

Introduction to Reliable and Secure Distributed
Programming

•

Christian Cachin • Rachid Guerraoui
Luı́s Rodrigues

Introduction to

Reliable and Secure
Distributed Programming

Second Edition

123

Dr. Christian Cachin
IBM Research Zürich
Säumerstrasse 4
8803 Rüschlikon
Switzerland
cca@zurich.ibm.com

Prof. Dr. Rachid Guerraoui
Ecole Polytechnique
Fédérale Lausanne (EPFL)
Fac. Informatique et Communications
Lab. Programmation Distribuée (LPD)
Station 14
1015 Lausanne
Bat. INR
Switzerland
Rachid.Guerraoui@epfl.ch

Prof. Luı́s Rodrigues
INESC-ID
Instituto Superior Técnico
Rua Alves Redol 9
1000-029 Lisboa
Portugal
ler@ist.utl.pt

ISBN 978-3-642-15259-7 e-ISBN 978-3-642-15260-3
DOI 10.1007/978-3-642-15260-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011921701

ACM Computing Classification (1998): C.2, F.2, G.2

c© Springer-Verlag Berlin Heidelberg 2011, 2006
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To Irene, Philippe and André.
To Maria and Sarah.

To Hugo and Sara.

•

Preface

This book provides an introduction to distributed programming abstractions and
presents the fundamental algorithms that implement them in several distributed en-
vironments. The reader is given insight into the important problems of distributed
computing and the main algorithmic techniques used to solve these problems.
Through examples the reader can learn how these methods can be applied to build-
ing distributed applications. The central theme of the book is the tolerance to
uncertainty and adversarial influence in a distributed system, which may arise from
network delays, faults, or even malicious attacks.

Content

In modern computing, a program usually encompasses multiple processes. A pro-
cess is simply an abstraction that may represent a physical computer or a virtual
one, a processor within a computer, or a specific thread of execution in a concur-
rent system. The fundamental problem with devising such distributed programs is
to have all processes cooperate on some common task. Of course, traditional cen-
tralized algorithmic issues still need to be dealt with for each process individually.
Distributed environments, which may range from a single computer to a data center
or even a global system available around the clock, pose additional challenges: how
to achieve a robust form of cooperation despite process failures, disconnections of
some of the processes, or even malicious attacks on some processes? Distributed
algorithms should be dependable, offer reliability and security, and have predictable
behavior even under negative influence from the environment.

If no cooperation were required, a distributed program would simply consist of
a set of independent centralized programs, each running on a specific process, and
little benefit could be obtained from the availability of several processes in a dis-
tributed environment. It was the need for cooperation that revealed many of the
fascinating problems addressed by this book, problems that need to be solved to
make distributed computing a reality. The book not only introduces the reader to
these problem statements, it also presents ways to solve them in different contexts.

Not surprisingly, distributed programming can be significantly simplified if
the difficulty of robust cooperation is encapsulated within specific abstractions.
By encapsulating all the tricky algorithmic issues, such distributed programming
abstractions bridge the gap between network communication layers, which are

vii

viii Preface

usually frugal in terms of dependability guarantees, and distributed application
layers, which usually demand highly dependable primitives.

The book presents various distributed programming abstractions and describes
algorithms that implement them. In a sense, we give the distributed application
programmer a library of abstract interface specifications, and give the distributed
system builder a library of algorithms that implement the specifications.

A significant amount of the preparation time for this book was devoted to for-
mulating a collection of exercises and developing their solutions. We strongly
encourage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. This is especially true in the field
of distributed computing, where the human mind too often follows some attractive
but misleading intuition. The book also includes the solutions for all exercises, to
emphasize our intention to make them an integral part of the content. Many exercises
are rather easy and can be discussed within an undergraduate teaching classroom.
Other exercises are more difficult and need more time. These can typically be
studied individually.

Presentation

The book as such is self-contained. This has been made possible because the field
of distributed algorithms has reached a certain level of maturity, where distract-
ing details can be abstracted away for reasoning about distributed algorithms. Such
details include the behavior of the communication network, its various kinds of fail-
ures, as well as implementations of cryptographic primitives; all of them are treated
in-depth by other works. Elementary knowledge about algorithms, first-order logic,
programming languages, networking, security, and operating systems might be help-
ful. But we believe that most of our abstractions and algorithms can be understood
with minimal knowledge about these notions.

The book follows an incremental approach and was primarily written as a text-
book for teaching at the undergraduate or basic graduate level. It introduces the
fundamental elements of distributed computing in an intuitive manner and builds
sophisticated distributed programming abstractions from elementary ones in a mod-
ular way. Whenever we devise algorithms to implement a given abstraction, we
consider a simple distributed-system model first, and then we revisit the algorithms
in more challenging models. In other words, we first devise algorithms by making
strong simplifying assumptions on the distributed environment, and then we discuss
how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity on the one hand
with rigor on the other hand. Sometimes rigor was affected, and this might not have
been always on purpose. The focus here is rather on abstraction specifications and
algorithms, not on computability and complexity. Indeed, there is no theorem in
this book. Correctness arguments are given with the aim of better understanding the
algorithms: they are not formal correctness proofs per se.

Preface ix

Organization

The book has six chapters, grouped in two parts. The first part establishes the
common ground:

• In Chapter 1, we motivate the need for distributed programming abstractions
by discussing various applications that typically make use of such abstractions.
The chapter also introduces the modular notation and the pseudo code used to
describe the algorithms in the book.

• In Chapter 2, we present different kinds of assumptions about the underlying
distributed environment. We introduce a family of distributed-system models for
this purpose. Basically, a model describes the low-level abstractions on which
more sophisticated ones are built. These include process and communication link
abstractions. This chapter might be considered as a reference to other chapters.

The remaining four chapters make up the second part of the book. Each chapter is
devoted to one problem, containing a broad class of related abstractions and various
algorithms implementing them. We will go from the simpler abstractions to the more
sophisticated ones:

• In Chapter 3, we introduce communication abstractions for distributed program-
ming. They permit the broadcasting of a message to a group of processes and
offer diverse reliability guarantees for delivering messages to the processes. For
instance, we discuss how to make sure that a message delivered to one process
is also delivered to all other processes, despite the crash of the original sender
process.

• In Chapter 4, we discuss shared memory abstractions, which encapsulate simple
forms of distributed storage objects, accessed by read and write operations. These
could be files in a distributed storage system or registers in the memory of a
multi-processor computer. We cover methods for reading and writing data values
by clients, such that a value stored by a set of processes can later be retrieved,
even if some of the processes crash, have erased the value, or report wrong data.

• In Chapter 5, we address the consensus abstraction through which a set of pro-
cesses can decide on a common value, based on values that the processes initially
propose. They must reach the same decision despite faulty processes, which may
have crashed or may even actively try to prevent the others from reaching a
common decision.

• In Chapter 6, we consider variants of consensus, which are obtained by extend-
ing or modifying the consensus abstraction according to the needs of important
applications. This includes total-order broadcast, terminating reliable broadcast,
(non-blocking) atomic commitment, group membership, and view-synchronous
communication.

The distributed algorithms we study not only differ according to the actual ab-
straction they implement, but also according to the assumptions they make on the
underlying distributed environment. We call the set of initial abstractions that an
algorithm takes for granted a distributed-system model. Many aspects have a funda-
mental impact on how an algorithm is designed, such as the reliability of the links,

x Preface

the degree of synchrony of the system, the severity of the failures, and whether a
deterministic or a randomized solution is sought.

In several places throughout the book, the same basic distributed program-
ming primitive is implemented in multiple distributed-system models. The intention
behind this is two-fold: first, to create insight into the specific problems encoun-
tered in a particular system model, and second, to illustrate how the choice of a
model affects the implementation of a primitive.

A detailed study of all chapters and the associated exercises constitutes a rich and
thorough introduction to the field. Focusing on each chapter solely for the specifica-
tions of the abstractions and their underlying algorithms in their simplest form, i.e.,
for the simplest system model with crash failures only, would constitute a shorter,
more elementary course. Such a course could provide a nice companion to a more
practice-oriented course on distributed programming.

Changes Made for the Second Edition

This edition is a thoroughly revised version of the first edition. Most parts of the
book have been updated. But the biggest change was to expand the scope of the
book to a new dimension, addressing the key concept of security against malicious
actions. Abstractions and algorithms in a model of distributed computing that allows
adversarial attacks have become known as Byzantine fault-tolerance.

The first edition of the book was titled “Introduction to Reliable Distributed Pro-
gramming.” By adding one word (“secure”) to the title – and adding one co-author –
the evolution of the book reflects the developments in the field of distributed systems
and in the real world. Since the first edition was published in 2006, it has become
clear that most practical distributed systems are threatened by intrusions and that
insiders cannot be ruled out as the source of malicious attacks. Building dependable
distributed systems nowadays requires an interdisciplinary effort, with inputs from
distributed algorithms, security, and other domains.

On the technical level, the syntax for modules and the names of some events have
changed, in order to add more structure for presenting the algorithms. A module
may now exist in multiple instances at the same time within an algorithm, and every
instance is named by a unique identifier for this purpose. We believe that this has
simplified the presentation of several important algorithms.

The first edition of this book contained a companion set of running examples
implemented in the Java programming language, using the Appia protocol compo-
sition framework. The implementation addresses systems subject to crash failures
and is available from the book’s online website.

Online Resources

More information about the book, including the implementation of many protocols
from the first edition, tutorial presentation material, classroom slides, and errata, is
available online on the book’s website at:

http://distributedprogramming.net

http://distributedprogramming.net

Preface xi

References

We have been exploring the world of distributed programming abstractions for
almost two decades now. The material of this book has been influenced by many
researchers in the field of distributed computing. A special mention is due to Leslie
Lamport and Nancy Lynch for having posed fascinating problems in distributed
computing, and to the Cornell school of reliable distributed computing, includ-
ing Özalp Babaoglu, Ken Birman, Keith Marzullo, Robbert van Rennesse, Rick
Schlichting, Fred Schneider, and Sam Toueg.

Many other researchers have directly or indirectly inspired the material of this
book. We did our best to reference their work throughout the text. All chapters
end with notes that give context information and historical references; our intention
behind them is to provide hints for further reading, to trace the history of the pre-
sented concepts, as well as to give credit to the people who invented and worked
out the concepts. At the end of the book, we reference books on other aspects of
distributed computing for further reading.

Acknowledgments

We would like to express our deepest gratitude to our undergraduate and graduate
students from the École Polytechnique Fédérale de Lausanne (EPFL) and the Uni-
versity of Lisboa (UL), for serving as reviewers of preliminary drafts of this book.
Indeed, they had no choice and needed to prepare for their exams anyway! But they
were indulgent toward the bugs and typos that could be found in earlier versions of
the book as well as associated slides, and they provided us with useful feedback.

Partha Dutta, Corine Hari, Michal Kapalka, Petr Kouznetsov, Ron Levy, Maxime
Monod, Bastian Pochon, and Jesper Spring, graduate students from the School of
Computer and Communication Sciences of EPFL, Filipe Araújo and Hugo Miranda,
graduate students from the Distributed Algorithms and Network Protocol (DIALNP)
group at the Departamento de Informática da Faculdade de Ciências da Universi-
dade de Lisboa (UL), Leila Khalil and Robert Basmadjian, graduate students from
the Lebanese University in Beirut, as well as Ali Ghodsi, graduate student from
the Swedish Institute of Computer Science (SICS) in Stockholm, suggested many
improvements to the algorithms presented in the book.

Several implementations for the “hands-on” part of the book were developed by,
or with the help of, Alexandre Pinto, a key member of the Appia team, comple-
mented with inputs from several DIALNP team members and students, including
Nuno Carvalho, Maria João Monteiro, and Luı́s Sardinha.

Finally, we would like to thank all our colleagues who were kind enough to com-
ment on earlier drafts of this book. These include Felix Gaertner, Benoit Garbinato,
and Maarten van Steen.

xii Preface

Acknowledgments for the Second Edition

Work on the second edition of this book started while Christian Cachin was on sab-
batical leave from IBM Research at EPFL in 2009. We are grateful for the support
of EPFL and IBM Research.

We thank again the students at EPFL and the University of Lisboa, who worked
with the book, for improving the first edition. We extend our gratitude to the students
at the Instituto Superior Técnico (IST) of the Universidade Técnica de Lisboa, at
ETH Zürich, and at EPFL, who were exposed to preliminary drafts of the additional
material included in the second edition, for their helpful feedback.

We are grateful to many attentive readers of the first edition and to those who
commented on earlier drafts of the second edition, for pointing out problems
and suggesting improvements. In particular, we thank Zinaida Benenson, Alysson
Bessani, Diego Biurrun, Filipe Cristóvão, Dan Dobre, Felix Freiling, Ali Ghodsi,
Seif Haridi, Matúš Harvan, Rüdiger Kapitza, Nikola Knežević, Andreas Knobel,
Mihai Letia, Thomas Locher, Hein Meling, Hugo Miranda, Luı́s Pina, Martin
Schaub, and Marko Vukolić.

Christian Cachin
Rachid Guerraoui

Luı́s Rodrigues

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Distributed Programming Abstractions . 3

1.2.1 Inherent Distribution . 4
1.2.2 Distribution as an Artifact . 6

1.3 The End-to-End Argument . 7
1.4 Software Components . 8

1.4.1 Composition Model . 8
1.4.2 Programming Interface . 11
1.4.3 Modules . 13

1.5 Classes of Algorithms . 16
1.6 Chapter Notes . 17

2 Basic Abstractions . 19
2.1 Distributed Computation . 20

2.1.1 Processes and Messages . 20
2.1.2 Automata and Steps . 20
2.1.3 Safety and Liveness . 22

2.2 Abstracting Processes . 24
2.2.1 Process Failures . 24
2.2.2 Crashes . 24
2.2.3 Omissions . 26
2.2.4 Crashes with Recoveries . 26
2.2.5 Eavesdropping Faults . 28
2.2.6 Arbitrary Faults . 29

2.3 Cryptographic Abstractions . 30
2.3.1 Hash Functions . 30
2.3.2 Message-Authentication Codes (MACs) 30
2.3.3 Digital Signatures . 31

2.4 Abstracting Communication . 32
2.4.1 Link Failures . 33
2.4.2 Fair-Loss Links . 34
2.4.3 Stubborn Links . 35
2.4.4 Perfect Links . 37
2.4.5 Logged Perfect Links . 38

xiii

xiv Contents

2.4.6 Authenticated Perfect Links . 40
2.4.7 On the Link Abstractions . 43

2.5 Timing Assumptions . 44
2.5.1 Asynchronous System . 44
2.5.2 Synchronous System . 45
2.5.3 Partial Synchrony . 47

2.6 Abstracting Time . 48
2.6.1 Failure Detection . 48
2.6.2 Perfect Failure Detection . 49
2.6.3 Leader Election . 51
2.6.4 Eventually Perfect Failure Detection . 53
2.6.5 Eventual Leader Election . 56
2.6.6 Byzantine Leader Election . 60

2.7 Distributed-System Models . 63
2.7.1 Combining Abstractions . 63
2.7.2 Setup . 64
2.7.3 Quorums . 65
2.7.4 Measuring Performance . 65

2.8 Exercises . 67
2.9 Solutions . 68
2.10 Chapter Notes . 71

3 Reliable Broadcast . 73
3.1 Motivation . 73

3.1.1 Client–Server Computing . 73
3.1.2 Multiparticipant Systems . 74

3.2 Best-Effort Broadcast . 75
3.2.1 Specification . 75
3.2.2 Fail-Silent Algorithm: Basic Broadcast 76

3.3 Regular Reliable Broadcast . 77
3.3.1 Specification . 77
3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast 78
3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast 79

3.4 Uniform Reliable Broadcast . 81
3.4.1 Specification . 81
3.4.2 Fail-Stop Algorithm:

All-Ack Uniform Reliable Broadcast . 82
3.4.3 Fail-Silent Algorithm:

Majority-Ack Uniform Reliable Broadcast 84
3.5 Stubborn Broadcast . 85

3.5.1 Specification . 85
3.5.2 Fail-Recovery Algorithm: Basic Stubborn Broadcast 86

3.6 Logged Best-Effort Broadcast . 87
3.6.1 Overview . 87
3.6.2 Specification . 88
3.6.3 Fail-Recovery Algorithm: Logged Basic Broadcast 89

Contents xv

3.7 Logged Uniform Reliable Broadcast . 90
3.7.1 Specification . 90
3.7.2 Fail-Recovery Algorithm:

Logged Majority-Ack Uniform Reliable Broadcast 90
3.8 Probabilistic Broadcast . 92

3.8.1 The Scalability of Reliable Broadcast 92
3.8.2 Epidemic Dissemination . 93
3.8.3 Specification . 94
3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast 94
3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast 97

3.9 FIFO and Causal Broadcast . 100
3.9.1 Overview . 101
3.9.2 FIFO-Order Specification . 101
3.9.3 Fail-Silent Algorithm: Broadcast with Sequence Number . . . 101
3.9.4 Causal-Order Specification . 103
3.9.5 Fail-Silent Algorithm: No-Waiting Causal Broadcast 104
3.9.6 Fail-Stop Algorithm: Garbage-Collection of Causal Past . . . 106
3.9.7 Fail-Silent Algorithm: Waiting Causal Broadcast 108

3.10 Byzantine Consistent Broadcast . 110
3.10.1 Motivation . 110
3.10.2 Specification . 111
3.10.3 Fail-Arbitrary Algorithm:

Authenticated Echo Broadcast . 112
3.10.4 Fail-Arbitrary Algorithm: Signed Echo Broadcast 114

3.11 Byzantine Reliable Broadcast . 116
3.11.1 Specification . 117
3.11.2 Fail-Arbitrary Algorithm:

Authenticated Double-Echo Broadcast 117
3.12 Byzantine Broadcast Channels . 120

3.12.1 Specifications . 120
3.12.2 Fail-Arbitrary Algorithm: Byzantine Consistent Channel . . . 122
3.12.3 Fail-Arbitrary Algorithm: Byzantine Reliable Channel 123

3.13 Exercises . 124
3.14 Solutions . 126
3.15 Chapter Notes . 134

4 Shared Memory . 137
4.1 Introduction . 138

4.1.1 Shared Storage in a Distributed System 138
4.1.2 Register Overview . 138
4.1.3 Completeness and Precedence . 141

4.2 (1, N) Regular Register . 142
4.2.1 Specification . 142
4.2.2 Fail-Stop Algorithm:

Read-One Write-All Regular Register 144

xvi Contents

4.2.3 Fail-Silent Algorithm:
Majority Voting Regular Register . 146

4.3 (1, N) Atomic Register . 149
4.3.1 Specification . 149
4.3.2 Transformation:

From (1, N) Regular to (1, N) Atomic Registers 151
4.3.3 Fail-Stop Algorithm:

Read-Impose Write-All (1, N) Atomic Register 156
4.3.4 Fail-Silent Algorithm:

Read-Impose Write-Majority (1, N) Atomic Register 157
4.4 (N, N) Atomic Register . 159

4.4.1 Multiple Writers . 159
4.4.2 Specification . 160
4.4.3 Transformation:

From (1, N) Atomic to (N, N) Atomic Registers 161
4.4.4 Fail-Stop Algorithm:

Read-Impose Write-Consult-All (N, N) Atomic Reg. 165
4.4.5 Fail-Silent Algorithm:

Read-Impose Write-Consult-Majority (N, N)
Atomic Reg. 167

4.5 (1, N) Logged Regular Register . 170
4.5.1 Precedence in the Fail-Recovery Model 170
4.5.2 Specification . 170
4.5.3 Fail-Recovery Algorithm: Logged Majority Voting 172

4.6 (1, N) Byzantine Safe Register . 175
4.6.1 Specification . 176
4.6.2 Fail-Arbitrary Algorithm: Byzantine Masking Quorum 177

4.7 (1, N) Byzantine Regular Register . 179
4.7.1 Specification . 179
4.7.2 Fail-Arbitrary Algorithm:

Authenticated-Data Byzantine Quorum 180
4.7.3 Fail-Arbitrary Algorithm:

Double-Write Byzantine Quorum . 182
4.8 (1, N) Byzantine Atomic Register . 188

4.8.1 Specification . 189
4.8.2 Fail-Arbitrary Algorithm:

Byzantine Quorum with Listeners . 189
4.9 Exercises . 194
4.10 Solutions . 195
4.11 Chapter Notes . 200

5 Consensus . 203
5.1 Regular Consensus . 204

5.1.1 Specification . 204
5.1.2 Fail-Stop Algorithm: Flooding Consensus 205
5.1.3 Fail-Stop Algorithm: Hierarchical Consensus 208

Contents xvii

5.2 Uniform Consensus . 211
5.2.1 Specification . 211
5.2.2 Fail-Stop Algorithm: Flooding Uniform Consensus 212
5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus 213

5.3 Uniform Consensus in the Fail-Noisy Model . 216
5.3.1 Overview . 216
5.3.2 Epoch-Change . 217
5.3.3 Epoch Consensus . 220
5.3.4 Fail-Noisy Algorithm: Leader-Driven Consensus 225

5.4 Logged Consensus . 228
5.4.1 Specification . 228
5.4.2 Logged Epoch-Change . 229
5.4.3 Logged Epoch Consensus . 230
5.4.4 Fail-Recovery Algorithm:

Logged Leader-Driven Consensus . 234
5.5 Randomized Consensus . 235

5.5.1 Specification . 236
5.5.2 Common Coin . 237
5.5.3 Randomized Fail-Silent Algorithm:

Randomized Binary Consensus . 238
5.5.4 Randomized Fail-Silent Algorithm:

Randomized Consensus with Large Domain 242
5.6 Byzantine Consensus . 244

5.6.1 Specifications . 244
5.6.2 Byzantine Epoch-Change . 246
5.6.3 Byzantine Epoch Consensus . 248
5.6.4 Fail-Noisy-Arbitrary Algorithm:

Byzantine Leader-Driven Consensus . 259
5.7 Byzantine Randomized Consensus . 261

5.7.1 Specification . 261
5.7.2 Randomized Fail-Arbitrary Algorithm:

Byzantine Randomized Binary Consensus 261
5.8 Exercises . 266
5.9 Solutions . 268
5.10 Chapter Notes . 277

6 Consensus Variants . 281
6.1 Total-Order Broadcast . 281

6.1.1 Overview . 281
6.1.2 Specifications . 283
6.1.3 Fail-Silent Algorithm:

Consensus-Based Total-Order Broadcast 284
6.2 Byzantine Total-Order Broadcast . 287

6.2.1 Overview . 287
6.2.2 Specification . 288

xviii Contents

6.2.3 Fail-Noisy-Arbitrary Algorithm:
Rotating Sender Byzantine Broadcast 288

6.3 Terminating Reliable Broadcast . 292
6.3.1 Overview . 292
6.3.2 Specification . 293
6.3.3 Fail-Stop Algorithm: Consensus-Based

Uniform Terminating Reliable Broadcast 293
6.4 Fast Consensus . 296

6.4.1 Overview . 296
6.4.2 Specification . 297
6.4.3 Fail-Silent Algorithm:

From Uniform Consensus to Uniform Fast Consensus 297
6.5 Fast Byzantine Consensus . 300

6.5.1 Overview . 300
6.5.2 Specification . 300
6.5.3 Fail-Arbitrary Algorithm:

From Byzantine Consensus to Fast Byzantine Consensus . . . 300
6.6 Nonblocking Atomic Commit . 303

6.6.1 Overview . 303
6.6.2 Specification . 304
6.6.3 Fail-Stop Algorithm:

Consensus-Based Nonblocking Atomic Commit 304
6.7 Group Membership . 307

6.7.1 Overview . 307
6.7.2 Specification . 308
6.7.3 Fail-Stop Algorithm: Consensus-Based

Group Membership . 309
6.8 View-Synchronous Communication . 311

6.8.1 Overview . 311
6.8.2 Specification . 312
6.8.3 Fail-Stop Algorithm:

TRB-Based View-Synchronous Communication 314
6.8.4 Fail-Stop Algorithm: Consensus-Based

Uniform View-Synchronous Communication 319
6.9 Exercises . 323
6.10 Solutions . 324
6.11 Chapter Notes . 337

7 Concluding Remarks . 341
7.1 Implementation in Appia . 341
7.2 Further Implementations . 342
7.3 Further Reading . 344

Contents xix

References . 347

List of Modules . 355

List of Algorithms . 357

Index . 361

1. Introduction

I am putting myself to the fullest possible use, which is all I think that any
conscious entity can ever hope to do.

(HAL 9000)

This chapter first motivates the need for distributed programming abstractions. Spe-
cial attention is given to abstractions that capture the problems that underlie robust
forms of cooperation between multiple processes in a distributed system, usually
called agreement abstractions. The chapter then advocates a modular strategy for the
development of distributed programs by making use of those abstractions through
specific Application Programming Interfaces (APIs).

A simple, concrete example of an API is also given to illustrate the notation and
event-based invocation scheme used throughout the book to describe the algorithms
that implement our abstractions. The notation and invocation schemes are very close
to those that are found in practical implementations of distributed algorithms.

1.1 Motivation

Distributed computing addresses algorithms for a set of processes that seek to
achieve some form of cooperation. Besides executing concurrently, some of the
processes of a distributed system might stop operating, for instance, by crashing
or being disconnected, while others might stay alive and keep operating. This very
notion of partial failures is a characteristic of a distributed system. In fact, this no-
tion can be useful if one really feels the need to differentiate a distributed system
from a concurrent system. It is in order to quote Leslie Lamport here:

“A distributed system is one in which the failure of a computer you did not
even know existed can render your own computer unusable.”

When a subset of the processes have failed, or become disconnected, the challenge
is usually for the processes that are still operating, or connected to the majority of

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 1,
c© Springer-Verlag Berlin Heidelberg 2011

1

2 1 Introduction

the processes, to synchronize their activities in a consistent way. In other words,
the cooperation must be made robust to tolerate partial failures and sometimes also
adversarial attacks. This makes distributed computing a hard, yet extremely stimu-
lating problem. Due to the asynchrony of the processes, the possibility of failures
in the communication infrastructure, and perhaps even malicious actions by faulty
processes, it may be impossible to accurately detect process failures; in particular,
there is often no way to distinguish a process failure from a network failure, as we
will discuss in detail later in the book. Even worse, a process that is under the control
of a malicious adversary may misbehave deliberately, in order to disturb the com-
munication among the remaining processes. This makes the problem of ensuring
consistent cooperation even more difficult. The challenge in distributed computing
is precisely to devise algorithms that provide the processes that remain operating
with enough consistent information so that they can cooperate correctly and solve
common tasks.

In fact, many programs that we use today are distributed programs. Simple daily
routines, such as reading e-mail or browsing the Web, involve some form of dis-
tributed computing. However, when using these applications, we are typically faced
with the simplest form of distributed computing: client–server computing. In client–
server computing, a centralized process, the server, provides a service to many
remote clients. The clients and the server communicate by exchanging messages,
usually following a request–reply form of interaction. For instance, in order to dis-
play a Web page to the user, a browser sends a request to the Web server and expects
to obtain a response with the information to be displayed. The core difficulty of
distributed computing, namely, achieving a consistent form of cooperation in the
presence of partial failures, may pop up even by using this simple form of interac-
tion. Going back to our browsing example, it is reasonable to expect that the user
continues surfing the Web if the consulted Web server fails (but the user is automat-
ically switched to another Web server), and even more reasonable that the server
process keeps on providing information to the other client processes, even when
some of them fail or get disconnected.

The problems above are already nontrivial when distributed computing is limited
to the interaction between two parties, such as in the client–server case. However,
there is more to distributed computing than handling client–server interactions.
Quite often, not only two, but several processes need to cooperate and synchro-
nize their actions to achieve a common goal. The existence of multiple processes
complicates distributed computing even more. Sometimes we talk about multiparty
interactions in this general case. In fact, both patterns may coexist in a quite natural
manner. Actually, many distributed applications have parts following a client–server
interaction pattern and other parts following a multiparty interaction pattern. This
may even be a matter of perspective. For instance, when a client contacts a server to
obtain a service, it may not be aware that, in order to provide that service, the server
itself may need to request the assistance of several other servers, with whom it needs
to coordinate to satisfy the client’s request. Sometimes, the expression peer-to-peer
computing is used to emphasize the absence of a central server.

1.2 Distributed Programming Abstractions 3

1.2 Distributed Programming Abstractions

Just like the act of smiling, the act of abstracting is restricted to very few natural
species. By capturing properties that are common to a large and significant range
of systems, abstractions help distinguish the fundamental from the accessory, and
prevent system designers and engineers from reinventing, over and over, the same
solutions for slight variants of the very same problems.

From the Basics . . . Reasoning about distributed systems should start by abstract-
ing the underlying physical system: describing the relevant elements in an abstract
way, identifying their intrinsic properties, and characterizing their interactions, lead
us to define what is called a system model. In this book we will use mainly two
abstractions to represent the underlying physical system: processes and links.

The processes of a distributed program abstract the active entities that perform
computations. A process may represent a computer, a processor within a computer,
or simply a specific thread of execution within a processor. In the context of network
security, a process may also represent a trust domain, a principal, or one administra-
tive unit. To cooperate on some common task, the processes may typically need to
exchange messages using some communication network. Links abstract the physical
and logical network that supports communication among processes. It is possible to
represent multiple realizations of a distributed system by capturing different prop-
erties of processes and links, for instance, by describing how these elements may
operate or fail under different environmental conditions.

Chapter 2 will provide a deeper discussion of the various distributed-system
models that are used in this book.

. . . to the Advanced. Given a system model, the next step is to understand how to
build abstractions that capture recurring interaction patterns in distributed applica-
tions. In this book we are interested in abstractions that capture robust cooperation
problems among groups of processes, as these are important and rather challeng-
ing. The cooperation among processes can sometimes be modeled as a distributed
agreement problem. For instance, the processes may need to agree on whether a
certain event did (or did not) take place, to agree on a common sequence of actions
to be performed (from a number of initial alternatives), or to agree on the order by
which a set of inputs need to be processed. It is desirable to establish more sophis-
ticated forms of agreement from solutions to simpler agreement problems, in an
incremental manner. Consider, for instance, the following situations:

• In order for processes to be able to exchange information, they must initially
agree on who they are (say, using IP addresses on the Internet) and on some com-
mon format for representing messages. They may also need to agree on some way
of exchanging messages (say, to use a reliable data stream for communication,
like TCP over the Internet).

• After exchanging some messages, the processes may be faced with several alter-
native plans of action. They may need to reach a consensus on a common plan,
out of several alternatives, and each participating process may have initially its
own plan, different from the plans of the other processes.

4 1 Introduction

• In some cases, it may be acceptable for the cooperating processes to take a given
step only if all other processes also agree that such a step should take place. If this
condition is not met, all processes must agree that the step should not take place.
This form of agreement is crucial in the processing of distributed transactions,
where this problem is known as the atomic commitment problem.

• Processes may not only need to agree on which actions they should execute but
also need to agree on the order in which these actions should be executed. This
form of agreement is the basis of one of the most fundamental techniques to
replicate computation in order to achieve fault tolerance, and it is called the total-
order broadcast problem.

This book is about mastering the difficulty that underlies these problems, and
devising abstractions that encapsulate such problems. The problems are hard
because they require coordination among the processes; given that processes may
fail or may even behave maliciously, such abstractions are powerful and sometimes
not straightforward to build. In the following, we motivate the relevance of some
of the abstractions covered in this book. We distinguish the case where the abstrac-
tions emerge from the natural distribution of the application on the one hand, and
the case where these abstractions come out as artifacts of an engineering choice for
distribution on the other hand.

1.2.1 Inherent Distribution

Applications that require sharing or dissemination of information among several
participant processes are a fertile ground for the emergence of problems that
required distributed programming abstractions. Examples of such applications are
information dissemination engines, multiuser cooperative systems, distributed
shared spaces, process control systems, cooperative editors, distributed databases,
and distributed storage systems.

Information Dissemination. In distributed applications with information dissem-
ination requirements, processes may play one of the following roles: information
producers, also called publishers, or information consumers, also called subscribers.
The resulting interaction paradigm is often called publish–subscribe.

Publishers produce information in the form of notifications. Subscribers register
their interest in receiving certain notifications. Different variants of the publish–
subscribe paradigm exist to match the information being produced with the
subscribers’ interests, including channel-based, subject-based, content-based, or
type-based subscriptions. Independently of the subscription method, it is very likely
that several subscribers are interested in the same notifications, which the system
should broadcast to them. In this case, we are typically interested in having all sub-
scribers of the same information receive the same set of messages. Otherwise the
system will provide an unfair service, as some subscribers could have access to a lot
more information than other subscribers.

Unless this reliability property is given for free by the underlying infrastructure
(and this is usually not the case), the sender and the subscribers must coordinate to

1.2 Distributed Programming Abstractions 5

agree on which messages should be delivered. For instance, with the dissemination
of an audio stream, processes are typically interested in receiving most of the infor-
mation but are able to tolerate a bounded amount of message loss, especially if this
allows the system to achieve a better throughput. The corresponding abstraction is
typically called a best-effort broadcast.

The dissemination of some stock exchange information may require a more
reliable form of broadcast, called reliable broadcast, as we would like all active
processes to receive the same information. One might even require from a stock
exchange infrastructure that information be disseminated in an ordered manner. In
several publish–subscribe applications, producers and consumers interact indirectly,
with the support of a group of intermediate cooperative brokers. In such cases,
agreement abstractions may be useful for the cooperation among the brokers.

Process Control. Process control applications are those where several software
processes have to control the execution of a physical activity. Basically, the pro-
cesses might be controlling the dynamic location of an aircraft or a train. They
might also be controlling the temperature of a nuclear installation or the automation
of a car production plant.

Typically, every process is connected to some sensor. The processes might, for
instance, need to exchange the values output by their assigned sensors and output
some common value, say, print a single location of the aircraft on the pilot control
screen, despite the fact that, due to the inaccuracy or failure of their local sensors,
they may have observed slightly different input values. This cooperation should be
achieved despite some sensors (or associated control processes) having crashed or
not observed anything. This type of cooperation can be simplified if all processes
agree on the same set of inputs for the control algorithm, a requirement captured by
the consensus abstraction.

Cooperative Work. Users located on different nodes of a network may cooperate
in building a common software or document, or simply in setting up a distributed
dialogue, say, for an online chat or a virtual conference. A shared working space
abstraction is very useful here to enable effective cooperation. Such a distributed
shared memory abstraction is typically accessed through read and write operations
by the users to store and exchange information. In its simplest form, a shared work-
ing space can be viewed as one virtual unstructured storage object. In more complex
incarnations, shared working spaces may add a structure to create separate loca-
tions for its users to write, and range all the way from Wikis to complex multiuser
distributed file systems. To maintain a consistent view of the shared space, the pro-
cesses need to agree on the relative order among write and read operations on the
space.

Distributed Databases. Databases constitute another class of applications where
agreement abstractions can be helpful to ensure that all transaction managers obtain
a consistent view of the running transactions and can make consistent decisions on
how these transactions are serialized.

Additionally, such abstractions can be used to coordinate the transaction man-
agers when deciding about the outcome of the transactions. That is, the database

6 1 Introduction

servers, on which a given distributed transaction has executed, need to coordi-
nate their activities and decide whether to commit or abort the transaction. They
might decide to abort the transaction if any database server detected a violation of
the database integrity, a concurrency control inconsistency, a disk error, or simply
the crash of some other database server. As we pointed out, the distributed pro-
gramming abstraction of atomic commit (or commitment) provides such distributed
cooperation.

Distributed Storage. A large-capacity storage system distributes data over many
storage nodes, each one providing a small portion of the overall storage space.
Accessing stored data usually involves contacting multiple nodes because even a
single data item may be spread over multiple nodes. A data item may undergo
complex transformations with error-detection codes or error-correction codes that
access multiple nodes, to protect the storage system against the loss or corruption of
some nodes. Such systems distribute data not only because of the limited capacity
of each node but also for increasing the fault-tolerance of the overall system and for
reducing the load on every individual node.

Conceptually, the storage system provides a shared memory abstraction that is
accessed through read and write operations, like the shared working space men-
tioned before. But since it uses distribution also for the purpose of enhancing the
overall resilience, it combines aspects of inherently distributed systems with aspects
of artificially distributed systems, which are discussed next.

1.2.2 Distribution as an Artifact

Often applications that are not inherently distributed also use sophisticated abstrac-
tions from distributed programming. This need sometimes appears as an artifact
of the engineering solution to satisfy some specific requirements such as fault
tolerance, load balancing, or fast sharing.

We illustrate this idea through state-machine replication, which is a powerful
way to achieve fault tolerance in distributed systems. Briefly, replication consists
in making a centralized service highly available by executing several copies of it
on different machines that are assumed to fail independently. This ensures the con-
tinuity of the service despite the failure of a subset of the machines. No specific
hardware is needed: fault tolerance through replication is software-based. In fact,
replication may also be used within an information system to improve the read acc-
ess performance to data by placing it close to the processes where it is likely to be
queried. For a service that is exposed to attacks over the Internet, for example, the
same approach also tolerates malicious intrusions that subvert a limited number of
the replicated nodes providing the service.

For replication to be effective, the different copies must be maintained in a con-
sistent state. If the states of the replicas may diverge arbitrarily, it does not make
sense to talk about replication. The illusion of one highly available service would
fall apart and be replaced by that of several distributed services, each possibly failing
independently. If replicas are deterministic, one of the simplest ways to guarantee
full consistency is to ensure that all replicas receive the same set of requests in the

1.3 The End-to-End Argument 7

same order. Typically, such guarantees are enforced by an abstraction called total-
order broadcast: the processes need to agree here on the sequence of messages they
deliver. Algorithms that implement such a primitive are nontrivial, and providing
the programmer with an abstraction that encapsulates these algorithms makes the
design of a replicated service easier. If the replicas are nondeterministic then ensur-
ing their consistency requires different ordering abstractions, as we will see later in
this book. The challenge in realizing these abstractions lies in tolerating the faults
that may affect the replicas, which may range from a simple process crash to being
under the control of a malicious adversary.

1.3 The End-to-End Argument

Distributed programming abstractions are useful but may sometimes be difficult
or expensive to implement. In some cases, no simple algorithm is able to provide
the desired abstraction and the algorithm that solves the problem can have a high
complexity, e.g., in terms of the number of interprocess communication steps and
messages. Therefore, depending on the system model, the network characteristics,
and the required quality of service, the overhead of the abstraction can range from
the negligible to the almost prohibitive.

Faced with performance constraints, the application designer may be driven to
mix the relevant logic of the abstraction with the application logic, in an attempt to
obtain an optimized integrated solution. The rationale is usually that such a solution
should perform better than a solution obtained by the modular approach, where the
abstraction is implemented as an independent service that can be accessed through
a well-defined interface. The approach can be further supported by a superficial
interpretation of the end-to-end argument: most complexity should be implemented
at the higher levels of the communication stack. This argument could be applied to
any form of (distributed) programming.

However, even if performance gains can be obtained by collapsing the application
and the underlying layers in some cases, such a monolithic approach has many dis-
advantages. Most importantly, it is prone to errors. Some of the algorithms that will
be presented in this book have a considerable amount of difficulty and exhibit subtle
dependencies among their internal elements. An apparently obvious “optimization”
may break the algorithm correctness. To quote Donald Knuth here:

“Premature optimization is the root of all evil.”

Even if the designer reaches the amount of expertise required to master the diffi-
cult task of embedding these algorithms in the application, there are several other
reasons to keep both implementations independent. The most compelling one is
that there is usually no single solution for a given distributed computing prob-
lem. This is particularly true because of the variety of distributed system models.
Instead, different solutions can usually be proposed and none of these solutions
may strictly be superior to the others: each may have its own advantages and dis-
advantages, performing better under different network or load conditions, making

8 1 Introduction

different trade-offs between network traffic and message latency, and so on. Relying
on a modular approach allows the most suitable implementation to be selected when
the application is deployed, or even allows choosing at runtime among different
implementations in response to changes in the environment.

Encapsulating tricky issues of distributed interactions by abstractions with well-
defined interfaces significantly helps us reason about the correctness of the
application, and port it from one system to the other. We strongly believe that in
many distributed applications, especially those that require many-to-many interac-
tion, building preliminary prototypes of the distributed application using several
abstraction layers can be very helpful.

Ultimately, one may indeed consider optimizing the performance of the final
release of a distributed application and using some integrated prototype that imple-
ments several abstractions in one monolithic piece of code. However, full under-
standing of each of the enclosed abstractions in isolation is fundamental to ensure
the correctness of the combined code.

1.4 Software Components

1.4.1 Composition Model

Notation. One of the biggest difficulties we had to face when thinking about
describing distributed algorithms was to find an adequate way to represent these
algorithms. When representing a centralized algorithm, one could decide to use a
programming language, either by choosing an existing popular one or by inventing
a new one with pedagogical purposes in mind.

Although there have indeed been several attempts to come up with distributed
programming languages, these attempts have resulted in rather complicated not-
ations that would not have been viable to describe general-purpose distributed
algorithms in a pedagogical way. Trying to invent a distributed programming lan-
guage was not an option. Even if we had the time to invent one successfully, at least
one book would have been required to present the language itself.

Therefore, we have opted to use pseudo code to describe our algorithms. The
pseudo code reflects a reactive computing model where components of the same
process communicate by exchanging events: an algorithm is described as a set of
event handlers. These react to incoming events and possibly trigger new events.
In fact, the pseudo code is very close to the actual way we programmed the algo-
rithms in our experimental framework. Basically, the algorithm description can be
seen as actual code, from which we removed all implementation-related details that
were more confusing than useful for understanding the algorithms. This approach
hopefully simplifies the task of those who will be interested in building running
prototypes from the descriptions found in this book.

A Simple Example. Abstractions are typically represented through an API. We
will informally discuss here a simple example API for a distributed programming
abstraction.

1.4 Software Components 9

Events

Events

Events

Component A

Component B

Figure 1.1: Composition model

Throughout the book, we shall describe APIs and algorithms using an asyn-
chronous event-based composition model. Every process hosts a set of software
components, called modules in our context. Each component is identified by a name,
and characterized by a set of properties. The component provides an interface in the
form of the events that the component accepts and produces in return. Distributed
programming abstractions are typically made of a collection of components, at least
one for every process, that are intended to satisfy some common properties.

Software Stacks. Components can be composed to build software stacks. At each
process, a component represents a specific layer in the stack. The application layer
is at the top of the stack, whereas the networking layer is usually at the bottom. The
layers of the distributed programming abstractions we will consider are typically in
the middle. Components within the same stack communicate through the exchange
of events, as illustrated in Fig. 1.1. A given abstraction is typically materialized by
a set of components, each running at a process.

According to this model, each component is constructed as a state-machine
whose transitions are triggered by the reception of events. Events may carry infor-
mation such as a data message, or group membership information, in one or more
attributes. Events are denoted by 〈 EventType | Attributes, . . . 〉. Often an event
with the same name is used by more than one component. For events defined for
component co, we, therefore, usually write:

〈 co, EventType | Attributes, . . . 〉.
Each event is processed through a dedicated handler by the process (i.e., by the

corresponding component). A handler is formulated in terms of a sequence of ins-
tructions introduced by upon event, which describes the event, followed by pseudo

10 1 Introduction

code with instructions to be executed. The processing of an event may result in new
events being created and triggering the same or different components. Every event
triggered by a component of the same process is eventually processed, if the process
is correct (unless the destination module explicitly filters the event; see the such that
clause ahead). Events from the same component are processed in the order in which
they were triggered. This first-in-first-out (FIFO) order is only enforced on events
exchanged among local components in a given stack. The messages among different
processes may also need to be ordered according to some criteria, using mechanisms
orthogonal to this one. We shall address this interprocess communication issue later
in this book.

We assume that every process executes the code triggered by events in a mutually
exclusive way. This means that the same process does not handle two events concur-
rently. Once the handling of an event is terminated, the process keeps on checking
if any other event is triggered. This periodic checking is assumed to be fair, and is
achieved in an implicit way: it is not visible in the pseudo code we describe.

The pseudo code of a sample component co1 that consists of two event handlers
looks like this:

upon event 〈 co1, Event1 | att11, att21, . . . 〉 do
do something;
trigger 〈 co2, Event2 | att12, att22, . . . 〉; // send some event

upon event 〈 co1, Event3 | att13, att23, . . . 〉 do
do something else;
trigger 〈 co2, Event4 | att14, att24, . . . 〉; // send some other event

Such a decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance, new
processes may join or leave the distributed system at any moment and a process
must be ready to handle both membership changes and reception of messages at
any time. Hence, the order in which concurrent events will be observed cannot be
defined a priori; this is precisely what we capture through our component model.

For writing complex algorithms, we sometimes use handlers that are triggered
when some condition in the implementation becomes true, but do not respond to an
external event originating from another module. The condition for an internal event
is usually defined on local variables maintained by the algorithm. Such a handler
consists of an upon statement followed by a condition; in a sample component co,
it might look like this:

upon condition do // an internal event
do something;

1.4 Software Components 11

An upon event statement triggered by an event from another module can also be
qualified with a condition on local variables. This handler executes its instructions
only when the external event has been triggered and the condition holds. Such a
conditional event handler of a component co has the following form:

upon event 〈 co, Event | att11, att21, . . . 〉 such that condition do
do something;

An algorithm that uses conditional event handlers relies on the run-time system to
buffer external events until the condition on internal variables becomes satisfied. We
use this convention because it simplifies the presentation of many algorithms, but
the approach should not be taken as a recipe for actually implementing a practical
system: such a run-time system might need to maintain unbounded buffers. But,
it is not difficult to avoid conditional event handlers in an implementation. Every
conditional event handler can be transformed into a combination of a (pure) event
handler and two handlers for internal events in three steps: (1) introduce a local
variable for storing the external event when it occurs and install an event handler
triggered by the external event without any condition; (2) introduce a local variable
for storing that the condition on the internal variables has become true; and (3) add
a local event handler that responds to the internal event denoting that the external
event has occurred and the internal condition has been satisfied.

1.4.2 Programming Interface

The APIs of our components include two types of events, requests and indications;
their detailed semantics depend on the component at which they occur:

• Request events are used by a component to invoke a service at another component
or to signal a condition to another component. For instance, the application layer
might trigger a request event at a component in charge of broadcasting a message
with some reliability guarantee to the processes in a group, or propose a value to
be decided on by the group. A request may also carry signaling information, for
example, when the component has previously output some data to the application
layer and the request confirms that the application layer has processed the data.
From the perspective of the component handling the event, request events are
inputs.

• Indication events are used by a component to deliver information or to signal
a condition to another component. Considering the broadcast example given
earlier, at every process that is a destination of the message, the component in
charge of implementing the actual broadcast primitive will typically perform
some processing to ensure the corresponding reliability guarantee, and then use
an indication event to deliver the message to the application layer. Similarly, the
decision on a value will be indicated with such an event. An indication event may

12 1 Introduction

Layer n

Layer n-1

Layer n+1

Indication

IndicationRequest

Request

(send)

(invoke)

(deliver)

(receive)

Figure 1.2: Layering

also take the role of a confirmation, for example, when the component respon-
sible for broadcasting indicates to the application layer that the message was
indeed broadcast. From the perspective of the component triggering the event,
indication events are outputs.

A typical execution at a given layer consists of the following sequence of actions,
as illustrated in Fig. 1.2. We consider here a broadcast abstraction that ensures a
certain reliability condition, that is, a primitive where the processes need to agree
on whether or not to deliver a message broadcast by some process.

1. The procedure for sending a broadcast message is initiated by the reception of a
request event from the layer above.

2. To ensure the properties of the broadcast abstraction, the layer will send one or
more messages to its remote peers by invoking the services of the layer below
(using request events of the lower layer).

3. Messages sent by the peer layers are also received using the services of the
underlying layer (through indication events of the lower layer).

4. When a message is received, it may have to be stored temporarily until the ade-
quate reliability property is satisfied, before being delivered to the layer above
using an indication event.

Requests and indications do not always carry payload data; they may also indicate
conditions for synchronizing two layers with each other. For example, the broadcast
abstraction may confirm that its service has been concluded reliably by triggering
a specialized indication event for the layer above. In this way, a broadcast imple-
mentation can require that the application layer waits until a broadcast request is
confirmed before triggering the next broadcast request. An analogous mechanism
can be used to synchronize the delivery of broadcast messages to the application

1.4 Software Components 13

layer above. When the application layer takes a long time to process a message, for
example, the application may trigger a specialized request event for the broadcast
abstraction to signal that the processing has completed and the application is now
ready for the next broadcast message to be delivered.

1.4.3 Modules

Not surprisingly, most of the modules described in this book perform some interac-
tion with the corresponding modules on peer processes; after all, this is a book about
distributed computing. It is, however, also possible to have modules that perform
only local actions. As there may exist multiple copies of a module in the runtime
system of one process concurrently, every instance of a module is identified by a
corresponding identifier.

To illustrate the notion of modules, we describe a simple abstract job handler
module. An application may submit a job to the handler abstraction and the job han-
dler confirms that it has taken the responsibility for processing the job. Module 1.1
describes its interface. The job handler confirms every submitted job. However, the
interface explicitly leaves open whether or not the job has been processed at the time
when the confirmation arrives.

Module 1.1: Interface and properties of a job handler
Module:

Name: JobHandler, instance jh.

Events:

Request: 〈 jh, Submit | job 〉: Requests a job to be processed.

Indication:〈 jh, Confirm | job 〉: Confirms that the given job has been (or will be)
processed.

Properties:

JH1: Guaranteed response: Every submitted job is eventually confirmed.

Algorithm 1.1 is a straightforward job-handler implementation, which confirms
every job only after it has been processed. This implementation is synchronous
because the application that submits a job learns when the job has been processed.

A second implementation of the job-handler abstraction is given in Algorithm 1.2.
This implementation is asynchronous and confirms every submitted job immedi-
ately; it saves the job in an unbounded buffer and processes buffered jobs at its own
speed in the background.

Algorithm 1.2 illustrates two special elements of our notation for algorithms:
initialization events and internal events. To make the initialization of a component
explicit, we assume that a special 〈 Init 〉 event is generated automatically by the

14 1 Introduction

Algorithm 1.1: Synchronous Job Handler

Implements:
JobHandler, instance jh.

upon event 〈 jh, Submit | job 〉 do
process(job);
trigger 〈 jh, Confirm | job 〉;

runtime system when a component is created. This event may initialize some data
structures used by the component and perform some setup actions. For instance, in
the asynchronous job handler example, it is used to create an empty buffer. The last
upon statement of Algorithm 1.2 represents an event handler that responds to an
internal event, as introduced in the previous section.

Algorithm 1.2: Asynchronous Job Handler

Implements:
JobHandler, instance jh.

upon event 〈 jh, Init 〉 do
buffer := ∅;

upon event 〈 jh, Submit | job 〉 do
buffer := buffer ∪ {job};
trigger 〈 jh, Confirm | job 〉;

upon buffer �= ∅ do
job := selectjob(buffer);
process(job);
buffer := buffer \ {job};

To demonstrate how modules are composed, we use the job-handler module and
extend it by a module that adds a layer on top; the layer may apply an arbitrary
transformation to a job before invoking the job handler on it. The composition of
the two modules is illustrated in Fig. 1.3.

The interface of the job transformation layer adds an 〈 Error 〉 event, which
occurs when the transformation fails, but not otherwise; the interface shown in
Module 1.2.

An example of a transformation is given in Algorithm 1.3. The layer implements
a bounded-length queue of jobs waiting to be processed. The jobs are stored in
an array buffer of length M , which is initialized to the M -vector of ⊥-values,
denoted by [⊥]M . Two variables top and bottom point into buffer such that the
next arriving job is stored at index top and the next job to be removed is at index
bottom. To keep the code simple, these variables are unbounded integers and they
are reduced modulo M to access the array. The algorithm interacts synchronously

1.4 Software Components 15

TransformationHandler
(th)

<th,Submit >

<jh,Submit > <jh,Confirm >

<th,Confirm >
<th,Error >

JobHandler
(jh)

Figure 1.3: A stack of job-transformation and job-handler modules

Module 1.2: Interface and properties of a job transformation and processing abstraction
Module:

Name: TransformationHandler, instance th.

Events:

Request: 〈 th, Submit | job 〉: Submits a job for transformation and for processing.

Indication:〈 th, Confirm | job 〉: Confirms that the given job has been (or will be)
transformed and processed.

Indication:〈 th, Error | job 〉: Indicates that the transformation of the given job
failed.

Properties:

TH1: Guaranteed response: Every submitted job is eventually confirmed or its
transformation fails.

TH2: Soundness: A submitted job whose transformation fails is not processed.

with the underlying job handler and waits before submitting the next job until the
previously submitted job has been confirmed. When Algorithm 1.3 is combined with
the synchronous job handler (Algorithm 1.1), the run-time system does not need any
unbounded buffers.

Modules are usually instantiated statically; this happens only once and occurs
implicitly when the implementation of another component includes the module
among the list of its used modules. There is one static instance of every module,
which may be shared by many modules. A protocol module can also be instantiated

16 1 Introduction

Algorithm 1.3: Job-Transformation by Buffering

Implements:
TransformationHandler, instance th.

Uses:
JobHandler, instance jh.

upon event 〈 th, Init 〉 do
top := 1;
bottom := 1;
handling := FALSE;
buffer := [⊥]M ;

upon event 〈 th, Submit | job 〉 do
if bottom + M = top then

trigger 〈 th, Error | job 〉;
else

buffer[top mod M + 1] := job;
top := top + 1;
trigger 〈 th, Confirm | job 〉;

upon bottom < top ∧ handling = FALSE do
job := buffer[bottom mod M + 1];
bottom := bottom + 1;
handling := TRUE;
trigger 〈 jh, Submit | job 〉;

upon event 〈 jh, Confirm | job 〉 do
handling := FALSE;

dynamically with an a-priori unknown number of instances. The initializations of
dynamic instances are mentioned explicitly in the code of the algorithm that calls
them.

All module abstractions in this book are presented as isolated instances, in order
to keep their descriptions simple. Every instance has an identifier. When a higher-
level algorithm invokes multiple instances of a lower-level abstraction, we ensure
that every instance is named by a unique identifier. Any application that uses the
abstractions should respect the same rule.

1.5 Classes of Algorithms

As noted earlier, in order to provide a particular service, a layer at a given process
may need to execute one or more rounds of message exchange with the peer layers
at remote processes. The behavior of each peer, characterized by the set of messages
that it is capable of producing and accepting, the format of each of these messages,
and the legal sequences of messages, is sometimes called a protocol. The purpose of
the protocol is to ensure the execution of some distributed algorithm, the concurrent

1.6 Chapter Notes 17

execution of different sequences of steps that ensure the provision of the desired
service. This book covers several of these distributed algorithms.

To give the reader an insight into how the failure assumptions, the environment,
the system parameters, and other design choices affect the algorithm design, this
book includes several different classes of algorithmic solutions to implement our
distributed programming abstractions, namely:

1. fail-stop algorithms, designed under the assumption that processes can fail by
crashing but the crashes can be reliably detected by all the other processes;

2. fail-silent algorithms, where process crashes can never be reliably detected;
3. fail-noisy algorithms, where processes can fail by crashing and the crashes can

be detected, but not always in an accurate manner (accuracy is only eventual);
4. fail-recovery algorithms, where processes can crash and later recover and still

participate in the algorithm;
5. fail-arbitrary algorithms, where processes can deviate arbitrarily from the pro-

tocol specification and act in malicious, adversarial ways; and
6. randomized algorithms, where in addition to the classes presented so far, pro-

cesses may make probabilistic choices by using a source of randomness.

These classes are not disjoint, and it is important to notice that we do not give
a solution from each class for every abstraction. First, there are cases where it is
known that some abstraction cannot be implemented by an algorithm of a given
class. For example, some of the coordination abstractions we consider in Chap. 6 do
not have fail-noisy (and hence fail-silent) solutions and it is not clear how to devise
meaningful randomized solutions to such abstractions. In other cases, such solutions
may exist but devising them is still an active area of research.

Reasoning about distributed algorithms in general, and in particular about algo-
rithms that implement distributed programming abstractions, first involves defining
a clear model of the distributed system where these algorithms are supposed to
operate. Put differently, we need to figure out what basic abstractions the processes
assume in order to build more sophisticated ones. The basic abstractions we con-
sider capture the allowable behavior of the processes and their communication links
in the distributed system. Before delving into concrete algorithms to build sophisti-
cated distributed programming abstractions, we, thus, need to understand such basic
abstractions. This will be the topic of the next chapter.

1.6 Chapter Notes

• The idea of using multiple, replicated processes for tolerating faults of individual
processes links together most algorithms presented in this book. This paradigm
can be traced back to the work on the Software-Implemented Fault Tolerance
(SIFT) project in 1978, which addressed the challenging problem of building a
fault-tolerant computer for aircraft control (Wensley et al. 1978).

18 1 Introduction

• The atomic commit problem was posed in the context of distributed databases
by Gray (1978). Later Skeen (1981) introduced a variant of the problem that
ensures also liveness. We describe the nonblocking atomic commit problem in
Chap. 6.

• The end-to-end argument was developed by Saltzer, Reed, and Clark (1984).
• State-machine replication and its relation total-order broadcast are described in a

survey of Schneider (1990). Chapter 6 treats these two topics in detail.

2. Basic Abstractions

These are my principles. If you don’t like them, I have others.
(Groucho Marx)

Applications that are deployed in practical distributed systems usually execute on a
myriad of different machines and communication infrastructures. Physical machines
differ in the number of processors, type of processors, amount and speed of both
volatile and persistent memory, and so on. Communication infrastructures differ in
parameters such as latency, throughput, reliability, etc. On top of these machines and
infrastructures, a huge variety of software components are sometimes needed to sup-
port one application: operating systems, file systems, middleware, communication
protocols, with each component having its own specific features.

One might consider implementing distributed services that are tailored to specific
combinations of the elements listed earlier. Such implementations would depend on
one type of machine, one form of communication, one operating system, and so
on. However, in this book, we are interested in abstractions and algorithms that are
relevant for a wide range of distributed environments. In order to achieve this goal
we need to capture the fundamental characteristics of various distributed systems in
some basic abstractions, on top of which we can later define other more elaborate,
and generic, distributed programming abstractions.

This chapter presents the basic abstractions we use to model a distributed sys-
tem composed of active entities that perform computations and communicate by
exchanging messages.

Two kinds of abstractions will be of primary importance: those representing pro-
cesses and those representing communication links. Not surprisingly, it does not
seem to be possible to model the huge diversity of physical networks and operational
conditions with a single process abstraction and a single link abstraction. Therefore,
we will define different instances for each kind of basic abstraction. For instance, we
will distinguish process abstractions according to the types of faults that they may
exhibit. Besides our process and link abstractions, we will also introduce a third

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 2,
c© Springer-Verlag Berlin Heidelberg 2011

19

20 2 Basic Abstractions

failure-detector abstraction, as a convenient way to capture reasonable assumptions
about the timing behavior of processes and links.

Later in the chapter we will identify relevant combinations of our three categories
of abstractions. Such a combination is what we call a distributed-system model.

This chapter also contains our first module descriptions, used to specify our basic
abstractions, as well as our first algorithms, used to implement these abstractions.
The specifications and the algorithms are rather simple and should help illus-
trate our notation, before proceeding in subsequent chapters to more sophisticated
specifications and algorithms.

2.1 Distributed Computation

2.1.1 Processes and Messages

We abstract the units that are able to perform computations in a distributed sys-
tem through the notion of a process. We consider that the system is composed of
N different processes, named p, q, r, s, and so on. The set of processes in the
system is denoted by Π . Unless stated otherwise, this set is static and does not
change, and every process knows the identities of all processes. Sometimes, a func-
tion rank : Π → {1, . . . , N} is used to associate every process with a unique index
between 1 and N . In the description of an algorithm, the special process name self
denotes the name of the process that executes the code. Typically, we will assume
that all processes of the system run the same local algorithm. The sum of these
copies constitutes the actual distributed algorithm.

We do not assume any particular mapping of our abstract notion of process to
the actual processors or threads of a specific computer machine or operating sys-
tem. The processes communicate by exchanging messages and the messages are
uniquely identified, say, by their original sender process using a sequence number
or a local clock, together with the process identifier. In other words, we assume
that all messages that are ever exchanged by some distributed algorithm are unique.
Messages are exchanged by the processes through communication links. We will
capture the properties of the links that connect the processes through specific link
abstractions, which we will discuss later.

2.1.2 Automata and Steps

A distributed algorithm consists of a distributed collection of automata, one per
process. The automaton at a process regulates the way the process executes its com-
putation steps, i.e., how it reacts to a message. Every process is implemented by
the same automaton, as illustrated in Fig. 2.1; they interact through some means of
communication that will be introduced later. The execution of a distributed algo-
rithm is represented by a sequence of steps executed by the processes. The elements
of the sequences are the steps executed by the processes involved in the algorithm.
A partial execution of the algorithm is represented by a finite sequence of steps, an
infinite execution by an infinite sequence of steps.

2.1 Distributed Computation 21

Communication abstraction

Processes

p q r z

Figure 2.1: A distributed algorithm consisting of processes that are implemented by
identical automata

It is convenient for presentation simplicity to assume the existence of a global
clock, outside the control of the processes. This clock provides a global and linear
notion of time that regulates the execution of the algorithms. The steps of the pro-
cesses are executed according to ticks of the global clock: one step per clock tick.
Even if two steps are executed at the same physical instant, we view them as if they
were executed at two different times of our global clock. A correct process executes
an infinite number of steps of its automaton, i.e., every such process has an infinite
share of time units (we come back to this notion in the next section) and follows
the specified algorithm. In a sense, there is some entity, sometimes called a global
scheduler, that assigns time units to processes, though the very notion of time is
outside the control of the processes.

A process step consists of receiving (sometimes we also say delivering) a mes-
sage from another process (global event), executing a local computation (local
event), and sending a message to some process (global event) (Fig. 2.2). The
execution of the local computation and the sending of a message is determined by
the process automaton, i.e., by the local algorithm. Local events are typically those
exchanged between modules of the same process at different layers.

Sometimes a process has no message to receive or send, but has some local com-
putation to perform; this is captured simply by assuming that messages can be nil,
in the sense that the process receives or sends a special nil message. Of course, a
process might not have any local computation to perform either, in which case it
simply does not touch any of its local variables. In this case, the local computation
is also nil.

It is important that the interaction between the components of one process is
viewed as local computation and not as communication, although they look syntac-
tically the same. When an event is exchanged between two modules of the same
process, the algorithm performs a computation step that is local. In contrast, a com-
munication step of the algorithm occurs when a process sends a message to another
process, and the latter receives this message, through events occuring at different
processes. The process is the unit of communication, just like it is the unit of failure,
as we will discuss. As the transmission delay of a network is typically much larger
than the local computation delay, the number of communication steps of an algo-
rithm has a significant impact on the latency and the performance of a distributed

22 2 Basic Abstractions

Process

Modules of the process
internal computation

(receive)

incoming
message

outgoing
message

(send)

Figure 2.2: Step of a process

algorithm. Needless to say, the number of computation steps may also affect the per-
formance of the algorithm, especially when computationally expensive operations
are involved, such as cryptographic operations.

An important parameter of the process abstraction is the restriction imposed on
the speed at which local steps are performed and messages are exchanged. We will
come back to this aspect when discussing timing assumptions later in this chapter.

Unless specified otherwise, we will consider deterministic algorithms. That is,
for every step performed by any given process, the local computation executed by
the process, the local state after the computation, and the message sent by this pro-
cess are uniquely determined by the message received by the process and its local
state prior to executing the step.

In specific situations, we will also discuss randomized (or probabilistic) algo-
rithms, where every process may use a local random source. The output of the
random source determines the choice of the local computation to perform or the
next message to send, according to a probability distribution over the set of possible
values output by the source.

2.1.3 Safety and Liveness

When we devise a distributed algorithm to implement a distributed programming
abstraction, we seek to satisfy the properties of the abstraction in all possible exe-
cutions of the algorithm, covering all possible sequences of steps executed by the
processes according to the algorithm. The scheduling of these steps remains outside
the control of the processes and depends on the global scheduler. The properties
of the abstraction to be implemented needs to be satisfied for a large set of pos-
sible interleavings of these steps. These properties usually fall into two classes:
safety and liveness. Having in mind the distinction between these classes usually
helps to understand the two complementary faces of the abstraction and to devise an
adequate algorithm for implementing it.

Safety. Basically, a safety property is a property of a distributed algorithm that can
be violated at some time t and never be satisfied again after that time. Roughly

2.1 Distributed Computation 23

speaking, safety properties state that the algorithm should not do anything wrong.
To illustrate this, consider a property of perfect links (which we will discuss in
more detail later in this chapter) stating that no process should receive a message
unless this message was indeed sent. In other words, communication links should
not invent messages out of thin air. To state that this property is violated in some
execution of an algorithm, we need to determine a time t at which some process
receives a message that was never sent. This observation helps devise a correctness
argument (by contradiction) for an algorithm presumably satisfying the property.

More precisely, a safety property is a property such that, whenever it is violated in
some execution E of an algorithm, there is a partial execution E′ of E such that the
property will be violated in any extension of E′. This means that safety properties
prevent a set of unwanted execution prefixes from occurring.

Of course, safety properties are not enough. Sometimes, a good way of prevent-
ing bad things from happening consists in simply doing nothing. In many countries,
some public administrations seem to understand this rule quite well and, hence, have
an easy time ensuring safety.

Liveness. In order to define a useful abstraction, it is therefore necessary to add
some liveness properties. They ensure that eventually something good happens. For
instance, to define a meaningful notion of perfect links, we require that if a cor-
rect process sends a message to a correct destination process, then the destination
process should eventually deliver the message (besides the safety property which
stipulates that messages should not be invented out of thin air and only be delivered
if priorly sent). To state that such a liveness property is violated in a given execu-
tion, we need to show that there is an infinite scheduling of the steps of the algorithm
where the message is never delivered.

More precisely, a liveness property is a property of a distributed system execution
such that, for any time t, there is some hope that the property can be satisfied at some
time t′ ≥ t. It is a property for which, quoting Cicero, “while there is life there is
hope.”

Combining them. The challenge is to guarantee both liveness and safety. (The
difficulty is not in talking, or not lying, but in telling the truth.) Indeed, useful
distributed services are supposed to provide both liveness and safety properties.
Formulating an abstraction with only one kind of property is usually a sign for a
flawed specification.

Consider, for instance, the traditional interprocess communication service of a
reliable, ordered data stream: it ensures that messages exchanged between two pro-
cesses are neither lost nor duplicated, and are received in the order in which they
were sent. As we pointed out, requiring that messages are not lost is a liveness prop-
erty. Requiring that messages are not duplicated and that they are received in the
order in which they were sent are safety properties.

As another example, the soundness property of the job handler abstraction in
Module 1.2 from Sect. 1.4 represents a safety property. Moreover, Modules 1.1 and
1.2 in the same section both contain a guaranteed response property, which is a
liveness property.

24 2 Basic Abstractions

Crash

Omission

Crash with Recovery

Eavesdropping

Arbitrary

Figure 2.3: Types of process failures

It is usually better, for modularity purposes, to separate the safety and liveness
properties of an abstraction specification into disjoint classes. However, we will
sometimes for the sake of conciseness consider properties that are neither pure
liveness nor pure safety properties, but rather a union of both.

2.2 Abstracting Processes

2.2.1 Process Failures

A process executes the distributed algorithm assigned to it through the set of com-
ponents implementing the algorithm within that process. A failure occurs whenever
the process does not behave according to the algorithm. Our unit of failure is the
process. When the process fails, all its components fail at the same time.

Process abstractions differ according to the nature of the faults that cause them
to fail. Possible failures range from a crash, where a process simply stops to execute
any steps, over an omission to take some steps, a crash with subsequent recovery,
to arbitrary and even adversarial behavior. We discuss these kinds of failures in the
subsequent sections. Figure 2.3 summarizes the types of failures.

2.2.2 Crashes

The simplest way of failing for a process is when the process stops executing steps.
The process executes its algorithm correctly, including the exchange of messages
with other processes, until some time t, after which it stops executing any local
computation and does not send any message to other processes. In other words, the
process crashes at time t and never recovers after that time. We call this a crash fault
(Fig. 2.3), and talk about a crash-stop process abstraction. With this abstraction, a

2.2 Abstracting Processes 25

process is said to be faulty if it crashes at some time during the execution. It is said
to be correct if it never crashes and executes an infinite number of steps. We discuss
two ramifications of the crash-stop abstraction.

It is usual to devise algorithms that implement a given distributed programming
abstraction, say, some form of agreement, provided that only a limited number f
of processes are faulty, which might be a minority of the processes or all processes
up to one. Assuming a bound on the number of faulty processes in the form of a
parameter f means that any number of processes up to f may fail, but not that f
processes actually exhibit such faults in every execution. The relation between the
number f of potentially faulty processes and the total number N of processes in the
system is generally called resilience.

It is important to understand here that such an assumption does not mean that
the hardware underlying these processes is supposed to operate correctly forever.
In fact, the assumption means that in every execution of an algorithm that relies
on that abstraction, it is very unlikely that more than f of processes crash during
the lifetime of that very execution. An engineer picking such an algorithm for a
given application should be confident that the chosen elements underlying the soft-
ware and hardware architecture make that assumption plausible. In general, it is
also a good practice, when devising algorithms that implement a given distributed
abstraction under certain assumptions, to determine precisely which properties of
the abstraction are preserved and which can be violated when a specific subset of
the assumptions are not satisfied, e.g., when more than f processes crash.

By considering the crash-stop process abstraction, one assumes that a process
executes its algorithm correctly, but may crash at some time; after a process has
crashed, it never recovers. That is, once it has crashed, the process does not ever
perform any step again. Obviously, in practice, processes that crash can be restarted
and hence may recover. In fact, it is usually desirable that they do. But with the
crash-stop abstraction, a recovered process is no longer part of the system.

It is also important to notice that, in practice, the crash-stop process abstraction
neither precludes the possibility of recovery nor does it mean that recovery should
be prevented for a given algorithm (assuming a crash-stop process abstraction) to
behave correctly. It simply means that the algorithm should not rely on some of
the processes to recover in order to pursue its execution. These processes might not
recover, or might recover only after a long period encompassing the crash detection
and then the restarting delay. In some sense, an algorithm that is not relying on
crashed processes to recover would typically be faster than an algorithm relying on
some of the processes to recover (we will discuss this issue in the next section).
Nothing prevents recovered processes from getting informed about the outcome of
the computation, however, and from participating again in subsequent instances of
the distributed algorithm.

Unless explicitly stated otherwise, we will assume the crash-stop process
abstraction throughout this book.

26 2 Basic Abstractions

2.2.3 Omissions

A more general kind of fault is an omission fault (Fig. 2.3). An omission fault occurs
when a process does not send (or receive) a message that it is supposed to send (or
receive) according to its algorithm. In general, omission faults are due to buffer
overflows or network congestion that cause messages to be lost. With an omission,
the process deviates from the algorithm assigned to it by dropping some messages
that should have been exchanged with other processes.

Omission faults are not discussed further in this book, except through the related
notion of crash-recovery faults, introduced next.

2.2.4 Crashes with Recoveries

Sometimes, the assumption that particular processes never crash is simply not plau-
sible for certain distributed environments. For instance, assuming that a majority of
the processes do not crash might simply be too strong, even if this should not happen
only during the period until an algorithm execution terminates.

An interesting alternative in this case is the crash-recovery process abstraction;
we also talk about a crash-recovery fault (Fig. 2.3). In this case, we say that a pro-
cess is faulty if either the process crashes and never recovers or the process keeps
infinitely often crashing and recovering. Otherwise, the process is said to be correct.
Basically, such a process is eventually always up and running (as far as the lifetime
of the algorithm execution is concerned). A process that crashes and recovers a finite
number of times is correct in this model.

According to the crash-recovery abstraction, a process can crash and stop to send
messages, but might recover later. This can be viewed as an omission fault, with
one exception, however: a process might suffer amnesia when it crashes and lose
its internal state. This significantly complicates the design of algorithms because,
upon recovery, the process might send new messages that contradict messages that
the process might have sent prior to the crash. To cope with this issue, we some-
times assume that every process has, in addition to its regular volatile memory, a
stable storage (also called a log), which can be accessed through store and retrieve
operations.

Upon recovery, we assume that a process is aware that it has crashed and
recovered. In particular, a specific 〈 Recovery 〉 event is assumed to be automat-
ically generated by the runtime environment whenever the process recovers, in a
similar manner to the 〈 Init 〉 event that is generated whenever a process starts
executing some algorithm. The processing of the 〈 Recovery 〉 event should, for
instance, retrieve the relevant state of the process from stable storage before the
processing of other events is resumed. The process might, however, have lost all the
remaining data that was preserved in volatile memory. This data should thus be prop-
erly reinitialized. The 〈 Init 〉 event is considered atomic with respect to recovery.
More precisely, if a process crashes in the middle of its initialization procedure and
recovers, say, without having finished the procedure properly, the process resumes
again with processing the initialization procedure and then continues to process the
〈 Recovery 〉 event.

2.2 Abstracting Processes 27

In some sense, a crash-recovery kind of failure matches an omission fault if we
consider that every process stores every update to any of its variables in stable stor-
age. This is not very practical because access to stable storage is usually expensive
(as there is a significant delay in accessing it). Therefore, a crucial issue in devising
algorithms with the crash-recovery abstraction is to minimize the access to stable
storage.

One way to alleviate the need for accessing any form of stable storage is to
assume that some of the processes never crash (during the lifetime of an algorithm
execution). This might look contradictory with the actual motivation for introducing
the crash-recovery process abstraction in the first place. In fact, there is no con-
tradiction, as we explain later. As discussed earlier, with crash-stop faults, some
distributed-programming abstractions can be implemented only under the assump-
tion that a certain number of processes never crash, say, a majority of the processes
participating in the computation, e.g., four out of seven processes. This assumption
might be considered unrealistic in certain environments. Instead, one might con-
sider it more reasonable to assume that at least two processes do not crash during
the execution of an algorithm. (The rest of the processes would indeed crash and
recover.) As we will discuss later in the book, such an assumption makes it some-
times possible to devise algorithms assuming the crash-recovery process abstraction
without any access to a stable storage. In fact, the processes that do not crash imple-
ment a virtual stable storage abstraction, and the algorithm can exploit this without
knowing in advance which of the processes will not crash in a given execution.

At first glance, one might believe that the crash-stop abstraction can also cap-
ture situations where processes crash and recover, by simply having the processes
change their identities upon recovery. That is, a process that recovers after a crash,
would behave with respect to the other processes as if it were a different process
that was simply not performing any action. This could easily be implemented by
a recovery procedure which initializes the process state as if it just started its exe-
cution and also changes the identity of the process. Of course, this process should
be updated with any information it might have missed from others, as if it did not
receive that information yet. Unfortunately, this view is misleading, as we explain
later. Again, consider an algorithm devised using the crash-stop process abstraction,
and assuming that a majority of the processes never crash, say at least four out of
a total of seven processes composing the system. Consider, furthermore, a scenario
where four processes do indeed crash, and one process recovers. Pretending that
the latter process is a different one (upon recovery) would mean that the system
is actually composed of eight processes, five of which should not crash. The same
reasoning can then be made for this larger number of processes. However, a funda-
mental assumption that we build upon is that the set of processes involved in any
given computation is static, and the processes know of each other in advance.

A tricky issue with the crash-recovery process abstraction is the interface
between software modules. Assume that some module of a process, involved in
the implementation of some specific distributed abstraction, delivers some message
or decision to the upper layer (say, the application layer), and subsequently the pro-
cess hosting the module crashes. Upon recovery, the module cannot determine if

28 2 Basic Abstractions

the upper layer (i.e., the application) has processed the message or decision before
crashing or not. There are at least two ways to deal with this issue:

1. One solution is to change the interface between modules. Instead of delivering a
message or a decision to the upper layer (e.g., the application layer), the module
may instead store the message or the decision in stable storage, which can also
be accessed by the upper layer. The upper layer should subsequently access the
stable storage and consume the delivered information.

2. A different approach consists in having the module periodically deliver a mes-
sage or a decision to the upper layer until the latter explicitly asks for the stopping
of the delivery. That is, the distributed programming abstraction implemented
by the module is responsible for making sure the application will make use of
the delivered information. Of course, the application layer needs to filter out
duplicates in this case.

For the algorithms in this book that address crash-recovery faults, we generally
adopt the first solution (see the logged perfect links abstraction in Sect. 2.4.5 for
an example).

2.2.5 Eavesdropping Faults

When a distributed system operates in an untrusted environment, some of its compo-
nents may become exposed to an adversary or even fall under its control. A relatively
benign form of adversarial action occurs when a process leaks information obtained
in an algorithm to an outside entity. The outsider may eavesdrop on multiple pro-
cesses in this way and correlate all leaked pieces of information with each other.
Faults of this kind threaten the confidentiality of the data handled by an algorithm,
such as the privacy of messages that are disseminated by a broadcast algorithm or
the secrecy of data written to a storage abstraction. We call this an eavesdropping
fault of a process.

As the example of attacks mounted by remote adversaries against machines
connected to the Internet shows, such eavesdropping faults occur in practice. An
eavesdropping fault cannot be detected by observing how an affected process
behaves in an algorithm, as the process continues to perform all actions according to
its instructions. The adversary merely reads the internal state of all faulty processes.
In practice, however, the eavesdropper must run some code on the physical machine
that hosts the faulty process, in order to mount the attack, and the presence of such
code can be detected and will raise suspicion. Eavesdropping faults typically affect
communication links before they affect the processes; hence, one usually assumes
that if any process is susceptible to eavesdropping faults then all communication
links are also affected by eavesdropping and leak all messages to the adversary.

Eavesdropping can be prevented by cryptography, in particular by encrypting
communication messages and stored data. Data encryption is generally orthogonal
to the problems considered in this book, and confidentiality plays no significant role
in implementing our distributed programming abstractions. Therefore, we will not
consider eavesdropping faults any further here, although confidentiality and privacy
are important for many secure distributed programs in practice.

2.2 Abstracting Processes 29

2.2.6 Arbitrary Faults

A process is said to fail in an arbitrary manner if it may deviate in any conceiv-
able way from the algorithm assigned to it. The arbitrary-fault behavior is the most
general one. When we use it, we make no assumptions on the behavior of faulty
processes, which are allowed any kind of output and, therefore, can send any kind
of message. Such failures are also called Byzantine for historical reasons (see the
notes at the end of this chapter) or malicious failures. The terms “arbitrary faulty”
and “Byzantine” are synonyms throughout this book. We model a process that may
behave arbitrarily as an arbitrary-fault process abstraction or a Byzantine process
abstraction.

Not surprisingly, arbitrary faults are the most expensive to tolerate, but this is
the only acceptable option when unknown or unpredictable faults may occur. One
also considers them when the system is vulnerable to attacks, where some of its
processes may become controlled by malicious users that deliberately try to prevent
correct system operation.

Similar to the case of eavesdropping faults, one can simplify reasoning about
arbitrary faults by assuming the existence of one determined adversary that coor-
dinates the actions of all faulty processes. Whenever we consider algorithms with
Byzantine processes, we also allow this adversary to access the messages exchanged
over any communication link, to read messages, modify them, and insert messages
of its own. In practice, a remote attacker may take over control of the physical
machine that hosts the faulty process and not only read the state of a process but
also completely determine the process’ behavior.

An arbitrary fault is not necessarily intentional and malicious: it can simply be
caused by a bug in the implementation, the programming language, or the compiler.
This bug can thus cause the process to deviate from the algorithm it was supposed
to execute. Faults that are triggered by benign bugs can sometimes be detected,
and their effects eliminated, by the process itself or by other processes, through
double-checking of results and added redundancy. As arbitrary but nonmalicious
events of this kind often appear to be random and follow a uniform distribution
over all errors, verification of the data can use simple verification methods (such
as cyclic redundancy checks). Against a determined adversary, these methods are
completely ineffective, however. On the other hand, a system that protects against
arbitrary faults with a malicious intention also defends against nonmalicious faults.

Throughout this book, we consider only arbitrary faults of intentional and mali-
cious nature. This gives the algorithms where processes are subject to arbitrary faults
a robust notion of protection, because the given guarantees do not depend on the
nature of and the intention behind an arbitrary fault. The added protection usually
relies on cryptographic primitives, whose security properties may not be broken
even by a determined adversary. Cryptographic abstractions are introduced in the
next section.

30 2 Basic Abstractions

2.3 Cryptographic Abstractions

Algorithms that operate in untrusted environments, where messages may be exposed
to a malicious adversary, rely on cryptographic methods for their protection. The
basic cryptographic primitives considered here are: hash functions, MACs, and
digital signatures.

The physical implementations of the cryptographic abstractions usually rely on
some keys being present at all processes. Distributing the right keys to all partici-
pants in a distributed computation is the task of key management, which is outside
the scope of this book (see also Sect. 2.7.2).

2.3.1 Hash Functions

A cryptographic hash function maps a bit string of arbitrary length to a short, unique
representation. The functionality provides only a single operation H ; its invocation
takes a bit string x of arbitrary length as an input parameter and returns a value h,
which is a short bit string of fixed length in practice. A hash function is collision-
free in the sense that no process, not even one subject to arbitrary faults, can find
two distinct values x and x′ such that H(x) = H(x′).

Formally, one can imagine that the hash function is implemented by a distributed
oracle accessible to every process, which maintains a list L of all inputs x that
have been queried so far by any process. When a process invokes H on a value
x ∈ L, then H responds with the index of x in L; otherwise, H appends x to L and
returns its index. The index is represented in binary and padded to a fixed length,
which must be large enough such that the space of indices is never exhausted in
the execution of any algorithm using the hash function. This ideal implementation
models the collision-resistance property of hash functions, but no other properties
of real-world hash functions.

Hash functions are one of the most basic cryptographic abstractions; their imple-
mentations are very fast, also long inputs can be hashed in a short time on ordinary
machines.

2.3.2 Message-Authentication Codes (MACs)

A message-authentication code (MAC) authenticates data between two entities. It
is based on a shared symmetric key, which is known only to the sender and to the
receiver of a message, but to nobody else. For a message of its choice the sender can
compute an authenticator for the receiver. Given an authenticator and a message, the
receiver can verify that the message has indeed been authenticated by the sender. It
is infeasible for any other entity than the sender and the verifier to come up with
a message that was never authenticated and to produce an authenticator that the
receiver accepts as valid during verification.

When using message authentication in the algorithms of this book, every ordered
pair of processes in Π × Π is associated with a separate MAC. More precisely,
such a message-authentication scheme provides the following functionality: it is a
distributed oracle with two operations, authenticate and verifyauth .

2.3 Cryptographic Abstractions 31

The oracle internally maintains a set A, initially empty. The invocation of
authenticate takes a sender process identifier p, a receiver process identifier q,
and a bit string m as parameters and returns an authenticator a with the response;
internally, it adds the tuple (p, q, m, a) to A. The verifyauth operation takes an iden-
tifier q of a receiver process, an identifier p of a sender process, a bit string m, and a
putative authenticator a as parameters; if (p, q, m, a) ∈ A then the operation returns
the Boolean value TRUE; otherwise, the response of the operation is FALSE.

Only process p may invoke authenticate(p, ·, ·), and only process q may invoke
verifyauth(q, ·, ·, ·).

In other words, the functionality satisfies that verifyauth(q, p, m, a) returns
TRUE for all processes p and q and for all messages m if and only if process p
has previously invoked authenticate(p, q, m) and obtained a as response; otherwise,
the operation verifyauth(q, p, m, a) returns FALSE.

As MACs are based on fast symmetric cryptographic primitives in practice (such
as hash functions, stream ciphers, or block ciphers), they can be computed and
verified very fast.

2.3.3 Digital Signatures

A digital signature scheme provides data authentication in systems with multiple
entities that need not share any information beforehand. Physical realizations of
digital signatures associate a public-key/private-key pair with an entity. The private
key is given to the entity and must remain secret; the public key is accessible to
anyone. With the private key the entity can produce a signature for a statement of
its choice. The public key is associated with the identity of an entity, and everyone
with access to the public key can verify that the signature on the statement is valid.

It is infeasible for any entity that does not know the private key to come up with
a statement that was never signed and to forge a valid signature on it.

For using digital signatures in this book, every process in Π can sign messages
with its own identity and verify the signatures produced by the other processes. For-
mally, the functionality of digital signatures is captured by a distributed oracle with
two operations: sign and verifysig. The invocation of sign takes a process identi-
fier p and a bit string m as parameters and returns a signature s with the response.
The verifysig operation takes an identifier q of a process, a bit string m, and a
putative signature s as parameters and returns a Boolean value b ∈ {FALSE, TRUE}
with the response. Only process p may invoke sign(p, ·). Every process (including
the adversary) may invoke verifysig without restriction on the parameters.

The functionality satisfies that verifysig(q, m, s) returns TRUE for all processes q,
and for all messages m, if and only if process q has previously invoked sign(q, m)
and obtained s as response; otherwise, verifysig(q, m, s) returns FALSE.

Equivalently, one can imagine that the signature scheme oracle maintains a set S
and implements an operation sign(p, m) that returns s by adding (p, m, s) to S. The
operation verifysig(q, m, s) is implemented by evaluating the condition (q, m, s) ∈
S and returning the result.

The text m to be signed and verified using a signature scheme must be repre-
sented as a bit string. Sometimes we will use structured texts that consist of multiple

32 2 Basic Abstractions

components. In order to avoid problems with the interpretation of a text made of k
components c1, c2, . . . , ck, we use the notation c1‖c2‖ . . . ‖ck, where ‖ is a special
symbol that represents for the concatenation of bit strings.

A signature scheme is more powerful than a MAC in the sense that authenticated
messages can be verified by all entities and relayed even by untrusted entities. In
this sense, a MAC behaves like oral messages exchanged between people, whereas
a digital signature scheme models the exchange unforgeable written messages.

For instance, when a MAC is used to authenticate a message from a sender to a
receiver, and the receiver has verified that the message is authentic and has not been
modified, the receiver cannot convince a third entity of this fact. This holds because
the specification of the MAC does not permit the third entity to verify an authentica-
tor intended for a separate entity. Hence, the third party must trust the receiver, but
the receiver might be malicious and lie to the third party about the authenticity of
the message. In this case, the third party could not tell whether the sender is correct
and the message was authentic but the receiver lied, or whether the receiver is cor-
rect and the sender did not send a correctly authenticated message to the receiver.
With a digital signature scheme, on the other hand, only the sender can authenticate
information; thus, the third party could verify on its own if the sender’s message is
authentic, even if the message has been relayed by a faulty receiver.

Digital signatures are based on public-key cryptography (or asymmetric cryptog-
raphy); because of their underlying mathematical structure, they add considerable
computational overhead compared to the symmetric cryptographic primitives.

2.4 Abstracting Communication

The abstraction of a link is used to represent the network components of the dis-
tributed system. Every pair of processes is connected by a bidirectional link, a
topology that provides full connectivity among the processes. In practice, differ-
ent topologies may implement this abstraction, possibly using routing algorithms.
Concrete examples of architectures that materialize the link abstraction, such as the
ones illustrated in Fig. 2.4, include the use of (a) a fully connected mesh, (b) a broad-
cast medium (such as an Ethernet), (c) a ring, or (d) a mesh of links interconnected
by bridges and routers (such as the Internet). Many algorithms refine the abstract
network view to make use of the properties of the underlying topology.

Messages exchanged between processes over a link are unique. Every message
includes enough information for the recipient of a message to uniquely identify its
sender. When a link is used by crash-stop or crash-recovery process abstractions,
this property can be implemented trivially. When the processes are exposed to more
severe faults or arbitrary faults, the network may also exhibit these faults; it may
cause a correct process to accept and deliver a message that was inserted by an
adversary on the network, for example. Algorithms for this model rely on crypto-
graphic methods to provide correct sender identification, which is robust despite
attacks by the network or by faulty processes.

2.4 Abstracting Communication 33

(a) (b) (c) (d)

Figure 2.4: The link abstraction and different instances

When two processes exchange messages in a request–reply manner, they will
usually have means to identify which reply message is a response to which request
message. This can be achieved by having the processes generate timestamps or
unique identifiers, based on sequence numbers, local clocks, or a source of random-
ness. This assumption alleviates the need for explicitly introducing such timestamps
in the algorithm.

2.4.1 Link Failures

In a distributed system, it is possible for messages to be lost when transiting through
the network. However, it is reasonable to assume that the probability for a mes-
sage to reach its destination is nonzero because it is very unlikely that all messages
exchanged among two processes are systematically lost unless there is a severe net-
work failure (such as a network partition). A simple way to overcome the inherent
unreliability of the network is to keep on retransmitting messages until they reach
their destinations. Messages in a network may also be subject to attacks by an adver-
sary, who may inspect or modify their content, or prevent that they are delivered. In
this case, messages need to be additionally protected using cryptographic methods.
Again, we assume that some messages reach their destination because preventing
all communication among two processes is difficult.

In the following, we introduce five different link abstractions, three of them
implemented by the crash-stop process abstraction, one for the crash-recovery
abstraction, and one for a Byzantine process abstraction. Some are stronger than
others in the sense that they provide more reliability guarantees. All are point-to-
point links abstractions, i.e., they support communication between pairs of pro-
cesses. (Broadcast communication abstractions for communicating from one to
many processes are defined in the next chapter.)

We will first describe the abstraction of fair-loss links, which captures the basic
idea that messages might be lost but the probability for a message not to be lost
is nonzero. Then, we describe higher-level abstractions that could be implemented
over fair-loss links using retransmission mechanisms to hide from the programmer
part of the unreliability of the network. More precisely, we consider stubborn and
perfect links abstractions, and show how they can be implemented on top of fair-loss
links. These three abstractions assume a crash-fault process abstraction; a logged

34 2 Basic Abstractions

perfect links abstraction that deals with crash-recovery faults and an authenticated
links abstraction that deals with arbitrary faults are presented afterward.

We define the properties of each of our link abstractions using two kinds of
events: a 〈 Send 〉 request event to send a message and a 〈 Deliver 〉 indication
event that delivers a message. We prefer the term deliver over the more general
term receive to emphasize that we are talking about a specific link abstraction to
be implemented over the network. A message is typically received at a given port
of the network and stored within some buffer, and then some algorithm is executed
to make sure the properties of the required link abstraction are satisfied, before the
message is actually delivered. When there is no ambiguity, we alternatively use the
term receive to mean deliver. On the other hand, when implementing a communica-
tion abstraction A over a communication abstraction B, we will sometimes use the
term deliver for A and receive for B to disambiguate.

A process invokes the send request of a link abstraction to request the sending of
a message using that abstraction. When the process invokes the request, we say that
the process sends the message. It is then up to the link abstraction to transmit the
message to the target process, according to the actual specification of the abstraction.
The deliver indication is triggered by the algorithm implementing the abstraction on
a destination process. When this event occurs on a process p for a message m, we
say that p delivers m.

2.4.2 Fair-Loss Links

The fair-loss links abstraction is the weakest variant of the link abstractions con-
sidered here. Its interface is described by Module 2.1 and consists of two events: a
request event, used to send messages, and an indication event, used to deliver the
messages.

Module 2.1: Interface and properties of fair-loss point-to-point links
Module:

Name: FairLossPointToPointLinks, instance fll.

Events:

Request: 〈 fll, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 fll, Deliver | p, m 〉: Delivers message m sent by process p.

Properties:

FLL1: Fair-loss: If a correct process p infinitely often sends a message m to a
correct process q, then q delivers m an infinite number of times.

FLL2: Finite duplication: If a correct process p sends a message m a finite number
of times to process q, then m cannot be delivered an infinite number of times by q.

FLL3: No creation: If some process q delivers a message m with sender p, then m
was previously sent to q by process p.

2.4 Abstracting Communication 35

Fair-loss links are characterized by three properties. The fair-loss property guar-
antees that a link does not systematically drop every message. Therefore, if the
sender process and the recipient process are both correct, and if the sender keeps
retransmitting a message, the message is eventually delivered. The finite duplica-
tion property intuitively ensures that the network does not repeatedly perform more
retransmissions than that performed by the sending process. Finally, the no creation
property ensures that no message is created or corrupted by the network.

2.4.3 Stubborn Links

We define the abstraction of stubborn links in Module 2.2. This abstraction hides
the lower-layer retransmission mechanisms used by the sender process, when using
actual fair-loss links, to make sure its messages are eventually delivered by the
destination process.

The stubborn delivery property causes every message sent over the link to be
delivered at the receiver an unbounded number of times. The no creation property
is the same as before and prevents the link from inventing messages.

Module 2.2: Interface and properties of stubborn point-to-point links
Module:

Name: StubbornPointToPointLinks, instance sl.

Events:

Request: 〈 sl, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 sl, Deliver | p, m 〉: Delivers message m sent by process p.

Properties:

SL1: Stubborn delivery: If a correct process p sends a message m once to a correct
process q, then q delivers m an infinite number of times.

SL2: No creation: If some process q delivers a message m with sender p, then m
was previously sent to q by process p.

Algorithm: Retransmit Forever. Algorithm 2.1, called “Retransmit Forever,”
describes a very simple implementation of a stubborn link over a fair-loss link.
As the name implies, the algorithm simply keeps on retransmitting all messages
sent. This overcomes possible omissions in the links. Note that we assume here the
availability of a timeout service that can be invoked using the starttimer function
and which triggers a 〈 Timeout 〉 event after a specified delay Δ. The timeout is
triggered again only after the next call of starttimer. This is a purely local mecha-
nism, i.e., it can be implemented by a local counter and does not rely on any global
synchronization mechanism.

We discuss, in the following, the correctness of the algorithm for a stubborn link
instance sl, as well as its performance.

36 2 Basic Abstractions

Algorithm 2.1: Retransmit Forever

Implements:
StubbornPointToPointLinks, instance sl.

Uses:
FairLossPointToPointLinks, instance fll.

upon event 〈 sl, Init 〉 do
sent := ∅;
starttimer(Δ);

upon event 〈 Timeout 〉 do
forall (q, m) ∈ sent do

trigger 〈 fll, Send | q, m 〉;
starttimer(Δ);

upon event 〈 sl, Send | q, m 〉 do
trigger 〈 fll, Send | q, m 〉;
sent := sent ∪ {(q, m)};

upon event 〈 fll, Deliver | p, m 〉 do
trigger 〈 sl, Deliver | p, m 〉;

Correctness. The fair-loss property of the underlying fair-loss links instance fll
guarantees that, if the target process is correct, then every message that is sl-sent
by every correct process will indeed be fll-delivered infinitely often by the target
process. This is because the algorithm makes sure the sender process keeps fll-
sending those messages infinitely often, unless the sender process itself crashes.
The no creation property is simply preserved by the underlying links.

Performance. The algorithm is clearly not efficient and its purpose is primarily ped-
agogical. It is pretty clear that, within a practical application, it does not make much
sense for a process to keep on, and at every step, retransmitting previously sent
messages infinitely often. There are at least two complementary ways to prevent
that effect and, hence, to make the algorithm more practical. First, it is important to
remember that the very notions of infinity and infinitely often are context-dependent:
they basically depend on the algorithm making use of stubborn links. After the
algorithm making use of those links has ended its execution, there is no need to
keep on sending messages. Second, an acknowledgment mechanism can be added to
notify a sender that it does not need to keep on sending a given set of messages any
more. This mechanism can be performed whenever a target process has delivered
(i.e., properly consumed) those messages, or has delivered messages that seman-
tically subsume the previous ones, e.g., in stock exchange applications when new
values might subsume old ones. Such a mechanism should however be viewed as
an external algorithm, and cannot be integrated within our algorithm implementing
stubborn links. Otherwise, the algorithm might not be implementing the stubborn
link abstraction anymore, for the subsume notion is not a part of the abstraction.

2.4 Abstracting Communication 37

2.4.4 Perfect Links

With the stubborn links abstraction, it is up to the target process to check whether
a given message has already been delivered or not. Adding mechanisms for detect-
ing and suppressing message duplicates, in addition to mechanisms for message
retransmission, allows us to build an even higher-level primitive: the perfect links
abstraction, sometimes also called the reliable links abstraction. The perfect links
abstraction specification is captured by Module 2.3. The interface of this module
also consists of the same two events as the link abstractions introduced before:
a request event (for sending messages) and an indication event (for delivering
messages).

Perfect links are characterized by three properties. The reliable delivery property
together with the no duplication property ensures that every message sent by a cor-
rect process is delivered by the receiver exactly once, if the receiver is also correct.
The third property, no creation, is the same as in the other link abstractions.

Module 2.3: Interface and properties of perfect point-to-point links
Module:

Name: PerfectPointToPointLinks, instance pl.

Events:

Request: 〈 pl, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 pl, Deliver | p, m 〉: Delivers message m sent by process p.

Properties:

PL1: Reliable delivery: If a correct process p sends a message m to a correct
process q, then q eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If some process q delivers a message m with sender p, then m
was previously sent to q by process p.

Algorithm: Eliminate Duplicates. Algorithm 2.2 (“Eliminate Duplicates”) con-
veys a very simple implementation of perfect links over stubborn ones. It simply
keeps a record of all messages that have been delivered in the past; when a message
is received, it is delivered only if it is not a duplicate. In the following, we discuss
the correctness of the algorithm for a perfect point-to-point links instance pl, as well
as its performance.

Correctness. Consider the reliable delivery property of perfect links. Let m be
any message pl-sent by some process p to some process q, and assume that these
two processes are correct. According to the algorithm, process p sl-sends m to q

38 2 Basic Abstractions

Algorithm 2.2: Eliminate Duplicates

Implements:
PerfectPointToPointLinks, instance pl.

