b==0) return 0;
sumlog = gflog[a] + gflog[b];

if (sumlog >= NW1) sumlog -= NW1;
return gfilog[sumlog];

}

int div(int a, int b)
{
int diff_log;

if (a==20) return O;

if (b ==0) return -1; /* Can’t divide by 0 */
diff _log = gflog[a] - gflog[b];

if (diff_log < 0) diff_log += NW1;

return gfilog[diff_log];

Figure 3: C code for multiplication and division over GF(2%) (Note: NW= 2v)

Unlike regular logarithms, the log of any non-zero element of a Galois Field is an integer, allowing for exact multiplica
tion and division of Galois Field elements using these logarithm tables.

Animportant step, therefore, once w is chosen, is generating the logarithm tablesfor G F'(2*). Thealgorithm to generate
the logarithm and inverse logarithm tables for any w can be found in Appendix A; however the realization of this algorithm
inCforw = 4, w = 8 or w = 16 isincluded here in Figure 4. We include the tables for GF(2*) as generated by
set up_t abl es(4) inTablel.

i o|1]|2|3|4a|5|6 |7 |8] 9 |10]11|12]13]14]15
gflogli] —Jlo|1]|4a|2|8|5|10|3 |14 9| 7|6]|13]11]12
ofilog[i] 1 |2|a8|3|6|12|11|5|10|7 |14a|15]|13|09|—

Table 1: Logarithm tables for G F(2*)

For example, using the valuesin Table 1 the followingis arithmetic in G F'(2%):

3x7 = gfilog[gflog[3]+gflog[7]] = gofilog[4+10] = gfilog[14] = 9
13x10 = gfilog[gflog[13]+gflog[10]] = gofilog[13+9] = gfilog[7] = 11
13+10 = gfilog[gflog[13]-gflog[10]] = gfilog[13-9] = gfilog[4] = 3
3=7 = gfilog[gflog[3]-gflog[7]] = gofilog[4-10] = gfilog[9] = 14

unsigned int primpoly_4 023;

unsi gned int primpoly_8 0435;
unsigned int primpoly_ 16 = 0210013;
unsi gned short *gflog, *gfilog;

int setup_tables(int w
{

unsigned int b, log, x_to_w, primpoly;

switch(w {
case 4. primpoly
case 8. primpoly
case 16: primpoly
default: return -1;

}

primpoly_4; break;
primpoly_8; break;
primpoly_16; break;

Xx_to_w=1<<w

gflog = (unsigned short *) malloc (sizeof(unsigned short) * x_to_w);
gfilog = (unsigned short *) malloc (sizeof(unsigned short) * x_to_w);
b =1;

for (log = 0; log < x_to_w1; log++) {
gf log[b] = (unsigned short) I og;
gfilog[log] = (unsigned short) b;
b =b << 1;
if (b &x_tow b=Db" primpoly;

}

return 0;

Figure 4: C code for generating the logarithm tables of G F(2*), GF(28) and GF (2')

Therefore, a multiplication or division requires one conditional, three table lookups (two logarithm table lookups and
one inverse table lookup), an addition or subtraction, and amodulo operation. For efficiency in Figure 3, we implement the

modul o operation as a conditional and a subtraction or addition.

The Algorithm Summarized

Given n datadevices and m checksum devices, the RS-Raid algorithm for making them fault-tolerant to up to m failures
isasfollows.

1. Choose avalue of w such that 2 > n + m. Itiseasiest to choose w = 8 or w = 16, aswordsthen fall directly on

byte boundaries. Note that with w = 16, n + m can beaslarge as 65, 535.
2. Setupthetablesgf | og and gf i | og as described in Appendix A and implemented in Figure 4.

3. Set up the matrix F' to be the m x n Vandermonde matrix: f;; = ji=! (for 1 < i < m,1 < j < n) where
multiplication is performed over GF'(2v).

4. Usethe matrix F' to calculate and maintain each word of the checksum devices from the words of the data devices.
Again, all addition and multiplication is performed over GF(2%).

5. If any number of devices up to m fail, then they can be restored in the following manner. Choose any n of the
remaining devices, and construct the matrix A’ and vector E’ as defined previously. Then solvefor D in A’D = E’.
This enables the data devices to be restored. Once the data devices are restored, the failed checksum devices may be
recalculated using the matrix F'.

