

Lecture Notes in Computer Science 5959
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bernadette Charron-Bost
Fernando Pedone
André Schiper (Eds.)

Replication

Theory and Practice

13

Volume Editors

Bernadette Charron-Bost
École Polytechnique, CNRS
Laboratoire d’Informatique (LIX)
91128 Palaiseau CEDEX, France
E-mail: charron@lix.polytechnique.fr

Fernando Pedone
Università della Svizzera italiana (USI)
Facoltà di Scienze informatiche
Via Giuseppe Buffi 6, 6900 Lugano, Switzerland
E-mail: fernando.pedone@usi.ch

André Schiper
École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
Station 14, 1015 Lausanne, Switzerland
E-mail: andre.schiper@epfl.ch

Cover illustration: M.C. Escher’s “Symmetry Drawing E126”
© 2010 The M.C. Escher Company–Holland. All rights reserved.
www.mcescher.com

Library of Congress Control Number: 2009941316

CR Subject Classification (1998): H.2-4, H.2.4, C.4, C.2.4, E.3, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11293-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11293-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 12823659 06/3180 5 4 3 2 1 0

Preface

This book is the result of the seminar “A 30-Year Perspective on Replication,” which
took place at Monte Verità, Ascona, Switzerland, in November 2007. As suggested
by the title, the goal of the seminar was not to speculate about the future of repli-
cation, but rather to understand the present, by analyzing past successes and past
failures, and to make an assessment of about 30 years of research on replication.
Replication is a topic addressed by several communities: the distributed computing
community, the distributed system community, and the database community. Each
of these communities has looked at replication from different points of view and
with different goals, e.g., performance vs. fault tolerance. Recently, these different
goals have started to converge, and there has been work showing that efficiency and
strong consistency can sometimes be reconciled.

During the seminar the observation was made that we had reached a point of
understanding of the different issues of replication, and this knowledge should be
materialized in a book covering the different aspects of replication. This book results
from this observation. Its goal is to present a comprehensive view of the achieve-
ments of 30 years of research on replication. The book was written by most of
the people who have contributed to developing the state-of-the-art replication tech-
niques. It brings a comprehensive view of existing solutions, from a theoretical as
well as from a practical point of view. It covers replication of processes/objects and
of databases; replication for fault tolerance and replication for performance; benign
faults and malicious (Byzantine) faults. By covering these different issues in an in-
tegrated way, we believe the book fills a gap, and as such it should find a place in
the graduate teaching of distributed computing, distributed systems, and databases.

The book is organized in thirteen chapters. Chapter 1 introduces consistency
models for replicated data, both in the context of process/object and database repli-
cation. Chapter 2 discusses replication techniques commonly used in process repli-
cation, focusing on primary back-up and related techniques; it considers both the
fail-stop and the crash failure models. Chapter 3 considers modular approaches to
process replication; it starts with state-machine replication based on atomic broad-
cast and shows how this can be built on top of consensus. Although the litera-
ture on consensus is vast, there are many misunderstandings, often involving dif-

VI Preface

ferent communities. Chapter 4 discusses these misunderstandings. Chapter 5 cov-
ers replication for performance; it contains different strategies and examples, and
discusses trade-offs. Chapters 6 and 7 provide a historical account of the Virtual
Synchrony Replication Model and Viewstamped Replication, two early replication
systems and how they have evolved over the years. Chapters 8 and 9 are dedicated
to state-machine replication with Byzantine faults; the first considers distributed
trust systems, and the second introduces protocols for state-machine replication.
Chapter 10 surveys Byzantine quorum systems, suitable for use when parts of the
system cannot be trusted. Chapters 11 through 13 consider database replication.
Chapter 11 bridges the gap between process/object replication and database repli-
cation, while Chap. 12 surveys database replication techniques; it discusses differ-
ent replication approaches, consistency criteria for replicated databases and existing
systems. Chapter 13 illustrates database replication with a case study: the details of
an architecture for practical database replication.

Each one of the chapters in the book is self-contained, and can be read individu-
ally. Readers interested in certain specific aspects of replication, however, may pre-
fer to focus on some of the chapters. Chapters 1 and 11 through 13 provide a detailed
description of replication in the context of databases. Theoretical aspects of replica-
tion under benign failures are discussed in Chapters 1, 3 and 4. Chapters 5, 12 and
13 cover many issues involving practical replication issues. Chapters 8 through 10
address replication under malign failures (i.e., Byzantine failures). Readers mostly
interested in historical aspects of replication should read Chaps. 6 and 7.

The Monte Verità seminar organizers are thankful to all the participants for ac-
cepting to take part in this unique seminar, and to all authors for taking their time to
produce this book. We would also like to thank a number of institutions for the fi-
nancial support to the seminar: the Monte Verità Foundation, the Hasler Foundation,
Microsoft, Eidgenössische Technische Hochschule Zürich (ETHZ), École Polytech-
nique Fédérale de Lausanne (EPFL), Università della Svizzera italiana (USI), and
the École polytechnique in Palaiseau.