Uses:
StubbornPointToPointLinks, instance sl.

upon event 〈 pl, Init 〉 do
delivered := ∅;

upon event 〈 pl, Send | q, m 〉 do
trigger 〈 sl, Send | q, m 〉;

upon event 〈 sl, Deliver | p, m 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
trigger 〈 pl, Deliver | p, m 〉;

using the underlying stubborn links abstraction sl. Because of the stubborn deliv-
ery property of that primitive, q eventually sl-delivers m, at least once, and hence
pl-delivers m. The no duplication property follows from the test performed by the
algorithm whenever a message is sl-delivered and before pl-delivering that mes-
sage. The no creation property simply follows from the no creation property of the
underlying stubborn links.

Performance. Besides the performance considerations we discussed for our stub-
born links implementation, i.e., Algorithm 2.1 (“Retransmit Forever”), and which
clearly apply to the perfect links implementation of Algorithm 2.2 (“Eliminate
Duplicates”), there is an additional concern related to maintaining the ever grow-
ing set of messages delivered at every process, given actual physical memory
limitations.

At first glance, one might think of a simple way to circumvent this issue by
having the target process acknowledge messages periodically and the sender pro-
cess acknowledge having received such acknowledgments and promise not to send
those messages anymore. There is no guarantee, however, that such messages are no
longer in transit and will reach the target process afterward. The latter process might
deliver the message again in this case, violating the no creation property. Additional
mechanisms based on timestamps could be used, however, to recognize such old
messages and to circumvent this problem.

2.4.5 Logged Perfect Links

With a crash-recovery process abstraction, the “Eliminate Duplicates” algorithm
presented earlier is unsuitable for implementing the perfect links abstraction. The
problem with the algorithm is its internal state to detect duplicates, which is main-
tained in volatile memory. If a process crashes, the state is lost. Upon recovery, the

2.4 Abstracting Communication 39

process will no longer remember which messages have already been delivered and
might deliver the same message twice. To avoid this problem, the crash-recovery
process abstraction may use stable storage, which is accessed through store and
retrieve operations.

As discussed in Sect. 2.2, an important difference between the crash-stop and
crash-recovery process abstractions lies in the way that a module sends its output
to another module in a higher layer. Recall that the unit of failures is the process
and, hence, the crash of a process affects all its modules. When an algorithm simply
triggers an event to deliver a message, the process may crash immediately after
triggering the event, before the output can be processed by the higher layer, for
instance. We need an alternative way for delivering an output in the crash-recovery
model; it consists of logging the output in stable storage.

We redefine the interface of all communication abstractions in the context of
crash-recovery faults, and in particular the interface of the point-to-point links
abstraction, as follows. Instead of triggering an event to deliver a message, the mod-
ule writes the message to a local log, implemented by a variable in stable storage.
This variable can also be accessed by the modules in the layer above, through a
retrieve operation. To notify the layer above of the delivery, the module triggers an
event 〈 Deliver | identifier 〉 that contains only the name identifier of the logging
variable in stable storage.

For the link abstraction in the crash-recovery model, we use a variable delivered
that contains a set of tuples of the form (s, m), where s denotes the sender process
of a message m. We say that a message m is log-delivered from sender s whenever
the process adds (s, m) to delivered and subsequently triggers a 〈 Deliver 〉 event
with the name of delivered for the first time. In other words, a message message m is
log-delivered from sender s at the time when an event 〈 Deliver | delivered 〉 occurs
for a variable delivered in stable storage, such that delivered contains (s, m) but did
not contain (s, m) at any time when 〈 Deliver | delivered 〉 occurred previously. For
exploiting this notion correctly, the layer above this module must remember which
messages it has already log-delivered.

Specification. The logged perfect links abstraction in Module 2.4 implements an
interface according to this description. The logged perfect links abstraction main-
tains a set of sender/message pairs in a variable delivered in stable storage and
triggers 〈 Deliver | delivered 〉 events. The properties of the abstraction in terms
of log-delivered messages are almost the same as those of perfect point-to-point
links (Module 2.3) in terms of delivered messages.

There is a subtle difference in the statement of the reliable delivery property,
however. The perfect point-to-point links abstraction uses crash-stop processes,
where a process may crash only once and a correct process never crashes. But the
crash-recovery process abstraction, as used by logged perfect links, may crash a
finite number of times and is still called correct if it always recovers from a crash.
But even a correct crash-recovery process abstraction may lose its state; when
it crashes immediately after executing a 〈 Send 〉 event with a message m and
before taking any other steps, then it is not possible that the process remembers
anything about m when it recovers, or that any other process in the system ever

40 2 Basic Abstractions

Module 2.4: Interface and properties of logged perfect point-to-point links
Module:

Name: LoggedPerfectPointToPointLinks, instance lpl.

Events:

Request: 〈 lpl, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 lpl, Deliver | delivered 〉: Notifies the upper layer of potential updates
to variable delivered in stable storage (which log-delivers messages according to
the text).

Properties:

LPL1: Reliable delivery: If a process that never crashes sends a message m to a
correct process q, then q eventually log-delivers m.

LPL2: No duplication: No message is log-delivered by a process more than once.

LPL3: No creation: If some process q log-delivers a message m with sender p, then
m was previously sent to q by process p.

log-delivers m. For this reason, the reliable delivery property requires only that a
message is eventually log-delivered if the sender never crashes (and not if the sender
is merely correct, as for link abstractions with processes subject to crash faults).

Algorithm: Log Delivered. Algorithm 2.3 (“Log Delivered”) is the direct adapta-
tion of the “Eliminate Duplicates” algorithm that implements perfect point-to-point
links from stubborn links. It simply keeps a record of all messages that have been
log-delivered in the past; however, here it stores this record in stable storage and
exposes it also to the upper layer.

Correctness. The correctness argument is the same as that for the “Eliminate Dupli-
cates” algorithm, except for the fact that delivering here means logging the message
in stable storage.

Performance. In terms of messages, the performance of the “Log Delivered” algo-
rithm is similar to that of the “Eliminate Duplicates” algorithm. However, algorithm
“Log Delivered” requires one log operation every time a new message is received.

2.4.6 Authenticated Perfect Links

This section considers messages communicated in a network with Byzantine pro-
cess abstractions. Recall that in this model, the communication links themselves
may also behave arbitrarily. In principle, a link abstraction subject to arbitrary faults
might simply not allow any communication. However, we assume that such denial-
of-service attacks cannot prevent all communication between correct processes in a
distributed system.

2.4 Abstracting Communication 41

Algorithm 2.3: Log Delivered

Implements:
LoggedPerfectPointToPointLinks, instance lpl.

Uses:
StubbornPointToPointLinks, instance sl.

upon event 〈 lpl, Init 〉 do
delivered := ∅;
store(delivered);

upon event 〈 lpl, Recovery 〉 do
retrieve(delivered);
trigger 〈 lpl, Deliver | delivered 〉;

upon event 〈 lpl, Send | q, m 〉 do
trigger 〈 sl, Send | q, m 〉;

upon event 〈 sl, Deliver | p, m 〉 do
if not exists (p′, m′) ∈ delivered such that m′ = m then

delivered := delivered ∪ {(p, m)};
store(delivered);
trigger 〈 lpl, Deliver | delivered 〉;

In the following, we assume that the processes may communicate with each other
using a fair-loss point-to-point links abstraction according to Module 2.1. Note that
its fair-loss property is sound with respect to a Byzantine process abstraction; but,
its finite duplication and no creation properties permit that if there is only one faulty
process, a correct process may deliver any legal message an unbounded number
of times and without any correct process previously having sent it. This is simply
because the Byzantine process may insert the message infinitely often and pretend
that it originates from an arbitrary sender process.

Furthermore, the fair-loss links abstraction can be extended to a stubborn links
abstraction (Module 2.2) in the presence of Byzantine processes, by repeatedly
sending a broadcast message over the fair-loss links as in the “Retransmit Forever”
algorithm. But, the no creation property of stubborn links cannot be ensured either.

A fair-loss links abstraction or a stubborn links abstraction alone is thus not very
useful with a Byzantine process abstraction. But cryptographic authentication can
turn them into a more useful authenticated perfect links primitive, which eliminates
the forgery of messages on the links between two correct processes. This abstraction
is specified in Module 2.5. It uses the same interface as the other point-to-point links
abstractions. The reliable delivery and no duplication properties of authenticated
links are the same as for perfect links. Only the authenticity property for Byzantine
processes is stronger than the corresponding no creation property for crash-stop
processes.

42 2 Basic Abstractions

Module 2.5: Interface and properties of authenticated perfect point-to-point links
Module:

Name: AuthPerfectPointToPointLinks, instance al.

Events:

Request: 〈 al, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 al, Deliver | p, m 〉: Delivers message m sent by process p.

Properties:

AL1: Reliable delivery: If a correct process sends a message m to a correct
process q, then q eventually delivers m.

AL2: No duplication: No message is delivered by a correct process more than once.

AL3: Authenticity: If some correct process q delivers a message m with sender p
and process p is correct, then m was previously sent to q by p.

Algorithm 2.4: Authenticate and Filter

Implements:
AuthPerfectPointToPointLinks, instance al.

Uses:
StubbornPointToPointLinks, instance sl.

upon event 〈 al, Init 〉 do
delivered := ∅;

upon event 〈 al, Send | q, m 〉 do
a := authenticate(self, q, m);
trigger 〈 sl, Send | q, [m, a] 〉;

upon event 〈 sl, Deliver | p, [m, a] 〉 do
if verifyauth(self, p, m, a) ∧ m �∈ delivered then

delivered := delivered ∪ {m};
trigger 〈 al, Deliver | p, m 〉;

Algorithm: Authenticate and Filter. Algorithm 2.5 (“Authenticate and Filter”)
uses a MAC to implement authenticated perfect point-to-point links over a stub-
born links abstraction. An instance al uses the MAC to compute an authenticator
over the message, the sender identifier, and the recipient identifiers for every al-sent
message. It sl-sends the message together with the authenticator. When a message
and an authenticator are sl-delivered, the algorithm verifies that the message con-
tents as well as the indicated sender and recipient identifiers are valid using the
MAC. Note that the recipient is the process itself, which is denoted by self. When
the authenticator is valid, the process al-delivers the message.

2.4 Abstracting Communication 43

Correctness. As the algorithm only extends Algorithm 2.2 (“Eliminate Dupli-
cates”) with the statements that implement cryptographic authentication, the reliable
delivery and no duplication properties follow from the same argument as for
Algorithm 2.2. For the authenticity property, consider a sl-delivered tuple (p, m, a)
that causes message m to be al-delivered with sender p. The MAC only accepts
the authenticator a as valid when it was computed by process p with receiver pro-
cess self and message m. Hence, the authenticator a was computed by process p
and m was indeed al-sent by p.

Performance. As the implementation uses the same steps as Algorithm 2.2, the
same issue arises for the set delivered that grows without bound. Cryptographic
authentication adds a modest computational overhead.

2.4.7 On the Link Abstractions

Throughout this book, we will mainly assume perfect links in the context of crash-
stop process abstractions or their logged and authenticated variants in the context
of crash-recovery and Byzantine process abstractions, respectively. It may seem un-
realistic to assume that links are perfect when it is known that physical links may
lose, duplicate, or modify messages. This assumption only captures the fact that
these problems can be addressed by some lower-level protocol. As long as the net-
work remains connected and processes do not commit an unbounded number of
omission failures, link crashes may be masked by routing. The loss of messages can
be masked through retransmission, as we have just explained through various algo-
rithms. This functionality is often found in standard transport-level protocols such
as TCP. These protocols are typically supported by the operating system and need
not be reimplemented.

The details of how the perfect links abstraction is implemented are not relevant
for understanding the fundamental principles of many distributed algorithms. On the
other hand, when developing actual distributed applications, these details become
relevant. For instance, it may happen that some distributed algorithm requires the
use of sequence numbers and message retransmissions, even assuming perfect links.
In this case, in order to avoid the redundant use of similar mechanisms at differ-
ent layers, it may be more effective to rely just on weaker links, such as fair-loss
or stubborn links. The algorithms implementing logged and authenticated perfect
point-to-point links in the previous section already demonstrated this.

Indeed, as we have observed in the crash-recovery model, delivery is imple-
mented by exposing a log maintained in stable storage. The upper layer is, therefore,
required to keep its own record of which messages in the log it has already pro-
cessed. Thus, the upper layer will generally have the ability to eliminate duplicates
and can often operate using the weaker abstraction of stubborn links, avoiding the
use of more expensive logged perfect links.

More generally, many networking issues should be considered when moving to
concrete implementations. Among others they include:

44 2 Basic Abstractions

• Network topology. Many optimizations can be achieved if the network topology
is exposed to the upper layers. For instance, communication in a local-area net-
work (LAN) exhibits a much lower latency than communication over wide-area
links. Such facts should be taken into account by any practical algorithm.

• Flow control. In a practical system, the resources of a process are bounded. This
means that a process can handle only a limited number of messages per unit
of time. If a sender exceeds the receiver’s capacity, messages are lost. Practical
systems must include feedback mechanisms to allow the senders to adjust their
sending rate to the capacity of receivers.

• Heterogeneity. In a real system, not all processes are equal. In fact, it may happen
that some processes run on faster processors, have more memory, can access
more bandwidth, or are better connected than others. This heterogeneity may be
exploited by an algorithm such that more demanding tasks are assigned to the
most powerful and best-connected processes first.

2.5 Timing Assumptions

An important part in the characterization of a distributed system is the behavior of
its processes and links with respect to the passage of time. In short, determining
whether we can make any assumption about time bounds on communication delays
and (relative) process speeds is of primary importance for every distributed-system
model. We introduce time-related models in this section and consider the failure-
detector abstraction as a particularly useful way to abstract timing assumptions in
the next section.

2.5.1 Asynchronous System

Assuming an asynchronous distributed system comes down to not making any tim-
ing assumption about processes and links. This is precisely the approach taken so
far for defining process and link abstractions. That is, we did not assume that pro-
cesses have access to any sort of physical clock, nor did we assume any bounds on
processing or communication delays.

Even without access to physical clocks, it is still possible to measure the passage
of time based on the transmission and delivery of messages, such that time is defined
with respect to communication. Time measured in this way is called logical time,
and the resulting notion of a clock is called a logical clock.

The following algorithm can be used to measure logical time in an asynchronous
distributed system:

1. Each process p keeps an integer called logical clock lp, initially 0.
2. Whenever an event occurs at process p, the logical clock lp is incremented by

one unit.
3. When a process sends a message, it adds a timestamp to the message with the

value of its logical clock at the moment the message is sent. The timestamp of
an event e is denoted by t(e).

2.5 Timing Assumptions 45

p

q

r

e1 e2 e1

e’

e2

e’’

e1

e2

(a) (b) (c)

Figure 2.5: The happened-before relation

4. When a process p receives a message m with timestamp tm, process p increments
its logical clock in the following way: lp := max{lp, tm} + 1.

An interesting aspect of logical clocks is the fact that they capture cause–effect rela-
tions in systems where the processes can only interact through message exchanges.
We say that an event e1 may have potentially caused another event e2, denoted as
e1 → e2, when the following condition applies:

(a) e1 and e2 occurred at the same process p and e1 occurred before e2;
(b) e1 corresponds to the transmission of a message m at a process p and e2 to the

reception of m at some other process q; or
(c) there exists some event e′, such that e1 → e′ and e′ → e2.

The relation defining the potential causality condition is called the happened-
before relation, and it is illustrated in Fig. 2.5. It can be shown that if the events
are timestamped with logical clocks then e1 → e2 ⇒ t(e1) < t(e2). Note that the
opposite implication is not true.

As we discuss in the next chapters, even in the absence of any physical tim-
ing assumption, and using only a logical notion of time, we can implement some
useful distributed programming abstractions. Many abstractions do, however, need
some physical timing assumptions. In fact, even a very simple form of agreement,
namely, consensus, is impossible to solve in an asynchronous system even if only
one process fails, and it can only do so by crashing (see the historical note at the
end of this chapter). In the consensus problem, which we will address later in this
book, the processes each start with an initial value, and have to agree on a common
final value among the initial values. The consequence of the consensus impossibil-
ity is immediate for the impossibility of deriving algorithms for many agreement
abstractions, including group membership or totally ordered group communication.

2.5.2 Synchronous System

Although assuming an asynchronous system comes down to not making any phys-
ical timing assumption on processes and links, assuming a synchronous system
comes down to assuming the following properties:

46 2 Basic Abstractions

1. Synchronous computation. There is a known upper bound on processing delays.
That is, the time taken by any process to execute a step is always less than this
bound. Remember that a step gathers the delivery of a message (possibly nil)
sent by some other process, a local computation (possibly involving interaction
among several layers of the same process), and the sending of a message to some
other process (possibly omitted).

2. Synchronous communication. There is a known upper bound on message trans-
mission delays. That is, the time period between the instant at which a message is
sent and the instant at which the message is delivered by the destination process
is smaller than this bound.

A real-time clock provides an alternative way for synchronization among multiple
processes, and a synchronous system is alternatively characterized as follows:

3. Synchronous physical clocks. Every process is equipped with a local physical
clock. There is a known upper bound on the rate at which the local physical
clock deviates from a global real-time clock.

Note that such a global clock exists also in our universe, but merely as a fictional
device to simplify the reasoning about steps taken by processes. This clock is not
accessible to the processes and no algorithm can rely on it.

In a synchronous distributed system, several useful services can be provided. We
enumerate some of them:

• Timed failure detection. Every crash of a process may be detected within bounded
time: whenever a process p crashes, all processes that did not crash detect the
crash of p within a known bounded time. This can be achieved, for instance,
using a heartbeat mechanism, where processes periodically exchange messages
and detect, within a limited time period, the crashes.

• Measure of transit delays. It is possible to get a good approximation of the delays
of messages in the communication links and, from there, infer which nodes are
more distant or connected by slower or overloaded links.

• Coordination based on time. One can implement a lease abstraction that provides
the right to execute some action during a fixed time period, e.g., for manipulating
a specific file. The right expires automatically at the end of the time period.

• Worst-case performance. By assuming a bound on the number of faults and on
the load of the system, it is possible to derive worst-case response times for any
given algorithm. This allows a process to know when a message that it has sent is
received by the destination process (provided that the latter is correct). This can
be achieved even if we assume that processes commit omission faults without
crashing, as long as we bound the number of these omission faults.

• Synchronized clocks. A synchronous system makes it possible to synchronize
the clocks of the different processes in such a way that they are never apart by
more than some known constant δ, called the clock synchronization precision.
Synchronized clocks allow processes to coordinate their actions and ultimately
execute synchronized global steps. Using synchronized clocks makes it possible
to timestamp events using the value of the local clock at the instant they occur.

2.5 Timing Assumptions 47

These timestamps can be used to order events in the system. If there was a system
where all delays were constant, it would be possible to achieve perfectly synchro-
nized clocks (i.e., where δ would be 0). Unfortunately, such a system cannot be
built. In practice, δ is always greater than zero and events within δ cannot be
ordered.

Not surprisingly, the major limitation of assuming a synchronous system model is
the coverage of the model, i.e., the difficulty of building a system where the tim-
ing assumptions hold with high probability. This typically requires careful analysis
of the network and processing load and the use of appropriate processor and net-
work scheduling algorithms. Although this is appropriate for some LANs, it may
not be feasible, or not even desirable, in large-scale systems such as the Internet.
On the Internet, for example, there are periods where messages can take a very
long time to arrive at their destination. One should consider very large values to
capture the processing and communication bounds. This would mean, however, to
consider worst-case values which are typically much higher than average values.
These worst-case values are usually so high that any application based on them
would be very slow.

2.5.3 Partial Synchrony

Generally, distributed systems appear to be synchronous. More precisely, for most
systems that we know of, it is relatively easy to define physical time bounds that are
respected most of the time. There are, however, periods where the timing assump-
tions do not hold, i.e., periods during which the system is asynchronous. These are
periods where the network is overloaded, for instance, or some process has a short-
age of memory that slows it down. Typically, the buffer that a process uses to store
incoming and outgoing messages may overflow, and messages may thus get lost,
violating the time bound on the delivery. The retransmission of the messages may
help ensure the reliability of the communication links but introduce unpredictable
delays. In this sense, practical systems are partially synchronous.

One way to capture partial synchrony is to assume that the timing assumptions
only hold eventually, without stating when exactly. This means that there is a time
after which these assumptions hold forever, but this time is not known. In a way,
instead of assuming a synchronous system, we assume a system that is eventually
synchronous. It is important to notice that in practice, making such assumptions
neither means that (1) there is a time after which the underlying system (consisting
of application, hardware, and networking components) is synchronous forever nor
does it mean that (2) the system needs to be initially asynchronous, and then only
after some (long) period becomes synchronous. The assumption simply captures
the very fact that the system may not always be synchronous, and there is no bound
on the period during which it is asynchronous. However, we expect that there are
periods during which the system is synchronous, and some of these periods are long
enough for an algorithm to do something useful or to terminate its execution.

48 2 Basic Abstractions

2.6 Abstracting Time

2.6.1 Failure Detection

So far we have discussed the asynchronous system assumption, which is simple
but inherently limited, the synchronous system assumption, which is powerful but
has limited coverage in practice, and the intermediate partially synchronous sys-
tem assumption. Each of these assumptions makes sense for specific environments
and is plausible for reasoning about general-purpose implementations of high-level
distributed programming abstractions.

An asynchronous system contains no timing assumptions, and our process and
link abstractions directly capture that. But, these abstractions are not sufficient for
defining synchronous and partially synchronous systems. One way to add timing
assumptions could be to augment our process and link abstractions with timing guar-
antees to encompass synchronous and partially synchronous systems. This would
lead to overly complicated specifications. Instead, we consider a separate notion to
encapsulate their capabilities related to synchrony. We introduce the abstraction of a
failure detector that provides information about which processes have crashed and
which are correct, and allow that this information is not necessarily accurate. In par-
ticular, we will consider failure detectors that encapsulate the timing assumptions of
a synchronous system and failure detectors that encapsulate the timing assumptions
of a partially synchronous system. Not surprisingly, the information provided by the
first kind of failure detectors about crashed processes will be more accurate than the
information provided by those of the second kind. Clearly, the stronger the timing
assumptions we make on the distributed system (to implement the failure detector)
the more accurate is that information.

There are at least two advantages of the failure-detector abstraction over an
approach where we would directly make timing assumptions on processes and links.
First, the failure-detector abstraction alleviates the need for extending the process
and link abstractions introduced earlier in this chapter with timing assumptions. As
a consequence, the simplicity of those abstractions is preserved. Second, and as we
will see in the following, we can reason about the behavior of a failure detector using
axiomatic properties with no explicit references to physical time. Such references
are usually prone to error. In practice, except for specific applications like process
control, timing assumptions are indeed mainly used to detect process failures, in
other words, to implement failure detectors.

Arbitrary-faulty Processes. In our discussion of timing assumptions, we have
only considered crash faults and crash-recovery faults so far, but not arbitrary or
Byzantine faults. In principle, a failure-detection abstraction can also be formu-
lated for the Byzantine process abstraction; however, Byzantine processes make it
inherently difficult to implement them.

As we will see, a failure detector that should give information about remote pro-
cesses that may merely crash can be realized by asking the remote processes to
periodically perform some actions. Assume for a moment that the communication
between an observer process and the remote processes is fault-free and synchronous.

2.6 Abstracting Time 49

If crashes are the only kinds of faults that may occur, the following holds. When the
observer ever notices that a remote process stops performing these actions, it can
safely conclude that the remote process has failed. The remote process will also
have stopped participating in any algorithm that it might have run, and the algo-
rithm can properly react to the failure. Furthermore, when a remote process crashes
while executing an algorithm, the observer is also guaranteed that the failure detec-
tor eventually detects that failure. Summarizing, a failure detector for crash faults
provides an accurate failure signal about a remote process if and only if the process
stops behaving properly in an algorithm.

Such a correspondence is not given with the arbitrary-fault process abstraction.
Especially, when the source of the fault is a malicious attack, the adversary behind
the attack wants to evade being detected and will take great care to make the process
behave properly in any algorithm that it runs. The attacked process will only deviate
from the algorithm once it can catch its prey and do the harm. The faulty process
may easily pretend to behave correctly for all remote observers in the context of the
failure detector, and at the same time badly violate its specification in the algorithm.
In the face of Byzantine faults, a failure-detector abstraction is difficult to implement
and its output may not be very useful. Therefore, we do not consider failure detectors
with Byzantine process abstractions; but we will later discuss a realistic leader-
detector abstraction that relies crucially on algorithm-specific information about the
proper performance of a remote process.

2.6.2 Perfect Failure Detection

In synchronous systems, and assuming a crash-stop process abstraction, crashes can
be accurately detected using timeouts. For instance, assume that a process sends a
message to another process and awaits a response. If the recipient process does not
crash then the response is guaranteed to arrive within a time period equal to the
worst-case processing delay plus two times the worst-case message transmission
delay (ignoring the clock drifts). Using its own clock, a sender process can measure
the worst-case delay required to obtain a response and detect a crash when no such
reply arrives within the timeout period; the crash detection will usually trigger a cor-
rective procedure. We encapsulate such a way of detecting failures for synchronous
systems in a perfect failure-detector abstraction.

Specification. The perfect failure detector is also denoted by P (as an abbreviation
of “perfect”), and it outputs, at every process, the identities of the processes that it
detects to have crashed; we simply say that it detects a process. To detect the crash
of a process p, the failure detector triggers an event 〈 Crash | p 〉 with argument p.
The perfect failure detector never changes its mind and detections are permanent; in
other words, once a process p is detected (to have crashed) by some process q, the
process p remains detected by q forever.

A perfect failure detector is characterized by the properties of Module 2.6. A per-
fect failure detector eventually detects all crashed processes (the strong complete-
ness property) and never outputs false detections, i.e., never detects a noncrashed
process (the strong accuracy property).

50 2 Basic Abstractions

Module 2.6: Interface and properties of the perfect failure detector
Module:

Name: PerfectFailureDetector, instance P .

Events:

Indication: 〈 P , Crash | p 〉: Detects that process p has crashed.

Properties:

PFD1: Strong completeness: Eventually, every process that crashes is permanently
detected by every correct process.

PFD2: Strong accuracy: If a process p is detected by any process, then p has
crashed.

Algorithm: Exclude on Timeout. Algorithm 2.5, which we call “Exclude on
Timeout,” implements a perfect failure detector assuming a synchronous system.
The perfect communication links do not lose messages sent among correct pro-
cesses, and the transmission period of every message is bounded by some known
constant, in comparison to which the local processing time of a process, as well as
the clock drifts, are negligible. The algorithm exchanges heartbeat messages among
all processes and uses a specific timeout mechanism initialized with a delay Δ. The
delay is chosen large enough such that every process has enough time to send a
heartbeat message to all, every heartbeat message has enough time to be delivered,
the correct destination processes have enough time to process the heartbeat and to
send a reply message, and the replies have enough time to reach the original sender
and to be processed. Whenever the timeout period expires, a 〈 Timeout 〉 event
is triggered and all processes from which no reply has been received are declared
to have crashed. Furthermore, a new exchange of heartbeat and reply messages is
started.

The algorithm keeps track of the processes that did not return the reply in time
in a variable detected and triggers one event 〈 Crash | p 〉 for every process p that it
adds to detected.

Correctness. Consider the strong completeness property of a perfect failure detec-
tor. If a process p crashes, it stops replying to heartbeat messages, and no process
will deliver its messages: remember that perfect links ensure that no message is
delivered unless it was sent. Every correct process will thus detect the crash of p.

Consider now the strong accuracy property of a perfect failure detector. The
crash of a process p is detected by some other process q only if q does not deliver
a message from p before the timeout period. This can happen only if p has indeed
crashed because the algorithm makes sure p must have sent a message otherwise,
and the synchrony assumption implies that the message should have been delivered
before the timeout period.

2.6 Abstracting Time 51

Algorithm 2.5: Exclude on Timeout

Implements:
PerfectFailureDetector, instance P .

Uses:
PerfectPointToPointLinks, instance pl.

upon event 〈 P , Init 〉 do
alive := Π;
detected := ∅;
starttimer(Δ);

upon event 〈 Timeout 〉 do
forall p ∈ Π do

if (p �∈ alive) ∧ (p �∈ detected) then
detected := detected ∪ {p};
trigger 〈 P , Crash | p 〉;

trigger 〈 pl, Send | p, [HEARTBEATREQUEST] 〉;
alive := ∅;
starttimer(Δ);

upon event 〈 pl, Deliver | q, [HEARTBEATREQUEST] 〉 do
trigger 〈 pl, Send | q, [HEARTBEATREPLY] 〉;

upon event 〈 pl, Deliver | p, [HEARTBEATREPLY] 〉 do
alive := alive ∪ {p};

Performance. For presentation simplicity, we omitted a simple optimization which
consists in not sending any heartbeat messages to processes that were detected to
have crashed.

It is important to notice that the time to detect a failure depends on the timeout
delay. A large timeout, say ten times the expected delay needed to send a message
and deliver it to all processes, would reasonably cope with situations where the delay
would be slightly extended. However, one would want to detect and react to failures
earlier, with a shorter timeout. The risk here is that the probability to falsely detect
a crash is higher. One way to cope with such a trade-off is to assume an imperfect
failure detector, as we will discuss later.

2.6.3 Leader Election

Often one may not need to detect which processes have failed, but rather need to
identify one process that has not failed. This process may then act as the leader that
coordinates some steps of a distributed algorithm, and in a sense it is trusted by the
other processes to act as their leader. The leader election abstraction introduced here
provides such support. It can also be viewed as a failure detector in the sense that
its properties do not depend on the actual computation of the processes but rather
on their failures. Indeed, the leader-election abstraction can be implemented in a
straightforward way from a perfect failure detector.

52 2 Basic Abstractions

Module 2.7: Interface and properties of leader election
Module:

Name: LeaderElection, instance le.

Events:

Indication: 〈 le, Leader | p 〉: Indicates that process p is elected as leader.

Properties:

LE1: Eventual detection: Either there is no correct process, or some correct process
is eventually elected as the leader.

LE2: Accuracy: If a process is leader, then all previously elected leaders have
crashed.

We consider the leader-election abstraction only for crash-stop process
abstractions; it cannot be formulated for crash-recovery and arbitrary-fault process
abstractions.

More generally, the leader-election abstraction consists in choosing one process
to be selected as a unique representative of the group of processes in the system. For
this abstraction to be useful in a distributed setting, a new leader should be elected if
the current leader crashes. The abstraction is particularly useful in a primary-backup
replication scheme, for instance. Following this scheme, a set of replica processes
coordinate their activities to provide the illusion of a unique highly available service
that tolerates faults of some processes. Among the set of replica processes, one is
chosen as the leader. This leader process, sometimes called the primary, treats the
requests submitted by the client processes on behalf of the other replicas, called
backups. Before the leader returns a reply to a given client, it updates the backups.
If the leader crashes, one of the backups is elected as the new leader. We will study
algorithms of this type for implementing consensus in Chap. 5.

Specification. We define the leader-election abstraction in terms of a specific
〈 Leader | p 〉 indication event. When triggered with a parameter p at some given
time, it means that process p is elected as leader from that time on until it crashes.
The properties of the abstraction are given in Module 2.7.

The eventual detection property ensures the eventual presence of a correct leader.
Clearly, it may be the case that, at some point in time, no process is the leader. It may
also be the case that no leader is running. However, the property ensures that, unless
there is no correct process, some correct process is eventually elected as the leader.
The accuracy property ensures the stability of the leader. In other words, it ensures
that the leader may only change when the past leader has crashed. Indirectly, this
property precludes the possibility for two processes to be leader at the same time.

Algorithm: Monarchical Leader Election. Algorithm 2.6 implements the leader-
election abstraction assuming a perfect failure detector. The algorithm exploits
the a-priori ranking among the processes (see Sect. 2.1). A process can become

2.6 Abstracting Time 53

Algorithm 2.6: Monarchical Leader Election

Implements:
LeaderElection, instance le.

Uses:
PerfectFailureDetector, instance P .

upon event 〈 le, Init 〉 do
suspected := ∅;
leader := ⊥;

upon event 〈 P , Crash | p 〉 do
suspected := suspected ∪ {p};

upon leader �= maxrank(Π \ suspected) do
leader := maxrank(Π \ suspected);
trigger 〈 le, Leader | leader 〉;

leader only if all processes with a higher rank have crashed. Imagine that the rank
represents the royal ordering in a monarchy. The queen has the highest rank, the
prince the second highest, and so on. The prince becomes leader if and only if the
queen dies. If the prince dies, maybe his younger sister is the next in the list, and so
on.

The algorithm expresses this order with a function maxrank(S), which selects
the process with the highest rank from a set of processes S. In other words,
maxrank(S) = argmaxp∈S{rank(p)}.

Correctness. The eventual detection property follows from the strong completeness
property of P , whereas the accuracy property follows from the strong accuracy
property of P .

Performance. The process of becoming a leader is a local operation. The time to
react to a failure and become the new leader directly depends on the latency of the
failure detector.

2.6.4 Eventually Perfect Failure Detection

Just like we can encapsulate timing assumptions of a synchronous system in a
perfect failure-detector abstraction, we can similarly encapsulate timing assump-
tions of a partially synchronous system within an eventually perfect failure detector
abstraction.

Specification. An eventually perfect failure-detector abstraction detects crashes
accurately after some a priori unknown point in time, but may make mistakes before
that time. This captures the intuition that, most of the time, timeout delays can be
adjusted so they can lead to accurately detecting crashes. However, there are peri-
ods where the asynchrony of the underlying system prevents failure detection to be

54 2 Basic Abstractions

Module 2.8: Interface and properties of the eventually perfect failure detector
Module:

Name: EventuallyPerfectFailureDetector, instance �P .

Events:

Indication: 〈�P , Suspect | p 〉: Notifies that process p is suspected to have crashed.

Indication: 〈 �P , Restore | p 〉: Notifies that process p is not suspected anymore.

Properties:

EPFD1: Strong completeness: Eventually, every process that crashes is perma-
nently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is suspected by
any correct process.

accurate and leads to false suspicions. In this case, we talk about failure suspicion
instead of failure detection.

More precisely, to implement an eventually perfect failure detector abstraction,
the idea is to also use a timeout, and to suspect processes that did not send heartbeat
messages within a timeout delay. The original timeout might be set to a short dura-
tion if the goal is to react quickly to failures. Obviously, a suspicion may be wrong
in a partially synchronous system. A process p may suspect a process q, even if q has
not crashed, simply because the timeout delay chosen by p to suspect the crash of q
was too short. In this case, p’s suspicion about q is false. When p receives a message
from q, p revises its judgment and stops suspecting q. Process p also increases its
timeout delay; this is because p does not know what the bound on communication
delay will eventually be; it only knows there will be one. Clearly, if q now crashes, p
will eventually suspect q and will never revise its judgment. If q does not crash then
there is a time after which p will stop suspecting q, i.e., the timeout delay used by p
to suspect q will eventually be large enough because p keeps increasing it whenever
it commits a false suspicion. This is because we assume that there is a time after
which the system is synchronous.

An eventually perfect failure detector is denoted by �P (where � stands for
“eventually”) and defined by 〈 Suspect 〉 and 〈 Restore 〉 events. A process p is
said to be suspected by process q after q has triggered the event 〈 Suspect | p 〉
and until it triggers the event 〈 Restore | p 〉, which is said to restore p. Module 2.8
describes the properties of the abstraction, which consist of a strong completeness
property and an eventual strong accuracy property. Note that even though the strong
completeness property reads almost the same as the corresponding property of the
perfect failure detector, it means something different because the eventually perfect
failure detector can restore a suspected process.

Algorithm: Increasing Timeout. Algorithm 2.7, called “Increasing Timeout,”
implements an eventually perfect failure detector assuming a partially synchronous

2.6 Abstracting Time 55

Algorithm 2.7: Increasing Timeout

Implements:
EventuallyPerfectFailureDetector, instance �P .

Uses:
PerfectPointToPointLinks, instance pl.

upon event 〈 �P , Init 〉 do
alive := Π;
suspected := ∅;
delay := Δ;
starttimer(delay);

upon event 〈 Timeout 〉 do
if alive ∩ suspected �= ∅ then

delay := delay + Δ;
forall p ∈ Π do

if (p �∈ alive) ∧ (p �∈ suspected) then
suspected := suspected ∪ {p};
trigger 〈 �P , Suspect | p 〉;

else if (p ∈ alive) ∧ (p ∈ suspected) then
suspected := suspected \ {p};
trigger 〈 �P , Restore | p 〉;

trigger 〈 pl, Send | p, [HEARTBEATREQUEST] 〉;
alive := ∅;
starttimer(delay);

upon event 〈 pl, Deliver | q, [HEARTBEATREQUEST] 〉 do
trigger 〈 pl, Send | q, [HEARTBEATREPLY] 〉;

upon event 〈 pl, Deliver | p, [HEARTBEATREPLY] 〉 do
alive := alive ∪ {p};

system. As for Algorithm 2.5 (“Exclude on Timeout”), we make use of a specific
timeout mechanism initialized with a delay Δ. In Algorithm 2.7, a process that is
suspected does not remain suspected forever as in Algorithm 2.5; instead, when a
message arrives from a suspected process after the timeout has expired, a 〈 Restore 〉
event is triggered for the process and the timeout value is increased.

Correctness. The strong completeness property is satisfied as for Algorithm 2.5
(“Exclude on Timeout”). If a process crashes, it will stop sending messages and will
be suspected by every correct process; no process will ever revise its judgment about
that suspicion.

For the eventual strong accuracy property, consider the point in time after which
the system becomes synchronous and the timeout delay becomes larger than twice
the message transmission delay (plus the clock drifts and the local processing times).
After this point in time, for any heartbeat message sent by a correct process to a cor-
rect process, a heartbeat reply message is received within the timeout delay. Hence,

56 2 Basic Abstractions

any correct process that was wrongly suspecting some correct process will revise its
suspicion, and no correct process will ever be suspected by a correct process.

Performance. Analogously to the perfect failure detector, the time to detect a failure
depends on the timeout delay. The difference here is that the initial timeout can be
set more aggressively so that �P reacts faster to failures than P . This may lead
to false suspicions, but as the specification of �P permits them, they do no harm,
unlike in the case of P .

2.6.5 Eventual Leader Election

As we discussed earlier, instead of focusing on faulty processes, it may be better to
look at correct ones. In particular, it is sometimes convenient to elect a correct pro-
cess that will perform certain computations on behalf of the others. With a perfect
failure detector, one could implement a perfect leader-election abstraction with the
properties of Module 2.7. This is impossible with an eventually perfect failure detec-
tor (see the exercises at the end of the chapter). Instead, we can implement a weaker
notion of leader election, which ensures the uniqueness of the leader only eventu-
ally. As we will see later in the book, this abstraction is useful within consensus
algorithms. An eventual leader-election abstraction can also be implemented with
crash-recovery and arbitrary-fault process abstractions. In this section, we consider
only crash-stop and crash-recover process abstractions; the next section describes
leader election with Byzantine processes.

Specification. The eventual leader-detector abstraction, with the eventual accu-
racy and eventual agreement properties stated in Module 2.9, and denoted by Ω,
encapsulates a leader-election primitive which ensures that eventually the correct
processes will elect the same correct process as their leader. Nothing precludes the
possibility for leaders to change in an arbitrary manner and for an arbitrary period
of time. Moreover, many leaders might be elected during the same period of time
without having crashed. Once a unique leader is determined, and does not change

Module 2.9: Interface and properties of the eventual leader detector
Module:

Name: EventualLeaderDetector, instance Ω.

Events:

Indication: 〈 Ω, Trust | p 〉: Indicates that process p is trusted to be leader.

Properties:

ELD1: Eventual accuracy: There is a time after which every correct process trusts
some correct process.

ELD2: Eventual agreement: There is a time after which no two correct processes
trust different correct processes.

2.6 Abstracting Time 57

again, we say that the leader has stabilized. Such a stabilization is guaranteed by the
specification of Module 2.9. The abstraction is defined in terms of a single indica-
tion event 〈 Trust | p 〉, which carries the identity of the leader process. Process p
is said to be trusted afterward until an indication event with another leader process
occurs.
Algorithm: Monarchical Eventual Leader Detection. With a crash-stop process
abstraction, an eventual leader detector can be obtained directly from �P . Algo-
rithm 2.8, called “Monarchical Eventual Leader Detection,” implements Ω using
the same approach as used in Algorithm 2.6 (“Monarchical Leader Election”), with
the only difference that deaths in the royal family are not final. The algorithm main-
tains the set of processes that are suspected by �P and declares the nonsuspected
process with the highest rank to be the leader. Eventually, and provided at least one
process is correct, the same correct process will be trusted by all correct processes.

Algorithm 2.8: Monarchical Eventual Leader Detection

Implements:
EventualLeaderDetector, instance Ω.

Uses:
EventuallyPerfectFailureDetector, instance �P .

upon event 〈 Ω, Init 〉 do
suspected := ∅;
leader := ⊥;

upon event 〈 �P , Suspect | p 〉 do
suspected := suspected ∪ {p};

upon event 〈 �P , Restore | p 〉 do
suspected := suspected \ {p};

upon leader �= maxrank(Π \ suspected) do
leader := maxrank(Π \ suspected);
trigger 〈 Ω, Trust | leader 〉;

Correctness. The eventual accuracy property of the eventual leader detector fol-
lows from the strong completeness property of �P because a process does not
trust a process that it suspects and because there is a time after which a process
permanently suspects every process that crashes. Together with the eventual strong
accuracy property of �P , this implies also the eventual agreement property because
every correct process eventually suspects exactly the set of crashed processes.
Performance. The algorithm uses only local operations and is therefore immediate.
The time to react to a failure and become the new leader directly depends on the
latency of the failure detector in the same way as for Algorithm 2.6.
Algorithm: Elect Lower Epoch. The eventual leader detector Ω can also be im-
plemented with the crash-recovery process abstraction. Algorithm 2.9 (“Elect Lower

58 2 Basic Abstractions

Algorithm 2.9: Elect Lower Epoch

Implements:
EventualLeaderDetector, instance Ω.

Uses:
FairLossPointToPointLinks, instance fll.

upon event 〈 Ω, Init 〉 do
epoch := 0;
store(epoch);
candidates := ∅;
trigger 〈 Ω, Recovery 〉; // recovery procedure completes the initialization

upon event 〈 Ω, Recovery 〉 do
leader := maxrank(Π);
trigger 〈 Ω, Trust | leader 〉;
delay := Δ;
retrieve(epoch);
epoch := epoch + 1;
store(epoch);
forall p ∈ Π do

trigger 〈 fll, Send | p, [HEARTBEAT, epoch] 〉;
candidates := ∅;
starttimer(delay);

upon event 〈 Timeout 〉 do
newleader := select(candidates);
if newleader �= leader then

delay := delay + Δ;
leader := newleader;
trigger 〈 Ω, Trust | leader 〉;

forall p ∈ Π do
trigger 〈 fll, Send | p, [HEARTBEAT, epoch] 〉;

candidates := ∅;
starttimer(delay);

upon event 〈 fll, Deliver | q, [HEARTBEAT, ep] 〉 do
if exists (s, e) ∈ candidates such that s = q ∧ e < ep then

candidates := candidates \ {(q, e)};
candidates := candidates ∪ (q, ep);

Epoch”) presented here implements Ω directly, without relying on a failure-detector
abstraction. It works with crash-stop and with crash-recovery process abstractions,
assumes partial synchrony, and relies on at least one process to be correct. Remem-
ber that this implies, with a process crash-recovery abstraction, that at least one
process in every execution either does not ever crash or eventually recovers and
never crashes again.

In the algorithm, every process maintains an epoch number that keeps track of
how many times the process crashed and recovered. It stores the epoch number in

2.6 Abstracting Time 59

an integer variable epoch; whenever the process recovers from a crash, it retrieves
epoch from stable storage, increments it, and stores it again in stable storage. The
goal of the algorithm is to elect the active process with the lowest epoch number as
a leader, i.e., the one that has crashed and recovered the least often.

A process periodically sends a heartbeat message to all processes, containing
its current epoch number. Besides, every process keeps a variable candidates that
determines the potential leader processes. The variable candidates is initially empty
and is emptied again when the process sends a heartbeat message. Whenever the
process receives a heartbeat message from process q containing epoch number ep,
the process adds the pair (q, ep) to candidates.

Initially, the leader for all processes is the process with the highest rank among
all, i.e., process maxrank(Π). After every timeout delay, a process checks whether
the current leader may continue to be the leader. The test uses a deterministic func-
tion select(·) that picks one process from candidates according to the following rule:
it considers the process/epoch pairs in candidates with the lowest epoch number,
selects the corresponding processes, and returns the process with the highest rank
among them. This choice guarantees that when a process p is elected leader, but
keeps on crashing and recovering forever, then p will eventually be replaced by a
correct process. By definition, the epoch number of a correct process will eventually
stop growing.

A process increases its timeout delay whenever it selects a new leader. This guar-
antees that if leaders keep changing because the timeout delay is too short with
respect to communication delays, the delay will continue to increase, until it even-
tually becomes large enough for the leader to stabilize when the system becomes
synchronous.

Correctness. Consider the eventual accuracy property and assume by contradiction
that there is a time after which a correct process p permanently trusts the same faulty
process q. There are two cases to consider (remember that we consider a crash-
recovery process abstraction): (1) process q eventually crashes and never recovers
again or (2) process q keeps crashing and recovering forever.

Consider case (1). As q crashes and does not ever recover again, q will send its
heartbeat messages to p only a finite number of times. Because of the no creation
and finite duplication properties of the underlying fair-loss links, there is a time after
which p stops delivering such messages from q. Eventually, q will be excluded from
candidate and p will elect a new leader different from q, a contradiction.

Consider now case (2). As q keeps crashing and recovering forever, its epoch
number will continue to increase forever. For any correct process r, there is a time
after which its epoch number will be lower than that of q. After this time, either (2.1)
process p will stop delivering messages from q, and this can happen if q crashes and
recovers so quickly that it does not have the time to send enough messages to p
(remember that, with fair-loss links, a message is guaranteed to be delivered by its
target only if it is sent infinitely often), or (2.2) process p delivers messages from q
but with higher epoch numbers than those of r. In both cases, p will stop trusting q,
which contradicts the assumption. Hence, process p eventually trusts some correct
process.

60 2 Basic Abstractions

Consider now the eventual agreement property. We need to explain why there is
a time after which no two distinct correct processes are trusted by two other correct
processes. Let C ⊆ Π be the subset of correct processes in a given execution.
Consider, furthermore, the time after which (1) the system becomes synchronous,
(2) the processes in C never crash again, (3) the epoch numbers stop increasing at
every correct process, and (4) for every process p ∈ C and every faulty process
q, process p either stops delivering messages from q or q’s epoch number at p is
strictly larger than the largest epoch number of any process in C at p. Because of
the assumptions of a partially synchronous system, the properties of the underlying
fair-loss links, and the algorithm itself, such a time will eventually be reached. After
it is reached, every correct process trusts a process in C, and C is a subset of the
processes in variable candidates at every correct process whenever the 〈 Timeout 〉
event occurs. Because of the function select(·), all correct processes trust the same
process from C.

2.6.6 Byzantine Leader Election

We now introduce an eventual leader-detector abstraction with Byzantine processes.
As mentioned before in the context of failure detectors, one cannot rely on the time-
liness of simple responses for detecting arbitrary faults. We must exploit another
way to determine remotely whether a process is faulty or performs correctly as a
leader. Our approach is best described as “trust, but verify.” Every newly chosen
leader gets a chance to perform well. But the other processes monitor its actions,
and should the leader not have achieved the desired goal after some time, they
replace it with a new leader. Electing political leaders uses the same approach in
many countries.

More specifically, we assume that the leader should perform some actions
according to an algorithm, within some time bounds. If the leader performs wrongly
or exceeds the allocated time before reaching this goal then other processes detect
this and report it as a failure to the leader detector. In an eventually synchronous
system, every process always behaves according the algorithm and eventually all
remote processes also observe this; if such correct behavior cannot be observed
from a process then the process must be faulty. To make this work in an eventually
synchronous system, every elected leader is given progressively more time than its
predecessors to achieve its goal.

It is important that this notion of good performance depends on the specific algo-
rithm executed by the processes, which relies on the output from the leader-detection
module. Therefore, eventual leader election with Byzantine process abstractions is
not an isolated low-level abstraction, as with crash-stop processes, but requires some
input from the higher-level algorithm. For expressing this input, we introduce a
〈 Complain | p 〉 event. Every process may complain against the current leader p by
triggering this event. We assume that every correct process successively increases
the time between issuing complaints.

The Byzantine leader-detector abstraction is obtained from Module 2.9 by aug-
menting its interface with the 〈 Complain | p 〉 request. The eventual accuracy
property, which required every process to trust a correct process eventually, is

2.6 Abstracting Time 61

Module 2.10: Interface and properties of the Byzantine eventual leader detector
Module:

Name: ByzantineLeaderDetector, instance bld.

Events:

Indication: 〈 bld, Trust | p 〉: Indicates that process p is trusted to be leader.

Request: 〈 bld, Complain | p 〉: Receives a complaint about process p.

Properties:

BLD1: Eventual succession: If more than f correct processes that trust some pro-
cess p complain about p, then every correct process eventually trusts a different
process than p.

BLD2: Putsch resistance: A correct process does not trust a new leader unless at
least one correct process has complained against the previous leader.

BLD3: Eventual agreement: There is a time after which no two correct processes
trust different processes.

replaced by two new conditions. The eventual succession property ensures that the
primitive eventually elects a new leader after more than f correct processes have
complained against the current leader. Furthermore, the putsch resistance property
ensures that no leader is removed from power, unless at least one correct process
has complained against the leader. Taken together, these conditions imply that ev-
ery correct process eventually trust some process that appears to perform its task in
the higher-level algorithm. Module 2.10 summarizes the specification. In contrast to
Module 2.9, one cannot require that every correct process eventually trusts a correct
process because a Byzantine process may behave just like a correct process.

Algorithm: Rotating Byzantine Leader Detection. Algorithm 2.10, called “Rota-
ting Byzantine Leader Detection,” implements a Byzantine eventual leader-detector
abstraction, assuming that N > 3f . The algorithm maintains a continuously inc-
reasing round number and deterministically derives the leader from it. Recall that
N denotes the number of processes in the system (i.e., the size of Π). The leader
of a round r is simply the process p whose rank is r mod N . Because there is no
process with rank 0, the leader is the process with rank N if r mod N = 0. This
derivation is given by the function

leader(r) =

{
p where p satisfies rank(p) = r mod N , if r mod N �= 0
q such that rank(q) = N , otherwise.

A process broadcasts a COMPLAINT message when the higher-level algorithm
triggers a 〈 Complain | p 〉 event and p is the current leader. Whenever a process
receives more than 2f COMPLAINT messages against the current leader, it switches

62 2 Basic Abstractions

Algorithm 2.10: Rotating Byzantine Leader Detection

Implements:
ByzantineLeaderDetector, instance bld.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bld, Init 〉 do
round := 1;
complainlist := [⊥]N ;
complained := FALSE;
trigger 〈 bld, Trust | leader(round) 〉;

upon event 〈 bld, Complain | p 〉 such that p = leader(round) and
complained = FALSE do

complained := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [COMPLAINT, round] 〉;

upon event 〈 al, Deliver | p, [COMPLAINT, r] 〉 such that r = round and
complainlist[p] = ⊥ do

complainlist[p] := COMPLAINT;
if #(complainlist) > f ∧ complained = FALSE then

complained := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [COMPLAINT, round] 〉;
else if #(complainlist) > 2f then

round := round + 1;
complainlist := [⊥]N ;
complained := FALSE;
trigger 〈 bld, Trust | leader(round) 〉;

to the next round. Furthermore, when a process receives more than f COMPLAINT

messages but has not sent a COMPLAINT message itself in the current round, it joins
the complaining processes and also sends a COMPLAINT message. This mechanism
serves two goals: first, it ensures that the Byzantine processes alone cannot provoke
a leader change; second, it guarantees that once a correct process switches to the
next round, every other correct process eventually also switches to that round.

In Algorithm 2.10, the function #(S) for a set S or for a list S denotes the
number of elements in set S or the number of non-⊥ entries in list S, respectively.
It is used throughout this book to obtain the cardinality of a data structure.

In the pseudo code, the notation [x]N for any symbol x denotes the N -vector
[x, . . . , x]; vectors may be indexed by processes or by numbers.

Correctness. The eventual succession property follows directly from the algorithm
because every complaining correct process broadcasts a COMPLAINT message.
These messages cause the remaining correct processes to chime in, so that every

2.7 Distributed-System Models 63

correct process eventually receives N−f > 2f COMPLAINT messages and replaces
the current leader.

Because there are only f Byzantine processes, the putsch resistance property
follows trivially. For the eventual agreement property, note that the correct pro-
cesses eventually cease to complain against a correct leader because they wait long
enough for the leader to achieve its goal. When all COMPLAINT messages have
been received subsequently, every correct process is in the same round and trusts
the same process.

2.7 Distributed-System Models

A combination of (1) a process abstraction, (2) a link abstraction, and possibly (3) a
failure-detector abstraction defines a distributed-system model. In the following, we
discuss several models that will be considered throughout this book to reason about
distributed-programming abstractions and the algorithms used to implement them.
We also discuss important properties of abstraction specifications and algorithms
that will be useful reasoning tools for the following chapters.

2.7.1 Combining Abstractions

Clearly, we will not consider all possible combinations of basic abstractions. On the
other hand, it is interesting to discuss more than one possible combination to get
an insight into how certain assumptions affect the design of an algorithm. We have
selected six specific combinations to define several different models studied in this
book.

• Fail-stop. We consider the crash-stop process abstraction, where the processes
execute the deterministic algorithms assigned to them, unless they possibly crash,
in which case they do not recover. Links are supposed to be perfect (Module 2.3).
Finally, we assume the existence of a perfect failure detector (P) of Module 2.6.
As the reader will have the opportunity to observe, when comparing algorithms
in this model with algorithms in other models discussed later, these assumptions
substantially simplify the design of distributed algorithms.

• Fail-noisy. We consider the crash-stop process abstraction together with perfect
links (Module 2.3). In addition, we assume here the existence of the eventually
perfect failure detector (�P) of Module 2.8 or the eventual leader detector (Ω)
of Module 2.9. This model represents an intermediate case between the fail-stop
model and the fail-silent model (introduced next).

• Fail-silent. We consider the crash-stop process abstraction together with per-
fect links (Module 2.3) only. This model does not assume any failure-detection
or leader-election abstractions. That is, processes have no means to get any
information about other processes having crashed.

• Fail-recovery. This model uses the crash-recovery process abstraction, accord-
ing to which processes may crash and later recover and still participate in the

64 2 Basic Abstractions

algorithm. Algorithms devised for this model have to cope with consequences
of amnesia, i.e., that a process may forget what it did prior to crashing, but may
use stable storage for this. Links are assumed to be stubborn (Module 2.2) and
algorithms may rely on the eventual leader detector (Ω) of Module 2.9.

• Fail-arbitrary. This is the most general of our distributed-system models and
uses the fail-arbitrary (or Byzantine) process abstraction and the authenticated
perfect links abstraction in Module 2.5. This model could also be called the fail-
silent-arbitrary model.
When Byzantine process abstractions are considered together with authenticated
perfect links and in combination with the Byzantine eventual leader-detector
abstraction (Module 2.10), we call it the fail-noisy-arbitrary model.

• Randomized. The randomized model is of a different nature than the other
distributed-system models, and can be thought of being orthogonal to all of them.
We use it for more general process abstractions than otherwise. Algorithms in the
randomized system model are not necessarily deterministic; the processes may
use a random source to choose among several steps to execute. Typically, the
corresponding algorithms implement a given abstraction with some (hopefully
high) probability. Randomization is sometimes the only way to solve a problem
or to circumvent inherent inefficiencies of deterministic algorithms.

It is important to note that many abstractions in the book will be specified only for
the three models with crash-stop processes, that is, for the fail-stop, fail-noisy, and
fail-silent models. In other distributed system models, especially in the fail-recovery
and the fail-arbitrary models, they must be formulated differently and represent a
different abstraction, strictly speaking.

Moreover, many abstractions we study cannot be implemented in all models.
For example, some abstractions that we will consider in Chap. 6 do not have fail-
silent solutions or fail-arbitrary implementations, and it is not clear how to devise
meaningful randomized solutions to such abstractions. For other abstractions, such
solutions may exist but devising them is still an active area of research. This is, for
instance, the case for randomized solutions to the shared memory abstractions we
consider in Chap. 4.

2.7.2 Setup

In all system models considered here, the identities of all processes are defined
before the execution begins and must be known globally. In practice, they are either
configured though a manual process by an administrator or installed automatically
by a membership service, which itself must be initialized.

The cryptographic abstractions also require keys to be distributed according
to the identities of all processes. For instance, a MAC requires one shared sym-
metric key for every pair of processes; a digital signature scheme requires one
public/private key pair for every process such that only the process itself knows
its private key and all processes know the public keys of all others. Key distribution

2.7 Distributed-System Models 65

occurs outside the system model. In practice, a trusted agent distributes the neces-
sary keys during system setup, typically at the same time when the identities of the
processes in the system are defined.

2.7.3 Quorums

A recurring tool for designing fault-tolerant algorithms for a set of N processes are
quorums. A quorum is a set of processes with special properties.

A quorum in a system with N crash-fault process abstractions (according to the
fail-stop, fail-noisy, fail-silent, or fail-recovery system model) is any majority of
processes, i.e., any set of more than N/2 processes (equivalently, any set of �N+1

2
or more processes). Several algorithms rely on quorums and exploit the fact that
every two quorums overlap in at least one process. Note that even if f < N/2 pro-
cesses fail by crashing, there is always at least one quorum of noncrashed processes
in such systems.

In a system consisting of arbitrary-fault process abstractions, two majority quo-
rums may not intersect in a correct process. A Byzantine quorum tolerating f faults
is a set of more than (N + f)/2 processes (equivalently, any set of �N+f+1

2 or
more processes). Two Byzantine quorums always overlap in at least one correct
process. To see why this is the case, note that in any Byzantine quorum, there might
be f Byzantine processes. Every Byzantine quorum contains, thus, more than

N + f

2
− f =

N − f

2

correct processes. Two disjoint Byzantine quorums together would have more than

N − f

2
+

N − f

2
= N − f

correct members. But there are only N − f correct processes; hence, one correct
process must occur in both Byzantine quorums.

Algorithms that rely on Byzantine quorums often need to make progress after
obtaining some message from a Byzantine quorum of processes. Because up to f
faulty processes may not respond, there must exist at least a Byzantine quorum of
correct processes in the system, from which the desired response eventually arrives.
This condition is satisfied only when

N − f >
N + f

2
,

or equivalently when N > 3f , as simple manipulation shows. Therefore, algorithms
tolerating Byzantine faults usually require that only f < N/3 processes may fail.

2.7.4 Measuring Performance

When we present a distributed algorithm that implements a given abstraction, we
analyze its cost mainly using two metrics: (1) the number of messages required

66 2 Basic Abstractions

to terminate an operation of the abstraction, and (2) the number of communication
steps required to terminate such an operation. For some algorithms, we evaluate also
(3) its total communication size, which is the sum of the lengths of all messages
sent by an algorithm. It is measured in bits. When evaluating the performance of
algorithms in a crash-recovery model, besides the number of communication steps
and the number of messages, we also consider (4) the number of accesses to stable
storage (or the “logging operations”).

In general, we count the messages, communication steps, and disk accesses in
specific executions of the algorithm, especially in failure-free executions. Such exe-
cutions are more likely to happen in practice and are those for which the algorithms
are optimized. It makes sense to plan for the worst, by providing means in the
algorithms to tolerate failures, and hope for the best, by optimizing the algorithms
for the case where failures do not occur. Algorithms that have their performance go
proportionally down when the number of failures increases are sometimes called
gracefully degrading algorithms.

Performance measurements are often stated in Big-O Notation, which provides
only an upper bound on the asymptotic behavior of the function when its argument
grows larger; usually the argument is N , the number of processes in the system.
More precisely, when a metric satisfies O(g(N)) for a function g, it means that for
all N bigger than some value N0, the measure is at most a constant times g(N)
in absolute value. In this case, the metric is said to be “on the order of g(N).” For
instance, a complexity of O(N) is also called linear in N , and a complexity of
O(N2) is called quadratic in N .

Precise performance studies help select the most suitable algorithm for a given
abstraction in a specific environment and conduct real-time analysis. Consider, for
instance, an algorithm that implements the abstraction of perfect communication
links, and hence ensures that every message sent by a correct process to a correct
process is eventually delivered by the latter. Note the implications of this property
on the timing guarantees: for every execution of the algorithm, and every message
sent in that execution, there is a time delay within which the message is eventually
delivered. The time delay is, however, defined a posteriori. In practice one would
require that messages be delivered within some time delay defined a priori, for every
execution and possibly every message. To determine whether a given algorithm pro-
vides this guarantee in a given environment, a careful performance study needs to
be conducted on the algorithm, taking into account various aspects of the environ-
ment, such as the operating system, the scheduler, and the network. Such studies are
out of the scope of this book. We present algorithms that are applicable to a wide
range of distributed systems, where bounded delays cannot be enforced, and where
specific infrastructure-related properties, such as real-time demands, are not strictly
required.

2.8 Exercises 67

2.8 Exercises

Exercise 2.1: Explain under which assumptions the fail-recovery and the fail-silent
models are similar in (note that in both models any process can commit omission
faults).

Exercise 2.2: The perfect point-to-point links abstraction allows messages from
one sender to arrive at a receiver in a different order than they were sent. Some
applications rely on first-in first-out (FIFO) order communication, however. Specify
a FIFO-order perfect point-to-point links abstraction which ensures, in addition to
the guarantees of perfect point-to-point links, that messages are not reordered.

Exercise 2.3: Provide an implementation of FIFO-order perfect point-to-point links
(Exercise 2.2) on top of perfect point-to-point links using sequence numbers.

Exercise 2.4: Does the following statement satisfy the synchronous-computation
assumption? On my server, no request ever takes more than 1 week to be processed.

Exercise 2.5: Can we implement the perfect failure-detector abstraction in a model
where the processes may commit omission faults and where we cannot bound the
number of such faults? What if this number is bounded but unknown? What if pro-
cesses that can commit omission faults commit a limited and known number of such
faults and then crash?

Exercise 2.6: In a fail-stop model, can we determine a priori a time period such
that, whenever a process crashes, all correct processes suspect this process to have
crashed after this period?

Exercise 2.7: In a fail-stop model, which of the following properties are safety
properties?

1. every process that crashes is eventually detected;
2. no process is detected before it crashes;
3. no two processes decide differently;
4. no two correct processes decide differently;
5. every correct process decides before t time units;
6. if some correct process decides then every correct process decides.

Exercise 2.8: Suppose an algorithm A implements a distributed programming
abstraction M using a failure detector D that is assumed to be eventually perfect.
Can A violate a safety property of M if D is not eventually perfect, for example,
when D permanently outputs the empty set?

Exercise 2.9: Specify a distributed programming abstraction M and an algo-
rithm A implementing M using a failure detector D that is supposed to satisfy a
set of properties, such that the liveness of M is violated if D does not satisfy its
properties.

68 2 Basic Abstractions

Exercise 2.10: Is there an algorithm that implements the leader-election abstrac-
tion with the eventually perfect failure detector?

2.9 Solutions

Solution 2.1: When processes crash, they lose the content of their volatile memory
and they commit omissions. If we assume (1) that processes do have stable storage
and store every update of their state in stable storage and (2) that processes are not
aware they have crashed and recovered then the two models are similar.

Solution 2.2: A specification of FIFO-order perfect point-to-point links is shown
in Module 2.11.

Module 2.11: Interface and properties of FIFO-order perfect point-to-point links
Module:

Name: FIFOPerfectPointToPointLinks, instance fpl.

Events:

Request: 〈 fpl, Send | q, m 〉: Requests to send message m to process q.

Indication: 〈 fpl, Deliver | p, m 〉: Delivers message m sent by process p.

Properties:

FPL1–FPL3: Same as properties PL1–PL3 of perfect point-to-point links (Mod-
ule 2.3).

FPL4: FIFO delivery: If some process sends message m1 before it sends mes-
sage m2, then no correct process delivers m2 unless it has already delivered m1.

Solution 2.3: Algorithm 2.11, “Sequence Number,” implements FIFO-order per-
fect point-to-point links on top of perfect point-to-point links.

Solution 2.4: The answer is yes. This is because the time it takes for the server to
process a request is bounded and known, 1 week.

Solution 2.5: It is impossible to implement a perfect failure-detector abstraction
if the number of omissions faults is unknown. Indeed, to guarantee the strong com-
pleteness property of the failure detector, a process p must detect the crash of another
process q after some timeout delay. No matter how this delay is chosen, it can exceed
the transmission delay times the number of omissions that q commits. This causes
a violation of the strong accuracy property of the failure detector. If the number of
possible omissions is known in a synchronous system, we can use it to calibrate the
timeout delay of the processes to accurately detect failures. If the delay exceeds the
maximum time during which a process can commit omission faults, without having
actually crashed, it can safely detect the process as having crashed.

2.9 Solutions 69

Algorithm 2.11: Sequence Number

Implements:
FIFOPerfectPointToPointLinks, instance fpl.

Uses:
PerfectPointToPointLinks, instance pl.

upon event 〈 fpl, Init 〉 do
forall p ∈ Π do

lsn[p] := 0;
next[p] := 1;

upon event 〈 fpl, Send | q, m 〉 do
lsn[q] := lsn[q] + 1;
trigger 〈 pl, Send | q, (m, lsn[q]) 〉;

upon event 〈 pl, Deliver | p, (m, sn) 〉 do
pending := pending ∪ {(p, m, sn)};
while exists (q, n, sn′) ∈ pending such that sn′ = next[q] do

next[q] := next[q] + 1;
pending := pending \ {(q, n, sn′)};
trigger 〈 fpl, Deliver | q, n 〉;

Solution 2.6: The answer is no, because the perfect failure detector only ensures
that processes that crash are eventually detected, but there is no bound on the time
it takes for these crashes to be detected. This demonstrates a fundamental differ-
ence between algorithms assuming a synchronous system and algorithms assuming
a perfect failure detector (fail-stop model). In a precise sense, a synchronous model
is strictly stronger.

Solution 2.7: We discuss each property separately.

1. Every process that crashes is eventually detected. This is a liveness property;
we can never exhibit a time t in some execution and state that the property is
violated. There is always the hope that eventually the failure detector detects the
crashes.

2. No process is detected before it crashes. This is a safety property. If a process is
detected at time t before it has crashed then the property is violated at time t.

3. No two processes decide differently. This is also a safety property, because it can
be violated at some time t and never be satisfied again.

4. No two correct processes decide differently. Since a correct process is a process
that never crashes and executes an infinite number of steps, the set of correct
processes is known a priori. Therefore, this property is also a safety property:
once two correct processes have decided differently in some partial execution,
no matter how we extend the execution, the property would not be satisfied.

5. Every correct process decides before t time units. This is a safety property: it can
be violated at some time during an execution, where all correct processes have

70 2 Basic Abstractions

executed t of their own steps. If violated at that time, there is no hope that it will
be satisfied again.

6. If some correct process decides then every correct process decides. This is a
liveness property: there is always the hope that the property is satisfied. It is
interesting to note that the property can actually be satisfied by having the pro-
cesses not do anything. Hence, the intuition that a safety property is one that is
satisfied by doing nothing may be misleading.

The conclusion in the last property is often stated more explicitly as . . . then every
correct process eventually decides. The presence of the word “eventually” usually
allows one to identify liveness properties.

Solution 2.8: The answer is no. Intuitively, the reason is that the eventually perfect
failure-detector abstraction may make mistakes before some arbitrary, but unknown
time t. If algorithm A were to violate a safety property before t, this violation could
not be corrected later.

More precisely, assume by contradiction that A violates some safety property
of M if D does not satisfy its properties. Because of the very nature of a safety
property, there is a time t and an execution R of the system such that the property
is violated at time t in R. Consider now a run R′ of A that is similar to R up to
time t, but the properties of the eventually perfect failure detector hold at some time
later than t. This is possible because D satisfies eventual accuracy and eventual
agreement conditions. Then A would also violate the same safety property of M in
R′, even if the failure detector is eventually perfect.

Solution 2.9: An example of such abstraction is simply the eventually perfect
failure detector itself. Note that such abstraction has no safety property.

Solution 2.10: Recall that the leader-election abstraction is defined with the fol-
lowing properties: (1) either there is no correct process or some correct process is
eventually the leader; and (2) if a process is leader then all previously elected lead-
ers have crashed. It is not possible to implement this abstraction with the eventually
perfect failure detector, as we discuss later.

Consider an execution R1 where no process fails; let p be the first process elected
leader, and let t be the time at which p first declares itself leader. Consider an
execution R2, similar to R1 until time t, but where p crashes right after time t. Due
to the first property of the leader-election abstraction, another process is eventually
elected. Denote that process by q, and let t′ > t be the time at which q first declares
itself leader. With an eventually perfect failure detector, and until time t′, there is
no way to distinguish such execution from one, which we denote by R3, where p is
actually correct (but whose messages got delayed until after t′). This execution R3

violates the specification of the leader-election abstraction (i.e., its second property).

2.10 Chapter Notes 71

2.10 Chapter Notes

• The notions of safety and liveness were singled out by Alpern and Schneider
(1985). It was shown that any property of a distributed system execution can be
viewed as a composition of a liveness and a safety property.

• The term fault is sometimes reserved for the known or suspected cause of a fail-
ure; similarly, a failure may mean only the observable deviation of an abstraction
from its specification. Because we do not further analyze the inside of process
failures, we adopt a loose interpretation of these terms here and often use the two
interchangeably.

• Lamport (1978) introduced the notions of causality and logical time; this is
probably the most influential work in the area of distributed computing.

• Pease, Shostak, and Lamport (1980) formulated the problem of agreement in the
presence of faults, as a way to abstract the underlying problems encountered dur-
ing the design of SIFT. A related but different abstraction for agreement was
presented later by Lamport, Shostak, and Pease (1982), assuming that processes
are subject to arbitrary faults. To motivate the question, the agreement problem
was formulated in terms of a Byzantine army, commanded by multiple generals
that communicated only by couriers, and where some limited number of gener-
als might be conspiring with the enemy. The term “Byzantine” has been used
ever since to denote faulty processes that deviate from their assigned program in
malicious and adversarial ways.

• Algorithms that assume processes can only fail by crashing and that every pro-
cess has accurate information about which processes have crashed have been
considered by Schneider, Gries, and Schlichting (1984). They called such pro-
cesses “fail-stop.” In later works, this system model has been formulated using
the notion of a perfect failure detector.

• Fischer, Lynch, and Paterson (1985) established the fundamental result that
no deterministic algorithm solves the consensus problem in an asynchronous
system, even if only one process fails and it can only do so by crashing.

• Dwork, Lynch, and Stockmeyer (1988) introduced intermediate timing models
that lie between the synchronous and the asynchronous model and showed how to
solve consensus under these assumptions. Systems with such timing assumption
have been called “partially synchronous.”

• The use of synchrony assumptions to build leasing mechanisms was explored
by Gray and Cheriton (1989).

• In two influential papers whose roots date back to 1991, it was observed that
for solving various problems, and in particular consensus, timing assumptions
were mainly used to detect process crashes (Chandra and Toueg 1996; Chandra,
Hadzilacos, and Toueg 1996). This observation led to the definition a failure-
detector abstraction that encapsulates timing assumptions. For instance, the very
fact that consensus can be solved in partially synchronous systems (Dwork,
Lynch, and Stockmeyer 1988) can be formulated in the terminology of failure
detectors by stating that consensus can be solved with unreliable failure detectors

72 2 Basic Abstractions

(i.e., with the eventually perfect failure detector). The eventual leader-detector
abstraction (Ω) also originates from this work.

• The idea of stubborn communication links was proposed by Guerraoui, Oliveria,
and Schiper (1998), as a pragmatic variant of perfect links for the fail-recovery
model, yet at a higher level than fair-loss links (Lynch 1996).

• The notion of an unreliable failure detector was precisely defined by Guerraoui
(2000). Algorithms that rely on such failure detectors have been called
“indulgent” (Guerraoui 2000; Dutta and Guerraoui 2005; Guerraoui and Raynal
2004).

• Aguilera, Chen, and Toueg (2000) extended the notion of failure detectors to the
fail-recovery model.

• As pointed out, for systems with fail-arbitrary processes, it is not possible to
define failure detectors independently of the algorithms that rely on them. In con-
trast to fail-stop processes, such failures are not context-free (Doudou, Garbinato,
and Guerraoui 2005).

• Public-key cryptography and the concept of digital signatures were invented by
Diffie and Hellman (1976). The first practical implementation of digital signa-
tures and the most widely used one until today is the RSA algorithm, discovered
shortly afterward (Rivest, Shamir, and Adleman 1978).

• Comprehensive information on implementing cryptographic primitives is given
in the classic book of Menezes, van Oorschot, and Vanstone (1997). Modern
cryptography is formalized using notions from complexity theory. Goldreich
(2004) presents a thorough mathematical treatment of the field.

• In practice, the authenticated perfect links abstraction can be implemented by
the TLS protocol on the Internet or by using so-called tunnels constructed with
the secure shell (SSH) protocol. These protocols protect the confidentiality and
integrity of transported messages; for providing authenticated links, encryption
is not needed and might be turned off to improve performance.

• This book uses only idealized abstract cryptographic primitives, as first formu-
lated by Dolev and Yao (1983). A model using only abstractions of cryptography
to reason about algorithms in distributed systems is often called a “Dolev-Yao
model.” Recent work has started to bridge the gap between Dolev-Yao models
and complexity-based formal models (Abadi and Rogaway 2002).

• Quorums have first been formalized to ensure consistency among the processes
in a distributed system by Thomas (1979) and by Gifford (1979). Byzantine
quorums were introduced by Malkhi and Reiter (1998).

• Apart from the majority quorums considered here, there exist many other
quorum-system constructions, which also ensure that every two quorums over-
lap in at least one process. They can replace the majority quorums in the
algorithms in this book and sometimes also improve the performance of these
algorithms (Naor and Wool 1998).

3. Reliable Broadcast

He said: “I could have been someone”;
She replied: “So could anyone.”

(The Pogues)

This chapter covers broadcast communication abstractions. These are used to dis-
seminate information among a set of processes and differ according to the reliability
of the dissemination. For instance, best-effort broadcast guarantees that all correct
processes deliver the same set of messages if the senders are correct. Stronger forms
of reliable broadcast guarantee this property even if the senders crash while broad-
casting their messages. Even stronger broadcast abstractions are appropriate for the
arbitrary-fault model and ensure consistency with Byzantine process abstractions.

We will consider several related abstractions for processes subject to crash faults:
best-effort broadcast, (regular) reliable broadcast, uniform reliable broadcast, stub-
born broadcast, probabilistic broadcast, and causal broadcast. For processes in the
crash-recovery model, we describe stubborn broadcast, logged best-effort broad-
cast, and logged uniform reliable broadcast. Finally, for Byzantine processes, we
introduce Byzantine consistent broadcast and Byzantine reliable broadcast. For each
of these abstractions, we will provide one or more algorithms implementing it, and
these will cover the different models addressed in this book.

3.1 Motivation

3.1.1 Client–Server Computing

In traditional distributed applications, interactions are often established between two
processes. Probably the most representative of this sort of interaction is the now
classic client–server scheme. According to this model, a server process exports an
interface to several clients. Clients use the interface by sending a request to the
server and by later collecting a reply. Such interaction is supported by point-to-point
communication protocols. It is extremely useful for the application if such a protocol

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 3,
c© Springer-Verlag Berlin Heidelberg 2011

73

74 3 Reliable Broadcast

is reliable. Reliability in this context usually means that, under some assumptions
(which are, by the way, often not completely understood by most system design-
ers), messages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations of this
abstraction are reliable transport protocols such as TCP on the Internet. By using a
reliable point-to-point communication protocol, the application is free from dealing
explicitly with issues such as acknowledgments, timeouts, message retransmissions,
flow control, and a number of other issues that are encapsulated by the protocol
interface.

3.1.2 Multiparticipant Systems

As distributed applications become bigger and more complex, interactions are no
longer limited to bilateral relationships. There are many cases where more than
two processes need to operate in a coordinated manner. Consider, for instance, a
multiuser virtual environment where several users interact in a virtual space. These
users may be located at different physical places, and they can either directly interact
by exchanging multimedia information, or indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a process to
send a message within a group of processes, and make sure that the processes agree
on the messages they deliver. A naive transposition of the reliability requirement
from point-to-point protocols would require that no message sent to the group be
lost or duplicated, i.e., the processes agree to deliver every message broadcast to
them. However, the definition of agreement for a broadcast primitive is not a simple
task. The existence of multiple senders and multiple recipients in a group introduces
degrees of freedom that do not exist in point-to-point communication. Consider, for
instance, the case where the sender of a message fails by crashing. It may happen
that some recipients deliver the last message sent while others do not. This may lead
to an inconsistent view of the system state by different group members. When the
sender of a message exhibits arbitrary-faulty behavior, assuring that the recipients
deliver one and the same message is an even bigger challenge.

The broadcast abstractions in this book provide a multitude of reliability guar-
antees. For crash-stop processes they range, roughly speaking, from best-effort,
which only ensures delivery among all correct processes if the sender does not fail,
through reliable, which, in addition, ensures all-or-nothing delivery semantics, even
if the sender fails, to totally ordered, which furthermore ensures that the delivery of
messages follow the same global order, and terminating, which ensures that the pro-
cesses either deliver a message or are eventually aware that they should never deliver
the message.

For arbitrary-faulty processes, a similar range of broadcast abstractions exists.
The simplest one among them guarantees a form of consistency, which is not even
an issue for crash-stop processes, namely, to ensure that two correct processes, if
they deliver a messages at all, deliver the same message. The reliable broadcast
abstractions and total-order broadcast abstractions among arbitrary-faulty processes

3.2 Best-Effort Broadcast 75

additionally provide all-or-nothing delivery semantics and totally ordered delivery,
respectively.

In this chapter, we will focus on best-effort and reliable broadcast abstractions.
Stronger forms of broadcast will be considered in later chapters. The next three
sections present broadcast abstractions with crash-stop process abstractions. More
general process failures are considered afterward.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot operation,
to all processes in a system, including itself. We give here the specification and an
algorithm for a broadcast communication primitive with a weak form of reliability,
called best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is only on the sender.
Therefore, the remaining processes do not have to be concerned with enforcing
the reliability of received messages. On the other hand, no delivery guarantees are
offered in case the sender fails. Best-effort broadcast is characterized by the follow-
ing three properties depicted in Module 3.1: validity is a liveness property, whereas
the no duplication property and the no creation property are safety properties. They
descend directly from the corresponding properties of perfect point-to-point links.
Note that broadcast messages are implicitly addressed to all processes. Remember
also that messages are unique, that is, no process ever broadcasts the same message
twice and furthermore, no two processes ever broadcast the same message.

Module 3.1: Interface and properties of best-effort broadcast
Module:

Name: BestEffortBroadcast, instance beb.

Events:

Request: 〈 beb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 beb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

BEB1: Validity: If a correct process broadcasts a message m, then every correct
process eventually delivers m.

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

76 3 Reliable Broadcast

Algorithm 3.1: Basic Broadcast

Implements:
BestEffortBroadcast, instance beb.

Uses:
PerfectPointToPointLinks, instance pl.

upon event 〈 beb, Broadcast | m 〉 do
forall q ∈ Π do

trigger 〈 pl, Send | q, m 〉;

upon event 〈 pl, Deliver | p, m 〉 do
trigger 〈 beb, Deliver | p, m 〉;

3.2.2 Fail-Silent Algorithm: Basic Broadcast

We provide here algorithm “Basic Broadcast” (Algorithm 3.1) that implements best-
effort broadcast using perfect links. This algorithm does not make any assumption
on failure detection: it is a fail-silent algorithm. The algorithm is straightforward.
Broadcasting a message simply consists of sending the message to every process in
the system using perfect point-to-point links, as illustrated by Fig. 3.1 (in the figure,
white arrowheads represent request/indication events at the module interface and
black arrowheads represent message exchanges). The algorithm works because the
properties of perfect links ensure that all correct processes eventually deliver the
message, as long as the sender of a message does not crash.

Correctness. The properties of best-effort broadcast are trivially derived from the
properties of the underlying perfect point-to-point links. The no creation property
follows directly from the corresponding property of perfect links. The same applies
to no duplication, which relies in addition on the assumption that messages broad-
cast by different processes are unique. Validity is derived from the reliable delivery
property and the fact that the sender sends the message to every other process in the
system.

p

q

r

s

beb−deliver

beb−deliver

beb−deliver

beb−deliver

beb−broadcast

Figure 3.1: Sample execution of basic broadcast

3.3 Regular Reliable Broadcast 77

Performance. For every message that is broadcast, the algorithm requires a single
communication step and exchanges O(N) messages.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender does not
fail. If the sender fails, some processes might deliver the message and others might
not deliver it. In other words, they do not agree on the delivery of the message.
Actually, even if the process sends a message to all processes before crashing, the
delivery is not ensured because perfect links do not enforce the delivery when the
sender fails. Ensuring agreement even when the sender fails is an important property
for many practical applications that rely on broadcast. The abstraction of (regular)
reliable broadcast provides exactly this stronger notion of reliability.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that the correct
processes agree on the set of messages they deliver, even when the senders of
these messages crash during the transmission. It should be noted that a sender may
crash before being able to transmit the message, in which case no process will del-
iver it. The specification of reliable broadcast in Module 3.2 extends the properties
of the best-effort broadcast abstraction (Module 3.1) with a new liveness property
called agreement. The other properties remain unchanged (but are repeated here
for completeness). The very fact that agreement is a liveness property might seem

Module 3.2: Interface and properties of (regular) reliable broadcast
Module:

Name: ReliableBroadcast, instance rb.

Events:

Request: 〈 rb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 rb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

RB1: Validity: If a correct process p broadcasts a message m, then p eventually
delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

RB4: Agreement: If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

78 3 Reliable Broadcast

counterintuitive, as the property can be achieved by not having any process ever
deliver any message. Strictly speaking, it is, however, a liveness property as it can
always be ensured in extensions of finite executions. We will see other forms of
agreement that are safety properties later in the book.

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

We now show how to implement regular reliable broadcast in a fail-stop model.
In our algorithm, depicted in Algorithm 3.2, which we have called “Lazy Reliable
Broadcast,” we make use of the best-effort broadcast abstraction described in the
previous section, as well as the perfect failure detector abstraction P introduced
earlier.

Algorithm 3.2: Lazy Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 rb, Init 〉 do
correct := Π;
from[p] := [∅]N ;

upon event 〈 rb, Broadcast | m 〉 do
trigger 〈 beb, Broadcast | [DATA, self, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, s, m] 〉 do
if m �∈ from[s] then

trigger 〈 rb, Deliver | s, m 〉;
from[s] := from[s] ∪ {m};
if s �∈ correct then

trigger 〈 beb, Broadcast | [DATA, s, m] 〉;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};
forall m ∈ from[p] do

trigger 〈 beb, Broadcast | [DATA, p, m] 〉;

To rb-broadcast a message, a process uses the best-effort broadcast primitive to
disseminate the message to all. The algorithm adds some implementation-specific
parameters to the exchanged messages. In particular, its adds a message descriptor
(DATA) and the original source of the message (process s) in the message header.
The result is denoted by [DATA, s, m] in the algorithm. A process that receives
the message (when it beb-delivers the message) strips off the message header and
rb-delivers it immediately. If the sender does not crash, then the message will be

3.3 Regular Reliable Broadcast 79

rb-delivered by all correct processes. The problem is that the sender might crash. In
this case, the process that delivers the message from some other process detects that
crash and relays the message to all others. We note that this is a language abuse: in
fact, the process relays a copy of the message (and not the message itself).

At the same time, the process also maintains a variable correct, denoting the set
of processes that have not been detected to crash by P . Our algorithm is said to
be lazy in the sense that it retransmits a message only if the original sender has
been detected to have crashed. The variable from is an array of sets, indexed by the
processes in Π , in which every entry s contains the messages from sender s that
have been rb-delivered.

It is important to notice that, strictly speaking, two kinds of events can force a
process to retransmit a message. First, when the process detects the crash of the
source, and, second, when the process beb-delivers a message and realizes that the
source has already been detected to have crashed (i.e., the source is not anymore in
correct). This might lead to duplicate retransmissions when a process beb-delivers
a message from a source that fails, as we explain later. It is easy to see that a pro-
cess that detects the crash of a source needs to retransmit the messages that have
already been beb-delivered from that source. On the other hand, a process might
beb-deliver a message from a source after it detected the crash of that source: it is,
thus, necessary to check for the retransmission even when no new crash is detected.

Correctness. The no creation (respectively validity) property of our reliable broad-
cast algorithm follows from the no creation (respectively validity) property of the
underlying best-effort broadcast primitive. The no duplication property of reliable
broadcast follows from our use of a variable from that keeps track of the messages
that have been rb-delivered at every process and from the assumption of unique
messages across all senders. Agreement follows here from the validity property
of the underlying best-effort broadcast primitive, from the fact that every process
relays every message that it rb-delivers when it detects the sender, and from the use
of a perfect failure detector.

Performance. If the initial sender does not crash then the algorithm requires a single
communication step and O(N) messages to rb-deliver a message to all processes.
Otherwise, it may take O(N) steps and O(N2) messages in the worst case (if the
processes crash in sequence).

3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast

In the “Lazy Reliable Broadcast” algorithm (Algorithm 3.2), when the accuracy
property of the failure detector is not satisfied, the processes might relay messages
unnecessarily. This wastes resources but does not impact correctness. On the other
hand, we rely on the completeness property of the failure detector to ensure the
broadcast agreement. If the failure detector does not ensure completeness then the
processes might omit to relay messages that they should be relaying (e.g., messages
broadcast by processes that crashed), and hence might violate agreement.

80 3 Reliable Broadcast

Algorithm 3.3: Eager Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Uses:
BestEffortBroadcast, instance beb.

upon event 〈 rb, Init 〉 do
delivered := ∅;

upon event 〈 rb, Broadcast | m 〉 do
trigger 〈 beb, Broadcast | [DATA, self, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, s, m] 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
trigger 〈 rb, Deliver | s, m 〉;
trigger 〈 beb, Broadcast | [DATA, s, m] 〉;

In fact, we can circumvent the need for a failure detector (i.e., the need for its
completeness property) by adopting an eager scheme: every process that gets a mes-
sage relays it immediately. That is, we consider the worst case, where the sender
process might have crashed, and we relay every message. This relaying phase is
exactly what guarantees the agreement property of reliable broadcast. The resulting
algorithm (Algorithm 3.3) is called “Eager Reliable Broadcast.”

The algorithm assumes a fail-silent model and does not use any failure detec-
tor: it relies only on the best-effort broadcast primitive described in Sect. 3.2. In
Fig. 3.2, we illustrate how the algorithm ensures agreement even if the sender
crashes: process p crashes and its message is not beb-delivered by processes r and
by s. However, as process q retransmits the message, i.e., beb-broadcasts it, the
remaining processes also beb-deliver it and subsequently rb-deliver it. In our “Lazy

rb−deliver

rb−deliver

rb−broadcast

p

q

r

s

rb−deliver

rb−deliver

Figure 3.2: Sample execution of reliable broadcast with faulty sender

3.4 Uniform Reliable Broadcast 81

Reliable Broadcast” algorithm, process q will be relaying the message only after it
has detected the crash of p.

Correctness. All properties, except agreement, are ensured as in the “Lazy Reliable
Broadcast.” The agreement property follows from the validity property of the
underlying best-effort broadcast primitive and from the fact that every correct
process immediately relays every message it rb-delivers.

Performance. In the best case, the algorithm requires a single communication step
and O(N2) messages to rb-deliver a message to all processes. In the worst case,
should the processes crash in sequence, the algorithm may incur O(N) steps and
O(N2) messages.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require the correct processes to
deliver the same set of messages, regardless of what messages have been deliv-
ered by faulty processes. In particular, a process that rb-broadcasts a message might
rb-deliver it and then crash, before the best-effort broadcast abstraction can even
beb-deliver the message to any other process. Indeed, this scenario may occur in
both reliable broadcast algorithms that we presented (eager and lazy). It is thus pos-
sible that no other process, including correct ones, ever rb-delivers that message.
There are cases where such behavior causes problems because even a process that
rb-delivers a message and later crashes may bring the application into a inconsistent
state.

We now introduce a stronger definition of reliable broadcast, called uniform
reliable broadcast. This definition is stronger in the sense that it guarantees that the
set of messages delivered by faulty processes is always a subset of the messages
delivered by correct processes. Many other abstractions also have such uniform
variants.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation of its
agreement property. The specification is given in Module 3.3.

Uniformity is typically important if the processes interact with the external world,
e.g., print something on a screen, authorize the delivery of money through a bank
machine, or trigger the launch of a rocket. In this case, the fact that a process has
delivered a message is important, even if the process has crashed afterward. This is
because the process, before crashing, could have communicated with the external
world after having delivered the message. The processes that did not crash should
also be aware of that message having been delivered, and of the possible external
action having been performed.

Figure 3.3 depicts an execution of a reliable broadcast algorithm that is not uni-
form. Both processes p and q rb-deliver the message as soon as they beb-deliver

82 3 Reliable Broadcast

Module 3.3: Interface and properties of uniform reliable broadcast
Module:

Name: UniformReliableBroadcast, instance urb.

Events:

Request: 〈 urb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 urb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

URB1–URB3: Same as properties RB1–RB3 in (regular) reliable broadcast (Mod-
ule 3.2).

URB4: Uniform agreement: If a message m is delivered by some process (whether
correct or faulty), then m is eventually delivered by every correct process.

rb−deliverrb−broadcast

p

q

r

s

rb−deliver

Figure 3.3: Nonuniform reliable broadcast

it, but crash before they are able to relay the message to the remaining processes.
Still, processes r and s are consistent among themselves (neither has rb-delivered
the message).

3.4.2 Fail-Stop Algorithm: All-Ack Uniform Reliable Broadcast

Basically, our “Lazy Reliable Broadcast” and “Eager Reliable Broadcast” algo-
rithms do not ensure uniform agreement because a process may rb-deliver a message
and then crash. Even if this process has relayed its message to all processes (through
a best-effort broadcast primitive), the message might not reach any of the remaining
processes. Note that even if we considered the same algorithms and replaced the
best-effort broadcast abstraction with a reliable broadcast one, we would still not
implement a uniform broadcast abstraction. This is because a process may deliver a
message before relaying it to all processes.

Algorithm 3.4, named “All-Ack Uniform Reliable Broadcast,” implements uni-
form reliable broadcast in the fail-stop model. Basically, in this algorithm, a process

3.4 Uniform Reliable Broadcast 83

Algorithm 3.4: All-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.
PerfectFailureDetector, instance P .

upon event 〈 urb, Init 〉 do
delivered := ∅;
pending := ∅;
correct := Π;
forall m do ack[m] := ∅;

upon event 〈 urb, Broadcast | m 〉 do
pending := pending ∪ {(self, m)};
trigger 〈 beb, Broadcast | [DATA, self, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, s, m] 〉 do
ack[m] := ack[m] ∪ {p};
if (s, m) �∈ pending then

pending := pending ∪ {(s, m)};
trigger 〈 beb, Broadcast | [DATA, s, m] 〉;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

function candeliver(m) returns Boolean is
return (correct ⊆ ack[m]);

upon exists (s, m) ∈ pending such that candeliver(m) ∧ m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 urb, Deliver | s, m 〉;

delivers a message only when it knows that the message has been beb-delivered
and thereby seen by all correct processes. All processes relay the message once,
after they have seen it. Each process keeps a record of processes from which it has
already received a message (either because the process originally sent the message
or because the process relayed it). When all correct processes have retransmitted the
message, all correct processes are guaranteed to deliver the message, as illustrated
in Fig. 3.4.

The algorithm uses a variable delivered for filtering out duplicate messages and
a variable pending, used to collect the messages that have been beb-delivered and
seen, but that still need to be urb-delivered.

The algorithm also uses an array ack with sets of processes, indexed by all possi-
ble messages. The entry ack[m] gathers the set of processes that the process knows
have seen m. Of course, the array can be implemented with a finite amount of

84 3 Reliable Broadcast

urb−broadcast

p

q

r

s
urb−deliver

urb−deliver

urb−deliver

Figure 3.4: Sample execution of all-ack uniform reliable broadcast

memory by using a sparse representation. Note that the last upon statement of the
algorithm is triggered by an internal event defined on the state of the algorithm.

Correctness. The validity property follows from the completeness property of the
failure detector and from the validity property of the underlying best-effort broad-
cast. The no duplication property relies on the delivered variable to filter out
duplicates. No creation is derived from the no creation property of the underlying
best-effort broadcast. Uniform agreement is ensured by having each process wait to
urb-deliver a message until all correct processes have seen and relayed the message.
This mechanism relies on the accuracy property of the perfect failure detector.

Performance. When considering the number of communication steps, in the best
case, the algorithm requires two communication steps to urb-deliver a message to
all processes. In such scenario, in the first step it sends N messages and in the
second step N(N−1) messages, for a total of N2 messages. In the worst case, if the
processes crash in sequence, N + 1 steps are required. Therefore, uniform reliable
broadcast requires one step more to deliver a message than its regular counterpart.

3.4.3 Fail-Silent Algorithm: Majority-Ack Uniform Reliable Broadcast

The “All-Ack Uniform Reliable Broadcast” algorithm of Sect. 3.4.2 (Algorithm 3.4)
is not correct if the failure detector is not perfect. Uniform agreement would be
violated if accuracy is not satisfied and validity would be violated if completeness
is not satisfied.

We now give a uniform reliable broadcast algorithm that does not rely on a per-
fect failure detector but assumes a majority of correct processes, i.e., N > 2f if we
assume that up to f processes may crash. We leave it as an exercise to show why the
majority assumption is needed in the fail-silent model, without any failure detector.
Algorithm 3.5, called “Majority-Ack Uniform Reliable Broadcast,” is similar to
Algorithm 3.4 (“All-Ack Uniform Reliable Broadcast”) in the fail-silent model,
except that processes do not wait until all correct processes have seen a message,
but only until a majority quorum has seen and retransmitted the message. Hence, the
algorithm can be obtained by a small modification from the previous one, affecting
only the condition under which a message is delivered.

3.5 Stubborn Broadcast 85

Algorithm 3.5: Majority-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.

// Except for the function candeliver(·) below and for the absence of 〈 Crash 〉 events
// triggered by the perfect failure detector, it is the same as Algorithm 3.4.

function candeliver(m) returns Boolean is
return #(ack[m]) > N/2;

Correctness. The algorithm provides uniform reliable broadcast if N > 2f . The no
duplication property follows directly from the use of the variable delivered. The no
creation property follows from the no creation property of best-effort broadcast.

To argue for the uniform agreement and validity properties, we first observe that if
a correct process p beb-delivers some message m then p eventually urb-delivers m.
Indeed, if p is correct, and given that p beb-broadcasts m according to the algorithm,
then every correct process beb-delivers and hence beb-broadcasts m. As we assume
a majority of the processes to be correct, p eventually beb-delivers m from more
than N/2 processes and urb-delivers it.

Consider now the validity property. If a correct process p urb-broadcasts a mes-
sage m then p beb-broadcasts m, and hence p beb-delivers m eventually; according
to the above observation, p eventually also urb-delivers m. Consider now uniform
agreement, and let q be any process that urb-delivers m. To do so, q must have beb-
delivered m from a majority of the processes. Because of the assumption of a correct
majority, at least one correct process must have beb-broadcast m. Hence, all correct
processes eventually beb-deliver m by the validity property of best-effort broadcast,
which implies that all correct processes also urb-deliver m eventually according to
the observation made earlier.

Performance. The performance of the algorithm is similar to the performance of the
“All-Ack Uniform Reliable Broadcast” algorithm.

3.5 Stubborn Broadcast

This section presents a stubborn broadcast abstraction that works with crash-stop
process abstractions in the fail-silent system model, as well as with crash-recovery
process abstractions in the fail-recovery model.

3.5.1 Specification

The stubborn broadcast abstraction hides a retransmission mechanism and delivers
every message that is broadcast by a correct process an infinite number of times,

86 3 Reliable Broadcast

Module 3.4: Interface and properties of stubborn best-effort broadcast
Module:

Name: StubbornBestEffortBroadcast, instance sbeb.

Events:

Request: 〈 sbeb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 sbeb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

SBEB1: Best-effort validity: If a process that never crashes broadcasts a message m,
then every correct process delivers m an infinite number of times.

SBEB2: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

similar to its point-to-point communication counterpart. The specification of best-
effort stubborn broadcast is given in Module 3.4. The key difference to the best-
effort broadcast abstraction (Module 3.1) defined for fail-no-recovery settings lies
in the stubborn and perpetual delivery of every message broadcast by a process that
does not crash. As a direct consequence, the no duplication property of best-effort
broadcast is not ensured.

Stubborn broadcast is the first broadcast abstraction in the fail-recovery model
considered in this chapter (more will be introduced in the next two sections). As the
discussion of logged perfect links in Chap. 2 has shown, communication abstrac-
tions in the fail-recovery model usually rely on logging their output to variables in
stable storage. For stubborn broadcast, however, logging is not necessary because
every delivered message is delivered infinitely often; no process that crashes and
recovers finitely many times can, therefore, miss such a message.

The very fact that processes now have to deal with multiple deliveries is the
price to pay for saving expensive logging operations. We discuss a logged best-
effort broadcast in the next section, which eliminates multiple deliveries, but adds
at the cost of logging the messages.