An Example

As an example, suppose we have three data devices and three checksum devices, each of which holds one megabyte.
Thenn = 3, and m = 3. We choose w to be four, since 2 > n + m, and since we can use the logarithm tablesin Table 1
to illustrate multiplication.

Next, weset up gf | og and gf i | og to beasin Table 1. We construct F' to bea3 x 3 Vandermonde matrix, defined
over GF(2%):

19 20 30 11
F=|1t 28 3t | =11 2
12 22 3?2 1 4

ot W =

Now, we can cal cul ate each word of each checksum deviceusing F'D = C'. For example, supposethefirst word of D, is 3,
thefirst word of D- is13, and thefirst word of D3 is9. Thenwe use F' to calculate thefirst words of C. C5, and Cs:

G = (E)ema3)e (1))
= 3@¢13@9
= 0011& 1101 1001 =0111=7

C: = (1)3) @ (2)(13) T (3)(9)

= 36968

= 0011 1001 & 1000 = 0010 = 2
Ca = (1))@ (4)(13) ¢ (5)(9)

= 3alall

= 0011¢ 0001 1011 =1001=9

Suppose we change D5 to be 1. Then D, sendsthe value (1 — 13) = (0001 & 1101) = 12 to each checksum device,

which uses this value to recompute its checksum:

C, = 7T&((1)(12)=0111& 1100 =11
Co = 2¢(2)(12)=2& 11=00104 1011 =9
Cs = 96 (4)(12) =965 = 100140101 = 12

Suppose now that devices D, D3, and C5 are lost. Then we delete the rows of A and E corresponding to D, D-, and

Cstoget A'D = E":

1 0 0 3
1 1 1| D=]11
1 2 3 9

By applying Gaussian elimination, we can invert A’ to yield the following equation: D = (A’)~1E’, or:

10 0 3
D=]2 31 11
3 21 9

From this, we get:
D;y=2)3)eB)(1)e(1)9)=6ac14c9=1
D:;=3)3)e2)(1)e (H)(9)=5¢5¢9=9
And then:
Cs=()3)e @) e B)9)=3c4e 1l =12

Thus, the system is recovered.

I mplementation and Per for mance Details

We examine some implementation and performance details of RS-Raid coding on two applications: a RAID controller,
and a distributed checkpointing system. Both are pictured in Figure 5. In aRAID controller, thereis one central processing
location that controls the multiple devices. A distributed checkpointing system is more decentralized. Each device is

controlled by a distinct processing unit, and the processing units communicate by sending messages over a communication

T ©-09-0 ©-90-6

ICPU| - |CPU| [cPU] - |CPU|
network
RAID controller Checkpointing system

Figure 5: RAID-like configurations

RAID Controllers

In RAID systems, a basic file system operation is when a process writes an entire stripe’ sworth of datato afile. Thefile
system must break up this datainto n blocks, one for each data device, calculate m blocks worth of encoding information,

10

and then write one block to each of the n+m devices. The overhead of calculating c; is

Setoa(n — 1) (Ri@) |

where Spjock IS the size of ablock and Rxer isthe rate of performing XOR. Thisis because the first row of F isall onesand

therefore there are no Galois Field multiplicationsin the calculation of ¢;. The overhead of calculating ¢; wherei > 1 is:

Sslock(n—1)<1 -)

Rxor Rermut

where Rermui 1S the rate of performing Galois Field multiplications. This is because n-1 of the n data blocks must be
multiplied by some f; ; # 1 before being XOR'd together. Thus the overhead of calculating the m checksum blocks is

-1
m_ . (m >) |

Rxor Rernut

Shlock(n — 1) <

The cost of writing an entire parity stripe is therefore the above figure plus the time to write one block to each of then + m
disks.!

A second basic file system operation is overwriting a small number of bytes of afile. This updatesthe information stored
on one disk, and necessitates a recal culation of the encoding on each checksum disk. To be specific, for each word of disk
D; that is changed from d; to d, the appropriate word of each checksum disk C; is changed from ¢; to ¢; + fi j(d} — d;),
where arithmetic is performed over the Galois Field.