The stubborn best-effort broadcast abstraction also serves as an example for
stronger stubborn broadcast abstractions, implementing reliable and uniform reli-
able stubborn broadcast variants, for instance. These could be defined and imple-
mented accordingly.

3.5.2 Fail-Recovery Algorithm: Basic Stubborn Broadcast

Algorithm 3.6 implements stubborn best-effort broadcast using underlying stubborn
communication links.

Correctness. The properties of stubborn broadcast are derived directly from the
properties of the stubborn links abstraction used by the algorithm. In particular,

3.6 Logged Best-Effort Broadcast 87

Algorithm 3.6: Basic Stubborn Broadcast

Implements:
StubbornBestEffortBroadcast, instance sbeb.

Uses:
StubbornPointToPointLinks, instance sl.

upon event 〈 sbeb, Recovery 〉 do
// do nothing

upon event 〈 sbeb, Broadcast | m 〉 do
forall q ∈ Π do

trigger 〈 sl, Send | q, m 〉;

upon event 〈 sl, Deliver | p, m 〉 do
trigger 〈 sbeb, Deliver | p, m 〉;

validity follows from the fact that the sender sends the message to every process in
the system.

Performance. The algorithm requires a single communication step for a process to
deliver a message, and exchanges at least N messages. Of course, the stubborn links
may retransmit the same message several times and, in practice, an optimization
mechanism is needed to acknowledge the messages and stop the retransmission.

3.6 Logged Best-Effort Broadcast

This section and the next one consider broadcast abstractions in the fail-recovery
model that rely on logging. We first discuss how fail-recovery broadcast algorithms
use stable storage for logging and then present a best-effort broadcast abstraction
and its implementation.

3.6.1 Overview

Most broadcast specifications we have considered for the fail-stop and fail-silent
models are not adequate for the fail-recovery model. As explained next, even the
strongest one of our specifications, uniform reliable broadcast, does not provide use-
ful semantics in a setting where processes that crash can later recover and participate
in the computation.

For instance, suppose a message m is broadcast by some process p. Consider
another process q, which should eventually deliver m. But q crashes at some instant,
recovers, and never crashes again; in the fail-recovery model, q is a correct process.
For a broadcast abstraction, however, it might happen that process q delivers m
and crashes immediately afterward, without having processed m, that is, before the
application had time to react to the delivery of m. When the process recovers later, it

88 3 Reliable Broadcast

Module 3.5: Interface and properties of logged best-effort broadcast
Module:

Name: LoggedBestEffortBroadcast, instance lbeb.

Events:

Request: 〈 lbeb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 lbeb, Deliver | delivered 〉: Notifies the upper layer of potential up-
dates to variable delivered in stable storage (which log-delivers messages according
to the text).

Properties:

LBEB1: Validity: If a process that never crashes broadcasts a message m, then
every correct process eventually log-delivers m.

LBEB2: No duplication: No message is log-delivered more than once.

LBEB3: No creation: If a process log-delivers a message m with sender s, then m
was previously broadcast by process s.

has no memory of m, because the delivery of m occurred asynchronously and could
not be anticipated. There should be some way for process q to find out about m
upon recovery, and for the application to react to the delivery of m. We have already
encountered this problem with the definition of logged perfect links in Sect. 2.4.5.

We adopt the same solution as for logged perfect links: the module maintains a
variable delivered in stable storage, stores every delivered messages in the variable,
and the higher-level modules retrieve the variable from stable storage to determine
the delivered messages. To notify the layer above about the delivery, the broadcast
abstraction triggers an event 〈 Deliver | delivered 〉. We say that a message m is
log-delivered from sender s whenever an event 〈 Deliver | delivered 〉 occurs such
that delivered contains a pair (s, m) for the first time. With this implementation,
a process that log-delivers a message m, subsequently crashes, and recovers again
will still be able to retrieve m from stable storage and to react to m.

3.6.2 Specification

The abstraction we consider here is called logged best-effort broadcast to emphasize
that it log-delivers messages by “logging” them to local stable storage. Its specifi-
cation is given in Module 3.5. The logged best-effort broadcast abstraction has the
same interface and properties as best-effort broadcast with crash-stop faults (Mod-
ule 3.1), except that messages are log-delivered instead of delivered. As we discuss
later, stronger logged broadcast abstractions (regular and uniform) can be designed
and implemented on top of logged best-effort broadcast.

3.6 Logged Best-Effort Broadcast 89

Algorithm 3.7: Logged Basic Broadcast

Implements:
LoggedBestEffortBroadcast, instance lbeb.

Uses:
StubbornPointToPointLinks, instance sl.

upon event 〈 lbeb, Init 〉 do
delivered := ∅;
store(delivered);

upon event 〈 lbeb, Recovery 〉 do
retrieve(delivered);
trigger 〈 lbeb, Deliver | delivered 〉;

upon event 〈 lbeb, Broadcast | m 〉 do
forall q ∈ Π do

trigger 〈 sl, Send | q, m 〉;

upon event 〈 sl, Deliver | p, m 〉 do
if (p, m) �∈ delivered then

delivered := delivered ∪ {(p, m)};
store(delivered);
trigger 〈 lbeb, Deliver | delivered 〉;

3.6.3 Fail-Recovery Algorithm: Logged Basic Broadcast

Algorithm 3.7, called “Logged Basic Broadcast,” implements logged best-effort
broadcast. Its structure is similar to Algorithm 3.1 (“Basic Broadcast”). The main
differences are the following:

1. The “Logged Basic Broadcast” algorithm uses stubborn best-effort links between
every pair of processes for communication. They ensure that every message that
is sent by a process that does not crash to a correct recipient will be delivered by
its recipient an infinite number of times.

2. The “Logged Basic Broadcast” algorithm maintains a log of all delivered mes-
sages. When a new message is received for the first time, it is added to the log,
and the upper layer is notified that the log has changed. If the process crashes and
later recovers, the upper layer is also notified (as it may have missed a notification
triggered just before the crash).

Correctness. The no creation property is derived from that of the underlying stub-
born links, whereas no duplication is derived from the fact that the delivery log is
checked before delivering new messages. The validity property follows from the
fact that the sender sends the message to every other process in the system.

Performance. The algorithm requires a single communication step for a process to
deliver a message, and exchanges at least N messages. Of course, stubborn links

90 3 Reliable Broadcast

may retransmit the same message several times and, in practice, an optimization
mechanism is needed to acknowledge the messages and stop the retransmission.
Additionally, the algorithm requires a log operation for each delivered message.

3.7 Logged Uniform Reliable Broadcast

In a manner similar to the crash-no-recovery case, it is possible to define both
reliable and uniform variants of best-effort broadcast for the fail-recovery setting.

3.7.1 Specification

Module 3.6 defines a logged uniform reliable broadcast abstraction, which is
appropriate for the fail-recovery model. In this variant, if a process (either cor-
rect or not) log-delivers a message (that is, stores the variable delivered containing
the message in stable storage), all correct processes should eventually log-deliver
that message. The interface is similar to that of logged best-effort broadcast and its
properties directly correspond to those of uniform reliable broadcast with crash-stop
processes (Module 3.3).

Module 3.6: Interface and properties of logged uniform reliable broadcast
Module:

Name: LoggedUniformReliableBroadcast, instance lurb.

Events:

Request: 〈 lurb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 lurb, Deliver | delivered 〉: Notifies the upper layer of potential up-
dates to variable delivered in stable storage (which log-delivers messages according
to the text).

Properties:

LURB1–LURB3: Same as properties LBEB1–LBEB3 in logged best-effort broad-
cast (Module 3.5).

LURB4: Uniform agreement: If a message m is log-delivered by some process
(whether correct or faulty), then m is eventually log-delivered by every correct
process.

3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack Uniform
Reliable Broadcast

Algorithm 3.8, called “Logged Majority-Ack Uniform Reliable Broadcast,”
implements logged uniform broadcast, assuming that a majority of the processes

3.7 Logged Uniform Reliable Broadcast 91

Algorithm 3.8: Logged Majority-Ack Uniform Reliable Broadcast

Implements:
LoggedUniformReliableBroadcast, instance lurb.

Uses:
StubbornBestEffortBroadcast, instance sbeb.

upon event 〈 lurb, Init 〉 do
delivered := ∅;
pending := ∅;
forall m do ack[m] := ∅;
store(pending, delivered);

upon event 〈 lurb, Recovery 〉 do
retrieve(pending, delivered);
trigger 〈 lurb, Deliver | delivered 〉;
forall (s, m) ∈ pending do

trigger 〈 sbeb, Broadcast | [DATA, s, m] 〉;

upon event 〈 lurb, Broadcast | m 〉 do
pending := pending ∪ {(self, m)};
store(pending);
trigger 〈 sbeb, Broadcast | [DATA, self, m] 〉;

upon event 〈 sbeb, Deliver | p, [DATA, s, m] 〉 do
if (s, m) �∈ pending then

pending := pending ∪ {(s, m)};
store(pending);
trigger 〈 sbeb, Broadcast | [DATA, s, m] 〉;

if p �∈ ack[m] then
ack[m] := ack[m] ∪ {p};
if #(ack[m]) > N/2 ∧ (s, m) �∈ delivered then

delivered := delivered ∪ {(s, m)};
store(delivered);
trigger 〈 lurb, Deliver | delivered 〉;

is correct. It log-delivers a message m from sender s by adding (s, m) to the deliv-
ered variable in stable storage. Apart from delivered, the algorithm uses two other
variables, a set pending and an array ack, with the same functions as in “All-Ack
Uniform Reliable Broadcast” (Algorithm 3.4). Variable pending denotes the mes-
sages that the process has seen but not yet lurb-delivered, and is logged. Variable
ack is not logged because it will be reconstructed upon recovery. When a message
has been retransmitted by a majority of the processes, it is log-delivered. Together
with the assumption of a correct majority, this ensures that at least one correct pro-
cess has logged the message, and this will ensure the retransmission to all correct
processes.

Correctness. Consider the agreement property and assume that some correct pro-
cess p log-delivers a message m. To do so, a majority of the processes must have

92 3 Reliable Broadcast

retransmitted the message. As we assume a majority of the processes is correct, at
least one correct process must have logged the message (in its variable pending).
This process will ensure that the message is eventually sbeb-broadcast to all correct
processes; all correct processes will hence sbeb-deliver the message and acknow-
ledge it. Hence, every correct process will log-deliver m. To establish the validity
property, assume some process p lurb-broadcasts a message m and does not crash.
Eventually, the message will be seen by all correct processes. As a majority of pro-
cesses is correct, these processes will retransmit the message and p will eventually
lurb-deliver m. The no duplication property is trivially ensured by the definition of
log-delivery (the check that (s, m) �∈ delivered before adding (s, m) to delivered
only serves to avoid unnecessary work). The no creation property is ensured by the
underlying links.

Performance. Suppose that some process lurb-broadcasts a message m. All correct
processes log-deliver m after two communication steps and two causally related
logging operations (the variable pending can be logged in parallel to broadcasting
the DATA message).

3.8 Probabilistic Broadcast

This section considers randomized broadcast algorithms, whose behavior is partially
determined by a controlled random experiment. These algorithms do not provide
deterministic broadcast guarantees but, instead, only make probabilistic claims
about such guarantees.

Of course, this approach can only be used for applications that do not require full
reliability. On the other hand, full reliability often induces a cost that is too high,
especially for large-scale systems or systems exposed to attacks. As we will see, it
is often possible to build scalable probabilistic algorithms that exploit randomization
and provide good reliability guarantees.

Moreover, the abstractions considered in this book can almost never be mapped
to physical systems in real deployments that match the model completely; some
uncertainty often remains. A system designer must also take into account a small
probability that the deployment fails due to such a mismatch. Even if the probabilis-
tic guarantees of an abstraction leave room for error, the designer might accept this
error because other sources of failure are more significant.

3.8.1 The Scalability of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability of broad-
cast in the presence of faulty processes (and/or links with omission failures), a
process needs to send messages to all other processes and needs to collect some
form of acknowledgment. However, given limited bandwidth, memory, and proces-
sor resources, there will always be a limit to the number of messages that each
process can send and to the acknowledgments it is able to collect in due time. If the

3.8 Probabilistic Broadcast 93

(a) (b)

Figure 3.5: Direct vs. hierarchical communication for sending messages and receiv-
ing acknowledgments

group of processes becomes very large (say, thousands or even millions of mem-
bers in the group), a process sending out messages and collecting acknowledgments
becomes overwhelmed by that task (see Fig. 3.5a). Such algorithms inherently do
not scale. Sometimes an efficient hardware-supported broadcast mechanism is avail-
able, and then the problem of collecting acknowledgments, also known as the ack
implosion problem, is the worse problem of the two.

There are several ways to make algorithms more scalable. One way is to use some
form of hierarchical scheme to send messages and to collect acknowledgments, for
instance, by arranging the processes in a binary tree, as illustrated in Fig. 3.5b.
Hierarchies can reduce the load of each process but increase the latency of the com-
munication protocol. Additionally, hierarchies need to be reconfigured when faults
occur (which may not be a trivial task), and even with this sort of hierarchies, the
obligation to send and receive information, directly or indirectly, to and from every
other process remains a fundamental scalability problem of reliable broadcast. In the
next section we discuss how randomized approaches can circumvent this limitation.

3.8.2 Epidemic Dissemination

Nature gives us several examples of how a randomized approach can implement a
fast and efficient broadcast primitive. Consider how an epidemic spreads through a
population. Initially, a single individual is infected; every infected individual will
in turn infect some other individuals; after some period, the whole population is
infected. Rumor spreading or gossiping uses exactly the same mechanism and has
proved to be a very effective way to disseminate information.

A number of broadcast algorithms have been designed based on this principle
and, not surprisingly, these are often called epidemic, rumor mongering, gossip, or
probabilistic broadcast algorithms. Before giving more details on these algorithms,
we first define the abstraction that they implement, which we call probabilistic
broadcast. To illustrate how algorithms can implement the abstraction, we assume
a model where processes can only fail by crashing.

94 3 Reliable Broadcast

Module 3.7: Interface and properties of probabilistic broadcast
Module:

Name: ProbabilisticBroadcast, instance pb.

Events:

Request: 〈 pb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 pb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

PB1: Probabilistic validity: There is a positive value ε such that when a correct pro-
cess broadcasts a message m, the probability that every correct process eventually
delivers m is at least 1 − ε.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

3.8.3 Specification

The probabilistic broadcast abstraction is depicted in Module 3.7. Its interface is the
same as for best-effort broadcast (Module 3.1), and also two of its three properties,
no duplication and no creation, are the same. Only the probabilistic validity property
is weaker than the ordinary validity property and accounts for a failure probability ε,
which is typically small.

As for previous communication abstractions introduced in this chapter, we
assume that messages are implicitly addressed to all processes in the system, i.e.,
the goal of the sender is to have its message delivered to all processes of a given
group, constituting what we call the system.

3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast

Algorithm 3.9, called “Eager Probabilistic Broadcast,” implements probabilistic
broadcast. The sender selects k processes at random and sends them the message.
In turn, each of these processes selects another k processes at random and forwards
the message to those processes, and so on. The parameter k is called the fanout of
a gossip algorithm. The algorithm may cause a process to send the message back
to the same process from which it originally received the message, or to send it to
another process that has already received the message.

Each step consisting of receiving a message and resending it is called a round of
gossiping. The algorithm performs up to R rounds of gossiping for each message.

The description of the algorithm uses a function picktargets(k), which takes the
fanout k as input and outputs a set of processes. It returns k random samples chosen
from Π \ {self} according to the uniform distribution without replacement. The

3.8 Probabilistic Broadcast 95

Algorithm 3.9: Eager Probabilistic Broadcast

Implements:
ProbabilisticBroadcast, instance pb.

Uses:
FairLossPointToPointLinks, instance fll.

upon event 〈 pb, Init 〉 do
delivered := ∅;

procedure gossip(msg) is
forall t ∈ picktargets(k) do trigger 〈 fll, Send | t, msg 〉;

upon event 〈 pb, Broadcast | m 〉 do
delivered := delivered ∪ {m};
trigger 〈 pb, Deliver | self, m 〉;
gossip([GOSSIP, self, m, R]);

upon event 〈 fll, Deliver | p, [GOSSIP, s, m, r] 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
trigger 〈 pb, Deliver | s, m 〉;

if r > 1 then gossip([GOSSIP, s,m, r − 1]);

function random(S) implements the random choice of an element from a set S for
this purpose. The pseudo code looks like this:

function picktargets(k) returns set of processes is
targets := ∅;
while #(targets) < k do

candidate := random(Π \ {self});
if candidate �∈ targets then

targets := targets ∪ {candidate};
return targets;

The fanout is a fundamental parameter of the algorithm. Its choice directly im-
pacts the performance of the algorithm and the probability of successful reliable
delivery (in the probabilistic validity property of probabilistic broadcast). A higher
fanout not only increases the probability of having the entire population infected but
also decreases the number of rounds required to achieve this. Note also that the al-
gorithm induces a significant amount of redundancy in the message exchanges: any
given process may receive the same message many times. A three-round execution
of the algorithm with fanout three is illustrated in Fig. 3.6 for a system consisting of
nine processes.

However, increasing the fanout is costly. The higher the fanout, the higher the
load imposed on each process and the amount of redundant information exchanged

96 3 Reliable Broadcast

(a) round 1 (b) round 2 (c) round 3

Figure 3.6: Epidemic dissemination or gossip (with fanout 3)

over the network. Therefore, to select the appropriate fanout value is of particular
importance. Note that there are runs of the algorithm where a transmitted message
may not be delivered to all correct processes. For instance, all processes that receive
the message directly from the sender may select exactly the same set of k target pro-
cesses and forward the message only to them, and the algorithm may stop there. In
such a case, if k is much smaller than N , not all processes will deliver the message.
As another example, there might be one process that is simply never selected by any
process and never receives the message. This translates into the fact that reliable
delivery is not guaranteed, that is, the probability that some process never delivers
the message is nonzero. But by choosing large enough values of k and R in relation
to N , this probability can be made arbitrarily small.

Correctness. The no creation and no duplication properties are immediate from the
underlying point-to-point links and from the use of the variable delivered.

For the probabilistic validity property, the probability that for a particular broad-
cast message, all correct processes become infected and deliver the message depends
on the fanout k and on the maximum number of rounds R.

We now derive a simple estimate of the probability that a particular correct pro-
cess delivers a message. Suppose that the underlying fair-loss links deliver every
message sent by the first infected correct process (i.e., the original sender) but no
further message; in other words, only the sender disseminates the broadcast mes-
sage. In every round, a fraction of γ = k/N processes become infected like this
(some may have been infected before). The probability that a given correct pro-
cess remains uninfected is at most 1 − γ. Hence, the probability that this process is
infected after R rounds is at least about E1 = 1 − (1 − γ)R.

Toward a second, more accurate estimate, we eliminate the simplification that
only one process infects others in a round. Suppose a fraction of d = (N − f)/N
processes are correct; assume further that in every round, the number of actually
infected processes is equal to their expected number. Denote the expected number
of infected and correct processes after round r by Ir. Initially, only the sender is
infected and I0 = 1. After round r for r > 0, we observe that Ir−1 correct processes
stay infected. Among the remaining N − Ir−1 processes, we expect that a fraction
of d is correct and a fraction of γ of them becomes infected:

3.8 Probabilistic Broadcast 97

0

 0.2

 0.4

 0.6

 0.8

1

0 5 10 15 20

P
ro

ba
bi

lit
y

of
 d

el
iv

er
y

Number of rounds (R)

E1
E2

Figure 3.7: Illustration of gossip delivery probability to one correct process using the
“Eager Probabilistic Broadcast” algorithm with R = 1, . . . , 20 rounds, in terms of
estimates E1 and E2 from the text

Ir = Ir−1 + dγ(N − Ir−1).

As all Ir processes infect others in round r +1, the infections in round r + 1 spread
about as fast as if one process would have infected the others during additional Ir

rounds. Summing this up over all R rounds, we obtain our second estimate: the
probability of some correct process being infected after R rounds is about

E2 = 1 − (1 − γ)
∑ R−1

r=0 Ir .

The two estimates E1 and E2 of the delivery probability for one process are plot-
ted in Fig. 3.7 for a system of N = 100 processes, assuming that f = 25 faulty
processes crash initially, and fanout k = 10.

Performance. The number of rounds needed for a message to be delivered by all
correct processes also depends on the fanout. Every round involves one communi-
cation step. The algorithm may send O(N) messages in every round and O(NR)
messages in total, after running for R rounds; generally, the number of messages
sent by the algorithm is dominated by the messages of the last round.

3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast

The “Eager Probabilistic Broadcast” algorithm described earlier uses only gossiping
to disseminate messages, where infected processes push messages to other pro-
cesses. A major disadvantage of this approach is that it consumes considerable
resources and causes many redundant transmissions, in order to achieve reliable
delivery with high probability. A way to overcome this limitation is to rely on epi-
demic push-style broadcast only in a first phase, until many processes are infected,

98 3 Reliable Broadcast

Algorithm 3.10: Lazy Probabilistic Broadcast (part 1, data dissemination)

Implements:
ProbabilisticBroadcast, instance pb.

Uses:
FairLossPointToPointLinks, instance fll;
ProbabilisticBroadcast, instance upb. // an unreliable implementation

upon event 〈 pb, Init 〉 do
next := [1]N ;
lsn := 0;
pending := ∅; stored := ∅;

procedure gossip(msg) is
forall t ∈ picktargets(k) do trigger 〈 fll, Send | t, msg 〉;

upon event 〈 pb, Broadcast | m 〉 do
lsn := lsn + 1;
trigger 〈 upb, Broadcast | [DATA, self, m, lsn] 〉;

upon event 〈 upb, Deliver | p, [DATA, s, m, sn] 〉 do
if random([0, 1]) > α then

stored := stored ∪ {[DATA, s, m, sn]};
if sn = next[s] then

next[s] := next[s] + 1;
trigger 〈 pb, Deliver | s, m 〉;

else if sn > next[s] then
pending := pending ∪ {[DATA, s, m, sn]};
forall missing ∈ [next[s], . . . , sn − 1] do

if no m′ exists such that [DATA, s, m′, missing] ∈ pending then
gossip([REQUEST, self, s, missing, R − 1]);

starttimer(Δ, s, sn);

and to switch to a pulling mechanism in a second phase afterward. Gossiping until,
say, half of the processes are infected is efficient. The pulling phase serves a backup
to inform the processes that missed the message in the first phase. The second phase
uses again gossip, but only to disseminate messages about which processes have
missed a message in the first phase. This idea works for scenarios where every
sender broadcasts multiple messages in sequence.

For describing an implementation of this idea in a compact way, we assume here
that the first phase is realized by an unreliable probabilistic broadcast abstraction,
as defined by Module 3.7, with a large probability ε that reliable delivery fails, in its
probabilistic validity property. Concretely, we expect that a constant fraction of the
processes, say, half of them, obtains the message after the first phase. The primitive
could typically be implemented on top of fair-loss links (as the “Eager Probabilistic
Broadcast” algorithm) and should work efficiently, that is, not cause an excessive
amount of redundant message transmissions.

Algorithm 3.10–3.11, called “Lazy Probabilistic Broadcast,” realizes probabilis-
tic broadcast in two phases, with push-style gossiping followed by pulling. The

3.8 Probabilistic Broadcast 99

Algorithm 3.11: Lazy Probabilistic Broadcast (part 2, recovery)

upon event 〈 fll, Deliver | p, [REQUEST, q, s, sn, r] 〉 do
if exists m such that [DATA, s, m, sn] ∈ stored then

trigger 〈 fll, Send | q, [DATA, s, m, sn] 〉;
else if r > 0 then

gossip([REQUEST, q, s, sn, r − 1]);

upon event 〈 fll, Deliver | p, [DATA, s, m, sn] 〉 do
pending := pending ∪ {[DATA, s, m, sn]};

upon exists [DATA, s, x, sn] ∈ pending such that sn = next[s] do
next[s] := next[s] + 1;
pending := pending \ {[DATA, s, x, sn]};
trigger 〈 pb, Deliver | s, x 〉;

upon event 〈 Timeout | s, sn 〉 do
if sn > next[s] then

next[s] := sn + 1;

algorithm assumes that each sender is transmitting a stream of numbered messages.
Message omissions are detected based on gaps in the sequence numbers of received
messages. Each message is disseminated using an instance upb of unreliable prob-
abilistic broadcast. Each message that is retained by a randomly selected set of
receivers for future retransmission. More precisely, every process that upb-delivers
a message stores a copy of the message with probability α during some maximum
amount of time. The purpose of this approach is to distribute the load of storing
messages for future retransmission among all processes.

Omissions can be detected using sequence numbers associated with messages.
The array variable next contains an entry for every process p with the sequence num-
ber of the next message to be pb-delivered from sender p. The process detects that it
has missed one or more messages from p when the process receives a message from
p with a larger sequence number than what it expects according to next[p]. When a
process detects an omission, it uses the gossip algorithm to disseminate a retrans-
mission request. If the request is received by one of the processes that has stored
a copy of the message then this process retransmits the message. Note that, in this
case, the gossip algorithm does not have to ensure that the retransmission request
reaches all processes with high probability: it is enough that the request reaches,
with high probability, one of the processes that has stored a copy of the missing
message. With small probability, recovery will fail. In this case, after a timeout with
delay Δ has expired, a process simply jumps ahead and skips the missed messages,
such that subsequent messages from the same sender can be delivered.

The pseudo code of Algorithm 3.10–3.11 uses again the function picktargets(k)
from the previous section. The function random([0, 1]) used by the algorithm returns
a random real number from the interval [0, 1]. The algorithm may invoke multiple
timers, where operation starttimer(Δ, parameters) starts a timer instance identified
by parameters with delay Δ.

100 3 Reliable Broadcast

Garbage collection of the stored message copies is omitted in the pseudo code for
simplicity. Note also that when a timeout for some sender s and sequence number sn
occurs, the pseudo code may skip some messages with sender s in pending that
have arrived meanwhile (be it through retransmissions or delayed messages from s)
and that should be processed; a more complete implementation would deliver these
messages and remove them from pending.

Correctness. The no creation and no duplication properties follow from the under-
lying point-to-point links and the use of sequence numbers.

The probability of delivering a message to all correct processes depends here on
the fanout (as in the “Eager Probabilistic Broadcast” algorithm) and on the reliabil-
ity of the underlying dissemination primitive. For instance, if half of the processes
upb-deliver a particular message and all of them were to store it (by setting α = 0)
then the first retransmission request to reach one of these processes will be suc-
cessful, and the message will be retransmitted. This means that the probability of
successful retransmission behaves like the probability of successful delivery in the
“Eager Probabilistic Broadcast” algorithm.

Performance. Assuming an efficient underlying dissemination primitive, the broad-
casting of a message is clearly much more efficient than in the “Eager Probabilistic
Broadcast” algorithm.

It is expected that, in most cases, the retransmission request message is much
smaller that the original data message. Therefore, this algorithm is also much more
resource-effective than the “Eager Probabilistic Broadcast” algorithm.

Practical algorithms based on this principle make a significant effort to optimize
the number of processes that store copies of each broadcast message. Not surpris-
ingly, the best results can be obtained if the physical network topology is taken into
account: for instance, in a wide-area system with processes in multiple LANs, an
omission in a link connecting a LAN with the rest of the system affects all pro-
cesses in that LAN. Thus, it is desirable to have a copy of the message in each LAN
(to recover from local omissions) and a copy outside the LAN (to recover from the
omission in the link to the LAN). Similarly, the retransmission procedure, instead
of being completely random, may search first for a copy in the local LAN and only
afterward at more distant processes.

3.9 FIFO and Causal Broadcast

So far, we have not considered any ordering guarantee among messages delivered by
different processes. In particular, when we consider a reliable broadcast abstraction,
messages can be delivered in any order by distinct processes.

In this section, we introduce reliable broadcast abstractions that deliver messages
according to first-in first-out (FIFO) order and according to causal order. FIFO
order ensures that messages broadcast by the same sender process are delivered in
the order in which they were sent. Causal order is a generalization of FIFO order
that additionally preserves the potential causality among messages from multiple
senders. These orderings are orthogonal to the reliability guarantees.

3.9 FIFO and Causal Broadcast 101

3.9.1 Overview

Consider the case of a distributed message board that manages two types of
information: proposals and comments on previous proposals. To make the inter-
face user-friendly, comments are depicted attached to the proposal they are referring
to. In order to make it highly available, it is natural to implement the board appli-
cation by replicating all the information to all participants. This can be achieved
through the use of a reliable broadcast primitive to disseminate both proposals and
comments.

With reliable broadcast, however, the following sequence of events is possible:
participant p broadcasts a message m1 containing a new proposal; then p changes
its mind and broadcasts a message m2 with a modification to its previous proposal;
because of message delays, another participant q delivers m2 before m1. It may be
difficult for participant q to understand m2 without the context of m1. Imposing a
FIFO order on the delivery of messages solves this problem because it requires
q delivers m1 before m2 as they are from the same sender. FIFO order can be
implemented by delaying the delivery of a message m from a given sender until
all messages that the sender has broadcast before m have been delivered.

Even when reliable broadcast implements FIFO order, the following execution
is still possible: participant p broadcasts a message m1 containing its new pro-
posal; participant q delivers m1 and disseminates a comment on m1 in message m2;
because of message delays, another participant r delivers m2 before m1. When par-
ticipant r delivers m2, it lacks the context of message m1 to properly interpret m2.
Message delivery in causal order prevents this. It could be implemented by delay-
ing the delivery of a message m2 until every message m1 that may have potentially
caused m2 (i.e., where m1 → m2) has been delivered.

3.9.2 FIFO-Order Specification

The specification of reliable broadcast does not state anything about the order in
which multiple messages are delivered. A FIFO-order is one of the simplest possi-
ble orderings and guarantees that messages from the same sender are delivered in
the same sequence as they were broadcast by the sender. Note, this does not affect
messages from different senders.

The FIFO-order (reliable) broadcast abstraction shown in Module 3.8 is
obtained from the (regular) reliable broadcast abstraction (Module 3.2) by extend-
ing it with the FIFO delivery property. A uniform variation of FIFO-order (reliable)
broadcast with causal order can be obtained in the same way. For brevity, we usually
skip the term “reliable” refer to a FIFO-order broadcast abstraction.

3.9.3 Fail-Silent Algorithm: Broadcast with Sequence Number

Algorithm 3.12, “Broadcast with Sequence Number,” implements FIFO-order reli-
able broadcast. Every process maintains a sequence number lsn for the frb-broadcast
messages, and rb-broadcasts the value lsn together with the message. The process

102 3 Reliable Broadcast

Module 3.8: Interface and properties of FIFO-order (reliable) broadcast
Module:

Name: FIFOReliableBroadcast, instance frb.

Events:

Request: 〈 frb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 frb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

FRB1–FRB4: Same as properties RB1–RB4 in (regular) reliable broadcast (Mod-
ule 3.2).

FRB5: FIFO delivery: If some process broadcasts message m1 before it broadcasts
message m2, then no correct process delivers m2 unless it has already delivered m1.

Algorithm 3.12: Broadcast with Sequence Number

Implements:
FIFOReliableBroadcast, instance frb.

Uses:
ReliableBroadcast, instance rb.

upon event 〈 frb, Init 〉 do
lsn := 0;
pending := ∅;
next := [1]N ;

upon event 〈 frb, Broadcast | m 〉 do
lsn := lsn + 1;
trigger 〈 rb, Broadcast | [DATA, self, m, lsn] 〉;

upon event 〈 rb, Deliver | p, [DATA, s, m, sn] 〉 do
pending := pending ∪ {(s, m, sn)};
while exists (s, m′, sn′) ∈ pending such that sn′ = next[s] do

next[s] := next[s] + 1;
pending := pending \ {(s, m′, sn′)};
trigger 〈 frb, Deliver | s, m′ 〉;

also maintains an array next, which contains an entry for every process p with the
sequence number of the next message to be frb-delivered from sender p. The process
buffers all messages received via the reliable broadcast primitive in a set pending and
frb-delivers them according to the sequence number assigned per the sender. (The
same mechanism is also found in the “Lazy Probabilistic Broadcast” algorithm.)

Correctness. Because the FIFO-order broadcast abstraction is an extension of
reliable broadcast, and because the algorithm uses a reliable broadcast primitive

3.9 FIFO and Causal Broadcast 103

directly, the algorithm satisfies the four basic properties (FRB1–FRB4) that also
define reliable broadcast.

The FIFO delivery property follows directly from the assignment of sequence
numbers to messages by every sender and from way that receivers buffer and frb-
deliver messages according to the sequence number assigned by the sender.

Performance. The algorithm does not add any messages to the reliable broadcast
primitive and only increases the message size by a marginal amount.

3.9.4 Causal-Order Specification

The causal order property for a broadcast abstraction ensures that messages are
delivered such that they respect all cause–effect relations. The happened-before
relation described earlier in this book (Sect. 2.5.1) expresses all such dependen-
cies. This relation is also called the causal order relation, when applied to messages
exchanged among processes and expressed by broadcast and delivery events. In this
case, we say that a message m1 may have potentially caused another message m2,
denoted as m1 → m2, if any of the following relations apply (see Fig. 3.8):

(a) some process p broadcasts m1 before it broadcasts m2;
(b) some process p delivers m1 and subsequently broadcasts m2; or
(c) there exists some message m′ such that m1 → m′ and m′ → m2.

Using the causal order relation, one can define a broadcast abstraction with a
causal delivery property, which states that all messages delivered by the broadcast
abstraction are delivered according to the causal order relation. There must be no
“holes” in the causal past, such that when a message is delivered, all messages that
causally precede it have already been delivered.

The causal-order (reliable) broadcast abstraction shown in Module 3.9 is
obtained from the (regular) reliable broadcast abstraction (Module 3.2) by extend-
ing it with a causal delivery property. A uniform variation of reliable broadcast with
causal order can be stated analogously. The causal-order uniform (reliable) broad-
cast abstraction is shown in Module 3.10 and extends the uniform reliable broadcast
abstraction (Module 3.3) with the causal delivery property. For brevity, we usually

m2

q

r

p
m1 m1

m’

m2

m1

m2

(a) (b) (c)

Figure 3.8: Causal order of messages

104 3 Reliable Broadcast

Module 3.9: Interface and properties of causal-order (reliable) broadcast
Module:

Name: CausalOrderReliableBroadcast, instance crb.

Events:

Request: 〈 crb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 crb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

CRB1–CRB4: Same as properties RB1–RB4 in (regular) reliable broadcast (Mod-
ule 3.2).

CRB5: Causal delivery: For any message m1 that potentially caused a message m2,
i.e., m1 → m2, no process delivers m2 unless it has already delivered m1.

Module 3.10: Interface and properties of causal-order uniform (reliable) broadcast
Module:

Name: CausalOrderUniformReliableBroadcast, instance curb.

Events:

Request: 〈 curb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 curb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

CURB1–CURB4: Same as properties URB1–URB4 in uniform reliable broadcast
(Module 3.3).

CURB5: Same as property CRB5 in causal-order broadcast (Module 3.9).

skip the term “reliable” and call the first one causal-order broadcast and the second
one causal-order uniform broadcast.

As is evident from the first condition of causal order, the causal delivery property
implies the FIFO order property in Module 3.8. Hence, a causal-order broadcast
primitive provides also FIFO-order reliable broadcast.

The reader might wonder at this point whether it also makes sense to consider
a causal-order best-effort broadcast abstraction, combining the properties of best-
effort broadcast with the causal delivery property. As we show through an exercise
at the end of the chapter, this would inherently be also reliable.

3.9.5 Fail-Silent Algorithm: No-Waiting Causal Broadcast

Algorithm 3.13, called “No-Waiting Causal Broadcast,” uses an underlying reliable
broadcast communication abstraction rb, accessed through an rb-broadcast request

3.9 FIFO and Causal Broadcast 105

Algorithm 3.13: No-Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event 〈 crb, Init 〉 do
delivered := ∅;
past := [];

upon event 〈 crb, Broadcast | m 〉 do
trigger 〈 rb, Broadcast | [DATA, past, m] 〉;
append(past, (self, m));

upon event 〈 rb, Deliver | p, [DATA, mpast, m] 〉 do
if m �∈ delivered then

forall (s, n) ∈ mpast do // by the order in the list
if n �∈ delivered then

trigger 〈 crb, Deliver | s, n 〉;
delivered := delivered ∪ {n};
if (s, n) �∈ past then

append(past, (s, n));
trigger 〈 crb, Deliver | p, m 〉;
delivered := delivered ∪ {m};
if (p, m) �∈ past then

append(past, (p, m));

and an rb-deliver indication. The same algorithm could be used to implement a
uniform causal broadcast abstraction, simply by replacing the underlying reliable
broadcast module by a uniform reliable broadcast module.

We call the algorithm no-waiting in the following sense: whenever a process
rb-delivers a message m, it crb-delivers m without waiting for further messages to
be rb-delivered. Each message m arrives as part of a DATA message together with a
control field mpast, containing a list of all messages that causally precede m in the
order these messages were delivered by the sender of m. When a pair (mpast, m) is
rb-delivered, the receiver first inspects mpast and crb-delivers all messages in mpast
that have not yet been crb-delivered; only afterward it crb-delivers m. In order to
disseminate its own causal past, each process p stores all the messages it has crb-
broadcast or crb-delivered in a local variable past, and rb-broadcasts past together
with every crb-broadcast message.

Variables past and mpast in the algorithm are lists of process/message tuples. An
empty list is denoted by [], the operation append(L, x) adds an element x at the end
of list L, and the operation remove(L, x) removes element x from L. The guard that
appears before each append operation after the process rb-delivers a DATA message
prevents that a message occurs multiple times in past.

106 3 Reliable Broadcast

p

q

r

s

crb−broadcast(m1)

[m1]

crb−broadcast(m2)

crb−deliver(m2)
crb−deliver(m1)

Figure 3.9: Sample execution of no-waiting causal broadcast

An important feature of Algorithm 3.13 is that the crb-delivery of a message is
never delayed in order to enforce causal order. Figure 3.9 illustrates this behavior.
Consider, for instance, process s that rb-delivers message m2. As m2 carries m1 in
its variable mpast, messages m1 and m2 are crb-delivered immediately, in causal
order. Finally, when s rb-delivers m1 from p, then m1 is discarded.

Correctness. The first four properties (CRB1–CRB4), which are also properties of
reliable broadcast, follow directly from the use of an underlying reliable broad-
cast primitive in the implementation of the algorithm, which crb-delivers a message
immediately upon rb-delivering it. The causal delivery property is enforced by
having every message carry its causal past and every process making sure that it
crb-delivers the causal past of a message before crb-delivering the message itself.

Performance. The algorithm does not add additional communication steps or send
extra messages with respect to the underlying reliable broadcast algorithm. How-
ever, the size of the messages grows linearly with time. In particular, the list past
may become extremely large in long-running executions, because it includes the
complete causal past of the process.

In the next subsection, we present a simple scheme to reduce the size of past. In
the exercises, we describe an alternative implementation based on FIFO-broadcast
with shorter causal past lists. We will later discuss an algorithm (“Waiting Causal
Broadcast”) that completely eliminates the need for exchanging past messages.

3.9.6 Fail-Stop Algorithm: Garbage-Collection of Causal Past

We now present a very simple optimization of the “No-Waiting Causal Broadcast”
algorithm, depicted in Algorithm 3.14, to delete messages from the past variable.
Algorithm 3.14 assumes a fail-stop model: it uses a perfect failure detector. The alg-
orithm uses a distributed garbage-collection scheme and works as follows: when a
process rb-delivers a message m, the process rb-broadcasts an ACK message to all
processes; when an ACK message for message m has been rb-delivered from all
correct processes, then m is purged from past.

3.9 FIFO and Causal Broadcast 107

Algorithm 3.14: Garbage-Collection of Causal Past (extends Algorithm 3.13)

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb;
PerfectFailureDetector, instance P .

// Except for its 〈 Init 〉 event handler, the pseudo code of Algorithm 3.13 is also
// part of this algorithm.

upon event 〈 crb, Init 〉 do
delivered := ∅;
past := [];
correct := Π;
forall m do ack[m] := ∅;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon exists m ∈ delivered such that self �∈ ack[m] do
ack[m] := ack[m] ∪ {self};
trigger 〈 rb, Broadcast | [ACK, m] 〉;

upon event 〈 rb, Deliver | p, [ACK, m] 〉 do
ack[m] := ack[m] ∪ {p};

upon correct ⊆ ack[m] do
forall (s′, m′) ∈ past such that m′ = m do

remove(past, (s′, m));

This distributed garbage-collection scheme does not affect the correctness of the
“No-Waiting Causal Broadcast” algorithm, provided the strong accuracy property
of the failure detector holds. The algorithm purges a message only if this message
has been rb-delivered by all correct processes. If the completeness property of the
failure detector is violated then the only risk is to keep messages around that could
have been purged, but correctness is not affected.

In terms of performance, every acknowledgment message disseminated through
reliable broadcast adds O(N2) point-to-point messages to the network traffic. How-
ever, such acknowledgments can be grouped and disseminated in batch mode; as
they are not in main path of crb-delivering a message, the acknowledgments do not
slow down the causal-order broadcast algorithm.

Even with this optimization, the no-waiting approach might be considered too
expensive in terms of bandwidth. In the following, we present an approach that
tackles the problem at the expense of waiting.

108 3 Reliable Broadcast

Algorithm 3.15: Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event 〈 crb, Init 〉 do
V := [0]N ;
lsn := 0;
pending := ∅;

upon event 〈 crb, Broadcast | m 〉 do
W := V ;
W [rank(self)] := lsn;
lsn := lsn + 1;
trigger 〈 rb, Broadcast | [DATA, W, m] 〉;

upon event 〈 rb, Deliver | p, [DATA, W, m] 〉 do
pending := pending ∪ {(p, W, m)};
while exists (p′, W ′, m′) ∈ pending such that W ′ ≤ V do

pending := pending \ {(p′, W ′, m′)};
V [rank(p′)] := V [rank(p′)] + 1;
trigger 〈 crb, Deliver | p′, m′ 〉;

3.9.7 Fail-Silent Algorithm: Waiting Causal Broadcast

Algorithm 3.15, called “Waiting Causal Broadcast,” implements causal-order broad-
cast without storing and disseminating any extra, causally related messages. Like
Algorithm 3.13 (“No-Waiting Causal Broadcast”), it relies on an underlying reliable
broadcast abstraction rb for communication, accessed through an rb-broadcast
request and an rb-deliver indication.

An instance crb of Algorithm 3.15 does not keep a record of all past messages as
in Algorithm 3.13. Instead, it represents the past with a vector of sequence numbers,
more precisely, with an array V of N integers called a vector clock. The vector
captures the causal precedence between messages. In particular, entry V [rank(q)]
corresponds to process q, using the rank() function from Sect. 2.1 that maps the
processes to the integers between 1 and N .

Every process p maintains a vector clock V such that entry V [rank(q)] repre-
sents the number of messages that p has crb-delivered from process q; additionally,
it maintains a local sequence number lsn, denoting the number of messages that p
has itself crb-broadcast. Process p then adds V , with V [rank(p)] replaced by lsn,
to every crb-broadcast message m. When a process q rb-delivers some vector W
and message m, where m was sent by process s, it compares W to its own vec-
tor clock. The difference at index rank(s) between the vectors tells process p how

3.9 FIFO and Causal Broadcast 109

p

q

r

s

crb−deliver(m1)
crb−deliver(m2)

[0,0,0,0]

crb−broadcast(m1)

[1,0,0,0]

crb−broadcast(m2)

Figure 3.10: Sample execution of waiting causal broadcast

many messages are missing from process s. Process p needs to crb-deliver all these
messages before it can crb-deliver m.

As the name “Waiting Causal Broadcast” indicates a process may have to wait
sometimes before crb-delivering a message that it has already rb-delivered. This is
the price to pay for limiting the size of the messages. Using the above description,
it is indeed possible that process p cannot immediately crb-deliver message m after
it is rb-delivered because W [rank(p′)] > V [rank(p′)] for some process p′ (which
might be s, if rb-delivered messages from s were reordered). Hence, process p waits
until the messages from p′ that precede m in causal order have been rb-delivered
and crb-delivered. On the other hand, it is possible that the rb-delivery of a single
message triggers the crb-delivery of several messages that were already waiting to
be crb-delivered.

As before, we use the notation [x]N for any symbol x as an abbreviation for the
N -vector [x, . . . , x]. For comparing two N -vectors of integers v and w, we say that
v ≤ w whenever it holds for every i = 1, . . . , N that v[i] ≤ w[i].

Figure 3.10 shows an example of how a process has to wait. Process s rb-delivers
message m2 before it rb-delivers message m1. But, it cannot crb-deliver m2 imme-
diately and has to wait until m1 is rb-delivered. Messages m1 and m2 are only then
crb-delivered in causal order. The figure shows the vector clock values broadcast
together with the message.

Correctness. For the validity property, consider a message m that is crb-broadcast
by some correct process p. According to the validity property of the underly-
ing reliable broadcast, p directly rb-delivers m. Consider the vector V ′ that is
rb-delivered together with m, which is taken from the vector clock V of p when it
has rb-broadcast m. Since V may only have increased meanwhile, it holds V ≥ V ′

and m is crb-delivered immediately.
The no duplication and no creation properties follow directly from the underlying

reliable broadcast abstraction.
To show agreement, consider a message m that is crb-delivered by some correct

process p. Because of the agreement property of the underlying reliable broadcast,

110 3 Reliable Broadcast

every correct process eventually rb-delivers m. According to the algorithm, and
again relying on the agreement property of the reliable broadcast, every correct
process also eventually rb-delivers every message that causally precedes m. Hence,
every correct process eventually crb-delivers m.

Consider now the causal order property. Recall that the vector clock V at a
process p stores the number of crb-delivered messages with sender q in entry
V [rank(q)]. Furthermore, process p assigns a sequence number (starting at 0) to
every message that it rb-broadcast in entry rank(p) of the attached vector. When
p rb-broadcasts a message m with attached vector W computed like this, then
W [rank(q)] messages from sender q causally precede m. But every receiver of m
also counts the number of messages that it has crb-delivered from sender q and waits
until V [rank(q)] such messages have been crb-delivered before crb-delivering m.

Performance. The algorithm does not add any additional communication steps or
messages to the underlying reliable broadcast algorithm. The size of the message
header is linear in the number of processes in the system.

Variant. Algorithm “Waiting Causal Broadcast” also implements causal-order uni-
form broadcast, when the underlying reliable broadcast primitive is replaced by a
uniform reliable broadcast primitive.

3.10 Byzantine Consistent Broadcast

For the first time in this book, we now consider an algorithm in the fail-arbitrary
system model, where processes are subject to Byzantine faults. This introduces
a number of complications for implementing the broadcast abstractions, but their
specifications remain similar.

3.10.1 Motivation

As Byzantine processes may deviate arbitrarily from the instructions that an
algorithm assigns to them, they may act as if they were deliberately preventing
the algorithm from reaching its goals. An algorithm must be prepared to tolerate
such behavior. For instance, all algorithms given earlier in this chapter for reliable
broadcast fail when a Byzantine process participates. A faulty sender may interfere
with the low-level best-effort broadcast primitive and cause the other processes to
deliver different messages, which violates the agreement or no duplication property
of reliable broadcast.

Most algorithms that realize primitives in the fail-arbitrary model rely on crypto-
graphic mechanisms, at least to implement the authenticated perfect links abstrac-
tion that is used by all of them. But, cryptography alone is seldom the solution for
tolerating Byzantine processes; often such algorithms are inherently more involved.
Note that in the above example of an arbitrary-faulty sender, asking the sender to
digitally sign every broadcast message does not help at all. As if the sender is faulty,
it may simply sign the two different messages.

3.10 Byzantine Consistent Broadcast 111

Like in the other system models, we distinguish between faulty and correct pro-
cesses in the fail-arbitrary model. The separation is static, in the sense that even if
a process is correct during some time when it participates in a distributed algorithm
and fails only much later, it is considered faulty. As one cannot make any state-
ments about the behavior of a Byzantine process, this distinction is also justified in
the fail-arbitrary system model.

As the discussion of uniform reliable broadcast has shown, it is sometimes useful
to take into account actions of faulty processes when only crash-stop or crash-
recovery process abstractions are concerned. But a Byzantine process abstraction
may act arbitrarily and no mechanism can guarantee anything that relates to its ac-
tions. Consequently, we do not define any “uniform” variants of primitives in the
fail-arbitrary model.

A new issue arises with processes subject to arbitrary faults, however. Consider
a “reliable broadcast” primitive. In the system models that only contain crash-stop
process abstractions, a typical agreement property states “if some correct process
delivers m, then every correct process eventually delivers m.” Because reliable
broadcast does not guarantee that messages are delivered in a specific order, this
property is already useful for an application, because it can interpret a message by
its sender and from its content. Even if multiple messages are delivered from the
same sender, the application can distinguish them by adding appropriate tags to the
messages when it broadcasts them. But in the fail-arbitrary model, a faulty sender is
not bound to properly tag the application messages and it may even pretend to have
broadcast any message. Hence, the notion of agreement for a reliable broadcast
primitive in the fail-arbitrary model has to be defined differently.

The approach taken here identifies every single instance of a reliable broadcast
in the fail-arbitrary model as an abstraction of its own. One instance only serves to
reach agreement on a single delivered message. We consider two broadcast-instance
primitives of this form, called Byzantine consistent broadcast and Byzantine reli-
able broadcast. Every such instance has a unique identifier and requires an a-priori
agreement on the sender.

Multiple broadcast instances can be combined to the higher-level notion of a
“reliable broadcast” with Byzantine faults, which we call Byzantine broadcast chan-
nel. We discuss a consistent and a reliable variant of Byzantine broadcast channels
in subsequent sections. As with other primitives in this book, when a high-level
algorithm invokes multiple instances of a low-level primitive, the implementation-
level messages generated by a primitive must be tagged by a suitable identifier and
sometimes the identifier must also be included in the cryptographic operations.

In practice, many algorithms implemented in the fail-arbitrary model collapse the
notions of instances and channels again, and distinguish multiple instances simply
by a sequence number and by their sender process.

3.10.2 Specification

A Byzantine consistent broadcast primitive solves one of the most basic agreement
problems in the fail-arbitrary model. Every instance of consistent broadcast has a

112 3 Reliable Broadcast

Module 3.11: Interface and properties of Byzantine consistent broadcast
Module:

Name: ByzantineConsistentBroadcast, instance bcb, with sender s.

Events:

Request: 〈 bcb, Broadcast |m 〉: Broadcasts a message m to all processes. Executed
only by process s.

Indication: 〈 bcb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

BCB1: Validity: If a correct process p broadcasts a message m, then every correct
process eventually delivers m.

BCB2: No duplication: Every correct process delivers at most one message.

BCB3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

BCB4: Consistency: If some correct process delivers a message m and another
correct process delivers a message m′, then m = m′.

designated sender process s, who broadcasts a message m. If the sender s is correct
then every correct process should later deliver m. If s is faulty then the primitive
ensures that every correct process delivers the same message, if it delivers one at all.
In other words, with a faulty sender, some correct processes may deliver a message
and others may not, but if two correct processes deliver a message, it is unique.
This property is called consistency. The Byzantine consistent broadcast abstraction
is shown in Module 3.13.

Note that consistency is a safety property; it is related to the agreement prop-
erty of reliable broadcast abstractions with crash-stop processes, but consistency
addresses a problem that does not arise with crash-stop processes, which always
follow their algorithm. We will see in Sect. 3.11 how to complement consistency
with a liveness property, such that the two properties together imply the equivalent
of an agreement property in the fail-arbitrary model.

It has been shown that implementing the Byzantine consistent broadcast abstrac-
tion (as well as most other abstractions in the fail-arbitrary model presented in this
book) requires that the number of faulty processes satisfies f < N/3.

3.10.3 Fail-Arbitrary Algorithm: Authenticated Echo Broadcast

This section presents the “Authenticated Echo Broadcast” algorithm shown in
Algorithm 3.16, a first implementation of Byzantine consistent broadcast. It relies
only on authenticated perfect links and exploits Byzantine quorums for guaranteeing
consistency; it, therefore, requires N > 3f .

3.10 Byzantine Consistent Broadcast 113

Algorithm 3.16: Authenticated Echo Broadcast

Implements:
ByzantineConsistentBroadcast, instance bcb, with sender s.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bcb, Init 〉 do
sentecho := FALSE;
delivered := FALSE;
echos := [⊥]N ;

upon event 〈 bcb, Broadcast | m 〉 do // only process s
forall q ∈ Π do

trigger 〈 al, Send | q, [SEND, m] 〉;

upon event 〈 al, Deliver | p, [SEND, m] 〉 such that p = s and sentecho = FALSE do
sentecho := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [ECHO, m] 〉;

upon event 〈 al, Deliver | p, [ECHO, m] 〉 do
if echos[p] = ⊥ then

echos[p] := m;

upon exists m �= ⊥ such that #
({p ∈ Π | echos[p] = m}) > N+f

2
and delivered = FALSE do

delivered := TRUE;
trigger 〈 bcb, Deliver | s, m 〉;

Specifically, an instance bcb of the algorithm uses two rounds of message
exchanges. In the first round, the sender s that bcb-broadcasts a message m dissemi-
nates m to all processes. In the second round, every process acts as a witness for the
message m that it has received from the sender and resends m in an ECHO message
to all others. When a process receives more than (N + f)/2 such ECHO messages
containing the same message m, it bcb-delivers m. This round of echos authen-
ticates a message m that was bcb-broadcast by s in the sense that the Byzantine
processes cannot cause a correct process to bcb-deliver a message m′ �= m.

As an example of how the algorithm works, consider the following execution
with N = 4 processes, shown in Fig. 3.11. The sender process p is faulty, i.e.,
Byzantine, and al-sends a SEND message containing some m to two correct pro-
cesses q and s, but not to process r, the remaining process in the system. As
processes q and s are correct, they al-send an ECHO message with m that they both
al-deliver. Process p al-sends an ECHO message with m to q and s, and an ECHO

message with m′ �= m to process r. Processes q and r receive enough ECHO mes-
sages and both bcb-deliver m, but process r does not bcb-deliver any message. No
matter what p sends to r, it will not bcb-deliver m′ or any other message different

114 3 Reliable Broadcast

p

q

r

s

bcb−broadcast

bcb−deliver

bcb−deliver

SEND ECHO

Figure 3.11: Sample execution of authenticated echo broadcast with faulty sender p

from m because that would require three ECHO messages with a content different
from m. But this is impossible, since processes q and s sent an ECHO message
containing m. Because process p is faulty, we ignore whether it bcb-delivers any
message.

Correctness. Algorithm 3.16 implements a Byzantine consistent broadcast abstrac-
tion for N > 3f . The validity property follows from the algorithm because if the
sender is correct, then every correct process al-sends an ECHO message and every
correct process al-delivers at least N − f of them. Because N − f > (N + f)/2
under the assumption that N > 3f , every correct process also bcb-delivers the
message m contained in the ECHO messages.

The no duplication and integrity properties are straightforward to verify from the
algorithm.

The consistency property follows from the observation that in order for a correct
process p to bcb-deliver some m, it needs to receive (i.e., to al-deliver) more than
(N + f)/2 ECHO messages containing m. A set of more than (N + f)/2 processes
corresponds to a Byzantine quorum of processes (Sect. 2.7.3). Recall that every two
Byzantine quorums overlap in at least one correct process. Consider a different cor-
rect process p′ that bcb-delivers some m′. As p′ has received a Byzantine quorum of
ECHO messages containing m′, and because the correct process in the intersection
of the two Byzantine quorums sent the same ECHO message to p and to p′, it follows
that m = m′.

Performance. The algorithm requires two communication steps to bcb-deliver a
message to all processes. Because the second step involves all-to-all commu-
nication, the algorithm uses O(N2) messages. Every low-level message on the
authenticated perfect links contains essentially only the broadcast message itself.

3.10.4 Fail-Arbitrary Algorithm: Signed Echo Broadcast

A second implementation of Byzantine consistent broadcast that we call “Signed
Echo Broadcast” is shown in Algorithm 3.17. It uses an authenticated perfect links
abstraction and a cryptographic digital signature scheme (Sect. 2.3.3).

3.10 Byzantine Consistent Broadcast 115

Algorithm 3.17: Signed Echo Broadcast

Implements:
ByzantineConsistentBroadcast, instance bcb, with sender s.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bcb, Init 〉 do
sentecho := FALSE;
sentfinal := FALSE;
delivered := FALSE;
echos := [⊥]N ; Σ := [⊥]N ;

upon event 〈 bcb, Broadcast | m 〉 do // only process s
forall q ∈ Π do

trigger 〈 al, Send | q, [SEND, m] 〉;

upon event 〈 al, Deliver | p, [SEND, m] 〉 such that p = s and sentecho = FALSE do
sentecho := TRUE;
σ := sign(self, bcb‖self‖ECHO‖m);
trigger 〈 al, Send | s, [ECHO, m, σ] 〉;

upon event 〈 al, Deliver | p, [ECHO, m, σ] 〉 do // only process s
if echos[p] = ⊥ ∧ verifysig(p, bcb‖p‖ECHO‖m, σ) then

echos[p] := m; Σ[p] := σ;

upon exists m �= ⊥ such that #
({p ∈ Π | echos[p] = m}) > N+f

2
and sentfinal = FALSE do

sentfinal := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [FINAL, m, Σ] 〉;

upon event 〈 al, Deliver | p, [FINAL, m, Σ] 〉 do
if #

({p ∈ Π |Σ[p] �= ⊥∧ verifysig(p, bcb‖p‖ECHO‖m, Σ[p])}) > N+f
2

and delivered = FALSE do
delivered := TRUE;
trigger 〈 bcb, Deliver | s, m 〉;

Compared to the “Authenticated Echo Broadcast” algorithm of the previous
section, it uses digital signatures and sends fewer messages over the underlying
authenticated links abstraction: only a linear number of messages instead of a
quadratic number (in N). The basic idea is the same, however, in that the sender s
first disseminates a message m to all processes and expects a Byzantine quorum of
processes to witness for the act of broadcasting m. In contrast to Algorithm 3.16, the
witnesses authenticate a request not by sending an ECHO message to all processes
but by signing a statement to this effect, which they return to the sender s. Process s
then collects a Byzantine quorum of these signed statements and relays them in a
third communication step to all processes.

116 3 Reliable Broadcast

p

q

r

s

bcb−deliver

bcb−broadcast

bcb−deliver

ECHO FINALSEND

Figure 3.12: Sample execution of signed echo broadcast with faulty sender p

A sample execution of “Authenticated Echo Broadcast” with a faulty sender p
is shown in Fig. 3.12. Processes q and s sign a statement that they “echo” the
message m received from p in instance bcb, and return the signature to p. Again,
processes q and s bcb-deliver the same message, and process r does not bcb-deliver
any message.

It is important to include the identifier bcb of the algorithm instance in the argu-
ment to the digital signature scheme; otherwise, a Byzantine process might transport
a signature issued by a correct process to a different context and subvert the guar-
antees of the algorithm there. Recall that the symbol ‖ stands for concatenating two
bit strings.

Correctness. Given a digital signature scheme and an authenticated perfect links
abstraction, Algorithm 3.17 implements a Byzantine consistent broadcast abstrac-
tion for N > 3f . The only difference to Algorithm 3.16 lies in replacing the ECHO

message that a process sends directly to all others by a digital signature that conveys
the same information indirectly and is transmitted via the sender. When one replaces
the necessary Byzantine quorum of valid signatures in the verification of the FINAL

message by a Byzantine quorum of al-delivered ECHO messages, the consistency
property follows from the same argument as in Algorithm 3.16. The other three
properties of Byzantine consistent broadcast are easily verified in the same way.

Performance. The “Signed Echo Broadcast” algorithm involves three communica-
tion steps to deliver a message m from the sender to all processes, which is one
more than the “Authenticated Echo Broadcast” algorithm uses. But, the number of
messages sent over the point-to-point links is only O(N) instead of O(N2).

3.11 Byzantine Reliable Broadcast

This section presents the second broadcast primitive in the fail-arbitrary system
model, called Byzantine reliable broadcast. An instance of the primitive only deals
with broadcasting one message. It can be seen as the fail-arbitrary equivalent of the

3.11 Byzantine Reliable Broadcast 117

reliable broadcast abstraction defined in Sect. 3.3 for crash-stop processes, when
the latter is restricted to one message. Implementing this primitive in a fail-arbitrary
system model with N processes requires that N > 3f .

3.11.1 Specification

The Byzantine consistent broadcast primitive introduced in the previous section
does not ensure agreement in the sense that a correct process delivers a message
if and only if every other correct process delivers a message. The Byzantine reliable
broadcast abstraction introduced here adds this guarantee by extending Byzantine
consistent broadcast with a totality property. The resulting specification is given in
Module 3.12. The interface of Byzantine reliable broadcast and its other properties
are the same as in Module 3.11.

Module 3.12: Interface and properties of Byzantine reliable broadcast
Module:

Name: ByzantineReliableBroadcast, instance brb, with sender s.

Events:

Request: 〈 brb, Broadcast |m 〉: Broadcasts a message m to all processes. Executed
only by process s.

Indication: 〈 brb, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

BRB1–BRB4: Same as properties BCB1–BCB4 in Byzantine consistent broadcast
(Module 3.11).

BRB5: Totality: If some message is delivered by any correct process, every correct
process eventually delivers a message.

Combining the consistency property (BRB4) and the totality property (BRB5)
into one yields an agreement property for a Byzantine broadcast primitive. It
requires exactly the same as the agreement property (RB4) of a (regular) reliable
broadcast abstraction.

3.11.2 Fail-Arbitrary Algorithm: Authenticated Double-Echo Broadcast

Not surprisingly, an algorithm implementing Byzantine reliable broadcast requires
more steps than an algorithm for Byzantine consistent broadcast. The “Authenti-
cated Double-Echo Broadcast” algorithm presented here is a direct extension of the
“Authenticated Echo Broadcast” algorithm that implements Byzantine consistent
broadcast; the pseudo code is shown in Algorithm 3.18.

118 3 Reliable Broadcast

Algorithm 3.18: Authenticated Double-Echo Broadcast

Implements:
ByzantineReliableBroadcast, instance brb, with sender s.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 brb, Init 〉 do
sentecho := FALSE;
sentready := FALSE;
delivered := FALSE;
echos := [⊥]N ;
readys := [⊥]N ;

upon event 〈 brb, Broadcast | m 〉 do // only process s
forall q ∈ Π do

trigger 〈 al, Send | q, [SEND, m] 〉;

upon event 〈 al, Deliver | p, [SEND, m] 〉 such that p = s and sentecho = FALSE do
sentecho := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [ECHO, m] 〉;

upon event 〈 al, Deliver | p, [ECHO, m] 〉 do
if echos[p] = ⊥ then

echos[p] := m;

upon exists m �= ⊥ such that #
({p ∈ Π | echos[p] = m}) > N+f

2
and sentready = FALSE do

sentready := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [READY, m] 〉;

upon event 〈 al, Deliver | p, [READY, m] 〉 do
if readys[p] = ⊥ then

readys[p] := m;

upon exists m �= ⊥ such that #
({p ∈ Π | readys[p] = m}) > f

and sentready = FALSE do
sentready := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [READY, m] 〉;

upon exists m �= ⊥ such that #
({p ∈ Π | readys[p] = m}) > 2f

and delivered = FALSE do
delivered := TRUE;
trigger 〈 brb, Deliver | s, m 〉;

3.11 Byzantine Reliable Broadcast 119

p

q

r

s

brb−deliver

brb−broadcast

brb−deliver

brb−deliver

brb−deliver

SEND ECHO READY

Figure 3.13: Failure-free execution of authenticated double-echo broadcast

The algorithm starts in the same way as “Authenticated Echo Broadcast” and
adds a second round of “echoing,” as its name already reveals. More precisely,
the sender first disseminates a message to all processes. Every process echoes the
message to all after receiving it from the sender. When a process has received a
Byzantine quorum of such echoes, it sends a READY message to all processes
that indicates its willingness to brb-deliver the message, given that enough other
processes are also willing. Once a process receives a total of 2f +1 such indications
in READY messages, it actually brb-delivers the message.

The algorithm contains one more mechanism: when a process receives only f +1
READY messages but has not sent a READY message yet, it also sends a READY

message. This step implements an amplification of the READY messages and is
crucial for the totality property.

Figure 3.13 shows a failure-free execution of “Authenticated Double-Echo
Broadcast” with a correct sender p. All processes brb-deliver the same message.

To see how the amplification step works, consider again the example execu-
tion of the “Authenticated Echo Broadcast” algorithm from Sect. 3.10.3. Suppose
that process p is the only correct process that al-sends a READY message con-
taining m, but correct process r somehow bcr-delivers m in the “Authenticated
Double-Echo Broadcast” algorithm. As r must have received three READY mes-
sages with m, at least process p and one other correct process must have al-sent
a READY message with m. These two processes are correct, thus, their READY

messages are also al-delivered by the third correct process, which then al-sends a
READY message according to the amplification step. Consequently, every correct
process bcr-delivers m because three correct processes have sent a READY message
containing m.

Correctness. Algorithm 3.18 implements a Byzantine reliable broadcast abstraction
whenever N > 3f . The validity, no duplication, and integrity properties follow from
the same arguments as in “Authenticated Echo Broadcast” (Algorithm 3.16).

For arguing about the consistency property, note that the consistency property
of Algorithm 3.16 implies that if some of the correct processes al-send a READY

message, they all do that with same contained message m. It is not possible that

120 3 Reliable Broadcast

the faulty processes introduce enough READY messages with a content different
from m.

Finally, the amplification step from f + 1 to 2f + 1 READY messages ensures
the totality property, as the example has already indicated. If some correct process
bcr-delivers some m, then at least f + 1 correct processes must have al-sent a
READY message containing m. As these processes are correct, every correct pro-
cess eventually al-sends a READY message with m by the amplification step or after
receiving enough ECHO messages. In either case, every correct process eventually
bcr-delivers m.

Performance. The algorithm incurs three communication steps, and two of them are
all-to-all message exchanges. In total, it uses O(N2) point-to-point messages for
broadcasting one message. Note that the algorithm uses only the authenticated links
abstraction that can be implemented with a MAC, but no computationally expensive
digital signatures.

3.12 Byzantine Broadcast Channels

The broadcast abstractions for the fail-arbitrary model introduced in the previ-
ous sections only deliver at most one message. On the other hand, the broadcast
abstractions for crash-stop processes considered earlier support an arbitrary num-
ber of messages. The abstraction of Byzantine broadcast channels introduced next
also delivers multiple messages and provides an equivalent to the reliable broadcast
abstractions for crash-stop processes.

3.12.1 Specifications

A Byzantine broadcast channel allows every process to broadcast messages by
triggering 〈 Broadcast 〉 events. Like its equivalent for crash-stop processes, the
abstraction supplies the name of the sender process p together with every delivered
message. In addition to that, it also outputs a label 	 that an application may use to
distinguish multiple roles that a message may play. We say that the channel delivers
a message m when it generates a 〈 Deliver | p, 	, m 〉 event. The label is an arbitrary
bit string that can be determined by the implementation, under the only condition
that the labels of all messages delivered on a channel for a particular sender are
unique. One can think of it as a per-sender sequence number.

We introduce two forms of Byzantine broadcast channels, a Byzantine consistent
(broadcast) channel and a Byzantine reliable (broadcast) channel, corresponding
to the consistent and reliable variations of single-message Byzantine broadcast
primitives. They are defined in Modules 3.13 and 3.14, respectively.

The properties in these two modules are extensions of the conditions for (single-
message) Byzantine consistent broadcast and Byzantine reliable broadcast, respec-
tively (Modules 3.11 and 3.12). In particular, the validity properties (BCCH1 and
BRCH1) are the same, and the no duplication, integrity, and consistency properties

3.12 Byzantine Broadcast Channels 121

Module 3.13: Interface and properties of Byzantine consistent channel
Module:

Name: ByzantineConsistentBroadcastChannel, instance bcch.

Events:

Request: 〈 bcch, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 bcch, Deliver | p, �, m 〉: Delivers a message m with label � broadcast
by process p.

Properties:

BCCH1: Validity: If a correct process p broadcasts a message m, then every correct
process eventually delivers m.

BCCH2: No duplication: For every process p and label �, every correct process
delivers at most one message with label � and sender p.

BCCH3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

BCCH4: Consistency: If some correct process delivers a message m with label �
and sender s, and another correct process delivers a message m′ with label � and
sender s, then m = m′.

Module 3.14: Interface and properties of Byzantine reliable channel
Module:

Name: ByzantineReliableBroadcastChannel, instance brch.

Events:

Request: 〈 brch, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 brch, Deliver | p, �, m 〉: Delivers a message m with label � broadcast
by process p.

Properties:

BRCH1–BRCH3: Same as properties BCCH1–BCCH3 of Byzantine consistent
channel (Module 3.13).

BRCH4: Agreement: If some correct process delivers a message m with label � and
sender s, then every correct process eventually delivers message m with label � and
sender s.

(BCCH2–BCCH4) of a Byzantine consistent channel require the same for every
particular label as the corresponding properties of the single-message abstraction
(BCB2–BCB4). The same applies to the no duplication and integrity properties
(BRCH2 and BRCH3) of a Byzantine reliable channel, and its agreement property

122 3 Reliable Broadcast

(BRCH4) combines the consistency and totality properties of the single-message
abstraction (BRB4 and BRB5).

3.12.2 Fail-Arbitrary Algorithm: Byzantine Consistent Channel

Implementing a Byzantine broadcast channel is straightforward, given the corre-
sponding Byzantine broadcast primitive. Algorithm 3.19, called “Byzantine Con-
sistent Channel,” invokes a sequence of broadcast primitives for every sender such
that exactly one is active at every instant. Recall that our module abstractions can
exist in multiple instances, which may also be initialized dynamically by an algo-
rithm. Algorithm 3.19 exploits that: it maintains a sequence number for every sender
and creates a sequence of instances of the Byzantine broadcast primitive for every
sender, identified by the sender and by the sequence number. As soon as a broadcast
primitive instance delivers a message, the algorithm advances the sequence number
and initializes the next instance.

This algorithm ignores the issue of cleaning up the used broadcast primitive
instances; this matters in practice and actual implementations have to take care of
this.

Correctness. It is easy to see that Algorithm 3.19 is correct because most of its
properties follow directly from the properties of the underlying Byzantine consistent
broadcast primitives. Using per-sender sequence numbers ensures the no duplication
consistency properties for every sender and every label.

Algorithm 3.19: Byzantine Consistent Channel

Implements:
ByzantineConsistentBroadcastChannel, instance bcch.

Uses:
ByzantineConsistentBroadcast (multiple instances).

upon event 〈 bcch, Init 〉 do
n := [0]N ;
ready := TRUE;
forall p ∈ Π do

Initialize a new instance bcb.p.n[p] of ByzantineConsistentBroadcast
with sender p;

upon event 〈 bcch, Broadcast | m 〉 such that ready = TRUE do
trigger 〈 bcb.self.n[self], Broadcast | m 〉;
ready := FALSE;

upon event 〈 bcb.p.n[p], Deliver | p, m 〉 do
trigger 〈 bcch, Deliver | p, n[p], m 〉;
n[p] := n[p] + 1;
Initialize a new instance bcb.p.n[p] of ByzantineConsistentBroadcast with sender p;
if p = self then

ready := TRUE;

3.12 Byzantine Broadcast Channels 123

3.12.3 Fail-Arbitrary Algorithm: Byzantine Reliable Channel

Algorithm 3.20, called “Byzantine Reliable Channel,” implements a Byzantine
reliable channel abstraction with the same approach as Algorithm 3.19, simply by
replacing Byzantine consistent broadcast with Byzantine reliable broadcast.

Algorithm 3.20: Byzantine Reliable Channel

Implements:
ByzantineReliableBroadcastChannel, instance brch.

Uses:
ByzantineReliableBroadcast (multiple instances).

// The algorithm is the same as Algorithm 3.19, with the only difference that it uses
// instances of ByzantineReliableBroadcast and not ByzantineConsistentBroadcast.

124 3 Reliable Broadcast

3.13 Exercises

Exercise 3.1: Consider a process p that rb-broadcasts a message m in the “Lazy
Reliable Broadcast” algorithm (Algorithm 3.2). Does the algorithm allow that p
rb-delivers m before beb-broadcasting it? If not, modify the algorithm such that it
is possible.

Exercise 3.2: Modify the “Lazy Reliable Broadcast” algorithm (Algorithm 3.2) to
reduce the number of messages sent in case of failures, by assuming that some
node(s) fail less often than others.

Exercise 3.3: Some of the algorithms given in this chapter have the processes con-
tinuously fill their different message buffers without emptying them. Modify them to
remove unnecessary messages from the following variables:

1. variable from[p] in the “Lazy Reliable Broadcast” algorithm (Algorithm 3.2);
2. variable delivered in all reliable broadcast algorithms;
3. variable pending in the “All-Ack Uniform Reliable Broadcast” algorithm (Algo-

rithm 3.4).

Exercise 3.4: What do we gain if we replace the underlying best-effort broadcast
primitive with a reliable broadcast primitive in the “Majority-Ack Uniform Reliable
Broadcast” algorithm (Algorithm 3.5)?

Exercise 3.5: Consider the “All-Ack Uniform Reliable Broadcast” algorithm
(Algorithm 3.4). What happens if the strong accuracy property of the perfect failure
detector is violated? What if its strong completeness property is violated?

Exercise 3.6: The “All-Ack Uniform Reliable Broadcast” algorithm in the fail-stop
model (Algorithm 3.4) can be viewed as an extension of the “Eager Reliable Broad-
cast” algorithm (Algorithm 3.3). Would we gain anything by devising a uniform
reliable broadcast algorithm that is an extension of the “Lazy Reliable Broadcast”
algorithm (Algorithm 3.2), i.e., can we have the processes not relay messages unless
they suspect the sender?

Exercise 3.7: Can we devise a uniform reliable broadcast algorithm with an even-
tually perfect failure detector but without assuming a majority of correct processes?

Exercise 3.8: The “All-Ack Uniform Reliable Broadcast” (Algorithm 3.4) and the
“Majority-Ack Uniform Reliable Broadcast” (Algorithm 3.5) require a process to
receive an acknowledgment from all nonfaulty or from a majority of the processes,
respectively, before they can deliver a message. The acknowledgment is needed
because when a process invokes the underlying best-effort broadcast and then
crashes, all components of the process are affected and stop (including the best-
effort broadcast module and any further underlying modules, such as the modules
that may implement perfect links). The unit of failure is a process, as discussed in
Sect. 2.2.

3.13 Exercises 125

For this exercise only, consider an idealized and nonrealistic system model,
where some component may invoke infallible lower-level components. In this model,
the unit of failure is not a process but a module. Describe an implementation
of uniform reliable broadcast that uses an infallible perfect point-to-point links
abstraction in this idealized model.

Exercise 3.9: Give the specification of a logged reliable broadcast abstraction in
the fail-recovery model (i.e., a weaker variant of Module 3.6) and an algorithm that
implements it (i.e., a simpler variant of “Logged Majority-Ack Uniform Reliable
Broadcast,” Algorithm 3.8).

Exercise 3.10: The “Eager Probabilistic Broadcast” algorithm (Algorithm 3.9)
assumes that the connectivity is the same among every pair of processes. In prac-
tice, it may happen that some processes are at shorter distances from each other
and connected by more reliable links than others. For instance, the underlying net-
work topology could be a set of local-area networks connected by long-haul links.
Propose methods to exploit the topology in gossip algorithms.

Exercise 3.11: Compare the causal delivery property of Module 3.9 with the fol-
lowing property: “If a process delivers messages m1 and m2, and m1 → m2, then
the process must deliver m1 before m2.”

Exercise 3.12: Can we devise a best-effort broadcast algorithm that satisfies the
causal delivery property without being a causal broadcast algorithm, i.e., without
satisfying the agreement property of a reliable broadcast?

Exercise 3.13: Can we devise a broadcast algorithm that does not ensure the causal
delivery property but only its nonuniform variant: “no correct process p delivers a
message m2 unless p has already delivered every message m1 such that m1 →
m2?”

Exercise 3.14: Suggest a modification of the garbage collection scheme for causal
broadcast to collect messages sooner than in the “Garbage-Collection of Causal
Past” algorithm (Algorithm 3.14).

Exercise 3.15: Design a “no-waiting” algorithm for causal broadcast, in which
the transmitted messages do not grow as large as in the “No-Waiting Causal Broad-
cast” algorithm (Algorithm 3.13), by using a FIFO-order broadcast abstraction.

Exercise 3.16: The Byzantine consistent broadcast abstraction has been imple-
mented twice: first, by Algorithm 3.16 “Authenticated Echo Broadcast” with O(N2)
messages and using authenticated point-to-point links and an underlying MAC and
second, by Algorithm 3.17 “Signed Echo Broadcast” with O(N) messages and
using a digital signature scheme. Construct an algorithm for Byzantine consistent
broadcast that needs only O(N) messages and relies on a MAC, but not on digital
signatures. It should only assume that N > 5f . What is its performance?

126 3 Reliable Broadcast

Exercise 3.17: Recall that communication size measures the lengths of all mes-
sages communicated by an algorithm. Compare the communication sizes of the three
Byzantine broadcast algorithms (Algorithms 3.16–3.18).

3.14 Solutions

Solution 3.1: In the “Lazy Reliable Broadcast” algorithm also the sender pro-
cess beb-broadcasts a message and subsequently beb-delivers the message before
rb-delivering it. The following simple modification changes this. Let a pro-
cess rb-deliver the messages as soon as it rb-broadcasts it, and make sure it adds
the rb-delivered message to the delivered set. The necessary change to the “Lazy
Reliable Broadcast” algorithm is shown in Algorithm 3.21.

Algorithm 3.21: Simple Optimization of Lazy Reliable Broadcast

upon event 〈 rb, Broadcast | m 〉 do
delivered := delivered ∪ {m};
trigger 〈 rb, Deliver | self, m 〉;
trigger 〈 beb, Broadcast | [DATA, self, m] 〉;

Solution 3.2: In the “Lazy Reliable Broadcast” algorithm, if a process p rb-broad-
casts a message and then crashes, O(N2) messages are relayed by the remaining
processes to retransmit the message of process p. This is because a process that
beb-delivers the message of p does not know whether the other processes have beb-
delivered this message or not. However, it would be sufficient in this case if only
one process relays the message of p.

To reduce the number of messages, one may rely on a specific process, called
the leader process 	, which does not fail often and is more likely to beb-deliver
messages. The links to and from this process are usually fast and very reliable,
and the process runs on a reliable computer. A process p then forwards its mes-
sages to the leader 	, which coordinates the broadcast to every other process. If the
leader is correct, every process will eventually beb-deliver and rb-deliver every mes-
sage. Otherwise, the algorithm reverts to the previous approach, and every process
is responsible for beb-broadcasting the messages that it beb-delivered.

Solution 3.3: We discuss each of the three message-buffer variables in the follow-
ing.

1. Consider the variable from[p] in the “Lazy Reliable Broadcast” algorithm. The
array from is used exclusively to store messages that are retransmitted in the
case that their sender has failed. Such messages can be removed as soon as they
have been retransmitted once. If the process q that retransmits them is correct,
they will eventually be beb-delivered. Otherwise, if q is faulty, it does not matter
that the other processes might not beb-deliver them.

3.14 Solutions 127

2. Consider the variable delivered in all reliable broadcast algorithms. Messages
cannot be removed from it. If a process crashes and its messages are retransmitted
by two different processes then a process might rb-deliver the same message
twice if it empties the delivered buffer in the meantime. This would violate the
no duplication property.
On the other hand, in practice the contents of delivered may be represented in a
more compact form if the sender assigns a local sequence number to all messages
that it rb-broadcasts, and every receiver additionally stores, for every sender s,
a maximal contiguous sequence number max[s], computed as follows. The
receiver inspects the sequence number of any message that it rb-delivers from s.
Once that all messages from s with a sequence number smaller than some
bound b have been rb-delivered, the process sets max[s] to b and purges all
messages sent by s with lower sequence numbers from delivered.

3. Consider the variable pending in the “All-Ack Uniform Reliable” broadcast
algorithm. Messages can actually be removed from it as soon as they have been
urb-delivered.

Solution 3.4: We gain nothing, because the “Majority-Ack Uniform Reliable Bro-
adcast” algorithm does not assume and, hence, never uses the agreement property
that is guaranteed by the reliable broadcast primitive.

Consider the following scenario, which illustrates the difference between using
best-effort broadcast and using reliable broadcast. A process p urb-broadcasts a
message and crashes. Suppose only one correct process q beb-delivers the mes-
sage. With a reliable broadcast primitive instead, all correct processes would deliver
the message. In the uniform reliable broadcast algorithm, q adds the message to
its variable pending and then beb-broadcasts it. Since q is correct, all correct pro-
cesses will deliver it, and thus, we have at least the same guarantee as if the original
transmission used a reliable broadcast primitive.

Solution 3.5: Consider a system of three processes: p, q, and r. Suppose that p urb-
broadcasts a message m. If strong completeness is not satisfied then p might never
urb-deliver m if either of q and r crashes and p never detects their crash or beb-
delivers m from them. Process p might wait indefinitely for them to relay m and the
algorithm may violate the validity property.

Assume now that strong accuracy is violated and p falsely suspects q and r to
have crashed. Process p eventually urb-delivers m. Assume that p crashes afterward.
It might be the case that q and r have never beb-delivered m and have no way
of knowing about m. Hence, they will not urb-deliver m, violating the uniform
agreement property.

Solution 3.6: The advantage of the lazy scheme is that processes do not need to
relay messages to ensure agreement if they do not suspect the sender to have
crashed. In a failure-free scenario, only N messages are needed for all the processes
to deliver a message. In the case of uniform reliable broadcast (without a major-
ity), a process can only deliver a message when it knows that all correct processes
have seen that message. Hence, the process needs some confirmation from all other

128 3 Reliable Broadcast

processes that they have seen the message. A lazy scheme would be of no benefit
here.

Solution 3.7: No, a majority of correct processes is necessary. We explain why
this is the case, using a system of four processes {p, q, r, s} by giving a so-called
partitioning argument. Suppose it could indeed be implemented in this system when
two out of the four processes may fail.

Consider an execution where process p urb-broadcasts a message m and assume
that r and s crash in that execution without receiving any message either from p or
from q. Because of the validity property of uniform reliable broadcast, there must
be a time t at which p urb-delivers message m.

Consider now an execution that is similar to this one except that p and q crash
right after time t, but r and s are correct. However, r and s have been falsely
suspected by the failure detector at p and q, which is possible because the failure
detector is only eventually perfect. In this execution, p has urb-delivered a mes-
sage m whereas r and s have no way of knowing about the existence of m and they
never urb-deliver it. This violates the uniform agreement property and shows that a
majority of correct processes is necessary.

Solution 3.8: Suppose an “IdealPerfectPointToPointLinks” module is available in
this idealized system model. The solution, shown in Algorithm 3.22, is almost the
same as the “Eager Reliable Broadcast” (Algorithm 3.3), which implements only
(regular) reliable broadcast. The sender sends the broadcast message to itself over
the ideal perfect links; upon delivering a message m over the ideal perfect links that
has not been delivered yet, it resends m to all processes and urb-delivers it.

Algorithm 3.22: Ideal Uniform Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Uses:
IdealPerfectPointToPointLinks, instance idealpl.

upon event 〈 urb, Init 〉 do
delivered := ∅;

upon event 〈 urb, Broadcast | m 〉 do
trigger 〈 idealpl, Send | self, [DATA, self, m] 〉;

upon event 〈 idealpl, Deliver | p, [DATA, s, m] 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
forall q ∈ Π do

trigger 〈 idealpl, Send | q, [DATA, s, m] 〉;
trigger 〈 urb, Deliver | s, m 〉;

3.14 Solutions 129

The uniform agreement property holds because every process sends m with
the infallible point-to-point links primitive before it urb-delivers m. The infallible
underlying module does not crash in this idealized model. If a process crashes, only
the broadcast module crashes. Any urb-delivered message will never be forgotten
by the ideal link module and will consequently be urb-delivered by every correct
process.

Solution 3.9: Module 3.15 defines a logged reliable broadcast abstraction. In this
variant, if a correct process log-delivers a message (i.e., stores the variable delivered
with the message in it), all correct processes should eventually log-deliver that mes-
sage. The only difference to Module 3.6 lies in the restriction of the fourth property
(agreement) so that it needs to hold only for correct processes.

Module 3.15: Interface and properties of logged reliable broadcast
Module:

Name: LoggedReliableBroadcast, instance lrb.

Events:

Request: 〈 lrb, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 lrb, Deliver | delivered 〉: Notifies the upper layer of potential updates
to variable delivered in stable storage (which log-delivers messages according to
the text).

Properties:

LRB1–LRB3: Same as properties LBEB1–LBEB3 in logged best-effort broadcast
(Module 3.5).

LRB4: Agreement: If a message m is log-delivered by some correct process, then
m is eventually log-delivered by every correct process.

Algorithm 3.23 implements logged reliable broadcast using an instance sbeb
of stubborn best-effort broadcast. To broadcast a message, a process simply sbeb-
broadcasts it; recall that this transmits the message to all processes over stubborn
links. When a message is sbeb-delivered for the first time, it is lrb-delivered and
sbeb-broadcast again to all processes. Upon recovery, a process retrieves the mes-
sages it has lrb-delivered and sends them to all other processes using stubborn
best-effort broadcast.
Correctness. Consider the agreement property and assume some correct process p
lrb-delivers a message m. If it does not crash then p sbeb-broadcasts the message
and all correct processes will sbeb-deliver the message, based on the properties of
the stubborn best-effort broadcast. If process p crashes, there is a time after which
p recovers and does not crash again, such that it retrieves m and sbeb-broadcasts m
to all processes. Again, all correct processes will sbeb-deliver the message based on
the properties of the stubborn best-effort broadcast. The validity property follows

130 3 Reliable Broadcast

Algorithm 3.23: Logged Eager Reliable Broadcast

Implements:
ReliableBroadcast, instance lrb.

Uses:
StubbornBestEffortBroadcast, instance sbeb.

upon event 〈 lrb, Init 〉 do
delivered := ∅;
store(delivered);

upon event 〈 lrb, Recovery 〉 do
retrieve(delivered);
trigger 〈 lrb, Deliver | delivered 〉;
forall (s, m) ∈ delivered do

trigger 〈 sbeb, Broadcast | [DATA, s, m] 〉;

upon event 〈 lrb, Broadcast | m 〉 do
trigger 〈 sbeb, Broadcast | [DATA, self, m] 〉;

upon event 〈 sbeb, Deliver | p, [DATA, s, m] 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
store(delivered);
trigger 〈 lrb, Deliver | delivered 〉;
trigger 〈 sbeb, Broadcast | [DATA, s, m] 〉;

directly from the stubborn best-effort broadcast. The no duplication property is triv-
ially ensured by the algorithm, whereas the no creation property is ensured by the
underlying broadcast abstraction.

Performance. Let m be any message that is lrb-broadcast by some process p.
All processes lrb-deliver m after one communication step. (If the stubborn link
from p to p short-cuts the network then p lrb-delivers m immediately, without any
communication step.)

Solution 3.10: One approach consists in assigning weights to the links connect-
ing processes. Weights reflect the reliability of the links. We could easily adapt
our algorithm to avoid excessive redundant transmission by gossiping through more
reliable links with lower probability. An alternative approach consists in organizing
the nodes in a hierarchy that reflects the network topology in order to reduce the
traffic across domain boundaries.

Solution 3.11: We need to compare the two following properties:

1. If a process delivers a message m2 then it must have delivered every message
m1 such that m1 → m2 (Module 3.9).

2. If a process delivers messages m1 and m2, and m1 → m2, then the process must
deliver m1 before m2 (Exercise 3.11).

3.14 Solutions 131

Property 1 says that any message m1 that causally precedes m2 must be delivered
before m2 if m2 is delivered. Property 2 says that any delivered message m1 that
causally precedes m2 must only be delivered before m2 if m2 is delivered.

Both properties are safety properties. In the first case, a process that delivers a
message m without having delivered a message that causally precedes m violates
the property and this is irremediable. In the second case, a process that delivers both
messages without respecting the causal precedence might violate the property and
this is also irremediable. The first property is, however, strictly stronger than the
second one. If the first property is satisfied then the second one is. However, it can
be the case that the second property is satisfied whereas the first one is not: a process
delivers a message m2 without ever delivering a message m1 that causally precedes
m1 (for instance, if m1 never reaches the process). Thus, the second property does
not satisfy the potential causality relation.

Solution 3.12: The answer is no. Assume by contradiction that some broadcast
algorithm ensures the causal delivery property and is not reliable but best-effort;
define an instance co of the corresponding abstraction, where processes co-broadcast
and co-deliver messages.

The only possibility for an algorithm to ensure the properties of best-effort broad-
cast but not those of reliable broadcast is to violate the agreement property: there
must be some execution of the algorithm where some correct process p co-delivers
a message m that some other process q does not ever co-deliver. Because the
algorithm is best-effort, this can only happen if the process s that co-broadcasts
the message is faulty.

Assume now that after co-delivering m, process p co-broadcasts a message m′.
Given that p is correct and that the broadcast is best-effort, all correct processes,
including q, will co-deliver m′. Given that m precedes m′ in causal order, q must
have co-delivered m as well, a contradiction. Hence, any best-effort broadcast that
satisfies the causal delivery property satisfies agreement and is, thus, also a reliable
broadcast.

Solution 3.13: The answer is no. Assume by contradiction that some algorithm
does not ensure the causal delivery property but ensures its nonuniform variant.
This means that the algorithm has some execution where some process p delivers
some message m without delivering a message m′ that causally precedes m. Given
that we assume a model where processes do not self-destruct, p might very well be
correct, in which case it violates even the nonuniform variant.

Solution 3.14: When removing a message m from the variable past, we can also
remove all the messages that causally precede this message, and then recursively
those that causally precede these. This means that a message stored in past must
be stored with its own, distinct “past.” This idea is similar to the approach taken
by the algorithm of Exercise 3.15, but the resulting algorithm is still different from
Algorithm 3.24 described there.

132 3 Reliable Broadcast

Solution 3.15: Algorithm 3.24, called “No-Waiting Causal Broadcast using FIFO
Broadcast,” implements causal-order broadcast with shorter messages than Algo-
rithm 3.13. The idea is that, instead of adding the complete causal past to every
message that is disseminated, it only adds the causal past collected since the last
disseminated message and uses FIFO-order reliable broadcast to disseminate them.

The algorithm also maintains a list of messages that have been crb-delivered in
a variable list. But in contrast to the variable past of Algorithm 3.13, list does not
grow forever and is reset to the empty list every time when a message m is crb-
broadcast. To simplify the notation, the algorithm appends also m to list and then
frb-broadcasts only list. When a process receives such a list through frb-delivery, it
inspects the list from the start to the end and crb-delivers every message that it has
not yet crb-delivered (which is at least m, at the end of the list).

Because the variable list that maintains the causal past of a message is reset
after every crb-broadcast message, the algorithm uses considerably shorter mes-
sages than Algorithm 3.13 in long runs. However, its causal delivery property only
holds because the underlying reliable broadcast abstraction provides FIFO delivery.

Algorithm 3.24: No-Waiting Causal Broadcast using FIFO Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
FIFOReliableBroadcast, instance frb.

upon event 〈 crb, Init 〉 do
delivered := ∅;
list := [];

upon event 〈 crb, Broadcast | m 〉 do
append(list, (self, m));
trigger 〈 frb, Broadcast | [DATA, list] 〉;
list := [];

upon event 〈 frb, Deliver | p, [DATA, mlist] 〉 do
forall (s, n) ∈ mlist do // by the order in the list

if n �∈ delivered then
trigger 〈 crb, Deliver | s, n 〉;
delivered := delivered ∪ {n};
if (s, n) �∈ list then

append(list, (s, n));

Solution 3.16: The solution uses the same communication pattern as the “Signed
Echo Broadcast” algorithm, in order to retain its total cost of O(N) messages. But,
every signature from a process is replaced by a vector of MACs, one for every

3.14 Solutions 133

other process. More precisely, whenever a process p is asked to issue a signature σ
on a bit string x, then it actually uses the MAC and calls authenticate(p, q, x) for
every process q ∈ Π , saves the returned authenticators in an array μ, and uses μ
instead of σ. Furthermore, whenever a process q is asked to verify a signature σ
on some x, then q accesses its authenticator μ[q] in the vector of MACs and calls
verifyauth(p, q, x, μ[q]) instead. After this change, the algorithm still uses the same
messages, but the ECHO and FINAL messages grow in length proportional to N .
Hence, the communication size of the algorithm grows by a factor of N .

The only difference between a signature and such a vector of MACs occurs for
authentication values generated by a Byzantine process: with digital signatures,
every correct process computes the validity in the same way and either accepts a
signature or not; but with a MAC vector μ generated by an arbitrary-faulty process,
some correct process may consider μ to be valid, and for another correct process,
the verification of μ may fail.

This drawback affects the liveness of the modified “Signed Echo Broadcast”
algorithm. With the stronger assumption of N > 5f , however, this issue has no
consequences. Specifically, it may be that a correct sender s sends a FINAL message
with more than (N + f)/2 authenticator vectors that are valid for s, but some of
these (up to f) turn out to be invalid at another correct process q. Hence, q would not
deliver the message and violate validity. To cope with this case, the sender receives
N − f properly authenticated ECHO messages and relays them to all processes in
the final step. Every process still accepts the FINAL message when it contains more
than (N + f)/2 valid authenticators and delivers its content.

This modified algorithm satisfies the validity property because a correct sender
has verified N − f authenticators, of which at least N − 2f must be from correct
processes. Hence, every other correct process obtains

N − 2f >
N + f

2

valid authenticators as well. The consistency property still follows from the same
argument as with the original “Signed Echo Broadcast,” because it only refers to
authenticators computed by correct processes.

Solution 3.17: In Algorithm 3.16, every message sent via the authenticated per-
fect links essentially contains only the input message m. Therefore, the algorithm
communicates a total of O(N2|m|) bits, where |m| denotes the length of m.

Algorithm 3.17 uses more communication steps but fewer messages overall than
Algorithm 3.16, namely only O(N) messages. But as the FINAL message contains
O(N) signatures, its total communication size is O(N |m| + N2k) bits, where k
denotes the length of a digital signature. This is comparable to Algorithm 3.16.

The total communication size of Algorithm 3.18 for broadcasting a message m
is O(N2|m|) bits. All three algorithms require quadratic communication size in N .

134 3 Reliable Broadcast

3.15 Chapter Notes

• Requirements for a reliable broadcast communication abstraction can already be
found in the work on SIFT (Wensley et al. 1978). An early work that formalizes
a reliable broadcast abstraction and implements it in the fail-stop model was
presented by Schneider, Gries, and Schlichting (1984).

• The use of reliable broadcast for distributed programming was popularized by
the ISIS system (Birman and Joseph 1987), which was used in a variety of
commercial applications.

• The ISIS system also included a causal broadcast abstraction, following the
notion of causality initially introduced by Lamport (1978). Our “No-Waiting
Causal Broadcast” algorithm was inspired by one of the earliest implementations
of causal broadcast included in ISIS. The “Waiting Causal Broadcast” algo-
rithm is based on the notion of vector clocks, which were introduced around
1988 (Fidge 1988; Ladin, Liskov, and Shrira 1990; Schwarz and Mattern 1994).
The most detailed description of the algorithm to Our Knowledge, including a
detailed proof of correctness, is given by Attiya and Welch (2004).

• The comprehensive survey of Hadzilacos and Toueg (1993) presents reliable
broadcast, FIFO broadcast, and causal broadcast abstractions and correspond-
ing implementations in a modular way. The algorithm in Exercise 3.15, which
implements causal broadcast from FIFO broadcast, is based on this work.

• The problem of the uniformity of a reliable broadcast primitive was discussed by
Hadzilacos (1984) and, then, further explored by Neiger and Toueg (1993).

• In this chapter, we presented algorithms that implement broadcast abstractions
where all messages are broadcast to all processes in the system. So-called “mul-
ticast” abstractions have also been considered, where a message is only delivered
to an arbitrary subset of the processes. This recipient group may be determined
dynamically.
It is also possible to ensure causal-order delivery for multicast abstractions, but
such algorithms require a significantly larger amount of control information than
those for global broadcast. These issues were addressed by Raynal, Schiper, and
Toueg (1991).

• The idea of applying epidemic dissemination to implementing probabilistically
reliable broadcast algorithms have been explored since 1992 (Golding and Long
1992; Birman et al. 1999). A precise specification of a probabilistic broadcast
abstraction was suggested by Eugster, Guerraoui, and Kouznetsov (2004).
Kermarrec, Massoulié, and Ganesh (2003) investigate trade-offs between the
fanout and the reliability of the dissemination and give much a more detailed
analysis of the probability of delivery than in the text.

• The topic of Exercise 3.10, to exploit topological features for probabilistic broad-
cast algorithms through a mechanism that assigns weights to links between
processes, was proposed and discussed by Lin and Marzullo (1999). A similar
idea, but using a hierarchy instead of weights, was proposed later to reduce the
traffic across domain boundaries (Gupta, Kermarrec, and Ganesh 2006).

3.15 Chapter Notes 135

• The first probabilistic broadcast algorithm that did not depend on any global
membership was given by Eugster et al. (2003). The idea has been refined since
then (Voulgaris, Jelasity, and van Steen 2003; Jelasity, Guerraoui, Kermarrec, and
van Steen 2004).

• The notion of message ages in probabilistic broadcast was introduced for purging
messages and ensuring the scalability of process buffers by Kouznetsov, Guer-
raoui, Handurukande, and Kermarrec (2001). This approach was later refined
to balance buffering among processes (Koldehofe 2003). Buffering was also
discussed by Xiao, Birman, and van Renesse (2002). Techniques for flow con-
trol in probabilistic broadcast have also been developed, starting with the work
of Rodrigues et al. (2003) and Garbinato, Pedone, and Schmidt (2004).

• Broadcast algorithms in the fail-arbitrary model have first been formulated as
building blocks to implement Byzantine agreement. The Byzantine consistent
broadcast abstraction is implicit in early papers on this topic (Toueg 1984; Bracha
and Toueg 1985; Bracha 1987).

• Our “Authenticated Echo Broadcast” algorithm implementing Byzantine consis-
tent broadcast was introduced by Srikanth and Toueg (1987). The idea behind our
“Signed Echo Broadcast” algorithm can be traced back to the work of Dolev and
Strong (1983); the presented algorithm was formulated as a broadcast primitive
with digital signatures by Reiter (1994).

• The “Authenticated Double-Echo Broadcast” algorithm, which implements a
Byzantine reliable broadcast abstraction, is attributed to Bracha (1987); previ-
ous versions of this algorithm have appeared as early as 1984. This algorithm is
an important building block and has found many applications for implementing
more complex tasks.

• The Byzantine broadcast channel abstraction and its implementations have been
used in the SINTRA system (Cachin and Poritz 2002).

4. Shared Memory

I always tell the truth, even when I lie.
(Tony Montana – Scarface)

This chapter presents abstractions of shared memory. They represent distributed
programming abstractions, which are shared among processes and encapsulate data
storage functionality accessible by read and write operations. The memory abstrac-
tions are called registers because they resemble those provided by multiprocessor
machines at the hardware level, though in many cases, including in this chapter, they
are implemented over processes that communicate by exchanging messages over a
network and do not share any physical storage device. A register abstraction also
resembles a disk device accessed over a storage-area network, a file in a distributed
file system, or a shared working space in a collaborative editing environment. There-
fore, understanding how to implement register abstractions helps us understand how
to implement such distributed storage systems.

We study here different variants of register abstractions. These differ in the num-
ber of processes that are allowed to read from and write to them, as well as in
the semantics of their read operations in the face of concurrency and failures. We
distinguish three kinds of semantics: safe, regular, and atomic.

We first consider the (1, N) regular register abstraction. The notation (1, N)
means that one specific process can write and all N processes in the system can
read. Then we consider the (1, N) atomic register and the (N, N) atomic register
abstractions. We specify and implement regular and atomic register abstractions in
four of the distributed system models identified in Chap. 2: the fail-stop, fail-silent,
fail-recovery, and fail-arbitrary models.

The (1, N) safe register abstraction is the simplest one among the three; we skip
it first and treat it only in the fail-arbitrary model toward the end of the chapter.

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 4,
c© Springer-Verlag Berlin Heidelberg 2011

137

138 4 Shared Memory

4.1 Introduction

4.1.1 Shared Storage in a Distributed System

In a multiprocessor machine, processes typically communicate through shared
memory provided at the hardware level. The shared memory can be viewed as
an array of shared registers. It is a convenient abstraction to use for program-
mers. One may also build a register abstraction from a set of processes that
communicate by sending messages to each other over a network; this results in an
emulation of shared-memory. The programmer using this abstraction can develop
algorithms using shared memory, without being aware that, behind the scenes, the
processes actually communicate by exchanging messages and that there is no phys-
ical shared memory. Such an emulation is very appealing because programming
with a shared memory is usually considered significantly easier than working with
message exchanges, precisely because the programmer can ignore the consistency
problems introduced by the distribution of data. Of course, the programmer has to
respect the complexity of the emulation.

As we pointed out, studying register specifications and algorithms is also useful
when implementing networked storage systems, distributed file systems, and shared
working spaces for collaborative work. For example, the abstraction of a distributed
storage device that can be accessed through read and write operations is similar to
the notion of a register. Not surprisingly, the algorithms that one needs to devise to
build a distributed storage system are directly inspired by those used to implement
register abstractions.

In this section, we introduce safe, regular, and atomic semantics for regis-
ters. To describe them, we consider the behavior of a register when it is accessed
concurrently by multiple processes.

4.1.2 Register Overview

Assumptions. Registers store values and can be accessed through two operations,
read and write. A process starts a read operation by triggering a 〈 Read 〉 event
and starts a write operation by triggering a 〈 Write | v 〉 event with a value v. We
say that a process invokes an operation on a register when it triggers the event. The
processes in the system use registers for communicating with each other and for
storing information.

After a process has invoked an operation like this, the register abstraction may
trigger an event that carries the reply from the operation. We say that the process
completes the operation when this event occurs. Each correct process accesses the
registers in a sequential manner, which means that after a process has invoked an
operation on a register, the process does not invoke any further operation on that
register until the previous operation completes. (There were no such restrictions for
the broadcast abstractions in Chap. 3.)

A register may store values from an arbitrary domain and is initialized to a special
value ⊥. In other words, we assume that some write operation was initially invoked

4.1 Introduction 139

on the register with parameter ⊥ and completed before any other operation was
invoked. (The value ⊥ cannot be written otherwise.) For presentation simplicity,
but without loss of generality, we also assume that the values written to a particular
register are unique. This can be implemented by adding unique timestamps provided
by the processes to the written values and is similar to the assumption from the
previous chapters that messages sent or broadcast are unique.

Some of the presented register abstractions and algorithms restrict the set of pro-
cesses that may write to and read from a register. The simplest case is a register
with one writer and one reader, which is called a (1, 1) register; the writer is a spe-
cific process known in advance, and so is the reader. We will also consider registers
with one specific writer and N readers, which means that any process can read from
the register. It is called a (1, N) register. Finally, a register to which every process
may write to and read from is called an (N, N) register. Sometimes a (1, 1) regis-
ter is also called a single-writer, single-reader register, a (1, N) register is called a
single-writer, multi-reader register, and an (N, N) register is called a multi-writer,
multi-reader register.

Signature and Semantics. A process interacts with a register abstraction through
events. Basically, the register abstraction stores a value, a read operation returns the
stored value, and a write operation updates the stored value. More precisely:

1. A process invokes a read operation on a register r by triggering a request event
〈 r, Read 〉 with no input parameters. The register signals that it has terminated a
read operation by triggering an indication event 〈 r, ReadReturn | v 〉, containing
a return value v as an output parameter. The return value presumably contains
the current value of the register.

2. A process invokes a write operation on a register r by triggering a request event
〈 r, Write | v 〉 with one input parameter v, called the written value. The register
signals that it has terminated a write operation by triggering an indication event
〈 r, WriteReturn 〉 with no parameters. The write operation serves to update the
value in the register.

If a register is accessed by read and write operations of a single process, and we
assume there is no failure, we define the specification of a register through the
following simple properties:

• Liveness: Every operation eventually completes.
• Safety: Every read operation returns the value written by the last write operation.

In fact, even if a register is accessed by a set of processes one at a time, in a serial
manner, and if no process crashes, we could still specify a register using those sim-
ple properties. By a serial execution we mean that a process does not invoke an
operation on a register if some other process has invoked an operation and has not
received any reply for the operation. (Note that this notion is stronger than the notion
of sequential access introduced earlier.)

140 4 Shared Memory

Failures. If we assume that processes might fail, say, by crashing, we can no
longer require that any process who invokes an operation eventually completes
that operation. Indeed, a process might crash right after invoking an operation and
may not have the time to complete this operation. We say that the operation has
failed. Because crashes are unpredictable, precisely this situation makes distributed
computing challenging. We assume that a process who invokes an operation on a
register can only fail by crashing (i.e., we exclude other faults for processes that
invoke read/write operation, such as arbitrary faults). This restriction is important
for implementing registers in the fail-arbitrary model.

Nevertheless, it makes sense to require that if a process p invokes some operation
and does not subsequently crash then p eventually gets back a reply to its invocation,
i.e., completes the operation. In other words, any process that invokes a read or
write operation and does not crash should eventually return from that invocation. In
this sense, its operation should not fail. This requirement makes the register fault-
tolerant. Algorithms with this property are sometimes also called robust or wait-
free.

If we assume that processes access a register in a serial manner, we may at first
glance still want to require from a read operation that it returns the value written
by the last write operation. However, we need to care about failures when defining
the very notion of last. To illustrate the underlying issue, consider the following
example execution:

A process p invokes a write operation on a register with a value v and com-
pletes this write. Later on, some other process q invokes a write operation
on the register with a new value w, and then q crashes before the operation
completes. Hence, q does not get any indication that the operation has in-
deed taken place before it crashes, and the operation has failed. Now, if a
process r subsequently invokes a read operation on the register, what is the
value that r is supposed to return? Should it be v or w?

In fact, both values may be valid replies depending on what happened. Intuitively,
process q may or may not have the time to complete the write operation. In other
words, when we require that a read operation returns the last value written, we
consider the following two cases as possible:

1. The value returned has indeed been written by the last process that completed its
write, even if some other process invoked a write later but crashed. In this case,
no future read should return the value written by the failed write; everything
happens as if the failed operation was never invoked.

2. The value returned was the input parameter of the last write operation that was
invoked, even if the writer process crashed before it completed the operation.
Everything happens as if the operation that failed actually completed.

The underlying difficulty is that the failed write operation (by the crashed process q
in the example) did not complete and is, therefore, “concurrent” to the last read
operation (by process r) that happened after the crash. The same problem occurs

4.1 Introduction 141

even if process q does not fail and is simply delayed. This is a particular problem
resulting from the concurrency of two operations, which we discuss now.

Concurrency. When multiple processes access a register in practice, executions
are most often not serial (and clearly not sequential). What should we expect a read
operation to return when it is concurrent with some write operation? What is the
meaning of the “last” write in this context? Similarly, if two write operations were
invoked concurrently, what is the “last” value written? Can a subsequent read return
one of the values, and then a read that comes even later return the other value?

In this chapter, we specify three register abstractions, called safe, regular, and
atomic, which differ mainly in the way we answer these questions. Roughly speak-
ing, a safe register may return an arbitrary value when a write is concurrently
ongoing. A regular register, in contrast, ensures a minimal guarantee in the face of
concurrent or failed operations, and may only return the previous value or the newly
written value. An atomic register is even stronger and provides a strict form of con-
sistency even in the face of concurrency and failures. We also present algorithms that
implement these specifications; we will see that algorithms implementing atomic
registers are more complex than those implementing regular or safe registers.

To make the specifications more precise, we first introduce some definitions that
aim to capture this intuition. For the moment, we assume fail-stop process abstrac-
tions, which may only fail by crashing and do not recover after a crash; later in the
chapter, we consider algorithms in the fail-recovery model and in the fail-arbitrary
model.

4.1.3 Completeness and Precedence

We first define more precise notions for the completeness of the execution of an
operation and for the precedence between different operation executions. When
there is no possible ambiguity, we simply take operations to mean operation
executions.

These notions are defined in terms of the events that occur in the interface of a
register abstraction, that is, using 〈 Read 〉, 〈 Write 〉, 〈 ReadReturn 〉, and 〈 WriteRe-
turn 〉 events; the first two represent the invocation of an operation, and the latter
two indicate the completion of an operation. Remember that these events occur at
a single indivisible point in time, using a fictional notion of global time that only
serves to reason about specifications and algorithms. This global time is not directly
accessible to the processes.

We say that an operation is complete if its invocation and completion events have
both occurred. In particular, this means that the process which invokes an operation o
does not crash before operation o terminates and the completion event occurs at the
invoking algorithm of the process. An operation is said to fail when the process that
invoked it crashes before the corresponding completion event occurs. (We only con-
sider implementations with crash-stop process abstractions here; the corresponding
concepts in the fail-recovery and fail-arbitrary models are introduced later.)

The temporal relation between operations is given by the following notions:

• An operation o is said to precede an operation o′ if the completion event of o
occurs before the invocation event of o′. As an immediate consequence of this

142 4 Shared Memory

definition, note that if an operation o invoked by a process p precedes some other
operation (possibly invoked by a different process) then o must be complete and
its completion event occurred at p.

• If two operations are such that one precedes the other then we say that the oper-
ations are sequential. If neither one of two operations precedes the other then we
say that they are concurrent.

Basically, the execution of operations on a register defines a partial order on its
read and write operations. If only one process invokes operations then the order is
total, according to our assumption that every process operates sequentially on one
register. When no two operations are concurrent and all operations are complete, as
in a serial execution, the order is also total.

• When a read operation or returns a value v, and v was the input parameter of
some write operation ow, we say that operation or reads from ow or that value v
is read from ow.

• When a write operation (ow) with input parameter v completes, we say that
value v is written (by ow).

Recall that every value is written only once and, hence, the write operations in the
definition are unique.

In the following, we give specifications of various forms of register abstrac-
tions and algorithms to implement them. Some algorithms use multiple instances
of simpler register abstractions.

4.2 (1, N) Regular Register

We start the description of shared-memory abstractions with the specification and
two algorithms for a (1, N) regular register. This means that one specific process p
can invoke a write operation on the register, and any process can invoke a read
operation on the register. The notion of regularity, which we explain later, is not
considered for multiple writers. (There is no consensus in the distributed computing
literature on how to generalize the notion of regularity to multiple writers.)

4.2.1 Specification

The interface and properties of a (1, N) regular register abstraction (ONRR) are
given in Module 4.1. In short, every read operation that is not concurrent with any
write operation returns the last value written. If there is a concurrent write, the read
is allowed to return the last value written or the value concurrently being written.
Note that if a process invokes a write and crashes (without recovering), the write is
considered to be concurrent with any read that did not precede it. Hence, such a read
can return the value that was supposed to be written by the failed write or the last
value written before the failed write was invoked. In any case, the returned value
must be read from some write operation invoked on the register. That is, the value
returned by any read operation must be a value that some process has tried to write

4.2 (1,N) Regular Register 143

Module 4.1: Interface and properties of a (1, N) regular register
Module:

Name: (1, N)-RegularRegister, instance onrr.

Events:

Request: 〈 onrr, Read 〉: Invokes a read operation on the register.

Request: 〈 onrr, Write | v 〉: Invokes a write operation with value v on the register.

Indication: 〈 onrr, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 onrr, WriteReturn 〉: Completes a write operation on the register.

Properties:

ONRR1: Termination: If a correct process invokes an operation, then the operation
eventually completes.

ONRR2: Validity: A read that is not concurrent with a write returns the last value
written; a read that is concurrent with a write returns the last value written or the
value concurrently written.

(even if the write was not complete), and it cannot be invented out of thin air. The
value may be the initial value ⊥ of the register.

To illustrate the specification of a regular register, we depict two executions of
operations on one register in Figs. 4.1 and 4.2; the operations are executed by two
processes. The notation in the figure uses two dots and a thick line to denote the
execution of an operation, where the dots represent the invocation and the comple-
tion event. The type of the operation and the parameters are described with text.
The execution of Fig. 4.1 is not regular because the first read does not return the last
written value. In contrast, the execution in Fig. 4.2 is regular.

As an outlook to the specification of a safe register (in Sect. 4.6), which is a
weaker abstraction than a regular register, we note that one obtains the validity
property a safe register by dropping the second part of the validity property in
Module 4.1, namely, the condition on reads that are not concurrent with any write.
When a read is concurrent with a write in a safe register, it may return an arbitrary
value.

write(x) write(y)

read() read() read() yx

p

q

Figure 4.1: A register execution that is not regular because of the first read by
process q

144 4 Shared Memory

write(x) write(y)

read() read() read() yxx

p

q

Figure 4.2: A regular register execution

4.2.2 Fail-Stop Algorithm: Read-One Write-All Regular Register

Algorithm 4.1 implements a (1, N) regular register. The algorithm is particularly
simple because it uses the fail-stop model and relies on a perfect failure detector.
When a process crashes, the failure detector ensures that eventually all correct pro-
cesses detect the crash (strong completeness), and no process is detected to have
crashed until it has really crashed (strong accuracy).

Algorithm 4.1: Read-One Write-All

Implements:
(1, N)-RegularRegister, instance onrr.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl;
PerfectFailureDetector, instance P .

upon event 〈 onrr, Init 〉 do
val := ⊥;
correct := Π;
writeset := ∅;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon event 〈 onrr, Read 〉 do
trigger 〈 onrr, ReadReturn | val 〉;

upon event 〈 onrr, Write | v 〉 do
trigger 〈 beb, Broadcast | [WRITE, v] 〉;

upon event 〈 beb, Deliver | q, [WRITE, v] 〉 do
val := v;
trigger 〈 pl, Send | q, ACK 〉;

upon event 〈 pl, Deliver | p, ACK 〉 do
writeset := writeset ∪ {p};

upon correct ⊆ writeset do
writeset := ∅;
trigger 〈 onrr, WriteReturn 〉;

4.2 (1, N) Regular Register 145

The algorithm has each process store a copy of the current register value in a
local variable val. In other words, the value of the register is replicated at all pro-
cesses. The writer updates the value of all presumably correct processes (i.e., those
that it does not detect to have crashed) by broadcasting a WRITE message with the
new value. All processes acknowledge the receipt of the new value with an ACK

message. The write operation returns when the writer has received an acknowledg-
ment from every process that it considers to be correct. When the write of a new
value is complete, all processes that did not crash have stored the new value. The
reader simply returns the value that it has stored locally. In other words, the reader
reads one value and the writer writes all values. Hence, Algorithm 4.1 is called
“Read-One Write-All.”

The algorithm uses a perfect failure-detector abstraction and two underlying
communication abstractions: perfect point-to-point links and best-effort broadcast.

We will be using multiple instances of regular registers to build stronger abstrac-
tions later in this chapter. As mentioned before, the instances are differentiated by
their identifiers, and all messages exchanged using the underlying communication
primitives implicitly carry an instance identifier to match the same instance at all
processes.

Correctness. The termination property is straightforward for any read invocation,
because a process simply returns its local value. For a write invocation, termination
follows from the properties of the underlying communication abstractions (reliable
delivery of perfect point-to-point links and validity of best-effort broadcast) and the
completeness property of the perfect failure detector (every crashed process is even-
tually detected by every correct process). Any process that crashes is detected and
any process that does not crash sends back an acknowledgment, which is eventually
delivered by the writer.

Consider validity. Assume that there is no concurrency and all operations are
complete. Consider a read invoked by some process p and assume, furthermore, that
v is the last value written. Because of the accuracy property of the perfect failure
detector, at the time when the read is invoked, all processes that did not crash store
value v. In particular, also p stores v and returns v, and this is the last value written.

Assume now that the read is concurrent with some write of a value v and the
value written prior to v was v′ (it may be that v′ is the initial value ⊥). According
to the above argument, every process stores v′ before the write operation of v was
invoked. Because of the properties of the communication abstractions (no creation
properties), no message is altered and no value is stored by a process unless the
writer has invoked a write operation with this value as a parameter. At the time
of the read, every process therefore stores either still v′ or has beb-delivered the
WRITE message with v and stores v. The return value of the read is either v or v′,
as required from a regular register.

Performance. Every write operation requires two communication steps correspond-
ing to the WRITE and ACK exchange between the writer and all processes and O(N)
messages. A read operation does not require any communication, it is purely local.

146 4 Shared Memory

write(x) write(y)

read() x

p

q

Figure 4.3: A non-regular register execution

4.2.3 Fail-Silent Algorithm: Majority Voting Regular Register

It is easy to see that if the failure detector is not perfect, the “Read-One Write-All”
algorithm (Algorithm 4.1) may violate the validity property of the register. The exe-
cution illustrated in Fig. 4.3 shows how this could happen, even without concurrency
and without any failure. When the writer process p falsely suspects process q to have
crashed, the write operation may return before receiving the acknowledgment from
q and, thus, before q has locally stored the new value y. Hence, the read by q may
return x and not the last written value.

In the following, we present Algorithm 4.2 that implements a regular regis-
ter in the fail-silent model. This algorithm does not rely on any failure detection
abstraction. Instead, the algorithm assumes that a majority of the processes is cor-
rect. We leave it as an exercise (at the end of the chapter) to show that this majority
assumption is actually needed, even when an eventually perfect failure detector can
be used.

The general principle of the algorithm requires for the writer and the readers to
use a set of witness processes that keep track of the most recent value of the register.
The witnesses must be chosen in such a way that at least one witness participates
in any pair of such operations, and does not crash in the meantime. Every two such
sets of witnesses must, therefore, overlap. In other words, they form quorums, a col-
lection of sets such that the intersection of every two sets is not empty (Sect. 2.7.3).
Majorities are one of the simplest kinds of quorums, which is the reason for call-
ing Algorithm 4.2 “Majority Voting.” The algorithm implements a (1, N) regular
register, where one specific process is the writer and any process can be a reader.

Similar to the “Read-One Write-All” algorithm presented before, the “Majority
Voting” algorithm also has each process store a copy of the current register value
in a local variable val. In addition, the “Majority Voting” algorithm also stores a
timestamp ts together with the stored value at every process. This timestamp is
defined by the writer and represents the number of times the write operation has
been invoked.

The algorithm uses a best-effort broadcast instance beb and a perfect links
instance pl. When the unique writer p invokes a write operation with a new value,
the process increments its write-timestamp and associates it with the value to be
written. Then p beb-broadcasts a WRITE message to all processes, and has a major-
ity “adopt” this value and the associated timestamp. To adopt a value in this context
means to store it locally as the current register value. The writer completes the write
(and hence returns from the operation) when it has received an acknowledgment
from a majority of the processes, indicating that they have indeed adopted the new

4.2 (1, N) Regular Register 147

Algorithm 4.2: Majority Voting Regular Register

Implements:
(1, N)-RegularRegister, instance onrr.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event 〈 onrr, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;
acks := 0;
rid := 0;
readlist := [⊥]N ;

upon event 〈 onrr, Write | v 〉 do
wts := wts + 1;
acks := 0;
trigger 〈 beb, Broadcast | [WRITE, wts, v] 〉;

upon event 〈 beb, Deliver | p, [WRITE, ts′, v′] 〉 do
if ts′ > ts then

(ts, val) := (ts′, v′);
trigger 〈 pl, Send | p, [ACK, ts′] 〉;

upon event 〈 pl, Deliver | q, [ACK, ts′] 〉 such that ts′ = wts do
acks := acks + 1;
if acks > N/2 then

acks := 0;
trigger 〈 onrr, WriteReturn 〉;

upon event 〈 onrr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ;
trigger 〈 beb, Broadcast | [READ, rid] 〉;

upon event 〈 beb, Deliver | p, [READ, r] 〉 do
trigger 〈 pl, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 pl, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
readlist[q] := (ts′, v′);
if #(readlist) > N/2 then

v := highestval(readlist);
readlist := [⊥]N ;
trigger 〈 onrr, ReadReturn | v 〉;

value and the associated timestamp. It is important to note that a process q will
adopt a value v′ sent by the writer only if q has not already adopted a value v with a
larger timestamp. This might happen if the WRITE message containing v was beb-
delivered by q before the WRITE message containing v′. In this case, process q was

148 4 Shared Memory

also not in the majority that made it possible for p to complete the write of v′ before
proceeding to writing v.

To read a value, a reader process beb-broadcasts a READ message to all pro-
cesses, every process replies with the stored value and its timestamp, and the reader
selects the value with the largest timestamp from a majority of the replies. The pro-
cesses in this majority act as witnesses of what was written before. This majority
does not have to be the same as the one used by the writer. Choosing the largest
timestamp ensures that the value written last is returned, provided there is no con-
currency. To simplify the presentation of Algorithm 4.2, the reader uses a function
highestval(S) that takes a list S of timestamp/value pairs as input and returns the
value of the pair with the largest timestamp, that is, the value v of a pair (ts, v) ∈ S
such that

forall (ts′, v′) ∈ S : ts′ < ts ∨ (ts′, v′) = (ts, v).

The function is applied to the received pairs as soon as timestamp/value pairs have
been received from a majority of the processes.

Note that every WRITE and READ message is tagged with a unique identifier,
and the corresponding reply carries this tag. For a write operation, the tag is sim-
ply the write-timestamp wts associated with the value written. In the case of a read
operation, the tag is a read-request identifier rid, solely used for identifying the mes-
sages belonging to different reads. In this way, the reader can figure out whether a
given reply message matches a request (and is not a reply in response to an earlier
READ message). This mechanism is important to prevent the reader from confusing
two replies from different operations and counting them toward the wrong opera-
tion. Likewise, the ack counter and the list of values in readlist must be initialized
freshly whenever a new write or read operation starts, respectively. Without these
mechanisms, the algorithm may violate the validity property of the register.

Correctness. The termination property follows from the properties of the under-
lying communication abstractions and from the assumption that a majority of
processes in the system are correct.

For the validity property, consider a read operation that is not concurrent with
any write. Assume, furthermore, that the read is invoked by process q and the last
value written by the writer p is v with associated timestamp wts. This means that,
at the time when the read is invoked, a majority of the processes store wts in their
timestamp variable ts, and that there is no larger timestamp in the system. This
is because the writer uses increasing timestamps. Before returning from the read
operation, process q consults a majority of the processes and, hence, receives at
least one reply containing timestamp wts. This follows from the use of majority
quorums that always intersect. Process q hence returns value v, which is indeed the
last value written, because wts is the largest timestamp.

Consider now the case where the read is concurrent with some write of value v
with associated timestamp wts, and the previous write was for value v′ and time-
stamp wts−1. If any process returns the pair (wts, v) to the reader q then q returns v,
which is a valid reply. Otherwise, all replies from more than N/2 processes contain
v′ and associated timestamp wts − 1, and q returns v′, which is also a valid reply.

4.3 (1, N) Atomic Register 149

Performance. Every write operation requires one communication roundtrip between
the writer and a majority of the processes, and every read requires one communica-
tion roundtrip between the reader and a majority of the processes. In both operations,
O(N) messages are exchanged.

4.3 (1, N) Atomic Register

We give here the specification and two algorithms for a (1, N) atomic register. The
generalization to multiple writers will be discussed in the next section.

4.3.1 Specification

Consider a (1, N) regular register with initial value ⊥, and suppose the writer p
invokes an operation to write a value v. Because of the regular register specifica-
tion, nothing prevents a process that reads the register multiple times from returning
first v, subsequently ⊥, then again v, and so on, as long as the reads and the write
of p are concurrent. Furthermore, if the writer crashes before completing the write,
the operation is not complete, and one subsequent reader might read v, whereas
another reader, coming even later, might still return ⊥. An atomic register is a
regular register that prevents such behavior.

The interface and properties of a (1, N) atomic register abstraction (ONAR) are
given in Module 4.2. A (1, N) atomic register is a regular register that, in addition to
the properties of a regular register (Module 4.1) ensures a specific ordering property

Module 4.2: Interface and properties of a (1, N) atomic register
Module:

Name: (1, N)-AtomicRegister, instance onar.

Events:

Request: 〈 onar, Read 〉: Invokes a read operation on the register.

Request: 〈 onar, Write | v 〉: Invokes a write operation with value v on the register.

Indication: 〈 onar, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 onar, WriteReturn 〉: Completes a write operation on the register.

Properties:

ONAR1–ONAR2: Same as properties ONRR1–ONRR2 of a (1, N) regular regis-
ter (Module 4.1).

ONAR3: Ordering: If a read returns a value v and a subsequent read returns a
value w, then the write of w does not precede the write of v.

150 4 Shared Memory

write(x) write(y)

read() read()read() y xx

p

q

Figure 4.4: A register execution that is not atomic because of the third read by
process q

write(x) write(y)

read() read()

read()

yx

x

p

q

r

Figure 4.5: Violation of atomicity in the “Read-One Write-All” regular register
algorithm

which, roughly speaking, prevents an “old” value from being read by process p,
once a “newer” value has been read by process q (even if p �= q). More precisely,
this property implies that every operation of an atomic register can be thought to
occur at a single indivisible point in time, which lies between the invocation and the
completion of the operation.

A (1, N) atomic register prevents that a reader process reads a value w after the
completion of a read operation that returned a value v (possibly by another pro-
cess), when w was written before v. In addition, if the single writer process started
to write some value v and crashed before completing this operation, the atomic reg-
ister ensures that once any reader completes a read operation and returns v, then no
subsequent read operation returns a different value.

The execution depicted in Fig. 4.4 is not atomic because the ordering property
of an atomic register should prevent the last read of process q from returning x after
the previous read returned y, given that x was written before y. If the execution
is changed so that the last read of q also returns y, the execution becomes atomic.
Another atomic execution is the regular execution shown in Fig. 4.2.

It is important to note that none of our previous algorithms implements a (1, N)
atomic register, even if no failures occur. We illustrate this through the execution
depicted in Fig. 4.5 as a counterexample for Algorithm 4.1 (“Read-One Write-
All”), and the execution depicted in Fig. 4.6 as a counterexample for Algorithm 4.2
(“Majority Voting”).

The scenario of Fig. 4.5 can occur with Algorithm 4.1 if during the second write
operation of process p, the new value y is received and read by process q before it
is received by process r. Before receiving the new value, r will continue to read the
previous value x, even if its read operation occurs after the read by q.

4.3 (1, N) Atomic Register 151

write(x) write(y)

read() read()

read()

yx

x

p

q

r

s

t

ts = 1

ts = 1

ts = 1

ts = 1

ts = 1

ts = 2

ts = 2

Figure 4.6: Violation of atomicity in the “Majority Voting” regular register algorithm

The scenario of Fig. 4.6 can occur with Algorithm 4.2 if process q has received
replies from processes p, q, and s in its second read, and the replies already included
timestamp 2 from the second write of p. On the other hand, process r has acc-
essed processes r, s, and t, which have not yet received the WRITE message with
timestamp 2 from p.

In the following, we give several algorithms that implement the (1, N) atomic
register abstraction. We first describe how to transform an abstract (1, N) regu-
lar register into a (1, N) atomic register algorithm; the regular register might be
implemented by a fail-stop or fail-silent algorithm, which will determine the sys-
tem model of the resulting implementation. Such a transformation is modular and
helps to understand the fundamental difference between atomic and regular regis-
ters. It does not lead to very efficient algorithms, however. We subsequently describe
how to directly extend our two regular register algorithms to obtain efficient (1, N)
atomic register algorithms.

4.3.2 Transformation: From (1, N) Regular to (1, N) Atomic Registers

This section describes how to transform any (1, N) regular register abstraction into
a (1, N) atomic register abstraction. For pedagogical reasons, we divide the trans-
formation in two parts. We first explain how to transform any (1, N) regular register
abstraction into a (1, 1) atomic register abstraction and then how to transform any
(1, 1) atomic register abstraction into a (1, N) atomic register abstraction. These
transformations do not use any other means of communication between processes
than the underlying registers.

From (1, N) Regular to (1, 1) Atomic Registers. The first transformation is
given in Algorithm 4.3 and realizes the following simple idea. To build a (1, 1)
atomic register with process p as writer and process q as reader, we use one (1, N)
regular register, also with writer p and reader q. Furthermore, the writer maintains a
timestamp that it increments and associates with every new value to be written. The
reader also maintains a timestamp, together with the value associated to the highest
timestamp that it has read from the regular register so far. Intuitively, the reader

152 4 Shared Memory

Algorithm 4.3: From (1, N) Regular to (1, 1) Atomic Registers

Implements:
(1, 1)-AtomicRegister, instance ooar.

Uses:
(1, N)-RegularRegister, instance onrr.

upon event 〈 ooar, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;

upon event 〈 ooar, Write | v 〉 do
wts := wts + 1;
trigger 〈 onrr, Write | (wts, v) 〉;

upon event 〈 onrr, WriteReturn 〉 do
trigger 〈 ooar, WriteReturn 〉;

upon event 〈 ooar, Read 〉 do
trigger 〈 onrr, Read 〉;

upon event 〈 onrr, ReadReturn | (ts′, v′) 〉 do
if ts′ > ts then

(ts, val) := (ts′, v′);
trigger 〈 ooar, ReadReturn | val 〉;

stores these items in order to always return the value with the highest timestamp
and to avoid returning an old value once it has read a newer value from the regular
register.

To implement a (1, 1) atomic register instance ooar, Algorithm 4.3 maintains
one instance onrr of a (1, N) regular register. The writer maintains a writer-
timestamp wts, and the reader maintains a timestamp ts, both initialized to 0.
In addition, the reader stores the most recently read value in a variable val. The
algorithm proceeds as follows:

• To ooar-write a value v to the atomic register, the writer p increments its
timestamp wts and onrr-writes the pair (wts, v) into the underlying regular
register.

• To ooar-read a value from the atomic register, the reader q first onrr-reads a
timestamp/value pair from the underlying regular register. If the returned time-
stamp ts′ is larger than the local timestamp ts then q stores ts′ together with
the returned value v in the local variables, and returns v. Otherwise, the reader
simply returns the value from val, which it has already stored locally.

Correctness. The termination property of the atomic register follows from the same
property of the underlying regular register.

Consider validity and assume first that a read is not concurrent with any write,
and the last value written by p is v and associated with timestamp ts′. The reader-
timestamp stored by the reader q is either ts′, if q has already read v in some previous

4.3 (1, N) Atomic Register 153

read, or a strictly smaller value. In both cases, because of the validity property of the
regular register, a read by q will return v. Consider now a read that is concurrent with
some write of value v and timestamp ts′, and the previous write was for value v′

and timestamp ts′ − 1. The reader-timestamp stored by q cannot be larger than ts′.
Hence, because of the validity property of the underlying regular register, q will
return either v or v′; both are valid replies.

Consider now ordering and assume that p writes v and subsequently writes w.
Suppose that q returns w for some read and consider any subsequent read of q. The
reader-timestamp stored by q is either the one associated with w or a larger one.
Hence, the last check in the algorithm when returning from a read prevents that the
return value was written before w and there is no way for the algorithm to return v.

Performance. The transformation requires only local computation, such as main-
taining timestamps and performing some checks, in addition to writing to and
reading from the regular register.

From (1, 1) Atomic to (1, N) Atomic Registers. We describe here an algorithm
that implements the abstraction of a (1, N) atomic register out of (1, 1) atomic reg-
isters. To get an intuition of the transformation, think of a teacher (the writer),
who needs to communicate some information to a set of students (the readers),
through the abstraction of a traditional blackboard. The board is a good match for the
abstraction of a (1, N) register, as long as only the teacher writes on it. Furthermore,
it is made of a single physical entity and atomic.

Assume now that the teacher cannot physically gather all students within the
same classroom, and hence cannot use one physical board for all. Instead, this global
board needs to be emulated with one or several individual boards (i-boards) that can
also be written by one person but may only be read by one person. For example,
every student can have one or several such electronic i-boards at home, which only
he or she can read.

It makes sense to have the teacher write each new piece of information to at least
one i-board per student. This is intuitively necessary for the students to eventually
read the information provided by the teacher, i.e., to ensure the validity property of
the register. However, this is not enough to guarantee the ordering property of an
atomic register. Indeed, assume that the teacher writes two pieces of information
consecutively, first x and then y. It might happen that a student reads y and later
on, some other student still reads x, say, because the information flow from the
teacher to the first student is faster than the flow to the second student. This ordering
violation is similar to the situation of Fig. 4.5.

One way to cope with this issue is for every student, before terminating the read-
ing of some information, to transmit this information to all other students, through
other i-boards. That is, every student would use, besides the i-board devoted to
the teacher to provide new information, another one for writing new information to
the other students. Whenever a student reads some information from the teacher, the
student first writes this information to the i-board that is read by the other students,
before returning the information. Of course, the student must in addition also read
the i-boards on which the other students might have written newer information. The

154 4 Shared Memory

Algorithm 4.4: From (1, 1) Atomic to (1, N) Atomic Registers

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
(1, 1)-AtomicRegister (multiple instances).

upon event 〈 onar, Init 〉 do
ts := 0;
acks := 0;
writing := FALSE;
readval := ⊥;
readlist := [⊥]N ;
forall q ∈ Π, r ∈ Π do

Initialize a new instance ooar.q.r of (1, 1)-AtomicRegister
with writer r and reader q;

upon event 〈 onar, Write | v 〉 do
ts := ts + 1;
writing := TRUE;
forall q ∈ Π do

trigger 〈 ooar.q.self, Write | (ts, v) 〉;

upon event 〈 ooar.q.self, WriteReturn 〉 do
acks := acks + 1;
if acks = N then

acks := 0;
if writing = TRUE then

trigger 〈 onar, WriteReturn 〉;
writing := FALSE;

else
trigger 〈 onar, ReadReturn | readval 〉;

upon event 〈 onar, Read 〉 do
forall r ∈ Π do

trigger 〈 ooar.self.r, Read 〉;

upon event 〈 ooar.self.r, ReadReturn | (ts′, v′) 〉 do
readlist[r] := (ts′, v′);
if #(readlist) = N then

(maxts, readval) := highest(readlist);
readlist := [⊥]N ;
forall q ∈ Π do

trigger 〈 ooar.q.self, Write | (maxts, readval) 〉;

teacher adds a timestamp to the written information to distinguish new information
from old one.

The transformation in Algorithm 4.4 implements one (1, N) atomic register
instance onar from N2 underlying (1, 1) atomic register instances. Suppose the
writer of the (1, N) atomic register onar is process p (note that the writer is also

4.3 (1, N) Atomic Register 155

a reader here, in contrast to the teacher in the story). The (1, 1) registers are orga-
nized in a N × N matrix, with register instances called ooar.q.r for q ∈ Π and
r ∈ Π . They are used to communicate among all processes, from the writer p to all
N readers and among the readers. In particular, register instance ooar.q.r is used to
inform process q about the last value read by reader r; that is, process r writes to
this register and process q reads from it. The register instances ooar.q.p, which are
written by the writer p, are also used to store the written value in the first place; as
process p may also operate as a reader, these instances have dual roles.

Note that both write and read operations require N registers to be updated; the
acks counter keeps track of the number of updated registers in the write and read
operation, respectively. As this is a local variable of the process that executes the
operation, and as a process executes only one operation at a time, using the same
variable in both operations does not create any interference between reading and
writing. A variable writing keeps track of whether the process is writing on behalf
of a write operation, or whether the process is engaged in a read operation and
writing the value to be returned.

Algorithm 4.4 also relies on a timestamp ts maintained by the writer, which
indicates the version of the current value of the register. For presentation simplicity,
we use a function highest(·) that returns the timestamp/value pair with the largest
timestamp from a list or a set of such pairs (this is similar to the highestval func-
tion introduced before, except that the timestamp/value pair is returned whereas
highestval only returns the value). More formally, highest(S) with a set or a list of
timestamp/value pairs S is defined as the pair (ts, v) ∈ S such that

forall (ts′, v′) ∈ S : ts′ < ts ∨ (ts′, v′) = (ts, v).

The variable readlist is a length-N list of timestamp/value pairs; in the algorithm
for reading, we convert it implicitly to the set of its entries. Recall that the func-
tion #(S) denotes the cardinality of a set S or the number of non-⊥ entries in a
list S.

Correctness. Because of the termination property of the underlying (1, 1) atomic
registers, it is easy to see that every operation in the transformation algorithm
eventually returns.

Similarly, because of the validity property of the underlying (1, 1) atomic reg-
isters, and due to the choice of the value with the largest timestamp as the return
value, we also derive the validity of the (1, N) atomic register.

For the ordering property, consider an onar-write operation of a value v with ass-
ociated timestamp tsv that precedes an onar-write of value w with timestamp tsw;
this means that tsv < tsw. Assume that a process r onar-reads w. According to
the algorithm, process r has written (tsw, w) to N underlying registers, with iden-
tifiers ooar.q.r for q ∈ Π . Because of the ordering property of the (1, 1) atomic
registers, every subsequent read operation from instance onar reads at least one of
the underlying registers that contains (tsw, w), or a pair containing a higher time-
stamp. Hence, the read operation returns a value associated with a timestamp that is
at least tsw, and there is no way for the algorithm to return v.

156 4 Shared Memory

Performance. Every write operation into the (1, N) register requires N writes into
(1, 1) registers. Every read from the (1, N) register requires one read from N (1, 1)
registers and one write into N (1, 1) registers.

We give, in the following, two direct implementations of (1, N) atomic regis-
ter abstractions from distributed communication abstractions. The first algorithm is
in the fail-stop system model and the second one uses the fail-silent model. These
are adaptations of the “Read-One Write-All” and “Majority Voting” (1, N) regular
register algorithms, respectively. Both algorithms use the same approach as pre-
sented transformation, but require fewer messages than if the transformation would
be applied automatically.

4.3.3 Fail-Stop Algorithm: Read-Impose Write-All (1, N) Atomic Register

If the goal is to implement a (1, N) register with one writer and multiple readers,
the “Read-One Write-All” regular register algorithm (Algorithm 4.1) clearly does
not work: the scenario depicted in Fig. 4.5 illustrates how it fails.

To cope with this case, we define an extension to the “Read-One Write-All”
regular register algorithm that circumvents the problem by having the reader also
impose the value it is about to return on all other processes. In other words, the
read operation also writes back the value that it is about to return. This modification
is described as Algorithm 4.5, called “Read-Impose Write-All.” The writer uses a
timestamp to distinguish the values it is writing, which ensures the ordering property
of every execution. A process that is asked by another process to store an older value
than the currently stored value does not modify its memory. We discuss the need for
this test, as well as the need for the timestamp, through an exercise (at the end of
this chapter).

The algorithm uses a request identifier rid in the same way as in Algorithm 4.2.
Here, the request identifier field distinguishes among WRITE messages that belong
to different reads or writes. A flag reading used during the writing part distinguishes
between the write operations and the write-back part of the read operations.

Correctness. The termination and validity properties are ensured in the same way as
in the “Read-One Write-All” algorithm (Algorithm 4.1). Consider now ordering and
assume process p writes a value v, which is associated to some timestamp tsv, and
subsequently writes a value w, associated to some timestamp tsw > tsv . Assume,
furthermore, that some process q reads w and, later on, some other process r invokes
another read operation. At the time when q completes its read, all processes that
did not crash have a timestamp variable ts that is at least tsw. According to the
algorithm, there is no way for r to change its value to v after this time because
tsv < tsw.

Performance. Every write or read operation requires two communication steps, cor-
responding to the roundtrip communication between the writer or the reader and all
processes. At most O(N) messages are needed in both cases.

4.3 (1, N) Atomic Register 157

Algorithm 4.5: Read-Impose Write-All

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl;
PerfectFailureDetector, instance P .

upon event 〈 onar, Init 〉 do
(ts, val) := (0,⊥);
correct := Π;
writeset := ∅;
readval := ⊥;
reading := FALSE;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon event 〈 onar, Read 〉 do
reading := TRUE;
readval := val;
trigger 〈 beb, Broadcast | [WRITE, ts, val] 〉;

upon event 〈 onar, Write | v 〉 do
trigger 〈 beb, Broadcast | [WRITE, ts + 1, v] 〉;

upon event 〈 beb, Deliver | p, [WRITE, ts′, v′] 〉 do
if ts′ > ts then

(ts, val) := (ts′, v′);
trigger 〈 pl, Send | p, [ACK] 〉;

upon event 〈 pl, Deliver | p, [ACK] 〉 then
writeset := writeset ∪ {p};

upon correct ⊆ writeset do
writeset := ∅;
if reading = TRUE then

reading := FALSE;
trigger 〈 onar, ReadReturn | readval 〉;

else
trigger 〈 onar, WriteReturn 〉;

4.3.4 Fail-Silent Algorithm: Read-Impose Write-Majority (1, N)
Atomic Register

In this section, we consider a fail-silent model. We describe an extension of our
“Majority Voting” (1, N) regular register algorithm (Algorithm 4.2) to implement a
(1, N) atomic register.

158 4 Shared Memory

Algorithm 4.6: Read-Impose Write-Majority (part 1, read)

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event 〈 onar, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;
acks := 0;
rid := 0;
readlist := [⊥]N ;
readval := ⊥;
reading := FALSE;

upon event 〈 onar, Read 〉 do
rid := rid + 1;
acks := 0;
readlist := [⊥]N ;
reading := TRUE;
trigger 〈 beb, Broadcast | [READ, rid] 〉;

upon event 〈 beb, Deliver | p, [READ, r] 〉 do
trigger 〈 pl, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 pl, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
readlist[q] := (ts′, v′);
if #(readlist) > N/2 then

(maxts, readval) := highest(readlist);
readlist := [⊥]N ;
trigger 〈 beb, Broadcast | [WRITE, rid, maxts, readval] 〉;

The algorithm is called “Read-Impose Write-Majority” and shown in Algorithm
4.6–4.7. The implementation of the write operation is similar to that of the “Ma-
jority Voting” algorithm: the writer simply makes sure a majority adopts its value.
The implementation of the read operation is different, however. A reader selects the
value with the largest timestamp from a majority, as in the “Majority Voting” algo-
rithm, but now also imposes this value and makes sure a majority adopts it before
completing the read operation: this is the key to ensuring the ordering property of
an atomic register.

The “Majority Voting” algorithm can be seen as the combination of the “Read-
Impose Write-Majority” algorithm with the two ideas that are found in the two-step
transformation from (1, N) regular registers to (1, N) atomic registers (Algorithms
4.3 and 4.4): first, the mechanism to store the value with the highest timestamp
that was read so far, as in Algorithm 4.3; and, second, the approach of the read
implementation to write the value to all other processes before it is returned, as in
Algorithm 4.4.

4.4 (N, N) Atomic Register 159

Algorithm 4.7: Read-Impose Write-Majority (part 2, write and write-back)

upon event 〈 onar, Write | v 〉 do
rid := rid + 1;
wts := wts + 1;
acks := 0;
trigger 〈 beb, Broadcast | [WRITE, rid, wts, v] 〉;

upon event 〈 beb, Deliver | p, [WRITE, r, ts′, v′] 〉 do
if ts′ > ts then

(ts, val) := (ts′, v′);
trigger 〈 pl, Send | p, [ACK, r] 〉;

upon event 〈 pl, Deliver | q, [ACK, r] 〉 such that r = rid do
acks := acks + 1;
if acks > N/2 then

acks := 0;
if reading = TRUE then

reading := FALSE;
trigger 〈 onar, ReadReturn | readval 〉;

else
trigger 〈 onar, WriteReturn 〉;

Correctness. The termination and validity properties are ensured in the same way
as in Algorithm 4.2 (“Majority Voting”). Consider now the ordering property. Sup-
pose that a read operation or by process r reads a value v from a write operation ow

of process p (the only writer), that a read operation or′ by process r′ reads a dif-
ferent value v′ from a write operation ow′ , also by process p, and that or precedes
or′ . Assume by contradiction that ow′ precedes ow. According to the algorithm, the
timestamp tsv that p associated with v is strictly larger than the timestamp tsv′ that
p associated with v′. Given that the operation or precedes or′ , at the time when or′

was invoked, a majority of the processes has stored a timestamp value in ts that is
at least tsv , the timestamp associated to v, according to the write-back part of the
algorithm for reading v. Hence, process r′ cannot read v′, because the timestamp
associated to v′ is strictly smaller than tsv. A contradiction.

Performance. Every write operation requires two communication steps correspond-
ing to one roundtrip exchange between p and a majority of the processes, and O(N)
messages are exchanged. Every read requires four communication steps correspond-
ing to two roundtrip exchanges between the reader and a majority of the processes,
or O(N) messages in total.

4.4 (N, N) Atomic Register

4.4.1 Multiple Writers

All registers discussed so far have only a single writer. That is, our specifications of
regular and atomic registers introduced in the previous sections do not provide any

160 4 Shared Memory

guarantees when multiple processes write to the same register. It is natural to ask
what should happen in the case of multiple writers.

In order to answer this question, we need to formulate an appropriate validity
property for multiple writers. Indeed, this property requires a read that is not con-
current with any write to return the last value written. But, if two processes have
written different values v and v′ concurrently, before some other process invokes a
read operation, then what should this read return? Assuming we make it possible for
the reader to return either v or v′, do we allow a concurrent reader, or a reader that
comes even later, to return the other value? What about a failed write operation? If
a process writes a value v and crashes before completing the write, does a reader
need to return v or can it return an older value?

In the following, we answer these questions and generalize the specification of
atomic registers to multiple writers.

4.4.2 Specification

An (N, N) atomic register abstraction (NNAR) links together read and write opera-
tions in a stricter way than its single-writer relative. This register abstraction ensures
that every failed write appears either as if it was never invoked or as if it completed,
i.e., as if the operation was invoked and terminated. Clearly, a failed read operation
may always appear as if it was never invoked. In addition, even in the face of con-
currency, it must be that the values returned by reads could have been returned by
a hypothetical serial execution, where every operation takes place at an indivisible
point in time, which lies between the invocation event and the completion event of
the operation.

An (N, N) atomic register is a strict generalization of a (1, N) atomic register in
the sense that every execution of a (1, N) atomic register is also an execution of an
(N, N) atomic register but not vice versa. The interface and properties of an (N, N)
atomic register abstraction are given in Module 4.3.

The hypothetical serial execution mentioned before is called a linearization of
the actual execution. More precisely, a linearization of an execution is defined as a
sequence of complete operations that appear atomically, one after the other, which
contains at least all complete operations of the actual execution (and possibly some
operations that were incomplete) and satisfies the following conditions:

1. every read returns the last value written; and
2. for any two operations o and o′, if o precedes o′ in the actual execution, then o

also appears before o′ in the linearization.

We call an execution linearizable if there is a way to linearize it like this. With this
notion, one can reformulate the atomicity property of an (N, N) atomic register in
Module 4.3 as:

NNAR2’: Atomicity: Every execution of the register is linearizable.

To implement (N, N) atomic registers, we adopt the same modular approach as
for implementing (1, N) atomic registers. We first give a general transformation that

4.4 (N, N) Atomic Register 161

Module 4.3: Interface and properties of an (N, N) atomic register
Module:

Name: (N, N)-AtomicRegister, instance nnar.

Events:

Request: 〈 nnar, Read 〉: Invokes a read operation on the register.

Request: 〈 nnar, Write | v 〉: Invokes a write operation with value v on the register.

Indication: 〈 nnar, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 nnar, WriteReturn 〉: Completes a write operation on the register.

Properties:

NNAR1: Termination: Same as property ONAR1 of a (1, N) atomic register
(Module 4.2).

NNAR2: Atomicity: Every read operation returns the value that was written most
recently in a hypothetical execution, where every failed operation appears to be
complete or does not appear to have been invoked at all, and every complete oper-
ation appears to have been executed at some instant between its invocation and its
completion.

implements an (N, N) atomic register using (1, N) atomic registers. This transfor-
mation uses only an array of underlying (1, N) atomic registers and no other way of
exchanging information among the processes. We present it to illustrate the funda-
mental difference between both abstractions. We then give two direct and efficient
implementations of (N, N) atomic registers in terms of a fail-stop algorithm and a
fail-silent algorithm.

4.4.3 Transformation: From (1, N) Atomic to (N, N) Atomic Registers

We describe how to transform any (1, N) atomic register abstraction into an (N, N)
atomic register abstraction, using no other primitives. To get an intuition of this
transformation, recall the example of the atomic blackboard on which one teacher
writes and from which multiple students read. A multi-writer register corresponds
to a blackboard shared by multiple teachers for writing information that is read by a
set of students. All teachers should write to a single common board and all students
should read from this board. However, only the simpler boards constructed before
are available, where every board allows only one teacher to write information. If
every teacher uses his or her own board to write information then it will not be
clear for a student which information to select and still ensure the atomicity of the
common board, i.e., the illusion of one physical common board that all teachers
share. The problem is that the student cannot recognize the latest information that
was written. Indeed, if some teacher A writes v and then some other teacher B later

162 4 Shared Memory

writes w then a student that looks at the common board afterward should see w. But
how can the student know that w is indeed the latest information, given that what is
available are simply individual boards, one for each teacher?

The solution is to coordinate the teachers so that they explicitly create a hap-
pened-before relation among the information they write. To this end, all teachers
associate a global timestamp with every written value. When teacher B writes w,
he or she first reads the board and finds v (written by teacher A) and an associated
timestamp there. Teacher B now increments the timestamp and associates it with w,
representing the very fact that w was written after v and is, therefore, more recent
than v. This is the key idea of our transformation.

The transformation in Algorithm 4.8 implements one (N, N) atomic register
instance nnar from multiple (1, N) atomic registers. Specifically, it uses an array
of N underlying (1, N) atomic register instances, called onar.p for p ∈ Π . Every
register instance onar.p stores a value and an associated timestamp. Basically, when
a process p emulates a write operation with value v to register nnar, it first reads
all underlying (1, N) registers. Then it selects the largest timestamp, increments it,
and associates it with v, the value to be written. Finally, p writes the value and the
associated timestamp to the register instance onar.p.

To read a value from the multi-writer register, a process p first reads all underly-
ing registers and returns the value with the largest timestamp. It may occur that
several registers store the same timestamp with different values. To resolve this
ambiguity, process p orders such values according to the rank of the process that
writes to the register. (Recall that the rank associates every process with an index
between 1 and N .) In other words, process p determines the value with the highest
timestamp/rank pair, ordered first by timestamp and second by rank. This defines
a total order among the values stored in the underlying registers. We abstract away
this order within the function highest(·), which we modify for this algorithm so that
it operates on triples of the form (timestamp, rank, value) and returns the timestamp
and value from the triple with the largest timestamp/rank pair in our total order.

Correctness. The termination property of the (N, N) register follows directly from
the corresponding condition of the underlying (1, N) registers.

To show that register instance nnar is atomic, we demonstrate that the nnar-
read and nnar-write operations are linearizable, i.e., there exists a hypothetical
serial execution with all complete operations of the actual execution, such that
(1) every read returns the last value written and (2) for any two operations o1 and
o2, if o1 precedes o2 in the actual execution then o1 also appears before o2 in the
linearization.

Recall that the algorithm uses a total order on (timestamp, rank, value) tuples,
implemented by the function highest(·), and selects the value to return in a read
operation accordingly.

It is clear from the algorithm that the timestamps written by two serial operations
on nnar are strictly increasing, i.e., if a nnar-write operation writes (ts, v) to an
underlying register instance onar.q and a subsequent nnar-write operation writes
(ts′, v′) to an underlying register instance onar.q′ then ts < ts′.

4.4 (N, N) Atomic Register 163

Algorithm 4.8: From (1, N) Atomic to (N, N) Atomic Registers

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
(1, N)-AtomicRegister (multiple instances).

upon event 〈 nnar, Init 〉 do
val := ⊥;
writing := FALSE;
readlist := [⊥]N ;
forall q ∈ Π do

Initialize a new instance onar.q of (1, N)-AtomicRegister
with writer q;

upon event 〈 nnar, Write | v 〉 do
val := v;
writing := TRUE;
forall q ∈ Π do

trigger 〈 onar.q, Read 〉;

upon event 〈 nnar, Read 〉 do
forall q ∈ Π do

trigger 〈 onar.q, Read 〉;

upon event 〈 onar.q, ReadReturn | (ts′, v′) 〉 do
readlist[q] := (ts′, rank(q), v′);
if #(readlist) = N then

(ts, v) := highest(readlist);
readlist := [⊥]N ;
if writing = TRUE then

writing := FALSE;
trigger 〈 onar.self , Write | (ts + 1, val) 〉;

else
trigger 〈 nnar, ReadReturn | v 〉;

upon event 〈 onar.self , WriteReturn 〉 do
trigger 〈 nnar, WriteReturn 〉;

Now, construct the linearization as follows. First, include all nnar-write opera-
tions according to the total order of their associated timestamp/rank pairs. Second,
consider each nnar-read operation or in the order in which the response occurs in
the actual execution, take the value ts and the rank of the writer q associated with
the value v returned, and find the nnar-write operation ow, during which process q
wrote (ts, v) to instance onar.q; place operation or after ow into the linearization,
immediately before the subsequent nnar-write operation.

It is easy to see that the first condition of linearizability holds from the construc-
tion of the linearization, because each read returns the value of the latest preceding
write.

164 4 Shared Memory

To show the second condition of linearizability, consider any two operations o1

and o2 in the actual execution such that o1 precedes o2. There are four cases to
consider:

1. If both are writes, they are in the correct order as argued earlier (their timestamps
are strictly increasing).

2. Suppose o1 is a read and o2 is a write. The algorithm for the write first reads
the underlying registers, selects the highest timestamp/rank pair, and increments
this timestamp by one for writing. Then, o1 occurs before o2 in the linearization
according to its construction.

3. Suppose o1 is a write and o2 is a read. As in the previous case, the algorithm
for the read first reads the timestamps from all underlying registers and chooses
among them a value with a maximal timestamp/rank pair. Thus, o2 returns a
value with associated timestamp generated by o1 or by a subsequent write.
Hence, the construction of the linearization places o2 after o1.

4. If o1 is a read and o2 is a read, the case is more complex. Suppose that o1 returns
a value v1 and selected (ts1, r1) as highest timestamp/rank pair, and o2 used a
different highest timestamp/rank pair (ts2, r2) associated with the return value.
As o2 occurs after o1 in the actual execution, and as any intervening writes do not
decrease the timestamp value, we have ts2 ≥ ts1. If ts2 > ts1 then the second
condition holds by construction of the linearization.
Otherwise, if ts2 = ts1, consider process p1 with rank r1 and process p2 with
rank r2. If r1 < r2 then the write of process p1 is placed into the linearization
before the write of process p2, and, hence, also o1 is placed into the linearization
before o2. If r1 = r2 then the read operations occur also in the correct order in
the linearization. The last case, r1 > r2, however, cannot have occurred in the
actual execution: when o2 is invoked, the underlying register instance onar.p1

still contains the pair (ts1, v1) and o2 would have selected (ts1, r1) as the high-
est timestamp/rank pair. But this contradicts the assumption made above that
(ts1, r1) �= (ts2, r2).

Performance. Every write operation into the (N, N) atomic register requires N
reads from each of the underlying (1, N) registers and one write into a (1, N)
register. Every read from the (N, N) register requires N reads from each of the
underlying (1, N) registers.

Assume we apply the transformation of Algorithm 4.8 to the “Read-Impose
Write-All” fail-stop algorithm (Algorithm 4.5) in order to obtain an (N, N) atomic
register algorithm. Every read operation from the (N, N) register would involve
N (parallel) communication roundtrips between the reader and all other processes.
Furthermore, every write to the (N, N) register would involve N (parallel) com-
munication roundtrips between the writer and all other processes (to determine the
largest timestamp), and then another communication roundtrip between the writer
and all other processes (to perform the actual writing).

Similarly, assume we apply the transformation of Algorithm 4.8 to “Read-
Majority Impose-Majority” algorithm (Algorithm 4.6–4.7) in order to obtain a
(N, N) atomic register algorithm. Every read in the (N, N) register would involve

4.4 (N, N) Atomic Register 165

N (parallel) communication roundtrips between the reader and a majority of the pro-
cesses (to determine the latest value), and then N other communication roundtrips
between the reader and a majority of the processes (to impose that value). Further-
more, every write to the (N, N) register would involve N (parallel) communication
roundtrips between the writer and a majority (to determine the largest timestamp)
and then another communication roundtrip between the writer and a majority (to
perform the actual writing).

We present, in the following, two direct implementations of an (N, N) atomic
register that are more efficient than the algorithms we obtain through the auto-
matic transformations. Both algorithms use the two main ideas introduced by the
transformation, namely, that a writer first consults the memory to obtain the highest
timestamp that may have been used by the other writers, and that timestamp/rank
pairs are used to extend the order on timestamps. We describe first a fail-stop
algorithm and then a fail-silent algorithm.

4.4.4 Fail-Stop Algorithm: Read-Impose Write-Consult-All (N, N)
Atomic Register

We describe the “Read-Impose Write-Consult-All” algorithm that implements an
(N, N) atomic register in Algorithm 4.9. It uses the fail-stop system model with
a perfect failure detector and extends the “Read-Impose Write-All” algorithm for
(1, N) atomic registers (Algorithm 4.5) to deal with multiple writers.

In order to get an idea of the issue introduced by multiple writers, it is important
to first figure out why the “Read-Impose Write-All” algorithm cannot afford multi-
ple writers. Consider indeed two processes p and q trying to write concurrently to
a register, implemented using the “Read-Impose Write-All” algorithm. Due to the
use of acknowledgments for read and write operations, if the preceding operation
completed and no other operation is invoked, processes p and q both store the same
timestamp ts used by that operation. When they proceed to write, different values
would become associated with the same timestamp.

To resolve this issue, the algorithm also stores the identity of the process that
writes a value together with a timestamp, expressed through the writer’s rank, and
uses it to determine the highest timestamp. Comparisons employ the same ordering
of timestamp/rank pairs as in Algorithm 4.8. Apart from the addition of writer-ranks
and the modified comparison, Algorithm 4.9 is the same as Algorithm 4.5.

Correctness. The termination property of the atomic register follows from the
completeness property of the failure detector P and the underlying channels.

The atomicity property follows from the accuracy property of P and from the
ordering of timestamp/rank pairs. This order is the same as in Algorithm 4.8 and the
argument proceeds analogously.

For demonstrating that the operations of the algorithm are linearizable, we con-
struct the hypothetical sequence of atomic operations as follows. First, include all
write operations according to the order on the unique timestamp/rank pair that was
included in the WRITE message triggered by the operation. Second, consider each
read operation or in the order in which the response occurs in the actual execution,

166 4 Shared Memory

Algorithm 4.9: Read-Impose Write-Consult-All

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl;
PerfectFailureDetector, instance P .

upon event 〈 nnar, Init 〉 do
(ts, wr, val) := (0, 0,⊥);
correct := Π;
writeset := ∅;
readval := ⊥;
reading := FALSE;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon event 〈 nnar, Read 〉 do
reading := TRUE;
readval := val;
trigger 〈 beb, Broadcast | [WRITE, ts, wr, val] 〉;

upon event 〈 nnar, Write | v 〉 do
trigger 〈 beb, Broadcast | [WRITE, ts + 1, rank(self), v] 〉;

upon event 〈 beb, Deliver | p, [WRITE, ts′, wr′, v′] 〉 do
if (ts′, wr′) is larger than (ts, wr) then

(ts, wr, val) := (ts′, wr′, v′);
trigger 〈 pl, Send | p, [ACK] 〉;

upon event 〈 pl, Deliver | p, [ACK] 〉 then
writeset := writeset ∪ {p};

upon correct ⊆ writeset do
writeset := ∅;
if reading = TRUE then

reading := FALSE;
trigger 〈 nnar, ReadReturn | readval 〉;

else
trigger 〈 nnar, WriteReturn 〉;

take the value ts and the rank of the writer q associated with the value v returned, and
find the write operation ow, during which process q wrote (ts, v); place operation or

after ow into the sequence, immediately before the subsequent write operation.
The first condition of linearizability is ensured directly by the construction of the

linearization, because each read returns the value of the latest preceding write.
To show the second condition of linearizability, consider any two operations o1

and o2 in the actual execution such that o1 precedes o2. There are four cases

4.4 (N, N) Atomic Register 167

to analyze:

1. If both operations are writes then the process p2 executing o2 accessed its vari-
able ts and incremented it. As the writer p1 of o1 has received an ACK message
from p2 (because p2 has not been detected by P), the value of ts at process p2

is at least as large as the timestamp associated to o1. Thus, the two operations
appear in the linearization in the correct order by construction.

2. Suppose o1 is a read and o2 is a write. As in the previous case, the algorithm for
the writer reads its variable ts and increments it by one for writing. This implies
that o1 occurs before o2 in the linearization.

3. Suppose o1 is a write and o2 is a read. The algorithm for o2 returns the value
in variable val at the reader that is associated to the timestamp in variable ts.
According to how processes update their variables and how write operations are
ordered, variable ts contains a timestamp that is at least as large as the timestamp
written by o1. This implies that o2 appears after o1 in the linearization.

4. If both operations are reads, suppose that o1 returns a value v1 associated to
a timestamp/rank pair (ts1, r1), and o2 returns a value associated to a differ-
ent timestamp/rank pair (ts2, r2). As o2 occurs after o1 in the actual execution,
the reader in o1 received an acknowledgement from all nondetected processes,
including the process that executes o2. The latter process (executing o2) may
only have increased its ts variable in the algorithm; this argument implies that
ts2 ≥ ts1.
We now distinguish two cases. If ts2 > ts1 then the condition of linearizability
holds by construction. Otherwise, if ts2 = ts1, consider process p1 with rank r1

and process p2 with rank r2. If r1 < r2 then the write of process p1 is placed into
the linearization before the write of process p2, and, hence, also o1 is placed into
the linearization before o2, as required. Otherwise, it must hold r1 > r2 because
r1 �= r2. But, this cannot occur in the actual execution. It would mean that the
variable tuple (ts, wr) at the process executing o2 contains a timestamp/rank
pair that is at least as large as (ts1, r1) according to the algorithm, because the
process received a WRITE message containing (t1, r1) during o1 and updated the
variables. But o2 returns the value associated to (ts2, r2), with ts2 = ts1, and
this means that r2 ≥ r1, a contradiction.

Performance. Every read and write in the (N, N) register requires two communi-
cation steps, and O(N) messages are exchanged for one operation

4.4.5 Fail-Silent Algorithm: Read-Impose Write-Consult-Majority
(N, N) Atomic Register

We describe here how to obtain an algorithm that implements an (N, N) atomic
register in a fail-silent model as an extension of our “Read-Impose Write-Majority”
algorithm, i.e., Algorithm 4.6–4.7, that implements a (1, N) atomic register.

Let us again consider multiple writers in the single-writer formulation of the al-
gorithm and examine why Algorithm 4.6–4.7 fails to implement an (N, N) atomic

168 4 Shared Memory

Algorithm 4.10: Read-Impose Write-Consult-Majority (part 1, read and consult)

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event 〈 nnar, Init 〉 do
(ts, wr, val) := (0, 0,⊥);
acks := 0;
writeval := ⊥;
rid := 0;
readlist := [⊥]N ;
readval := ⊥;
reading := FALSE;

upon event 〈 nnar, Read 〉 do
rid := rid + 1;
acks := 0;
readlist := [⊥]N ;
reading := TRUE;
trigger 〈 beb, Broadcast | [READ, rid] 〉;

upon event 〈 beb, Deliver | p, [READ, r] 〉 do
trigger 〈 pl, Send | p, [VALUE, r, ts, wr, val] 〉;

upon event 〈 pl, Deliver | q, [VALUE, r, ts′, wr′, v′] 〉 such that r = rid do
readlist[q] := (ts′, wr′, v′);
if #(readlist) > N/2 then

(maxts, rr, readval) := highest(readlist);
readlist := [⊥]N ;
if reading = TRUE then

trigger 〈 beb, Broadcast | [WRITE, rid, maxts, rr, readval] 〉;
else

trigger 〈 beb, Broadcast | [WRITE, rid, maxts + 1, rank(self), writeval] 〉;

register abstraction. Suppose a process p executes a long sequence of write opera-
tions. Furthermore, assume that some other correct process q has not received the
WRITE messages from p so far, and was, therefore, never included in the majority
required to complete those operations. When process q tries to write using its local
timestamp, its write operation will fail because its timestamp is smaller than the
current value stored by those processes that acknowledged the write operations of p.
Compared to the discussion of Algorithm 4.9 before, which uses the fail-stop model,
the timestamp of q can fall behind much more here, because q’s reply is not needed
by p to terminate an operation.

Again, the solution to the problem is to coordinate the timestamps between the
processes according to the method introduced by the transformation from (1, N) to
(N, N) atomic registers. For extending the “Read-Impose Write-Majority”

4.4 (N, N) Atomic Register 169

Algorithm 4.11: Read-Impose Write-Consult-Majority (part 2, write and write-back)

upon event 〈 nnar, Write | v 〉 do
rid := rid + 1;
writeval := v;
acks := 0;
readlist := [⊥]N ;
trigger 〈 beb, Broadcast | [READ, rid] 〉;

upon event 〈 beb, Deliver | p, [WRITE, r, ts′, wr′, v′] 〉 do
if (ts′, wr′) is larger than (ts, wr) then

(ts, wr, val) := (ts′, wr′, v′);
trigger 〈 pl, Send | p, [ACK, r] 〉;

upon event 〈 pl, Deliver | q, [ACK, r] 〉 such that r = rid do
acks := acks + 1;
if acks > N/2 then

acks := 0;
if reading = TRUE then

reading := FALSE;
trigger 〈 nnar, ReadReturn | readval 〉;

else
trigger 〈 nnar, WriteReturn 〉;

algorithm to multiple writers, we have to determine the “current” timestamp in a
distributed fashion. Every writer first consults all processes for timestamps written
by other processes, determines the maximal timestamp stored so far, and then selects
a higher timestamp to be associated with its write operation. The consultation phase
reads the distributed atomic register in the same way as during a read operation.

We give the resulting “Read-Impose Write-Consult-Majority” algorithm in
Algorithm 4.10–4.11; it is based on the “Read-Impose Write-Majority” algorithm
that implements a single-writer atomic register in the fail-silent system model.

The read operation of the (N, N) atomic register algorithm is similar to the
single-writer algorithm. The write operation is different in that the writer first
invokes the mechanism of the read operation to determine a timestamp to associate
with the new value. As in the other multi-writer register algorithms, the algorithm
extends timestamps by the rank of the writer process for determining the value to
store. The algorithm uses the same order on timestamp/rank pairs as Algorithm 4.8
and the function highest(·) from Algorithm 4.8.

Correctness. The termination property of the register follows from the correct
majority assumption and the properties of the underlying channels. The atomicity
property follows from the use of a majority quorum during read and write operations
and from the ordering of timestamp/rank pairs as in Algorithm 4.8. The linearizabil-
ity property follows from constructing a linearization order for every execution in
the same manner as for Algorithms 4.8 and 4.10–4.11. As the argument contains
essentially the same steps as presented twice before, we omit the details.

170 4 Shared Memory

Performance. Every read or write in the (N, N) register requires four communi-
cation steps corresponding to two roundtrip exchanges between the reader or the
writer and a majority of the processes. In each case, O(N) messages are exchanged.

4.5 (1, N) Logged Regular Register

So far, we have considered register abstractions for crash-stop process abstractions,
which do not recover after a crash. In other words, even if a crashed process recov-
ers, it is excluded from the computation afterward and cannot help other processes
reading or writing by storing and witnessing values. In this section, we relax this
assumption and enlarge the system model to include recovered processes. This will
make the resulting algorithms more robust because they tolerate a wider range of
practical failure scenarios. We give the specification of a regular register abstraction
and an algorithm that implements this specification in the fail-recovery model.

4.5.1 Precedence in the Fail-Recovery Model

Before defining a register abstraction in the fail-recovery model, we revisit the
notion of precedence introduced earlier for the models with crash-stop process
abstractions. Recall the assumption that a process accesses every register in a
sequential manner, strictly alternating between invocation events and completion
events. In the fail-recovery model, a process may crash right after a register abs-
traction has triggered a completion event of an operation and before the process
may react to this event. From the perspective of the register implementation, the
operation is complete, but for the calling algorithm, it is not. To reconcile this dif-
ference, we extend the notion of precedence among operations to encompass also
incomplete operations, for which completion events do not occur.

An operation o is said to precede an operation o′ if any of the following two
conditions hold:

1. the completion event of o occurs before the invocation event of o′; or
2. the operations are invoked by the same process and the invocation event

of o′ occurs after the invocation event of o.

Note how this implies that an operation o invoked by some process p may precede
an operation o′ invoked also by process p, even though o may not have completed.
For instance, this could occur when p has invoked o, crashed, recovered, and sub-
sequently invoked o′. This was clearly impossible in the system models where
processes do not recover from failure.

4.5.2 Specification

The interface and properties of a (1, N) regular register abstraction in the fail-
recovery model, called a logged register, are given in Module 4.4. Compared to

4.5 (1, N) Logged Regular Register 171

Module 4.4: Interface and properties of a (1, N) logged regular register
Module:

Name: (1, N)-LoggedRegularRegister, instance lonrr.

Events:

Request: 〈 lonrr, Read 〉: Invokes a read operation on the register.

Request: 〈 lonrr, Write | v 〉: Invokes a write operation with value v on the register.

Indication: 〈 lonrr, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 lonrr, WriteReturn 〉: Completes a write operation on the register.

Properties:

LONRR1: Termination: If a process invokes an operation and never crashes, then
the operation eventually completes.

LONRR2: Validity: A read that is not concurrent with a write returns the last value
written; a read that is concurrent with a write returns the last value written or the
value concurrently written.

the definition of a (1, N) regular register in the models without recoveries (Module
4.1), only the termination property and the notion of precedence that underlies the
validity property change. Atomic registers in the fail-recovery model with one or
multiple writers and with multiple readers can be specified accordingly.

The termination property (LONRR1) is similar to the formulation of termina-
tion considered before (property ONRR1 of Module 4.1), though expressed here in
a different manner. The notion of a “correct process” used in the regular register
specification has a different meaning. Because a correct process in the fail-recovery
model may crash and recover many times, we do not require that every operation
invoked by a correct process eventually completes. It is not possible to require in
every case that a process that invokes some operation, crashes, and then recovers,
is notified about the completion of the operation. Instead, the termination property
of a logged regular register requires that only operations invoked by processes that
never crash eventually complete.

On the other hand, although the validity property (LONRR2) reads exactly as
in earlier specifications (e.g., property ONRR2 of Module 4.1), it has a different
meaning.

Consider the execution shown in Fig. 4.7. Assume the writer process p invokes
an operation to write x and this is the first write operation ever. The process crashes
before completing the operation, then recovers, and invokes a second write with
value y. At this point in time, some process q concurrently invokes a read operation
on the same register. Even though the second write operation of p has already been
invoked, it is valid that q reads ⊥ from the register if the value x is not considered

172 4 Shared Memory

write(x) write(y)

read() read() y or

p

q

Figure 4.7: An execution of a logged regular register

to have been written. Assume that q subsequently invokes another read operation
that is still concurrent with the second write operation of p. This read operation now
must no longer return x (but may still return ⊥ or y) because x was never written to
the register. In other words, there is only one last value written before y; it can be
either ⊥ or x, but not both.

In contrast to the logged links and logged broadcast abstractions from the pre-
vious chapters, the logged register abstraction delivers its output through ordinary
events and not through a special variable that is logged in stable storage. This form
was necessary for the communication abstractions because the receiving process
could not anticipate, for example, if and how many messages might be delivered by
a broadcast abstraction. When accessing shared storage using a register abstraction,
however, both indication events, i.e., the 〈 ReadReturn 〉 and the 〈 WriteReturn 〉
events, occur only after the process has triggered the corresponding request event
beforehand. Furthermore, executing the same register operation multiple times in
succession has the same effect as executing it once. This means that even if an indi-
cation event is lost because of a crash, when the process recovers later, it can simply
restart the operation without losing information or affecting the future behavior of
the register.

4.5.3 Fail-Recovery Algorithm: Logged Majority Voting

For implementing a register in the fail-recovery model where all processes can crash,
it is easy to see that even implementations of the simplest registers must have access
to stable storage and require that a majority of the processes is correct. As before, the
fail-recovery algorithm may access local stable storage (through store and retrieve
operations), whose content is not lost after a crash. Furthermore, we assume that
a majority of the processes are correct. Remember that a correct process in a fail-
recovery model is one that either never crashes or eventually recovers and never
crashes again.

Intuitively, we might consider transforming our “Majority Voting” regular regis-
ter algorithm (i.e., Algorithm 4.2) to deal with process crashes and recoveries simply
by logging every new value of any local variable to stable storage upon modification
of that variable, and then retrieving all variables upon recovery. This would mean
that any delivered message must be stored in stable storage. However, one should be
careful with such an automatic transformation, as discussed earlier, because access
to stable storage is an expensive operation and should only be used when necessary.

4.5 (1, N) Logged Regular Register 173

In the following, we describe Algorithm 4.12–4.13, called “Logged Majority
Voting,” that implements a (1, N) logged regular register. It is a direct extension
of Algorithm 4.2. The algorithm stores some variables in persistent storage across
invocations, in particular, the current timestamp ts and value val stored in the reg-
ister, the write-timestamp wts, and the request identifier rid. These values must be
logged in one atomic store operation; the process accesses them again upon recovery
with a retrieve operation. We discuss the need of logging with an atomic operation
through an exercise (at the end of the chapter).

For communication, the algorithm uses a stubborn point-to-point links abstrac-
tion and a stubborn best-effort broadcast abstraction. Remember that stubborn
communication primitives ensure that, roughly speaking, if a message is sent or
broadcast to a correct process (in the fail-recovery sense), the message is delivered
an infinite number of times, unless the sender crashes. This ensures that the pro-
cess, even if it crashes and recovers a finite number of times, will eventually process
every message sent to it. But, the algorithm must take measures to filter out duplicate
messages.

Two flags writing and reading are used to mark the presence of an ongoing write
or read operation, respectively. They are necessary to prevent multiply delivered
ACK and VALUE messages from triggering duplicate completion events. In con-
trast to Algorithm 4.2, the “Logged Majority Voting” algorithm employs the request
identifier rid not only for reads but also for writes. This is necessary because every
failed write is restarted during recovery and the collected ACK messages must be
attributed to the proper WRITE message.

Note that upon recovery, every process first executes its recovery procedure. The
algorithm logs only those variables that must preserve their values across operations,
with the exception of the writing flag. Logging the writing variable is needed for
restarting a write operation that may have been left in a partially completed state
after a crash.

The communication pattern of Algorithm 4.12–4.13 is similar to the communica-
tion induced by Algorithm 4.2 for implementing a regular register in the fail-silent
model.

With the same approach as used here to extend Algorithm 4.2 to Algorithm 4.12–
4.13 for the fail-recovery model, one can also extend Algorithm 4.6–4.7 (“Read-
Impose Write-Majority”) and Algorithm 4.10–4.11 (“Read-Impose Write-Consult-
Majority”) to the fail-recovery model. The resulting algorithms
implement a (1, N) atomic register abstraction and an (N, N) atomic register
abstraction, respectively, in the fail-recovery model.

Correctness. The termination property follows from the properties of the underly-
ing stubborn communication abstractions and the assumption of a majority of the
correct processes.

The argument for the validity property is similar to the one used for Algorithm 4.2.
Consider a read operation that is not concurrent with any write. Assume, further-
more, that the read is invoked by process q and the last value written by the writer p
is v with associated timestamp wts. Because the writer logs every timestamp and
increments the timestamp for every write, this means that, at the time when the read

174 4 Shared Memory

Algorithm 4.12: Logged Majority Voting (part 1, write)

Implements:
(1, N)-LoggedRegularRegister, instance lonrr.

Uses:
StubbornBestEffortBroadcast, instance sbeb;
StubbornLinks, instance sl.

upon event 〈 lonrr, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;
rid := 0;
acklist := [⊥]N ; writing := FALSE;
readlist := [⊥]N ; reading := FALSE;
store(wts, ts, val, rid, writing);

upon event 〈 sbeb, Recovery 〉 do
retrieve(wts, ts, val, rid, writing);
readlist := [⊥]N ; reading := FALSE;
if writing = TRUE then

rid := rid + 1;
trigger 〈 sbeb, Broadcast | [WRITE, rid, ts, v] 〉;

upon event 〈 lonrr, Write | v 〉 do
wts := wts + 1;
(ts, val) := (wts, v);
rid := rid + 1;
acklist := [⊥]N ; writing := TRUE;
store(wts, ts, val, rid, writing);
trigger 〈 sbeb, Broadcast | [WRITE, rid, wts, v] 〉;

upon event 〈 sbeb, Deliver | p, [WRITE, r, ts′, v′] 〉 do
if ts′ > ts then

(ts, val) := (ts′, v′);
store(ts, val);

trigger 〈 sl, Send | p, [ACK, r] 〉;

upon event 〈 sl, Deliver | q, [ACK, r] 〉 such that r = rid do
acklist[q] := ACK;
if #(acklist) > N/2 ∧ writing = TRUE then

acklist := [⊥]N ; writing := FALSE;
store(writing);
trigger 〈 lonrr, WriteReturn 〉;

is invoked, a majority of the processes have logged v in their variable val and wts in
their variable ts, and that there is no larger timestamp in the system. Before return-
ing from the read operation, process q consults a majority of the processes and hence
receives at least one reply containing timestamp wts. This follows from the use of
majority quorums that always intersect. Process q hence returns value v, which is
indeed the last value written, because wts is the largest timestamp.

4.6 (1, N) Byzantine Safe Register 175

Algorithm 4.13: Logged Majority Voting (part 2, read)

upon event 〈 lonrr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ; reading := TRUE;
trigger 〈 sbeb, Broadcast | [READ, rid] 〉;

upon event 〈 sbeb, Deliver | p, [READ, r] 〉 do
trigger 〈 sl, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 sl, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
readlist[q] := (ts′, v′);
if #(readlist) > N/2 ∧ reading = TRUE do

v := highestval(readlist);
readlist := [⊥]N ; reading := FALSE;
trigger 〈 lonrr, ReadReturn | v 〉;

Consider now the case where the read is concurrent with some write of value v
with associated timestamp wts, and the previous write was for value v′ and time-
stamp wts−1. If p had crashed during the previous write before it logged v′ then no
process will ever see v′. Otherwise, if p had logged v′ then p has first completed the
writing of v′ upon recovery. If any process returns wts and v to the reader q then q
returns v, which is a valid reply. Otherwise, at least one process replies with v′ and
associated timestamp wts − 1, and q returns v′, which is also a valid reply.

Performance. Every write operation requires two communication steps between the
writer and a majority of the processes. Similarly, every read operation requires two
communication steps between the reader and a majority of the processes. In both
cases, O(N) messages are exchanged. Every write operation requires one logging
operation by writer and one logging operation by at least a majority of processes
(these can be executed in parallel). Thus, every write requires two causally related
logging operations.

Note that stubborn links are implemented by retransmitting messages periodi-
cally; however, this retransmission can be stopped by a writer and a reader once it
has logged the reply from some process or, at the latest, once it receives enough
replies and has completed its operation.

4.6 (1, N) Byzantine Safe Register

This section and the following ones consider register abstractions in the fail-
arbitrary model, with processes subject to Byzantine faults. The safe register
abstraction is introduced first, and regular and atomic registers are discussed subse-
quently.

176 4 Shared Memory

Module 4.5: Interface and properties of a (1, N) Byzantine safe register
Module:

Name: (1, N)-ByzantineSafeRegister, instance bonsr, with writer w.

Events:

Request: 〈 bonsr, Read 〉: Invokes a read operation on the register.

Request: 〈 bonsr, Write | v 〉: Invokes a write operation with value v on the register.
Executed only by process w.

Indication: 〈 bonsr, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 bonsr, WriteReturn 〉: Completes a write operation on the register.
Occurs only at process w.

Properties:

BONSR1: Termination: If a correct process invokes an operation, then the operation
eventually completes.

BONSR2: Validity: A read that is not concurrent with a write returns the last value
written.

4.6.1 Specification

Registers with safe semantics have been skipped in the context of crash failures
because even simple algorithms were strong enough to provide regular register
semantics. With arbitrary-fault process abstractions, it makes sense to consider the
(1, N) Byzantine safe register abstraction.

A (1, N) Byzantine safe register is basically the same as a (1, N) regular reg-
ister for crash-stop process failures (Module 4.1), except that its validity property
says nothing about the results returned by concurrent operations. More precisely,
only reads that are not concurrent with a write must return the last written value;
otherwise, a safe register may return any value from its domain. The specification
is shown in Module 4.5; it explicitly identifies the one process w that writes to the
register.

For the specification and implementation of registers in the fail-arbitrary sys-
tem model, we assume that writer and reader processes are only subject to crash
faults but never exhibit arbitrary (Byzantine) faults. This restriction comes from the
inherent difficulty of defining registers operated on by Byzantine processes. As one
cannot make statements about the behavior of Byzantine processes, an attempt for
such a definition could, therefore, simply ignore their read operations. But arbitrary-
faulty writers may influence the values returned by correct processes in complex
ways, which is the reason for ruling them out.

4.6 (1, N) Byzantine Safe Register 177

In practical systems, this restriction is not significant because the reader and
writer processes are usually different from the replicated processes in Π . Readers
and writers are often clients that access a fault-tolerant service, implemented by the
processes in Π , which are called server processes in this context. The service has
no interest in assuring consistency properties to arbitrary-faulty clients.

4.6.2 Fail-Arbitrary Algorithm: Byzantine Masking Quorum

Distributed implementations of shared storage in the fail-arbitrary model can be
separated into two classes: algorithms that use cryptographic digital signatures and
algorithms that do not need them. In this section, we introduce a signature-free
algorithm that relies on Byzantine masking quorums. An example of a so-called
authenticated-data algorithm that uses signatures is given in Sect. 4.7.2.

The principal difficulty with extending the “Majority Voting” algorithm
(Algorithm 4.2) to tolerate Byzantine faults lies in filtering out wrong timestamps
and return values forged by faulty processes. Algorithm 4.14, called “Byzantine
Masking Quorum,” works only for N > 4f . Its write operation proceeds as before:
the writer increments a timestamp, sends a timestamp/value pair to all processes,
and expects N − f of them to reply with an acknowledgment. But the read opera-
tion is different because a Byzantine process may send an arbitrary timestamp and
a value that was never written.

In order to eliminate such faulty data, the reader receives timestamp/value pairs
from more than (N + 2f)/2 processes; such a set of processes is also called a
Byzantine masking quorum (Sect. 2.7.3). From these values, the reader first elim-
inates all pairs that occur only f or fewer times and then selects the value from the
pair with the highest timestamp. If no pair remains after the elimination, the reader
selects a default value v0 from the domain of the register. This filtering and selec-
tion operation, starting from a list of timestamp/value pairs, is encapsulated in a
function byzhighestval(·). The algorithm implements only safe semantics because
v0 may never have been written to the register.

The other changes from Algorithm 4.2 to 4.14 are to use authenticated links
for communication and to explicitly restrict the write operation to the given writer
process. Note that all processes know the identity of the writer w and the write
operation can only be invoked by process w.

Correctness. Assuming that N > 4f , Algorithm 4.14 implements a (1, N) Byzan-
tine safe register. The termination property is obvious from the algorithm, because
there are N − f correct processes and the algorithm only waits for more than
(N + 2f)/2 messages of a given type. Because N−f > (N + 2f)/2, every correct
process eventually stops waiting and returns from an operation.

The validity property follows from the use of Byzantine masking quorums. We
show that a read operation that is not concurrent with any write returns the last
value written. Suppose, process q executes the read and the last written value was v,
written by process p with associated timestamp wts. During the write, process p has
received ACK messages from more than (N + 2f)/2 processes; suppose messages

178 4 Shared Memory

Algorithm 4.14: Byzantine Masking Quorum

Implements:
(1, N)-ByzantineSafeRegister, instance bonsr, with writer w.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bonsr, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;
acklist := [⊥]N ;
rid := 0;
readlist := [⊥]N ;

upon event 〈 bonsr, Write | v 〉 do // only process w
wts := wts + 1;
acklist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [WRITE, wts, v] 〉;

upon event 〈 al, Deliver | p, [WRITE, ts′, v′] 〉 such that p = w do
if ts′ > ts then

(ts, val) := (ts′, v′);
trigger 〈 al, Send | p, [ACK, ts′] 〉;

upon event 〈 al, Deliver | q, [ACK, ts′] 〉 such that ts′ = wts do
acklist[q] := ACK;
if #(acklist) > (N + 2f)/2 then

acklist := [⊥]N ;
trigger 〈 bonsr, WriteReturn 〉;

upon event 〈 bonsr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [READ, rid] 〉;

upon event 〈 al, Deliver | p, [READ, r] 〉 do
trigger 〈 al, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 al, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
readlist[q] := (ts′, v′);
if #(readlist) > N+2f

2
then

v := byzhighestval(readlist);
readlist := [⊥]N ;
trigger 〈 bonsr, ReadReturn | v 〉;

4.7 (1, N) Byzantine Regular Register 179

from all f faulty processes are included. Thus, after the completion of the write,
more than

N + 2f

2
− f

correct and informed processes store the pair (wts, v) in their variables ts and val,
and the remaining up to (but less than)

N − N + 2f

2

correct processes are uninformed.
During the read, process q receives more than (N + 2f)/2 VALUE messages

containing timestamp/value pairs, of which up to f may be from faulty processes
and contain arbitrary data, and less than

N − N + 2f

2

may be from uninformed processes. Subtracting the latter from the former, there
are still more than f messages from informed processes and contain the pair
(wts, v). Consequently, the function byzhighestval(·) does not filter out this pair
and wts is the largest timestamp received from any correct process; larger time-
stamps received from faulty processes occur at most f times and are eliminated.
Hence, byzhighestval(·) returns v.
Performance. The algorithm uses the same number of messages as Algorithm 4.2
for regular registers in the fail-silent model, from which it is derived. In total, it uses
one communication roundtrip and O(N) messages for every operation.

4.7 (1, N) Byzantine Regular Register

When a write operation updates the stored data concurrently to a read operation
in Algorithm 4.14, the read may return the default value v0. Although permitted
by safe semantics, this violates regular semantics. The problem is that the reader
cannot distinguish old timestamp/value pairs and newly written ones from the ones
that may have been forged by the faulty processes, and returns v0 in case of doubt.
For extending Algorithm 4.14 to implement a (1, N) regular register abstraction,
however, the algorithm would need to return either the last written value or the
concurrently written one. We define the (1, N) Byzantine regular register abstrac-
tion in this section and consider two algorithms to implement it. The first algorithm
(Sect. 4.7.2) uses data authentication through digital signatures, where as the second
one (Sect. 4.7.3) does not.

4.7.1 Specification

The (1, N) Byzantine regular register abstraction is basically the same as a (1, N)
regular register, but with an explicit identification of the writer w and the restriction

180 4 Shared Memory

Module 4.6: Interface and properties of a (1, N) Byzantine regular register
Module:

Name: (1, N)-ByzantineRegularRegister, instance bonrr, with writer w.

Events:

Request: 〈 bonrr, Read 〉: Invokes a read operation on the register.

Request: 〈 bonrr, Write | v 〉: Invokes a write operation with value v on the register.
Executed only by process w.

Indication: 〈 bonrr, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 bonrr, WriteReturn 〉: Completes a write operation on the register.
Occurs only at process w.

Properties:

BONRR1–BONRR2: Same as properties ONRR1–ONRR2 in a (1, N) regular
register (Module 4.1).

of readers and writers to crash faults, as for Byzantine safe registers. The details of
the abstraction are given in Module 4.6.

4.7.2 Fail-Arbitrary Algorithm: Authenticated-Data Byzantine Quorum

With the help of digital signatures one can easily circumvent the problem in
Algorithm 4.14 mentioned earlier and obtain an implementation of a (1, N)
Byzantine regular register. This solution has even better resilience (requiring only
N > 3f) than Algorithm 4.14 (whose resilience is N > 4f).

The idea behind the following “Authenticated-Data Byzantine Quorum” algo-
rithm, shown in Algorithm 4.15, is for the writer to sign the timestamp/value
pair and to store it together with the signature at the processes. The writer auth-
enticates the data with its signature. The reader verifies the signature on each
timestamp/value pair received in a VALUE message and ignores those with invalid
signatures. A Byzantine process is thus prevented from returning an arbitrary time-
stamp and value in the VALUE message, although it may include a signed value with
an outdated timestamp. Algorithm 4.15 is now obtained from the “Majority Voting”
algorithm in the fail-silent model by adding data authentication and by employing
Byzantine (majority) quorums (Sect. 2.7.3) instead of ordinary (majority) quorums.

Note that only the clients, i.e., the reader and the writer, need to perform crypto-
graphic digital signature operations; the server processes simply store the signatures
and may ignore their meaning.

Correctness. Under the assumption that N > 3f , the termination property is stra-
ightforward to verify: as there are N − f correct processes, the reader and the

4.7 (1, N) Byzantine Regular Register 181

Algorithm 4.15: Authenticated-Data Byzantine Quorum

Implements:
(1, N)-ByzantineRegularRegister, instance bonrr, with writer w.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bonrr, Init 〉 do
(ts, val, σ) := (0,⊥,⊥);
wts := 0;
acklist := [⊥]N ;
rid := 0;
readlist := [⊥]N ;

upon event 〈 bonrr, Write | v 〉 do // only process w
wts := wts + 1;
acklist := [⊥]N ;
σ := sign(self, bonrr‖self‖WRITE‖wts‖v);
forall q ∈ Π do

trigger 〈 al, Send | q, [WRITE, wts, v, σ] 〉;

upon event 〈 al, Deliver | p, [WRITE, ts′, v′, σ′] 〉 such that p = w do
if ts′ > ts then

(ts, val, σ) := (ts′, v′, σ′);
trigger 〈 al, Send | p, [ACK, ts′] 〉;

upon event 〈 al, Deliver | q, [ACK, ts′] 〉 such that ts′ = wts do
acklist[q] := ACK;
if #(acklist) > (N + f)/2 then

acklist := [⊥]N ;
trigger 〈 bonrr, WriteReturn 〉;

upon event 〈 bonrr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [READ, rid] 〉;

upon event 〈 al, Deliver | p, [READ, r] 〉 do
trigger 〈 al, Send | p, [VALUE, r, ts, val, σ] 〉;

upon event 〈 al, Deliver | q, [VALUE, r, ts′, v′, σ′] 〉 such that r = rid do
if verifysig(q, bonrr‖w‖WRITE‖ts′‖v′, σ′) then

readlist[q] := (ts′, v′);
if #(readlist) > N+f

2
then

v := highestval(readlist);
readlist := [⊥]N ;
trigger 〈 bonrr, ReadReturn | v 〉;

182 4 Shared Memory

writer receive

N − f >
N + f

2
replies and complete their operations.

To see the validity property, consider a read operation by process q that is not
concurrent with any write. Assume that some process p executed the last write,
and that p has written value v with associated timestamp wts. When the read is
invoked, more than (N + f)/2 processes have acknowledged to p that they would
store wts and v in their local state. The writer has not signed any pair with a larger
timestamp than wts. When the reader obtains VALUE messages from more than
(N + f)/2 processes, at least one of these message originates from a correct process
and contains wts, v, and a valid signature from p. This holds because every two sets
of more than (N + f)/2 processes overlap in at least one correct process, as they
form Byzantine quorums. The reader hence returns v, the last written value, because
no pair with a timestamp larger than wts passes the signature verification step.

Consider now the case where the read is concurrent with some write of value v
with associated timestamp wts, and the previous write was for value v′ and time-
stamp wts − 1. If any process returns wts to the reader q then q returns v, which is
a valid reply. Otherwise, the reader receives at least one message containing v′ and
associated timestamp wts − 1 from a correct process and returns v′, which ensures
regular semantics.

Performance. The algorithm uses the same communication pattern as Algorithm 4.2
for regular registers in the fail-silent model and incurs two communication round-
trips and O(N) messages for every operation. The algorithm adds the cryptographic
operations for creating and verifying digital signatures by the clients.

The same approach can also be used to transform Algorithm 4.6–4.7 for a (1, N)
atomic register in the fail-silent model into a (1, N) Byzantine atomic register,
defined analogously in the fail-arbitrary model.

4.7.3 Fail-Arbitrary Algorithm: Double-Write Byzantine Quorum

In this section, we describe an algorithm with resilience N > 3f that implements
a (1, N) Byzantine regular register abstraction and does not use digital signatures.
As we have seen with the previous algorithm, digital signatures greatly simplify the
design of fail-arbitrary algorithms.

Tolerating less than N/3 arbitrary-faulty processes is optimal in this context.
For instance, no algorithm for implementing even a safe register on N = 3 pro-
cesses without data authentication tolerates only one Byzantine process. Consider
how such an algorithm would operate. Even without concurrency, the read operation
should be wait-free, that is, not block after receiving a reply from only N − f = 2
processes. Hence, the reader should choose a return value from only two replies. But
it may be that the third process is correct and only slow, and one of the replies was
forged by the Byzantine process. As the two responses look equally plausible, the
reader might return the forged value and violate the validity property of the register
in this case.

4.7 (1, N) Byzantine Regular Register 183

write(x)

read()

p

q

r

s

Figure 4.8: A nonregular register execution with one Byzantine process q and a one-
phase write algorithm

In order to achieve optimal resilience N > 3f and regular semantics, the writer
process p uses two phases to write a new value in Algorithm 4.16–4.17, a pre-write
phase and a write phase. This explains why the algorithm is called “Double-Write
Byzantine Quorum.”

A two-phase write operation is actually necessary to ensure regular semantics
with resilience N > 3f , as the execution of a hypothetical algorithm with only
one write phase in Fig. 4.8 illustrates. Suppose that the algorithm relies on a time-
stamp/value pair stored by all processes, like previous algorithms. Initially, every
correct process stores (0,⊥). If the algorithm would implement a Byzantine regular
register abstraction then a write operation by process p to write the pair (1, x) could
have sent this to all processes, receive acknowledgments from processes p, q, and s,
and complete. The message from p to process r is delayed. Consider a subsequently
invoked read operation by r that obtains VALUE messages with replies from q, r,
and s. Process q is Byzantine and replies with [VALUE, 0,⊥], process r only knows
the initial value and sends [VALUE, 0,⊥], and process s replies with [VALUE, 1, x].
How should the reader select a return value?

• The reader cannot return x, because only one process replied with value x, so
the value might have been forged by the faulty process and violate the validity
property.

• The reader cannot return the initial value ⊥, because the value x might indeed
have been written before the read was invoked, as the execution shows. This
would also violate the validity property.

• The reader must return something as required by the termination property. But
the reader cannot afford to wait for a reply from process p. It may be that p has
crashed and never sends a reply; indeed, if the writer had crashed in the middle of
a write and only s had received its (single) message, the replies would represent
a valid state.