The cost of computing (d; — d;) isone XOR operation. This needsto be performed just onetime. The cost of multiplying
(dj —d;) by f; j iszeroif i = 1 or j = 1, and one Galois Field multiplicationif i > 1 and j > 1. Finally, the cost of adding

fij(dj — dj) to ¢; isone XOR operation for each value of . Thus, the total cost of changing aword from d; to d; is.

mt1) if j=1
The cost of writing oneword tom + 1 disks + (RXOR _
(;’;“) + (Rm‘l) otherwise.
XOR GFmult

The dominant portion of this cost is the cost of writing to the disks. For this reason, Gibson defines the update penalty of
an encoding strategy to be the number of disks that must be updated per word update [14]. For RS-Raid coding, the update
penalty ism disks, which isthe minimum value for tolerating m failures. Asinall RAID systems, the encoding information
may be distributed among the n + m disksto avoid having the checksum disks become hot spots|[5, 26].

The final operation of concern is recovery. Here, we assume that y < m failures have occurred and the system must
recover the contents of the y disks. In the RS-Raid algorithm, recovery consists of performing Gaussian Elimination of an
equation A’D = E’ so that (A’)~! is determined. Then, the contents of all the failed disks may be calculated as a linear
combination of thedisksin E’. Thus, recovery has two parts: the Gaussian Elimination and the recalculation.

Since at least n — y rows of A’ are identity rows, the Gaussian Elimination takes O(y*n) steps. Asy is likely to be
small this should be very fast (i.e. milliseconds). The subsequent recalculation of the failed disks can be broken into parity
stripes. For each parity stripe, one block is read from each of the n non-failed disks. One block is then calculated for each

of the failed disks, and then written to the proper replacement disk. The cost of recovering one block is therefore:

(The cost of reading one) N ((y)SB|ock('n - 1)) N ((y)SB|ock(n)) N (The costs of writing one)

block from each of n disks Rxor Rermut block to each of y disks

1We do not include any equations for the time to perform disk reads/writes because the complexity of disk operation precludes a simple encapsula-
tion [25].

11

Note that the (%) term accounts for the fact that all the elements of (A’)~! may be greater than one. For more

detailed information on other parameters that influence the performance of recovery in RAID systems, see Reference [26].
Checkpointing Systems

In distributed checkpointing systems, the usage of RS-Raid encoding is dightly different from its usage in the RAID
controller. Here, there are two main operations, checkpointing and recovery. With checkpointing, we assume that the data
devices hold data, but that the checksum devices are uninitialized. There are two basic approaches that can be taken to

initializing the checksum devices:

Sep 1l Sep 2

Figure 6: The broadcast algorithm

The Broadcast Algorithm (Figure 6): Each checksum device C; initializes its data to zero. Then each data device D;
broadcasts its contents to every checksum device C;. Upon receiving D;’sdata, C; multipliesit by f; ; and XOR'sit into its

data space. When thisis done, all the checksum devices are initialized. The time complexity of thismethod is

S < 1 n 1 n 1)
n i R
device Rbroadcast RGquIt RXO? ’

Where Syeiice iS the size of the device and Rproadcas 1S the rate of message broadcasting. This assumes that message-sending
bandwidth dominates latency, and that the checksum devices do not overlap computation and communication significantly.

TheFan-in Algorithm (Figure 7): Thisagorithm proceedsin m steps— onefor each C;. Instep ¢, each datadevice D;
multipliesits data by f; ;, and then the data devices perform a fan-in XOR of their data, sending the final result to C;. The

time complexity of thismethod is

S ace (logn N logn + 1) n ((m — 1)Sdevice) :

Rxr Rretwork Rermut
where Rnework 1S the network bandwidth. Thistakes into account the fact that no Galois Field multiplications are necessary
to compute C;. Moreover, this equation assumes that there is no contention for the network during the fan-in. On a
broadcast network like an Ethernet, where two sets of processors cannot exchange messages simultaneously, the log n terms
becomen — 1.

Obvioudly, the choice of algorithm is dictated by the characteristics of the network.

12

Figure 7: The Fan-in algorithm

Recovery from failureis straightforward. Since the Gaussian Elimination is fast, it should be performed redundantly in
the CPU'’s of each device (as opposed to performing the Gaussian Elimination with some sort of distributed algorithm).
The recalculation of the failed devices can then be performed using either the broadcast or fan-in algorithm as described

above. The cost of recovery should thus be slightly greater than the cost of computing the checksum devices.

Other Coding Methods

There are other coding methods that can be used for fault-tolerance in RAID-like systems. Most are based on parity

encodings, where each checksum device is computed to be the bitwise exclusive-or of some subset of the data devices:
c; = ai71d1 ¢ ai72d2 Tc...¢ ai?ndn, Wheream» S {0, 1}.