Hence, the read will not satisfy the properties a regular register.
The two-phase write operation avoids this problem. In the first phase, the writer

sends PREWRITE messages with the current timestamp/value pair. Then it waits
until it receives PREACK messages from N − f processes, which acknowledge

184 4 Shared Memory

Algorithm 4.16: Double-Write Byzantine Quorum (part 1, write)

Implements:
(1, N)-ByzantineRegularRegister, instance bonrr, with writer w.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bonrr, Init 〉 do
(pts, pval) := (0,⊥);
(ts, val) := (0,⊥);
(wts, wval) := (0,⊥);
preacklist := [⊥]N ;
acklist := [⊥]N ;
rid := 0;
readlist := [⊥]N ;

upon event 〈 bonrr, Write | v 〉 do // only process w
(wts, wval) := (wts + 1, v);
preacklist := [⊥]N ;
acklist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [PREWRITE, wts,wval] 〉;

upon event 〈 al, Deliver | p, [PREWRITE, pts′, pval′] 〉
such that p = w ∧ pts′ = pts + 1 do

(pts, pval) := (pts′, pval′);
trigger 〈 al, Send | p, [PREACK, pts] 〉;

upon event 〈 al, Deliver | q, [PREACK, pts′] 〉 such that pts′ = wts do
preacklist[q] := PREACK;
if #(preacklist) ≥ N − f then

preacklist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [WRITE, wts, wval] 〉;

upon event 〈 al, Deliver | p, [WRITE, ts′, val′] 〉
such that p = w ∧ ts′ = pts ∧ ts′ > ts do

(ts, val) := (ts′, val′);
trigger 〈 al, Send | p, [ACK, ts] 〉;

upon event 〈 al, Deliver | q, [ACK, ts′] 〉 such that ts′ = wts do
acklist[q] := ACK;
if #(acklist) ≥ N − f then

acklist := [⊥]N ;
trigger 〈 bonrr, WriteReturn 〉;

that they have stored the data from the PREWRITE message. In the second phase,
the writer sends ordinary WRITE messages, again containing the current time-
stamp/value pair. It then waits until it receives ACK messages from N−f processes,
which acknowledge that they have stored the data from the WRITE message.

Every process stores two timestamp/value pairs, one from the pre-write phase
and one from the write phase. Intuitively, the above problem now disappears when

4.7 (1, N) Byzantine Regular Register 185

Algorithm 4.17: Double-Write Byzantine Quorum (part 2, read)

upon event 〈 bonrr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [READ, rid] 〉;

upon event 〈 al, Deliver | p, [READ, r] 〉 do
trigger 〈 al, Send | p, [VALUE, r, pts, pval, ts, val] 〉;

upon event 〈 al, Deliver | q, [VALUE, r, pts′, pval′, ts′, val′] 〉 such that r = rid do
if pts′ = ts′ + 1 ∨ (pts′, pval′) = (ts′, val′) then

readlist[q] := (pts′, pval′, ts′, val′);
if exists (ts, v) in an entry of readlist such that authentic(ts, v, readlist) = TRUE

and exists Q ⊆ readlist such that
#(Q) > N+f

2
∧ selectedmax(ts, v, Q) = TRUE then

readlist := [⊥]N ;
trigger 〈 bonrr, ReadReturn | v 〉;

else
trigger 〈 al, Send | q, [READ, r] 〉;

the reader is no longer forced to select a value immediately. For example, if q and r
reply with the timestamp/value pair (0,⊥) for their pre-written and written pair, and
s replies with (1, x) for its pre-written and written pair, then the reader r can infer
that one of the three processes must be faulty because the writer received N − f
acknowledgments during the pre-write phase for (1, x) (hence, either s sent the
wrong written pair or q sent the wrong pre-written pair, as r itself is obviously
correct). In this case, process r can safely wait for a reply from the fourth process,
which will break the tie.

The algorithm cannot quite satisfy the (1, N) Byzantine regular register abstrac-
tion of Module 4.6 in its termination property. More precisely, for Algorithm 4.16–
4.17, we relax the termination property (BONRR1) as follows. Instead of requiring
that every operation of a correct process eventually terminates, a read operation
that is concurrent with infinitely many write operations may not terminate. In other
words, every write eventually completes and either every read eventually completes
or the writer invokes infinitely many writes. Hence, algorithms implementing such
registers satisfy only this so-called finite-write termination property, but are clearly
not wait-free. It has been shown that such a relaxation is necessary.

Algorithm 4.16–4.17 relies on Byzantine quorums (Sect. 2.7.3). The reader sends
a READ message to all processes as usual and waits for replies containing two time-
stamp/value pairs. According to the algorithm for writing, two cases may occur:
either the pre-written timestamp is one higher than the written timestamp or the two
pairs are equal; the reader retains such pairs. In any other case, the sender must be
faulty and its reply is ignored.

The reader collects such replies in a variable readlist, where now every entry
consists of two timestamp/value pairs. It stops collecting replies when some entry

186 4 Shared Memory

of readlist contains a pair (ts, v) that (1) is found in the entries of more than f
processes, and such that (2) there is a Byzantine quorum (Q) of entries in readlist
whose highest timestamp/value pair, selected among the pre-written or written pair
of the entries, is (ts, v).

More precisely, a timestamp/value pair (ts, v) is called authentic in readlist, and
the predicate authentic(ts, v, readlist) returns TRUE, whenever

#
({

p | readlist[p] = (pts′, pv′, ts′, v′)

∧ (
(pts′, pv′) = (ts, v) ∨ (ts′, v′) = (ts, v)

)})
> f.

Hence, an authentic timestamp/value pair is found somewhere in the replies of more
than f processes and cannot have been forged by a faulty process.

Furthermore, a pair (ts, v) is called a selected maximum in a list S with two time-
stamp/value pairs in every entry, and the predicate selectedmax(ts, v, S) is TRUE,
whenever it holds for all (pts′, pv′, ts′, v′) ∈ S that(

pts′ < ts ∧ ts′ < ts
) ∨ (pts′, pv′) = (ts, v) ∨ (ts′, v′) = (ts, v).

Thus, a selected maximum pair satisfies, for every entry in S, that it is either equal
to one of the timestamp/value pairs in the entry or its timestamp is larger than the
timestamps in both pairs in the entry.

Given these notions, the read returns now only if there exists an authentic
pair (ts, v) in some entry of readlist and a sublist Q ⊆ readlist exists that satisfies
#(Q) > (N + f)/2 and selectedmax(ts, v, Q) = TRUE.

Note that, the algorithm enforces FIFO-order delivery of all PREWRITE and
WRITE messages from the writer to every process, through the timestamp included
in these messages. This contrasts with previous algorithms for implementing reg-
isters, but here it ensures that a tuple (pts′, pv′, ts′, v′) containing the pre-written
and written timestamp/value pairs of a correct process always satisfies pts′ = ts′ or
pts′ = ts′ + 1.

When the reader receives a VALUE message with a reply but the condition is not
satisfied, the reader sends another READ message to the process and waits for more
replies. This is needed to ensure liveness. As a process may not yet have received
some messages from a complete write operation, waiting like this ensures that all
correct processes eventually reply with timestamps and values that are at least as
recent as the last complete write.

Note that, the reader cannot simply wait for the pair with the highest timestamp
found anywhere in readlist to become authentic, because this might have been
sent by a Byzantine process and contain an arbitrarily large timestamp. But, the
correct processes send a reply with correct data, and therefore, enough replies are
eventually received.

To illustrate the algorithm, consider the execution in Fig. 4.9, where all correct
processes initially store (2, x; 2, x) as their two timestamp/value pairs, and process q
is Byzantine. Process p now starts to write y, and before it receives enough PREACK

messages, process r invokes a read operation. Due to scheduling, the messages

4.7 (1, N) Byzantine Regular Register 187

write(y)

read() y

p

q

r

s

Figure 4.9: Sample execution of the “Double-Write Byzantine Quorum” algorithm
implementing a regular register

from p to r are delayed. The reader r obtains the following VALUE messages with
responses, each containing a pre-written and a written timestamp/value pair: the
forged values (4, z; 4, z) from q, the initial state (2, x; 2, x) from r itself, and the
half-way written state (3, y; 2, x) from s. At this point, denoted by ? in the fig-
ure, the read cannot yet terminate because the only selected maximum in readlist is
the pair (4, z), but (4, z) is not authentic. Hence, the reader continues by sending an
additional READ message. Later on a response from p arrives, containing (3, y; 3, y)
from the write phase for value y. The variable readlist of the reader now contains
four responses, and the sublist of readlist containing the responses from processes p,
r, and s has (3, y) as its selected maximum. As the pair (3, y) is contained in the
responses from p and s, it is also authentic and the read returns y.

Correctness. Assuming that N > 3f , the algorithm implements a (1, N) Byzantine
regular register abstraction with the relaxed finite-write termination property. It is
easy to see that every write operation terminates because all N−f correct processes
properly acknowledge every PREWRITE and every WRITE message.

Read operations are only required to terminate when no more write operations are
invoked. Assume that the last complete write operation ow used a timestamp/value
pair (ts, v) and a subsequent write operation o′w failed because the writer crashed; if
the writer crashed immediately after starting to execute o′w, the situation looks for all
other processes as if o′w had never been invoked. Suppose o′w used timestamp/value
pair (ts′, v′) with ts′ = ts + 1.

We distinguish two cases. If the writer crashed before sending any WRITE mes-
sage during o′w then since ow completed, all N − f correct processes eventually
store (ts, v) as their written pair and do not change it afterward. Once they all reply
with this value to the reader, the pair (ts, v) is authentic and represents a selected
maximum of the Byzantine quorum corresponding to the replies of the

N − f >
N + f

2

correct processes. Thus, the read returns v.

188 4 Shared Memory

Otherwise, if the writer crashed after sending some WRITE message of o′w then it
has previously sent a PREWRITE message containing (ts′, v′) to all processes. All
N − f correct processes eventually store (ts′, v′) as their pre-written pair and do
not change it afterward. Once they all reply with this value to the reader, the pair
(ts′, v′) is authentic and represents a selected maximum of the Byzantine quorum
corresponding to the replies of the correct processes. Thus, the read returns v′.

The arguments for these two cases demonstrate that the algorithm satisfies the
finite-write termination property.

For the validity property, consider a read operation or and assume the last write
operation ow that completed before the invocation of or used a timestamp/value
pair (ts, v). The writer may have invoked a subsequent operation to write some
value v̄. We need to ensure that the value returned by or is either v or v̄. According
to the algorithm, this means that the return value must be associated to timestamp ts
or ts+1. From the definition of authentic timestamp/value pairs used by the reader,
and because at most f processes might reply with bad values to the reader, only a
value written by the writer can be returned. Specifically, because ow completed, at
least N−2f > f correct processes store a value with timestamp ts or higher in their
pre-written and written pair. When their VALUE messages reach the reader during
or, then (ts, v) or (ts + 1, v̄) is authentic. Because the reader uses a Byzantine quo-
rum Q of more than (N + f)/2 replies to determine the return value and because
Q intersects in at least one correct process with the set of processes storing (ts, v)
or (ts + 1, v̄), the set Q contains at least one entry in which both timestamps are ts
or higher. Thus, the selected maximum cannot contain a smaller timestamp than ts.
Hence, or returns v or v̄, and the validity property holds.

Performance. A write operation takes two communication roundtrips between the
writer and all processes. A read operation that is not concurrent with a write
involves only one communication roundtrip; otherwise, a read operation may con-
tinue to send messages as long as writes are concurrently invoked. In the absence of
concurrency, both operations require O(N) messages to be exchanged.

4.8 (1, N) Byzantine Atomic Register

Recall the atomic register abstraction introduced in the model with crash-stop pro-
cesses. Toward its clients, the register appears to execute one common sequence of
atomic operations. In the fail-arbitrary model, with our restriction of readers and
writers to crash faults, an atomic register obeys the same rules.

Implementing such an atomic register abstraction with Byzantine processes is
more difficult than with crash-stop processes. As the presentation of the two (1, N)
Byzantine regular register algorithms in the previous section has shown, especially
when no data authentication with digital signatures is available, algorithms may
involve multiple rounds of communication between client and server processes.
In this section, we will present an algorithm where the server processes may send
response messages to a reading client spontaneously, without receiving an explicit
request before triggering a response. This algorithm achieves the same resilience

4.8 (1, N) Byzantine Atomic Register 189

as our implementations of a Byzantine regular register, namely N > 3f , which is
optimal.

4.8.1 Specification

A (1, N) Byzantine atomic register abstraction is basically the same as the (1, N)
atomic register abstraction. The writer w is identified explicitly and the readers and
writers are restricted to crash faults, as for the other Byzantine register abstractions.
The details of the abstraction are given in Module 4.7.

Module 4.7: Interface and properties of a (1, N) Byzantine atomic register
Module:

Name: (1, N)-ByzantineAtomicRegister, instance bonar, with writer w.

Events:

Request: 〈 bonar, Read 〉: Invokes a read operation on the register.

Request: 〈 bonar, Write | v 〉: Invokes a write operation with value v on the register.
Executed only by process w.

Indication: 〈 bonar, ReadReturn | v 〉: Completes a read operation on the register
with return value v.

Indication: 〈 bonar, WriteReturn 〉: Completes a write operation on the register.
Occurs only at process w.

Properties:

BONAR1–BONAR3: Same as properties ONAR1–ONAR3 in a (1, N) atomic
register (Module 4.2).

4.8.2 Fail-Arbitrary Algorithm: Byzantine Quorum with Listeners

As noted before, in the context of the “Authenticated-Data Byzantine Quorum”
algorithm that implements a Byzantine regular register, adding data authentication
with digital signatures can transform a fail-silent atomic register algorithm into a
fail-arbitrary one. Thus, adding data authentication to the “Read-Impose Write-
Majority” algorithm results in a fail-arbitrary algorithm implementing a (1, N)
Byzantine atomic register according to Module 4.7.

Algorithm 4.18–4.19 presented here exploits another idea, more related to the
underlying idea of Algorithm 4.14. It requires that a reader obtains the same reply
value from a Byzantine quorum of processes. But as the writer may concurrently
write a new timestamp/value pair to the processes, not all correct processes may
send back the same values. To resolve this issue, every server process maintains a

190 4 Shared Memory

Algorithm 4.18: Byzantine Quorum with Listeners (part 1, write)

Implements:
(1, N)-ByzantineAtomicRegister, instance bonar, with writer w.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 bonar, Init 〉 do
(ts, val) := (0,⊥);
wts := 0;
acklist := [⊥]N ;
rid := 0;
listening := [⊥]N ;
forall t > 0 do answers[t] := [⊥]N ;

upon event 〈 bonar, Write | v 〉 do // only process w
wts := wts + 1;
acklist := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [WRITE, wts, v] 〉;

upon event 〈 al, Deliver | p, [WRITE, ts′, v′] 〉 such that p = w do
if ts′ > ts then

(ts, val) := (ts′, v′);
forall q ∈ Π such that listening[q] �= ⊥ do

trigger 〈 al, Send | q, [VALUE, listening[q], ts, val] 〉;
trigger 〈 al, Send | p, [ACK, ts] 〉;

upon event 〈 al, Deliver | q, [ACK, ts′] 〉 such that ts′ = wts do
acklist[q] := ACK;
if #(acklist) > (N + f)/2 then

acklist := [⊥]N ;
trigger 〈 bonar, WriteReturn 〉;

set of listeners, which are reader processes of which it knows that they execute a
read operation concurrently. Whenever the process receives another WRITE mes-
sage with a new timestamp/value pair, it forwards the message immediately to all
registered listeners. The write operation uses one round and is the same as in several
algorithms presented previously.

This algorithm, called “Byzantine Quorum with Listeners,” works only if the
writer does not crash; under this additional assumption, it implements a (1, N)
Byzantine atomic register according to Module 4.7.

The listening array represents the listener processes; when listening[p] = ⊥, then
process p is not registered as a listener; when listening[p] = r for some number r,
then process p is registered as listener for its read operation with tag r. To stop
the forwarding of WRITE messages again, the reader informs all processes when it
completes the read operation.

Naturally, if a reader crashes during an operation and the processes think the
reader is still listening, another mechanism is needed to prevent excessive

4.8 (1, N) Byzantine Atomic Register 191

Algorithm 4.19: Byzantine Quorum with Listeners (part 2, read)

upon event 〈 bonar, Read 〉 do
rid := rid + 1;
forall t > 0 do answers[t] := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [READ, rid] 〉;

upon event 〈 al, Deliver | p, [READ, r] 〉 do
listening[p] := r;
trigger 〈 al, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 al, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
if answers[ts′][q] = ⊥ then

answers[ts′][q] := v′;
if exists (t, v) such that #

({
p|answers[t][p] = v

})
> N+f

2
then

forall t′ > 0 do answers[t′] := [⊥]N ;
forall q′ ∈ Π do

trigger 〈 al, Send | q′, [READCOMPLETE, rid] 〉;
trigger 〈 bonar, ReadReturn | v 〉;

upon event 〈 al, Deliver | p, [READCOMPLETE, r] 〉 such that r = listening[p] do
listening[p] := ⊥;

write(y)

read() y

p

q

r

s

Figure 4.10: Sample execution of the “Byzantine Quorum with Listeners” algorithm
implementing an atomic register

communication. The reader collects the returned values in a variable answers, which
may potentially grow forever. There exist ways, however, to bound the number of
occupied, non-⊥ entries in answers so that there are always O(fN) of them. The
algorithm can easily be extended to allow multiple writers.

Figure 4.10 shows an execution of the algorithm. Initially, all correct processes
store the timestamp/value pair (2, x), written by process p. Process q is Byzan-
tine. When p starts to write y, it increments the timestamp and sends a WRITE

message with (3, y). Concurrently, process r invokes a read operation. At the point
denoted by 1 , the reader has obtained VALUE messages with (3, y) from p, a forged
response (3, z) from q, and the outdated values (2, x) from r itself and from s.

192 4 Shared Memory

Figure 4.11: Content of the answers variable at reader r during the execution shown
in Fig. 4.10

Figure 4.11 shows the contents of the answers variable of r at this point and two
later points during the execution. Before the reader can return a value, it needs to
find one row in answers (corresponding to a timestamp) for which at least three
values are equal.

Note that process s registers r as a listener when it sends the first response
with (2, x). Therefore, when process s subsequently delivers the WRITE message
from p, it sends another response to r, this time containing (3, y). This response and
a forged pair (4, z) are delivered by r before the point denoted by 2 . Process r
can still not return a value. Only after r delivers the WRITE message with (3, y)
and informs itself as a listener about that (at the point denoted by 3), it obtains
three equal entries in some row of answers, which are equal to y. Hence, the reader
broadcasts a READCOMPLETE message and returns the value y.

Correctness. Under the assumption that N > 3f and that the writer is correct,
the “Byzantine Quorum with Listeners” algorithm implements a (1, N) Byzantine
atomic register.

The termination property for writes is straightforward to verify: because there
are N − f correct processes, the writer receives

N − f >
N + f

2

acknowledgments and completes. A read terminates only when for some time-
stamp t and value v, the reader stores answers[t] = v for more than a Byzantine
quorum of processes. Suppose that a reader r broadcasts READ messages with
tag rid. Every correct process eventually receives this message and reacts by send-
ing at least one VALUE message to r with tag rid. Consider the first such VALUE

message with tag rid for every correct process and let (ts, v) be the pair with the
largest timestamp among those messages. Those processes that sent a message with
a smaller timestamp eventually receive a WRITE message containing (ts, v) as well,
because of our additional assumption that the writer is correct. As these processes
have registered r as a listener, they forward (ts, v) to r with tag rid. The reader
eventually receives (ts, v) from more than (N + f)/2 processes and returns v.

For the validity property, consider a read operation and suppose the most recent
complete write operation wrote v with associated timestamp ts. As the writer
obtained an acknowledgment from more than (N + f)/2 processes, more than

4.8 (1, N) Byzantine Atomic Register 193

(N − f)/2 correct processes store a timestamp/value pair with timestamp at least
ts. This means that fewer than (N − f)/2 uninformed correct processes still store a
timestamp smaller than ts. To return a value, the reader must obtain a time-
stamp/value pair also from more than (N + f)/2 processes. But the f Byzantine
processes, even with the help of the uninformed processes, cannot create more than
(N + f)/2 replies containing a timestamp smaller than ts. Hence, the read returns
v or a value associated to a higher timestamp.

The same argument also ensures the ordering property because once a read re-
turns a value v with associated timestamp ts, every subsequent read can only obtain
a Byzantine quorum of replies containing timestamp at least ts. As the writer incre-
ments the timestamp in every operation, the replies with higher timestamps contain
a value that was written after v.

Performance. The algorithm uses one communication roundtrips and O(N) mes-
sages for writes and at least the same number of messages for reads. Because of the
messages forwarded to the listeners, it may generate O(N) additional messages for
every write that is concurrent to a read.

194 4 Shared Memory

4.9 Exercises

Exercise 4.1: Explain why every process needs to maintain a copy of the register
value in the “Read-One Write-All” algorithm (Algorithm 4.1).

Exercise 4.2: Analogously, explain why every process needs to maintain a copy of
the register value in the “Majority Voting” algorithm (Algorithm 4.2).

Exercise 4.3: Use the idea of the transformation from (1, N) regular to (1, 1)
atomic registers (Algorithm 4.3) to adapt the “Read-One Write-All” algorithm
(Algorithm 4.1) to implement a (1, 1) Atomic Register.

Exercise 4.4: Use the idea of the transformation from (1, N) regular to (1, 1)
atomic registers (Algorithm 4.3) to adapt the “Majority Voting” algorithm (Algo-
rithm 4.2) to implement a (1, 1) Atomic Register.

Exercise 4.5: Explain why a timestamp is needed in the “Majority Voting” al-
gorithm (Algorithm 4.2) but not in the “Read-One Write-All” algorithm (Algo-
rithm 4.1).

Exercise 4.6: Explain why the request identifier included in WRITE, ACK, READ,
and VALUE messages of the “Majority Voting” algorithm (Algorithm 4.2) can be
omitted in the “Read-One Write-All” algorithm (Algorithm 4.1).

Exercise 4.7: Give an algorithm that implements a (1, 1) atomic register in the
fail-silent model and that is more efficient than the “Read-Impose Write-Majority”
algorithm (Algorithm 4.6–4.7, which implements a (1, N) atomic register in the
fail-silent model).

Exercise 4.8: Does any implementation of a regular register require a majority of
the correct processes in a fail-silent model with no failure detector? What if an
eventually perfect failure detector (Module 2.8) is available?

Exercise 4.9: Would the “Majority Voting” algorithm (Algorithm 4.2) still be cor-
rect if a process q that receives a WRITE message from the writer p with a
timestamp ts′ and value v′ only acknowledges the message (by sending an ACK

message) if ts′ is strictly larger that the timestamp ts that q already stores? Note that
ts is from a WRITE message that q received previously but contained a more recent
value. Explain what happens in the same situation if we consider the “Read-Impose
Write-Majority” and then the “Read-Impose Write-Consult-Majority” algorithms.

Exercise 4.10: Assume that some algorithm A implements a regular register
abstraction with crash-stop processes, in a system where up to N − 1 processes
can crash. Can we implement a perfect failure detector out of A?

Exercise 4.11: Consider the “Logged Majority Voting” algorithm (Algorithm 4.12–
4.13) and suppose the store primitive could not log multiple values together atom-
ically. Explain why it is important not to log the timestamp first, before logging the

4.10 Solutions 195

value. What could happen if the algorithm separately logs the value after the logging
the timestamp?

Exercise 4.12: Explain why the writer in the “Logged Majority Voting” algorithm
(Algorithm 4.12–4.13) needs to store its timestamp in stable storage.

4.10 Solutions

Solution 4.1: Algorithm 4.1 (“Read-One Write-All”) needs to store a copy of the
register value at every process because we assume that any number of processes
can crash and any process can read. Assume that the value is not stored at some
process q. It is easy to see that after some write operation, all processes might crash
except for q. In this case, there is no way for q to return the last value written.

Solution 4.2: Algorithm 4.2 (“Majority Voting”) also needs to maintain a copy of
the register value at all processes, even if we assume only one reader. Assume that
some process q does not maintain a copy. Assume, furthermore, that the writer
updates the value of the register: it can do so only by accessing a majority of the
processes. If q is in that majority then the writer would have stored the value in
a majority of the processes minus one. It might happen that all processes in that
majority, except for q, crash. But the set of remaining processes plus q also consti-
tute a majority. A subsequent read in this majority might not return the last value
written.

Solution 4.3: The “Read-Impose Write-All” algorithm (Algorithm 4.1) already
implements an atomic register if we consider only one reader: indeed the scenario of
Fig. 4.5, which violates the ordering property, involves two readers. Suppose there
is an arbitrary process q that is the only reader. The algorithm can even be optimized
in such a way that the writer p simply tries to send its value to q and have q store it,
and if p detects that q crashes then it gives up. In this case, only the reader would
maintain the register value, and the writer would not send any messages to other
processes than q.

Solution 4.4: Consider the “Majority Voting” algorithm (Algorithm 4.2) which
implements a (1, N) regular register but not a (1, 1) atomic register. It can easily
be extended to also satisfy the ordering property. According to the idea that under-
lies Algorithm 4.3, the reader simply stores the timestamp/value pair with the largest
timestamp that it has observed so far, and returns this value if the received VALUE

messages do not contain a larger timestamp. This can be achieved if the reader
always includes its own timestamp/value pair in the variable readlist, from which
it selects the return value. (The problematic scenario of Fig. 4.6 occurs precisely
because the reader has no memory of the previous value read.)

Algorithm 4.20 shows pseudo code for those parts of Algorithm 4.2 that must
be modified. It uses the function highest(·) introduced before, which returns the
timestamp/value pair with the largest timestamp from its input. With this algorithm,

196 4 Shared Memory

Algorithm 4.20: Modification of Majority Voting to Implement a (1, 1) Atomic Register

upon event 〈 onrr, Read 〉 do
rid := rid + 1;
readlist := [⊥]N ;
readlist[self] := (ts, val);
trigger 〈 beb, Broadcast | [READ, rid] 〉;

upon event 〈 beb, Deliver | p, [READ, r] 〉 do
if p �= self then

trigger 〈 pl, Send | p, [VALUE, r, ts, val] 〉;

upon event 〈 pl, Deliver | q, [VALUE, r, ts′, v′] 〉 such that r = rid do
readlist[q] := (ts′, v′);
if #(readlist) > N/2 then

(ts, val) := highest(readlist);
readlist := ∅;
trigger 〈 onrr, ReadReturn | val 〉;

write(x) write(y)

read()

ts = 2

ts = 2

ts = 1

ts = 1

ts = 1

ts = 1

ts = 1

read()y x

p

q

r

s

t

Figure 4.12: Violation of ordering for a (1, 1) atomic register

the scenario of Fig. 4.12 cannot occur, whereas the atomic execution depicted in
Fig. 4.2 is possible.

As in the original“Majority Voting” algorithm, every write operation requires one
communication roundtrip between the writer and a majority of the processes, and
every read operation requires one communication roundtrip between the reader and
a majority of the processes. In both cases, O(N) messages are exchanged.

Solution 4.5: The timestamp in Algorithm 4.2 (“Majority Voting”) is needed pre-
cisely because we do not make use of a perfect failure detector. Without the use of
any timestamp, a reader q would not have any means to compare different values
from any read majority.

In particular, if process p first writes a value v and subsequently writes a value w,
but does not access the same majority in both cases, then q, which is supposed to
return w, might have no information about which value is the latest. The timestamp

4.10 Solutions 197

is used to distinguish the values and to help the reader with determining the latest
written value.

Such a timestamp is not needed in Algorithm 4.1 (“Read-Impose Write-All”)
because the writer always accesses all processes that did not crash. The writer can
do so because it relies on a perfect failure detector. It is not possible that a reader can
obtain different values from the processes, as in the “Majority Voting” algorithm.

Solution 4.6: Every WRITE and READ message in Algorithm 4.2 contains a unique
identifier of the request (the timestamp or the value rid), which is used to associate
the replies (ACK or READ messages) to the request. Because the process does not
need a reply from all processes to execute an operation (only from a quorum), there
may be reply messages from slow processes in transit when the operation com-
pletes. If they arrive during an operation invoked subsequently, the process could
not associate them to the correct operation and perform an error.

The write operation of the “Read-One Write-All” algorithm, in contrast, always
waits for an ACK message from every process that is correct according to the out-
put of the failure detector. For reading, no communication is needed. Because the
failure detector satisfies strong accuracy, the operation therefore completes only
after receiving an ACK message from every process that has not crashed. During a
subsequent operation, the set correct may only have become smaller. Therefore, no
message can be and attributed to the wrong operation.

The same argument also demonstrates why the request identifiers are not needed
in the “Read-Impose Write-All” and “Read-Impose Write-Consult-All” algorithms
(Algorithm 4.5 and 4.9, respectively).

Solution 4.7: The solution is again Algorithm 4.20. It requires one communica-
tion roundtrip for every operation. Recall how the reader in the “Read-Impose
Write-Majority” algorithm uses another communication roundtrip to impose the
timestamp/value pair by writing it back. As there is only one reader here, the next
reader is again the same process, and it is sufficient to store the value locally.

It is important that the reader always includes its own value and timestamp when
selecting a majority. Otherwise, the reader q might violate the ordering property as
depicted in the scenario of Fig. 4.12. In the first read, the majority used by q includes
the writer p, which has the latest value, but in the second read, q accesses a majority
with timestamp 1 and old value x.

Solution 4.8: Assume by contradiction that even with no majority of correct pro-
cesses, one could implement a regular register in the fail-silent model.

We use a partitioning argument, similar to the explanation given earlier in this
book why uniform reliable broadcast requires a majority of the correct processes,
even if the system is augmented with an eventually perfect failure detector. We parti-
tion the system into two disjoint sets of processes, X and Y , such that |X | = �N/2
and |Y | = �N/2�; the writer p is in X and the reader q is in Y . The assumption
above means there are correct executions of the algorithm in which all processes of
X crash and correct executions where all processes of Y crash.

198 4 Shared Memory

In particular, process p might return from a write operation with value v, even if
none of the processes in Y has witnessed this value. The other processes, including
q, were considered to have crashed, even if they did not. Suppose that all processes
of X , the only ones that may have witnessed v, crash later; now the reader has no
way to learn the value v and might not return the last value written. This shows that
a majority of correct processes is necessary.

The same argument implies that an eventually perfect failure detector is not suf-
ficient to circumvent the assumption of a correct majority. The reason is that the
failure detector may make incomplete and false suspicions before it is eventually
complete and accurate. During that initial time, the system may behave as in the
fail-silent model. For instance, the write operation may complete even if no process
of Y has witnessed the value because all processes of Y might have been falsely
suspected.

Solution 4.9: Consider a variant of the “Majority Voting” algorithm, where a pro-
cess q that receives a WRITE message from the writer p with a timestamp/value
pair (ts′, v′) does not reply with an ACK message if ts′ is not strictly larger that
the timestamp ts stored by q. The timestamp ts > ts′ is associated to a value val,
which was written more recently.

Clearly, the only risk here is to violate liveness and to prevent p from completing
the write operation with argument v. However, given that q has already stored val,
which is associated to a larger timestamp, process p has already completed the write
of v. (Remember that the processes are sequential and, in particular, p does not
invoke a new operation before completing the current one).

The same argument holds for the “Read-Impose Write-Majority” algorithm
because only a single writer is involved and it is sequential.

The situation is different with the “Read-Impose Write-Consult-Majority” alg-
orithm, however, because there are multiple writers. Consider two writers p and
q, both sending WRITE messages to some process r, with different values v′ and
w′, respectively, such that w′ is associated to a higher timestamp than v′. When r
receives w′ from q first and v′ later from p, it will not send an acknowledgment
back to p. If enough other processes crash, it may happen that p does not complete
its write operation and violates the termination property.

Solution 4.10: The answer is yes. This means that a perfect failure detector is
needed to implement a regular register if N − 1 processes can crash.

We sketch the idea behind an algorithm PA that uses A to implement a perfect
failure-detector abstraction (Module 2.6). Recall that a perfect failure detector out-
puts at every process the identities of other processes that this process detects to
have crashed.

Every process p outputs 〈 Crash 〉 events to detect other processes that should
satisfy the strong completeness and strong accuracy properties of a perfect failure
detector.

Algorithm PA uses N instances of the (1, N) regular register abstraction, one
for every process, such that every process is the writer of exactly one register.

4.10 Solutions 199

Furthermore, every process p holds a counter k that it periodically increments and
writes to its register, using the write operation of algorithm A.

When p invokes the write operation, A triggers an arbitrary exchange of mes-
sages among processes, that is, it invokes a primitive that communicates information
among different processes through “messages.” Suppose that all outputs from the
communication primitive inform the “receiving” process about which process has
“sent” a particular message by contributing an input value to the primitive. We mod-
ify A such that it also adds k to the information that it “sends” in the context of the
instance that writes k.

Whenever p “receives” a message like this from a process q, process p remembers
q as one of the processes that participated in the instance that wrote k. When the
write terminates, then p declares that all processes that did not participate in the
instance have crashed and Algorithm PA outputs them.

It is easy to see the outputs of PA satisfy the strong completeness property.
Any process that crashes stops participating in the writing and will be permanently
detected by every correct process. We argue now that PA also ensures the strong
accuracy property. Assume by contradiction that some process p falsely detects a
process q (i.e., before q crashed). In other words, process q does not participate
in the instance of the communication abstraction, where p writes k to its register.
Given that N − 1 processes may crash, suppose that immediately after p completes
the write of k, all processes except q crash. Process q might now be required to re-
turn k upon reading the register of p using A. But q has no way of distinguishing
an execution in which p did write the value k to its register from an execution in
which p wrote a different value. Hence, process q might hence violate the validity
property, contradicting the assumption that A implements a regular register.

Solution 4.11: Suppose that process p writes a value u, then a value v, and finally
a value w. While writing u, assume p accesses some process q and not a process r,
whereas while writing v, process p accesses r and not q. While writing w, process p
again accesses q, which logs first the timestamp, then crashes without logging the
associated value, and subsequently recovers. A process s that reads from the register
might obtain a reply with a timestamp/value pair from q, but since q only updated
its logged timestamp, the value contained is still u. Hence, the read of s may violate
the validity property of the register.

On the other hand, logging the timestamp after logging the value is not danger-
ous. In the example scenario, the reader might obtain the new value together with old
timestamp and not output the new value. But that is permitted because the write has
not completed and, thus, there is no obligation to return the new value. Of course,
logging the value and the timestamp separately is not desirable because it incurs two
expensive accesses to stable storage.

Solution 4.12: The reason for the writer to log its timestamp in Algorithm 4.12–
4.13 is the following. If it crashes and recovers, the writer should not use a smaller
timestamp than the one associated with the current value of the register. Otherwise,
the reader might return an old value and violate the validity property of the register.

200 4 Shared Memory

4.11 Chapter Notes

• Register specifications were introduced by Lamport in multiple papers (Lam-
port 1977, 1986a,b), which also defined safe, regular, and atomic semantics. The
original definitions were given in the context of a multiprocessor machine, with
processes that are concurrent but failure-free, and with only one writer.

• The safe register abstraction provides the weakest guarantees among the three
register semantics. When a read is concurrent with a write, a safe register can
return an arbitrary value. This may even be a value that no process has ever
written or attempted to write (in the sense that the value was an input parameter
of an operation), and it may differ from any default value of the register.
In our system model with processes that send messages to each other, it is easy
to prevent that an algorithm invents a value out of thin air. But in a multiproces-
sor machine as considered by Lamport (1977), the processes might concurrently
access some low-level hardware locations that implement a register abstrac-
tion, and hence return an arbitrary value. In the fail-arbitrary model, Byzantine
processes might deliberately change the stored value, which makes this failure
scenario also realistic. Our implementation of a Byzantine safe register abstrac-
tion stays on the safe side and returns a default value when it cannot establish
if a value has actually been written. For implementations of other Byzantine
register abstractions, quorums or digital signatures prevent this problem from
occurring.

• Our regular register abstraction corresponds to the notion initially introduced
by Lamport. For the case of multiple writers, the regular register abstraction
was generalized in three different ways, all stronger than our notion of regular
register (Shao, Pierce, and Welch 2003).

• The original notion of an atomic register was close to the one we introduced here.
There is a slight difference, however, in the way we gave our definition because
we had to take into account the possibility that processes fail, which is typical
in a message-passing system. Thus, we had to deal explicitly with the notion of
failed operations, in particular with failed write operations.

• The notion of linearizability was introduced by Herlihy and Wing (1990) for
arbitrary shared objects, not only register objects with read and write opera-
tions. As discussed in the text, our notion of an atomic register is equivalent
to a linearizable register when used with crash-stop and with Byzantine process
abstractions.
For defining a “logged” atomic register, however, using the fail-recovery model,
one would have to consider a slightly different notion of atomicity, which takes
into account the fact that a write operation that was interrupted by a fail-
ure has to appear as if it was never invoked or as if it was completed before
the next invocation of the same process, which might have recovered, took
place (Guerraoui and Levy 2004).

• We considered only registers that store values from an abstract domain, which
was not further specified. We did not make any assumption on the possible size of
these values. Registers that only store values from a small domain have also been

4.11 Chapter Notes 201

considered (Lamport 1977). Typically, the values of such registers are from some
small alphabet, perhaps they store only one bit. Many transformation algorithms
have been invented that emulate a register with a given (large) domain from
(multiple) registers that store only smaller values (Lamport 1977; Peterson 1983;
Vitányi and Awerbuch 1986; Vidyasankar 1988, 1990; Israeli and Li 1993).

• Our implementation of an atomic register from regular registers (the transforma-
tion “From (1, N) Regular to (1, N) Atomic Registers” of Sect. 4.3.2) and all
our algorithms implementing atomic registers require only a bounded amount of
internal memory at every process. Lamport (1986b) has shown that in any such
algorithm that is wait-free, a reader process must also write, in the sense that the
read operation modifies the state at the processes.

• Fail-silent register implementations with crash-stop processes in a message-
passing system and assuming a correct majority were first given for the case of a
single writer (Attiya, Bar-Noy, and Dolev 1995). They were later generalized for
the case of multiple writers (Lynch and Shvartsman 1997, 2002). Implementa-
tions in the fail-recovery model were given more recently (Boichat et al. 2003a;
Guerraoui and Levy 2004).

• Failure-detection lower bounds for registers have constituted an active area of
research (Delporte-Gallet et al. 2002, 2004, 2010). In particular, and as we dis-
cussed through an exercise, in a system where any number of processes can crash
and failures cannot be predicted, the weakest failure detector to implement a
regular register abstraction is the perfect failure detector.

• Register implementations with Byzantine processes have been considered by
Malkhi and Reiter (1998). This work also introduced the concept of Byzantine
quorums, the “Byzantine Masking Quorum” algorithm implementing a register
with safe semantics, and the “Authenticated-Data Byzantine Quorum” algorithm
implementing a register with regular semantics.

• Our Byzantine register abstractions are idealized in the sense that the writer and
the reader processes are not Byzantine, that is, they may at most crash but never
behave arbitrarily. This simplification models practical scenarios, where a set of
fail-arbitrary processes act as “replicas” for the stored data; they are accessed by
clients, which are assumed to be under closer control than the replicas. Many
distributed storage systems make this assumption.

• The “Double-Write Byzantine Quorum” algorithm was presented by Abraham
et al. (2006). It works in a way similar to the implementation of the Byzantine
epoch consensus abstraction, which will be considered in Chap. 5.

• Chockler, Guerraoui, and Keidar (2007) show that every distributed imple-
mentation of a regular register in the fail-arbitrary model that does not use
data authentication (with digital signatures) and that should provide wait-free
termination for all its operations must store the entire history of the written val-
ues. As our “Double-Write Byzantine Quorum” algorithm stores at most two
written values, this result explains why the algorithm only satisfies the finite-write
termination property, but is not wait-free.

202 4 Shared Memory

• Our “Byzantine Quorums with Listeners” algorithm was introduced by Martin,
Alvisi, and Dahlin (2002) and uses the idea of registering the readers as listeners
at all processes, in order to ensure that the reads terminate. Because registering
a reader modifies the state of a process, it can be seen as another way in which a
reader writes to the system.

5. Consensus

Life is what happens to you while you are making other plans.
(John Lennon)

This chapter is devoted to the consensus abstraction. The processes use consensus to
agree on a common value out of values they initially propose. Reaching consensus
is one of the most fundamental problems in distributed computing. Any algorithm
that helps multiple processes maintain common state or to decide on a future action,
in a model where some processes may fail, involves solving a consensus problem.

We consider multiple variants of consensus in this chapter: regular, uniform,
and randomized consensus with crash-stop processes, logged consensus with crash-
recovery processes, and Byzantine and Byzantine randomized consensus with arbi-
trary-fault process abstractions.

There exist a rich set of relations among the nonrandomized consensus algo-
rithms presented in this chapter, which are best highlighted upfront:

• The “Flooding Consensus” algorithm (Algorithm 5.1) and the “Hierarchical Con-
sensus” algorithm (Algorithm 5.2) implement regular consensus in the fail-stop
model and rely on a perfect failure detector.

• The “Flooding Uniform Consensus” algorithm (Algorithm 5.3) and the
“Hierarchical Uniform Consensus” algorithm (Algorithm 5.2) implement uni-
form consensus in the fail-stop model and rely also on a perfect failure detector.
Each one of them uses the same structure as its nonuniform counterpart.

• The “Leader-Driven Consensus” algorithm in Sect. 5.3 implements uniform con-
sensus in the fail-noisy model with a leader-based approach, assuming that an
eventual leader-detector abstraction is available.

• The “Logged Leader-Driven Consensus” algorithm in Sect. 5.4 also uses the
leader-based approach to implement uniform consensus in the fail-recovery
model.

• In Sect. 5.6, the same leader-based approach is explored for implementing
a Byzantine consensus abstraction in the fail-noisy-arbitrary model, with the

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 5,
c© Springer-Verlag Berlin Heidelberg 2011

203

204 5 Consensus

“Byzantine Leader-Driven Consensus” algorithm. This algorithm works with
arbitrary-faulty (Byzantine) processes and relies on a Byzantine eventual leader
detector.

• Finally, the “Rotating Coordinator” algorithm in Exercise 5.7 shows a different
way to implement uniform consensus in the fail-noisy model than the leader-
driven consensus algorithms. It is based on an eventually perfect failure detector.

All three leader-driven consensus algorithms (in the fail-noisy, fail-recovery, and
fail-noisy-arbitrary models) have the same structure and execute a sequence of
so-called epochs, with a unique leader process for every epoch.

Later, in Chap. 6, we consider extensions and variations of the consensus
abstraction. We will show how consensus abstractions can be used to build more
sophisticated agreement and coordination abstractions.

5.1 Regular Consensus

5.1.1 Specification

A consensus abstraction is specified in terms of two events, propose and decide.
Each process has an initial value v that it proposes for consensus through a propose
request, in the form of triggering a 〈 propose | v 〉 event. All correct processes must
initially propose a value.

The proposed value is private to the process and the act of proposing is local. This
request typically triggers broadcast events through which the processes exchange
their proposed values in order to eventually reach agreement. All correct processes
have to decide on the same value through a decide indication that carries a value v,
in the form of processing a 〈 Decide | v 〉 event. The decided value has to be one of
the proposed values. A consensus abstraction, in its regular form, satisfies the four
properties listed in Module 5.1. The termination and integrity properties together
imply that every correct process decides exactly once. The validity property ensures
that the consensus primitive may not invent a decision value by itself. The agreement
property states the main feature of consensus, that every two correct processes that
decide indeed decide the same value.

Actually, the consensus abstraction as defined here cannot be implemented in
asynchronous systems. The reason is that every deterministic algorithm imple-
menting consensus in the fail-silent model with crash-stop processes has infinite
executions, that is, executions where agreement cannot be reached. Therefore,
we consider several implementations of consensus in the fail-stop and fail-noisy
models, where a failure detector is available.

In the following, we present two different algorithms that implement (regular)
consensus in the fail-stop model. Both algorithms rely on a perfect failure-detector
abstraction and tolerate f < N process failures. The first algorithm uses a small
number of communication steps but a large number of messages. The second algo-
rithm uses fewer messages but more communication steps. We defer the presentation
of a fail-noisy consensus algorithm to Sect. 5.3.

5.1 Regular Consensus 205

Module 5.1: Interface and properties of (regular) consensus
Module:

Name: Consensus, instance c.

Events:

Request: 〈 c, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 c, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

C1: Termination: Every correct process eventually decides some value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Integrity: No process decides twice.

C4: Agreement: No two correct processes decide differently.

5.1.2 Fail-Stop Algorithm: Flooding Consensus

Our first implementation of consensus is the “Flooding Consensus” algorithm
(Algorithm 5.1). It uses a perfect failure-detector abstraction and a best-effort broad-
cast communication abstraction. The basic idea of the algorithm is the following.
The processes execute sequential rounds. Each process maintains the set of proposed
values that it has seen; this set initially consists of its own proposal. The process typ-
ically extends this proposal set when it moves from one round to the next and new
proposed values are encountered. In each round, every process disseminates its set
in a PROPOSAL message to all processes using the best-effort broadcast abstraction.
In other words, the process floods the system with all proposals it has seen in previ-
ous rounds. When a process receives a proposal set from another process, it merges
this set with its own. In each round, the process computes the union of all proposal
sets that it received so far.

A process decides when it has reached a round during which it has gathered all
proposals that will ever possibly be seen by any correct process. At the end of this
round, the process decides a specific value in its proposal set.

We explain now when a round terminates and a process moves to the next round,
as the round structure of the algorithm is not immediately visible in the pseudo
code of Algorithm 5.1. Every PROPOSAL message is tagged with the round number
in which the message was broadcast. A round terminates at a process p when p has
received a message from every process that has not been detected to have crashed by
p in that round. That is, a process does not leave a round unless it receives messages,
tagged with the number of the round, from all processes that have not been detected
to have crashed. To this end, the process collects the set of processes from which it
has received a message in round r in variable receivedfrom[r].

206 5 Consensus

Algorithm 5.1: Flooding Consensus

Implements:
Consensus, instance c.

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 c, Init 〉 do
correct := Π;
round := 1;
decision := ⊥;
receivedfrom := [∅]N ;
proposals := [∅]N ;
receivedfrom[0] := Π;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon event 〈 c, Propose | v 〉 do
proposals[1] := proposals[1] ∪ {v};
trigger 〈 beb, Broadcast | [PROPOSAL, 1, proposals[1]] 〉;

upon event 〈 beb, Deliver | p, [PROPOSAL, r, ps] 〉 do
receivedfrom[r] := receivedfrom[r] ∪ {p};
proposals[r] := proposals[r] ∪ ps;

upon correct ⊆ receivedfrom[round] ∧ decision = ⊥ do
if receivedfrom[round] = receivedfrom[round − 1] then

decision := min(proposals[round]);
trigger 〈 beb, Broadcast | [DECIDED, decision] 〉;
trigger 〈 c, Decide | decision 〉;

else
round := round + 1;
trigger 〈 beb, Broadcast | [PROPOSAL, round, proposals[round − 1]] 〉;

upon event 〈 beb, Deliver | p, [DECIDED, v] 〉 such that p ∈ correct ∧ decision = ⊥ do
decision := v;
trigger 〈 beb, Broadcast | [DECIDED, decision] 〉;
trigger 〈 c, Decide | decision 〉;

A process p knows that it is safe to decide when it has seen all proposed val-
ues that will ever be seen by the correct processes and be considered for decision.
In a round where a new failure is detected, process p is not sure of having ex-
actly the same set of values as the other processes. This might happen when the
crashed process(es) have broadcast some value(s) to the other processes but not
to p. Every process records in receivedfrom[r] from which processes it has received
a proposal in round r; observe that processes in receivedfrom[r] have not crashed up
to round r. If a round terminates with the same estimate of correct processes as the

5.1 Regular Consensus 207

p

q

r

s

Round 1

c−decide(w)

c−decide(w)

{x,y,z}

{x,y,z}

c−propose(w)

c−propose(x)

c−propose(y)

c−propose(z)

c−decide(w=min{w,x,y,z})

Round 2

Figure 5.1: Sample execution of flooding consensus

previous round, that is, if PROPOSAL messages from the same set of processes have
been received in two consecutive rounds then a decision can be made. This follows
because all the messages broadcast by all processes that moved to the current round
did reach their destination. Note that a process executes at most N rounds.

To make a decision, the processes can apply any deterministic function to their
accumulated proposal set, provided this function is agreed upon in advance and
is the same at all processes. In our case, the process decides the minimum value
(through function min in the algorithm); we implicitly assume here that the set of
all possible proposals is totally ordered and the order is known by all processes.
A process that decides disseminates the decision to all processes using the best-
effort broadcast abstraction.

An execution of the “Flooding Consensus” algorithm is illustrated in Fig. 5.1.
Process p crashes during round 1 after broadcasting its proposal. Only process q
sees that proposal. No other process crashes. As process q receives proposals in
round 1 from all processes and this set is equal to the set of processes at the start of
the algorithm in round 0, process q can decide. It selects the minimum value among
the proposals and decides value w.

Processes r and s detect the crash of p and cannot decide in round 1. So they
advance to round 2. If process r or s would decide based on the proposal set after
round 1, they would have decided differently, because the minimum in their proposal
sets is, say, x (different from w). But as q has decided, it disseminates its decision
through best-effort broadcast. When the decision is delivered, processes r and s also
decide w.

Correctness. The validity and integrity properties follow from the algorithm and
from the properties of the broadcast abstraction.

The termination property follows from the fact that in round N , at the latest, all
processes decide. This is because (1) processes that do not decide keep moving from
round to round due to the strong completeness property of the failure detector, (2)
at least one process needs to fail per round, in order to force the execution of a new
round without decision, and (3) there are only N processes in the system.

208 5 Consensus

Consider now agreement. Let r be the smallest round in which some correct
process p decides and let v be the value it decides. There are two cases to con-
sider. First, assume that process p decides after receiving PROPOSAL messages
from the same subset of processes in the two consecutive rounds r − 1 and r, i.e.,
receivedfrom[r] = receivedfrom[r − 1]. Because of the strong accuracy property of
the failure detector, no process that reaches the end of round r receives a proposal
containing a smaller value than v. Let q be any process that moves to round r + 1.
Either q detects no failure in round r, in which case it also decides v, or q detects
some failure and it decides v in round r + 1, once it delivers a DECIDED message
from p. In the second case, assume that p decides after delivering a DECIDED mes-
sage from some process q which crashed in round r. Processes that detect the crash
of q do not decide in round r but in round r+1, after delivering a DECIDED message
from p.

Performance. If there are no failures then the algorithm requires a single commu-
nication step since all processes decide at the end of round 1. Each failure may
cause at most one additional communication step. Therefore, in the worst case, the
algorithm requires N steps if N − 1 processes crash in sequence.

In every round, O(N2) messages are exchanged and O(N2) DECIDED messages
are also exchanged after a process has decided. For each additional round where a
process crashes, another O(N2) message exchanges occur. In the worst case, the
algorithm uses O(N3) messages.

5.1.3 Fail-Stop Algorithm: Hierarchical Consensus

Algorithm 5.2, called “Hierarchical Consensus,” shows an alternative way to imple-
ment regular consensus in the fail-stop model. This algorithm is interesting because
it uses fewer messages than our “Flooding Consensus” algorithm and enables one
process to decide before exchanging any messages with the rest of the processes;
this process has latency zero. However, to reach a global decision, i.e., for all cor-
rect processes to decide, the algorithm requires N communication steps, even in
situations where no failure occurs. Algorithm 5.2 is particularly adequate if consen-
sus is used as a service implemented by a set of server processes where the clients
are happy to get a response with a decision value as fast as possible, even if not all
servers have decided yet.

The “Hierarchical Consensus” algorithm exploits the ranking among the pro-
cesses given by the rank(·) function. The rank is a unique number between 1 and N
for every process. Basically, the algorithm ensures that the correct process with the
most important rank in the hierarchy imposes its value on all the other processes.
For understanding the algorithm, it is important to state that important ranks are low
numbers, hence, the highest rank is 1 and the lowest rank is N .

If the process p with rank 1 does not crash in the “Hierarchical Consensus”
algorithm, it will impose its value on all other processes by broadcasting a DE-
CIDED message and every correct process will decide the value proposed by p. If
p crashes immediately at the start of an execution and the process q with rank 2
is correct then the algorithm ensures that the proposal of q will be decided. The

5.1 Regular Consensus 209

Algorithm 5.2: Hierarchical Consensus

Implements:
Consensus, instance c.

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 c, Init 〉 do
detectedranks := ∅;
round := 1;
proposal := ⊥; proposer := 0;
delivered := [FALSE]N ;
broadcast := FALSE;

upon event 〈 P , Crash | p 〉 do
detectedranks := detectedranks ∪ {rank(p)};

upon event 〈 c, Propose | v 〉 such that proposal = ⊥ do
proposal := v;

upon round = rank(self) ∧ proposal �= ⊥∧ broadcast = FALSE do
broadcast := TRUE;
trigger 〈 beb, Broadcast | [DECIDED, proposal] 〉;
trigger 〈 c, Decide | proposal 〉;

upon round ∈ detectedranks ∨ delivered[round] = TRUE do
round := round + 1;

upon event 〈 beb, Deliver | p,[DECIDED, v] 〉 do
r := rank(p);
if r < rank(self) ∧ r > proposer then

proposal := v;
proposer := r;

delivered[r] := TRUE;

heart of the algorithm addresses the case, where p is faulty but crashes only after
sending some DECIDED messages and q is correct. A problematic situation would
occur when the DECIDED message from p reaches the process s with rank 3 and
could cause it to decide, but process q, which has rank 2, might instead detect that
p has crashed and go on to impose its value on the other processes. The solution is
for process s to wait with deciding until it has heard something from q, either from
the failure detector that q has crashed or from q itself in the form of a DECIDED

message.
The “Hierarchical Consensus” algorithm works in rounds and relies on a best-

effort broadcast abstraction and on a perfect failure detector abstraction P .
In round i, the process p with rank i decides its proposal and broadcasts it to all
processes in a DECIDED message. All other processes that reach round i wait before
taking any actions, until they deliver this message or until P detects the crash of p.

210 5 Consensus

p

q

r

s
(w)

(x)

c−propose(w)

c−propose(x)

c−propose(z)

(x)

c−decide(x)

c−decide(x)

c−decide(x)

Round 1 Round 2 Round 3 Round 4

c−propose(y)

Figure 5.2: Sample execution of hierarchical consensus

No other process than p broadcasts any message in round i. A process collects the
ranks of the processes detected to have crashed by P in a variable detectedranks
(and not the identities of the potentially correct ones, as in Algorithm 5.1).

When a process q with rank j receives the proposal of p and q is in round i < j
then q adopts this proposal as its own proposal. But, if p crashed, then q may already
have progressed past round i because P detected the crash. In this case, when the
DECIDED message from p reaches q only after it has adopted a proposal from a
process with a less important rank than i, that is, taken from a DECIDED message
in a later round than i, then q must ignore the message from p and not change its
proposal.

Consider the example depicted in Fig. 5.2. Process p decides w and broadcasts
its proposal to all processes, but crashes. Processes q and r detect the crash before
they deliver the proposal of p and advance to the next round. Process s delivers the
message from p and changes its own proposal accordingly, i.e., s adopts the value w.
In round 2, process q decides its own proposal x and broadcasts this value. This
causes s to change its proposal again and now to adopt the value x from q. From
this point on, there are no further failures and the processes decide in sequence
the same value, namely x, the proposal of q. Even if the message from p reaches
process r much later, the process no longer adopts the value from p because it has
already adopted a value from process with a less important rank.

Correctness. The validity and integrity properties follow directly from the algo-
rithm and from the use of the underlying best-effort broadcast abstraction. The
termination property follows from the strong completeness property of the perfect
failure detector and from the validity property of best-effort broadcast: no pro-
cess will remain indefinitely blocked in a round and every correct process p will
eventually reach round rank(p) and decide in that round.

Consider now the agreement property. Let p be the correct process with the most
important rank that decides, and suppose it decides some value v. According to the
algorithm, every process q with a rank j > i also decides v. As no process suspects

5.2 Uniform Consensus 211

p because p is correct, every other process remains in round i until it receives the
DECIDED message from p containing v. This is guaranteed by the strong accuracy
property of the perfect failure detector. Hence, every process will adopt v in round i.
Furthermore, after round i, any other process disregards proposals from processes
with more important ranks than process p and any other proposal that it may receive
and adopt is also v. This means that all processes decide v.

Performance. The algorithm requires N communication steps to terminate and
exchanges O(N) messages in each round. Clearly, the algorithm can be optimized
to use fewer messages. For example, a process does not need to send a message to
processes with a more important rank because no highly ranked process even looks
at a DECIDED message from a process with a less important rank (in this sense, the
algorithm is reminiscent of some hierarchies among people).

5.2 Uniform Consensus

5.2.1 Specification

As with reliable broadcast, we can define a uniform variant of consensus. Uniform
consensus ensures that no two processes decide different values, whether they are
correct or not. The uniform specification is presented in Module 5.2. Its uniform
agreement property eliminates the restriction to the decisions of the correct pro-
cesses and requires that every process, whether it later crashes or not, decides the
same value. All other properties of uniform consensus are the same as in (regular)
consensus.

None of the consensus algorithms we presented so far ensure uniform agreement.
Roughly speaking, this is because some of the processes decide too early, without
making sure that their decision has been seen by enough processes. Should such an

Module 5.2: Interface and properties of uniform consensus
Module:

Name: UniformConsensus, instance uc.

Events:

Request: 〈 uc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 uc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

UC1–UC3: Same as properties C1–C3 in (regular) consensus (Module 5.1).

UC4: Uniform agreement: No two processes decide differently.

212 5 Consensus

early deciding process crash, other processes might have no choice but to decide a
different value.

To illustrate the issue in our “Flooding Consensus” algorithm (Algorithm 5.1),
consider a scenario where the process p with rank 1 receives messages from all
processes at the end of round 1. Assume furthermore that p decides its own proposal
value, as this turns out to be the smallest value. However, p crashes shortly after
deciding and its message does not reach any other process. The remaining processes
move to round 2 without having received the message from p containing its decision.
The processes are likely to decide some other value.

To illustrate the same issue in our “Hierarchical Consensus” algorithm (Algo-
rithm 5.2), remember that the process p with rank 1 decides its own proposal in a
unilateral way, before sending any messages to other processes and without making
sure its proposal is seen by any other process. Hence, if p crashes immediately after
deciding, it is likely that the other processes decide a different value.

In the following, we present two uniform consensus algorithms for the fail-stop
model that tolerate f < N faulty processes, called “Uniform Flooding Consensus”
and “Uniform Hierarchical Consensus,” respectively. These two algorithms can be
viewed as uniform variants of our “Flooding Consensus” and “Hierarchical Con-
sensus” algorithms, introduced in the previous section. In the next section, we also
present a uniform consensus algorithm in the fail-noisy model.

5.2.2 Fail-Stop Algorithm: Flooding Uniform Consensus

Algorithm 5.3, called “Flooding Uniform Consensus,” implements uniform consen-
sus using the “flooding” method of Algorithm 5.1 for regular consensus. As in that
algorithm, the processes operate in sequential rounds. In each round, they gather a
set of proposals from all processes and disseminate their own set to all processes
using a best-effort broadcast primitive.

However, there is an important difference to Algorithm 5.1 in that a process can
no longer decide after receiving messages from the same set of processes in two
consecutive rounds. Recall that a process might have decided and crashed before
its proposal set or decision message reached any other process. As this would vio-
late the uniform agreement property, the “Flooding Uniform Consensus” algorithm
always runs for N rounds and every process decides only in round N . Intuitively,
this permits that one process crashes in every round.

The remaining modifications from Algorithm 5.1 to 5.3 result from simplifi-
cations: instead of a round-specific proposal set, only one global proposal set is
maintained, and the variable receivedfrom contains only the set of processes from
which the process has received a message in the current round.

Correctness. The validity and integrity properties follow from the algorithm and
from the properties of best-effort broadcast. The termination property is ensured
here because all correct processes reach round N and decide in that round. More
precisely, the strong completeness property of the failure detector implies that no
correct process waits indefinitely for a message from a process that has crashed,
as the crashed process is eventually removed from correct. The uniform agreement

5.2 Uniform Consensus 213

Algorithm 5.3: Flooding Uniform Consensus

Implements:
UniformConsensus, instance uc.

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 uc, Init 〉 do
correct := Π;
round := 1;
decision := ⊥;
proposalset := ∅;
receivedfrom := ∅;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon event 〈 uc, Propose | v 〉 do
proposalset := proposalset ∪ {v};
trigger 〈 beb, Broadcast | [PROPOSAL, 1, proposalset] 〉;

upon event 〈 beb, Deliver | p, [PROPOSAL, r, ps] 〉 such that r = round do
receivedfrom := receivedfrom ∪ {p};
proposalset := proposalset ∪ ps;

upon correct ⊆ receivedfrom ∧ decision = ⊥ do
if round = N then

decision := min(proposalset);
trigger 〈 uc, Decide | decision 〉;

else
round := round + 1;
receivedfrom := ∅;
trigger 〈 beb, Broadcast | [PROPOSAL, round, proposalset] 〉;

holds because all processes that reach round N have the same set of values in their
variable proposalset.

Performance. The algorithm requires N communication steps and O(N3) mes-
sages for all correct processes to decide.

5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus

Algorithm 5.4, called “Hierarchical Uniform Consensus,” solves uniform consensus
in the fail-stop model using a hierarchy among the processes and a series of rounds,
similar to our “Hierarchical Consensus” algorithm (Algorithm 5.2). Every process
maintains a single proposal value that it broadcasts in the round corresponding to its
rank. When it receives a proposal from a more importantly ranked process, it adopts
the value.

214 5 Consensus

Algorithm 5.4: Hierarchical Uniform Consensus

Implements:
UniformConsensus, instance uc.

Uses:
PerfectPointToPointLinks, instance pl;
BestEffortBroadcast, instance beb;
ReliableBroadcast, instance rb;
PerfectFailureDetector, instance P .

upon event 〈 uc, Init 〉 do
detectedranks := ∅;
ackranks := ∅;
round := 1;
proposal := ⊥; decision := ⊥;
proposed := [⊥]N ;

upon event 〈 P , Crash | p 〉 do
detectedranks := detectedranks ∪ {rank(p)};

upon event 〈 uc, Propose | v 〉 such that proposal = ⊥ do
proposal := v;

upon round = rank(self) ∧ proposal �= ⊥∧ decision = ⊥ do
trigger 〈 beb, Broadcast | [PROPOSAL, proposal] 〉;

upon event 〈 beb, Deliver | p, [PROPOSAL, v] 〉 do
proposed[rank(p)] := v;
if rank(p) ≥ round then

trigger 〈 pl, Send | p, [ACK] 〉;

upon round ∈ detectedranks do
if proposed[round] �= ⊥ then

proposal := proposed[round];
round := round + 1;

upon event 〈 pl, Deliver | q, [ACK] 〉 do
ackranks := ackranks ∪ {rank(q)};

upon detectedranks ∪ ackranks = {1, . . . , N} do
trigger 〈 rb, Broadcast | [DECIDED, proposal] 〉;

upon event 〈 rb, Deliver | p, [DECIDED, v] 〉 such that decision = ⊥ do
decision := v;
trigger 〈 uc, Decide | decision 〉;

The “Hierarchical Uniform Consensus” algorithm uses a perfect failure-detector
abstraction P , a best-effort broadcast abstraction to disseminate the proposal, a
perfect links abstraction to acknowledge the receipt of a proposal, and a reliable

5.2 Uniform Consensus 215

broadcast abstraction to disseminate the decision. We explain the need for the latter
after an overview of the algorithm.

In every round of the algorithm, the process whose rank corresponds to the num-
ber of the round is the leader, i.e., the most importantly ranked process is the leader
of round 1. In contrast to the “Hierarchical Consensus” algorithm, however, a round
here consists of two communication steps: within the same round, the leader broad-
casts a PROPOSAL message to all processes, trying to impose its value, and then
expects to obtain an acknowledgment from all correct processes. Processes that
receive a proposal from the leader of the round adopt this proposal as their own and
send an acknowledgment back to the leader of the round. If the leader succeeds in
collecting an acknowledgment from all processes except those that P has detected
to have crashed, the leader can decide. It disseminates the decided value using a
reliable broadcast communication abstraction. As in Algorithm 5.2, a process rep-
resents the output from P and the set of processes who sent an acknowledgment in
a set of ranks.

If the leader of a round fails, the correct processes detect this and proceed to
the next round. The leader of the next round is the process immediately below the
current leader in the hierarchy; the new leader broadcasts its proposal only if it has
not already delivered the decision through the reliable broadcast abstraction.

Note that even if the leader fails after disseminating the decision, the reliable
broadcast abstraction ensures that if any process decides and stops taking any lead-
ership action then all correct processes will also decide. This property would not be
guaranteed by a best-effort broadcast abstraction. (An alternative would have been
to use a best-effort broadcast but have processes continue the algorithm even if they
receive a decision message.)

Correctness. The validity and integrity properties follow trivially from the algo-
rithm and from the properties of the underlying communication abstractions.

Consider termination. If some correct process decides, it decides because it
rb-delivered a decision message. Due to the properties of the reliable broadcast
abstraction, every correct process eventually rb-delivers the decision message and
decides. Hence, either all correct processes decide or no correct process decides.
Assume by contradiction that there is at least one correct process, and no cor-
rect process decides. Let p be the correct process with the most important rank.
Due to the strong completeness property of the perfect failure detector, every cor-
rect process detects the crashes of the processes with more important ranks than
p (or beb-delivers their PROPOSAL message). Hence, all correct processes reach
round rank(p) and, due to the strong accuracy property of the failure detector, no
process detects the crash of process p or moves to the next round. Therefore, all
correct processes wait until a message from p is beb-delivered and send an ack-
nowledgment. Process p, the leader of this round, hence succeeds in collecting
acknowledgments from all correct processes and decides.

Consider now the uniform agreement property, and assume that two processes
decide differently. This can only be possible if two processes rb-broadcast decision
messages with two different proposal values. Consider any two processes p and q
such that rank(q) > rank(p) and suppose that p and q rb-broadcast two decision

216 5 Consensus

values v and v′, respectively. Because of the strong accuracy property of the failure
detector, process q must have adopted v before reaching round rank(q). Hence, it
holds v = v′, which contradicts the assumption.

Performance. If there are no failures, the algorithm terminates in three communica-
tion steps: two steps for the first round and one step for the reliable broadcast. The
algorithm exchanges O(N) messages. Each failure of a leader adds two additional
communication steps and O(N) additional messages.

5.3 Uniform Consensus in the Fail-Noisy Model

5.3.1 Overview

All consensus and uniform consensus algorithms we have given so far assume a
fail-stop model: they rely on a perfect failure detector abstraction P . It is easy to
see that in any of those algorithms, a false failure suspicion (i.e., a violation of
the strong accuracy property of P) might lead to the violation of the agreement
property of consensus. That is, if a process is detected to have crashed while it is
actually correct, then two correct processes might decide differently. On the other
hand, in any of those algorithms, not suspecting a crashed process (i.e., violating the
strong completeness property of P) might lead to the violation of the termination
property of consensus. This argument shows that the consensus algorithms given
so far cannot be used in the fail-noisy model, where the failure detector is only
eventually perfect and might make mistakes. (See also the exercises at the end of
this chapter.)

In this section, we describe a uniform consensus algorithm in the fail-noisy
model, based on an eventual leader detector, which can itself be implemented
assuming an eventually perfect failure detector. The algorithm relies on a majority
of correct processes and assumes N > 2f . This solution is however quite involved,
which is the reason for devoting a whole section to this algorithm.

Our fail-noisy uniform consensus algorithm causes the processes to execute a
sequence of epochs. The epochs are identified with increasing timestamps; every
epoch has a designated leader, whose task is to reach consensus among the pro-
cesses. If the leader is correct and no further epoch starts, then the leader succeeds
in reaching consensus. But if the next epoch in the sequence is triggered, the pro-
cesses abort the current epoch and invoke the next one, even if some processes may
already have decided in the current epoch.

The core of the algorithm ensures that a subsequent epoch respects the uniform
agreement property of consensus, such that if a process might already have decided
in the current epoch, the decision value becomes fixed. A process that decides in a
later epoch must also decide the fixed value.

We introduce two abstractions to build our fail-noisy consensus algorithm. The
first one is an epoch-change primitive that is responsible for triggering the sequence
of epochs at all processes. The second one is an epoch consensus abstraction, whose
goal is to reach consensus in a given epoch. Since one epoch might be aborted, the

5.3 Uniform Consensus in the Fail-Noisy Model 217

consensus algorithm will invoke multiple epoch consensus instances in sequence,
governed by the outputs from the epoch-change primitive. Every process must
invoke a well-formed sequence of epochs by giving some state information locally
to the next instance.

The rest of this section is structured as follows. The next two subsections present
the epoch-change and the epoch consensus abstractions and corresponding imple-
mentations. The epoch-change primitive can be implemented in a fail-noisy model,
relying on an eventual leader detector, but epoch consensus can be implemented in
a fail-silent model, provided only that a majority of the processes is correct. We
then show a transformation from these two abstractions to uniform consensus. The
resulting “Leader-Driven Consensus” algorithm implements uniform consensus in
the fail-noisy model.

In fact, there is no difference between regular consensus and its uniform variant
in the fail-noisy model. In the exercise section, we will show that any fail-noisy
algorithm that solves consensus also solves uniform consensus. Furthermore, we
will show that a majority of correct processes is necessary for any fail-noisy
algorithm that implements consensus.

Later in this chapter, we will discuss consensus in a fail-arbitrary model, with
Byzantine process abstractions. We shall use the same approach based on a sequence
of epochs to implement Byzantine consensus. Simply by replacing the implemen-
tations of the epoch-change and epoch consensus primitives with fail-arbitrary
algorithms, we will use the transformation given here and obtain a Byzantine
consensus algorithm.

5.3.2 Epoch-Change

Specification. Our epoch-change abstraction signals the start of a new epoch by
triggering a 〈 StartEpoch | ts, 	 〉 event, when a leader is suspected; the event con-
tains two parameters: an epoch timestamp ts and a leader process 	 that serve
to identify the starting epoch. When this event occurs, we say the process starts
epoch (ts,). Apart from the implicit initialization, the epoch-change abstraction
receives no requests.

We require that the timestamps in the sequence of epochs that are started at
one process are monotonically increasing and that every process receives the same
leader for a given epoch timestamp (with the monotonicity and consistency proper-
ties). Eventually, the primitive must cease to start new epochs, and the last epoch
started at every correct process must be the same; furthermore, the leader of this last
epoch must be correct. This is the eventual leadership property. Intuitively, this last
leader will then perform all remaining steps of a higher-level module and ensure its
termination.

The interface and properties of an epoch-change abstraction are given in
Module 5.3. When an epoch-change abstraction is initialized, it is assumed that a
default epoch with timestamp 0 and a leader 	0 is active at all correct processes. The
value of 	0 is made available to all processes implicitly.

218 5 Consensus

Module 5.3: Interface and properties of epoch-change
Module:

Name: EpochChange, instance ec.

Events:

Indication: 〈 ec, StartEpoch | ts, � 〉: Starts the epoch identified by timestamp ts
with leader �.

Properties:

EC1: Monotonicity: If a correct process starts an epoch (ts, �) and later starts an
epoch (ts′, �′), then ts′ > ts.

EC2: Consistency: If a correct process starts an epoch (ts, �) and another correct
process starts an epoch (ts′, �′) with ts = ts′, then � = �′.

EC3: Eventual leadership: There is a time after which every correct process has
started some epoch and starts no further epoch, such that the last epoch started at
every correct process is epoch (ts, �) and process � is correct.

Fail-Noisy Algorithm: Leader-Based Epoch-Change. Our implementation of the
epoch-change abstraction is shown in Algorithm 5.5 and called “Leader-Based
Epoch-Change.” It relies on an eventual leader detector Ω (Module 2.9).

The epoch-change algorithm is quite simple. Every process p maintains two time-
stamps: a timestamp lastts of the last epoch that it started (i.e., for which it triggered
a 〈 StartEpoch 〉 event), and the timestamp ts of the last epoch that it attempted
to start with itself as leader (i.e., for which it broadcast a NEWEPOCH message,
as described next). Initially, the process sets ts to its rank. Whenever the leader
detector subsequently makes p trust itself, p adds N to ts and sends a NEWEPOCH

message with ts. When process p receives a NEWEPOCH message with a param-
eter newts > lastts from some process 	 and p most recently trusted 	, then the
process triggers a 〈 StartEpoch 〉 event with parameters newts and 	. Otherwise, the
process informs the aspiring leader 	 with a NACK message that the new epoch could
not be started. When a process receives a NACK message and still trusts itself, it in-
crements ts by N and tries again to start an epoch by sending another NEWEPOCH

message.

Correctness. We argue that Algorithm 5.5 implements epoch-change with f crash
faults for N > f .

A process p locally maintains the timestamp lastts of the most recently started
epoch and compares it to the timestamp in every NEWEPOCH message. Hence, the
algorithm ensures that p only starts further epochs with higher timestamps. This
establishes the monotonicity property of epoch-change.

For the consistency property, note that the space of epoch timestamps is parti-
tioned among the N processes because every initializes ts to its rank and increments
it by N when it broadcasts a NEWEPOCH message. Hence, no two distinct processes
broadcast a NEWEPOCH message with the same timestamp value.

5.3 Uniform Consensus in the Fail-Noisy Model 219

Algorithm 5.5: Leader-Based Epoch-Change

Implements:
EpochChange, instance ec.

Uses:
PerfectPointToPointLinks, instance pl;
BestEffortBroadcast, instance beb;
EventualLeaderDetector, instance Ω.

upon event 〈 ec, Init 〉 do
trusted := �0;
lastts := 0;
ts := rank(self);

upon event 〈 Ω, Trust | p 〉 do
trusted := p;
if p = self then

ts := ts + N ;
trigger 〈 beb, Broadcast | [NEWEPOCH, ts] 〉;

upon event 〈 beb, Deliver | �, [NEWEPOCH, newts] 〉 do
if � = trusted ∧ newts > lastts then

lastts := newts;
trigger 〈 ec, StartEpoch | newts, � 〉;

else
trigger 〈 pl, Send | �, [NACK] 〉;

upon event 〈 pl, Deliver | p, [NACK] 〉 do
if trusted = self then

ts := ts + N ;
trigger 〈 beb, Broadcast | [NEWEPOCH, ts] 〉;

The eventual leadership property is based on the properties of the leader-detector
abstraction. Let q be the correct process that is eventually trusted by all correct
processes. At the last time when Ω causes process q to trust itself, q broadcasts a
NEWEPOCH message with some timestamp qts that should cause all processes to
start an epoch with leader q and timestamp qts. Consider any correct process p that
receives this message: p either last trusted q and qts is bigger than its variable lastts
and, therefore, p starts epoch (qts, t); or the condition does not hold and p sends a
NACK message to q. In the latter case, this message causes q to increment its vari-
able ts and to broadcast another NEWEPOCH message. The properties of Ω ensure
that eventually all correct processes trust q forever, therefore only q increments its ts
variable and all other processes have stopped broadcasting NEWEPOCH messages.
Hence, q eventually broadcasts a NEWEPOCH message with a timestamp bigger than
the lastts variable of p. Because p trusts q when it receives this message, p eventu-
ally starts some epoch with timestamp qts∗ and leader q. And because q is correct
and broadcasts the NEWEPOCH message with timestamp qts∗ to all processes, every
correct process eventually starts this epoch and stops sending NACK messages.

220 5 Consensus

Suppose that process p above is the last process whose NACK message was
delivered to q. Then, because q sends the NEWEPOCH message with timestamp qts∗

to all processes, the epoch with timestamp qts∗ is also the last epoch that every
correct process starts.

Performance. Algorithm 5.5 incurs one communication step and O(N) messages
whenever Ω selects a new leader.

5.3.3 Epoch Consensus

Specification. Epoch consensus is a primitive similar to consensus, where the
processes propose a value and may decide a value. Every epoch is identified by
an epoch timestamp and has a designated leader. As for uniform consensus, the
goal of epoch consensus is that all processes, regardless whether correct or faulty,
decide the same value (according to the uniform variant of agreement). But epoch
consensus is easier to implement than consensus because it only represents an att-
empt to reach consensus; epoch consensus may not terminate and can be aborted
when it does not decide or when the next epoch should already be started by the
higher-level algorithm. As another simplification, only the leader proposes a value
and epoch consensus is required to decide only when its leader is correct. Because a
single epoch consensus may not decide, the higher-level algorithm executes multi-
ple epochs in a logical sequence such that the epoch consensus abstractions in later
epochs depend on earlier ones.

More precisely, every instance of epoch consensus is associated with a time-
stamp ts and a leader process 	. During initialization, some implementation-specific
state value is passed to the abstraction at every process. (This feature extends the
initialization mechanism as presented so far, but can easily be added in practice.)
To start an epoch consensus instance ep, the leader 	 proposes a value v with a
〈 Propose | v 〉 request; unlike consensus, the other processes are not required to
propose anything. When this occurs, we also say the leader ep-proposes v. One way
for epoch consensus to terminate is to trigger an indication 〈 Decide | v 〉; when it
happens, we say the process ep-decides v.

Furthermore, epoch consensus must terminate when the application locally trig-
gers an event 〈 Abort 〉. After receiving this event, the epoch signals the completion
of the abort by returning an event 〈 Aborted | state 〉 to the caller, containing
some internal state. The caller must use state to initialize the next epoch consen-
sus instance in which it participates. Aborts are always triggered externally, an
instance does not abort on its own. Different processes may abort epoch consensus
independently of each other at different times.

We require that every process runs at most one epoch consensus instance at a
time; the process may only initialize a new epoch consensus after the previously
active one has aborted or ep-decided. Moreover, a process must only initialize an
epoch consensus instance with a higher timestamp than that of all instances that it
initialized previously, and it must use the state of the most recently aborted epoch
consensus instance to initialize the next such instance. A process respecting these
rules is said to run a well-formed sequence of epochs. Note that the timestamps

5.3 Uniform Consensus in the Fail-Noisy Model 221

Module 5.4: Interface and properties of epoch consensus
Module:

Name: EpochConsensus, instance ep, with timestamp ts and leader process �.

Events:

Request: 〈 ep, Propose | v 〉: Proposes value v for epoch consensus. Executed only
by the leader �.

Request: 〈 ep, Abort 〉: Aborts epoch consensus.

Indication: 〈 ep, Decide | v 〉: Outputs a decided value v of epoch consensus.

Indication: 〈 ep, Aborted | state 〉: Signals that epoch consensus has completed the
abort and outputs internal state state.

Properties:

EP1: Validity: If a correct process ep-decides v, then v was ep-proposed by the
leader �′ of some epoch consensus with timestamp ts′ ≤ ts and leader �′.

EP2: Uniform agreement: No two processes ep-decide differently.

EP3: Integrity: Every correct process ep-decides at most once.

EP4: Lock-in: If a correct process has ep-decided v in an epoch consensus with
timestamp ts′ < ts, then no correct process ep-decides a value different from v.

EP5: Termination: If the leader � is correct, has ep-proposed a value, and no cor-
rect process aborts this epoch consensus, then every correct process eventually
ep-decides some value.

EP6: Abort behavior: When a correct process aborts an epoch consensus, it eventu-
ally will have completed the abort; moreover, a correct process completes an abort
only if the epoch consensus has been aborted by some correct process.

from a well-formed sequence of epochs may also skip some values. The “Leader-
Driven Consensus” algorithm presented in the next section ensures this property for
all processes. Because there is such a correspondence between epochs and epoch
consensus instances, we sometimes simply say the “epoch” with timestamp ets and
mean the instance of epoch consensus with timestamp ets.

The properties of epoch consensus are closely related to those of uniform consen-
sus. Its uniform agreement and integrity properties are the same, and the termination
condition of epoch consensus is only weakened by assuming the leader is cor-
rect. The validity property extends the possible decision values to those proposed
in epochs with smaller timestamps, assuming a well-formed sequence of epochs.
Finally, the lock-in property is new and establishes an explicit link on the decision
values across epochs: if some process has already ep-decided v in an earlier epoch
of a well-formed sequence then only v may be ep-decided during this epoch.

222 5 Consensus

The interface and properties of epoch consensus are depicted in Module 5.4.
They assume the processes invoke a well-formed sequence of epochs.

Fail-Silent Algorithm: Read/Write Epoch Consensus. Our implementation of
epoch consensus is called “Read/Write Epoch Consensus” and shown in Algo-
rithm 5.6. The algorithm uses best-effort broadcast and perfect point-to-point links
abstractions.

Multiple instances of epoch consensus may be executed at the same point in time
by different processes; but when used in our “Leader-Driven Consensus” algorithm,
then every process only runs at most one epoch consensus instance at a time. Dif-
ferent instances never interfere with each other according to our assumption that
every instance is identified by a unique epoch timestamp and because point-to-point
messages and best-effort broadcast messages are only received from and delivered
to other instances with the same timestamp.

Intuitively, the algorithm works as follows. The leader tries to impose a decision
value on the processes. The other processes witness the actions of the leader, should
the leader fail, and they also witness actions of leaders in earlier epochs. Recall
that epoch consensus is initialized with a state value, which the previously active
epoch consensus returned to the process when it was aborted. The state contains a
timestamp and a value. Passing state to the next epoch consensus in well-formed
sequences serves the validity and lock-in properties of epoch consensus, as these
properties (and no others) link two epochs with different timestamps together.

The algorithm involves two rounds of message exchanges from the leader to all
processes. The goal is for the leader to write its proposal value to all processes,
who store the epoch timestamp and the value in their state and acknowledge this
to the leader. When the leader receives enough acknowledgments, it will ep-decide
this value. But it may be that the leader of some previous epoch already ep-decided
some value. To prevent that the epoch violates lock-in, the leader must write the
previously ep-decided value again. Hence, it first reads the state of the processes by
sending a READ message. Every process answers with a STATE message containing
its locally stored value and the timestamp of the epoch during which the value was
last written. The leader receives a quorum of STATE messages and choses the value
that comes with the highest timestamp as its proposal value, if one exists. This step
uses the function highest(·) introduced before. The leader then writes the chosen
value to all processes with a WRITE message. The write succeeds when the leader
receives an ACCEPT message from a quorum of processes, indicating that they have
stored the value locally. The leader now ep-decides the chosen value and announces
this in a DECIDED message to all processes; the processes that receive this ep-decide
as well.

As every two quorums overlap in one process, the leader is sure to read any value
that may have been ep-decided in a previous epoch and to write it again. Quorums
play a similar role here as in the replicated implementations of read/write registers
from Chap. 4.

When aborted, the epoch consensus implementation simply returns its state, con-
sisting of the timestamp/value pair with the written value, and halts. It is important
that the instance performs no further steps.

5.3 Uniform Consensus in the Fail-Noisy Model 223

Algorithm 5.6: Read/Write Epoch Consensus

Implements:
EpochConsensus, instance ep, with timestamp ets and leader �.

Uses:
PerfectPointToPointLinks, instance pl;
BestEffortBroadcast, instance beb.

upon event 〈 ep, Init | state 〉 do
(valts, val) := state;
tmpval := ⊥;
states := [⊥]N ;
accepted := 0;

upon event 〈 ep, Propose | v 〉 do // only leader �
tmpval := v;
trigger 〈 beb, Broadcast | [READ] 〉;

upon event 〈 beb, Deliver | �, [READ] 〉 do
trigger 〈 pl, Send | �, [STATE, valts, val] 〉;

upon event 〈 pl, Deliver | q, [STATE, ts, v] 〉 do // only leader �
states[q] := (ts, v);

upon #(states) > N/2 do // only leader �
(ts, v) := highest(states);
if v �= ⊥ then

tmpval := v;
states := [⊥]N ;
trigger 〈 beb, Broadcast | [WRITE, tmpval] 〉;

upon event 〈 beb, Deliver | �, [WRITE, v] 〉 do
(valts, val) := (ets, v);
trigger 〈 pl, Send | �, [ACCEPT] 〉;

upon event 〈 pl, Deliver | q, [ACCEPT] 〉 do // only leader �
accepted := accepted + 1;

upon accepted > N/2 do // only leader �
accepted := 0;
trigger 〈 beb, Broadcast | [DECIDED, tmpval] 〉;

upon event 〈 beb, Deliver | �, [DECIDED, v] 〉 do
trigger 〈 ep, Decide | v 〉;

upon event 〈 ep, Abort 〉 do
trigger 〈 ep, Aborted | (valts, val) 〉;
halt; // stop operating when aborted

224 5 Consensus

Correctness. We argue that Algorithm 5.6 implements epoch consensus with time-
stamp ets and leader 	 in the fail-noisy model, with f crash faults for N > 2f .

We first establish the lock-in property of epoch consensus. Suppose some process
has ep-decided v in an epoch with timestamp ts′ < ts. The process only ep-decided
after receiving a DECIDED message with v from the leader 	′ of epoch ts′. Before
sending this message, process 	′ had broadcast a WRITE message containing v and
had collected ACCEPT messages in response from a set A of more than N/2 distinct
processes. According to the algorithm, these processes set their variables val to v
and valts to ts′.

Consider the next epoch in which the leader sends a WRITE message, and sup-
pose its timestamp is ts∗ and its leader is 	∗. Because the state (valts, val) is
passed from one epoch consensus instance to the next one in well-formed invocation
sequences, this means that no process has changed its valts and val variables in any
epoch between ts′ and ts∗. We conclude that every process in A starts the epoch
consensus instance with timestamp ts∗ with state (valts, val) = (ts′, v). Hence,
leader 	∗ collects STATE messages whose highest timestamp/value tuple is (ts′, v)
and broadcasts a WRITE message containing v. This implies that a process can only
ep-decide v and that the set of processes whose variable val is equal to v when they
abort epoch ts∗ is at least A. Continuing this argument until epoch consensus with
timestamp ts establishes the lock-in property.

To establish the validity property, assume that a process ep-decides v. It is
obvious from the algorithm that a process only ep-decides the value v received in a
DECIDED message from 	; furthermore, every process stores in variable val only the
value received in a WRITE message from the leader. In both cases, this value comes
from the variable tmpval of the leader. But in any epoch the leader sets tmpval only
to the value that it ep-proposed or to some value that it received in a STATE message
from another process. By backward induction in the sequence of epochs, this shows
that v was ep-proposed by the leader in some epoch with a timestamp smaller than
or equal to ts.

The uniform agreement property follows easily from inspecting the algorithm
because 	 sends the same value to all processes in the DECIDED message. Analo-
gously, integrity follows from the algorithm.

The termination property is also easy to see because when 	 is correct and no
process aborts the epoch, then every correct process eventually receives a DECIDE

message and ep-decides.
Finally, the abort behavior property is satisfied because the algorithm returns

〈 Aborted 〉 immediately after it has been aborted and only then.

Performance. The “Read/Write Epoch Consensus” algorithm involves five commu-
nication steps, assuming that it is not aborted. These steps correspond to the two
rounds of messages exchanges between the leader and all processes for reading and
for writing, plus the final broadcasting of the decision. One such epoch consensus
requires therefore O(N) messages.

5.3 Uniform Consensus in the Fail-Noisy Model 225

Algorithm 5.7: Leader-Driven Consensus

Implements:
UniformConsensus, instance uc.

Uses:
EpochChange, instance ec;
EpochConsensus (multiple instances).

upon event 〈 uc, Init 〉 do
val := ⊥;
proposed := FALSE; decided := FALSE;
Obtain the leader �0 of the initial epoch with timestamp 0 from epoch-change inst. ec;
Initialize a new instance ep.0 of epoch consensus with timestamp 0,

leader �0, and state (0,⊥);
(ets, �) := (0, �0);
(newts, new�) := (0,⊥);

upon event 〈 uc, Propose | v 〉 do
val := v;

upon event 〈 ec, StartEpoch | newts′, new�′ 〉 do
(newts, new�) := (newts′, new�′);
trigger 〈 ep.ets, Abort 〉;

upon event 〈 ep.ts, Aborted | state 〉 such that ts = ets do
(ets, �) := (newts, new�);
proposed := FALSE;
Initialize a new instance ep.ets of epoch consensus with timestamp ets,

leader �, and state state;

upon � = self ∧ val �= ⊥ ∧ proposed = FALSE do
proposed := TRUE;
trigger 〈 ep.ets, Propose | val 〉;

upon event 〈 ep.ts, Decide | v 〉 such that ts = ets do
if decided = FALSE then

decided := TRUE;
trigger 〈 uc, Decide | v 〉;

5.3.4 Fail-Noisy Algorithm: Leader-Driven Consensus

This section introduces our “Leader-Driven Consensus” algorithm, implemented
from the epoch-change and epoch consensus abstractions. The algorithm provides
uniform consensus in a fail-noisy model and runs through a sequence of epochs.
The pseudo code in Algorithm 5.7 distinguishes the instances of epoch consensus
by their timestamp.

Intuitively, the value that is decided by the consensus algorithm is the value that
is ep-decided by one of the underlying epoch consensus instances. The algorithm

226 5 Consensus

p

q

r

s

ec−startepoch(6,q)

Epoch 6 Epoch 11Epoch 8

uc−decide(z)

(6,x)uc−propose(z)

uc−propose(y)

uc−propose(x)

uc−propose(w)

(8,z)

(6,x)

uc−decide(z)

(8,z)

(8,z)

ec−startepoch(11,r)

ec−startepoch(8,s)

uc−decide(z)

Figure 5.3: Sample execution of leader-driven consensus, using an epoch-change
primitive and multiple epoch consensus instances

runs through a sequence of epochs, triggered by 〈 StartEpoch 〉 events output by
the epoch-change primitive. These events also specify timestamp and leader of the
next epoch consensus to start. To switch from one epoch to the next, the algorithm
aborts the running epoch consensus, obtains its state, and initializes the next epoch
consensus with the state. Hence, the algorithm invokes a well-formed sequence of
epoch consensus instances.

As soon as a process has obtained the proposal value for consensus from the
application and the process is also the leader of the current epoch, it ep-proposes this
value for epoch consensus. When the current epoch ep-decides a value, the process
also decides that value in consensus, but continues to participate in the consensus
algorithm, to help other processes decide.

When the epoch-change implementation from Algorithm 5.5 and the epoch con-
sensus implementation from Algorithm 5.6 are used underneath the “Leader-Driven
Consensus” algorithm, then Algorithm 5.6 can be simplified by omitting the READ

message. This does not change the algorithm because the leader of epoch consen-
sus broadcasts READ immediately after it has broadcast a NEWEPOCH message
in epoch-change to all processes. Instead, every process may just send the STATE

message after initializing the epoch consensus instance, in reply to receiving the
NEWEPOCH message.

Figure 5.3 shows a sample execution of the “Leader-Driven Consensus” algo-
rithm with four processes (p has rank 1, q has rank 2, and so on). Every process
proposes a different value and then starts epoch 6 with leader q. The open circle
depicts that process q is the leader and the arrows show that it drives the message
exchange in the epoch consensus instance, which is implemented by Algorithm 5.6.
Process q writes its proposal x, but only process r receives it and sends an ACCEPT

5.3 Uniform Consensus in the Fail-Noisy Model 227

message before the epoch ends; hence, process r updates its state to (6, x). Epoch 8
with leader s starts subsequently and the processes abort the epoch consensus in-
stance with timestamp 6. At process r, epoch 8 starts much later, and r neither
receives nor sends any message before the epoch is aborted again. Note that the
specification of epoch-change would also permit that process r never starts epoch 8
and moves from epoch 6 to 11 directly.

Process s is the leader of epoch 8. It finds no highest value different from ⊥ and
writes its own proposal z. Subsequently, it sends a DECIDED message and process p
ep-decides and uc-decides z in epoch 8. Note that p, q, and s now have state (8, z).
Then process s crashes and epoch 11 with leader r starts. The state of r is still (6, x);
but it reads value z from p or q, and therefore writes z. As r is correct, all remaining
processes ep-decide z in this epoch consensus instance and, consequently, also q
and r uc-decide z.

It could also have been that process p crashed immediately after deciding z; in
this case, the remaining processes would also have decided z due to the lock-in
and agreement properties of epoch consensus. This illustrates that the algorithm
provides uniform consensus.

Correctness. Given an implementation of epoch consensus in the fail-silent model
and an implementation of epoch-change in the fail-noisy model, and assuming a
majority of correct processes, Algorithm 5.7 implements uniform consensus in the
fail-noisy model.

To show the validity property, we use an inductive argument on the sequence
of epochs that have ever been started at any correct process, ordered by their
timestamp. According to the algorithm, a process uc-decides v only when it has
ep-decided v in the current epoch consensus; hence, every decision can be attributed
to a unique epoch and to a unique instance of epoch consensus. Let ts∗ be the small-
est timestamp of an epoch consensus in which some process decides v. Then, this
process has ep-decided v in epoch consensus with timestamp ts∗. According to
the validity property of epoch consensus, this means that v was ep-proposed by
the leader of some epoch whose timestamp is at most ts∗. Because a process only
ep-proposes val when val has been uc-proposed for consensus, the validity property
follows for processes that uc-decide in epoch ts∗.

Suppose now that the validity property of uniform consensus holds for every
process that uc-decided in some epoch ts′, and consider a correct process that
uc-decides in an epoch ts > ts′. According to the lock-in property of epoch consen-
sus, this process may only ep-decide v and thus only uc-decides v. This shows that
the validity property holds for decisions in all epochs of well-formed sequences.

In order to establish the uniform agreement property, recall from the validity
property that every decision by the algorithm can be attributed to an ep-decision of
some epoch consensus instance. Thus, if two correct processes decide when they are
in the same epoch then the uniform agreement condition of epoch consensus ensures
that the decisions are the same; otherwise, if they decide in different epochs then the
lock-in property of epoch consensus establishes the uniform agreement property.

The integrity property is straightforward to verify from the algorithm, because
the decided flag prevents multiple decisions.

228 5 Consensus

For the termination property, observe that the algorithm satisfies the requirements
on invoking a well-formed sequence of epoch consensus instances, because of the
monotonicity and consistency properties of the epoch-change primitive and because
the algorithm only initializes a new epoch consensus after the previously active one,
with a smaller timestamp, has aborted.

According to the eventual leadership property of the underlying epoch-change
primitive, there exists some epoch with a timestamp ts and leader process 	 such
that no further epoch starts and 	 is correct. Observe that the algorithm only aborts
an instance of epoch consensus when the epoch-change primitive starts another
epoch. As this does not occur after starting epoch (ts,), the termination condi-
tion for the epoch consensus instance ep.ts now implies that every correct process
eventually ep-decides in instance ep.ts and, therefore, also uc-decides immediately
after that.

Performance. The complexity of the “Leader-Driven Consensus” algorithm dep-
ends entirely on the complexities of the implementations of the underlying epoch-
change and epoch consensus primitives, because the algorithm does not directly
communicate any messages with a point-to-point link abstraction or a broadcast
abstraction.

5.4 Logged Consensus

We consider now the fail-recovery model and address consensus with crash–
recovery process abstractions. Recall that such processes may crash and recover
arbitrarily often; but when a process eventually ceases to crash and continues to
take steps indefinitely, it is still called correct.

We introduce a logged uniform consensus abstraction next. Our approach to
implementing it will rely on the “Leader-Driven Consensus” algorithm from the
previous section. We introduce also extensions of the epoch-change and epoch con-
sensus abstractions and corresponding implementations for the fail-recovery model.
The purpose of the detailed presentation is to demonstrate how multiple abstractions
can be composed to survive crashes with subsequent recovery.

5.4.1 Specification

Module 5.5 presents the specification of logged uniform consensus. The abstraction
results from a small change to the uniform consensus abstraction (Module 5.2),
obtained by relaxing the termination property and by eliminating the integrity
property. More precisely, only processes that never crash are required to decide
and a process may decide multiple times; both modifications are inevitable in the
fail-recovery model.

Recall how our logged links and logged broadcast abstractions store their out-
put messages in a variable in stable storage, from which higher-level modules could

5.4 Logged Consensus 229

Module 5.5: Interface and properties of logged uniform consensus
Module:

Name: LoggedUniformConsensus, instance luc.

Events:

Request: 〈 luc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 luc, Decide | decision 〉: Notifies the upper layer that variable decision
in stable storage contains the decided value of consensus.

Properties:

LUC1: Termination: Every correct process that never crashes eventually log-
decides some value.

LUC2: Validity: If a process log-decides v, then v was proposed by some process.

LUC3: Uniform agreement: No two processes log-decide differently.

retrieve the output. We adopt the same mechanism for the logged uniform con-
sensus abstraction and for the other primitives in this section. Hence, the event
〈 Decide | decision 〉 in Module 5.5 only gives the name of the logging variable
decision in stable storage. The module logs the decided value in decision, from
which the higher layer must retrieve it. We say that the logged primitive log-decides
the value stored in decision when the event 〈 Decide | decision 〉 occurs.

For tolerating crashes with subsequent recovery, a higher-level module may pro-
pose the same value multiple times in logged uniform consensus and may also
log-decide multiple times. It is assumed that the higher-level module proposes the
same value again when it recovers from a crash and the logged uniform consen-
sus abstraction has not log-decided. This ensures that the consensus abstraction
eventually terminates and log-decides a value.

In order to adapt Algorithm 5.7 for the fail-recovery model, we need to provide
a logged epoch-change abstraction and a logged epoch consensus abstraction that
work for crash-recovery process abstractions.

5.4.2 Logged Epoch-Change

Specification. The logged epoch-change abstraction is almost the same as its
counterpart with crash-stop processes. The only difference concerns the liveness
condition, which strengthens some requirements from merely correct processes to
processes that never crash. In particular, the eventual leadership property of logged
epoch-change states that the process 	, which is the leader of the last epoch started
at every correct process, is not only correct but actually never crashes.

Moreover, the logged epoch-change abstraction writes timestamp and leader of
the next epoch to start into variables startts and start	 in stable storage. This is

230 5 Consensus

Module 5.6: Interface and properties of logged epoch-change
Module:

Name: LoggedEpochChange, instance lec.

Events:

Indication: 〈 lec, StartEpoch | startts, start� 〉: Notifies the upper layer that vari-
ables startts and start� in stable storage contain the timestamp and leader of the
next epoch to start.

Properties:

LEC1–LEC2: Same as properties EC1–EC2 in epoch-change adapted for log-
starting epochs.

LEC3: Eventual leadership: There is a time after which every correct process has
log-started some epoch and log-starts no further epoch, such that the last epoch
log-started at every correct process is epoch (ts, �) and process � never crashes.

similar to the delivery mechanism of logged broadcast abstractions. To highlight this
difference to epoch-change with crash faults, we say that the abstraction log-starts
the given epoch when this happens. The specification is shown in Module 5.6.

Fail-Recovery Algorithm: Logged Leader-Based Epoch-Change. An implemen-
tation of logged epoch-change is shown in Algorithm 5.8, called “Logged Leader-
Based Epoch-Change.” It is a direct descendant of Algorithm 5.5 and uses stubborn
links and stubborn broadcast instead of perfect links and best-effort broadcast. The
timestamp and the leader of the last log-started epoch are logged.

Correctness. The monotonicity and consistency properties are satisfied in the same
way as for the original “Leader-Based Epoch-Change” algorithm. In addition, the
value of startts is logged whenever it changes.

The eventual leadership property is satisfied directly because the eventual leader
process 	 process must be one that never crashes. Therefore, the algorithm always
terminates at every process after process 	 receives the last 〈 Trust | 	 〉 from Ω.

Performance. The algorithm incurs one communication step and O(N) messages
whenever Ω selects a new leader. It writes to stable storage once for every epoch
started.

5.4.3 Logged Epoch Consensus

Specification. The logged epoch consensus abstraction plays the same role as the
epoch consensus primitive in the consensus algorithm. The only change for the
logged variant consists in logging the decision value, which is output after reach-
ing consensus. The 〈 Decide | epochdecision 〉 event specifies the name of a variable
epochdecision in stable storage, where the decision value is logged. When this event
occurs, we say the abstraction log-decides. In case that a process crashes before

5.4 Logged Consensus 231

Algorithm 5.8: Logged Leader-Based Epoch-Change

Implements:
LoggedEpochChange, instance lec.

Uses:
StubbornPointToPointLinks, instance sl;
StubbornBestEffortBroadcast, instance sbeb;
EventualLeaderDetector, instance Ω.

upon event 〈 lec, Init 〉 do
trusted := �0;
(startts, start�) := (0, �0);
ts := rank(self) − N ;

upon event 〈 lec, Recovery 〉 do
retrieve(startts);

upon event 〈 Ω, Trust | p 〉 do
trusted := p;
if p = self then

ts := ts + N ;
trigger 〈 sbeb, Broadcast | [NEWEPOCH, ts] 〉;

upon event 〈 sbeb, Deliver | �, [NEWEPOCH, newts] 〉 do
if � = trusted ∧ newts > startts then

(startts, start�) := (newts, �);
store(startts, start�);
trigger 〈 lec, StartEpoch | startts, start� 〉;

else
trigger 〈 sl, Send | �, [NACK, newts] 〉;

upon event 〈 sl, Deliver | p, [NACK, nts] 〉 such that nts = ts do
if trusted = self then

ts := ts + N ;
trigger 〈 sbeb, Broadcast | [NEWEPOCH, ts] 〉;

handling the event, the process may retrieve the epoch’s decision value from stable
storage upon recovery.

The logged epoch consensus terminates either because it decides or because it is
aborted. Although the decided value is returned through a logged variable as des-
cribed, the local state output by an aborted instance is returned through an ordinary
event 〈 Aborted | state 〉. This event may be lost if the process crashes before the
higher layer records it, but it does no harm because the layer above can simply abort
the logged epoch consensus instance again.

Compared to the epoch consensus abstraction with crash-stop processes, the
logged epoch consensus abstraction drops the integrity property and reformulates
the termination property such that every correct process eventually log-decides a
value. The detailed specification is shown in Module 5.7.

232 5 Consensus

Module 5.7: Interface and properties of logged epoch consensus
Module:

Name: LoggedEpochConsensus, instance lep, with timestamp ts and leader pro-
cess �.

Events:

Request: 〈 lep, Propose | v 〉: Proposes value v for logged epoch consensus.
Executed only by the leader �.

Request: 〈 lep, Abort 〉: Aborts logged epoch consensus.

Indication: 〈 lep, Decide | epochdecision 〉 Notifies the upper layer that the vari-
able epochdecision in stable storage contains the decided value of logged epoch
consensus.

Indication: 〈 lep, Aborted | state 〉: Signals that logged epoch consensus has
completed the abort and outputs internal state state.

Properties:

LEP1–LEP4: Same as the validity (EP1), uniform agreement (EP2), lock-in (EP4),
and abort behavior (EP6) properties in epoch consensus (Module 5.4), adapted for
log-deciding.

LEP5: Termination: If the leader � never crashes, has proposed a value, and no cor-
rect process aborts this logged epoch consensus instance, then every correct process
eventually log-decides some value in this instance.

Fail-Recovery Algorithm: Logged Read/Write Epoch Consensus. We present
an implementation of the logged epoch consensus abstraction in Algorithm 5.9,
called “Logged Read/Write Epoch Consensus.” It results from adapting Algo-
rithm 5.6 from a fail-silent model to a fail-recovery model and also assumes a
majority of correct processes. Remember, however, that the notion of correct pro-
cesses is different in a fail-recovery model: a process is said to be correct in this case
if eventually it is permanently up.

Correctness. The main difference between Algorithm 5.9 and Algorithm 5.6 con-
sists in using stubborn point-to-point links and stubborn best-effort broadcast
abstractions. The timestamp/value pair maintained by the algorithm is logged and
restored after recovery. Local variables used only by the leader are not logged,
because the termination property of logged epoch consensus assumes that the leader
does not crash. All remaining properties are the same as for the underlying algorithm
in the fail-silent model.

Performance. The “Logged Read/Write Epoch Consensus” algorithm involves at
most five communication steps and O(N) messages until every process terminates
and decides. Every process writes twice to stable storage.

5.4 Logged Consensus 233

Algorithm 5.9: Logged Read/Write Epoch Consensus

Implements:
EpochConsensus, instance lep, with timestamp ets and leader �.

Uses:
StubbornPointToPointLinks, instance sl;
StubbornBestEffortBroadcast, instance sbeb;

upon event 〈 lep, Init | state 〉 do
(valts, val) := state; store(valts, val);
tmpval := ⊥;
states := [⊥]N ;
accepted := 0;

upon event 〈 lep, Recovery 〉 do
retrieve(valts, val);

upon event 〈 lep, Propose | v 〉 do // only leader �
tmpval := v;
trigger 〈 sbeb, Broadcast | [READ] 〉;

upon event 〈 sbeb, Deliver | �, [READ] 〉 do
trigger 〈 sl, Send | �, [STATE, valts, val] 〉;

upon event 〈 sl, Deliver | q, [STATE, ts, v] 〉 do // only leader �
states[q] := (ts, v);

upon #(states) > N/2 do // only leader �
(ts, v) := highest(states);
if v �= ⊥ then

tmpval := v;
states := [⊥]N ;
trigger 〈 sbeb, Broadcast | [WRITE, tmpval] 〉;

upon event 〈 sbeb, Deliver | �, [WRITE, v] 〉 do
(valts, val) := (ets, v); store(valts, val);
trigger 〈 sl, Send | �, [ACCEPT] 〉;

upon event 〈 sl, Deliver | q, [ACCEPT] 〉 do // only leader �
accepted := accepted + 1;

upon accepted > N/2 do // only leader �
accepted := 0;
trigger 〈 sbeb, Broadcast | [DECIDED, tmpval] 〉;

upon event 〈 sbeb, Deliver | �, [DECIDED, v] 〉 do
epochdecision := v; store(epochdecision);
trigger 〈 lep, Decide | epochdecision 〉;

upon event 〈 lep, Abort 〉 do
trigger 〈 lep, Aborted | (valts, val) 〉;
halt; // stop operating when aborted

234 5 Consensus

Algorithm 5.10: Logged Leader-Driven Consensus (part 1)

Implements:
LoggedUniformConsensus, instance luc.

Uses:
LoggedEpochChange, instance lec;
LoggedEpochConsensus (multiple instances).

upon event 〈 luc, Init 〉 do
val := ⊥; decision := ⊥;
aborted := FALSE; proposed := FALSE;
Obtain the initial leader �0 from the logged epoch-change instance lec;
Initialize a new instance lep.0 of logged epoch consensus with timestamp 0,

leader �0, and state (0,⊥);
(ets, �) := (0, �0);
store(ets, �, decision);

upon event 〈 luc, Recovery 〉 do
retrieve(ets, �, decision);
retrieve(startts, start�) of instance lec;
(newts, new�) := (startts, start�);
retrieve(epochdecision) of instance lep.ets;
if epochdecision �= ⊥∧ decision = ⊥ then

decision := epochdecision; store(decision);
trigger 〈 luc, Decide | decision 〉;

aborted := FALSE;

upon event 〈 luc, Propose | v 〉 do
val := v;

5.4.4 Fail-Recovery Algorithm: Logged Leader-Driven Consensus

Algorithm 5.10–5.11, called “Logged Leader-Driven Consensus,” shows how the
basic “Leader-Driven Consensus” algorithm is adapted for the fail-recovery model.
The principal change from “Leader-Driven Consensus” (Algorithm 5.7) lies in
logging the current epoch timestamp/leader pair and the decision value.

As the underlying logged epoch-change and logged epoch consensus abstractions
may deliver their outputs through variables logged in stable storage, the delivery
variables must also be retrieved when the process recovers from a crash. When
these values indicate that the underlying module delivered some output before the
crash (by log-starting a new epoch or by log-deciding), then the algorithm takes the
appropriate steps.

Correctness. The extensions in Algorithm 5.10–5.11 with respect to Algorithm 5.7
make it possible for a process to resume its operation after a crash. All its other
properties are the same as for the “Leader-Drive Consensus” algorithm.

The algorithm is prepared to resume in two ways: in case it has missed a
〈 StartEpoch 〉 event from the epoch-change primitive or when it missed a

5.5 Randomized Consensus 235

Algorithm 5.11: Logged Leader-Driven Consensus (part 2)

upon event 〈 lec, StartEpoch | startts, start� 〉 do
retrieve(startts, start�) of instance lec;
(newts, new�) := (startts, start�);

upon (ets, �) �= (newts, new�) ∧ aborted = FALSE do
aborted = TRUE;
trigger 〈 lep.ets, Abort 〉;

upon event 〈 lep.ts, Aborted | state 〉 such that ts = ets do
(ets, �) := (newts, new�); store(ets, �);
aborted = FALSE; proposed := FALSE;
Initialize a new instance lep.ets of logged epoch consensus with timestamp ets,

leader �, and state state;

upon � = self ∧ val �= ⊥ ∧ proposed = FALSE do
proposed := TRUE;
trigger 〈 lep.ets, Propose | val 〉;

upon event 〈 lep.ts, Decide | epochdecision 〉 such that ts = ets do
retrieve(epochdecision) of instance lep.ets;
if decision = ⊥ then

decision := epochdecision; store(decision);
trigger 〈 luc, Decide | decision 〉;

〈 Decide 〉 event from an epoch consensus instance. Upon recovery, a process retri-
eves from stable storage the data that it could have missed in these events, which
has been logged by the underlying primitives. The algorithm logs also its own state,
consisting of the timestamp/leader pair of the current epoch plus the decision value,
and retrieves it during recovery. After restoring the internal state, the algorithm
examines if some conditions on its state have changed and proceeds to operate as it
normally would. This shows that a correct process eventually decides, as required
by the termination property.

Performance. The “Logged Leader-Driven Consensus” algorithm does not directly
involve any communication. It writes to stable storage once for every new epoch
that it starts and reads from stable storage when recovering from a crash.

5.5 Randomized Consensus

In this section, we show how to exploit randomization for solving a probabilistic
variant of consensus in the fail-silent model, without resorting to a failure detector.
Randomization is interesting because any algorithm for consensus must either rely
on a failure-detector abstraction (i.e., use a fail-stop or a fail-noisy model) or it
must be probabilistic. This follows because one can show that any deterministic
consensus algorithm in a fail-silent model has executions that do not terminate, even

236 5 Consensus

if only one process may crash; hence, no deterministic algorithm solves consensus
in asynchronous systems.

We first state the properties of a randomized consensus abstraction and then
introduce the abstraction of a common coin, which encapsulates various ways of
implementing probabilistic choices in consensus algorithms. Finally, we present
two consensus algorithms in the randomized fail-silent model. The first algorithm
decides on one bit, the second one decides on arbitrary values.

Randomized algorithms extend the basic execution model from Sect. 2.1 so that
every process has access to a source of randomness. The local computation part
in every step of a process may now additionally depend on the output of a local
random source, which picks a random element from a finite set according to a fixed
probability distribution. Our algorithms only sample random elements with uniform
distribution; we say that the algorithm flips a coin in this case and also refer to
random sources as coins.

5.5.1 Specification

A randomized consensus abstraction is in most ways the same as a (regular) con-
sensus abstraction. It uses the same events to propose a value and to decide a value,
and all correct processes must initially propose a value. Randomized consensus also
ensures the same integrity, agreement, and validity properties. As before, all correct
processes have to decide once, on the same value, and the decided value has to be
one of the proposed values.

The liveness property is formulated differently and expressed as probabilistic
termination; it stipulates that with probability 1, every correct process eventually
decides. This probability is induced by the random coin flips in an algorithm and
taken over all executions of an algorithm. Randomized consensus ensures the four
properties listed in Module 5.8.

Module 5.8: Interface and properties of randomized consensus
Module:

Name: RandomizedConsensus, instance rc.

Events:

Request: 〈 rc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 rc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

RC1: Probabilistic termination: With probability 1, every correct process eventu-
ally decides some value.

RC2–RC4: Same as properties C2–C4 in (regular) consensus (Module 5.1).

5.5 Randomized Consensus 237

Module 5.9: Interface and properties of a common coin
Module:

Name: CommonCoin, instance coin, with domain B.

Events:

Request: 〈 coin, Release 〉: Releases the coin.

Indication: 〈 coin, Output | b 〉: Outputs the coin value b ∈ B.

Properties:

COIN1: Termination: Every correct process eventually outputs a coin value.

COIN2: Unpredictability: Unless at least one correct process has released the coin,
no process has any information about the coin output by a correct process.

COIN3: Matching: With probability at least δ, every correct process outputs the
same coin value.

COIN4: No bias: In the event that all correct processes output the same coin value,
the distribution of the coin is uniform over B (i.e., a matching coin outputs any value
in B with probability 1

#(B)
).

5.5.2 Common Coin

All our randomized consensus algorithms delegate their probabilistic choices to a
common coin abstraction. A common coin is a primitive that is invoked by triggering
an event 〈 Release 〉 at every process; we say that a process releases the coin because
the coin’s value is unpredictable before the first process invokes the coin. The value c
of the coin is output to every process through an event 〈 Output | c 〉. The common
coin abstraction is summarized in Module 5.9.

We assume that every correct process releases its coin initially. A common coin
has an output domain B and is characterized by four properties. The first property
ensures termination. The second property keeps the coin value secret until the first
process releases the coin.

The third and fourth properties specify the probability distribution of the coin
output. In particular, we require that with probability at least δ > 0, the outputs of
all correct processes match because they are equal; we call such a coin δ-matching.
If the coin outputs match always, i.e., when δ = 1, we say the coin matches per-
fectly. Furthermore, given that all coin outputs actually match, the distribution of
the coin must be unbiased, that is, uniform over B. We assume the coin to be unbi-
ased for simplicity. However, a common coin with any constant bias is good enough
for achieving termination in most randomized consensus algorithms. (But note that
some bias is necessary because a coin cloud match with probability 1 but always
output the same value).

238 5 Consensus

One can implement a common coin abstraction purely with local computation,
for instance, when all processes flip coins independently. Such coins are typically
less useful than common coins realized by a distributed algorithm.

Consider the following local common-coin implementation, called the “Indepen-
dent Choice” coin: upon releasing the coin, every process simply selects a value at
random from B according to the uniform distribution and outputs it. If the domain is
one bit then this realizes a 2−N+1-matching common coin, because the probability
that every process selects some b is 2−N , for b ∈ {0, 1}.

Another possible common coin algorithm is the “Beacon” coin. An external
trusted process, called the beacon, periodically chooses an unpredictable random
value and broadcasts it at predefined times. When an algorithm accesses a sequence
of common coin abstractions, then for the k-th coin, every process receives the k-th
random value from the beacon and outputs it. This coin matches always. Unfortu-
nately, it is very difficult to integrate the beacon into a distributed algorithm in an
asynchronous system.

Of course, more realistic implementations of the common-coin abstraction are
needed for realizing the concept in practical distributed systems. As mentioned in
the notes at the end of the chapter, several such methods exist.

5.5.3 Randomized Fail-Silent Algorithm: Randomized Binary Consensus

Algorithm 5.12–5.13 is simply called “Randomized Binary Consensus;” it relies on
a majority of correct processes to make progress and on a common coin abstrac-
tion for terminating and reaching agreement. The agreement domain is one bit; we
show in the next section how to extend the algorithm for consensus on arbitrary val-
ues. The algorithm operates in sequential rounds, where the processes try to ensure
that the same value is proposed by a majority of the processes in each round. If
there is no such value, the processes resort to the coin abstraction and let it select
a value to propose in the next round. Unless the processes agree in the first round,
the probability that the processes agree in a subsequent round depends directly on
the matching probability of the common coin. This probability is strictly greater
than zero. Therefore, if the algorithm continues to execute rounds, it terminates
eventually with probability 1.

Each round of the “Randomized Binary Consensus” algorithm consists of two
phases. In the first phase, every correct process proposes a value by sending it to
all processes with a best-effort broadcast primitive. Then it receives proposals from
a quorum of processes. If a process observes that all responses contain the same
phase-one proposal value then it proposes that value for the second phase. If a pro-
cess does not obtain a unanimous set of proposals in the first phase, the process
simply proposes ⊥ for the second phase. Note that as a result of this procedure, if
two processes propose a value different from ⊥ for the second phase, they propose
exactly the same value. Let this value be called v∗.

The purpose of the second phase is to verify if v∗ was also observed by enough
other processes. After a process receives N − f phase-two messages, it checks if
more than f phase-two proposals are equal to v∗, and may decide this value if there

5.5 Randomized Consensus 239

Algorithm 5.12: Randomized Binary Consensus (phase 1)

Implements:
RandomizedConsensus, instance rc, with domain {0, 1}.

Uses:
BestEffortBroadcast, instance beb;
ReliableBroadcast, instance rb;
CommonCoin (multiple instances).

upon event 〈 rc, Init 〉 do
round := 0; phase := 0;
proposal := ⊥;
decision := ⊥;
val := [⊥]N ;

upon event 〈 rc, Propose | v 〉 do
proposal := v;
round := 1; phase := 1;
trigger 〈 beb, Broadcast | [PHASE-1, round, proposal] 〉;

upon event 〈 beb, Deliver | p, [PHASE-1, r, v] 〉 such that phase = 1 ∧ r = round do
val[p] := v;

upon #(val) > N/2 ∧ phase = 1 ∧ decision = ⊥ do
if exists v �= ⊥ such that #

({p ∈ Π | val[p] = v}) > N/2 then
proposal := v;

else
proposal := ⊥;

val := [⊥]N ;
phase := 2;
trigger 〈 beb, Broadcast | [PHASE-2, round, proposal] 〉;

are enough of them. A process that receives v∗ in the second phase, but is unable to
collect enough v∗ values to decide, starts a new round with v∗ as its proposal.

Finally, it is possible that a process does not receive v∗ in the second phase (either
because no such value was found in phase one or simply because it has received only
⊥ in phase two). In this case, the process starts a new round, with a new proposal that
it sets to the value output by the common coin abstraction. To ensure that the coin
abstraction makes progress, every process invokes the coin (and not only those that
need the coin output). Every process initializes a new coin instance after collecting
the phase-two proposals and immediately releases the coin. During the invocation
of the common coin abstraction, a process pretends to be in an imaginary phase 0;
this prevents it from receiving phase-one or phase-two proposals out of context.

When a process is ready to decide after outputting the coin, it abandons the
round structure of the algorithm. Instead, it distributes a DECIDED message with
the decision value using a reliable broadcast abstraction for simplicity. Every pro-
cess decides upon receiving this message. The step of broadcasting a DECIDED

240 5 Consensus

Algorithm 5.13: Randomized Binary Consensus (phase 2)

upon event 〈 beb, Deliver | p, [PHASE-2, r, v] 〉 such that phase = 2 ∧ r = round do
val[p] := v;

upon #(val) ≥ N − f ∧ phase = 2 ∧ decision = ⊥ do
phase := 0;
Initialize a new instance coin.round of CommonCoin with domain {0, 1};
trigger 〈 coin.round, Release 〉;

upon event 〈 coin.round, Output | c 〉 do
if exists v �= ⊥ such that #

({p ∈ Π | val[p] = v}) > f then
decision := v;
trigger 〈 rb, Broadcast | [DECIDED, decision] 〉;

else
if exists p ∈ Π, w �= ⊥ such that val[p] = w then

proposal := w;
else

proposal := c;
val := [⊥]N ;
round := round + 1; phase := 1;
trigger 〈 beb, Broadcast | [PHASE-1, round, proposal] 〉;

upon event 〈 rb, Deliver | p, [DECIDED, v] 〉 do
decision := v;
trigger 〈 rc, Decide | decision 〉;

message is actually not needed, as demonstrated in an exercise (at the end of the
chapter).

Figure 5.4 demonstrates why randomization is necessary and shows an execution
of a deterministic variant of Algorithm 5.12–5.13. At first glance, it may seem that a
deterministic solution could allow a majority in the first phase to be reached faster.
For instance, suppose that when a process receives a majority of ⊥ in the second
phase of a round, it selects deterministically the first non-⊥ value received so far
instead of selecting a value at random. Unfortunately, a deterministic choice allows
executions where the algorithm never terminates, as we explain now.

Consider three processes p, q, and r, with initial values 1, 0, and 0, respectively.
Each process proposes its own value for the first phase of the round. Consider the
following execution for the first phase:

• Process p receives values from itself and from q. As both values differ, p proposes
⊥ for the second phase.

• Process q receives values from itself and from p. As both values differ, q proposes
⊥ for the second phase.

• Process r receives values from itself and from q. As both values are the same, r
proposes 0 for the second phase.

Now consider the following execution for the second phase:

• Process p receives values from itself and from q. As both values are ⊥ and the
process cannot propose⊥ in the next round, it needs to choose a value. According

5.5 Randomized Consensus 241

p

q

r

rc−propose(1)

rc−propose(0)

rc−propose(0)

Round 1

(0)

()

()

(1)

(0)

(0)

(1)

(0)

(0)

Phase 1 Phase 2

Figure 5.4: Role of randomization

to our variant, p deterministically selects value 1 for the first phase of the next
round.

• Process q receives values from itself and from r. As one of the values is 0, q
proposes 0 for the first phase of the next round.

• Process r receives values from itself and from q. As one of the values is 0, r
proposes 0 for the first phase of the next round.

This execution is clearly possible. Note that in this example, no process crashes,
no message is lost, and only some messages are delayed. The processes move to
the next round as soon as they receive a majority of messages. Unfortunately, the
result of this execution is that the input values for the next round are exactly the
same as for this round. The same execution sequence could be repeated indefinitely.
Randomization prevents such infinite executions from occurring as there will be a
round where p also selects 0 as the value for the next round.

Correctness. We argue why the algorithm implements randomized consensus under
the assumption that N > 2f . The following observation helps with the analysis. If
two processes send a PHASE-2 message in the same round and both messages con-
tain a proposal different from ⊥ then the two proposals are equal to some value u.
This holds because every process has received phase-one proposals from a quorum
of more than N/2 processes and set its phase-two value to ⊥ unless all received
phase-one proposals were equal. But in this case, because every two quorums over-
lap, every other process that sends a PHASE-2 message must also have received at
least one PHASE-1 message containing u.

For the validity property, observe that if all processes start a particular round
with the same proposal value v then every correct process receives only PHASE-2
messages containing v, consequently broadcasts a DECIDED message with v in the
same round, and eventually decides v. No process decides a different value.

Note that there is a positive probability that the common coin outputs the same
value to all processes and this value is a uniformly chosen random bit. If all coin
outputs are the same and are equal to the unique value v that may be contained in a
PHASE-2 message then every process sets its proposal to this value before moving

242 5 Consensus

to the next round. Using the same argument as for validity, this observation implies
the termination property.

The integrity property is obvious from the algorithm.
The observation made earlier proves the agreement property for two processes

that broadcast the DECIDED messages during the same round. Note that when some
process broadcasts a DECIDED message with v, then it has received N − f phase-
two messages and more than f of them contained v. Hence, every process obtains
also at least one phase-two message with v among the N − f phase-two messages
that it collects, and no process sets its proposal to the value from the common coin.
Because now all processes move to the next round with proposal v, they eventually
also decide v, according to the argument to show validity.

Performance. Every round of the algorithm involves two communication steps and
O(N2) messages. Since the unique value u that may be contained in a PHASE-2
message is determined before the coin is released by any process and because the
coin value is unpredictable until that time, with probability at least δ/2, every pro-
cess obtains a coin that is equal to u. If this happens, the algorithm terminates.
Hence, the expected number of rounds executed by a correct process is proportional
to 1/δ.

5.5.4 Randomized Fail-Silent Algorithm: Randomized Consensus
with Large Domain

The “Randomized Binary Consensus” algorithm can only decide on one-bit values.
This restriction has been introduced because the processes sometimes set their pro-
posal values to an output of the common coin and the coin outputs one bit. We now
extend this algorithm so that it decides on arbitrary values.

A common coin abstraction can also be initialized with an arbitrary domain, but
there are two issues with this choice. First, if we retain the structure of
Algorithm 5.12–5.13, the coin abstraction must only output values that have been
proposed in order to ensure the validity property; otherwise, the processes might
decide on a random value output by the common coin. The second issue is that all
processes should initialize a particular instance of the common coin with the same
domain; but we cannot use the set of all proposed values for the domain, because
the processes do not know this a priori (otherwise, they would already have reached
consensus).

A solution is implemented in the “Randomized Consensus with Large Domain”
algorithm and shown in Algorithm 5.14. It needs a somewhat relaxed common
coin abstraction compared to Module 5.9, which does not require that all processes
invoke the common coin with the same domain. Instead, every process simply uses
the set of proposed values that it is aware of. This set grows and should eventu-
ally become stable, in the sense that every correct process invokes the common
coin with the same set. This coin abstraction satisfies all properties of Module 5.9
once that every process initializes the coin with the same domain. Otherwise, the
coin abstraction only ensures the termination property. Note that also this coin

5.5 Randomized Consensus 243

Algorithm 5.14: Randomized Consensus with Large Domain (extends Algorithm 5.12–5.13)

Implements:
RandomizedConsensus, instance rc.

Uses:
BestEffortBroadcast, instance beb;
ReliableBroadcast, instance rb;
CommonCoin (multiple instances).

// Except for the event handlers below with the extensions mentioned here, it is
// the same as Algorithm 5.12–5.13.

upon event 〈 rc, Init 〉 do
. . .
values := ∅;

upon event 〈 rc, Propose | v 〉 do
. . .
values := values ∪ {v};
trigger 〈 rb, Broadcast | [PROPOSAL, v] 〉;

upon event 〈 rb, Deliver | p, [PROPOSAL, v] 〉do
values := values ∪ {v};

upon #(val) > N/2 ∧ phase = 2 ∧ decision = ⊥ do
Initialize a new instance coin.round of CommonCoin with domain values;
. . .

abstraction is realized by the “Independent Choice” method, for example, where
every process simply selects a value at random from the domain that it knows.

In Algorithm 5.14, every process additionally disseminates its initial proposal
with reliable broadcast, and every process collects the received proposals in a vari-
able values. A process then initializes the common coin with domain values. This
ensures that the coin always outputs a value that has been proposed. (Note that
values is different from the array val, which contains the received proposal values.)

Correctness. Because Algorithm 5.14 for large domains directly extends the
“Binary Randomized Consensus” algorithm, most of its properties carry over to the
extended algorithm. In particular, the validity, integrity, and agreement properties
hold directly.

For the termination property, observe that eventually, all correct processes have
rb-delivered the same PROPOSAL messages, and therefore, their values variables are
equal. After this time, the common coin satisfies the properties of Module 5.9 and
outputs a matching value with probability at least δ, as in the binary algorithm. Note
that disseminating the proposals by reliable broadcast and not simply by best-effort
broadcast is crucial for termination.

Performance. With an implementation of the reliable broadcast abstraction as
shown in Chap. 3, the cost of the “Randomized Consensus with Large Domain”

244 5 Consensus

algorithm increases to O(N3) messages from the binary case. The number of
required communication steps remains the same. Moreover, the probability of ter-
minating in a given round now depends on the number of different proposals; with
k different proposals, this probability is at least δ/k. When all N processes pro-
pose different values, then the expected number of rounds taken by the algorithm is
proportional to N/δ.

5.6 Byzantine Consensus

This section and the next consider consensus with arbitrary-fault process abstrac-
tions. We first discuss the specification of Byzantine consensus and its implementa-
tion in the fail-noisy-arbitrary model. Our implementation uses the same approach
as the “Leader-Driven Consensus” algorithm from Sect. 5.3, which is structured into
epochs. The next section will present a randomized Byzantine consensus abstraction
and its implementation. This algorithm is an extension of the “Randomized Binary
Consensus” algorithm from Sect. 5.5.

5.6.1 Specifications

A consensus primitive for arbitrary-fault or Byzantine process abstractions offers
very similar guarantees to a consensus primitive for crash-stop processes. It should
allow all processes to reach a common decision despite the presence of faulty
ones, in order for the correct processes to coordinate their actions. There are two
differences, however.

A first difference lies in the behavior of Byzantine processes: the abstraction
cannot require anything from them. Therefore, we restrict all its properties to cor-
rect processes. The second difference is more profound. The validity property of
consensus requires that every value decided by a (correct) process has been pro-
posed by some process. Intuitively, the consensus primitive must not decide a value
that comes out of the blue and that was not proposed by any process. We would
like to maintain this guarantee for Byzantine consensus. But because a faulty and
potentially malicious process can pretend to have proposed arbitrary values, we must
formulate validity in another way. We discuss weak and strong notions of validity
for Byzantine consensus in the following.

The weak variant of the validity property maintains this guarantee only for execu-
tions in which all processes are correct and none of them is Byzantine. It considers
the case that all processes propose the same value and requires that an algorithm
only decides the proposed value in this case. Moreover, the algorithm must decide
a value that was actually proposed and not invented out of thin air. If some pro-
cesses are actually faulty, an arbitrary value may be decided. The weak Byzantine
consensus abstraction implements this validity notion, as specified in Module 5.10.
Its other properties (termination, integrity, and agreement) correspond directly to
the consensus abstraction (Module 5.1).

5.6 Byzantine Consensus 245

Module 5.10: Interface and properties of weak Byzantine consensus
Module:

Name: WeakByzantineConsensus, instance wbc.

Events:

Request: 〈 wbc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 wbc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

WBC1: Termination: Every correct process eventually decides some value.

WBC2: Weak validity: If all processes are correct and propose the same value v,
then no correct process decides a value different from v; furthermore, if all processes
are correct and some process decides v, then v was proposed by some process.

WBC3: Integrity: No correct process decides twice.

WBC4: Agreement: No two correct processes decide differently.

Naturally, an application designer may not be satisfied with the weak validity
notion because situations with one or more Byzantine processes might be common.
The strong variant of validity for Byzantine consensus tolerates arbitrary-fault pro-
cesses and instead requires the decision value to be the value proposed by the correct
processes. If not all of them propose the same value, the decision value must still be
a value proposed by a correct process or may be some special symbol �. The latter
denotes a default value that indicates no valid decision was found (however, it is
permitted that a correct process proposes �). In other words, if all correct processes
propose the same value then Byzantine consensus decides this value, and other-
wise, it may decide some value proposed by a correct process or �. Importantly, the
decision value cannot originate only from the Byzantine processes.

The (strong) Byzantine consensus abstraction shown in Module 5.11 implements
this strong validity property. The only change from weak Byzantine consensus is
strong validity. Note that the strong validity property does not imply the weak one,
because strong validity allows the primitive to decide �, whereas weak validity
requires (only if all processes are correct) that the decided value was proposed
by some (correct) process. Hence, the two Byzantine consensus notions are not
comparable.

One can transform an implementation of weak Byzantine consensus into a
Byzantine consensus primitive with strong validity. Exercise 5.11 at the end of the
chapter explores this question.

Recall how the uniform variant of consensus, with crash-fault process abstrac-
tions, prevented a process from deciding an inconsistent value if the process later
crashed. Note that in our model, a fail-arbitrary process is either correct throughout
its execution or faulty from the start. A faulty process might behave in arbitrary ways

246 5 Consensus

Module 5.11: Interface and properties of (strong) Byzantine consensus
Module:

Name: ByzantineConsensus, instance bc.

Events:

Request: 〈 bc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 bc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

BC1 and BC3–BC4: Same as properties WBC1 and WBC3–WBC4 in weak
Byzantine consensus (Module 5.10).

BC2: Strong validity: If all correct processes propose the same value v, then no cor-
rect process decides a value different from v; otherwise, a correct process may only
decide a value that was proposed by some correct process or the special value �.

and also influence the environment, which should be prepared for this eventuality.
Therefore, one cannot define a useful Byzantine consensus primitive that represents
the guarantee given by uniform consensus.

The next two sections introduce epoch-change and epoch consensus primitives
in the Byzantine model. The abstractions are basically the same as their counter-
parts in the model with crash-stop processes, but their implementations differ for
tolerating fail-arbitrary processes. Once these primitives are implemented in the
fail-arbitrary model, they are used in Sect. 5.6.4 underneath the “Leader-Driven
Consensus” algorithm (presented in Sect. 5.3) to implement a weak Byzantine
consensus abstraction.

In order to satisfy the agreement property in the fail-arbitrary model, our imple-
mentations of (weak and strong) Byzantine consensus use N > 3f processes. This
is optimal.

5.6.2 Byzantine Epoch-Change

Specification. The epoch-change primitive in the Byzantine model has the same
interface and satisfies the same properties as the epoch-change primitive with crash-
stop processes. Its specification is shown in Module 5.12.

Fail-Noisy-Arbitrary Algorithm: Byzantine Leader-Based Epoch-Change. The
“Byzantine Leader-Based Epoch-Change” implementation of Byzantine epoch-
change is shown in Algorithm 5.15. Like Algorithm 5.5, which implements epoch-
change tolerating crash faults, it relies on an eventual leader detector (in the
Byzantine variant). But, it is conceptually simpler than the epoch-change implemen-
tation with crash faults. Algorithm 5.15 outputs at all correct processes a sequence
of timestamps that always increases by 1. The leader of an epoch with timestamp ts
is computed deterministically from ts, using the function leader(·) introduced in

5.6 Byzantine Consensus 247

Module 5.12: Interface and properties of Byzantine epoch-change
Module:

Name: ByzantineEpochChange, instance bec.

Events:

Indication: 〈 bec, StartEpoch | ts, � 〉: Starts the epoch identified by timestamp ts
with leader �.

Properties:

BEC1–BEC3: Same as properties EC1–EC3 of epoch-change (Module 5.3).

Sect. 2.6.5. (The value of leader(ts) is process whose rank is ts, if ts mod N �= 0,
or the process with rank N , if ts mod N = 0.) Hence, the leader rotates in a
round-robin fashion.

The algorithm maintains a timestamp lastts of the most recently started epoch
and a timestamp nextts, which is equal to lastts + 1 during the period when the
process has broadcast a NEWEPOCH message but not yet started the epoch with
timestamp nextts. Whenever the process observes that the leader of the current
epoch is different from the process that it most recently trusted, the process begins
to switch to the next epoch by broadcasting a NEWEPOCH message to all processes.
Alternatively, the process also begins to switch to the next epoch after receiv-
ing NEWEPOCH messages from more than f distinct processes. Once the process
receives more than 2f NEWEPOCH messages (from distinct processes) it starts the
epoch.

A process waits for NEWEPOCH messages from more than f processes before
switching to a new epoch because the Byzantine processes alone must not be able to
trigger an epoch-change without cause. At least one correct process that no longer
trusts the leader of the current epoch is also needed for switching.

Correctness. We show that Algorithm 5.15 implements epoch-change for N > 3f ,
with f Byzantine processes. We begin with the monotonicity and consistency prop-
erties. It is obvious from the algorithm that the timestamps of two successive epochs
started by a correct process increase by 1. Furthermore, the leader of an epoch is
derived deterministically from its timestamp.

To show the eventual leadership property, more precisely, its first condition,
notice that every correct process sends a NEWEPOCH message for starting a new
epoch whenever the leader of the current epoch is not the process that it trusts.
Furthermore, there exists a time when the leader detector has caused every correct
process to trust the same process 	∗ forever. Hence, eventually no correct process
sends any further NEWEPOCH messages. When all NEWEPOCH messages among
correct processes have been delivered and the highest epoch started by a correct pro-
cess has timestamp ts∗, then this process has received more than 2f NEWEPOCH

messages with timestamp ts∗. As more than f of those messages were sent by
correct processes, every correct process has also sent a NEWEPOCH message with

248 5 Consensus

Algorithm 5.15: Byzantine Leader-Based Epoch-Change

Implements:
ByzantineEpochChange, instance bec.

Uses:
AuthPerfectPointToPointLinks, instance al;
ByzantineLeaderDetector, instance bld.

upon event 〈 bec, Init 〉 do
lastts := 0; nextts := 0;
trusted := 0;
newepoch := [⊥]n;

upon event 〈 bld, Trust | p 〉 do
trusted := p;

upon nextts = lastts ∧ trusted �= leader(lastts) do
nextts := lastts + 1;
forall q ∈ Π do

trigger 〈 al, Send | q, [NEWEPOCH, nextts] 〉;

upon event 〈 al, Deliver | p, [NEWEPOCH, ts] 〉 such that ts = lastts + 1 do
newepoch[p] := NEWEPOCH;

upon #(newepoch) > f ∧ nextts = lastts do
nextts := lastts + 1;
forall q ∈ Π do

trigger 〈 al, Send | q, [NEWEPOCH, nextts] 〉;

upon #(newepoch) > 2f ∧ nextts > lastts do
lastts := nextts;
newepoch := [⊥]n;
trigger 〈 bec, StartEpoch | lastts, leader(lastts) 〉;

timestamp ts∗ according to the algorithm. Thus, every correct process eventually
receives at least N − f > 2f NEWEPOCH messages with timestamp ts∗ and starts
the epoch with timestamp ts∗ and no further epoch. The second condition of even-
tual leadership is evident because the leader is computed by the leader(·) function
from the timestamp.

Performance. Algorithm 5.15 incurs one communication step and O(N2) messages
whenever the leader detector selects a new leader at enough correct processes.

5.6.3 Byzantine Epoch Consensus

Specification. An epoch consensus abstraction in the Byzantine model has the
same interface and satisfies almost the same properties as the (uniform) epoch
consensus abstraction for crash-stop processes. Only its agreement property differs
in a minor way as it only refers to decisions of correct processes.

5.6 Byzantine Consensus 249

Module 5.13: Interface and properties of Byzantine epoch consensus
Module:

Name: ByzantineEpochConsensus, instance bep, with timestamp ts and leader
process �.

Events:

Request: 〈 bep, Propose | v 〉: Proposes value v for epoch consensus. Executed only
by the leader �.

Request: 〈 bep, Abort 〉: Aborts epoch consensus.

Indication: 〈 bep, Decide | v 〉: Outputs a decided value v of epoch consensus.

Indication: 〈 bep, Aborted | state 〉: Signals that epoch consensus has completed
the abort and outputs internal state state.

Properties:

BEP1, BEP3–BEP6: Same as properties EP1 and EP3–EP6 of epoch consensus
(Module 5.4).

BEP2: Agreement: No two correct processes ep-decide differently.

As before, the properties require a well-formed sequence of epochs, where a pro-
cess initializes a Byzantine epoch consensus instance only with a higher timestamp
than that of all instances that it initialized previously, and the process must use
the state returned by the most recently aborted instance to initialize the next such
instance. The specification is given in Module 5.13.

For describing a Byzantine epoch-change algorithm later, we use an abstraction
called conditional collect, which is defined and implemented next.

Conditional Collect. The purpose of a primitive for conditional collect (CC), spec-
ified in Module 5.14, is to collect information in the system, in the form of messages
from all processes, in a consistent way. The abstraction is invoked at every process
by an event 〈 Input | m 〉 with an input message m; it outputs a vector M with n
entries indexed by processes, through an event 〈 Collected | M 〉 at every process,
such that M [p] is either equal to UNDEFINED or corresponds to the input message
of process p.

A conditional collect primitive is parameterized by an output predicate C(·), de-
fined on an N -vector of messages, and it should only output a collected vector that
satisfies the predicate. The output predicate must be specified at the time when the
primitive is initialized, in terms of an efficiently computable Boolean function on a
vector of messages. The output predicate is fixed and cannot be changed afterward
(for instance, the function must not access variables that may concurrently be up-
dated). Furthermore, every correct process must specify the same output predicate.

A conditional collect primitive should collect the same vector of messages at
every correct process such that this vector satisfies the output predicate. Naturally,

250 5 Consensus

Module 5.14: Interface and properties of conditional collect
Module:

Name: ConditionalCollect, instance cc, with leader � and output predicate C.

Events:

Request: 〈 cc, Input | m 〉: Inputs a message m.

Indication: 〈 cc, Collected | M 〉: Outputs a vector M of collected messages.

Properties:

CC1: Consistency: If the leader is correct, then every correct process collects the
same M , and this M contains at least N − f messages different from UNDEFINED.

CC2: Integrity: If some correct process collects M with M [p] �= UNDEFINED for
some process p and p is correct, then p has input message M [p].

CC3: Termination: If all correct processes input compliant messages and the leader
is correct, then every correct process eventually collects some M such that C(M) =
TRUE.

the correct processes must all input messages that will satisfy the predicate; other-
wise, this goal cannot be achieved. More precisely, we say that the correct processes
input compliant messages when each correct process p inputs a message mp and
any N -vector M with M [p] = mp satisfies C(M).

Since this goal may be difficult to reach in general, the primitive additionally
identifies one special process 	, called the leader, and is required to output the same
vector M that satisfies C(M) at all correct processes only when the leader is cor-
rect (this is expressed by the consistency and termination properties). Regardless of
whether the leader is correct, the integrity property demands that the primitive must
not modify the input messages of the correct processes in transit. Note that with a
faulty leader, some inputs may be omitted in the output vector of a correct process,
and the outputs of two correct processes may differ.

The following fail-arbitrary algorithm, called “Signed Conditional Collect,”
implements conditional collect with Byzantine processes. It uses two communica-
tion rounds and assumes a digital signature scheme. In the first round, every process
signs its input message and sends it together with the signature to the leader over a
point-to-point link. The leader collects enough messages (at least N − f) such that
they satisfy the output predicate. In the second round, the leader sends the collected
and signed messages to all processes, using authenticated point-to-point links. After
receiving such a vector M accompanied by a vector Σ of signatures and before out-
putting M , a process verifies that for every entry M [p] �= UNDEFINED, the value
Σ[p] represents a valid signature from process p.

The details are shown in Algorithm 5.16, where the function #(M) introduced
before also denotes the number of entries in a vector M different from UNDEFINED.

5.6 Byzantine Consensus 251

Algorithm 5.16: Signed Conditional Collect

Implements:
ConditionalCollect, instance cc, with leader � and output predicate C.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 cc, Init 〉 do
messages := [UNDEFINED]N ; Σ := [⊥]N ;
collected := FALSE;

upon event 〈 cc, Input | m 〉 do
σ := sign(self, cc‖self‖INPUT‖m);
trigger 〈 al, Send | �, [SEND, m, σ] 〉;

upon event 〈 al, Deliver | p, [SEND, m, σ] 〉 do // only leader �
if verifysig(p, cc‖p‖INPUT‖m, σ) then

messages[p] := m; Σ[p] := σ;

upon #(messages) ≥ N − f ∧ C(messages) do // only leader �
forall q ∈ Π do

trigger 〈 al, Send | q, [COLLECTED, messages, Σ] 〉;
messages := [UNDEFINED]N ; Σ := [⊥]N ;

upon event 〈 al, Deliver | �, [COLLECTED, M, Σ] 〉 do
if collected = FALSE ∧ #(M) ≥ N − f ∧ C(M) ∧(

forall p ∈ Π such that M [p] �= UNDEFINED, it holds
verifysig(p, cc‖p‖INPUT‖M [p],Σ[p])

)
then

collected := TRUE;
trigger 〈 cc, Collected | M 〉;

An alternative algorithm for conditional collect without digital signatures is the
subject of an exercise (at the end of the chapter).

Correctness. Assuming that N > 3f , the “Signed Conditional Collect” algorithm
implements the conditional collect abstraction. Based on our assumption that the
correct processes input compliant messages, the consistency and termination prop-
erties follow easily because they assume that the leader is correct. The integrity
property holds because every process signs its input and the algorithm never outputs
a vector that contains a message with an invalid signature.

Performance. The algorithm incurs two communication steps. In every step, the
leader either receives a message from every process or sends a message to every
process. In total, there are O(N) messages.

Fail-Arbitrary Algorithm: Byzantine Read/Write Epoch Consensus. We now
present algorithm “Byzantine Read/Write Epoch Consensus,” which implements an
instance bep of Byzantine epoch consensus with timestamp ets and leader process 	.
As with the “Read/Write Epoch Consensus” algorithm in the fail-noisy model, there
may exist multiple instances with different timestamps in the system. But when used

252 5 Consensus

Algorithm 5.17: Byzantine Read/Write Epoch Consensus (part 1, read phase)

Implements:
ByzantineEpochConsensus, instance bep, with timestamp ets and leader process �.

Uses:
AuthPerfectPointToPointLinks, instance al;
ConditionalCollect, instance cc, with leader � and predicate sound(·).

upon event 〈 bep, Init | epochstate 〉 do
(valts, val, writeset) := epochstate;
written := [⊥]N ; accepted := [⊥]N ;

upon event 〈 bep, Propose | v 〉 do // only leader �
if val = ⊥ then val := v;
forall q ∈ Π do

trigger 〈 al, Send | q, [READ] 〉;

upon event 〈 al, Deliver | p, [READ] 〉 such that p = � do
trigger 〈 cc, Input | [STATE, valts, val, writeset] 〉;

upon event 〈 cc, Collected | states 〉 do
// states[p] = [STATE, ts, v, ws] or states[p] = UNDEFINED

tmpval := ⊥;
if exists ts ≥ 0, v �= ⊥ from S such that binds(ts, v, states) then

tmpval := v;
else if exists v �= ⊥ such that unbound(states) ∧ states[�] = [STATE, ·, v, ·] then

tmpval := v;
if tmpval �= ⊥ then

if exists ts such that (ts, tmpval) ∈ writeset then
writeset := writeset \ {(ts, tmpval)};

writeset := writeset ∪ {(ets, tmpval)};
forall q ∈ Π do

trigger 〈 al, Send | q, [WRITE, tmpval] 〉;

to build our (Byzantine) consensus algorithm, every process executes a well-formed
sequence of Byzantine epoch consensus instances and invokes at most one instance
at a time. We also assume that ets is contained implicitly in every message sent
by the algorithm over the point-to-point link communication primitives. As every
correct process invokes a sequence of Byzantine epoch consensus instances with
unique timestamps, we sometimes refer to the “epoch” with a timestamp ets instead
of the instance with timestamp ets.

At a high level, Algorithm 5.17–5.18 consists of a read phase followed by a
write phase, like the basic algorithm that works for crash-stop processes. We say
that a process writes a value v when it sends a WRITE message to all processes
containing v during the write phase.

According to the specification of Byzantine epoch consensus, the algorithm is
initialized with a value state, output by the Byzantine epoch consensus instance
that the process ran previously. This value determines its local state and contains

5.6 Byzantine Consensus 253

Algorithm 5.18: Byzantine Read/Write Epoch Consensus (part 2, write phase)

upon event 〈 al, Deliver | p, [WRITE, v] 〉 do
written[p] := v;

upon exists v such that #
({p |written[p] = v}) > N+f

2
do

(valts, val) := (ets, v);
written := [⊥]N ;
forall q ∈ Π do

trigger 〈 al, Send | q, [ACCEPT, val] 〉

upon event 〈 al, Deliver | p, [ACCEPT, v] 〉 do
accepted[p] := v;

upon exists v such that #
({p | accepted[p] = v}) > N+f

2
do

accepted := [⊥]N ;
trigger 〈 bep, Decide | v 〉;

upon event 〈 bep, Abort 〉 do
trigger 〈 bep, Aborted | (valts, val, writeset) 〉;
halt; // stop operating when aborted

(1) a timestamp/value pair (valts, val) with the value that the process received most
recently in a Byzantine quorum of WRITE messages, during the epoch with time-
stamp valts, and (2) a set writeset of timestamp/value pairs with one entry for every
value that this process has ever written (where the timestamp denotes the most recent
epoch in which the value was written).

The read phase obtains the states from all processes to determine whether there
exists a value that may already have been bep-decided. In the case of crash faults, it
was sufficient that the leader alone computed this value and wrote it; with Byzantine
processes the leader might write a wrong value. Thus, every process must repeat the
computation of the leader and write a value, in order to validate the choice of the
leader.

The algorithm starts by the leader sending a READ message to all processes,
which triggers every process to invoke a conditional collect primitive. Every pro-
cess inputs a message [STATE, valts, val, writeset] containing its state. The leader in
conditional collect is the leader 	 of the epoch.

The conditional collect primitive determines whether there exists a value (from
an earlier epoch) that must be written during the write phase; if such a value exists,
the read phase must identify it or conclude that no such value exists. To this end, we
introduce a predicate sound(S) on an N -vector S of STATE messages, to be used in
the conditional collect primitive. An entry of S may be defined and contain a STATE

message or may be undefined and contain UNDEFINED. In every defined entry, there
is a timestamp ts, a value v, and a set of timestamp/value pairs, representing the
writeset of the originating process. When process 	 is correct, at least N − f entries
in the collected S are defined; otherwise, more than f entries may be undefined.

254 5 Consensus

The predicate sound(·) is formulated in terms of two conditions. Together they
determine whether the STATE messages in S indicate that a certain timestamp/value
pair (ts, v) occurs often enough among the defined entries of S so that a process
may already have bep-decided v in an earlier epoch. If yes, value v must be written.

The first condition collects evidence for such a value, which consists of a Byzan-
tine quorum of defined entries in S. A suitable timestamp/value pair is one with the
highest timestamp among some Byzantine quorum of defined entries in S. If such a
pair exists then its value is a candidate for being written again in this epoch consen-
sus instance. (However, it could also be a value from a forged entry of a Byzantine
process; the second condition will filter out such values.)

Formally, we use the function #(S) to denote the number of defined entries
in S and introduce a predicate quorumhighest(ts, v, S), which returns TRUE when-
ever the timestamp/value pair (ts, v) appears in an entry of S and contains the
largest timestamp among some Byzantine quorum of entries in S. In other words,
quorumhighest(ts, v, S) is TRUE whenever S[p] = [STATE, ts, v, ws] for some p
and some ws and

#
({

p |S[p] = [STATE, ts′, v′, ws′]

∧ (
ts′ < ts ∨ (ts′, v′) = (ts, v)

)})
>

N + f

2
,

and FALSE otherwise.
The second condition determines whether a value v occurs in some writeset of an

entry in S that originates from a correct process; because up to f entries in S may
be from faulty processes, these must be filtered out. When the writeset of more than
f processes contains (ts, v) with timestamp ts or a higher timestamp than ts, then
v is certified and some correct process has written v in epoch ts or later. To capture
this, we define a predicate certifiedvalue(ts, v, S) to be TRUE whenever

#
({

p |S[p] = [STATE, ·, ·, ws′]

∧ there exists (ts′, v′) ∈ ws′ such that ts′ ≥ ts ∧ v′ = v
})

> f,

and FALSE otherwise. As will become clear, a process never writes ⊥; therefore, the
value ⊥ is never certified for any timestamp.

For a timestamp/value pair (ts, s) occuring in S, we say that S binds ts to v
whenever #(S) ≥ N − f and

quorumhighest(ts, v, S) = TRUE ∧ certifiedvalue(ts, v, S) = TRUE.

We abbreviate this by writing binds(ts, v, S).
When #(S) ≥ N − f and the timestamps from a Byzantine quorum of entries

in S are equal to 0 (the initial timestamp value), then we say that S is unbound and
abbreviate this by writing unbound(S).

5.6 Byzantine Consensus 255

(0,⊥)

(0,⊥)

(0,⊥)

(0,⊥)

p

q

r

s

bep−propose(?)

cc−input(1,x,ws.p)

⊥

⊥

cc−input(0, ,ws.s)

bep−abort

(1,x) (1,x)

Epoch 6

cc−input(0, ,ws.r) cc−collected(S.r)

cc−collected(S.s)

[WRITE,x]

[WRITE,w]
bep−abort

bep−abort

Figure 5.5: Sample execution of a Byzantine epoch consensus instance, with
timestamp 6 and Byzantine leader q

Finally, the predicate sound(S) is TRUE if and only if there exists a time-
stamp/value pair (ts, v) in S such that S binds ts to v or S is unbound, that is,

sound(S) ≡ (
there exists (ts, v) such that binds(ts, v, S)

) ∨ unbound(S).

Every correct process initializes the conditional collect primitive with this predi-
cate sound(·).

As we will see, the inputs of the correct processes are compliant when they all
input a STATE message to the conditional collect primitive. When the leader is cor-
rect, conditional collect outputs a vector S that satisfies sound(S) = TRUE. If S
binds ts to some v �= ⊥ then the process must write v; otherwise, S is unbound and
the process writes the value from the leader 	, which it finds in S[]. The process
sends a WRITE message to all processes with the value. In case sound(S) = FALSE,
the leader must be faulty and the process halts.

When a process has received more than (N + f)/2 WRITE messages from dis-
tinct processes containing the same value v, it sets its state to (ets, v) and broadcasts
an ACCEPT message with v over the authenticated point-to-point links. When a pro-
cess has received more than (N + f)/2 ACCEPT messages from distinct processes
containing the same value v, it bep-decides v.

A sample execution of the algorithm for some epoch 6 with a Byzantine leader
process q is shown in Fig. 5.5. One instance of Byzantine epoch consensus is
invoked with timestamp 6 and leader process q. The initial states of the correct
processes are the timestamp/value pair (1, x) and writeset wsp = {(1, x)} at p, the
pair (0,⊥) and wsr = {(1, x)} at r, and the pair (0,⊥) and wss = ∅ at s. (This
state may result from an instance of Byzantine epoch consensus, which executed
previously in a well-formed sequence of epochs and has been aborted.)

The leader q initially broadcasts a READ message, to which all processes respond
by invoking the conditional collect abstraction with their state. Note that, we can-
not tell if the Byzantine leader has bep-proposed any value or not. However, we do

256 5 Consensus

(0,⊥)

(0,⊥)

p

q

r

s

bep−abort

(1,x)

Epoch 7

(7,y)

⊥

S

S

bep−decide(y)

(7,y)

bep−abort

bep−abort

[ACCEPT,y]
(7,y)

Scc−input(1,x,ws.p)

cc−input(0,w,ws.q)

cc−input(0,y,ws.r)

[WRITE,y]

bep−propose(y)

cc−input(0, ,ws.s’)

Figure 5.6: Sample execution of a Byzantine epoch consensus instance, with
timestamp 7 and leader r

observe that leader q influences the execution of conditional collect such that pro-
cess p never collects any output and processes r and q collect the respective output
states

Sr = [[1, x, wsp], [0, x, {(1, x), (2, w)}], [0,⊥, wsr], UNDEFINED]
Ss = [UNDEFINED, [0, w, ∅], [0,⊥, wsr], [0,⊥, wss]].

Note that Sr �= Ss is permitted because the leader is Byzantine, and further-
more, the discrepancy Sr[q] �= Ss[q] is also allowed because it concerns the
output of the Byzantine process q. Process r finds that (1, x) is the highest time-
stamp in a Byzantine quorum of entries in Sr and that x is certified, therefore
binds(1, x, Sr) = TRUE. However, process s determines that unbound(Ss) = TRUE

and writes value w, taken from Ss[q]. No process receives enough WRITE mes-
sages to proceed with the algorithm. Subsequently, all correct processes bep-abort
the Byzantine epoch consensus instance. Their states remain almost the same as at
the start of the execution: the timestamp/value pairs are unchanged, and only the
writeset of s changes to ws′s = {(6, w)}.

Figure 5.6 depicts a second execution of Byzantine epoch consensus, now with
timestamp 7 and correct leader r. All correct processes start with the state they
had after the execution of epoch 6 from Fig. 5.5. Note that, the leader r now
bep-proposes y, broadcasts a READ message, and acts as the leader in the con-
ditional collect primitive. Because of this, all correct processes collect the same
output vector S (as guaranteed by the consistency and termination properties of
Module 5.14).

Assuming that the Byzantine process q inputs a timestamp/value pair of (0, w)
and an empty writeset to the conditional collect, its output vector may be

S = [UNDEFINED, [0, w, ∅], [0, y, wsr], [0,⊥, ws′s]].

5.6 Byzantine Consensus 257

This vector is unbound, because it only contains timestamp 0 in the defined entries.
Therefore, the correct processes write the value y from leader r in epoch 7. Pro-
cesses p, r, and s receive enough WRITE messages to change their states to (7, y)
and to broadcast an ACCEPT message. These messages cause process p to bep-
decide x. Before any other message arrives, all correct processes bep-abort the
Byzantine epoch consensus instance. Note that, the state of all correct processes
is now (7, y) and all their writesets include (7, y).

Correctness. Algorithm 5.17–5.18 implements Byzantine epoch consensus with
timestamp ets and leader 	 with f Byzantine faults for N > 3f .

We first demonstrate the lock-in property of Byzantine epoch consensus. Sup-
pose some correct process has bep-decided v in an epoch consensus instance with
timestamp ts′ < ts. The process only bep-decided after collecting ACCEPT mes-
sages containing v from more than (N + f)/2 processes; among the processes that
sent those messages, there exists a set A of more than

N + f

2
− f > f

correct processes. According to the algorithm, they all set their variables val to v
and valts to ts′.

The members of A only sent an ACCEPT message after collecting WRITE mes-
sages containing v from more than (N + f)/2 processes; among these processes,
there exists a set W of more than

N + f

2
− f > f

correct processes. According to the algorithm, they all added (ts′, v) to their
variable writeset.

Consider the next instance of Byzantine epoch consensus with timestamp ts∗ >
ets, in which any correct process p collects states from conditional collect such that
binds(ts∗, v∗, states) for some v∗ �= ⊥. We claim that v∗ = v.

To see this, observe that no correct process has sent a WRITE message in any
epoch between ts′ and ts∗. This means that no correct process has changed its
valts, val, and writeset variables (even if faulty processed did send WRITE mes-
sages, there would not have been enough of them). By the assumption about
how a correct process passes the state from one epoch to the next, every process
in A starts epoch ts∗ with its state containing (valts, val) = (ts′, v). Further-
more, every process in W starts epoch ts∗ with a variable writeset that contains
(ts′, v). The integrity property of conditional collect ensures that these state val-
ues are not modified in transit by the primitive. Hence, the vector states output
to p satisfies that quorumhighest(ts′, v, states) = TRUE because the state from
at least one member of A is contained in every Byzantine quorum. Furthermore,
certifiedvalue(ts′, v, states) = TRUE because the writesets of all processes in W
include (ts′, v).

258 5 Consensus

Consequently, process p writes v, and any other correct process that writes
also writes v. This proves the claim and implies that a correct process can only
bep-decide v in epoch ts∗. Furthermore, the set of correct processes that set their
variable val to v and variable valts to a value at least as large as ts′ when they abort
epoch ts∗ is now at least A. Using the same reasoning, the set of correct processes
whose writeset variable contains (ts′, v) is also at least A. Continuing this argument
until epoch ts establishes the lock-in property.

To show the validity property, assume that a correct process bep-decides v. It is
obvious from the algorithm that a correct process only bep-decides for the value v
received in an ACCEPT message from a Byzantine quorum of processes and that any
correct process only sends an ACCEPT message with v after receiving v in a WRITE

message from a Byzantine quorum of processes. Moreover, any correct process only
sends a WRITE message with v in two cases: either (1) after collecting a vector
states that binds ts to v or (2) after collecting states that is unbound and taking v
from states[], which was input by the leader 	. In case (2), the validity property
is satisfied. In case (1), we continue by applying the same argument inductively,
backward in the well-formed sequence of epochs, until we reach an epoch where
states is unbound; in that epoch, the reasoning for case (2) applies. This shows that
v was bep-proposed by the leader in some epoch with timestamp ts′ ≤ ts.

For the agreement property, observe how any correct process that bep-decides v
must have received more than (N + f)/2 ACCEPT messages with v. As a correct
process only sends one ACCEPT message in an epoch and as N > 3f , it is not
possible that another correct process receives more than (N + f)/2 ACCEPT mes-
sages with a value different from v. The agreement property follows. The integrity
property is easy to see from this and directly from the algorithm.

To show the termination property, we demonstrate that all correct processes input
compliant STATE messages to the conditional collect abstraction, and therefore
sound(S) = TRUE when at least N − f entries of S are those STATE messages.
To see this, suppose the state of a correct process contains a pair (ts, v); the pair is
either (0,⊥) or was assigned after receiving a Byzantine quorum of WRITE mes-
sages in epoch ts. In the latter case, no output vector S containing this pair could be
unbound. As

N + f

2
> 2f,

it follows from the algorithm that v is also in the writeset of more than f correct pro-
cesses. Consider now the pair (ts′, v′) with the largest timestamp ts′ ≥ ts held by
a correct process. This pair has the maximum timestamp in the state of a Byzantine
quorum of correct processes. In addition, the writesets of more than f correct pro-
cesses contain (ts′, v′). Hence, conditional collect with a correct leader may obtain
a vector S such that binds(ts′, v′S). Alternatively, if a Byzantine quorum of cor-
rect processes input a state with timestamp 0, the algorithm can find an unbound S.
Hence, conditional collect eventually outputs S such that sound(S) holds.

If process 	 is correct then every correct process collects the same vector with
at least N − f entries different from UNDEFINED, according to the consistency
property of conditional collect. Hence, every correct process eventually assigns

5.6 Byzantine Consensus 259

tmpval �= ⊥ and sends a WRITE message containing some value tmpval. More
precisely, all

N − f >
N + f

2
correct processes write the same tmpval. Hence, every correct process eventually
sends an ACCEPT message to all processes with tmpval and every correct process
eventually bep-decides, because no aborts occur.

Finally, the abort behavior property is satisfied because the algorithm returns an
event 〈 Aborted | state 〉 immediately and only if it has been aborted.

Performance. Algorithm 5.17–5.18 takes three communication steps plus the steps
of the underlying conditional collect implementation. With the “Signed Conditional
Collect” algorithm, the algorithm for Byzantine epoch consensus requires five com-
munication steps. As all processes send messages to each other, there are O(N2)
messages in total.

5.6.4 Fail-Noisy-Arbitrary Algorithm: Byzantine Leader-Driven Consensus

Given implementations of the Byzantine epoch-change and Byzantine epoch con-
sensus abstractions, the “Leader-Driven Consensus” algorithm presented in the
fail-noisy model provides weak Byzantine consensus. In particular, the “Byzan-
tine Leader-Driven Consensus” algorithm in the fail-noisy-arbitrary model, shown
in Algorithm 5.19, differs from its counterpart with crash-stop processes only by
using underlying abstractions with Byzantine processes.

Recall that the Byzantine epoch-change primitive uses a Byzantine eventual
leader-detection abstraction. According to its properties, Algorithm 5.19 for Byzan-
tine consensus must periodically give feedback when the elected leader does not
perform well. A correct process does that whenever the leader of an epoch takes
too long before deciding. Specifically, whenever a new epoch begins and a new

Algorithm 5.19: Byzantine Leader-Driven Consensus

Implements:
WeakByzantineConsensus, instance wbc.

Uses:
ByzantineEpochChange, instance bec;
ByzantineEpochConsensus (multiple instances);
ByzantineLeaderDetector, instance bld.

// The algorithm is the same as the “Leader-Driven Consensus” in Algorithm 5.7, with
// the handler below added and these differences:
// – it uses the Byzantine epoch-change and Byzantine epoch consensus primitives;
// – whenever a new epoch instance is initialized, it increases T and executes starttimer(T).

upon event 〈 Timeout 〉 do
trigger 〈 bld, Complain | � 〉;

260 5 Consensus

p

q

r

s
wbc−propose(z)

wbc−propose(y)

wbc−propose(x)

bec−startepoch(7,r)

bec−startepoch(6,q) bec−startepoch(8,s)

bec−startepoch(1,p)

wbc−decide(y)

wbc−decide(y)

(1,⊥)

(1,⊥) (1,⊥)

(1,⊥)

(1,x) (1,x)

(7,y)

(7,y)

bep(1,p) bep(6,q) bep(7,r) bep(8,s)

wbc−decide(y)

(7,y)

Figure 5.7: Sample execution of Byzantine leader-driven consensus

instance bep.ets of epoch consensus with timestamp ets is initialized, every pro-
cess also starts a timeout service with delay T , set to an estimate of how long the
epoch should take before deciding. The delay is increased every time before the
timeout is restarted. If the timeout expires before the epoch instance bep-decides
then the process complains about the current leader 	 and triggers an event 〈 bld,
Complain | 	 〉.

When the “Byzantine Leader-Based Epoch-Change” algorithm and the “Byzan-
tine Read/Write Epoch Consensus” algorithm (Algorithms 5.15 and 5.17–5.18) are
called from Algorithm 5.19, we can simplify them in two ways.

First, the READ message may be omitted. As the leader of the epoch sends
a READ message immediately after obtaining enough NEWEPOCH messages and
starting the epoch consensus algorithm in the new epoch, every process simply
invokes conditional collect with its STATE message, upon initializing the epoch
consensus instance.

Second, in the first epoch consensus instance invoked by Algorithm 5.19, the
conditional collect primitive for reading the state of all processes may be skipped
because all processes, apart from the leader, store the default state initially. Only the
initial leader needs to disseminate its state using the authenticated perfect links.

An execution of Algorithm 5.19 with Algorithm 5.17–5.18 implementing Byzan-
tine epoch consensus is shown in Fig. 5.7. The Byzantine epoch-change primitive
(bec) starts four epochs, denoted by bep(1, p) for the epoch with timestamp 1 and
leader p, by bep(6, q) for epoch 6 with leader q, and so on. Process q is Byzan-
tine. In epoch 1, the leader process p manages to write its proposal value x, sends
an ACCEPT message, and changes its state to (1, x), but the epoch aborts before
any other process sends an ACCEPT message. Epoch 6 with the Byzantine leader q
subsequently proceeds exactly as shown in Fig. 5.5; then, epoch 7 with leader r
executes as illustrated in Fig. 5.6. During this epoch, process p bep-decides y and

5.7 Byzantine Randomized Consensus 261

consequently wbc-decides y. In epoch 8, the leader process s writes value y again;
the remaining correct processes bep-decide and wbc-decide y as well.

Correctness. As the primitives underlying the “Byzantine Leader-Driven Consen-
sus” algorithm are the same as in the fail-noisy model and as the algorithm is
the same as “Leader-Driven Consensus,” its correctness follows from the same
reasoning as applied in the fail-noisy model.

Performance. The “Byzantine Leader-Driven Consensus” algorithm does not use
a communication primitive directly. Its performance is, therefore, given by the
implementations of the underlying Byzantine epoch-change and Byzantine epoch
consensus primitives.

5.7 Byzantine Randomized Consensus

The preceding section introduced consensus with processes subject to Byzantine
faults and presented an implementation that needs an eventual leader detector prim-
itive to guarantee termination. Analogous to consensus with crash-stop processes,
one can also resort to randomization and consider randomization in the fail-arbitrary
model. A primitive for Byzantine randomized consensus and its implementation are
the subject of this section.

5.7.1 Specification

The Byzantine randomized consensus abstraction differs from the (strong) Byzan-
tine consensus primitive (Module 5.11) only in the termination property. In all other
respects, the two notions are the same. The primitive inherits its probabilistic termi-
nation property directly from randomized consensus (Module 5.8) and must decide
with probability 1. The abstraction is shown in Module 5.15.

5.7.2 Randomized Fail-Arbitrary Algorithm: Byzantine Randomized
Binary Consensus

We present Algorithm 5.20–5.21, which implements Byzantine randomized con-
sensus on one-bit values and works under the assumption N > 5f . The algo-
rithm is called “Byzantine Randomized Binary Consensus” and is very similar to
Algorithm 5.12–5.13 in the randomized fail-silent model. In particular, it also pro-
ceeds in global rounds and every round consists of two phases. In phase one, the
processes exchange their proposals. In phase two, they determine if enough pro-
cesses proposed the same value. If one process observes a large number (more than
2f) of phase-two messages with the same proposal then this process may decide.
If a process observes enough phase-two messages with the same value v to be sure
that v is the proposal of a correct process (the value occurs more than than f times)
then the process adopts v as its own proposal. All processes then access a common

262 5 Consensus

Module 5.15: Interface and properties of Byzantine randomized consensus
Module:

Name: ByzantineRandomizedConsensus, instance rc.

Events:

Request: 〈 brc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 brc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

BRC1: Same as property RC1 in randomized consensus (Module 5.8).

BRC2–BRC4: Same as properties BC2–BC4 in (strong) Byzantine consensus
(Module 5.11).

coin and if they have not yet decided or adopted a value in this round, they use the
output from the coin as their proposal for the next round.

To simplify the description, the processes continue to participate in the algo-
rithm after deciding, with their proposal set to the decided value. This helps the
other processes decide. One could alternatively make every correct process aban-
don the rounds, by adopting the method implemented in the fail-silent variant of the
algorithm (Algorithm 5.12–5.13).

In the fail-arbitrary model, Byzantine quorums of more than (N + f)/2 pro-
cesses replace the majority quorums, and the phase-two votes are disseminated with
a Byzantine consistent broadcast primitive instead of simple best-effort broadcast.

Note that the common coin abstraction of Module 5.14 also exists in the fail-
arbitrary model, considering that it only states conditions on the output of the
correct processes. The “Independent Choice” method to implement a common coin,
whereby every process simply selects a random value on its own and indepen-
dently from the others, also works in the Byzantine model. It implements a coin
that matches with probability at least 2−N+f .

The algorithm achieves the strong validity property of Byzantine consensus, as
is easy to see because the domain is binary. Adapting this fail-arbitrary algorithm
to larger domains (while retaining strong validity) requires more work than for the
large-domain extension in the fail-silent model from Algorithm 5.14.

Correctness. We argue why the algorithm implements Byzantine randomized con-
sensus under the assumption that N > 5f . The following two observations help
with the analysis.

First, if two correct processes broadcast a PHASE-2 message in the same round
and both messages contain a proposal different from ⊥ then the two proposals are
equal to some value u, which we call the majority value of the round. This holds
because every correct process p has received phase-one proposals from N − f pro-
cesses, which also form a Byzantine quorum of more than (N + f)/2 processes.
Then p sets its phase-two value to ⊥, unless a Byzantine quorum among the received

5.7 Byzantine Randomized Consensus 263

Algorithm 5.20: Byzantine Randomized Binary Consensus (phase 1)

Implements:
ByzantineRandomizedConsensus, instance brc, with domain {0, 1}.

Uses:
AuthPerfectPointToPointLinks, instance al;
ByzantineConsistentBroadcast (multiple instances);
CommonCoin (multiple instances).

upon event 〈 brc, Init 〉 do
round := 0; phase := 0;
proposal := ⊥;
decision := ⊥;
val := [⊥]N ;

upon event 〈 brc, Propose | v 〉 do
proposal := v;
round := 1; phase := 1;
forall q ∈ Π do

trigger 〈 al, Send | q, [PHASE-1, round, proposal] 〉;

upon event 〈 al, Deliver | p, [PHASE-1, r, v] 〉 such that phase = 1 ∧ r = round do
val[p] := v;

upon #(val) ≥ N − f ∧ phase = 1 do
if exists v �= ⊥ such that #

({p ∈ Π | val[p] = v}) > N+f
2

then
proposal := v;

else
proposal := ⊥;

val := [⊥]N ;
phase := 2;
forall p ∈ Π do

Initialize a new instance bcb.round.p of ByzantineConsistentBroadcast;
trigger 〈 bcb.round.self , Broadcast | [PHASE-2, round, proposal] 〉;

phase-one proposals were equal to the same value. Recall that if p obtains a Byzan-
tine quorum of messages from distinct processes then every other Byzantine quorum
of such messages includes at least one of those messages that was sent by a cor-
rect process in the system. Hence, every Byzantine quorum of phase-one messages
contains the majority value u at least once.

Second, if some correct process bcb-delivers more than 2f PHASE-2 broadcasts
in some round r that contain a value v then every correct process bcb-delivers more
than f PHASE-2 broadcasts in round r that contain v. This follows from the con-
sistency property of the underlying Byzantine consistent broadcast abstraction and
because there are only N such broadcast instances in every round. Note that v must
be the majority value of the round. Consequently, if some correct process decides v
in round r then every correct process sets its proposal value to v at the end of
round r.

264 5 Consensus

Algorithm 5.21: Byzantine Randomized Binary Consensus (phase 2)

upon event 〈 bcb.round.p, Deliver | p, [PHASE-2, r, v] 〉 such that
phase = 2 ∧ r = round do

val[p] := v;

upon #(val) ≥ N − f ∧ phase = 2 do
phase := 0;
Initialize a new instance coin.round of CommonCoin with domain {0, 1};
trigger 〈 coin.round, Release 〉;

upon event 〈 coin.round, Output | c 〉 do
if exists v �= ⊥ such that #

({p ∈ Π | val[p] = v}) > 2f then
if decision = ⊥ then

decision := v;
trigger 〈 brc, Decide | decision 〉;

proposal := v;
else if exists w �= ⊥ such that #

({p ∈ Π | val[p] = w}) > f then
proposal := w;

else
proposal := c;

val := [⊥]N ;
round := round + 1; phase := 1;
forall q ∈ Π do

trigger 〈 al, Send | q, [PHASE-1, round, proposal] 〉;

To show the validity property, note that when all correct processes start a round
with the same proposal v, then all correct processes obtain at least N − 2f entries
in val equal to v in phase one (the Byzantine processes might broadcast a different
proposal). As

N − 2f >
N + f

2
under the assumption that N > 5f , all correct processes also broadcast a PHASE-
2 message containing v. Every correct process, therefore, obtains at least N − 2f
entries in val equal to v in phase two (again subtracting the values from Byzantine
processes). As also N − 2f > 2f under the assumption of the algorithm, every
correct process decides v in this case and also ends the round with its proposal equal
to v. For the case when not all correct processes propose the same value initially,
then the algorithm may obviously decide any value, since the domain is binary.

The integrity property holds because a process maintains the variable decision as
a guard to check if it has already decided previously.

For the agreement property, recall the two observations given earlier. Hence, if
some correct process decides the majority value v in round r then correct processes
may only decide v in round r. If not all processes decide then v remains the only pos-
sible decision value because all correct processes enter round r + 1 with a proposal
value of v, as shown under the validity property.

5.7 Byzantine Randomized Consensus 265

Every correct process advances through the rounds of the algorithm because
it waits for more than (N + f)/2 PHASE-1 messages and for N − f PHASE-2
broadcasts, but all N − f correct processes eventually broadcast such messages.

A correct process decides as soon as it receives the majority value of the round
from more than 2f processes. At the end of every round, the correct processes either
set their proposal to the majority value or to the common coin output. At the latest
when the coin values at all correct processes match, the algorithm is guaranteed to
decide in the next round and therefore satisfies termination.

Performance. Every round of the algorithm involves one communication step with
O(N2) messages plus N parallel instances of Byzantine consistent broadcast, which
takes at least two communication steps. Depending on the implementation of the
broadcast primitive according to Sect. 3.10, this adds two communication steps and
O(N3) messages or three communication steps with only O(N2) messages. On
top of this comes the cost of implementing the common coin abstraction. As in
Algorithm 5.12–5.13, the expected number of rounds that a correct process executes
before terminating is proportional to 1/δ.

266 5 Consensus

5.8 Exercises

Exercise 5.1: What would happen in our “Flooding Consensus” algorithm if it
accepted a beb-delivered DECIDED message from process p even if p �∈ correct?

Exercise 5.2: Our “Hierarchical Consensus” algorithm requires N communica-
tion steps for all correct processes to decide. Suggest a slight modification that
enables it to run in N − 1 steps.

Exercise 5.3: Can we also optimize our “Flooding Uniform Consensus” algorithm
to save one communication step, such that all correct processes always decide after
N −1 communication steps? Consider simply the case of a system of two processes.

Exercise 5.4: Consider all our fail-stop consensus algorithms (“Hierarchical (Uni-
form) Consensus” and “Flooding (Uniform) Consensus,” Algorithms 5.1–5.4).
Explain why none of those algorithms would be correct if the failure detector turns
out not to be perfect.

Exercise 5.5: Explain why any fail-noisy consensus algorithm actually solves uni-
form consensus.

Exercise 5.6: Explain why any fail-noisy algorithm that implements consensus (or
epoch consensus) requires a majority of the correct processes.

Exercise 5.7: Give a fail-noisy consensus algorithm that assumes a correct major-
ity of the processes and uses an eventually perfect failure-detector abstraction. It
should use a round-based approach in such a way that (1) in any execution where
the process p with rank 1 is never suspected, p imposes its proposal value as the
consensus decision, (2) in any execution where p crashes initially and the process q
with rank 2 is never suspected, q imposes its proposal value, and so on, such that
if all processes with a more important rank than k initially crash then the process
with rank k imposes its proposal unless it is suspected.

Exercise 5.8: Consider Algorithm 5.6, “Leader-Driven Consensus,” in the fail-
noisy model, with the epoch-change and epoch consensus primitives implemented
by Algorithm 5.5 and Algorithm 5.6, respectively. Suppose that the process 	0, which
is the leader of the initial epoch, is correct, and furthermore, that all processes ini-
tially trust process 	0. How can you simplify the algorithm so that it uses fewer
communication steps than Algorithm 5.6 to decide under these assumptions?

Exercise 5.9: The “Randomized Binary Consensus” algorithm (Algorithm 5.12–
5.13) uses a reliable broadcast primitive to disseminate a DECIDED message.
Modify the algorithm and remove the DECIDED message. Recall that the DECIDED

message ensures that all correct processes terminate and describe an alternative
way for ensuring termination.

5.8 Exercises 267

Exercise 5.10: Discuss the notion of validity for Byzantine consensus abstractions
with binary domain, i.e., such that processes can only propose 0 or 1.

Exercise 5.11: How can one transform any algorithm for weak Byzantine consen-
sus into one for (strong) Byzantine consensus? This exercise answers this question
in two steps.

Consider a validated Byzantine consensus primitive, with a third variation of
validity condition called anchored validity. It reflects the intuition that a correct
process can somehow recognize an acceptable decision value for consensus. Every
process (even a Byzantine one) may propose a value that is acceptable in this way,
and it would be enough for the consensus abstraction to decide on any value with
this property, no matter from where it originates. The strong validity notion, in con-
trast, requires that all correct processes propose the same (acceptable) value, which
is difficult to ensure in practice, or the decision might be the special symbol �.

To formalize anchored validity, we introduce a predicate P (·) on proposal values
and every process invokes a Byzantine consensus abstraction with P , determined
by the application that is interested in the decision of consensus. The predicate is
either true or false, can be evaluated locally and efficiently by every process, and
yields the same verdict on a given value when evaluated by any correct process.
In this sense, the predicate anchors the validity of a decision in the application.
A validated Byzantine consensus abstraction is now the same as our two Byzan-
tine consensus abstractions (Modules 5.10 and 5.11) with the following notion of
anchored validity:

Every correct process only decides a value v such that P (v) = TRUE.
Moreover, if all processes are correct and propose v, then no correct process
decides a value different from v.

It is assumed that every correct process proposes a value that satisfies P .
Take now any algorithm that implements weak Byzantine consensus and trans-

form it as follows: whenever a process proposes a value v or delivers a message
from another process containing a value v, which the other process (if correct) may
have proposed, then verify that P (v) holds; proceed only if P (v) = TRUE and halt
otherwise. This gives a Byzantine consensus algorithm with anchored validity and
completes the first step of this transformation.

For the second step, describe a transformation of validated Byzantine consensus
to (strong) Byzantine consensus, that is, describe an algorithm that implements the
Byzantine consensus abstraction from a validated Byzantine consensus abstraction.
The solution is easier when digital signatures are available.

Exercise 5.12: Implement a conditional collect abstraction with an algorithm that
does not use digital signatures. As a hint, recall the differences between the two
implementations of Byzantine consistent broadcast in Sect. 3.10.

Exercise 5.13: Consider the execution of the “Byzantine Read/Write Epoch Con-
sensus” algorithm illustrated in Fig. 5.6. Start with the same initial states of

268 5 Consensus

all correct processes. Describe an execution that results in some correct process
bep-deciding x, where additionally one correct process never sends any ACCEPT

message.

5.9 Solutions

Solution 5.1: Consider a variant of the “Flooding Consensus” algorithm that
accepts a DECIDED message from any process p (as long as decision = ⊥), even if
p �∈ correct. This algorithm may violate the agreement property. In the following,
we describe an execution with at least three processes that demonstrates this.

It may occur that p decides in round 1 and then crashes. No other process delivers
the PROPOSAL message from p of round 1, but the DECIDED message from p,
sent using best-effort broadcast, may still reach others at some later time. All other
processes detect that p has crashed and progress to round 2 without receiving a
PROPOSAL message from p, hence p ∈ crashed and p �∈ receivedfrom[1] for them.
Note that p might have decided its own value v, which is smaller than any other
proposed value, and no other process is yet aware of v. As p was detected by the
failure detector to have crashed, the other processes may proceed without waiting for
any further messages from p. Suppose some correct process q decides a value v′ �= v
(the fact that p decided v does not violate the agreement property because p is not
correct). If the DECIDED message from p now reaches a third process r that has not
yet decided then r decides v. This violates agreement because q and r are correct.

Solution 5.2: The lowest-ranked process t, which has rank N and broadcasts last,
does not need to broadcast its message. Indeed, the only process that uses t’s broad-
cast value is t itself. Hence, process t decides its proposal just before it would have
broadcast it (not when it has delivered it).

Solution 5.3: The answer is no. We argue here that in the case of two processes, the
“Flooding Uniform Consensus” algorithm needs two communication steps because
a decision cannot be reached by all correct processes after one step. (The interested
reader can extend this argument to a system of N > 2 processes.)

Consider a system with two processes p and q and assume that every process must
decide after executing only one round in the algorithm. We describe an execution
where the processes do not reach uniform agreement; thus, the algorithm need at
least two rounds. Suppose that p and q propose two different values v and w, respec-
tively. Without loss of generality, assume that v < w. In the following execution,
process p is faulty.

During the first round, p and q send their values to each other. Process p receives
its own value and q’s value and decides at the end of the round by our assumption. It
decides v, the smaller value, and then crashes. Now, assume that the message from
p to q in round one is delayed arbitrarily. There is a time after which q detects p
to have crashed because of the strong completeness property of the perfect failure
detector. As q cannot know that p actually did send a message, q reaches the end of
the first round and must decide. Process q decides its own value w, which violates
uniform agreement.

5.9 Solutions 269

Note that in the original algorithm, where the processes decide only after two
rounds, the above scenario cannot occur. This is because p crashes before it can
decide (in fact, it never decides); later on, q decides w.

Solution 5.4: A violation of strong completeness property of the perfect failure
detector could lead to the violation of the termination property of consensus as
follows. In all our fail-stop algorithms, there is at least one critical point where a
process p waits to deliver a message from a process q or to detect the crash of pro-
cess q. Should q crash and p never detect the crash of q, p would remain blocked
forever and never decide.

Consider now strong accuracy. If it does not hold, our “Flooding Consensus”
algorithm, for instance, could violate the agreement property in the scenario of
Fig. 5.1: if process q crashes after deciding 3, and p is falsely suspected to have
crashed by processes r and q, then r and q will decide 5. A similar scenario can
occur for “Hierarchical Consensus.”

Solution 5.5: Consider any fail-noisy consensus algorithm that implements con-
sensus but not uniform consensus. This means that there is an execution where two
processes p and q decide differently and one of them crashes, so that the algorithm
violates uniform agreement. Assume that process p crashes. With an eventually
perfect failure detector, it might be the case that p has not crashed but is falsely sus-
pected to have crashed by all other processes. Process q would decide the same as in
the previous execution, and the algorithm would even violate the regular agreement
property.

Solution 5.6: We explain this for the case of a system of four processes p, q, r,
and s. Assume by contradiction that there is a fail-noisy consensus algorithm that
tolerates the crash of two processes. Assume that p and q propose a value v, whereas
r and s propose a different value v′. Consider an execution E1 where p and q crash
initially: in this execution, r and s decide v′ to respect the validity property of con-
sensus. Consider also an execution E2 where r and s crash initially: in this scenario,
p and q decide v. With an eventually perfect failure detector, a third execution E3 is
possible: the one where no process crashes, p and q falsely suspect r and s, and r
and s falsely suspect p and q. In this execution E3, processes p and q decide v, just
as in execution E1 (they execute the same steps as in E1, and cannot distinguish E3

from E1 up to the decision point), whereas r and s decide v′, just as in execution
E2 (they execute the same steps as in E2, and cannot distinguish E3 from E2 up to
the decision point). Agreement would hence be violated.

A similar argument applies to epoch consensus.

Solution 5.7: We give here an algorithm based on the “rotating coordinator”
approach, which causes the process p with rank k to impose its proposal in round k,
when all processes with more important ranks initially crash and p is never sus-
pected. Although Algorithm 5.7 also implements consensus in the fail-noisy model,
it uses a different structure because the process that imposes its proposal is chosen
by the eventual leader detector abstraction.

270 5 Consensus

Algorithm 5.22: Rotating Coordinator (part 1)

Implements:
UniformConsensus, instance uc.

Uses:
EventuallyPerfectFailureDetector, instance �P;
BestEffortBroadcast, instance beb;
UniformReliableBroadcast, instance urb.

upon event 〈 uc, Init 〉 do
round := 1;
suspected := ∅;
proposal := ⊥;
sentpropose := FALSE; sentvote := FALSE;
estimate := ⊥; votes := [⊥]N ;

upon event 〈 �P , Suspect | p 〉 do
suspected := suspected ∪ {p};

upon event 〈 �P , Restore | p 〉 do
suspected := suspected \ {p};

upon event 〈 uc, Propose | v 〉 such that proposal = ⊥ do
proposal := v;

upon leader(round) = self ∧ proposal �= ⊥∧ sentpropose = FALSE do
sentpropose := TRUE;
trigger 〈 beb, Broadcast | [PROPOSE, round, proposal] 〉;

upon event 〈 beb, Deliver | p, [PROPOSE, r, v] 〉 such that r = round do
estimate := v; // proposal received from p = leader(round)

upon
(
estimate �= ⊥ ∨ leader(round) ∈ suspected

) ∧ sentvote = FALSE do
sentvote := TRUE;
trigger 〈 beb, Broadcast | [VOTE, round, estimate] 〉;

Algorithm 5.22–5.23, called “Rotating Coordinator,” proceeds in rounds such
that the process with rank k acts as a leader for round k. All other processes act as
witnesses. Every process goes sequentially from round k to round k + 1, and no
process ever jumps to a higher round. The leader of round k is determined from the
round number by the function leader(·) introduced before.

Every process maintains a current proposal that it tries to impose as the decision
value. In the first phase of every round, the leader sends its proposal to all processes
using a best-effort broadcast primitive. Every process waits until it receives the pro-
posal v from the leader or until it suspects the leader to have crashed. A process then
broadcasts a VOTE message containing either v or the special value ⊥. After receiv-
ing a quorum of such votes, a process may decide when it received only votes equal

5.9 Solutions 271

Algorithm 5.23: Rotating Coordinator (part 2)

upon event 〈 beb, Deliver | p, [VOTE, r, v] 〉 such that r = round do
votes[p] := v;

upon #(votes) > N/2 ∧ sentvote = TRUE do
V := {v | there exists p ∈ Π such that votes[p] = v};
if exists v �= ⊥ such that V = {v} then

trigger 〈 urb, Broadcast | [DECIDED, v] 〉;
proposal := v;

else if exists v �= ⊥ such that V = {v,⊥} then
proposal := v;

round := round + 1;
sentpropose := FALSE; sentvote := FALSE;
estimate := ⊥; votes := [⊥]N ;

upon event 〈 urb, Deliver | p, [DECIDED, v] 〉 do
trigger 〈 uc, Decide | v 〉;

to v; otherwise, if it received at least one vote of v, it updates its proposal and sets it
to v. The decision is disseminated with a uniform reliable broadcast abstraction.

Concurrently to executing the rounds, every process records the output of the
eventually perfect failure detector and maintains a set of suspected processes. The
majority quorum ensures that once a process decides v, every correct process
updates its proposal to v.

Correctness. The validity property follows directly from the algorithm and from
the properties of the underlying communication abstractions. Consider now ter-
mination. If some correct process decides, it reacts to a DECIDED message that
is urb-delivered through the underlying uniform reliable broadcast instance urb.
Because of its agreement property, every correct process eventually urb-delivers
the DECIDED message and decides. It remains to show that some correct process
eventually decides. Toward a contradiction, assume that there is at least one correct
process but no correct process decides. Consider the point in time after which all
faulty processes have crashed, all faulty processes are suspected forever by every
correct process, and no correct process is ever suspected. Suppose that after this
time, some process starts a new round in which the leader is a correct process.
Unless some process has already decided, all correct processes reach this round.
Consequently, the leader manages to impose its proposal on all correct processes,
none of them votes ⊥, and all of them broadcast a DECIDED message in this round.

To show the uniform agreement property, assume that some process has urb-
broadcast a decision with value v in some round r. This means that the value v has
been proposed by the leader of round r; as the deciding process beb-delivered a quo-
rum of VOTE messages that contained v, every correct process has received at least
one VOTE message with v as well, by the quorum intersection property. Hence,
value v is locked in the sense that any server may only proceed to round r + 1
with its proposal variable equal to v. In particular, the leader of round r + 1,

272 5 Consensus

and the leaders of all subsequent rounds, may only propose v. This ensures no
process urb-broadcasts a DECIDED message with a value different from v. Further-
more, a process only uc-decides when it urb-delivers a DECIDED message. Together
with the no duplication property of the underlying uniform reliable broadcast, this
argument also demonstrates that the algorithm satisfies integrity.

Performance. If no process fails or is suspected to have failed then three com-
munication steps and O(N2) messages are required for all correct processes to
decide.

Solution 5.8: By opening up the underlying epoch-change and epoch consensus
abstractions, we obtain an algorithm that uses only three communication steps.
When process 	0, as the leader of the initial epoch, has proposed a value v�, it
directly tries to impose v� by writing it in epoch 0, without first consulting the
other processes and reading their local states. It may skip the first round of message
exchanges for reading because in the initial epoch, process 	0 knows that no deci-
sion could have been made in a previous epoch (as there is no previous epoch). This
first round in every epoch consensus instance is actually only needed to make sure
that the leader will propose a value that might have been decided (more precisely, to
ensure the lock-in property of epoch consensus). The algorithm, therefore, saves one
communication phase by directly having 	0 write v� and all correct processes decide
after three communication steps.

Solution 5.9: Observe that the DECIDED message is only necessary because a pro-
cess stops participating in the next round after sending this message. If every process
instead continues with the algorithm and participates for at least one more round,
all correct processes eventually decide. To make this work and to let the processes
progress through both phases of the next round, one has to remove the two clauses
decision = ⊥ from the conditions that guard the exits from phase one and two,
respectively. Furthermore, a process must now only decide if decision = ⊥.

The modified algorithm works because during the round in which the first process
decides some value v, all processes obtain at least one phase-two proposal with
v �= ⊥. This means that they set their proposal to v for moving to the next round.
According to the validity property, every correct process now decides in the next
round.

Solution 5.10: Consider a binary Byzantine consensus abstraction with weak val-
idity. If it is somehow known that all correct processes have proposed the same
value and the primitive decides differently then there must be one faulty process
that proposed this other value.

For Byzantine consensus with strong validity, every decided value was actually
proposed by a correct process. This is an intuitive and useful property of Byzantine
consensus with a binary domain. Unfortunately, if the domain has more than two
values then strong validity does not guarantee this property in all situations. (It is
possible, however, to maintain this intuitive property at the cost of reducing the
resilience of algorithms that implement the abstraction, that is, when the number of
Byzantine processes that can be tolerated decreases with as the domain size grows.)

5.9 Solutions 273

Solution 5.11: For completeness, Module 5.16 summarizes the validated Byzantine
consensus primitive.

Module 5.16: Interface and properties of validated Byzantine consensus
Module:

Name: ValidatedByzantineConsensus, instance vbc, with predicate P (·).

Events:

Request: 〈 vbc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 vbc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

VBC1 and VBC3–VBC4: Same as properties WBC1 and WBC3–WBC4 in weak
Byzantine consensus (Module 5.10).

VBC2: Anchored validity: Every correct process only decides a value v such that
P (v) = TRUE. Moreover, if all processes are correct and propose v, then no correct
process decides a value different from v.

A solution for the requested transformation, called “From Anchored Validity to
Strong Validity,” is shown in Algorithm 5.24 and provides Byzantine consensus
based on a validated Byzantine consensus abstraction.

The transformation adds one round of point-to-point message exchange among
the processes, in which they sign and send their proposal values to each other, before
invoking validated Byzantine consensus. Any value that has been proposed by more
than f processes, as certified by their signatures, is considered valid, as is the default
value �.

If a process observes a value proposed by more than f processes, it proposes
this value for validated consensus. As it may be that all correct processes propose
different values, the algorithm may also propose the default value � once it has
received N − f point-to-point messages with valid signatures.

As shown in Exercise 5.10, if the domain is binary, this method actually guaran-
tees that the Byzantine consensus primitive never decides �.

Correctness. The transformation requires that N > 3f . Every correct process even-
tually receives PROPOSAL messages with valid signatures from all N − f correct
processes. If all correct processes propose the same value v then every correct pro-
cess proposes v for validated consensus, because N − 2f > f and there are only
f Byzantine processes. In any case, a proposal for validated consensus must be jus-
tified with signatures from more than f processes or must contain the value �; the
validproposed predicate ensures this. Hence, the strong validity property follows.

The other properties of Byzantine consensus follow directly from the algorithm
and from the underlying validated Byzantine consensus primitive.

274 5 Consensus

Algorithm 5.24: From Anchored Validity to Strong Validity

Implements:
ByzantineConsensus, instance bc.

Uses:
AuthPerfectPointToPointLinks, instance al;
ValidatedByzantineConsensus, instance vbc, with predicate validproposed(·).

function validproposed((v, Σ)) returns Boolean is
if #

({p ∈ Π | verifysig(p, bc‖PROPOSAL‖v, Σ[p]) = TRUE}) > f then
return TRUE;

else if v = � then
return TRUE;

else
return FALSE;

upon event 〈 bc, Init 〉 do
proposals := [⊥]N ; Σ := [⊥]N ;

upon event 〈 bc, Propose | v 〉 do
σ := sign(self, bc‖PROPOSAL‖v);
forall q ∈ Π do

trigger 〈 al, Send | q, [PROPOSE, v, σ] 〉;

upon event 〈 al, Deliver | p, [PROPOSE, v, σ] 〉 do
if proposals[p] = ⊥ ∧ verifysig(p, bc‖PROPOSAL‖v, σ) then

proposals[p] := v; Σ[p] := σ;

upon exists v �= ⊥ such that #
({p ∈ Π | proposals[p] = v}) > f do

proposals := [⊥]N ;
trigger 〈 vbc, Propose | (v, Σ) 〉;

upon #(proposals) ≥ N − f do
proposals := [⊥]N ;
trigger 〈 vbc, Propose | (�, Σ) 〉;

upon event 〈 vbc, Decide | (v′, Σ′) 〉 do
trigger 〈 bc, Decide | v′ 〉;

Performance. The algorithm adds one communication step to the underlying vali-
dated Byzantine consensus abstraction with O(N2) additional messages.

Solution 5.12: Algorithm 5.25, called “Echo Conditional Collect,” implements
a conditional collect abstraction and uses no digital signatures. Its relation to
Algorithm 5.16, which also implemented conditional collect but used signatures,
is similar to the relation between Algorithm 3.16 (“Authenticated Echo Broadcast”)
and Algorithm 3.17 (“Signed Echo Broadcast”) for Byzantine consistent broadcast.

To start the algorithm, every correct process broadcasts a SEND message contain-
ing m to all processes using an authenticated perfect point-to-point links instance al.