Although these methods can tolerate up to m failures (for example, al the checksum devices can fail), they do not
tolerate all combinations of m failures. For example, the well-known Hamming code can be adapted for RAID-like sys-
tems [5]. With Hamming codes, m = [log(m + n — 1)] checksum devices are employed, and all two-device failures may
be tolerated. One-dimensional parity [14] isanother parity-based method that can tolerate certain classes of multiple-device
failures. With one-dimensional parity, the data devices are partitioned into m groups, g1 - - . 9=, and each checksum device
¢; 1S computed to be the parity of the data devicesin g;. With one-dimensional parity, the system can tolerate one failure
per group. Note that when m = 1, thisissimply n+1-parity, and when m = n, thisis equivalent to device mirroring.

Two-dimensional parity [14] is an extension of one-dimensional parity that tolerates any two device failures. With two-
dimensional parity, m must be greater than or equal to 2,/n, which can result in too much cost if devices are expensive.
Other strategiesfor parity-based encodingsthat tolerate two and three devicefailures are discussed in Reference [14]. Since
all of these schemes are based on parity, they show better performance than RS-Raid coding for equivalent values of m.
However, unlike RS-Raid coding, these schemes do not have minimal device overhead. In other words, there are some
combinations of £ < m device failuresthat the system cannot tolerate.

An important coding technique for two device failuresis EVENODD coding [15]. This technique tolerates all two device

failures with just two checksum devices, and all coding operations are XOR's. Thus, it too is faster than RS-Raid coding.

13

() @LQ (e
|5 565 obeooeh

Hamming code, n = 11, m = 4

One-dimensiona parity,n = 12, m = 3 Two-dimensional parity,n = 9, m = 6

Figure 8: Parity-based encodings

To the author’ s knowledge, there is no parity-based scheme that tol erates three or more device failureswith minimal device
overhead.

Conclusion

This paper has presented a complete specification for implementing Reed-Solomon coding for RAID-like systems. With
this coding, one can add m checksum devices to n data devices, and tolerate the failure of any m devices. This has
application in disk arrays, network file systems and distributed checkpointing systems.

This paper does not claim that RS-Raid coding is the best method for all applications in this domain. For example, in
the casewherem = 2, EVENODD coding [15] solvesthe problem with better performance, and one-dimensional parity [14]
solvesa similar problem with even better performance. However, RS-Raid coding is the only general solution for all values
of n and m.

The table-driven approach for multiplication and division over a GaloisField isjust oneway of performing these actions.
For valueswhere n + m < 65,536, thisis an efficient software solution that is easy to implement and does not consume
much physical memory. For larger values of n + m, other approaches (hardware or software) may be necessary. See

References[2], [27] and [28] for examples of other approaches.

Acknowledgements

The author thanks Joel Friedman, Kai Li, Michael Puening, Norman Ramsey, Brad Vander Zanden and Michael Vose for
their valuable comments and discussion concerning this paper.
References

[1] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

14

(2]

(3]

[4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes, Second Edition. The MIT Press, Cambridge, Mas-
sachusetts, 1972.

FJ. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes, Part I. North-Holland Publishing
Company, Amsterdam, New York, Oxford, 1977.

D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive disks (RAID). In 1988 ACM
Conference on Management of Data, pages 109-116, June 1988.

G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Sorage. The MIT Press, Cambridge, Mas-
sachusetts, 1992.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys, 1994.

J. H. Hartman and J. K. Ousterhout. The zebra striped network file system. Operating Systems Review — 14th ACM
Symposium on Operating System Principles, 27(5):29-43, December 1993.

P. Cao, S. B. Lim, S. Venkataraman, and J. Wilkes. The TickerTAIP parallel RAID architecture. ACM Transactions
on Computer Systems, 12(3), 1994.

J. S. Plank and K. Li. Faster checkpointing with N' + 1 parity. In 24th International Symposium on Fault-Tolerant
Computing, pages 288-297, Austin, TX, June 1994.

J. S. Plank, Y. Kim, and J. Dongarra. Algorithm-based diskless checkpointing for fault tolerant matrix operations. In
25th International Symposium on Fault-Tolerant Computing, pages 351-360, Pasadena, CA, June 1995.

T. Chiueh and P. Deng. Efficient checkpoint mechanisms for massively parallel machines. In 26th International

Symposium on Fault-Tolerant Computing, Sendai, June 1996.