5.9 Solutions 275

Algorithm 5.25: Echo Conditional Collect

Implements:
ConditionalCollect, instance cc, with leader � and output predicate C.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event 〈 cc, Init 〉 do
received := [FALSE]N ;
echos := [⊥]N × [⊥]N ;
messages := [UNDEFINED]N ; // only leader �
choice := ⊥; collected := FALSE;

upon event 〈 cc, Input | m 〉 do
forall q ∈ Π do

trigger 〈 al, Send | q, [SEND, m] 〉;

upon event 〈 al, Deliver | p, [SEND, m] 〉 do
if received[p] = FALSE then

received[p] := TRUE;
forall q ∈ Π do

trigger 〈 al, Send | q, [ECHO, p,m] 〉;

upon event 〈 al, Deliver | p, [ECHO, s, m] 〉 do
echos[s, p] := m;
if self = � ∧ #

({q | echos[s, q] = m}) > 2f ∧ messages[s] = ⊥ then
messages[s] := m; // only leader �

upon self = � ∧ #(messages) ≥ N − f ∧ C(messages) do // only leader �
forall q ∈ Π do

trigger 〈 al, Send | q, [CHOICE, messages] 〉;
messages := [UNDEFINED]N ;

upon event 〈 al, Deliver | �, [CHOICE, M] 〉 do
if choice = ⊥ ∧ #(M) ≥ N − f ∧ C(M) then

choice := M ;

upon choice �= ⊥ ∧ collected = FALSE ∧ (
forall s ∈ Π such that

choice[s] = m, it holds #
({q | echos[s, q] = m}) > f

)
do

collected := TRUE;
trigger 〈 cc, Collected | choice 〉;

Whenever a process al-delivers a SEND message containing some m from sender
p (for the first time), it broadcasts a message [ECHO, p, m] to all processes over
the authenticated links. Until the end of the algorithm, every process continuously
counts how many ECHO messages that it delivers (counting only those from distinct
senders) with respect to every other process.

The leader process 	 initializes an N -vector messages to [UNDEFINED]N and
whenever it al-delivers more than 2f messages [ECHO, s, m] with the same m for
some process s from distinct senders, it sets messages[s] := m. The leader continues

276 5 Consensus

to collect messages like this until messages contains at least N − f entries different
from UNDEFINED and C(messages) holds. Once this is the case, the leader al-sends
a message [CHOICE, messages] to all processes.

Finally, when a process p al-delivers a message [CHOICE, M] from 	 and for
every s such that M [s] = m �= UNDEFINED, process p receives also more than
f messages [ECHO, s, m], then p outputs the collected vector M . Note that, this
involves waiting for ECHO and CHOICE messages simultaneously.

Correctness. It is not difficult to verify that this algorithm implements conditional
collect for N > 3f . Briefly, the integrity property follows because for every col-
lected M with M [s] �= UNDEFINED where process s is correct, at least one correct
process has sent an ECHO message containing M [s] and thus, process s must also
have input M [s].

Furthermore, if the leader 	 is correct, even when no faulty process sends any
ECHO message then there are N − f > 2f correct processes that do send ECHO

messages for every input they receive from a correct process. As the correct pro-
cesses input compliant messages, 	 eventually broadcasts a CHOICE message with
M that satisfies C(M) and with at least N − f entries different from UNDEFINED.
Every correct process that receives this message is also guaranteed to receive f or
more ECHO messages for every entry, as required to make progress; hence, it col-
lects the vector M from 	 that satisfies C(M), as required by the consistency and
termination properties.

Performance. The algorithm incurs three communication steps, as all processes
wait for the CHOICE message from the leader and the leader may send it only after
receiving enough ECHO messages. The number of messages is O(N2).

Compared to Algorithm 5.16, the algorithm uses only authenticated links but no
digital signatures; verifying the authenticity of O(N2) point-to-point messages is
usually much more efficient than verifying O(N) digital signatures. On the other
hand, Algorithm 5.16 uses only O(N) messages. Thus, the “Echo Conditional Col-
lect” algorithm trades lower computational efficiency for an increased number of
messages compared to the “Signed Conditional Collect” algorithm.

Solution 5.13: The execution shown in Fig. 5.8 may result as follows. Suppose the
Byzantine process q does not input any value. Then

S = [[1, x, wsp], UNDEFINED, [0, y, wsr], [0,⊥, wss]].

As the leader r is correct, all correct processes collect the same output vector S. This
vector binds timestamp 1 to x, because timestamp 1 is the maximum timestamp in
the three defined entries, and because (1, x) ∈ wsp and (1, x) ∈ wsr. Therefore, the
correct processes write value x in epoch 7. When processes p and r receive enough
WRITE messages, they change their state to (7, x) and each broadcast an ACCEPT

message. These messages, together with a forged ACCEPT message with value x
from the Byzantine process q, cause process p to bep-decide x. Process s bep-aborts
before it sends an ACCEPT message.

5.10 Chapter Notes 277

(0,⊥)

(0,⊥) (0,)⊥

p

q

r

s

bep−abort

(1,x)

Epoch 7

(7,x)

cc−input(0, ,ws.s’)⊥

S

S

bep−decide(x)

(7,x)
[ACCEPT,x]

bep−abort

bep−abort

cc−input(1,x,ws.p)

cc−input(0,y,ws.r)

S

[WRITE,x]

bep−propose(y)

Figure 5.8: Sample execution of a Byzantine epoch consensus instance, with
timestamp 7 and leader r, in which process p bep-decides x

5.10 Chapter Notes

• The consensus problem is the single most important problem in distributed com-
puting and has become a recurrent theme during the development of the field.
The consensus problem has originally been introduced in its Byzantine vari-
ant by Lamport, Shostak, and Pease (1982) for synchronous systems, under the
name of “Byzantine agreement.” When considered in asynchronous systems, it
has commonly been called “consensus.”

• After Fischer, Lynch, and Paterson (1985) had proved that no deterministic
algorithm implements consensus in a fail-silent model, even if only one process
fails, alternative models were explored. On the one hand, Dwork, Lynch, and
Stockmeyer (1988) introduced models of partially synchronous systems, where
reaching consensus becomes possible. On the other hand, Ben-Or (1983) and
Rabin (1983) proposed to use randomized algorithms for consensus. Many con-
sensus algorithms have used the fail-stop system model or the fail-noisy system
model, which represent partially synchronous systems. The timing information in
these models is available via the failure-detector abstraction. It is an elegant way
to encapsulate the timing assumptions of partially synchronous systems (Chandra
and Toueg 1996).

• Our fail-stop consensus algorithms (the “Flooding Consensus” and “Hierarchical
Consensus” algorithms, together with their uniform variants, from Algorithms
5.1–5.4) go back to the earliest published consensus algorithms by Lamport,
Shostak, and Pease (1982). These algorithms are also reminiscent of the “phase-
king” approach used for implementing consensus in synchronous systems
(Berman and Garay 1989).

• The “Leader-Driven Consensus” algorithm from Sect. 5.3 is a modular formu-
lation of the “Paxos” consensus algorithm, which can be extracted from the
total-order broadcast algorithm with the same name (Lamport 1998). A total-
order broadcast algorithm with a similar structure has previously been used

278 5 Consensus

in viewstamped replication (Oki and Liskov 1988). The Paxos algorithm has
been analyzed in a number of papers (De Prisco, Lampson, and Lynch 2000;
Lampson 2001). Boichat et al. (2003a,b) present the Paxos algorithm in terms of
an abortable consensus abstraction. The variant given here is from Cachin (2009).

• The “Rotating Coordinator” fail-noisy consensus algorithm (from Exercise 5.7)
was introduced by Chandra and Toueg (1996).

• The “Leader-Driven Consensus” algorithm and the “Rotating Coordinator” algo-
rithm both implement uniform consensus in the fail-noisy model. The difference
is that the former algorithm uses the eventual leader detector (Ω) whereas the
latter relies on an eventually perfect failure detector (�P). In practice, the leader-
detector-based algorithm often works faster. If Ω outputs an accurate estimate
of a correct leader process 	, the messages between 	 and all other processes
are not delayed, and process 	 becomes the first leader, then the “Leader-Driven
Consensus” algorithm will terminate very fast. On the other hand, the “Rotating
Coordinator” algorithm proceeds according to a fixed order among the processes
and may waste several rounds with faulty coordinators until it hits a correct
coordinator process, even if �P outputs accurate failure information.

• Lower bounds for consensus using failure detectors were first given by Chandra,
Hadzilacos, and Toueg (1996) and refined later (Delporte-Gallet et al. 2002,
2004, 2010).

• Guerraoui (2000) shows that any fail-noisy algorithm that solves regular con-
sensus also solves uniform consensus (Exercise 5.5). Furthermore, Chandra and
Toueg (1996) and Guerraoui (2000) show that any fail-noisy consensus algorithm
(using an unreliable failure detector) requires a majority of correct processes
(Exercise 5.6).

• The randomized consensus algorithms in the fail-silent model presented in this
chapter are from Ezhilchelvan, Mostefaoui, and Raynal (2001). They generalize
older randomized algorithms for binary consensus (Ben-Or 1983; Rabin 1983).
The “Randomized Binary Consensus” algorithm and the “Rotating Coordinator”
algorithm are members of the same family of indulgent consensus algorithms
(Guerraoui and Raynal 2004).

• The “Independent Choice” implementation of the common coin corresponds to
the first randomized consensus algorithm of Ben-Or (1983). It has exponentially
small (in N) matching probability, which lets our consensus implementations
based on it terminate in an exponential number of steps (in N) only. Rabin
(1983) proposed two coin implementations with perfect matching probability:
the “Beacon” coin and an implementation from predistributed information, based
on cryptographic secret sharing (Shamir 1979). Canetti and Rabin (1993) subse-
quently introduced the first common coin without predistributed secrets that leads
to efficient consensus algorithms (that is, they terminate in a polynomial number
of steps instead of exponentially many). A practical common coin implementa-
tion from distributed cryptography has been developed by Cachin, Kursawe, and
Shoup (2005). All these algorithms use the randomized fail-arbitrary model, and
can typically be simplified for the fail-silent model.

5.10 Chapter Notes 279

• After the Byzantine agreement problem formulated by Lamport, Shostak, and
Pease (1982) had triggered interest in the consensus abstraction, the work on
consensus in asynchronous systems focused on crash-stop processes for a long
time. Only more recently, Byzantine consensus and algorithms in the fail-noisy-
arbitrary model have again received considerable attention. The revived interest
started with the “practical Byzantine fault-tolerance” (PBFT) algorithm from the
work of Castro and Liskov (2002). Several variants and optimizations of it have
been explored since (Doudou et al. 2005; Abd-El-Malek et al. 2005; Abraham
et al. 2006; Martin and Alvisi 2006; Kotla et al. 2009). Most of them are for-
mulated as Byzantine total-order broadcast algorithms (see Sect. 6.2) with a very
practical focus.

• Our “Byzantine Leader-Driven Consensus” algorithm is the Byzantine consensus
algorithm inherent in PBFT (Castro and Liskov 2002); PBFT itself implements a
Byzantine total-order broadcast abstraction (see Chap. 6.2). More precisely, with
the two optimizations mentioned in Sect. 5.6.4 applied, the algorithm involves
an initial message from the leader to all processes and two rounds of echoing the
message among all processes. This is the same communication pattern as first
used in the reliable broadcast algorithm of Bracha (1987) (our “Authenticated
Double-Echo Broadcast” algorithm from Chap. 3), and it is also used during the
normal-case operation of a view in the PBFT algorithm.

• As becomes clear from our formulation, the “Leader-Driven Consensus” algo-
rithm in the fail-noisy model and the “Byzantine Leader-Driven Consensus”
algorithm in the fail-arbitrary model use the same basic structure. This resem-
blance between the original algorithms, Paxos and viewstamped replication on
the one hand (Lamport 1998; Oki and Liskov 1988), and PBFT on the other hand
(Castro and Liskov 2002), is not immediately evident. It has only become clear
over time, through a series of works addressing their similarity (Lampson 2001;
Li et al. 2007; Liskov 2010; Milosevic et al. 2009; Cachin 2009).

• The conditional collect primitive is used by the “Byzantine Read/Write Epoch
Consensus” algorithm, which implements the Byzantine epoch consensus ab-
straction. The primitive is inspired by the weak interactive consistency (WIC)
abstraction defined by Milosevic, Hutle, and Schiper (2009), who used it to sim-
plify Byzantine consensus algorithms. Compared to WIC, conditional collect
introduces a leader into the specification for ensuring termination. The “Echo
Conditional Collect” algorithm for conditional collect without signatures (from
Exercise 5.12) is contained in PBFT (Castro and Liskov 2002).

• The validated Byzantine consensus primitive and the anchored validity notion
(from Exercise 5.11) were introduced by Cachin et al. (2001). A similar notion
of validity in the fail-arbitrary model has been used by Ben-Or and El-Yaniv
(2003).

6. Consensus Variants

God does not often clap his hands. When he does, everybody should dance.
(African Proverb)

This chapter describes variants of the consensus abstraction introduced in the previ-
ous chapter. These variants are motivated by applications of consensus to areas like
fault-tolerant, replicated services, and distributed databases.

In the variants we consider here, just like in consensus, the processes need to
make consistent decisions, such as agreeing on one common value. However, most
of the abstractions extend or change the interface of consensus, in order to satisfy
the specific coordination requirements of an application.

The abstractions we will study here include total-order broadcast, terminat-
ing reliable broadcast, fast consensus, (nonblocking) atomic commitment, group
membership, and view synchrony. We will mainly focus on fail-stop algorithms
for implementing these abstractions. But we also consider Byzantine total-order
broadcast and Byzantine fast consensus and give implementations for them in the
fail-arbitrary model. Some further variants of the total-order broadcast abstraction
are discussed in the exercise section. But other variants of consensus represent
unexplored territory, in the sense that determining adequate means to specify and
implement these abstractions in other system models is an area of current research.

6.1 Total-Order Broadcast

6.1.1 Overview

Earlier in the book (in Sect. 3.9), we discussed FIFO-order and causal-order
(reliable) broadcast abstractions and their implementation. FIFO-order broadcast
requires that messages from the same process are delivered in the order that the
sender has broadcast them. For messages from different senders, FIFO-order broad-
cast does not guarantee any particular order of delivery. Causal-order broadcast

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 6,
c© Springer-Verlag Berlin Heidelberg 2011

281

282 6 Consensus Variants

enforces a global ordering for all messages that causally depend on each other:
such messages need to be delivered in the same order and this order must respect
causality. But causal-order broadcast does not enforce any ordering among messages
that are causally unrelated, or “concurrent” in this sense. In particular, if a pro-
cess p broadcasts a message m1 and a process q concurrently broadcasts a message
m2 then the messages might be delivered in different orders by the processes. For
instance, p might deliver first m1 and then m2, whereas q might deliver first m2 and
then m1.

A total-order (reliable) broadcast abstraction orders all messages, even those
from different senders and those that are not causally related. More precisely, total-
order broadcast is a reliable broadcast communication abstraction which ensures
that all processes deliver the same messages in a common global order. Whereas reli-
able broadcast ensures that processes agree on the same set of messages they deliver,
total-order broadcast ensures that they agree on the same sequence of messages; the
set of delivered messages is now ordered.

The total-order broadcast abstraction is sometimes also called atomic broadcast
because the message delivery occurs as if the broadcast were an indivisible “atomic”
action: the message is delivered to all or to none of the processes and, if the message
is delivered, every other message is ordered either before or after this message.
This section considers total-order broadcast among crash-stop process abstractions.
Total-order broadcast with Byzantine processes is the subject of Sect. 6.2.

Total-order broadcast is the key abstraction for maintaining consistency among
multiple replicas that implement one logical service, whose behavior can be cap-
tured by a deterministic state machine. A state machine consists of variables
representing its state together with commands that update these variables and may
produce some output. Commands consist of deterministic programs, such that the
outputs of the state machine are solely determined by the initial state and the seq-
uence of commands previously executed. Most practical services can be modeled
like this. Any service implemented by the state machine can be made fault-tolerant
by replicating it on different processes. Total-order broadcast ensures that all repli-
cas deliver the commands from different clients in the same order, and hence
maintain the same state.

For instance, this paradigm can be applied to implement highly available shared
objects of arbitrary types in a distributed system, that is, objects with much more
powerful semantics than the read-write (register) objects studied earlier in the book
(Chap. 4). According to the state-machine replication paradigm, each process hosts
a replica of the object. A client broadcasts every method invocation on the object
to all replicas using the total-order broadcast primitive. This will ensure that all
replicas keep the same state and that all responses are equal. In short, the use of
total-order broadcast ensures that the object is highly available, yet it appears as if it
were a single logical entity accessed in a sequential and failure-free manner, which
provides operations that act atomically on its state. We will return to this topic in the
exercise section.

6.1 Total-Order Broadcast 283

Module 6.1: Interface and properties of regular total-order broadcast
Module:

Name: TotalOrderBroadcast, instance tob.

Events:

Request: 〈 tob, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 tob, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

TOB1: Validity: If a correct process p broadcasts a message m, then p eventually
delivers m.

TOB2: No duplication: No message is delivered more than once.

TOB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

TOB4: Agreement: If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

TOB5: Total order: Let m1 and m2 be any two messages and suppose p and q are
any two correct processes that deliver m1 and m2. If p delivers m1 before m2, then
q delivers m1 before m2.

6.1.2 Specifications

Many specifications of the total-order broadcast abstraction can be considered. We
focus here on two variants that both extend a corresponding reliable broadcast abs-
traction. The first is a regular variant that ensures total ordering only among the
correct processes. The second is a uniform variant that ensures total ordering with
respect to all processes, including the faulty processes as well.

The specification of a regular total-order broadcast abstraction is depicted in
Module 6.1. The interface is the same as in the (regular) reliable broadcast abstrac-
tion (Module 3.2 from Sect. 3.3), and also its first four properties (TOB1–TOB4)
are the same as before (properties RB1–RB4). The only difference consists in the
added total order property.

The second specification defines uniform total-order broadcast and is depicted
in Module 6.2. The interface is the same as in the uniform reliable broadcast abs-
traction (Module 3.3); its first four properties (UTOB1–UTOB4) map directly to
those of uniform reliable broadcast (URB1–URB4) in Sect. 3.4 and extend it with
the uniform total order property.

Other combinations of the total order or uniform total order properties with
reliable and uniform reliable broadcast properties are possible and lead to slightly
different specifications. For conciseness, we omit describing all the corresponding
modules and refer to an exercise (at the end of the chapter) for a logged total-order
broadcast abstraction.

284 6 Consensus Variants

Module 6.2: Interface and properties of uniform total-order broadcast
Module:

Name: UniformTotalOrderBroadcast, instance utob.

Events:

Request: 〈 utob, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 utob, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

UTOB1–UTOB3: Same as properties TOB1–TOB3 in regular total-order broadcast
(Module 6.1).

UTOB4: Uniform agreement: If a message m is delivered by some process
(whether correct or faulty), then m is eventually delivered by every correct process.

UTOB5: Uniform total order: Let m1 and m2 be any two messages and suppose p
and q are any two processes that deliver m1 and m2 (whether correct or faulty). If
p delivers m1 before m2, then q delivers m1 before m2.

It is important to note that the total order property is orthogonal to the FIFO-order
and causal-order properties discussed in Sect. 3.9. It is possible that a total-order
broadcast abstraction does not respect causal order. On the other hand, as we pointed
out, FIFO-order broadcast and causal-order broadcast abstractions do not enforce
total order: the processes may deliver some messages in different order to different
processes.

6.1.3 Fail-Silent Algorithm: Consensus-Based Total-Order Broadcast

In the following, we give a total-order broadcast algorithm that implements the
abstraction of Module 6.1 and is called “Consensus-Based Total Order” because
it relies on consensus. The pseudo code is shown in Algorithm 6.1. It uses a reliable
broadcast abstraction and multiple instances of a (regular) consensus abstraction as
underlying building blocks.

The intuition behind Algorithm 6.1 is the following. Messages are first dissem-
inated using a reliable broadcast instance with identifier rb. Recall that reliable
broadcast imposes no particular order on delivering the messages, so every process
simply stores the delivered messages in a set of unordered messages. At any point
in time, it may be that no two processes have the same sets of unordered messages
in their sets. The processes then use the consensus abstraction to decide on one set,
order the messages in this set, and finally deliver them.

More precisely, the algorithm implementing a total-order broadcast instance tob
works in consecutive rounds. As long as new messages are broadcast, the processes
keep on moving sequentially from one round to the other. There is one consensus

6.1 Total-Order Broadcast 285

Algorithm 6.1: Consensus-Based Total-Order Broadcast

Implements:
TotalOrderBroadcast, instance tob.

Uses:
ReliableBroadcast, instance rb;
Consensus (multiple instances).

upon event 〈 tob, Init 〉 do
unordered := ∅;
delivered := ∅;
round := 1;
wait := FALSE;

upon event 〈 tob, Broadcast | m 〉 do
trigger 〈 rb, Broadcast | m 〉;

upon event 〈 rb, Deliver | p, m 〉 do
if m �∈ delivered then

unordered := unordered ∪ {(p, m)};

upon unordered �= ∅ ∧ wait = FALSE do
wait := TRUE;
Initialize a new instance c.round of consensus;
trigger 〈 c.round, Propose | unordered 〉;

upon event 〈 c.r, Decide | decided 〉 such that r = round do
forall (s, m) ∈ sort(decided) do // by the order in the resulting sorted list

trigger 〈 tob, Deliver | s, m 〉;
delivered := delivered ∪ decided;
unordered := unordered \ decided;
round := round + 1;
wait := FALSE;

instance for every round, such that the instance of round r has identifier c.r, for
r = 1, 2, The processes use the consensus instance of round r to decide on
a set of messages to assign to that round number. Every process then tob-delivers
all messages in the decided set according to some deterministic order, which is the
same at every process. This will ensure the total order property.

The r-th consensus instance, invoked in round r, decides on the messages to
deliver in round r. Suppose that every correct process has tob-delivered the same
messages up to round r − 1. The messages of round r are delivered according to a
deterministic and locally computable order, agreed upon by all processes in advance,
such as the lexicographic order on the binary representation of the message content
or based on low-level message identifiers. Once that the processes have decided on
a set of messages for round r, they simply apply a deterministic function sort(·)
to the decided set messages, the function returns an ordered list of messages, and
the processes deliver the messages in the given order. Hence, the algorithm ensures

286 6 Consensus Variants

p

q

r

s

p

q

r

s

Consensus

Reliable Broadcast

to−broadcast(m1)

to−broadcast (m2)

to−broadcast (m3)

to−broadcast (m4)

Round 1 Round 2 Round 3

to−deliver(m2)to−deliver(m1) to−deliver(m3)
to−deliver(m4)

m2

m3, m4

m3, m4

m3, m4

m3, m4

m2, m1

m1

m1 m2

m2

m2, m3

m2, m3

Figure 6.1: Sample execution of consensus-based total-order broadcast

that there is one global sequence of messages that are tob-delivered by the correct
processes.

In each instance of consensus, every process starts with a (possibly different)
set of messages to be ordered. Each process simply proposes the set of mes-
sages it has already rb-delivered (from the reliable broadcast primitive) and not
yet tob-delivered (according to the total-order semantics). The properties of consen-
sus ensure that all processes decide the same set of messages for the instance. In
addition, Algorithm 6.1 uses a flag wait to ensure that a new round is not started
before the previous round has terminated.

An execution of the algorithm is illustrated in Fig. 6.1. The figure is unfolded into
two parallel flows: that of the reliable broadcasts, used to disseminate the messages,
and that of the consensus instances, used to order the messages. Messages received
from the reliable broadcast module are proposed to the next instance of consensus.
For instance, process s proposes message m2 to the first instance of consensus. As
the first instance of consensus decides message m1, process s resubmits m2 (along
with m3 that it has received meanwhile) to the second instance of consensus.

Correctness. The no creation property follows from the no creation property of
the reliable broadcast abstraction and from the validity property of the consensus

6.2 Byzantine Total-Order Broadcast 287

abstraction. The no duplication property follows from the no duplication prop-
erty of the reliable broadcast abstraction and from the integrity property of the
consensus abstraction, combined with the check that no message contained in the
variable delivered is added to the set unordered.

Consider the agreement property. Assume that some correct process p to-delivers
some message m. According to the algorithm, p must have decided a set of messages
that contains m in some round. Every correct process eventually decides the same
set of messages in that round because of the algorithm and the termination property
of consensus. Hence, every correct process eventually to-delivers m.

Consider the validity property of total-order broadcast, and let p be some cor-
rect process that to-broadcasts a message m. Assume by contradiction that p never
to-delivers m. This means that m is never included in a set of decided messages at
any correct process. Due the validity property of reliable broadcast, every correct
process eventually rb-delivers m. Therefore, there is some round in which every
correct process proposes a set of unordered messages to consensus that contains m.
The validity property of consensus now ensures that p decides a batch of messages
that includes m and to-delivers m in the same round.

Consider now the total order property. Let p and q be any two correct processes
that to-deliver some message m2. Assume that p to-delivers some distinct mes-
sage m1 before m2. If p to-delivers m1 and m2 in the same round then due to
the agreement property of consensus, q must have decided the same set of mes-
sages in that round. Thus, q also to-delivers m1 before m2, as we assume that the
messages decided in one round are to-delivered in the same order by every process,
determined in a fixed way from the set of decided messages. Assume that m1 is con-
tained in the set of messages decided by p in an earlier round than m2. Because of
the agreement property of consensus, q must have decided the same set of messages
in the earlier round, which contains m1. Given that processes proceed sequentially
from one round to the other, q must also have to-delivered m1 before m2.

Performance. To to-deliver a message when no failures occur, and by merging a
fail-stop reliable broadcast algorithm with a fail-stop consensus algorithm as pre-
sented in previous chapters, three communication steps and O(N) messages are
required.

Variant. By replacing the regular consensus abstraction with a uniform one,
Algorithm 6.1 implements a uniform total-order broadcast abstraction.

6.2 Byzantine Total-Order Broadcast

6.2.1 Overview

Total-order broadcast is an important primitive also in the fail-arbitrary model.
Intuitively, it gives the same guarantees as total-order broadcast in a system with
crash-stop processes, namely that every correct process delivers the same sequence
of messages over time.

288 6 Consensus Variants

Recall the Byzantine broadcast primitives from Chap. 3, in which every instance
only delivered one message. Because total-order broadcast concerns multiple mes-
sages, its specification does not directly extend these basic one-message primi-
tives, but uses the same overall approach as the total-order broadcast abstraction
with crash-stop processes. In particular, every process may repeatedly broadcast a
message and every process may deliver many messages.

For implementing total-order broadcast in the fail-arbitrary model, however, one
cannot simply take the algorithm from the fail-silent model in the previous sec-
tion and replace the underlying consensus primitive with Byzantine consensus. We
present an algorithm with the same underlying structure, but suitably extended for
the fail-arbitrary model. But first we introduce the details of the specification.

6.2.2 Specification

A Byzantine total-order broadcast abstraction lets every process repeatedly broad-
cast messages by triggering a request event 〈 Broadcast | m 〉. An indication
event 〈 Deliver | p, m 〉 delivers a message m with sender p to a process. For
an instance btob of Byzantine total-order broadcast, we also say a process btob-
broadcasts a message and btob-delivers a message.

The sender identification in the output holds only when process p is correct,
because a Byzantine process may behave arbitrarily. The abstraction ensures the
same integrity property as the Byzantine broadcast primitives of Chap. 3, in the
sense that every message delivered with sender p was actually broadcast by p, if
p is correct, and could not have been forged by Byzantine processes. The other
properties of Byzantine total-order broadcast are either exactly the same as those
of total-order broadcast among crash-stop processes (validity, agreement, and total
order) or correspond directly to the previous abstraction (no duplication). The
specification is given in Module 6.3.

6.2.3 Fail-Noisy-Arbitrary Algorithm:
Rotating Sender Byzantine Broadcast

Implementations of Byzantine broadcast abstractions are more complex than their
counterparts with crash-stop processes because there are no useful failure-detector
abstractions in the fail-arbitrary model. But an algorithm may rely on the even-
tual leader detector primitive (Module 2.9) that is usually accessed through an
underlying consensus abstraction.

Here we introduce Algorithm 6.2, called “Rotating Sender Byzantine Broadcast,”
which relies on a Byzantine consensus primitive, similar to the “Consensus-Based
Total-Order Broadcast” algorithm from the previous section. As before, the pro-
cesses proceed in rounds and invoke one instance of Byzantine consensus in every
round. Furthermore, every process disseminates the btob-broadcast messages using
a low-level communication primitive.

However, the processes cannot simply reliably broadcast the btob-broadcast
messages and propose a set of btob-undelivered messages received from reliable

6.2 Byzantine Total-Order Broadcast 289

Module 6.3: Interface and properties of Byzantine total-order broadcast
Module:

Name: ByzantineTotalOrderBroadcast, instance btob.

Events:

Request: 〈 btob, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 btob, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Properties:

BTOB1: Validity: If a correct process p broadcasts a message m, then p eventually
delivers m.

BTOB2: No duplication: No correct process delivers the same message more than
once.

BTOB3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

BTOB4: Agreement: If a message m is delivered by some correct process, then m
is eventually delivered by every correct process.

BTOB5: Total order: Let m1 and m2 be any two messages and suppose p and q
are any two correct processes that deliver m1 and m2. If p delivers m1 before m2,
then q delivers m1 before m2.

broadcast to consensus. The reason lies in the more demanding validity properties
of Byzantine consensus compared to consensus with processes that may only crash.
In the (strong) Byzantine consensus primitive, a “useful” decision value that carries
some undelivered messages results only if all correct processes propose exactly the
same input. But without any further structure on the message dissemination pattern,
the correct processes may never propose the same value, especially because fur-
ther btob-broadcast messages may arrive continuously. Weak Byzantine consensus
offers no feasible alternative either, because it ensures validity only if all processes
are correct. In the presence of a single Byzantine process, it may never output any
useful decision.

The solution realized by Algorithm 6.2 circumvents this problem by imposing
more structure on what may be proposed in a consensus instance. The algorithm
proceeds in global rounds; in round r, a process only proposes a single message for
consensus and one that is btob-broadcast by the designated sender for the round,
determined from the round number by the function leader(·) introduced before.

More precisely, a process first relays every btob-broadcast message to all others
in a DATA message over an authenticated link primitive al. Every DATA message
contains a sequence number, assigned by the sender, to provide FIFO order among
its DATA messages. Every correct process, therefore, al-delivers the same ordered
sequence of DATA messages from every correct sender. The receiver stores the

290 6 Consensus Variants

Algorithm 6.2: Rotating Sender Byzantine Broadcast

Implements:
ByzantineTotalOrderBroadcast, instance btob.

Uses:
AuthPerfectPointToPointLinks, instance al;
ByzantineConsensus (multiple instances).

upon event 〈 btob, Init 〉 do
unordered := ([])N ;
delivered := ∅;
round := 1;
wait := FALSE;
lsn := 0;
next := [1]N ;

upon event 〈 btob, Broadcast | m 〉 do
lsn := lsn + 1;
forall q ∈ Π do

trigger 〈 al, Send | q, [DATA, lsn, m] 〉;

upon event 〈 al, Deliver | p, [DATA, sn, m] 〉 such that sn = next[p] do
next[p] := next[p] + 1;
if m �∈ delivered then

append(unordered[p],m);

upon exists p such that unordered[p] �= [] ∧ wait = FALSE do
wait := TRUE;
Initialize a new instance bc.round of Byzantine consensus;
if unordered[leader(round)] �= [] then

m := head(unordered[leader(round)]);
else

m := �;
trigger 〈 bc.round, Propose | m 〉;

upon event 〈 bc.r, Decide | m 〉 such that r = round do
s := leader(round);
if m �= �∧ m �∈ delivered then

delivered := delivered ∪ {m};
trigger 〈 btob, Deliver | s, m 〉;

remove(unordered[s],m);
round := round + 1;
wait := FALSE;

undelivered btob-broadcast messages from every sender in a queue according to
the order of their arrival.

Concurrently, every process runs through rounds Byzantine consensus instances.
In every round, it proposes the first message in the queue corresponding to the des-
ignated sender s of the round for consensus. When a process finds no message in
the queue of process s, it proposes the symbol � for consensus. When consensus

6.2 Byzantine Total-Order Broadcast 291

decides on a message, the process btob-delivers it; if consensus decides �then
no message is btob-delivered in this round. (Recall that Byzantine consensus may
decide � unless all correct processes have proposed the same value.)

The variable unordered is an array of lists, one for every process in the system. It
is initialized to an array of empty lists, denoted by ([])N . Lists can be manipulated
with the operations introduced before, in Chap. 3: an element x can be appended to
a list L by the function append(L, x), and an element x can be removed from L by
the function remove(L, x). We also use a new function head(L) here, which returns
the first element in L.

Correctness. Note that the algorithm preserves FIFO order by design, and btob-
delivers messages from the same sender in the order they were btob-broadcast.
Intuitively, the algorithm maintains N ordered message queues, one for every pro-
cess, and propagates the messages from every sender through the corresponding
queue. These queues are synchronized at all correct processes. Every round of con-
sensus may cut off the first message in each queue and deliver it, or may decide not
to deliver a message.

It may happen that the consensus instance of a round decides a message sent by
sender s, but some process p does not find the message in the queue unordered[s].
It is safe for the process to deliver the message nevertheless, because the queue
must be empty; this follows because a correct s sends its messages in the same
order to all processes. Hence, whenever any correct process enters a new round, the
queue unordered[s] contains a unique message at its head or is empty.

The validity property now follows easily because a btob-broadcast message m
from a correct sender is eventually contained in the sender’s queue at every correct
process. Eventually, there is a round corresponding to the sender of m, in which
every correct process proposes m for consensus. According to the strong validity
property of Byzantine consensus, message m is btob-delivered at the end of this
round.

The no duplication property is evident from the algorithm and the checks involv-
ing the delivered variable. The agreement and total order properties follow from the
round structure and from the termination and agreement properties of the underlying
Byzantine consensus primitive.

Finally, the integrity property holds because a correct process, in round r, only
proposes for consensus a message received over an authenticated link from the
sender s = leader(r) or the value �. According to the strong validity property
of Byzantine consensus, the decided value must have been proposed by a correct
process (unless it is �); therefore, the algorithm may only btob-deliver a message
from sender s in round r.

Performance. The algorithm adds one communication step with O(N) messages
for every broadcast message to the cost of the underlying Byzantine consensus
instances. Every delivered message requires at least one instance of Byzantine
consensus, which is the most expensive part of the algorithm.

The algorithm is conceptually simple, but suffers from the problem that it may
not be efficient. In particular, depending on the network scheduling, it may invoke

292 6 Consensus Variants

an arbitrary number of Byzantine consensus instances until it delivers a particular
message m from a correct sender in the totally ordered sequence. This happens when
the algorithm btob-delivers messages from Byzantine senders before m or when the
consensus primitive decides �.

We discuss a more efficient algorithm, which never wastes a Byzantine consensus
instance without atomically delivering some message, in the exercises (at the end of
the chapter).

Variant. Algorithm 6.2, our Byzantine total-order broadcast algorithm, uses Byzan-
tine consensus in a modular way. If we would break up the modular structure
and integrate the rounds of Algorithm 6.2 with the round-based and leader-based
approach of the “Byzantine Leader-Driven Consensus” algorithm for Byzantine
consensus, we would save several steps and obtain a much more efficient algorithm.
Even more savings would be possible from integrating the resulting algorithm with
the implementation of the Byzantine eventual leader-detection abstraction, which is
used underneath the “Byzantine Leader-Driven Consensus” algorithm.

6.3 Terminating Reliable Broadcast

6.3.1 Overview

The goal of the reliable broadcast abstraction introduced earlier in the book
(Sect. 3.3) is to ensure that if a message is delivered to a process then it is delivered
to all correct processes (in the uniform variant).

As its name indicates, terminating reliable broadcast (TRB) is a form of reliable
broadcast with a specific termination property. It is used in situations where a given
process s is known to have the obligation of broadcasting some message to all pro-
cesses in the system. In other words, s is an expected source of information in the
system and all processes must perform some specific processing according to some
message m to be delivered from the source s. All the remaining processes are thus
waiting for a message from s. If s broadcasts m with best-effort guarantees and does
not crash, then its message will indeed be delivered by all correct processes.

Consider now the case where process s crashes and some other process p detects
that s has crashed without having seen m. Does this mean that m was not broadcast?
Not really. It is possible that s crashed while broadcasting m. In fact, some processes
might have delivered m whereas others might never do so. This can be problematic
for an application. In our example, process p might need to know whether it should
keep on waiting for m, or if it can know at some point that m will never be delivered
by any process. The same issue may arise when the processes are waiting for a set
of messages broadcast by multiple senders, of which some are known to broadcast
a message but others might never broadcast a message.

At this point, one may think that the problem of the faulty sender could have
been avoided if s had used a uniform reliable broadcast primitive to broadcast m.
Unfortunately, this is not the case. Consider process p in the example just given.
The use of a uniform reliable broadcast primitive would ensure that, if some other

6.3 Terminating Reliable Broadcast 293

process q delivered m then p would eventually also deliver m. However, p cannot
decide if it should wait for m or not. Process p has no means to distinguish the case
where some process q has delivered m (and p can indeed wait for m), from the
case where no process will ever deliver m (and p should definitely not keep waiting
for m).

The TRB abstraction adds precisely this missing piece of information to reliable
broadcast. TRB ensures that every process p either delivers the message m from the
sender or some failure indication �, denoting that m will never be delivered (by
any process). This indication is given in the form of a specific message � delivered
to the processes, such that � is a symbol that does not belong to the set of possi-
ble messages that processes broadcast. TRB is a variant of consensus because all
processes deliver the same message, i.e., either message m from the sender or the
indication �.

TRB is similar to the Byzantine consistent broadcast and Byzantine reliable
broadcast abstractions (of Sects. 3.10 and 3.11) in two ways: first, there is only one
process s that sends a message and this process is known, and second, the broadcast
abstraction delivers at most one message. With respect to termination, TRB differs
from the Byzantine broadcast abstractions, however: When the sender s is faulty, a
Byzantine broadcast abstraction may not deliver a message, but TRB always delivers
an output, regardless of whether process s is correct.

6.3.2 Specification

The properties of TRB are depicted in Module 6.4. Note that the abstraction is defi-
ned for a specific sender process s, which is known to all processes in advance.
Only the sender process broadcasts a message; all other processes invoke the algo-
rithm and participate in the TRB upon initialization of the instance. According to
Module 6.4, the processes may not only deliver a message m but also “deliver” the
special symbol �, which indicates that the sender has crashed.

We consider here the uniform variant of the problem, where agreement is uni-
formly required among any pair of processes, be they correct or not.

6.3.3 Fail-Stop Algorithm: Consensus-Based Uniform Terminating
Reliable Broadcast

Algorithm 6.3, called “Consensus-Based Uniform Terminating Reliable Broadcast,”
implements uniform TRB using three underlying abstractions: a perfect failure
detector instance P , a uniform consensus instance uc, and a best-effort broadcast
instance beb.

Algorithm 6.3 works by having the sender process s disseminate a message m to
all processes using best-effort broadcast. Every process waits until it either receives
the message broadcast by the sender process or detects the crash of the sender. The
properties of a perfect failure detector and the validity property of the broadcast
ensure that no process waits forever. If the sender crashes, some processes may
beb-deliver m and others may not beb-deliver any message.

294 6 Consensus Variants

Module 6.4: Interface and properties of uniform terminating reliable broadcast
Module:

Name: UniformTerminatingReliableBroadcast, instance utrb, with sender s.

Events:

Request: 〈 utrb, Broadcast | m 〉: Broadcasts a message m to all processes.
Executed only by process s.

Indication: 〈 utrb, Deliver | p, m 〉: Delivers a message m broadcast by process p
or the symbol �.

Properties:

UTRB1: Validity: If a correct process p broadcasts a message m, then p eventually
delivers m.

UTRB2: Termination: No process delivers more than one message.

UTRB3: Integrity: If a correct process delivers some message m, then m was either
previously broadcast by process s or it holds m = �.

UTRB4: Uniform Agreement: If any process delivers a message m, then every
correct process eventually delivers m.

Then all processes invoke the uniform consensus abstraction to agree on whether
to deliver m or the failure notification �. Every process proposes either m or � in
the consensus instance, depending on whether the process has delivered m (from
the best-effort broadcast primitive) or has detected the crash of the sender (in the
failure detector). The decision of the consensus abstraction is then delivered by the
algorithm. Note that, if a process has not beb-delivered any message from s then it
learns m from the output of the consensus primitive.

An execution of the algorithm is illustrated in Fig. 6.2. The sender process s
crashes while broadcasting m with the best-effort broadcast primitive. Therefore,
processes p and q receive m, but process r does not; instead, r detects the crash
of s. All remaining processes use the consensus primitive to decide on the value to
be delivered. In the example of the figure, the processes decide to deliver m, but it
would also be possible that they decide to deliver � (since s has crashed).

Correctness. Consider first the validity property of uniform TRB. Assume that s
does not crash and utrb-broadcasts a message m. Due to the strong accuracy prop-
erty of the perfect failure detector, no process detects a crash of s. Due to the validity
property of best-effort broadcast, every correct process beb-delivers m and proposes
m for uniform consensus. By the termination and validity properties of uniform
consensus, all correct processes including s eventually decide m. Thus, process s
eventually utrb-delivers m.

To see the termination property, observe how the no duplication property of
best-effort broadcast and the integrity property of consensus ensure that no process

6.3 Terminating Reliable Broadcast 295

Algorithm 6.3: Consensus-Based Uniform Terminating Reliable Broadcast

Implements:
UniformTerminatingReliableBroadcast, instance utrb, with sender s.

Uses:
BestEffortBroadcast, instance beb;
UniformConsensus, instance uc;
PerfectFailureDetector, instance P .

upon event 〈 utrb, Init 〉 do
proposal := ⊥;

upon event 〈 utrb, Broadcast | m 〉 do // only process s
trigger 〈 beb, Broadcast | m 〉;

upon event 〈 beb, Deliver | s, m 〉 do
if proposal = ⊥ then

proposal := m;
trigger 〈 uc, Propose | proposal 〉;

upon event 〈 P , Crash | p 〉 do
if p = s ∧ proposal = ⊥ then

proposal := �;
trigger 〈 uc, Propose | proposal 〉;

upon event 〈 uc, Decide | decided 〉 do
trigger 〈 utrb, Deliver | s, decided 〉;

s

p

q

r

utrb−broadcast(m)

uc−propose()

uc−propose(m)

uniform consensus

uc−propose(m)

P−crash(s)
utrb−deliver(m)

uc−decide(m)

Figure 6.2: Sample execution of consensus-based uniform terminating reliable
broadcast

uc-decides more than once. Therefore, every process also utrb-delivers at most
one message. The strong completeness property of the failure detector, the validity
property of best-effort broadcast, and the termination property of consensus ensure
furthermore that every correct process eventually utrb-delivers a message.

296 6 Consensus Variants

The integrity property of uniform TRB follows directly from the no creation
property of best-effort broadcast and from the validity property of consensus: if a
process utrb-delivers a message m then either m = � or m was utrb-broadcast by
process s.

Finally, the uniform agreement property of uniform consensus implies also the
uniform agreement property of TRB.

Performance. The algorithm requires the execution of one underlying uniform con-
sensus instance, invokes a best-effort broadcast primitive to broadcast one message,
and accesses a perfect failure detector. The algorithm does not add anything to the
cost of these primitives. If no process fails and ignoring the messages sent by the
failure detector, the algorithm exchanges O(N) messages and requires one addi-
tional communication step for the initial best-effort broadcast, on top of the uniform
consensus primitive.

Variant. Our TRB specification has a uniform agreement property. As for reliable
broadcast, we could specify a regular variant of TRB with a regular agreement
property that refers only to messages delivered by correct processes. In that case,
Algorithm 6.3 can still be used to implement regular TRB when the underlying
uniform consensus abstraction is replaced by a regular one.

6.4 Fast Consensus

6.4.1 Overview

The consensus primitive plays a central role in distributed programming, as illus-
trated by the many variants and extensions of consensus presented in this chapter.
Therefore, a consensus algorithm with good performance directly accelerates many
implementations of other tasks as well. Many consensus algorithms invoke multiple
communication steps with rounds of message exchanges among all processes. But
some of these communication steps may appear redundant, especially for situations
in which all processes start with the same proposal value. If the processes had a
simple way to detect that their proposals are the same, consensus could be reached
faster.

This section introduces a variation of the consensus primitive with a require-
ment to terminate particularly fast under favorable circumstances. A fast consensus
abstraction is a specialization of the consensus abstraction from Chap. 5 that must
terminate in one round when all processes propose the same value. In other words,
the abstraction imposes a performance condition on consensus algorithms for the
case of equal input values and requires that every process decides after one com-
munication step. This improvement is not for free, and comes at the price of lower
resilience.

With the fast consensus primitive, we introduce a performance criterion into a
module specification for the first time in this book. This is a common practice for
more elaborate abstractions. One has to look inside algorithms that implement the

6.4 Fast Consensus 297

Module 6.5: Interface and properties of uniform fast consensus
Module:

Name: UniformFastConsensus, instance ufc.

Events:

Request: 〈 ufc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 ufc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

UFC1: Fast termination: If all processes propose the same value then every correct
process decides some value after one communication step. Otherwise, every correct
process eventually decides some value.

UFC2: Validity: If a process decides v, then v was proposed by some process.

UFC3: Integrity: No process decides twice.

UFC4: Uniform agreement: No two processes decide differently.

abstraction for judging whether it satisfies the property, in contrast to the usual
safety properties, for which the correctness of an algorithm can be verified from
its behavior at the module interface alone.

6.4.2 Specification

We consider the fast consensus primitive in its uniform variant. The specification
of a uniform fast consensus primitive is shown in Module 6.5. Compared to the
uniform consensus abstraction (specified in Module 5.2), the interface and three of
the four properties (validity, integrity, and uniform agreement) remain the same,
only the termination condition changes. The strengthened fast termination property
requires that every correct process decides after one communication step, in all those
executions where the proposal values of all processes are the same.

The number of communication steps used by a primitive is directly determined
by the algorithm that implements it. Recall that a communication step of a process
occurs when a process sends a message to another process and the latter receives this
message. Basic communication steps are typically encapsulated by some underlying
modules, such as perfect point-to-point links and best-effort broadcast. Therefore,
one also has to consider the implementations of the underlying modules to determine
the performance of an algorithm.

6.4.3 Fail-Silent Algorithm: From Uniform Consensus to Uniform
Fast Consensus

One can add fast termination to any consensus implementation in a modular way.
We present such a transformation “From Uniform Consensus to Uniform Fast

298 6 Consensus Variants

Algorithm 6.4: From Uniform Consensus to Uniform Fast Consensus

Implements:
UniformFastConsensus, instance ufc.

Uses:
BestEffortBroadcast, instance beb;
UniformReliableBroadcast, instance urb;
UniformConsensus, instance uc.

upon event 〈 uc, Init 〉 do
proposal := ⊥;
decision := ⊥;
val := [⊥]N ;

upon event 〈 ufc, Propose | v 〉 do
proposal := v;
trigger 〈 beb, Broadcast | [PROPOSAL, proposal] 〉;

upon event 〈 beb, Deliver | p, [PROPOSAL, v] 〉 do
val[p] := v;
if #(val) = N − f ∧ decision = ⊥ then

if exists v �= ⊥ such that #
({p ∈ Π | val[p] = v}) = N − f then

decision := v;
trigger 〈 ufc, Decide | v 〉;
trigger 〈 urb, Broadcast | [DECIDED, decision] 〉;

else
if exists v �= ⊥ such that #

({p ∈ Π | val[p] = v}) ≥ N − 2f then
proposal := v;

val := [⊥]N ;
trigger 〈 uc, Propose | proposal 〉;

upon event 〈 urb, Deliver | p, [DECIDED, v] 〉 do
if decision = ⊥ then

decision := v;
trigger 〈 ufc, Decide | v 〉;

upon event 〈 uc, Decide | v 〉 do
if decision = ⊥ then

decision := v;
trigger 〈 ufc, Decide | v 〉;

Consensus” in Algorithm 6.4. It is a fail-silent algorithm and comes at the cost of
reduced resilience. Specifically, implementing fast consensus requires that N > 3f
instead of only N > 2f . The algorithm additionally uses a uniform reliable
broadcast primitive.

The transformation first performs one round of all-to-all message exchanges, in
which every process broadcasts its proposal value with best-effort guarantees. When
a process receives only messages with the same proposal value v in this round,
from N − f distinct processes, it decides v. This step ensures the fast termination

6.4 Fast Consensus 299

property; such a process decides fast. Otherwise, if the messages received in the first
round contain multiple distinct values, but still more than N − 2f messages contain
the same proposal value w, the process adopts w as its own proposal value. Unless
the process has already decided, it then invokes an underlying uniform consensus
primitive with its proposal and lets it agree on a decision.

In order to ensure that the algorithm terminates under all circumstances, even if
some process, say p, has decided fast and does not invoke the underlying consensus
module, the algorithm additionally asks p to reliably broadcast its decision value
with a uniform agreement guarantee. Hence, if p is correct, every correct process
may, eventually, decide after receiving the decision value from the fast-deciding
process.

The heart of the transformation is the condition under which a process adopts
another proposal value after the first round. Namely, it may occur that some pro-
cesses decide fast, say, some value v, but others resort to the uniform consensus
primitive. In this case, the algorithm must ensure that v remains the only possible
decision value. The condition achieves that because a process that decides fast has
received v from N − f processes. As at most f of these processes may fail and
because N > 3f , every other correct process still receives v from at least N − 2f
processes. Hence, all processes propose v in the underlying consensus primitive.

Correctness. For the fast termination property, observe first that if all processes
propose the same value v then every process may indeed decide after one com-
munication step, that is, after receiving N − f PROPOSAL messages containing v.
Otherwise, the algorithm terminates under the combination of the N > 3f con-
dition with the assumptions made about the underlying consensus implementation,
because every correct process either decides fast and urb-broadcasts its decision or
invokes the uniform consensus instance uc. If no correct process reliably broadcasts
a decision then all of them invoke uniform consensus and its termination property
ensures termination.

The validity property is straightforward to verify from the algorithm. The role
of the variable decision ensures that no process decides twice and establishes the
integrity property.

Given this discussion, we now consider the uniform agreement property. There
are three cases to consider: First, suppose two processes decide some value v after
the first round. As each of them has beb-delivered N − f PROPOSAL messages
containing v, but there are a total of N processes only and N > 3f , a message from
some sender must have been beb-delivered by both processes. Hence, they decide
the same value.

For the second case, assume no process urb-broadcasts a DECIDED message.
Then every process ufc-decides after uc-deciding, and agreement follows from the
agreement property of uniform consensus.

In the third case, some process has decided fast and received N−f messages with
the same proposal v in the first round. Therefore, every other process that receives
N − f messages in the first round finds at least N − 2f among them containing v.
Hence, every process may only uc-propose v in the underlying uniform consensus
primitive. According to its validity property, it uc-decides v.

300 6 Consensus Variants

Performance. If the initial proposal values are not the same for all processes then
the transformation adds at most communication step to the underlying uniform
consensus primitive.

6.5 Fast Byzantine Consensus

6.5.1 Overview

One can also require that a Byzantine consensus primitive decides fast and takes
only one round in executions where all proposed values are the same. This section
introduces a fast Byzantine consensus abstraction with this feature.

Compared to fast consensus with crash-stop process abstractions, however, one
cannot require that an algorithm always decides in one round whenever all correct
processes propose the same value. The reason is that Byzantine processes might
propose arbitrary values, and a correct process cannot distinguish such a value
from a value proposed by a correct process. As illustrated by the different valid-
ity properties for Byzantine consensus introduced in the previous chapter, ensuring
a particular consensus decision value in the fail-arbitrary model may be problem-
atic. Our fast Byzantine consensus abstraction, therefore, adopts the approach that
was already taken for weak Byzantine consensus; it requires a fast decision only in
executions where all processes are correct.

Compared to the previous abstractions of Byzantine consensus, deciding fast
in executions with unanimous proposals requires to lower the resilience. Specifi-
cally, the algorithm presented here assumes that N > 5f ; one can show that this is
optimal.

6.5.2 Specification

Our notion of fast Byzantine consensus is specified by Module 6.6. It has the
same request and indication events as all consensus abstractions. The primitive cor-
responds to a (strong) Byzantine consensus primitive with the strengthened fast
termination property (that is, properties FBC2–FBC4 are the same as properties
BC2–BC4 of Module 5.11).

The fast termination property requires that any fast Byzantine consensus alg-
orithm terminates after one communication step if all correct processes propose
the same value, but only in failure-free executions, that is, in executions without
Byzantine processes.

A variant of fast Byzantine consensus with a stronger fast termination property is
explored in an exercise (at the end of the chapter). It does not restrict fast decisions
to executions with only correct processes.

6.5.3 Fail-Arbitrary Algorithm: From Byzantine Consensus to Fast
Byzantine Consensus

As was the case for fast consensus in the fail-stop model, fast Byzantine consen-
sus can be realized in a modular way from a Byzantine consensus abstraction.

6.5 Fast Byzantine Consensus 301

Module 6.6: Interface and properties of fast Byzantine consensus
Module:

Name: FastByzantineConsensus, instance fbc.

Events:

Request: 〈 fbc, Propose | v 〉: Proposes value v for consensus.

Indication: 〈 fbc, Decide | v 〉: Outputs a decided value v of consensus.

Properties:

FBC1: Fast termination: If all processes are correct and propose the same value,
then every correct process decides some value after one communication step.
Otherwise, every correct process eventually decides some value.

FBC2: Strong validity: If all correct processes propose the same value v, then
no correct process decides a value different from v; otherwise, a correct process
may only decide a value that was proposed by some correct process or the special
value �.

FBC3: Integrity: No correct process decides twice.

FBC4: Agreement: No two correct processes decide differently.

We describe a transformation “From Byzantine Consensus to Fast Byzantine Con-
sensus” in Algorithm 6.5. The transformation is similar to Algorithm 6.4, but
requires some changes. These concern the lowered resilience of the algorithm, it
requires N > 5f , and the higher numbers of equal values that are needed to decide
fast. One can show that this condition is necessary.

As a minor difference to the previous algorithm, every process always invokes
the underlying (strong) Byzantine consensus primitive here, even after deciding fast.
Recall that in Algorithm 6.4, only processes that did not decide fast proposed a value
to the uniform consensus primitive. This change simplifies the algorithm and avoids
complications arising when broadcasting a decision value with Byzantine processes.

Correctness. We argue why Algorithm 6.5 provides fast Byzantine consensus if
N > 5f . The fast termination property follows directly from the algorithm
because of the assumption that all processes must be correct and propose the same
value, in order to decide in one round. Hence, no Byzantine process could interfere
by sending a different value. Furthermore, a process may either decide fast, i.e.,
after receiving only equal PROPOSAL messages or after deciding in the underly-
ing Byzantine consensus instance bc. Because every correct process bc-proposes a
value, it also bc-decides a value by the properties of Byzantine consensus.

The strong validity property holds because the underlying (strong) Byzantine
consensus primitive satisfies the same strong validity property, and the algorithm
directly maps proposal values to the primitive and decision values from the primitive
to fast consensus.

302 6 Consensus Variants

Algorithm 6.5: From Byzantine Consensus to Fast Byzantine Consensus

Implements:
FastByzantineConsensus, instance fbc.

Uses:
AuthPerfectPointToPointLinks, instance al;
ByzantineConsensus, instance bc.

upon event 〈 fbc, Init 〉 do
proposal := �;
decision := ⊥;
val := [⊥]N ;

upon event 〈 fbc, Propose | v 〉 do
proposal := v;
forall q ∈ Π do

trigger 〈 al, Send | q, [PROPOSAL, proposal] 〉;

upon event 〈 al, Deliver | p, [PROPOSAL, v] 〉 do
val[p] := v;
if #(val) = N − f then

if exists v �= ⊥ such that #
({p ∈ Π | val[p] = v}) = N − f then

decision := v;
trigger 〈 fbc, Decide | v 〉;

if exists v �= ⊥ such that #
({p ∈ Π | val[p] = v}) > N−f

2
then

proposal := v;
val := [⊥]N ;
trigger 〈 bc, Propose | proposal 〉;

upon event 〈 bc, Decide | v 〉 do
if decision = ⊥ then

decision := v;
trigger 〈 fbc, Decide | v 〉;

The variable decision protects a process from deciding more than once, and this
establishes the integrity property.

For the agreement property, consider first the case where two correct processes p
and q decide fast. Note that among the PROPOSAL messages received by a correct
process, at least N − 2f were sent by correct processes. Because N > 5f , the
two sets of N − 2f PROPOSAL messages from correct processes collected by p
and q overlap (actually, in more than f messages). Therefore, the same value v is
contained in the sets of p and q, and both processes also decide v fast.

Next, suppose that some correct process p decides a value v fast and another
correct process q fbc-decides after bc-deciding. The fact that p decided fast implies
that it received at least N − f PROPOSAL messages containing v. As there are only
N processes in the system overall, at most f further correct processes may have
proposed a value different from v. Hence, every other correct process receives v in at
least N−3f PROPOSAL messages, accounting for the potentially different proposals

6.6 Nonblocking Atomic Commit 303

from the up to f further correct processes and for the PROPOSAL messages from the
f Byzantine processes. As

N − 3f >
N − f

2
under the assumption for the algorithm, it follows that every correct process
bc-proposes v in the underlying consensus primitive. Hence, every correct process
bc-decides v and therefore, also process q fbc-decides v.

Finally, if no process decides fast then the agreement property directly follows
from the underlying Byzantine consensus primitive.

Performance. The transformation adds one round of message exchanges among
all processes and one communication step to the underlying Byzantine consensus
primitive.

6.6 Nonblocking Atomic Commit

6.6.1 Overview

The unit of data processing in a distributed information system is a transaction.
Among other applications, transactions are a central concept for the design of
database management systems. A transaction corresponds to a portion of a program
that is delimited by a begin statement and an end statement. A transaction typically
satisfies atomic semantics in two senses:

Concurrency atomicity: All transactions appear to execute one after the other,
i.e., they are serializable; serializability is usually guaranteed through some dis-
tributed locking scheme or with some optimistic concurrency control mechanism.

Failure atomicity: Every transaction appears to execute either completely and
thereby commits or not at all, in which case it is said to abort.

Ensuring these two forms of atomicity in a distributed environment is not triv-
ial because the transaction might be accessing information on different processes,
called data managers, which maintain the relevant data items. The data managers
may have different local state and different opinions on whether the transaction
should commit or not. For example, some data managers might observe conflicting
concurrent data accesses, whereas others might not. Similarly, some data managers
might detect logical or physical problems that prevent a transaction from commit-
ting. For instance, there may not be enough money to make a bank transfer, there
may be concurrency-control problems, such as the risk of violating serializability in
a database system, or there could be a storage issue, such as when the disk is full and
a data manager has no way to guarantee the durability of the transaction’s updates.

Despite differences between their opinions, all data managers need to make sure
that they either all discard the new updates, in case the transaction aborts, or make
them visible, in case the transaction commits. In other words, all data managers need
to agree on the same outcome for the transaction.

304 6 Consensus Variants

The nonblocking atomic commit (NBAC) abstraction is used precisely to solve
this problem in a reliable way. The processes, each representing a data manager,
agree on the outcome of a transaction, which is either to commit or to abort the
transaction. Every process initially proposes a value for this decision, which is either
a COMMIT value or an ABORT value, depending on its local state and opinion about
the transaction.

By proposing COMMIT for a transaction, a process expresses that it is willing and
able to commit the transaction. Typically, a process witnesses the absence of any
problem during the execution of the transaction. Furthermore, the process promises
to make the update of the transaction permanent. This, in particular, means that the
process has stored the temporary update of the transaction in stable storage: should
it crash and recover, it can install a consistent state including all updates of the
committed transaction.

By proposing ABORT, a data manager process vetoes the commitment of the
transaction and states that it cannot commit the transaction. This may occur for
many reasons, as we pointed out earlier.

6.6.2 Specification

The nonblocking atomic commit abstraction is defined by 〈 Propose | v 〉 and
〈 Decide | v 〉 events, which are similar to those in the interface of the consensus
abstraction, but require that v is either COMMIT or ABORT. The abstraction satis-
fies the properties listed in Module 6.7. At first glance, the problem looks like binary
consensus: the processes propose one of two values and need to decide on a common
final value. There is, however, a fundamental difference: in consensus, any proposed
value can be decided. In the atomic commit abstraction, a value of COMMIT cannot
be decided if any of the processes has proposed ABORT (this would mean that some
data managers can indeed commit the transaction and ensure its durability whereas
others cannot). When a process expresses its veto to a transaction by proposing
ABORT, the NBAC abstraction must honor this. As another difference to consensus,
nonblocking atomic commit may decide ABORT also if some process crashes, even
though all processes have proposed COMMIT.

6.6.3 Fail-Stop Algorithm: Consensus-Based Nonblocking Atomic Commit

Algorithm 6.6 implements nonblocking atomic commit using three underlying abs-
tractions: a perfect failure detector P , a uniform consensus instance uc, and a best-
effort broadcast abstraction beb. In order to distinguish the value proposed to the
NBAC abstraction from the value proposed to the underlying consensus abstraction,
we call the first a vote and the second a proposal.

The algorithm works as follows. Every process p broadcasts its initial vote
(ABORT or COMMIT) to all other processes using best-effort broadcast. Then it
waits to hear something from every process q in the system: either to beb-deliver the
vote of q or to detect the crash of q. If p detects the crash of any process or receives a
vote ABORT from any process then p directly (without waiting for more messages)

6.6 Nonblocking Atomic Commit 305

Module 6.7: Interface and properties of nonblocking atomic commit
Module:

Name: NonBlockingAtomicCommit, instance nbac.

Events:

Request: 〈 nbac, Propose | v 〉: Proposes value v = COMMIT or v = ABORT for
the commit.

Indication: 〈 nbac, Decide | v 〉: Outputs the decided value for the commit.

Properties:

NBAC1: Termination: Every correct process eventually decides some value.

NBAC2: Abort-Validity: A process can only decide ABORT if some process
proposes ABORT or a process crashes.

NBAC3: Commit-Validity: A process can only decide COMMIT if no process
proposes ABORT.

NBAC4: Integrity: No process decides twice.

NBAC5: Uniform Agreement: No two processes decide differently.

invokes the consensus abstraction with ABORT as its proposal. If p receives the vote
COMMIT from all processes then p invokes consensus with COMMIT as its proposal.
Once the consensus abstraction uc-decides, every process nbac-decides according
to the outcome of consensus.

Correctness. The termination property of nonblocking atomic commit follows from
the validity property of best-effort broadcast, from the termination property of con-
sensus, and from the strong completeness property of the perfect failure detector.
The uniform agreement property of NBAC directly follows from that of the uniform
consensus abstraction. Furthermore, the integrity property of NBAC holds because
the no duplication property of best-effort broadcast and the integrity property of
uniform consensus ensure that no process nbac-decides twice.

Consider now the two validity properties of NBAC. The commit-validity prop-
erty requires that COMMIT is nbac-decided only if all processes nbac-propose
COMMIT. Assume by contradiction that some process p nbac-proposes ABORT,
whereas some process q nbac-decides COMMIT. According to the algorithm, for
q to nbac-decide COMMIT, it must also have uc-decided COMMIT in the consen-
sus primitive. Because of the validity property of consensus, some process r must
have proposed COMMIT to the consensus abstraction. Given the validity property of
the best-effort broadcast primitive, one can distinguish two cases: either process p
(that votes ABORT) crashes and process r does not beb-deliver the vote from p or
r beb-delivers the vote ABORT from p. In both cases, according to the algorithm,
process r proposes ABORT to uniform consensus: a contradiction. Consider now
the abort-validity property of NBAC. It requires that ABORT is nbac-decided only

306 6 Consensus Variants

Algorithm 6.6: Consensus-Based Nonblocking Atomic Commit

Implements:
NonBlockingAtomicCommit, instance nbac.

Uses:
BestEffortBroadcast, instance beb;
UniformConsensus, instance uc;
PerfectFailureDetector, instance P .

upon event 〈 nbac, Init 〉 do
voted := ∅;
proposed := FALSE;

upon event 〈 P , Crash | p 〉 do
if proposed = FALSE then

trigger 〈 uc, Propose | ABORT 〉;
proposed := TRUE;

upon event 〈 nbac, Propose | v 〉 do
trigger 〈 beb, Broadcast | v 〉;

upon event 〈 beb, Deliver | p, v 〉 do
if v = ABORT ∧ proposed = FALSE then

trigger 〈 uc, Propose | ABORT 〉;
proposed := TRUE;

else
voted := voted ∪ {p};
if voted = Π ∧ proposed = FALSE do

trigger 〈 uc, Propose | COMMIT 〉;
proposed := TRUE;

upon event 〈 uc, Decide | decided 〉 do
trigger 〈 nbac, Decide | decided 〉;

if some process nbac-proposes ABORT or some process crashes. Assume by contra-
diction that all processes nbac-propose a vote of COMMIT and no process crashes,
whereas some process p nbac-decides ABORT. For p to nbac-decide Abort, due the
validity property of uniform consensus, some process q must uc-propose ABORT.
According to the algorithm and the strong accuracy property of the failure detec-
tor though, q only uc-proposes ABORT if some process nbac-proposes Abort or P
detects a process crash: a contradiction.

Performance. The algorithm requires one execution of the consensus abstraction.
In addition to the cost of consensus and the messages communicated by the per-
fect failure detector, the algorithm exchanges O(N2) messages and requires one
communication step for the initial best-effort broadcast.

Variant. One could define a nonuniform (regular) variant of nonblocking atomic
commit, by requiring only agreement (for any two correct processes) and not uni-
form agreement (for any two processes). However, this abstraction would not be

6.7 Group Membership 307

useful in a practical setting to coordinate the termination of a transaction in a dis-
tributed database system. Indeed, the very fact that some process has decided to
commit a transaction might trigger an external action: say, the process has delivered
some cash through a bank machine. Even if that process has crashed, its decision is
important and other processes should reach the same outcome.

6.7 Group Membership

6.7.1 Overview

Some of our algorithms from the previous sections were required to make decisions
based on information about which processes were operational, crashed, or otherwise
faulty. At any point during the computation, every process maintains information
about some other processes in the system, whether they are up and running, whether
one specific process can be a trusted leader, and so on. In the algorithms we con-
sidered, this information is provided by a failure detector module available at each
process. According to the properties of a failure detector, this information reflects
the actual status of failures in the system more or less accurately. In any case, the
outputs of the failure detector modules at different processes are not always the
same. In particular, different processes may get notifications about process failures
in different orders and, in this way, obtain a different perspective of the system’s evo-
lution. If there was a way to provide better coordinated failure notifications, faster
and simpler algorithms might become possible.

A group membership (GM) abstraction provides consistent and accurate infor-
mation about which processes have crashed and which processes are correct. The
output of a group membership primitive is better coordinated and at a higher
abstraction level than the outputs of failure detectors and leader election modules.

In a second role, a membership abstraction enables dynamic changes in the group
of processes that constitute the system. Throughout this book, we have assumed a
static set Π of N processes in our system model. No new process could join the set
of processes, be included in the system, and participate in the computation. Like-
wise, a process in Π could not voluntarily leave the system or become excluded by
an administrator. And after a process had crashed, our algorithms would eventually
ignore it, but the process was still part of the system.

A group membership primitive also coordinates such join and leave operations
and provides a dynamic set of processes in the system. As with failure notifications,
it is desirable that group-membership information is provided to the processes in a
consistent way.

To simplify the presentation of the group membership concept, however, we will
only describe how it implements its first role above, i.e., to give consistent infor-
mation about process crashes in a system with otherwise static membership. We
assume that the initial membership of the group is the complete set of processes,
and subsequent membership changes are solely caused by crashes. We do not con-
sider explicit join and leave operations, although they are important for practical
systems. Group membership introduces a new notion that defines the current set of

308 6 Consensus Variants

active processes in the system, which is also the basis for modeling join and leave
operations. One can easily extend our basic abstraction with such operations. Refer-
ence pointers to the literature and to practical systems that support such operations
are given in the notes at the end of this chapter.

6.7.2 Specification

A group is the set of processes that participate in the computation. At any point in
time, the current membership of the group is called the group view, or simply the
view. More precisely, a view V = (id, M) is a tuple that contains a unique numeric
view identifier id and a set M of view member processes. Over time, the system may
evolve through multiple views. The initial group view is the entire system, denoted
by V0 = (0, Π), which contains view identifier 0 and includes the complete set of
processes Π in the system. The group membership abstraction provides information
about a new view V through an indication event 〈View | V 〉. When a process outputs
a view V , it is said to install a new view V , after going through a view change. Group
membership offers no request events to the layer above.

We consider a monotone group membership abstraction, where all correct pro-
cesses install multiple new views in a sequence with monotonically increasing view
identifiers. Furthermore, when two different processes install a view with the same
identifier, the view memberships must be the same. Compared to the outputs of our
failure-detector abstractions, views therefore offer much better coordination among
the processes.

The group membership abstraction is characterized by the properties listed in
Module 6.8. Its uniform agreement and monotonicity properties require that every

Module 6.8: Interface and properties of group membership
Module:

Name: GroupMembership, instance gm.

Events:

Indication: 〈 gm, View | V 〉: Installs a new view V = (id, M) with view
identifier id and membership M .

Properties:

GM1: Monotonicity: If a process p installs a view V = (id, M) and subsequently
installs a view V ′ = (id′, M ′), then id < id′ and M ⊇ M ′.

GM2: Uniform Agreement: If some process installs a view V = (id, M) and
another process installs some view V ′ = (id, M ′), then M = M ′.

GM3: Completeness: If a process p crashes, then eventually every correct process
installs a view (id, M) such that p �∈ M .

GM4: Accuracy: If some process installs a view (id, M) with q �∈ M for some
process q ∈ Π , then q has crashed.

6.7 Group Membership 309

process installs a sequence of views with increasing identifiers and shrinking mem-
bership, as mentioned earlier. The completeness and accuracy properties are similar
to those of the perfect failure detector abstraction and dictate the conditions under
which a process can be excluded from a group.

6.7.3 Fail-Stop Algorithm: Consensus-Based Group Membership

Algorithm 6.7, which is called “Consensus-Based Group Membership,” imple-
ments the group membership abstraction assuming a uniform consensus abstraction
and a perfect failure-detector abstraction. At initialization, each process installs a
view including all the processes in the system. From that point on, the algorithm
remains idle until some process detects that another process has crashed. As differ-
ent processes may detect crashes in different orders, a new view cannot be output
immediately after detecting a failure and in a unilateral way; the processes first
need to coordinate about the composition of the new view. The algorithm executes
an instance of uniform consensus to decide which processes are to be included in
the next view. A process invokes consensus only after it has detected that at least
one member of the current view have crashed. The wait flag is used to prevent a
process from triggering a new consensus instance before the previous consensus

Algorithm 6.7: Consensus-Based Group Membership

Implements:
GroupMembership, instance gm.

Uses:
UniformConsensus (multiple instance);
PerfectFailureDetector, instance P .

upon event 〈 gm, Init 〉 do
(id, M) := (0, Π);
correct := Π;
wait := FALSE;
trigger 〈 gm, View | (id, M) 〉;

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon correct � M ∧ wait = FALSE do
id := id + 1;
wait := TRUE;
Initialize a new instance uc.id of uniform consensus;
trigger 〈 uc.id, Propose | correct 〉;

upon event 〈 uc.i, Decide | M ′ 〉 such that i = id do
M := M ′;
wait := FALSE;
trigger 〈 gm, View | (id, M) 〉;

310 6 Consensus Variants

uc−propose(q,r,s)

uc−propose(p,r,s)

P−crash(p)

uc−propose(r,s)

P−crash(q)

P−crash(p)P−crash(q) uc−propose(r,s)

gm−view(2,{r,s})gm−view(1,{q,r,s})

uniform
consensus

uniform
consensus

s

r

q

p

gm−view(0,{p,q,r,s})

Figure 6.3: Sample execution of consensus-based group membership

instance has terminated. When the consensus decides, a new view is delivered. In
order to preserve the uniform agreement property, a process p may sometimes install
a view containing a process that p already knows to have crashed, because the per-
fect failure-detector module at p has already output that process. In this case, after
installing that view, p will initiate a new consensus instance to trigger the installation
of another view that would exclude the crashed process.

An execution of the “Consensus-Based Group Membership” algorithm is illus-
trated in Fig. 6.3. In the execution with four processes p, q, r, and s, the first two
processes, p and q, crash initially. Process s subsequently detects the crash of p and
initiates a consensus instance to define a new view without p. Process r then detects
the crash of q and proposes a different view to consensus. The first consensus ins-
tance decides the proposal from s, and, as a result, process p is excluded from the
view with identifier 1. As process r has already detected the crash of q, it triggers
another consensus instance to exclude q. Eventually, process s also detects the crash
of q and also participates in the second consensus instance to install the view with
identifier 2. This view includes only the correct processes.

As a possible optimization of the algorithm, consider the moment when a process
has decided on a set M ′ in an instance of uniform consensus and is about to start
a new view (id, M ′). Then the process might also set correct to correct ∩ M ′, for
accelerating the detection of crashed processes.

Algorithm 6.7 actually provides stronger guarantees than required by the group
membership abstraction. In particular, it satisfies a linear group membership prop-
erty in the sense that every process installs the same sequence of views and never
skips a view in the sequence. In contrast, the monotonicity property would actually
allow that a process installs a view with a much higher identifier than its current
view, or that all process skip a view with a particular identifier. Furthermore, the
algorithm also ensures a strict form of the monotonicity property, in that the mem-
bership of a view installed after the current one is always strictly smaller than the
membership of the current view. Monotonicity allows a subsequent view to have the

6.8 View-Synchronous Communication 311

same membership. There are practical group communication systems that exploit
this flexibility of our group membership abstraction.

Correctness. The monotonicity property follows directly from the algorithm,
because a process only initiates the formation of a new view when its set cor-
rect becomes properly contained in the current view membership. The uniform
agreement property follows directly from the uniform agreement property of the
underlying consensus abstraction.

The completeness property follows from the strong completeness property of the
perfect failure-detector abstraction, which says that if a process p crashes then even-
tually every correct process detects the crash. According to the algorithm, there will
be a consensus instance in which every proposal value no longer includes p. By the
validity property of consensus, this means that they eventually install a view that
does not include p.

The accuracy property of the group membership algorithm follows analogously
from the use of the perfect failure detector P . As some process p proposed a set of
processes to consensus that did not include a process q, process q must have been
detected to have crashed by process p. In this case, the strong accuracy property of
P implies that q must have crashed.

Performance. The algorithm requires at most one consensus execution for each
process that crashes.

Variant. We focus here only on the uniform variant of the group membership
abstraction: a regular group membership abstraction is specified by replacing the
uniform agreement property with a regular agreement property. An algorithm imple-
menting a regular group membership abstraction might use regular consensus
instead of uniform consensus.

6.8 View-Synchronous Communication

6.8.1 Overview

The view-synchronous communication abstraction is also called view-synchronous
broadcast and integrates two abstractions introduced earlier: reliable broadcast and
group membership. In the following, we discuss a subtle issue that arises when these
two primitives are combined. This difficulty motivates the introduction of view-
synchronous communication as a new first-class primitive.

Consider the following scenario of a group of processes exchanging messages,
where one of them, say, process q, crashes. Assume that this failure is detected and
that the membership abstraction installs a new view V = (id, M) at the processes
such that q �∈ M . Suppose that after V has been installed, some process p delivers a
message m that was originally broadcast by q. Note that such a scenario is possible,
as nothing in the specification of reliable broadcast prevents a message that was
broadcast by a process that has failed from being delivered later. In fact, in order to
ensure the agreement property of reliable broadcast, messages originally broadcast

312 6 Consensus Variants

by q are typically relayed by other processes, especially for the case where q has
failed. However, it feels strange and counterintuitive for the application programmer
to handle a message from a process q in view V , from which q has been expelled.
It would, thus, be desirable for p to simply discard m. Unfortunately, it may also
happen that some other process r has already delivered m before installing view V .
So, in this scenario, the communication primitive is faced with two conflicting goals:
to ensure the reliability of the broadcast, which means that m must be delivered by
p, but, at the same time, to guarantee the consistency of the view information, which
means that m cannot be delivered in the new view and p must discard it.

The solution to this dilemma, which is offered by view-synchronous commu-
nication, integrates the installation of views with the delivery of messages and
orders every new view with respect to the message flow. If a message m is del-
ivered by a (correct) process before it installs a view V then m should be delivered
by all processes that install V , before they install the view. This abstraction is
also called view-synchronous broadcast because it gives the illusion that failures
are synchronized and appear to happen atomically with respect to the delivered
messages.

6.8.2 Specification

View-synchronous communication extends both the reliable broadcast abstraction
and the group membership abstraction: as a consequence, its interface contains the
events of both primitives. Specifically, the interface of a view-synchronous com-
munication primitive contains a request event 〈 Broadcast | m 〉 to broadcast a
message m, an indication event 〈 Deliver | p, m 〉 that outputs a message m from
sender p (from Module 3.2), and another indication event 〈 View | V 〉, which
installs view V (from Module 6.8). The abstraction adds two more events used for
synchronization with the communication layer above; these are introduced after the
formal definition.

Module 6.9 states the properties of view-synchronous communication; it defines
the view synchrony concept as the combination of group membership, in a uniform
variant as considered in the previous section, with the regular variant of reliable
broadcast. Other combinations are possible, in particular combinations of regular
and uniform variants and, optionally, adding the properties of FIFO delivery order
and causal delivery order for reliable broadcast. Given such a wide choice, there are
many different possible flavors of view-synchronous communication.

In Module 6.10, we introduce a uniform view-synchronous communication abs-
traction, obtained by combining the group membership abstraction with the uniform
reliable broadcast abstraction.

The new element in the specification of view-synchronous communication, which
integrates the way that messages should be delivered with respect to view changes,
lies in the view inclusion property that first appears in Module 6.9. We say that
a process delivers or broadcasts a message m in a view V if the process deliv-
ers or broadcasts m, respectively, after installing view V and before installing any
subsequent view. The view inclusion property requires that every message must be

6.8 View-Synchronous Communication 313

Module 6.9: Interface and properties of view-synchronous communication
Module:

Name: ViewSynchronousCommunication, instance vs.

Events:

Request: 〈 vs, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 vs, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Indication: 〈 vs, View | V 〉: Installs a new view V = (id, M) with view
identifier id and membership M .

Indication: 〈 vs, Block 〉: Requests that no new messages are broadcast temporarily
until the next view is installed.

Request: 〈 vs, BlockOk 〉: Confirms that no new messages will be broadcast until
the next view is installed.

Properties:

VS1: View Inclusion: If some process delivers a message m from process p in
view V , then m was broadcast by p in view V .

VS2–VS5: Same as properties RB1–RB4 in (regular) reliable broadcast (Mod-
ule 3.2).

VS6–VS9: Same as properties GM1–GM4 in group membership (Module 6.8).

delivered only in the same view in that it was broadcast. This solves the problem
mentioned before, as the condition implies that messages coming from processes
that have already been excluded from a view can no longer be delivered.

In order to make the view inclusion property feasible, the interface and proper-
ties of view-synchronous communication contain an additional feature. As messages
must be delivered in the same view in which they are broadcast, the view change
poses a problem: if new messages are continuously broadcast then the installation of
a new view may be postponed indefinitely. In other words, it is not possible to imple-
ment the view-synchronous communication abstraction without any control on the
broadcast pattern. Therefore, the interface of this abstraction includes two specific
events that handle the interaction between the view-synchronous communication
primitive and the layer above (i.e., the application layer). They provide flow control
through a 〈 Block 〉 indication event and a 〈 BlockOk 〉 request event. By triggering
the 〈 Block 〉 event, the view-synchronous communication layer requests that the
higher layer stops broadcasting messages in the current view. When the higher-level
module agrees to that, it acknowledges the block request with the 〈 BlockOk 〉 event.

We assume that the layer above is well behaved and that whenever it is asked
to stop broadcasting messages (through a request to block), then it indeed does not
trigger any further broadcasts after acknowledging the request to block. It may again

314 6 Consensus Variants

Module 6.10: Interface and properties of uniform view-synchronous communication
Module:

Name: UniformViewSynchronousCommunication, instance uvs.

Events:

Request: 〈 uvs, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 uvs, Deliver | p, m 〉: Delivers a message m broadcast by process p.

Indication: 〈 uvs, View | V 〉: Installs a new view V = (id, M) with view
identifier id and membership M .

Indication: 〈 uvs, Block 〉: Requests that no new messages are broadcast temporar-
ily until the next view is installed.

Request: 〈 uvs, BlockOk 〉: Confirms that no new messages will be broadcast until
the next view is installed.

Properties:

UVS1–UVS4 and UVS6–UVS9: Same as properties VS1–VS4 and VS6–VS9 in
view-synchronous communication (Module 6.9).

UVS5: Same as property URB4 (uniform agreement) in uniform reliable broadcast
(Module 3.3).

broadcast new messages after the next view is installed. On the other hand, we
require from the view-synchronous communication abstraction that it only requests
the higher layer to block if a view change is imminent, i.e., only if a process that is
a member of the current view has failed and a new view must be installed. (We do
not explicitly state these properties in Modules 6.9 and 6.10 as we consider them to
be of a different nature than the view inclusion property.)

6.8.3 Fail-Stop Algorithm: TRB-Based View-Synchronous Communication

Algorithm 6.8–6.9, called “TRB-Based View-Synchronous Communication,” im-
plements the view-synchronous communication abstraction according to Module 6.9.
The keys element of the algorithm is a collective flush procedure, executed by the
processes after they receive a view change from the underlying group membership
primitive and before they install this new view at the view-synchronous communi-
cation level. During this step, every process uses an instance of the uniform TRB
primitive to rebroadcast all messages that it has view-synchronously delivered in the
current view.

The algorithm for an instance vs of view-synchronous communication works as
follows. During its normal operation within a view V = (vid, M), a process sim-
ply adds vid to every message that it receives for vs-broadcast and broadcasts it
in a DATA message using an underlying best-effort broadcast primitive beb. When

6.8 View-Synchronous Communication 315

Algorithm 6.8: TRB-Based View-Synchronous Communication (part 1, data transmission)

Implements:
ViewSynchronousCommunication, instance vs.

Uses:
UniformTerminatingReliableBroadcast (multiple instances);
GroupMembership, instance gm;
BestEffortBroadcast, instance beb.

upon event 〈 vs, Init 〉 do
(vid, M) := (0, ∅); // current view V = (vid, M)
flushing := FALSE; blocked := TRUE;
inview := ∅;
delivered := ∅;
pendingviews := [];
trbdone := ∅;

upon event 〈 vs, Broadcast | m 〉 such that blocked = FALSE do
inview := inview ∪ {(self, m)};
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | self, m 〉;
trigger 〈 beb, Broadcast | [DATA, vid, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, id, m] 〉 do
if id = vid ∧ blocked = FALSE ∧ m �∈ delivered then

inview := inview ∪ {(p, m)};
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | p, m 〉;

a process beb-delivers a DATA message with a view identifier that matches vid,
the identifier of the current view, it immediately vs-delivers the message contained
inside. Every process also maintains a set inview, with all sender/message pairs for
the messages that it vs-delivered during the normal operation of the current view.

The collective flush procedure is initiated when the group membership prim-
itive installs a new view. Each process first requests from its caller that it stops
vs-broadcasting messages in the current view. The higher layer agrees to this with
a 〈 BlockOk 〉 event at each process. When the view-synchronous communication
algorithm receives this event, it stops vs-delivering new messages and discards any
DATA message that still arrives via the underlying best-effort broadcast primitive.
The process then proceeds to resending all messages that it vs-delivered in the old
view using a TRB primitive.

Every process initializes one instance of uniform TRB for each process in M , the
membership of the old view, and rebroadcasts its set inview with the TRB instance
for which it is the sender. Eventually, when the TRB instances have delivered such
sets (or the failure indication) from all processes in M , each process computes the
union of these sets. The result is a global set of messages that have been vs-delivered
by those processes in view V that have not crashed so far. Each process then

316 6 Consensus Variants

Algorithm 6.9: TRB-Based View-Synchronous Communication (part 2, view change)

upon event 〈 gm, View | V ′ 〉 do
if V ′ = (0, M ′) for some M ′ then // start the initial view

(vid, M) := (0, M ′);
blocked := FALSE;

else
append(pendingviews, V ′);

upon pendingviews �= [] ∧ flushing = FALSE do // start collective flush procedure
flushing := TRUE;
trigger 〈 vs, Block 〉;

upon event 〈 vs, BlockOk 〉 do
blocked := TRUE;
forall p ∈ M do

Initialize a new instance utrb.vid.p of uniform terminating reliable
broadcast with sender p;

if p = self then
trigger 〈 utrb.vid.p, Broadcast | inview 〉;

upon event 〈 utrb.id.p, Deliver | p, iv 〉 such that id = vid do
trbdone := trbdone ∪ {p};
if iv �= � then

forall (s, m) ∈ iv such that m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | s, m 〉;

upon trbdone = M ∧ blocked = TRUE do // ready to install new view
V := head(pendingviews); remove(pendingviews, V);
(vid, M) := V ;
correct := correct ∩ M ;
flushing := FALSE; blocked := FALSE;
inview := ∅;
trbdone := ∅;
trigger 〈 vs, View | (vid, M) 〉;

vs-delivers any message contained in this set that it has not yet vs-delivered, before
it installs the new view.

Note that discarding DATA messages from the old view during the flush proce-
dure and later causes no problem, because if a message is vs-delivered by any correct
process in the old view then it will be rebroadcast through the TRB abstraction and
vs-delivered as well.

Whenever a process vs-delivers a message during the algorithm, it verifies that
the message has not been vs-delivered before. The algorithm maintains a vari-
able delivered for this purpose that stores all vs-delivered messages so far (in the
current view and in earlier views).

The new views output by the underlying group membership abstraction are app-
ended to a queue pendingviews. This ensures that they do not get lost and are still

6.8 View-Synchronous Communication 317

p

q

r

s

vs−view(1,{p,q,r,s}) vs−view(2,{q,r,s})

trb.s
trb.r

trb.q
trb.p

gm−view(2,{q,r,s})

m2m1

m3

m1

m2

m2

m1

{m1,m2,m3}

m3 m1

m3

m2 m3

m3

(m2,m3)
(m1,m3)

(m1,m3)

Figure 6.4: Sample execution of the TRB-based view synchronous algorithm

processed in the same sequence as installed by group membership. When a process
has started to handle messages in a new view, it keeps checking this queue; as soon
as it finds another view at the head of the queue, it invokes the flush procedure and
this leads to the next view change. Variable pendingviews is a list of views; recall
that our operations on lists are append(L, x) to append an element x to a list L,
remove(L, x) to remove x from L, and head(L), which returns the first element
in L.

An example execution of the algorithm is shown in Fig. 6.4. Process p
vs-broadcasts two messages m1 and m2 and then crashes. Message m1 arrives at
r and s via best-effort broadcast and is immediately vs-delivered, but the best-effort
broadcast to q is delayed. On the other hand, message m2 is vs-delivered by q but not
by r and s, because the sender p crashed. Additionally, process s also vs-broadcasts
a message m3, which is soon vs-delivered by all correct processes, before a view
change is initiated. When the underlying membership module installs a new view
and excludes p from the group, the flush procedure starts. The processes initialize
an instance of TRB for each process in the old view, and each process broadcasts
the set of messages that it has vs-delivered in the old view. For instance, the TRB
with sender q outputs m2 and m3, since q has not yet vs-delivered m1. The union of
all sets output by the TRB instances, {m1, m2, m3}, must be vs-delivered by every
correct process before it installs the new view. Note that the best-effort broadcast
DATA message with m1 is eventually delivered to q, but is discarded because it is
not from the current view at q.

318 6 Consensus Variants

Correctness. Consider first the view inclusion property. Let m be any message that
is vs-delivered by some process q with sender p in a given view V . If q is the sender
of the message then q directly vs-delivers the message upon vs-broadcasting it, in the
same view. Consider now the case where the sender p is a different process. There
are two possibilities. Either process q vs-delivers m in response to beb-delivering a
DATA message containing m or in response to utrb-delivering the rebroadcast set of
delivered messages from some process r. In the first case, the algorithm checks if
the view in which the message was vs-broadcast is the current one, and if not, the
message is discarded. In the second case, process r has utrb-broadcast its set deliv-
ered, which contains only messages that have been vs-broadcast and vs-delivered in
the current view.

The no creation broadcast property directly follows from the properties of the
underlying best-effort broadcast and TRB abstraction. The no duplication broadcast
property follows from the use of the variable delivered and the check, applied after
beb-delivering a DATA message, that only messages vs-broadcast in the current view
are vs-delivered. Consider the agreement broadcast property (VS5). Assume that
some correct process p has vs-delivered a message m. Every correct process eventu-
ally vs-delivers m after beb-delivering it, or if a new view needs to be installed,
upon utrb-delivering a set of delivered messages from the same view that con-
tains m. To show the validity property of broadcast, let p be some correct process
that vs-broadcasts a message m. Process p directly vs-delivers m and, because of
the agreement broadcast property, every correct process eventually vs-delivers m.

Consider now the properties inherited from group membership. The monotonic-
ity, uniform agreement (VS7), and accuracy properties directly follow from the
corresponding properties of the underlying group membership abstraction and from
the algorithm, which preserves the order of views. The completeness property is
ensured by the completeness property of the underlying group membership prim-
itive, the termination property of TRB, and the assumption that the higher-level
module is well behaved (i.e., it stops vs-broadcasting messages when it is asked to
do so).

Performance. During periods where the view does not need to change, the cost of
view-synchronously delivering a message is the same as the cost of a best-effort
broadcast, that is, one single message transmission. For a view change from a view
(vid, M), however, the algorithm requires the execution of a group membership
instance, plus the (parallel) execution of one TRB for each process in M , in order to
install the new view. Considering the consensus-based algorithms used to implement
group membership and TRB primitives, installing a new view requires 1 + |M |
consensus instances. In an exercise (at the end of the chapter), we discuss how to
optimize Algorithm 6.8–6.9 by running a single instance of consensus to agree both
on the new view and on the set of messages to be vs-delivered before the new view
is installed.

6.8 View-Synchronous Communication 319

6.8.4 Fail-Stop Algorithm: Consensus-Based Uniform View-Synchronous
Communication

The view-synchronous broadcast algorithm of the previous section (Algorithm 6.8–
6.9) implements view-synchronous communication (Module 6.9). It is uniform in
the sense that no two processes, be they correct or not, install different views.
The algorithm is not uniform in the message-delivery sense, as required by uni-
form view-synchronous communication (Module 6.10). That is, one process might
view-synchronously deliver a message and crash, but no other process delivers that
message. For instance, the sender p of a message m could vs-deliver m and its best-
effort broadcast might reach only one other process q, which also vs-delivers m.
But, if p and q crash without any further actions then no other process ever learns
anything about m.

One might think that Algorithm 6.8–6.9 could be made to satisfy the uniform
agreement broadcast property of Module 6.10 simply by replacing the underlying
best-effort broadcast abstraction with a uniform reliable broadcast primitive (say,
instance urb). However, the following scenario illustrates that this does not work.
Suppose process p vs-broadcasts m, urb-broadcasts m, and then vs-delivers m after
urb-delivering it. The only guarantee here is that all correct processes will eventually
urb-deliver m; they might do so after installing a new view, however, which means
that m would not be vs-delivered correctly.

We present Algorithm 6.10–6.11, called “Consensus-Based Uniform View-Syn-
chronous Communication,” which ensures uniform agreement in two ways: first,
in the sense of group membership and, second, in the sense of reliable broad-
cast. In other words, Algorithm 6.10–6.11 implements uniform view-synchronous
communication (Module 6.10).

The algorithm invokes a uniform consensus primitive directly and relies on a
perfect failure-detector abstraction, but does not use group membership or TRB. It
works as follows. When a process vs-broadcasts a message m, it beb-broadcasts a
DATA message with m and the current view identifier, and adds m to the set of
messages it has beb-broadcast. When a process p extracts such an m from a beb-
delivered DATA message originating from the same view, it adds q to the set of
processes ack[m] that have acknowledged m. Then p beb-broadcasts m and thereby
acknowledges m, if it did not do so already, and adds m to its set of messages it
has beb-broadcast. The latter set is stored in a variable pending, which contains all
messages that a process has received in the current view.

The process maintains also a variable delivered with all messages that it has ever
vs-delivered. When all processes in the current view are contained in ack[m] at a
given process p, then p vs-delivers the message m and adds m to delivered. As
the reader might recall from Chap. 3, the same approach has already been used in
Algorithm 3.4.

If any process detects the crash of at least one member of the current view,
the process initiates a collective flush procedure as in Algorithm 6.8–6.9 from
the previous section. The process first broadcasts (using best-effort guarantees) its
set pending, containing all messages received in the current view; note that some

320 6 Consensus Variants

Algorithm 6.10: Consensus-Based Uniform View-Synchronous Communication (part 1)

Implements:
UniformViewSynchronousCommunication, instance uvs.

Uses:
UniformConsensus (multiple instances);
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 uvs, Init 〉 do
(vid, M) := (0, Π); // current view V = (vid, M)
correct := Π;
flushing := FALSE; blocked := FALSE; wait := FALSE;
pending := ∅;
delivered := ∅;
forall m do ack[m] := ∅;
seen := [⊥]N ;
trigger 〈 uvs, View | (vid, M) 〉;

upon event 〈 uvs, Broadcast | m 〉 such that blocked = FALSE do
pending := pending ∪ {(self, m)};
trigger 〈 beb, Broadcast | [DATA, vid, self, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, id, s, m] 〉 do
if id = vid ∧ blocked = FALSE then

ack[m] := ack[m] ∪ {p};
if (s, m) �∈ pending then

pending := pending ∪ {(s, m)};
trigger 〈 beb, Broadcast | [DATA, vid, s, m] 〉;

upon exists (s, m) ∈ pending such that M ⊆ ack[m] ∧ m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 uvs, Deliver | s, m 〉;

messages in pending might not have been vs-delivered. As soon as a process p has
collected the set pending from every other process that p did not detect to have
crashed, it proposes a new view through an instance of uniform consensus. The view
consists of all processes that are correct according to the failure detector output at p.

Apart from a new candidate view, process p also proposes the collection of pend-
ing sets received from all processes in the candidate view. The union of these sets
contains all messages that the processes have “seen” and potentially vs-delivered
in the ending view. The consensus primitive then decides on a new view and on
such a collection of sets. Before installing the new view, each process parses all
sets of pending messages in the consensus decision and vs-delivers those messages
that it has not vs-delivered yet. Finally, the process installs the new view decided by
consensus and resumes the normal operation in the next view.

6.8 View-Synchronous Communication 321

Algorithm 6.11: Consensus-Based Uniform View-Synchronous Communication (part 2)

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon correct � M ∧ flushing = FALSE do
flushing := TRUE;
trigger 〈 uvs, Block 〉;

upon event 〈 uvs, BlockOk 〉 do
blocked := TRUE;
trigger 〈 beb, Broadcast | [PENDING, vid, pending] 〉;

upon event 〈 beb, Deliver | p, [PENDING, id, pd] 〉 such that id = vid do
seen[p] := pd;

upon (forall p ∈ correct : seen[p] �= ⊥) ∧ wait = FALSE do
wait := TRUE;
vid := vid + 1;
Initialize a new instance uc.vid of uniform consensus;
trigger 〈 uc.vid, Propose | (correct, seen) 〉;

upon event 〈 uc.id, Decide | (M ′, S) 〉 such that id = vid do // install new view
forall p ∈ M ′ such that S[p] �= ⊥ do

forall (s, m) ∈ S[p] such that m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 uvs, Deliver | s, m 〉;

flushing := FALSE; blocked := FALSE; wait := FALSE;
pending := ∅;
forall m do ack[m] := ∅;
seen := [⊥]N ;
M := M ′;
trigger 〈 uvs, View | (vid, M) 〉;

Correctness. The arguments for correctness are similar to those of Algorithm 6.8–
6.9. The view inclusion property directly follows from the algorithm because no
process buffers a message from the previous view when it installs the next view.

We first consider the broadcast-related properties. The delivered variable ensures
that no message is vs-delivered twice, which demonstrates the no duplication prop-
erty. It is also easy to see that a message can only be vs-delivered if some process
has indeed vs-broadcast it, as stated by the no creation property.

The validity property follows because a correct process p includes every mes-
sage in its set pending. As p is correct and, therefore, never detected by the failure
detector, this set is always contained in the decision of the uniform consensus
instance that switches to the next view. Process p vs-delivers every one of its
messages at the latest before installing the next view.

For the uniform agreement property, consider any process that vs-delivers some
message m. If the process does this during the flush procedure that installs a new
view then all correct processes install the same new view as well and vs-deliver m.

322 6 Consensus Variants

Otherwise, the process vs-delivers m because every process in the current view has
acknowledged m, and it follows that all correct processes must have stored the mes-
sage in their pending variable. Hence, during the next view change, m is contained
in the set of all “seen” messages and is eventually vs-delivered by every correct
process.

The properties related to group membership follow directly from the algorithm,
because it contains almost the same steps as the “Consensus-Based Group Mem-
bership” algorithm from Sect. 6.7, which also uses uniform consensus and perfect
failure-detector primitives.

Performance. During periods where the view does not change, the cost of
vs-delivering a message is the same as the cost of a reliable broadcast, namely
O(N2) messages and only two communication steps. To install a new view, the
algorithm requires the parallel execution of best-effort broadcasts for all processes
in the view, followed by an execution of uniform consensus to agree on the next
view. The algorithm uses only one instance of uniform consensus and is therefore
more efficient than Algorithm 6.8–6.9, which may invoke up to N + 1 instances of
uniform consensus for a view change.

6.9 Exercises 323

6.9 Exercises

Exercise 6.1: Would it make sense to add the total-order property of total-order
broadcast to a best-effort broadcast abstraction?

Exercise 6.2: What happens in our “Consensus-Based Total-Order Broadcast”
algorithm (Algorithm 6.1) if the set of messages delivered in a round is not sorted
deterministically after deciding in the consensus abstraction, but before it is pro-
posed to consensus? What happens in that algorithm if the set of messages decided
on by consensus is not sorted deterministically at all?