J. S. Plank. Improving the performance of coordinated checkpointers on networks of workstations using RAID tech-
nigues. 1n 15th Symposiumon Reliable Distributed Systems, October 1996.

W. A. Burkhard and J. Menon. Disk array storage system reliability. In 23rd International Symposium on Fault-
Tolerant Computing, pages 432—441, Toulouse, France, June 1993.

G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson. Failure correction techniques for large
disk arrays. In Third International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 123-132, Boston, MA, April 1989.

M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An optimal scheme for tolerating double disk failuresin
RAID architectures. In 21st Annual International Symposium on Computer Architecture, pages 245—254, Chicago,
IL, April 1994.

C-1. Park. Efficient placement of parity and datato tolerate two disk failuresin disk array systems. |EEE Transactions
on Parallel and Distributed Systems, 6(11):1177-1184, November 1995.

15

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]

E. D.Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. | EEE Transactionson | nformation Theory,
IT-29(1):35-41, January 1983.

M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the
Association for Computing Machinery, 36(2):335-348, April 1989.

F. P. Preparata. Holographic dispersal and recovery of information. |EEE Transactions on Information Theory,
35(5):1123-1124, September 1989.

T. J. E. Schwarz and W. A. Burkhard. RAID organization and performance. In Proceedings of the 12th International
Conference on Distributed Computing Systems, pages 318-325, Yokohama, June 1992.

J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, New York, 1982.

S. B. Wicker and V. K. Bhargava. Reed-Solomon Codes and Their Applications. |EEE Press, New York, 1994.
D. Wiggert. Codesfor Error Control and Synchronization. Artech House, Inc., Norwood, M assachusetts, 1988.
I. N. Herstein. Topisin Algebra, Second Edition. Xerox College Publishing, Lexington, Massachusetts, 1975.

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. |EEE Computer, 27(3):17-29, March 1994.

M. Holland, G. A. Gibson, and D. P. Siewiorek. Fast, on-line failure recovery in redundant disk arrays. In 23rd
International Symposium on Fault-Tolerant Computing, pages 422-423, Toulouse, France, June 1993.

[27] A. Z. Broder. Some applications of Rabin’s fingerprinting method. In R. Capocelli, A. De Santis, and U. Vaccaro,

[28]

editors, Sequences 1. Springer-Verlag, New York, 1991.

D. W. Clark and L-J. Weng. Maximal and near-maximal shift register sequences: Efficient event counters and easy
discrete logarithms. |EEE Transactions on Computers, 43(5):560-568, 1994.

16

Appendix A: Galois Fields, asapplied to thisalgorithm

Galois Fields are a fundamental topic of algebra, and are given a full treatment in a number of texts [24, 3, 21]). This
Appendix does not attempt to define and prove all the properties of Galois Fields necessary for this algorithm. Instead, our
goal isto give enough information about Galois Fields that anyone desiring to implement this algorithm will have a good
intuition concerning the underlying theory.

A fild GF(n) isaset of n elements closed under addition and multiplication, for which every element has an additive
and multiplicativeinverse (except for the 0 element which has no multiplicativeinverse). For example, thefield GF(2) can
be represented as the set {0. 1}, where addition and multiplication are both performed modulo 2 (i.e. additionis XOR, and
multiplication is the bit operator AND). Similarly, if n is a prime number, then we can represent the field G F'(n) to be the
set {0, 1,...,n — 1} where addition and multiplication are both performed modulo n.

However, suppose n > 1 isnot aprime. Then the set {0,1,...,n — 1} where addition and multiplication are both
performed modulo n is not a field. For example, let n be four. Then the set {0, 1,2, 3} isindeed closed under addition
and multiplication modulo 4, however, the element 2 has no multiplicative inverse (thereisno a € {0, 1, 2, 3} such that
2a = 1 (mod 4)). Thus, we cannot perform our coding with binary words of size w > 1 using addition and multiplication
modulo 2% . Instead, we need to use Galois Fields.

To explain Galois Fields, we work with polynomials of = whose coefficients are in G F'(2). This means, for example,

that if r(z) = z + 1, and s(z) = z, thenr(z) + s(z) = 1. Thisis because
r+z=(1+1z=0z=0.
Moreover, we take such polynomials modulo other polynomials, using the following identity:

If r(z) mod q(z) = s(z), then s(z) isapolynomial with adegreelessthan ¢(z), and r(z) = q(z)t(z) + s(z),
wheret(z) isany polynomial of z.