Exercise 6.3: The “Consensus-Based Total-Order Broadcast” algorithm (Algo-
rithm 6.1) transforms a consensus abstraction (together with a reliable broadcast
abstraction) into a total-order broadcast abstraction. Describe a transformation
between these two primitives in the other direction, that is, implement a (uniform)
consensus abstraction from a (uniform) total-order broadcast abstraction.

Exercise 6.4: Discuss algorithms for total-order broadcast in the fail-silent model.

Exercise 6.5: Discuss the specification of total-order broadcast and its implemen-
tation in the fail-recovery model.

Exercise 6.6: Discuss the relation between Byzantine consensus and Byzantine
total-order broadcast.

Exercise 6.7: Design a more efficient Byzantine total-order broadcast algorithm
than Algorithm 6.2, in which every underlying consensus instance decides at least
one message that can be btob-delivered. Use digital signatures and a Byzan-
tine consensus primitive with the anchored validity property, as introduced in
Exercise 5.11.

Exercise 6.8: Give a specification of a state-machine replication abstraction and
design an algorithm to implement it using a total-order broadcast primitive.

Exercise 6.9: Consider a fault-tolerant service, implemented by a replicated state
machine, from the perspective of a group of clients. Clients invoke operations on the
service and expect to receive a response. How do the clients access the replicated
state-machine abstraction from Exercise 6.8? What changes if the replicated state-
machine abstraction is implemented in the fail-arbitrary model, with Byzantine
processes?

Exercise 6.10: Can we implement a TRB abstraction with an eventually perfect
failure-detector abstraction (�P) if we assume that at least one process can crash?

Exercise 6.11: Can we implement a perfect failure-detector abstraction P from
multiple TRB instances, such that every process can repeatedly broadcast messages,
in a model where any number of processes can crash?

324 6 Consensus Variants

Exercise 6.12: Consider the fast Byzantine consensus abstraction with the fol-
lowing stronger form of the fast termination property. It guarantees a one-round
decision in any execution as long as all correct processes propose the same value:

FBC1’: Strong fast termination: If all correct processes propose the same
value, then every correct process decides some value after one commu-
nication step. Otherwise, every correct process eventually decides some
value.

Describe how to modify Algorithm 6.5 such that it transforms a Byzantine consensus
abstraction into fast Byzantine consensus with strong fast termination. As a hint,
we add that the strong fast termination property can only be achieved under the
assumption that N > 7f .

Exercise 6.13: Recall that our implementation of a nonblocking atomic commit
(NBAC) abstraction (Algorithm 6.6) relies on consensus. Devise two algorithms that
do not use consensus and implement relaxations of the NBAC abstraction, where the
termination property has been replaced with:

1. Weak termination: Let p be some process that is known to the algorithm; if p
does not crash then all correct processes eventually decide.

2. Very weak termination: If no process crashes then all processes eventually
decide.

Exercise 6.14: Can we implement a NBAC primitive with an eventually perfect
failure detector �P , if we assume that at least one process can crash? What if
we consider a weaker specification of NBAC, in which the (regular or uniform)
agreement property is not required?

Exercise 6.15: Do we need the perfect failure-detector primitive P to implement
NBAC if we consider a system where at least two processes can crash, but a majority
is correct? What if we assume that at most one process can crash?

Exercise 6.16: Give an algorithm that implements a view-synchronous communica-
tion abstraction such that a single consensus instance is used for every view change
(unlike Algorithm 6.8–6.9), and every process directly vs-delivers every message
after vs-broadcasting it or after first learning about the existence of the message
(unlike Algorithm 6.10–6.11).

6.10 Solutions

Solution 6.1: The resulting abstraction would not make much sense in a failure-
prone environment, as it would not preclude the following scenario. Assume that a
process p broadcasts several messages with best-effort properties and then crashes.
Some correct processes might end up delivering all those messages (in the same
order) whereas other correct processes might end up not delivering any message.

6.10 Solutions 325

Solution 6.2: If the deterministic sorting is done prior to proposing the set for con-
sensus, instead of a posteriori upon deciding, the processes would not agree on a set
but on a sequence of messages. But if they to-deliver the messages in decided order,
the algorithm still ensures the total order property.

If the messages, on which the algorithm agrees in consensus, are never sorted
deterministically within every batch (neither a priori nor a posteriori), then the total
order property does not hold. Even if the processes decide on the same batch of mes-
sages, they might to-deliver the messages within this batch in a different order. In
fact, the total order property would be ensured only with respect to batches of mes-
sages, but not with respect to individual messages. We thus get a coarser granularity
in the total order.

We could avoid using the deterministic sort function at the cost of proposing
a single message at a time in the consensus abstraction. This means that we would
need exactly as many consensus instances as there are messages exchanged between
the processes. If messages are generated very slowly by processes, the algorithm
ends up using one consensus instance per message anyway. If the messages are gen-
erated rapidly then it is beneficial to use several messages per instance: within one
instance of consensus, several messages would be gathered, i.e., every message of
the consensus algorithm would concern several messages to to-deliver. Agreeing on
large batches with many messages at once is important for performance in practice,
because it considerably reduces the number of times that the consensus algorithm is
invoked.

Solution 6.3: Given a total-order broadcast primitive to, a consensus abstraction is
obtained as follows: When a process proposes a value v in consensus, it
to-broadcasts v. When the first message is to-delivered containing some value x,
a process decides x. Since the total-order broadcast delivers the same sequence
of messages at every correct process, and every to-delivered message has been
to-broadcast, this reduction implements a consensus abstraction.

Solution 6.4: Our algorithm for total-order broadcast in the fail-stop model works
also in the fail-silent model, as it does not use a failure-detector abstraction directly,
but uses primitives for reliable broadcast and consensus. Algorithms for reliable
broadcast can be realized in the fail-silent model, assuming a majority of correct pro-
cesses. The consensus abstraction cannot be implemented in the fail-silent model, as
explained in Chap. 5, only in the fail-noisy or in the randomized fail-silent models.

Solution 6.5: We introduce a specification of total-order broadcast in the fail-
recovery model and an algorithm that implements it.

We apply the same approach as used to derive “logged” abstractions in the pre-
vious chapters. We depart from an abstraction designed for the fail-stop model and
adapt its interface with adjacent modules to use logged delivery, add logging opera-
tions for relevant states, and define a recovery procedure. Any underlying primitives
are implemented in the fail-recovery model as well.

We illustrate here only the uniform variant of logged total-order broadcast,
presented in Module 6.11. Its interface is similar to the interface of the logged

326 6 Consensus Variants

Module 6.11: Interface and properties of logged uniform total-order broadcast
Module:

Name: LoggedUniformTotalOrderBroadcast, instance lutob.

Events:

Request: 〈 lutob, Broadcast | m 〉: Broadcasts a message m to all processes.

Indication: 〈 lutob, Deliver | delivered 〉: Notifies the upper layer of potential
updates to variable delivered in stable storage, where delivered is a sequence of
sender/message pairs.

Properties:

LUTOB1–LUTOB4: Same as properties LURB1–LURB4 of logged uniform
reliable broadcast (Module 3.6).

LUTOB5: Logged uniform total order: For any two processes p and q, sup-
pose p log-delivers a sequence of messages dp and q log-delivers a sequence of
messages dq. Then dp is either a prefix of dq or dq is a prefix of dp.

broadcasts from Chap. 3 (see Module 3.5, for instance), with the only change
that variable delivered, used to log-deliver messages from the primitive, is now an
ordered list and no longer a set. Newly log-delivered messages are always appended
to delivered. Recall that the abstraction log-delivers a message m from sender s
whenever an event 〈 Deliver | delivered 〉 occurs such that delivered contains a pair
(s, m) for the first time.

To implement the abstraction, we present algorithm “Logged Uniform Total-
Order Broadcast” in Algorithm 6.12; it closely follows the algorithm for the fail-stop
model presented in Sect. 6.1 and works as follows. Every message in a total-order
broadcast request is disseminated using the underlying uniform reliable broadcast
primitive for the fail-recovery model. The total-order broadcast algorithm maintains
two variables with messages: a set unordered of messages that have been deliv-
ered by the underlying reliable broadcast module, and a list delivered, containing
the totally ordered sequence of log-delivered messages. The algorithm operates in a
sequence of rounds and invokes one logged uniform consensus primitive per round.
At the end of every round, it sorts the newly decided batch of messages and appends
them to delivered.

The algorithm starts a new instance of logged uniform consensus whenever it
notices that there are unordered messages that have not yet been ordered by the
consensus instances of previous rounds. When proposing a batch of messages for
consensus in some round, the algorithm logs the proposal in stable storage. The wait
flag is also used to ensure that consensus instances are invoked in serial order.

During the recovery operation after a crash, the total-order algorithm runs again
through all rounds executed before the crash and executes the same consensus
instances once more. (We assume that the runtime environment re-instantiates all
instances of consensus that had been dynamically initialized before the crash.) This

6.10 Solutions 327

Algorithm 6.12: Logged Uniform Total-Order Broadcast

Implements:
LoggedUniformTotalOrderBroadcast, instance lutob.

Uses:
LoggedUniformReliableBroadcast, instance lurb;
LoggedUniformConsensus (multiple instances).

upon event 〈 lutob, Init 〉 do
unordered := ∅; delivered := [];
round := 1;
recovering := FALSE; wait := FALSE;
forall r > 0 do proposals[r] := ⊥;

upon event 〈 Recovery 〉 do
unordered := ∅; delivered := [];
round := 1;
recovering := TRUE; wait := FALSE;
retrieve(proposals);
if proposals[1] �= ⊥ then

trigger 〈 luc.1, Propose | proposals[1] 〉;

upon event 〈 lutob, Broadcast | m 〉 do
trigger 〈 lurb, Broadcast | m 〉;

upon event 〈 lurb, Deliver | lurbdelivered 〉 do
unordered := unordered ∪ lurbdelivered;

upon unordered \ delivered �= ∅ ∧ wait = FALSE ∧ recovering = FALSE do
wait := TRUE;
Initialize a new instance luc.round of logged uniform consensus;
proposals[round] := unordered \ delivered;
store(proposals);
trigger 〈 luc.round, Propose | proposals[round] 〉;

upon event 〈 luc.r, Decide | decided 〉 such that r = round do
forall (s, m) ∈ sort(decided) do // by the order in the resulting sorted list

append(delivered, (s, m));
store(delivered);
round := round + 1;
if recovering = TRUE then

if proposals[round] �= ⊥ then
trigger 〈 luc.round, Propose | proposals[round] 〉;

else
recovering := FALSE;

else
wait := FALSE;

trigger 〈 lutob, Deliver | delivered 〉;

328 6 Consensus Variants

ensures that every instance of consensus actually decides. Because the algorithm
proposes the logged message batches again for consensus, every consensus instance
is always invoked with exactly the same parameters. Although it may not be strictly
needed (depending on the implementation of consensus), this is consistent with the
invariant that each process proposes the message batch stored in stable storage.

The algorithm has the interesting feature of never storing the set of unordered
messages and not logging the delivered sequence for its own use (however, the alg-
orithm must write delivered to stable storage for log-delivering its output). These
two data structures are simply reconstructed from scratch upon recovery, based on
the stable storage kept internally by the reliable broadcast primitive and by the con-
sensus primitive. Because the initial values proposed for each consensus instance
are logged, the process may invoke all past instances of consensus again to obtain
the same sequence of messages ordered and delivered in previous rounds.

The algorithm requires at least one communication step to execute the reliable
broadcast primitive and at least two communication steps to execute every consen-
sus instance. Therefore, even if no failures occur, at least three communication steps
are required.

Solution 6.6: The Byzantine total-order broadcast and the Byzantine consensus
primitives stand in a similar relation to each other as their counterparts with crash-
stop processes, which was discussed in Exercise 6.3. As demonstrated through
Algorithm 6.2, Byzantine consensus can be used to implement Byzantine total-order
broadcast.

An emulation in the other direction works as well, assuming that N > 3f . The
processes run a Byzantine total-order broadcast primitive and broadcast the proposal
from consensus. Once that the first N − f messages from distinct senders have
been delivered by total-order broadcast, the processes apply a deterministic decision
function. It decides a value v in Byzantine consensus if more than f messages were
equal to v; otherwise, it decides �. This emulation shows that Byzantine total-order
broadcast can be used to implement Byzantine consensus.

Solution 6.7: A simple solution, which solves the problem almost but not com-
pletely, works like this. Every process maintains a variable undelivered with the set
of input messages that it has itself btob-broadcast, but that have not yet been btob-
delivered. In parallel, the processes execute rounds of Byzantine consensus with the
anchored validity property. For every consensus instance, a process p computes a
digital signature σ on the round number and its current set of undelivered messages,
and proposes the tuple (p, undelivered, σ) for consensus. The predicate implement-
ing anchored validity verifies that a proposal contains only messages that have not
yet been delivered up to the current round, that there is at least one undelivered
message, and that the signature in the proposal is valid.

In order to prevent that a correct process stalls the sequence of consensus execu-
tions because its set undelivered is empty, the processes also periodically exchange
their proposals for consensus, using point-to-point links. When a process with an
empty set of input messages receives a proposal, it adopts the proposal of the other

6.10 Solutions 329

process and proposes it in consensus. When consensus decides a set of messages
from some sender process s, every process btob-delivers all messages in a deter-
ministic order. Because the signature on the proposal is valid, the messages must
have been btob-broadcast by sender s (if s is correct).

According to the anchored validity notion and the predicate imposed by the cor-
rect processes, this algorithm decides and btob-delivers at least one message in every
round of consensus. It may violate the validity property of Byzantine total-order
broadcast, though, because consensus may forever avoid to decide on the set of
messages sent by a particular correct process.

An extension of this algorithm avoids the above problem. To ensure that every
btob-broadcast message m from a correct sender s is eventually btob-delivered, the
sender first constructs a triple (m, s, σ), containing a signature σ on the message,
and sends this triple to all processes using authenticated point-to-point links. Every
process now maintains the received triples containing undelivered messages in its
undelivered variable.

An initial dissemination phase is added to every round; in the second phase of
the round, the processes again execute an instance of Byzantine consensus with
anchored validity. In the dissemination phase, every process signs its variable undel-
ivered and sends it with the signature in an UNDELIVERED message to all processes.
Every process waits to receive such UNDELIVERED messages containing only valid
signatures from more than f processes.

A process then enters the second phase of the round and proposes the received
list of f + 1 UNDELIVERED messages to Byzantine consensus. The predicate
implementing anchored validity verifies that a proposal contains UNDELIVERED

messages signed by more than f distinct processes, that no (btob-level) message
contained in it has yet been delivered up to the current round, that there is at least
one undelivered message, and that the signatures in all triples are valid. When con-
sensus decides a proposal, the algorithm proceeds like before and btob-delivers all
messages extracted from the triples in a deterministic order.

The extended algorithm ensures the validity property because a triple (m, s, σ)
with a btob-broadcast message m, sent by a correct process s, and with signature σ
is eventually contained in the undelivered set of every correct process. In the next
round after that time, every UNDELIVERED message therefore contains m. Since
the Byzantine consensus instance decides a set of more than f UNDELIVERED

messages, at least one of them is from a correct process and contains also m.

Solution 6.8: A state machine consists of variables and commands that transform
its state and may produce some output. Commands consist of deterministic pro-
grams such that the outputs of the state machine are solely determined by the initial
state and by the sequence of commands that it has executed. A state machine can be
made fault-tolerant by replicating it on different processes.

A replicated state-machine abstraction can be characterized by the properties
listed in Module 6.12. Basically, its interface presents two events: first, a request
event 〈 Execute | command 〉 that a client uses to invoke the execution of a program
command of the state machine; and, second, an indication event 〈Output| response 〉,

330 6 Consensus Variants

Module 6.12: Interface and properties of a replicated state machine
Module:

Name: ReplicatedStateMachine, instance rsm.

Events:

Request: 〈 rsm, Execute | command 〉: Requests that the state machine executes the
command given in command.

Indication: 〈 rsm, Output | response 〉: Indicates that the state machine has executed
a command with output response.

Properties:

RSM1: Agreement: All correct processes obtain the same sequence of outputs.

RSM2: Termination: If a correct process executes a command, then the command
eventually produces an output.

which is produced by the state machine and carries the output from executing the last
command in parameter response. For the sake of brevity, we assume that the com-
mand parameter of the execution operation includes both the name of the command
to be executed and any relevant parameters.

As an example, an atomic register could be implemented as a state machine. In
this case, the state of the machine would hold the current value of the register and
the relevant commands would be (1) a write(v) command that writes a value v to
the register and outputs a parameter-less response, which only indicates that the
write concluded, and (2) a read command that causes the state machine to output
the value of the register as the response. Of course, more sophisticated objects can
be replicated the same way.

Algorithm 6.13 implements a replicated state-machine primitive simply by dis-
seminating all commands to execute using a uniform total-order broadcast primitive.
When a command is delivered by the broadcast module, the process executes it on
the state machine, and outputs the response.

As the state machine is deterministic, is started from the same initial state at every
process, and every process executes the same sequence of commands, all responses
are equal.

Solution 6.9: Every client assigns unique identifiers to its own commands. A client
sends an identifier/command pair to one replica first using a point-to-point message
(a replica is a process that executes the replicate state machine). When it receives
this, the replica executes the command on the state machine and includes the orig-
inating client and the command identifier together with the command description.
When the client does not receive a response to a command after some time, it resends
the same identifier/command pair to another replica.

6.10 Solutions 331

Algorithm 6.13: Replicated State Machine using Total-Order Broadcast

Implements:
ReplicatedStateMachine, instance rsm.

Uses:
UniformTotalOrderBroadcast, instance utob;

upon event 〈 rsm, Init 〉 do
state := initial state;

upon event 〈 rsm, Execute | command 〉 do
trigger 〈 utob, Broadcast | command 〉;

upon event 〈 utob, Deliver | p, command 〉 do
(response, newstate) := execute(command, state);
state := newstate;
trigger 〈 rsm, Output | response 〉;

All replicas process the outputs of the state machine; we assume that every
response also carries the command from which it is produced, including the originat-
ing client and the identifier. When the state machine at a replica outputs a response,
the replica obtains the client from which the command originated and sends the
response with the command identifier back to the client, using a point-to-point mes-
sage. A client must wait to receive the first response for every command identifier
and may discard duplicate responses.

Almost the same scheme works with Byzantine processes. Even though a client
might send the command to some Byzantine replicas, the client eventually hits a
correct replica by repeatedly sending the command to different replicas. Once it
sends the command to a correct replica, the state machine eventually executes the
command and outputs a response. But as the Byzantine replicas may send a wrong
response to the client, the client needs to receive f + 1 matching responses with a
given command identifier: this ensures that at least one of the responses is from a
correct replica.

Solution 6.10: The answer is no. Consider an instance trb of TRB with sender pro-
cess s. We show that it is impossible to implement TRB from an eventually perfect
failure-detector primitive �P if even one process can crash.

Consider an execution E1, in which process s crashes initially and observe the
possible actions for some correct process p: due to the termination property of TRB,
there must be a time T at which p trb-delivers �.

Consider a second execution E2 that is similar to E1 up to time T , except that
the sender s is correct and trb-broadcasts some message m, but all communication
messages to and from s are delayed until after time T . The failure detector behaves
in E2 as in E1 until after time T . This is possible because the failure detector is
only eventually perfect. Up to time T , process p cannot distinguish E1 from E2

and trb-delivers �. According to the agreement property of TRB, process s must

332 6 Consensus Variants

trb-deliver � as well, and s delivers exactly one message due to the termination
property. But this contradicts the validity property of TRB, since s is correct, has
trb-broadcast some message m �= �, and must trb-deliver m.

Solution 6.11: The answer is yes and shows that the perfect failure detector is
not only sufficient to implement TRB but also necessary. In other words, the TRB
abstraction is equivalent to a perfect failure detector primitive.

Consider a model where any number of processes can crash and suppose that
for every process p, multiple instances of TRB with p as sender are available. We
explain how to construct a perfect failure detector from these primitives. The idea
behind the transformation is to have every process repeatedly invoke instances of
TRB with all processes in the system as senders. If one such instance with sender s
ever trb-delivers � at process p, the module P at p detects s to have crashed from
then on.

The transformation satisfies the strong completeness property of P because the
TRB abstraction delivers � if the sender s has crashed by its termination property.
On the other hand, the strong accuracy property of P (which states that if a process
is detected, then it has crashed) holds because the properties of TRB imply that
process P only delivers � when the sender s has crashed.

Solution 6.12: The only change to Algorithm 6.5 concerns the number of equal
proposal values necessary to decide fast. The algorithm as stated before decides fast
if all N − f received PROPOSAL messages contain the same value. Clearly, even
one Byzantine process could prevent fast termination according to the strong notion
by sending a different proposal value and causing it to be received by all correct
processes. More generally, the algorithm must tolerate that at most f of the received
proposal messages are different from the rest and still decide fast. Reducing the
bound for deciding fast to finding N − 2f equal values among the N − f received
proposal messages achieves this.

The modified algorithm still ensures agreement under the assumption that N>7f .
Again, there are three cases to consider: two correct processes p and q decide
fast both, or p decides fast and q decides after bc-deciding, or both decide after
bc-deciding. Only the second case changes substantially compared to Algorithm 6.5.
If p decides fast, it has received N − f PROPOSAL messages and found a common
value v in at least N − 2f of them. As the system contains N processes, also every
other correct process must have received PROPOSAL messages from at least N −2f
of those processes whose proposal was received by p. No more than f of these pro-
cesses might be Byzantine; thus, every correct process must have at least N − 3f
proposals containing v. But the assumption that N > 7f implies that

N − 3f >
N − f

2

and, therefore, every correct process adopts v as its proposal and bc-proposes v.
Applying the same argument as before, it follows that also process q decides v in
fast Byzantine consensus.

6.10 Solutions 333

All other properties of fast Byzantine consensus follow from the same arguments
as used to show the correctness of Algorithm 6.5.

Solution 6.13: Both algorithms are reminiscent of atomic commit methods used by
some practical distributed transaction processing systems.

1. The first algorithm may rely on the globally known process p to enforce termi-
nation. The algorithm uses a perfect failure detector P and works as follows.
All processes send their proposal over a point-to-point link to p. This process
collects the proposals from all processes that P does not detect to have crashed.
Once process p knows something from every process in the system, it may decide
unilaterally. In particular, it decides COMMIT if all processes propose COMMIT

and no process is detected by P , and it decides ABORT otherwise, i.e., if some
process proposes ABORT or is detected by P to have crashed. Process p then
uses best-effort broadcast to send its decision to all processes. Any process that
delivers the message with the decision from p decides accordingly. If p crashes,
then all processes are blocked.
Of course, the algorithm could be improved in some cases, because the pro-
cesses might figure out the decision by themselves, such as when p crashes after
some correct process has decided, or when some correct process decides ABORT.
However, the improvement does always work: if all correct processes pro-
pose COMMIT but p crashes before any other process then no correct process
can decide. This algorithm is also known as the “Two-Phase Commit” (2PC)
algorithm. It implements a variant of atomic commitment that is blocking.

2. The second algorithm is simpler because it only needs to satisfy termination
if all processes are correct. All processes use best-effort broadcast to send their
proposals to all processes. Every process waits to deliver proposals from all other
processes. If a process obtains the proposal COMMIT from all processes, then it
decides COMMIT; otherwise, it decides ABORT. Note that this algorithm does
not make use of any failure detector.

Solution 6.14: The answer is no. To explain why, we consider an execution E1,
where all processes are correct and propose COMMIT, except for some process p
that proposes ABORT and crashes initially, without sending any message. All correct
processes must therefore decide ABORT in E1, as deciding COMMIT would violate
the commit-validity property. Let T be the time at which the first (correct) process q
decides ABORT. It does so presumably after receiving some output of �P , which
indicated that p crashed.

Consider now an execution E2 that is similar to E1 except that p is correct and
proposes COMMIT, but all its messages are delayed until after time T . The failure
detector behaves in E2 as in E1 until time T and suspects p to have crashed; this is
possible because �P is only eventually perfect. Hence, no process apart from p can
distinguish between E1 and E2 and q also decides ABORT in E2. But this violates
the abort-validity property, as all processes are correct and propose COMMIT, yet
they decide ABORT.

334 6 Consensus Variants

In this argument, the (uniform or regular) agreement property of NBAC was not
explicitly needed. This shows that even a specification of NBAC where agreement
was not needed could not be implemented with an eventually perfect failure detector
if some process crashes.

Solution 6.15: Consider first a system where at least two processes can crash but
a majority is correct. We will argue that in this case the perfect failure detector is
not needed. Specifically, we exhibit a failure detector that is strictly weaker than the
perfect failure detector (P) in a precise sense, but that is strong enough to implement
NBAC.

The failure-detector abstraction in question is called the anonymously perfect
perfect failure detector, and denoted by ?P . This failure detector ensures the strong
completeness and eventual strong accuracy properties of an eventually perfect
failure detector (Module 2.8), plus the following property:

Anonymous detection: Every correct process eventually outputs a failure
indication value F if and only if some process has crashed.

Recall that an eventually perfect failure-detector primitive is not sufficient to imple-
ment NBAC, as shown in Exercise 6.14.

Given that we assume a majority of correct processes and given that the failure
detector ?P satisfies at least the properties of an eventually perfect failure detector,
one can use ?P to implement a uniform consensus primitive (for instance, using the
fail-noisy Algorithm 5.7 from Chap. 5).

We now describe how to implement NBAC with the help of a ?P abstraction
and a uniform consensus primitive. The NBAC algorithm works as follows. All pro-
cesses initially use a best-effort broadcast primitive beb to send their proposal to all
processes. Every process p waits (1) to beb-deliver COMMIT from all processes, or
(2) to beb-deliver ABORT from some process, or (3) for ?P to output F . In case
(1), process p invokes consensus and proposes COMMIT. In cases (2) and (3), p
invokes consensus with proposal ABORT. When the consensus primitive outputs a
decision, p also decides this value for NBAC. It is easy to see that the algorithm
implements NBAC, since the anonymous detection property gives the processes
enough information to decide correctly.

Now we discuss in which sense ?P is strictly weaker than P . Assume a system
where at least two processes can crash. Consider an execution E1 where two pro-
cesses p and q crash initially, and an execution E2 where only p initially crashes.
Let r be any correct process. Using ?P , at any particular time T , process r cannot
distinguish between executions E1 and E2 if the messages of q are delayed until af-
ter T . When process r obtains an output F from ?P , it knows that some process has
indeed crashed but not which one. With P , process r would know precisely which
process crashed.

Hence, in a system where two processes can crash but a majority is correct, a
perfect failure-detector primitive P is not needed to implement NBAC. There is
a failure-detector abstraction ?P , called the anonymously perfect failure detector,
which is strictly weaker than P and strong enough to implement NBAC.

6.10 Solutions 335

Consider now the second part of the exercise. Assume that at most one process
can crash. We argue that in such a system, we can emulate a perfect failure-detector
abstraction given a primitive for NBAC. The algorithm causes all processes to go
through sequential rounds. In each round, the processes use best-effort broadcast
to send an “I-am-alive” message to all processes, and then invoke an instance of
NBAC. In a given round, every process p waits for NBAC to decide on an outcome:
if the outcome is COMMIT then p moves to the next round; if the outcome is ABORT

then p waits to beb-deliver N − 1 messages and declares the process that should
have sent the missing message to have crashed. Clearly, this algorithm emulates
the behavior of a perfect failure detector P in a system where at most one process
crashes.

Solution 6.16: Algorithm 6.14–6.15 for view-synchronous communication pre-
sented here uses a reliable broadcast primitive, a uniform consensus module, and
a perfect failure-detector abstraction.

The algorithm combines the simple communication approach of Algorithm 6.8–
6.9 with methods from Algorithm 6.10–6.11; it works as follows. When a pro-
cess detects the crash of at least one member of the current view, the process

Algorithm 6.14: Direct Consensus-Based View-Synchronous Communication (part 1)

Implements:
ViewSynchronousCommunication, instance vs.

Uses:
UniformConsensus, (multiple instances);
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P .

upon event 〈 vs, Init 〉 do
(vid, M) := (0, Π); // current view V = (vid, M)
correct := Π;
flushing := FALSE; blocked := FALSE; wait := FALSE;
inview := ∅;
delivered := ∅;
seen := [⊥]N ;
trigger 〈 vs, View | (vid, M) 〉;

upon event 〈 vs, Broadcast | m 〉 such that blocked = FALSE do
inview := inview ∪ {(self, m)};
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | self, m 〉;
trigger 〈 beb, Broadcast | [DATA, vid, m] 〉;

upon event 〈 beb, Deliver | p, [DATA, id, m] 〉 do
if id = vid ∧ blocked = FALSE ∧ m �∈ delivered then

inview := inview ∪ {(p, m)};
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | p, m 〉;

336 6 Consensus Variants

Algorithm 6.15: Direct Consensus-Based View-Synchronous Communication (part 2)

upon event 〈 P , Crash | p 〉 do
correct := correct \ {p};

upon correct � M ∧ flushing = FALSE do
flushing := TRUE;
trigger 〈 vs, Block 〉;

upon event 〈 vs, BlockOk 〉 do
blocked := TRUE;
trigger 〈 beb, Broadcast | [INVIEW, vid, inview] 〉;

upon event 〈 beb, Deliver | p, [INVIEW, id, iv] 〉 such that id = vid do
seen[p] := iv;

upon (forall p ∈ correct : seen[p] �= ⊥) ∧ wait = FALSE do
wait := TRUE;
vid := vid + 1;
Initialize a new instance uc.vid of uniform consensus;
trigger 〈 uc.vid, Propose | (correct, seen) 〉;

upon event 〈 uc.id, Decide | (M ′, S) 〉 such that id = vid do // install new view
forall p ∈ M ′ such that S[p] �= ⊥ do

forall (s, m) ∈ S[p] such that m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 vs, Deliver | s, m 〉;

flushing := FALSE; blocked := FALSE; wait := FALSE;
inview := ∅;
seen := [⊥]N ;
M := M ′;
trigger 〈 vs, View | (vid, M) 〉;

initiates a collective flush procedure as in the algorithms of Sect. 6.8. The pur-
pose of the flush procedure is again to collect all messages that have been view-
synchronously delivered by at least one process (that has not been detected to
have crashed). These messages must be vs-delivered by all processes that are
about to install the new view. To execute the flush procedure, each process first
blocks the normal message flow as before (by triggering a 〈 Block 〉 output event
for the layer above and waiting for the corresponding 〈 BlockOk 〉 input event).
Once the message flow is blocked, the process stops broadcasting and delivering
view-synchronous application messages. The process then broadcasts its set of vs-
delivered messages in the current view (stored in variable inview) to every other
process.

As soon as a process p has collected the vs-delivered message set from every
other process that p did not detect to have crashed, p proposes a new view through
a consensus instance. More precisely, process p proposes to consensus the new set
of view members as well as their corresponding sets of vs-delivered messages (in
variable seen). Because the flush procedure might be initiated by processes which

6.11 Chapter Notes 337

have detected different failures (or detected the failures in a different order), and,
furthermore, some processes might fail during the flush procedure, different pro-
cesses might propose different values to consensus. But it is important to note that
each of these proposals contains a valid set of processes for the next view and a
valid set of vs-delivered messages. (The only risk here is to end up vs-delivering
fewer or more messages of processes which have crashed, but this does no harm.)
Consensus guarantees that the same new view is selected by all correct processes.
Before installing the new view, process p parses the vs-delivered message sets of all
other processes that proceed to the new view and vs-delivers those messages that
it has not vs-delivered yet. Finally, p installs the new view and resumes the normal
operation within the view.

Any message is vs-delivered by its sender immediately after the message is
vs-broadcast. The message is also added to the set inview of messages vs-delivered
by the sender. If the sender remains correct, the message will be vs-delivered before
the next view change by the algorithm described earlier (remember that the algo-
rithm uses a perfect failure detector). Furthermore, the set of vs-delivered messages
(from the variable seen of some process) will be made available to all noncrashed
processes as an output of the consensus instance that decides on the next view.
Since all correct processes parse this set for missing messages before they install
the next view, all contained messages are vs-delivered in the same view at all correct
processes.

During periods where the view does not need to change, the cost of vs-delivering
a message is the same as the cost of a best-effort broadcast, that is, only O(N)
messages and one communication step. To install a new view, the algorithm requires
every process to broadcast one message using best-effort broadcast and to execute
one instance of uniform consensus to agree on the next view.

6.11 Chapter Notes

• Total-order broadcast is probably the most important abstraction for practical
applications of distributed programming. It has, therefore, received a lot of inter-
est, starting with the pioneering work of Lamport (1978). Schneider (1990) gives
a concise introduction to total-order broadcast and state-machine replication.

• Our total-order broadcast specifications and the algorithm implementing total-
order broadcast in the fail-stop model are inspired by the work of Chandra
and Toueg (1996) and of Hadzilacos and Toueg (1993). These implementa-
tions are instructive because they are modular and use consensus as an abstract
primitive. In practice, system implementors have preferred optimized mono-
lithic implementations of total-order broadcast, such as the “Paxos” algorithm
(Lamport 1998) or viewstamped replication (Oki and Liskov 1988), whose con-
sensus mechanisms we discussed in Chap. 5. Many systems deployed today
provide total-order broadcast; one representative implementation is described by
Chandra, Griesemer, and Redstone (2007).

338 6 Consensus Variants

• Our total-order broadcast specification and the algorithm in the fail-recovery
model (in Exercise 6.5) were defined only more recently (Boichat et al. 2003a;
Boichat and Guerraoui 2005; Rodrigues and Raynal 2003).

• We considered that messages that need to be totally ordered were broadcast to
all processes in the system, and hence it was reasonable to have all processes
participate in the ordering activity. As for reliable broadcast, it is also possi-
ble to formulate a total-order multicast abstraction where the sender can select
the subset of processes to which the message needs to be sent, and require that
no other process besides the sender and the multicast set participates in the
ordering (Rodrigues, Guerraoui, and Schiper 1998; Guerraoui and Schiper 2001).

• It is possible to design total-order algorithms with crash-stop processes that exp-
loit particular features of concrete networks. Such algorithms can be seen as
sophisticated variants of the basic approach taken by the algorithms presented
here (Chang and Maxemchuck 1984; Verı́ssimo et al. 1989; Kaashoek and
Tanenbaum 1991; Moser et al. 1995; Rodrigues et al. 1996; Rufino et al. 1998;
Amir et al. 2000).

• Byzantine total-order broadcast has a shorter history than its counterpart with
crash-stop processes. Our Byzantine atomic broadcast algorithms in Sect. 6.2
and Exercise 6.7 follow the modular presentation by Cachin et al. (2001). In
contrast to this, the PBFT algorithm of Castro and Liskov (2002) and many sub-
sequent algorithms (Doudou et al. 2005; Abd-El-Malek et al. 2005; Abraham
et al. 2006; Martin and Alvisi 2006; Kotla et al. 2009; Guerraoui et al. 2010)
implement Byzantine total-order broadcast directly.

• The TRB problem was studied by Hadzilacos and Toueg (1993) in the context
of crash failures. This abstraction is a variant of the “Byzantine Generals” prob-
lem (Lamport, Shostak, and Pease 1982). While the original Byzantine Generals
problem uses a fail-arbitrary model with processes that might behave arbitrarily
and maliciously, the TRB abstraction assumes that processes may only fail by
crashing.

• The fast consensus abstraction and the algorithm that implements it were dis-
cussed by Brasileiro et al. (2001). Our description in Sect. 6.4 follows their
presentation.

• The fast Byzantine consensus abstraction in Sect. 6.5 and its variant from
Exercise 6.12 have been introduced by Song and van Renesse (2008).

• The atomic commit problem, sometimes also called “atomic commitment,” was
introduced by Gray (1978), together with the “Two-Phase Commit” algorithm,
which we studied in Exercise 6.13. The atomic commit problem corresponds
to our nonblocking atomic commit (NBAC) abstraction without the termination
property.

• The nonblocking atomic commit problem has been introduced by Skeen (1981)
and was refined later (Guerraoui 2002; Delporte-Gallet et al. 2004). Our “Con-
sensus-Based Non-Blocking Atomic Commit” algorithm presented in this chap-
ter is a modular variant of Skeen’s decentralized three-phase algorithm. It is more
modular in the sense that we encapsulate many subtle issues of NBAC within
consensus.

6.11 Chapter Notes 339

• The group membership problem was initially discussed by Birman and Joseph
(1987). They also introduced the view-synchronous communication abstraction.
Both primitives have been implemented in the influential ISIS System. The spec-
ification of view-synchronous communication presented here was introduced
by Friedman and van Renesse (1996). This is a strong specification as it ensures
that messages are always delivered in the same view, in which they were broad-
cast. Weaker specifications were also considered (Babaoglu et al. 1997; Fekete
et al. 2001; Lesley and Fekete 2003; Pereira et al. 2003). A comprehensive
survey of group communication specifications and systems providing view-
synchronous communication is presented by Chockler, Keidar, and Vitenberg
(2001).

7. Concluding Remarks

The world must be coming to an end. Children no longer obey their parents and
every man wants to write a book.

(Writing on a tablet, unearthed not far from Babylon and dated back to 2800 B.C.)

In many areas of computing, theory and practice were able to sediment a number of
basic abstractions that are now taught to students and provided to programmers, in
the forms of libraries or programming-language constructs.

The basic abstractions of sequential computing include data structures like set,
record, and array, as well as control structures like if-then-else, and loops. In con-
current computing, fundamental abstractions include thread, mutex, transaction,
and semaphore, whereas the underlying abstractions of operating systems include
address space and file.

This book studies abstractions for distributed programming: broadcast, shared
memory, consensus, and its variants. It describes their realization in distributed sys-
tems that are prone to failures and subject to attacks. Some of these abstractions may
become – if they are not already – the basic building blocks for building reliable and
secure distributed applications.

We mention in the following some systems that support (a subset of) these
abstractions. We also mention alternative books that describe the underlying algo-
rithms and implementations from a different perspective.

7.1 Implementation in Appia

Many abstractions introduced in the book have been implemented in the Appia
library. This library is written in Java and was developed with the goal of sup-
porting flexible protocol compositions. Appia was originally built for pedagogical
purposes (Miranda, Pinto, and Rodrigues 2001). It has subsequently been used in
many different research projects and is available freely (Miranda et al. 2009).

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3 7,
c© Springer-Verlag Berlin Heidelberg 2011

341

342 7 Concluding Remarks

The first edition of this book contained implementations in Appia of many of its
algorithms for crash-stop process abstractions. They are available online from the
book’s website at http://distributedprogramming.net.

Studying actual implementations of the algorithms greatly enhances the under-
standing of those details that have not been covered in the high-level descriptions.
Knowledge about the practical issues makes a big difference when moving to a real
environment.

7.2 Further Implementations

In the following, we enumerate other systems and programming libraries that impl-
ement some of the abstractions we considered in this book. For some libraries, the
list also contains pointers to detailed technical descriptions or to more theoretical
studies of their algorithmic aspects.

V: The V distributed system was developed at Stanford University as part of a
research project to explore communication issues in distributed systems. The pro-
cess group abstraction was introduced there to encapsulate distribution (Cheriton
and Zwaenepoel 1985).

Amoeba: The Amoeba microkernel-based distributed operating system was devel-
oped at the Vrije University of Amsterdam to devise applications on a collection
of workstations or single board computers (Kaashoek et al. 1989).

Delta-4: The Delta-4 project was a European research project under the ESPRIT
Programme that defined an architecture to build dependable system based on
reliable (group) communication abstractions. Many of the ideas underlying Delta-
4 were later incorporated in the FT-CORBA standard (Powell 1991, 1994).

Replicated RPC: Circus was one of the first systems to use the group com-
munication abstraction to access replicated servers. It included a replicated
remote-procedure call facility implemented in Berkeley Unix (Cooper 1984a,b).

ISIS, Horus, Ensemble, and Spinglass: The ISIS system was developed at
Cornell University to realize and experiment with the abstractions of group
membership and the view-synchronous communication (Birman and Joseph
1987). ISIS, the first in a suite of four related systems, was a commercial prod-
uct that was deployed in air-traffic control and stock-market applications. For
many years, it represented the reference system in the area (Birman and van
Renesse 1993; Birman 1999). Horus was a modular implementation of ISIS (van
Renesse et al. 1996), and Ensemble was an implementation of Horus written
in the ML programming language with several optimizations of the communica-
tion stack (Hayden 1998). Spinglass, the youngest in the family, was based on
gossip-based algorithms and designed for highly scalable systems (Birman et al.
2001).

Transis: Transis is a group communication system developed at the Hebrew Uni-
versity of Jerusalem. It defines algorithms for both local-area and wide-are
networks. The work on this system highlighted the importance of uniform
primitives (Amir et al. 1992).

http://distributedprogramming.net

7.2 Further Implementations 343

Psync, Consul, Cactus, and Coyote: Psync was the first one in a suite of group
communication systems inspired by the x-kernel protocol composition frame-
work (Peterson et al. 1989). Consul was one of the first systems to relax total
order based on application semantics for improved performance (Mishra et al.
1993). Cactus was a follow-up on Consul based on a microprotocol decom-
position of group services. Many useful lessons on protocol composition were
extracted from this work (Bhatti et al. 1998).

GARF, OGS, and BAST: These constitute a suite of distributed programming
libraries developed at EPFL. The consensus abstraction was promoted as a first
class citizen of the libraries. A fine-grained composition methodology was pro-
posed to guide the programmer (Garbinato et al. 1995; Felber and Guerraoui
2000; Guerraoui et al. 2000).

Arjuna: Arjuna is an object-oriented distributed system developed at the Uni-
versity of Newcastle upon Tyne, which integrates group communication and
transaction abstractions (Parrington et al. 1995).

Totem: Developed at the University of California at Santa Barbara, Totem is a
group communication protocol suite well-known for a very efficient implemen-
tation of total order broadcast on a LAN. It was used to build FT-CORBA
compliant systems (Moser et al. 1995; Amir et al. 1995).

Spread: Spread is a group communication system with support for wide-area com-
munication and provides also message encryption and authentication (Amir et al.
2000; Spread Concepts LLC 2010).

JGroups: Written in Java, JGroups is a group communication protocol suite tar-
geted at application servers and data centers; it is widely used at the time of
writing this book (Ban 2010).

PBFT: This implementation of Byzantine total-order broadcast using the PBFT
algorithm has been developed at the Massachusetts Institute of Technology
(Castro and Liskov 2002). Because it is freely available, it has been taken up
and extended by several other research projects that build systems for secure
distributed programming in the fail-arbitrary model.

SINTRA: The Secure Intrusion-Tolerant Replication Architecture (SINTRA)
prototype was developed at IBM Research in order to demonstrate Byzan-
tine total-order broadcast and randomized Byzantine consensus primitives using
cryptography (Cachin and Poritz 2002).

UpRight: UpRight is an open-source library for crash-tolerant and Byzantine-
tolerant state machine replication (Clement et al. 2009). It incorporates ideas
from some of the most efficient Byzantine total-order broadcast protocols devel-
oped after the appearance of PBFT.

BFT-SMaRt: SMaRt is a high-performance Byzantine-fault-tolerant state machine
replication library developed in Java with simplicity and robustness as primary
requirements (Bessani and Sousa 2010). Its main objective is to provide a code
base for building dependable services and for implementing new algorithms.

344 7 Concluding Remarks

7.3 Further Reading

This book has introduced the most important concepts of distributed program-
ming, according to our understanding. We aimed at formulating the abstractions
in a concise manner and at reducing the algorithms to their essential structure.
Having mastered the abstractions in this book, the reader is now well positioned
to explore the world of distributed programming further. One may choose between
two principle directions:

• The theory of distributed computing offers a rich conceptual framework that gives
deep insights in the phenomena arising from distributed and concurrent program-
ming. The theory develops not only positive results by establishing abstractions
and implementing them, but gives also equally important negative results, which
characterize impossibilities by formulating models in which certain tasks are
provably unsolvable (Lynch 1989).

• The practice of distributed computing develops implementations and deploys
distributed systems in the real world. For succeeding in practice, a deep under-
standing of communication networks and operating systems, their capabilities
and limitations, is necessary. Many aspects that have been neglected in this book
become very important, such as the typical behavior of a system and not only its
worst-case behavior (on which this book focused). But building an actual system
and deploying it on a global scale, in production systems with tens of thousands
of nodes, is for many the ultimate reward.

We close this book with some pointers to related books on distributed program-
ming. Some books choose different abstractions than those we studied in this book,
whereas other books choose the same abstractions but present them in a different
manner.

Lynch (1996), Attiya and Welch (2004): These books introduce the theory of dis-
tributed computing and address aspects like complexity, which we did not cover
here. They contain important impossibility results and prove them in detail. Both
are written at an advanced level. Lynch (1996) presents algorithms in a very
abstract way, making it easier to prove their correctness in a modular and precise
manner. Attiya and Welch (2004) consider different computing models, including
the message-passing model and the shared-memory model, with special empha-
sis on their similarities and the discrepancies between them. These two books are
ideally suited for the reader who wants to further explore the theory of distributed
computing.

Tel (2000), Kshemkalyani and Singhal (2008): The book of Tel (2000) is for-
mulated at an introductory level and contains a comprehensive overview of
distributed algorithms and the related theory. It emphasizes more detailed (and
perhaps more realistic) network abstractions than the ones considered here.
Kshemkalyani and Singhal (2008) give a broad introduction to the principles of
distributed systems. The book presents many facets of the theory of distributed
systems, but also covers some topics from related domains, such as cryptographic
authentication, self-stabilization, and peer-to-peer systems.

7.3 Further Reading 345

Verı́ssimo and Rodrigues (2001), Birman (2005): These books take the perspec-
tive of the designer of a distributed system and discuss crucial architectural
decisions for achieving dependability.

Tanenbaum and v. Steen (2002), Coulouris, Dollimore, and Kindberg (2005):
These books present the operating system perspective of a distributed system,
including aspects like transactions, security, and naming.

Charron-Bost, Pedone, and Schiper (2010): This book contains a collection of
works on replication, which were originally presented at a seminar entitled
“A 30-Year Perspective on Replication” held in 2007. Their common theme is
to use replication as a way to tolerate faults. Replication is also the main method
that has been used in this book to realize reliable and secure distributed pro-
gramming abstractions. This collection contains survey chapters written by most
of the people who have contributed to developing state-of-the-art replication
techniques.

References

Abadi, M. and P. Rogaway (2002). Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127.

Abd-El-Malek, M., G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie (2005). Fault-
scalable byzantine fault-tolerant services. In Symposium on Operating Systems Principles
(SOSP 2005), pp. 59–74.

Abraham, I., G. Chockler, I. Keidar, and D. Malkhi (2006). Byzantine disk Paxos: Optimal
resilience with Byzantine shared memory. Distributed Computing 18(5), 387–408.

Aguilera, M., W. Chen, and S. Toueg (2000). Failure detection and consensus in the crash–recovery
model. Distributed Computing 13(2), 99–125.

Alpern, B. and F. B. Schneider (1985). Defining liveness. Information Processing Letters 21(4),
181–185.

Amir, Y., C. Danilov, and J. Stanton (2000). A low latency, loss tolerant architecture and protocol
for wide area group communication. In Dependable Systems and Networks (DSN 2000, formerly
FTCS-30 and DCCA-8), pp. 327–336.

Amir, Y., D. Dolev, S. Kramer, and D. Malki (1992). Transis: A communication sub-system for
high availability. In Fault-Tolerant Computing (FTCS-22), pp. 76–84.

Amir, Y., L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella (1995). The Totem
single-ring ordering and membership protocol. ACM Transactions on Computer Systems 13(4),
311–342.

Attiya, H., A. Bar-Noy, and D. Dolev (1995). Sharing memory robustly in message-passing
systems. Journal of the ACM 1(42), 124–142.

Attiya, H. and J. Welch (2004). Distributed Computing: Fundamentals, Simulations and Advanced
Topics (Second ed.). Wiley.

Babaoglu, Ö., A. Bartoli, and G. Dini (1997). Enriched view synchrony: A programming paradigm
for partitionable asynchronous distributed systems. IEEE Transactions on Computers 46(6),
642–658.

Ban, B. (2002–2010). JGroups, a toolkit for reliable multicast communication. http://www.
jgroups.org.

Ben-Or, M. (1983). Another advantage of free choice: Completely asynchonous agreement
protocols. In Principles of Distributed Computing (PODC 1983), pp. 27–30.

Ben-Or, M. and R. El-Yaniv (2003). Resilient-optimal interactive consistency in constant time.
Distributed Computing 16, 249–262.

Berman, P. and J. A. Garay (1989). Asymptotically optimal distributed consensus (extended
abstract). In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca (Eds.), Automata, Lan-
guages and Programming (ICALP 1989), Volume 372 of Lecture Notes in Computer Science,
pp. 80–94.

Bessani, A. and P. Sousa (2009–2010). SMaRt — High-performance Byzantine-fault-tolerant state
machine replication. http://code.google.com/p/bft-smart/.

Bhatti, N., M. Hiltunen, R. Schlichting, and W. Chiu (1998). Coyote: A system for con-
structing fine-grain configurable communication services. ACM Transactions on Computer
Systems 16(4), 321–366.

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming,
DOI: 10.1007/978-3-642-15260-3,
c© Springer-VerlagBerlin Heidelberg 2011

347

http://www.jgroups.org
http://www.jgroups.org
http://code.google.com/p/bft-smart/

348 References

Birman, K. (1999). A review of experiences with reliable multicast. Software – Practice and
Experience 29(9), 741–774.

Birman, K. (2005). Reliable Distributed Systems. Springer.
Birman, K., M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky (1999). Bimodal multicast.

ACM Transactions on Computer Systems 17(2), 41–88.
Birman, K. and T. Joseph (1987). Reliable communication in the presence of failures. ACM

Transactions on Computer Systems 1(5), 47–76.
Birman, K. and R. van Renesse (1993). Reliable Distributed Programming with the Isis Toolkit.

IEEE Computer Society Press.
Birman, K., R. van Renesse, and W. Vogels (2001). Spinglass: Secure and scalable communica-

tions tools for mission-critical computing. In Survivability Conference and Exposition (DISCEX
2001).

Boichat, R., P. Dutta, S. Frølund, and R. Guerraoui (2003a). Deconstructing Paxos. SIGACT
News 34(1), 47–67.

Boichat, R., P. Dutta, S. Frølund, and R. Guerraoui (2003b). Reconstructing Paxos. SIGACT
News 34(2), 42–57.

Boichat, R. and R. Guerraoui (2005). Reliable and total order broadcast in a crash–recovery model.
Journal of Parallel and Distributed Computing 65(4), 397–413.

Bracha, G. (1987). Asynchronous Byzantine agreement protocols. Information and Computa-
tion 75, 130–143.

Bracha, G. and S. Toueg (1985). Asynchronous consensus and broadcast protocols. Journal of the
ACM 32(4), 824–840.

Brasileiro, F. V., F. Greve, A. Mostéfaoui, and M. Raynal (2001). Consensus in one communication
step. In V. E. Malyshkin (Ed.), Parallel Computing Technologies (PaCT 2001), Volume 2127 of
Lecture Notes in Computer Science, pp. 42–50.

Cachin, C. (2009). Yet another visit to Paxos. Research Report RZ 3754, IBM Research.
Cachin, C., K. Kursawe, F. Petzold, and V. Shoup (2001). Secure and efficient asynchronous broad-

cast protocols (extended abstract). In J. Kilian (Ed.), Advances in Cryptology – CRYPTO 2001,
Volume 2139 of Lecture Notes in Computer Science, pp. 524–541.

Cachin, C., K. Kursawe, and V. Shoup (2005). Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography. Journal of Cryptology 18(3), 219–246.

Cachin, C. and J. A. Poritz (2002). Secure intrusion-tolerant replication on the Internet. In
Dependable Systems and Networks (DSN 2002), pp. 167–176.

Canetti, R. and T. Rabin (1993). Fast asynchronous Byzantine agreement with optimal resilience.
In Symposium on the Theory of Computing (STOC 1993), pp. 42–51.

Castro, M. and B. Liskov (2002). Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems 20(4), 398–461.

Chandra, T., R. Griesemer, and J. Redstone (2007). Paxos made live – an engineering perspective.
In Principles of Distributed Computing (PODC 2007), pp. 398–407.

Chandra, T., V. Hadzilacos, and S. Toueg (1996). The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722.

Chandra, T. and S. Toueg (1996). Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43(2), 225–267.

Chang, J. and N. Maxemchuck (1984). Reliable broadcast protocols. ACM Transactions on
Computer Systems 2(3), 251–273.

Charron-Bost, B., F. Pedone, and A. Schiper (Eds.) (2010). Replication: Theory and Practice,
Volume 5959 of Lecture Notes in Computer Science. Springer.

Cheriton, D. and W. Zwaenepoel (1985). Distributed process groups in the V kernel. ACM
Transactions on Computer Systems 3(2), 77–107.

Chockler, G., R. Guerraoui, and I. Keidar (2007). Amnesic distributed storage. In A. Pelc (Ed.),
Distributed Computing (DISC 2007), Volume 4731 of Lecture Notes in Computer Science, pp.
139–151.

Chockler, G., I. Keidar, and R. Vitenberg (2001). Group communication specifications: A compre-
hensive study. ACM Computing Surveys 33(4), 427–469.

Clement, A., M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche (2009). UpRight
cluster services. In Symposium on Operating Systems Principles (SOSP 2009), pp. 277–290.

References 349

Cooper, E. (1984a). Replicated procedure call. In Principles of Distributed Computing (PODC
1984), pp. 220–232.

Cooper, E. C. (1984b). Circus: A replicated procedure call facility. In Reliability in Distributed
Software and Database Systems (SRDS 1984), pp. 11–24.

Coulouris, G., J. Dollimore, and T. Kindberg (2005). Distributed Systems: Concepts and Design
(4th ed.). Addison-Wesley/Pearson Education.

De Prisco, R., B. Lampson, and N. Lynch (2000). Revisiting the PAXOS algorithm. Theoretical
Computer Science 243, 35–91.

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2002). Failure detection lower bounds on
registers and consensus. In D. Malkhi (Ed.), Distributed Computing (DISC 2002), Volume 2508
of Lecture Notes in Computer Science, pp. 237–251.

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2010). Tight failure detection bounds on
atomic object implementations. Journal of the ACM 57(4).

Delporte-Gallet, C., H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg
(2004). The weakest failure detectors to solve certain fundamental problems in distributed
computing. In Principles of Distributed Computing (PODC 2004), pp. 338–346.

Diffie, W. and M. E. Hellman (1976). New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654.

Dolev, D. and H. R. Strong (1983). Authenticated algorithms for Byzantine agreement. SIAM
Journal on Computing 12(4), 656–666.

Dolev, D. and A. C. Yao (1983). On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208.

Doudou, A., B. Garbinato, and R. Guerraoui (2005). Tolerating arbitrary failures with state
machine replication. In H. B. Diab and A. Y. Zomaya (Eds.), Dependable Computing Systems:
Paradigms, Performance Issues, and Applications. Wiley.

Dutta, P. and R. Guerraoui (2005). The inherent price of indulgence. Distributed Computing 18(1),
85–98.

Dwork, C., N. Lynch, and L. Stockmeyer (1988). Consensus in the presence of partial synchrony.
Journal of the ACM 35(2), 288–323.

Eugster, P., R. Guerraoui, S. Handurukande, P. Kouznetsov, and A.-M. Kermarrec (2003).
Lightweight probabilistic broadcast. ACM Transactions on Computer Systems 21(4), 341–374.

Eugster, P., R. Guerraoui, and P. Kouznetsov (2004). Delta-reliable broadcast: A probabilistic mea-
sure of broadcast reliability. In International Conference on Distributed Computing Systems
(ICDCS 2004), pp. 636–643.

Ezhilchelvan, P., A. Mostefaoui, and M. Raynal (2001). Randomized multivalued consensus. In
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2001),
pp. 195–200.

Fekete, A., N. Lynch, and A. Shvartsman (2001). Specifying and using a partitionable group
communication service. ACM Transactions on Computer Systems 19(2), 171–216.

Felber, P. and R. Guerraoui (2000). Programming with object groups in CORBA. IEEE Concur-
rency 8(1), 48–58.

Fidge, C. (1988). Timestamps in message-passing systems that preserve the partial ordering. In
11th Australian Computer Science Conference.

Fischer, M., N. Lynch, and M. Paterson (1985). Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382.

Friedman, R. and R. van Renesse (1996). Strong and weak virtual synchrony in Horus. In
Symposium on Reliable and Distributed Systems (SRDS 1996), pp. 140–149.

Garbinato, B., R. Guerraoui, and K. Mazouni (1995). Implementation of the GARF replicated
objects platform. Distributed Systems Engineering 2(1), 14–27.

Garbinato, B., F. Pedone, and R. Schmidt (2004). An adaptive algorithm for efficient mes-
sage diffusion in unreliable environments. In Dependable Systems and Networks (DSN 2004),
pp. 507–516.

Gifford, D. K. (1979). Weighted voting for replicated data. In Symposium on Operating Systems
Principles (SOSP 1979), pp. 150–162.

350 References

Golding, R. and D. Long (1992). Design choices for weak-consistency group communication.
Technical Report UCSC-CRL-92-45, University of California Santa Cruz.

Goldreich, O. (2001–2004). Foundations of Cryptography, Volume I & II. Cambridge University
Press.

Gray, C. and D. Cheriton (1989). Leases: An efficient fault-tolerant mechanism for distributed file
cache consistency. In Symposium on Operating Systems Principles (SOSP 1989), pp. 202–210.

Gray, J. (1978). Notes on database operating systems. In Operating Systems: An Advanced Course,
Volume 60 of Lecture Notes in Computer Science, pp. 393–481.

Guerraoui, R. (2000). Indulgent algorithms. In Principles of Distributed Computing (PODC 2000),
pp. 289–297.

Guerraoui, R. (2002). Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing 15(1), 17–25.

Guerraoui, R., P. Eugster, P. Felber, B. Garbinato, and K. Mazouni (2000). Experiences with object
group systems. Software – Practice and Experience 30(12), 1375–1404.

Guerraoui, R., N. Knežević, V. Quéma, and M. Vukolić (2010). The next 700 BFT protocols. In
European Conference on Computer Systems (EuroSys 2010), pp. 363–376.

Guerraoui, R. and R. Levy (2004). Robust emulations of a shared memory in a crash–recovery
model. In International Conference on Distributed Computing Systems (ICDCS 2004), pp. 400–
407.

Guerraoui, R., R. Oliveria, and A. Schiper (1998). Stubborn communication channels. Technical
Report LSR-REPORT-1998-009, Ecole Polytechnique Fédérale de Lausanne (EPFL).

Guerraoui, R. and M. Raynal (2004). The information structure of indulgent consensus. IEEE
Transactions on Computers 53(4), 453–466.

Guerraoui, R. and A. Schiper (2001). Genuine atomic multicast in asynchronous distributed
systems. Theoretical Computer Science 254, 297–316.

Gupta, I., A.-M. Kermarrec, and A. Ganesh (2006). Efficient and adaptive epidemic-style pro-
tocols for reliable and scalable multicast. IEEE Transactions on Parallel and Distributed
Systems 17(7), 593–605.

Hadzilacos, V. (1984). Issues of Fault Tolerance in Concurrent Computations. Ph. D. thesis,
Harvard University.

Hadzilacos, V. and S. Toueg (1993). Fault-tolerant broadcasts and related problems. In S. J. Mul-
lender (Ed.), Distributed Systems. New York: ACM Press & Addison-Wesley. Expanded version
appears as Technical Report TR94-1425, Department of Computer Science, Cornell University,
1994.

Hayden, M. (1998). The Ensemble System. Ph. D. thesis, Cornell University, Computer Science
Department.

Herlihy, M. and J. Wing (1990). Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 3(12), 463–492.

Israeli, A. and M. Li (1993). Bounded timestamps. Distributed Computing 4(6), 205–209.
Jelasity, M., R. Guerraoui, A.-M. Kermarrec, and M. van Steen (2004). The peer sampling service:

Experimental evaluation of unstructured gossip-based implementations. In H.-A. Jacobsen
(Ed.), Middleware 2004, Volume 3231 of Lecture Notes in Computer Science, pp. 79–98.

Kaashoek, F. and A. Tanenbaum (1991). Group communication in the Amoeba distributed oper-
ating system. In International Conference on Distributed Computing Systems (ICDCS 1991),
pp. 222–230.

Kaashoek, F., A. Tanenbaum, S. Hummel, and H. Bal (1989). An efficient reliable broadcast
protocol. Operating Systems Review 4(23), 5–19.

Kermarrec, A.-M., L. Massoulié, and A. J. Ganesh (2003). Probabilistic reliable dissemination in
large-scale systems. IEEE Transactions on Parallel and Distributed Systems 14(3), 248–258.

Koldehofe, B. (2003). Buffer management in probabilistic peer-to-peer communication protocols.
In Symposium on Reliable Distributed Systems (SRDS 2003), pp. 76–85.

Kotla, R., L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong (2009). Zyzzyva: Speculative
Byzantine fault tolerance. ACM Transactions on Computer Systems 27(4), 7:1–7:39.

References 351

Kouznetsov, P., R. Guerraoui, S. Handurukande, and A.-M. Kermarrec (2001). Reducing noise in
gossip-based reliable broadcast. In Symposium on Reliable Distributed Systems (SRDS 2001),
pp. 186–189.

Kshemkalyani, A. D. and M. Singhal (2008). Distributed Computing: Principles, Algorithms, and
Systems. Cambridge University Press.

Ladin, R., B. Liskov, and L. Shrira (1990). Lazy replication: Exploiting the semantics of distributed
services. In Principles of Distributed Computing (PODC 1990), pp. 43–57.

Lamport, L. (1977). Concurrent reading and writing. Communications of the ACM 11(20),
806–811.

Lamport, L. (1978). Time, clocks and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565.

Lamport, L. (1986a). On interprocess communication. Part I: Basic formalism. Distributed
Computing 2(1), 75–85.

Lamport, L. (1986b). On interprocess communication. Part II: Algorithms. Distributed Comput-
ing 2(1), 86–101.

Lamport, L. (1998). The part-time parliament. ACM Transactions on Computer Systems 16(2),
133–169. Initially appeared as Technical Report 49, DEC Systems Research Center, 1989.

Lamport, L., R. Shostak, and M. Pease (1982). The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems 4(3), 382–401.

Lampson, B. (2001). The ABCD’s of Paxos. In Principles of Distributed Computing (PODC 2001).
Lesley, N. and A. Fekete (2003). Providing view synchrony for group communication services.

Acta Informatica 40(3), 159–210.
Li, H. C., A. Clement, A. S. Aiyer, and L. Alvisi (2007). The Paxos register. In Symposium on

Reliable Distributed Systems (SRDS 2007), pp. 114–126.
Lin, M.-J. and K. Marzullo (1999). Directional gossip: Gossip in a wide area network. In

J. Hlavicka, E. Maehle, and A. Pataricza (Eds.), European Dependable Computing Conference
(EDCC-3), Volume 1667 of Lecture Notes in Computer Science, pp. 364–379.

Liskov, B. (2010). From viewstamped replication to Byzantine fault tolerance. In B. Charron-Bost,
F. Pedone, and A. Schiper (Eds.), Replication: Theory and Practice, Volume 5959 of Lecture
Notes in Computer Science, pp. 121–149. Springer.

Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann.
Lynch, N. and A. Shvartsman (1997). Robust emulation of shared memory using dynamic quorum

acknowledged broadcasts. In Fault-Tolerant Computing Systems (FTCS 1997), pp. 272–281.
Lynch, N. and A. Shvartsman (2002). RAMBO: A reconfigurable atomic memory service for

dynamic networks. In D. Malkhi (Ed.), Distributed Computing (DISC 2002), Volume 2508 of
Lecture Notes in Computer Science, pp. 173–190.

Lynch, N. A. (1989). A hundred impossibility proofs for distributed computing. In Principles of
Distributed Computing (PODC 1989), pp. 1–28.

Malkhi, D. and M. K. Reiter (1998). Byzantine quorum systems. Distributed Computing 11(4),
203–213.

Martin, J.-P. and L. Alvisi (2006). Fast Byzantine consensus. IEEE Transactions on Dependable
and Secure Computing 3(3), 202–215.

Martin, J.-P., L. Alvisi, and M. Dahlin (2002). Minimal Byzantine storage. In D. Malkhi (Ed.),
Distributed Computing (DISC 2002), Volume 2508 of Lecture Notes in Computer Science,
pp. 311–325.

Menezes, A. J., P. C. van Oorschot, and S. A. Vanstone (1997). Handbook of Applied Cryptography.
CRC Press.

Milosevic, Z., M. Hutle, and A. Schiper (2009). Unifying Byzantine consensus algorithms with
weak interactive consistency. In T. F. Abdelzaher, M. Raynal, and N. Santoro (Eds.), Principles
of Distributed Systems (OPODIS 2009), Volume 5923 of Lecture Notes in Computer Science,
pp. 300–314.

Miranda, H., A. Pinto, and L. Rodrigues (2001). Appia, a flexible protocol kernel supporting
multiple coordinated channels. In International Conference on Distributed Computing Systems
(ICDCS 2001), pp. 707–710.

352 References

Miranda, H., A. Pinto, L. Rodrigues, N. Carvalho, J. Mocito, and L. Rosa (2001–2009). Appia com-
munication framework. http://appia.di.fc.ul.pt/ and http://sourceforge.
net/projects/appia/.

Mishra, S., L. Peterson, and R. Schlichting (1993). Experience with modularity in Consul.
Software – Practice and Experience 23(10), 1059–1075.

Moser, L. E., P. M. Melliar-Smith, and D. A. Agarwal (1995). The Totem system. In Fault-Tolerant
Computing Systems (FTCS 1995), pp. 61–66.

Naor, M. and A. Wool (1998). The load, capacity and availability of quorum systems. SIAM Journal
on Computing 27(2), 423–447.

Neiger, G. and S. Toueg (1993). Simulating synchronized clocks and common knowledge in
distributed systems. Journal of the ACM 2(40), 334–367.

Oki, B. M. and B. Liskov (1988). Viewstamped replication: A new primary copy method to support
highly-available distributed systems. In Principles of Distributed Computing (PODC 1988),
pp. 8–17.

Parrington, G., S. Shrivastava, S. Wheater, and M. Little (1995). The design and implementation
of Arjuna. Computing Systems 8(3), 255–308.

Pease, M., R. Shostak, and L. Lamport (1980). Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228–234.

Pereira, J., L. Rodrigues, and R. Oliveira (2003). Semantically reliable multicast: Definition,
implementation, and performance evaluation. IEEE Transactions on Computers 52(2), 150–165.

Peterson, G. (1983). Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems 5(1), 46–55.

Peterson, L., N. Bucholz, and R. Schlichting (1989). Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems 7(3), 217–246.

Powell, D. (Ed.) (1991). Delta Four: A Generic Architecture for Dependable Distributed Comput-
ing. Springer.

Powell, D. (1994). Distributed fault tolerance: Lessons from Delta-4. IEEE Micro 14(1), 36–47.
Rabin, M. O. (1983). Randomized Byzantine generals. In Foundations of Computer Science (FOCS

1983), pp. 403–409.
Raynal, M., A. Schiper, and S. Toueg (1991). The causal ordering abstraction and a simple way to

implement it. Information Processing Letters 39(6), 343–350.
Reiter, M. K. (1994). Secure agreement protocols: Reliable and atomic group multicast in Rampart.

In Computer and Communications Security (CCS 1994), pp. 68–80.
Rivest, R. L., A. Shamir, and L. Adleman (1978). A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM 21(2), 120–126.
Rodrigues, L., H. Fonseca, and P. Verı́ssimo (1996). Totally ordered multicast in large-scale

systems. In International Conference on Distributed Computing Systems (ICDCS 1996),
pp. 503–510.

Rodrigues, L., R. Guerraoui, and A. Schiper (1998). Scalable atomic multicast. In International
Conference on Computer Communications and Networks (ICCCN 1998), pp. 840–847.

Rodrigues, L., S. Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec (2003). Adaptive
gossip-based broadcast. In Dependable Systems and Networks (DSN 2003), pp. 47–56.

Rodrigues, L. and M. Raynal (2003). Atomic broadcast in asynchronous crash–recovery distributed
systems and its use in quorum-based replication. IEEE Transactions on Knowledge and Data
Engineering 15(5), 1206–1217.

Rodrigues, L. and P. Verı́ssimo (1992). xAMp: A multi-primitive group communications service.
In Symposium on Reliable Distributed Systems (SRDS 1992), pp. 112–121.

Rufino, J., P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues (1998). Fault-tolerant broadcasts
in CAN. In Fault-Tolerant Computing (FTCS 1998), pp. 150–159.

Saltzer, J. H., D. P. Reed, and D. D. Clark (1984). End-to-end arguments in system design. ACM
Transactions on Computer Systems 2(4), 277–288.

Schneider, F., D. Gries, and R. Schlichting (1984). Fault-tolerant broadcasts. Science of Computer
Programming 4(1), 1–15.

Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys 22(4), 299–319.

http://appia.di.fc.ul.pt/
http://sourceforge.
net/projects/appia/

References 353

Schwarz, R. and F. Mattern (1994). Detecting causal relationships in distributed computations: In
search of the holy grail. Distributed Computing 7(3), 149–174.

Shamir, A. (1979). How to share a secret. Communications of the ACM 22(11), 612–613.
Shao, C., E. Pierce, and J. Welch (2003). Multi-writer consistency conditions for shared memory

objects. In F. E. Fich (Ed.), Distributed Computing (DISC 2003), Volume 2848 of Lecture Notes
in Computer Science, pp. 106–120.

Skeen, D. (1981). A decentralized termination protocol. In IEEE Symposium on Reliability in
Distributed Software and Database Systems.

Song, Y. J. and R. van Renesse (2008). Bosco: One-step Byzantine asynchronous consensus am-
nesic distributed storage. In G. Taubenfeld (Ed.), Distributed Computing (DISC 2008), Volume
5218 of Lecture Notes in Computer Science, pp. 438–450.

Spread Concepts LLC (2001–2010). The Spread toolkit. http://www.spread.org.
Srikanth, T. K. and S. Toueg (1987). Simulating authenticated broadcasts to derive simple fault-

tolerant algorithms. Distributed Computing 2, 80–94.
Tanenbaum, A. and M. v. Steen (2002). Distributed Systems: Principles and Paradigms. Prentice

Hall, Englewood Cliffs, NJ, USA.
Tel, G. (2000). Introduction to Distributed Algorithms (2nd ed.). Cambridge University Press,

Cambridge.
Thomas, R. H. (1979). A majority consensus approach to concurrency control for multiple copy

databases. ACM Transactions on Database Systems 4(2), 180–209.
Toueg, S. (1984). Randomized Byzantine agreements. In Principles of Distributed Computing

(PODC 1984), pp. 163–178.
van Renesse, R., K. Birman, and S. Maffeis (1996). Horus: A flexible group communication

system. Communications of the ACM 4(39), 76–83.
Verı́ssimo, P. and L. Rodrigues (2001). Distributed Systems for System Architects. Kluwer

Academic Publishers, Dordrecht (Hingham, MA).
Verı́ssimo, P., L. Rodrigues, and M. Baptista (1989). AMp: A highly parallel atomic multicast

protocol. In Communications Architectures & Protocols (SIGCOMM ’89), pp. 83–93.
Vidyasankar, K. (1988). Converting Lamport’s regular register to atomic register. Information

Processing Letters 28(6), 287–290.
Vidyasankar, K. (1990). Concurrent reading while writing revisited. Distributed Computing 2(4),

81–85.
Vitányi, P. M. B. and B. Awerbuch (1986). Atomic shared register access by asynchronous

hardware. In Foundations of Computer Science (FOCS 1986), pp. 233–243.
Voulgaris, S., M. Jelasity, and M. van Steen (2003). A robust and scalable peer-to-peer gossiping

protocol. In G. Moro, C. Sartori, and M. Singh (Eds.), Agents and Peer-to-Peer Computing
(AP2PC 2003), Volume 2872 of Lecture Notes in Computer Science.

Wensley, J., L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-Smith, R. Shostak, and
C. Weinstock (1978). SIFT: Design and analysis of a fault-tolerant computer for aircraft control.
Proceedings of the IEEE 10(66), 1240–1255.

Xiao, Z., K. Birman, and R. van Renesse (2002). Optimizing buffer management for reliable
multicast. In Dependable Systems and Networks (DSN 2002), pp. 155–166.

http://www.spread.org

List of Modules

1.1 Job handler . 13
1.2 Job transformation and processing abstraction . 15
2.1 Fair-loss point-to-point links . 34
2.2 Stubborn point-to-point links . 35
2.3 Perfect point-to-point links . 37
2.4 Logged perfect point-to-point links . 40
2.5 Authenticated perfect point-to-point links . 42
2.6 Perfect failure detector . 50
2.7 Leader election . 52
2.8 Eventually perfect failure detector . 54
2.9 Eventual leader detector . 56
2.10 Byzantine eventual leader detector . 61
2.11 FIFO-order perfect point-to-point links . 68
3.1 Best-effort broadcast . 75
3.2 (Regular) Reliable broadcast . 77
3.3 Uniform reliable broadcast . 82
3.4 Stubborn best-effort broadcast . 86
3.5 Logged best-effort broadcast . 88
3.6 Logged uniform reliable broadcast . 90
3.7 Probabilistic broadcast . 94
3.8 FIFO-order (reliable) broadcast . 102
3.9 Causal-order (reliable) broadcast . 104
3.10 Causal-order uniform (reliable) broadcast . 104
3.11 Byzantine consistent broadcast . 112
3.12 Byzantine reliable broadcast . 117
3.13 Byzantine consistent channel . 121
3.14 Byzantine reliable channel . 121
3.15 Logged reliable broadcast . 129
4.1 (1, N) regular register . 143
4.2 (1, N) atomic register . 149
4.3 (N, N) atomic register . 161
4.4 (1, N) logged regular register . 171
4.5 (1, N) Byzantine safe register . 176
4.6 (1, N) Byzantine regular register . 180
4.7 (1, N) Byzantine atomic register . 189

355

356 List of Modules

5.1 (Regular) Consensus . 205
5.2 Uniform consensus . 211
5.3 Epoch-change . 218
5.4 Epoch consensus . 221
5.5 Logged uniform consensus . 229
5.6 Logged epoch-change . 230
5.7 Logged epoch consensus . 232
5.8 Randomized consensus . 236
5.9 Common coin . 237
5.10 Weak Byzantine consensus . 245
5.11 (Strong) Byzantine consensus . 246
5.12 Byzantine epoch-change . 247
5.13 Byzantine epoch consensus . 249
5.14 Conditional collect . 250
5.15 Byzantine randomized consensus . 262
5.16 Validated Byzantine consensus . 273
6.1 Regular total-order broadcast . 283
6.2 Uniform total-order broadcast . 284
6.3 Byzantine total-order broadcast . 289
6.4 Uniform terminating reliable broadcast . 294
6.5 Uniform fast consensus . 297
6.6 Fast Byzantine consensus . 301
6.7 Non-blocking atomic commit . 305
6.8 Group membership . 308
6.9 View-synchronous communication . 313
6.10 Uniform view-synchronous communication . 314
6.11 Logged uniform total-order broadcast . 326
6.12 Replicated state machine . 330

List of Algorithms

1.1 Synchronous Job Handler . 14
1.2 Asynchronous Job Handler . 14
1.3 Job-Transformation by Buffering . 16
2.1 Retransmit Forever . 36
2.2 Eliminate Duplicates . 38
2.3 Log Delivered . 41
2.4 Authenticate and Filter . 42
2.5 Exclude on Timeout . 51
2.6 Monarchical Leader Election . 53
2.7 Increasing Timeout . 55
2.8 Monarchical Eventual Leader Detection . 57
2.9 Elect Lower Epoch . 58
2.10 Rotating Byzantine Leader Detection . 62
2.11 Sequence Number . 69
3.1 Basic Broadcast . 76
3.2 Lazy Reliable Broadcast . 78
3.3 Eager Reliable Broadcast . 80
3.4 All-Ack Uniform Reliable Broadcast . 83
3.5 Majority-Ack Uniform Reliable Broadcast . 85
3.6 Basic Stubborn Broadcast . 87
3.7 Logged Basic Broadcast . 89
3.8 Logged Majority-Ack Uniform Reliable Broadcast 91
3.9 Eager Probabilistic Broadcast . 95
3.10 Lazy Probabilistic Broadcast (part 1, data dissemination) 98
3.11 Lazy Probabilistic Broadcast (part 2, recovery) 99
3.12 Broadcast with Sequence Number . 102
3.13 No-Waiting Causal Broadcast . 105
3.14 Garbage-Collection of Causal Past (extends Algorithm 3.13) 107
3.15 Waiting Causal Broadcast . 108
3.16 Authenticated Echo Broadcast . 113
3.17 Signed Echo Broadcast . 115
3.18 Authenticated Double-Echo Broadcast . 118
3.19 Byzantine Consistent Channel . 122
3.20 Byzantine Reliable Channel . 123
3.21 Simple Optimization of Lazy Reliable Broadcast 126

357

358 List of Algorithms

3.22 Ideal Uniform Reliable Broadcast . 128
3.23 Logged Eager Reliable Broadcast . 130
3.24 No-Waiting Causal Broadcast using FIFO Broadcast 132
4.1 Read-One Write-All . 144
4.2 Majority Voting Regular Register . 147
4.3 From (1, N) Regular to (1, 1) Atomic Registers 152
4.4 From (1, 1) Atomic to (1, N) Atomic Registers 154
4.5 Read-Impose Write-All . 157
4.6 Read-Impose Write-Majority (part 1, read) . 158
4.7 Read-Impose Write-Majority (part 2, write and write-back) 159
4.8 From (1, N) Atomic to (N, N) Atomic Registers 163
4.9 Read-Impose Write-Consult-All . 166
4.10 Read-Impose Write-Consult-Majority (part 1, read and consult) 168
4.11 Read-Impose Write-Consult-Majority (part 2, write and write-back) . 169
4.12 Logged Majority Voting (part 1, write) . 174
4.13 Logged Majority Voting (part 2, read) . 175
4.14 Byzantine Masking Quorum . 178
4.15 Authenticated-Data Byzantine Quorum . 181
4.16 Double-Write Byzantine Quorum (part 1, write) 184
4.17 Double-Write Byzantine Quorum (part 2, read) 185
4.18 Byzantine Quorum with Listeners (part 1, write) 190
4.19 Byzantine Quorum with Listeners (part 2, read) 191
4.20 Modification of Majority Voting . 196
5.1 Flooding Consensus . 206
5.2 Hierarchical Consensus . 209
5.3 Flooding Uniform Consensus . 213
5.4 Hierarchical Uniform Consensus . 214
5.5 Leader-Based Epoch-Change . 219
5.6 Read/Write Epoch Consensus . 223
5.7 Leader-Driven Consensus . 225
5.8 Logged Leader-Based Epoch-Change . 231
5.9 Logged Read/Write Epoch Consensus . 233
5.10 Logged Leader-Driven Consensus (part 1) . 234
5.11 Logged Leader-Driven Consensus (part 2) . 235
5.12 Randomized Binary Consensus (phase 1) . 239
5.13 Randomized Binary Consensus (phase 2) . 240
5.14 Randomized Consensus with Large Domain . 243
5.15 Byzantine Leader-Based Epoch-Change . 248
5.16 Signed Conditional Collect . 251
5.17 Byzantine Read/Write Epoch Consensus (part 1, read phase) 252
5.18 Byzantine Read/Write Epoch Consensus (part 2, write phase) 253
5.19 Byzantine Leader-Driven Consensus . 259
5.20 Byzantine Randomized Binary Consensus (phase 1) 263
5.21 Byzantine Randomized Binary Consensus (phase 2) 264
5.22 Rotating Coordinator (part 1) . 270

List of Algorithms 359

5.23 Rotating Coordinator (part 2) . 271
5.24 From Anchored Validity to Strong Validity . 274
5.25 Echo Conditional Collect . 275
6.1 Consensus-Based Total-Order Broadcast . 285
6.2 Rotating Sender Byzantine Broadcast . 290
6.3 Consensus-Based Uniform Terminating Reliable Broadcast 295
6.4 From Uniform Consensus to Uniform Fast Consensus 298
6.5 From Byzantine Consensus to Fast Byzantine Consensus 302
6.6 Consensus-Based Nonblocking Atomic Commit 306
6.7 Consensus-Based Group Membership . 309
6.8 TRB-Based View-Synchronous Communication (part 1) 315
6.9 TRB-Based View-Synchronous Communication (part 2) 316
6.10 Consensus-Based Uniform View-Synchronous Comm. (part 1) 320
6.11 Consensus-Based Uniform View-Synchronous Comm. (part 2) 321
6.12 Logged Uniform Total-Order Broadcast . 327
6.13 Replicated State Machine using Total-Order Broadcast 331
6.14 Direct Consensus-Based View-Synchronous Comm. (part 1) 335
6.15 Direct Consensus-Based View-Synchronous Comm. (part 2) 336

Index

O(·), 66
#(·), 62
�, 245
�, 293
append, 105
authenticate, 30
authentic, 186
binds, 254
byzhighestval, 177
certifiedvalue, 254
head, 291
highestval, 148
highest, 155
leader, 61
maxrank, 53
min, 207
quorumhighest, 254
random, 95
rank, 20
remove, 105
retrieve, 26
selectedmax, 186
select, 59
sign, 31
sort, 285
sound, 253
starttimer, 35
store, 26
unbound, 254
verifyauth, 30
verifysig, 31

access
– sequential, 138
– serial, 139
accuracy (failure detector), 49, 54
accuracy (leader election), 52, 56
agreement (leader election), 56

algorithm, 8
– deterministic, 22
– distributed, 16, 20
– execution, 20
– fail-arbitrary, 17, 112, 114, 117, 122, 123,

177, 180, 183, 189, 250, 252, 301
– fail-noisy, 17, 216, 218, 225, 270
– fail-noisy-arbitrary, 246, 259, 288
– fail-recovery, 17, 86, 89, 90, 173, 230,

232, 234, 326
– fail-silent, 17, 76, 80, 84, 104, 146, 158,

169, 222, 284, 298, 330
– fail-stop, 17, 52, 78, 82, 144, 156, 165,

205, 208, 212, 213, 293, 304, 309, 314,
319, 335

– randomized, 17, 22, 94, 98
– randomized fail-arbitrary, 261
– randomized fail-silent, 238, 242
algorithm name
– All-Ack Uniform Reliable Broadcast, 82
– Authenticate and Filter, 42
– Authenticated Double-Echo Broadcast,

117
– Authenticated Echo Broadcast, 112
– Authenticated-Data Byzantine Quorum,

180
– Basic Broadcast, 76
– Basic Stubborn Broadcast, 86
– Broadcast with Sequence Number, 101
– Byzantine Consistent Channel, 122
– Byzantine Leader-Based Epoch-Change,

246
– Byzantine Leader-Driven Consensus, 259
– Byzantine Masking Quorum, 177
– Byzantine Quorum with Listeners, 189
– Byzantine Randomized Binary

Consensus, 261

361

362 Index

– Byzantine Read/Write Epoch Consensus,
251

– Byzantine Reliable Channel, 123
– Consensus-Based Group Membership,

309
– Consensus-Based Nonblocking Atomic

Commit, 304
– Consensus-Based Total-Order Broadcast,

284
– Consensus-Based Uniform Terminating

Reliable Broadcast, 293
– Consensus-Based Uniform View-

Synchronous Communication, 319
– Direct Consensus-Based View-

Synchronous Communication, 335
– Double-Write Byzantine Quorum, 182
– Eager Probabilistic Broadcast, 94
– Eager Reliable Broadcast, 79
– Echo Conditional Collect, 274
– Elect Lower Epoch, 57
– Eliminate Duplicates, 37
– Exclude on Timeout, 50
– Flooding Consensus, 205
– Flooding Uniform Consensus, 212
– From (1, 1) Atomic to (1, N) Atomic

Registers, 153
– From (1, N) Atomic to (N, N) Atomic

Registers, 161
– From (1, N) Regular to (1, 1) Atomic

Registers, 151
– From Anchored Validity to Strong

Validity, 273
– From Byzantine Consensus to Fast

Byzantine Consensus, 300
– From Uniform Consensus to Uniform

Fast Consensus, 297
– Garbage-Collection of Causal Past, 106
– Hierarchical Consensus, 208
– Hierarchical Uniform Consensus, 213
– Increasing Timeout, 54
– Lazy Probabilistic Broadcast, 97
– Lazy Reliable Broadcast, 78
– Leader-Based Epoch-Change, 218
– Leader-Driven Consensus, 225
– Log Delivered, 40
– Logged Basic Broadcast, 89
– Logged Eager Reliable Broadcast, 129
– Logged Leader-Based Epoch-Change,

230

– Logged Leader-Driven Consensus, 234
– Logged Majority Voting, 172
– Logged Majority-Ack Uniform Reliable

Broadcast, 90
– Logged Read/Write Epoch Consensus,

232
– Logged Uniform Total-Order Broadcast,

326
– Majority Voting Regular Register, 146
– Majority-Ack Uniform Reliable

Broadcast, 84
– Monarchical Eventual Leader Detection,

57
– Monarchical Leader Election, 52
– No-Waiting Causal Broadcast, 104
– Randomized Binary Consensus, 238
– Randomized Consensus with Large

Domain, 242
– Read-Impose Write-All (1, N) Atomic

Register, 156
– Read-Impose Write-Consult-All (N, N)

Atomic Register, 165
– Read-Impose Write-Consult-Majority

(N, N) Atomic Register, 167
– Read-Impose Write-Majority (1, N)

Atomic Register, 157
– Read-One Write-All Regular Register,

144
– Read/Write Epoch Consensus, 222
– Replicated State Machine, 330
– Retransmit Forever, 35
– Rotating Byzantine Leader Detection, 61
– Rotating Coordinator, 270
– Rotating Sender Byzantine Broadcast,

288
– Sequence Number, 68
– Signed Conditional Collect, 250
– Signed Echo Broadcast, 114
– TRB-Based View-Synchronous

Communication, 314
– Waiting Causal Broadcast, 108
anchored validity (consensus), 267

Big-O Notation, 66
broadcast, 73
– atomic, 282
– best-effort, 75
– Byzantine consistent, 111
– Byzantine reliable, 117

Index 363

– Byzantine total-order, 288
– causal-order, 103
– FIFO-order, 101
– logged best-effort, 88
– logged uniform reliable, 90
– reliable, 77
– terminating reliable, 292
– total-order, 282
– uniform reliable, 81
– view-synchronous, 311
Byzantine, 29
Byzantine consistent channel, 120
Byzantine consensus, 244
Byzantine Generals, 338
Byzantine leader detector, 60
Byzantine reliable channel, 120

causal order, 100
causality, 45
channel, 111
common coin, 237
communication step, 21
completeness (failure detector), 49, 54
completeness (operation), 141
computation step, 21
concurrent operations, 142
conditional collect, 249
consensus, 203
– Byzantine, 244
– Byzantine randomized, 261
– epoch, 220
– fast, 296
– fast Byzantine, 300
– logged uniform, 228
– randomized, 236
– regular, 204
– strong Byzantine, 245
– uniform, 211, 245
– uniform fast, 297
– validated Byzantine, 267
– weak Byzantine, 244
correct process, 21
coverage, 47
crash-recovery, 26

digital signature, 31

eavesdrop, 28
epoch consensus, 220
– Byzantine, 249

– logged, 230
epoch-change, 217
– Byzantine, 246
– logged, 229
event, 9
– indication, 11
– request, 11
– �P-Restore, 54
– �P-Suspect, 54
– Ω-Trust, 56
– P-Crash, 50
– al-Deliver, 42
– al-Send, 42
– bcb-Broadcast, 112
– bcb-Deliver, 112
– bcch-Broadcast, 121
– bcch-Deliver, 121
– bc-Decide, 246
– bc-Propose, 246
– beb-Broadcast, 75
– beb-Deliver, 75
– bec-StartEpoch, 247
– bep-Abort, 249
– bep-Aborted, 249
– bep-Decide, 249
– bep-Propose, 249
– bld-Complain, 61
– bld-Trust, 61
– bonar-Read, 189
– bonar-ReadReturn, 189
– bonar-Write, 189
– bonar-WriteReturn, 189
– bonrr-Read, 180
– bonrr-ReadReturn, 180
– bonrr-Write, 180
– bonrr-WriteReturn, 180
– bonsr-Read, 176
– bonsr-ReadReturn, 176
– bonsr-Write, 176
– bonsr-WriteReturn, 176
– brb-Broadcast, 117
– brb-Deliver, 117
– brch-Broadcast, 121
– brch-Deliver, 121
– brc-Decide, 262
– brc-Propose, 262
– btob-Broadcast, 289
– btob-Deliver, 289
– cc-Collected, 250

364 Index

– cc-Input, 250
– coin-Output, 237
– coin-Release, 237
– crb-Broadcast, 104
– crb-Deliver, 104
– curb-Broadcast, 104
– curb-Deliver, 104
– c-Decide, 205
– c-Propose, 205
– ec-StartEpoch, 218
– ep-Abort, 221
– ep-Aborted, 221
– ep-Decide, 221
– ep-Propose, 221
– fbc-Decide, 301
– fbc-Propose, 301
– fll-Deliver, 34
– fll-Send, 34
– fpl-Deliver, 68
– fpl-Send, 68
– frb-Broadcast, 102
– frb-Deliver, 102
– gm-View, 308
– jh-Confirm, 13
– jh-Submit, 13
– lbeb-Broadcast, 88
– lbeb-Deliver, 88
– lec-StartEpoch, 230
– lep-Abort, 232
– lep-Aborted, 232
– lep-Decide, 232
– lep-Propose, 232
– le-Leader, 52
– lonrr-Read, 171
– lonrr-ReadReturn, 171
– lonrr-Write, 171
– lonrr-WriteReturn, 171
– lpl-Deliver, 40
– lpl-Send, 40
– lrb-Broadcast, 129
– lrb-Deliver, 129
– luc-Decide, 229
– luc-Propose, 229
– lurb-Broadcast, 90
– lurb-Deliver, 90
– lutob-Broadcast, 326
– lutob-Deliver, 326
– nbac-Decide, 305
– nbac-Propose, 305

– nnar-Read, 161
– nnar-ReadReturn, 161
– nnar-Write, 161
– nnar-WriteReturn, 161
– onar-Read, 149
– onar-ReadReturn, 149
– onar-Write, 149
– onar-WriteReturn, 149
– onrr-Read, 143
– onrr-ReadReturn, 143
– onrr-Write, 143
– onrr-WriteReturn, 143
– pb-Broadcast, 94
– pb-Deliver, 94
– pl-Deliver, 37
– pl-Send, 37
– rb-Broadcast, 77
– rb-Deliver, 77
– rc-Decide, 236
– rc-Propose, 236
– rsm-Execute, 330
– rsm-Output, 330
– sbeb-Broadcast, 86
– sbeb-Deliver, 86
– sl-Deliver, 35
– sl-Send, 35
– th-Confirm, 15
– th-Error, 15
– th-Submit, 15
– tob-Broadcast, 283
– tob-Deliver, 283
– uc-Decide, 211
– uc-Propose, 211
– ufc-Decide, 297
– ufc-Propose, 297
– urb-Broadcast, 82
– urb-Deliver, 82
– utob-Broadcast, 284
– utob-Deliver, 284
– utrb-Broadcast, 294
– utrb-Deliver, 294
– uvs-Block, 314
– uvs-BlockOk, 314
– uvs-Broadcast, 314
– uvs-Deliver, 314
– uvs-View, 314
– vbc-Decide, 273
– vbc-Propose, 273
– vs-Block, 313

Index 365

– vs-BlockOk, 313
– vs-Broadcast, 313
– vs-Deliver, 313
– vs-View, 313
– wbc-Decide, 245
– wbc-Propose, 245
– Init, 13, 26
– Recovery, 26
eventual leader detector, 56

failure, 24
– detection, 49
– link, 33
– process, 24
– suspicion, 54
failure detector, 48
failure detector
– eventually perfect, 53
– perfect, 49
fast consensus, 296
fast Byzantine consensus, 300
fault, 24
– arbitrary, 29
– crash, 24
– crash-recovery, 26
– eavesdropping, 28
– omission, 26
FIFO order, 10, 100
finite-write termination, 185

gossip, 95
graceful degradation, 66
group membership, 307
– monotone, 308
group view, 308

hash function, 30
heartbeat, 46, 50, 59

indication, 11
instance, 13

job handler, 13

layer, 9
leader detector, 56
– Byzantine, 60
leader-election, 51
lease, 46
linearization, 160

link, 32
– authenticated, 41
– fair-loss, 34
– logged perfect, 39
– perfect, 37
– stubborn, 35
liveness, 22
log, 26
log-decide, 229
log-deliver, 39, 88
logical clock, 44
logical time, 44

MAC, 30
membership, 307
memory, 137
message
– deliver, 12, 21
– receive, 12, 21
– send, 12, 21
message-authentication code, 30
model, 63
– fail-arbitrary, 64
– fail-noisy, 63
– fail-noisy-arbitrary, 64
– fail-recovery, 63
– fail-silent, 63
– fail-stop, 63
– randomized, 64
module, 13
– (1, N)-AtomicRegister, 149
– (1, N)-ByzantineAtomicRegister, 189
– (1, N)-ByzantineRegularRegister, 180
– (1, N)-ByzantineSafeRegister, 176
– (1, N)-LoggedRegularRegister, 171
– (1, N)-RegularRegister, 143
– (N, N)AtomicRegister, 161
– AuthPerfectPointToPointLinks, 42
– BestEffortBroadcast, 75
– ByzantineConsensus, 246
– ByzantineConsistentBroadcast, 112
– ByzantineConsistentBroadcastChannel,

121
– ByzantineEpochChange, 247
– ByzantineEpochConsensus, 249
– ByzantineLeaderDetector, 61
– ByzantineRandomizedConsensus, 262
– ByzantineReliableBroadcast, 117
– ByzantineReliableBroadcastChannel, 121

366 Index

– ByzantineTotalOrderBroadcast, 289
– CausalOrderReliableBroadcast, 104
– CausalOrderUniformReliableBroadcast,

104
– CommonCoin, 237
– ConditionalCollect, 250
– Consensus, 205
– EpochChange, 218
– EpochConsensus, 221
– EventualLeaderDetector, 56
– EventuallyPerfectFailureDetector, 54
– FairLossPointToPointLinks, 34
– Fast Byzantine Consensus, 301
– FIFOPerfectPointToPointLinks, 68
– FIFOReliableBroadcast, 102
– GroupMembership, 308
– JobHandler, 13
– LeaderElection, 52
– LoggedBestEffortBroadcast, 88
– LoggedEpochChange, 230
– LoggedEpochConsensus, 232
– LoggedPerfectPointToPointLinks, 40
– LoggedReliableBroadcast, 129
– LoggedUniformConsensus, 229
– LoggedUniformReliableBroadcast, 90
– LoggedUniformTotalOrderBroadcast,

326
– NonBlockingAtomicCommit, 305
– PerfectFailureDetector, 50
– PerfectPointToPointLinks, 37
– ProbabilisticBroadcast, 94
– RandomizedConsensus, 236
– ReliableBroadcast, 77
– ReplicatedStateMachine, 330
– StubbornBestEffortBroadcast, 86
– StubbornPointToPointLinks, 35
– TotalOrderBroadcast, 283
– TransformationHandler, 15
– Uniform Fast Consensus, 297
– UniformConsensus, 211
– UniformReliableBroadcast, 82
– UniformTerminatingReliableBroadcast,

294
– UniformTotalOrderBroadcast, 284
– UniformViewSynchronousCommunica-

tion, 314
– ValidatedByzantineConsensus, 273
– ViewSynchronousCommunication, 313
– WeakByzantineConsensus, 245

module identifier, 13

nonblocking atomic commit, 304

order
– causal, 100
– first-in first-out (FIFO), 67, 100
– partial, 142
– total, 142, 282

performance, 65
precedence, 141
process, 20
– arbitrary-fault, 29
– Byzantine, 29
– crash-recovery, 26
– crash-stop, 24
protocol, 16
publish-subscribe, 4

quorum, 65, 84, 146, 158, 168, 173, 222,
238, 271

– Byzantine, 65, 112, 115, 119, 180, 185,
189, 253, 262

– Byzantine masking, 177

randomized Byzantine consensus, 261
randomized consensus, 236
rank, 20
register, 137
– atomic, 138, 149, 189
– – (1, N), 156
– – (1, 1), 151, 153
– – (1, N), 149, 151, 153, 158, 162
– – (N, N), 160, 162, 165
– Byzantine atomic, 189
– Byzantine regular, 179
– Byzantine safe, 176
– logged regular, 170
– regular, 138, 142, 170, 179
– – (1, N), 142, 144, 146, 151, 170, 173
– safe, 138, 176
request, 11
resilience, 25
retrieve, 26

safety, 22
self, 20
sequential operations, 142
SIFT, 17, 71, 134

Index 367

state machine, 282
store, 26
strong Byzantine consensus, 245
system
– asynchronous, 44
– partially synchronous, 47
– synchronous, 45

terminating reliable broadcast, 292
timeout, 35, 49
total order, 282

uniformity, 81

validated Byzantine consensus, 267
validity (consensus), 204, 244
view, 308
view-synchronous communication, 311
– uniform, 312

wait-free, 140
weak Byzantine consensus, 244

	Reliable and Secure Distributed Programming
	Preface
	Contents
	1 Introduction
	2 Basic Abstractions
	3 Reliable Broadcast
	4 Shared Memory
	5 Consensus
	6 Consensus Variants
	7 Concluding Remarks
	References
	List of Modules
	List of Algorithms
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