Thus, for example, if r(z) = z? + z, and q(z) = z? + 1, then r(z) mod ¢(z) = = + 1.

Let ¢(z) be a primitive polynomial of degree w whose coefficients are in GF(2). This means that ¢(z) cannot be
factored, and that the polynomial z can be considered a generator of GF(2*). To see how z generates G F'(2V), we start
with the elements 0, 1, and z, and then continue to enumerate the elements by multiplying the last element by = and taking
the result modulo ¢(z) if it has a degree > w. This enumeration ends at 2% elements — the last element multiplied by
z mod ¢(z) equals 1.

For example, suppose w = 2, and ¢(z) = z? 4+ = + 1. To enumerate G F'(4) we start with the three elements 0, 1, and z,
then then continue with z? mod ¢(z) = = + 1. Thuswe have four elements: {0, 1, z, z + 1}. If we continue, we see that
(z 4+ 1)z mod ¢(z) = z? + = mod ¢(z) = 1, thus ending the enumeration.

Thefield G F'(2v) is constructed by finding a primitive polynomial ¢(z) of degree w over G F(2), and then enumerating
the elements (which are polynomials) with the generator . Addition in thisfield is performed using polynomial addition,
and multiplication is performed using polynomial multiplication and taking the result modulo ¢(z). Such afieldistypicaly
written GF(2¥) = GF(2)[z]/q(z).

17

Now, to use G F'(2") in the RS-Raid algorithm, we need to map the elements of GF'(2*) to binary words of size w. Let
r(z) be a polynomia in GF(2¥). Then we can map r(z) to a binary word b of size w by setting the ith bit of 4 to the
coefficient of z* in r(z). For example, in GF (4) = GF(2)[z]/z?+ = + 1, we get the following table:

Generated | Polynomial Binary Decimal
Element Element Element & Representation
of GF(4) | of GF(4) | of GF(4) of b
0 0 00 0
z° 1 01 1
z! T 10 2
z? z4+1 11 3

Addition of binary elements of G F'(2*) can be performed by bitwise exclusive-or. Multiplicationis alittle more difficult.
One must convert the binary numbersto their polynomial elements, multiply the polynomials modulo ¢ (), and then convert
the answer back to binary. This can be implemented, in asimple fashion, by using the two logarithm tables described earlier:
one that maps from a binary element 4 to power j such that =7 isequivalent to b (thisis the gf | og table, and is referred
to in the literature as a “discrete logarithm™), and one that maps from a power j to its binary element 4. Each table has
2% — 1 elements (there is no j such that 7 = 0). Multiplication then consists of converting each binary element to its
discrete logarithm, then adding the logarithms modulo 2% — 1 (this is equivalent to multiplying the polynomials modulo
q(z)) and converting the result back to a binary element. Division is performed in the same manner, except the logarithms
are subtracted instead of added. Obviously, elementswhereb = 0 must be treated as special cases. Therefore, multiplication
and division of two binary elements takes three table lookups and a modular addition.

Thus, to implement multiplication over G F'(2%), wemust first set up thetablesgf | og and gf i | 0g. To dothis, wefirst
need a primitive polynomial ¢(z) of degree w over GF(2"). Such polynomials can be found in texts on error correcting

codes[1, 2]. We list examples for powers of two up to 64 below:

w=4: etz +1

w=_: Byt et 41
w=16: 24?4t 441
w=32: e et 41
w=64: AL R U |

We then start with the element z° = 1, and enumerate all non-zero polynomias over GF(2*) by multiplying the last
element by z, and taking the result modulo ¢(z). Thisisdonein Table 2 below for GF(2*), whereg(z) = z* + = + 1.

It should be clear now how the C code in Figure 4 generates the gf | og and gf i | og arrays for G F(2%), GF(2®8) and
GF(2'°).

18

Generated Polynomial Binary Decimal
Element Element Element Element
0 0 0000 0
z° 1 0001 1
z! z 0010 2
z? z? 0100 4
z? z? 1000 8
zt r+1 0011 3
z° z? t 0110 6
z6 z3 + z? 1100 12
z7 Ptz +1 1011 11
z8 z2 41 0101 5
z° z® t o 1010 10
z10 2+ +1 0111 7
1! [R R L 1110 14
z1? 342+ +1 1111 15
z!? 4?41 1101 13
zl z3 41 1001
z!® 1 0001

Table 2: Enumeration of the elements of G F'(16)

19