October 2009 Bernadette Charron-Bost
Fernando Pedone

André Schiper

List of Authors

Marcos K. Aguilera Microsoft Research Silicon Valley, USA
Gustavo Alonso ETHZ, Switzerland
Ken Birman Cornell University, USA
Christian Cachin IBM Research - Zurich, Switzerland
Nuno Carvalho Instituto Superior Técnico/INESC-ID, Portugal
Alfrânio Correia Jr. Universidade do Minho, Portugal
Alan D. Fekete University of Sydney, Australia
Rachid Guerraoui EPFL, Switzerland
Ricardo Jiménez-Peris Universidad Politécnica de Madrid, Spain
Bettina Kemme McGill University, Canada
Barbara Liskov MIT, USA
Michael G. Merideth Carnegie Mellon University, USA
Rui Oliveira Universidade do Minho, Portugal
Marta Patiño-Martı́nez Universidad Politécnica de Madrid, Spain
Fernando Pedone University of Lugano, Switzerland
José Pereira Universidade do Minho, Portugal
Guillaume Pierre VU University Amsterdam, The Netherlands
Krithi Ramamritham I.I.T. Bombay, India
Michael K. Reiter University of North Carolina, USA
Luı́s Rodrigues Instituto Superior Técnico/INESC-ID, Portugal
André Schiper EPFL, Switzerland
Fred B. Schneider Cornell University, USA
Robbert van Renesse Cornell University, USA
Maarten van Steen VU University Amsterdam, The Netherlands
Lidong Zhou Microsoft Research Asia, China

Contents

1 Consistency Models for Replicated Data . 1
Alan D. Fekete and Krithi Ramamritham
1.1 Introduction . 1

1.1.1 Contributions . 2
1.2 Defining the Sequential Data Type . 2
1.3 Strong Consistency . 4

1.3.1 Relaxing Inter-Client Operation Ordering 7
1.4 Weak Consistency . 10
1.5 Transactions . 14
1.6 Discussion . 15
1.7 Conclusion . 16
References . 17

2 Replication Techniques for Availability . 19
Robbert van Renesse and Rachid Guerraoui
2.1 Introduction . 19
2.2 Model . 20

2.2.1 Environment . 21
2.2.2 Specification . 21

2.3 Fail-Stop Failure Model . 22
2.3.1 Primary-Backup . 23
2.3.2 Chain Replication . 26
2.3.3 Queries . 28

2.4 Crash Failure Model . 30
2.4.1 Quorums . 31
2.4.2 Stake Replication . 31
2.4.3 Broker Replication . 36

2.5 Recovery and Reconfiguration . 38
2.6 Conclusion . 39
References . 39

X Contents

3 Modular Approach to Replication for Availability 41
Fernando Pedone and André Schiper
3.1 Introduction . 41
3.2 Atomic Broadcast for State Machine Replication 42
3.3 The Consensus Problem, or How to Implement Atomic Broadcast

in a Modular Way . 43
3.3.1 Consensus . 43
3.3.2 Implementation of Atomic Broadcast . 44

3.4 Solving Consensus . 47
3.4.1 About System Models . 47
3.4.2 Partially Synchronous Systems . 47
3.4.3 Asynchronous System Augmented with Failure Detectors 50
3.4.4 Discussion . 52

3.5 Generic Broadcast . 53
3.6 Dynamic Groups . 54

3.6.1 Group Membership Service . 54
3.6.2 Group Communication in Dynamic Groups 55

3.7 Conclusion . 56
References . 57

4 Stumbling over Consensus Research: Misunderstandings and Issues . 59
Marcos K. Aguilera
4.1 Introduction . 59
4.2 Misunderstandings . 60

4.2.1 Asynchronous Systems . 60
4.2.2 Eventually-Forever Assumptions . 61
4.2.3 Eventual Guarantees . 62
4.2.4 The Consensus Impossibility Result . 63
4.2.5 Uses of Replication . 65
4.2.6 Correlated Failures . 66

4.3 Issues . 67
4.3.1 The Application Interface . 67
4.3.2 Violation of Abstraction Boundaries . 69
4.3.3 Ambiguities and Errors . 70
4.3.4 Unfriendly Formalisms . 70
4.3.5 Lack of Feedback from Practitioners . 71
4.3.6 Hidden Limitations in Algorithms . 71

4.4 Conclusion . 71
References . 72

5 Replicating for Performance: Case Studies . 73
Maarten van Steen and Guillaume Pierre
5.1 Introduction . 73
5.2 Replication Strategies . 75

5.2.1 Replica Placement . 76
5.2.2 Content Distribution . 77
5.2.3 Strategy Evaluation . 78

Contents XI

5.3 Replication Granularity . 78
5.3.1 Example 1: Content Delivery Networks 79
5.3.2 Example 2: Edge-Server Computing . 81
5.3.3 Example 3: Decentralized Wikipedia . 83

5.4 Replicating for Performance versus Consistency 84
5.5 Replication Management . 86
5.6 Conclusions . 87
References . 87

6 A History of the Virtual Synchrony Replication Model 91
Ken Birman
6.1 Introduction . 91
6.2 Distributed Consistency: Who Needs It? . 94
6.3 Goals in This Chapter . 95
6.4 Historical Context . 95

6.4.1 Resilient Objects in Isis V1.0 . 98
6.4.2 Beyond Resilient Objects . 101
6.4.3 The Isis Toolkit and the Virtual Synchrony Model 102
6.4.4 A Design Feature Motivated by Performance Considerations . 104

6.5 Dynamic Membership . 106
6.5.1 Local Reads and Fast Updates . 106
6.5.2 Partitionable Views . 108

6.6 Causally Ordered Multicast: cbcast . 108
6.7 Time-Critical Applications . 110
6.8 A Series of Commercial Successes, but Ultimately, a Market Failure . 111

6.8.1 How Replication Was Used . 112
6.8.2 Causal and Other Controversies . 114
6.8.3 What Next? Live Objects and Quicksilver Scalable Multicast! 115

6.9 Closing Thoughts . 116
References . 117

7 From Viewstamped Replication to Byzantine Fault Tolerance 121
Barbara Liskov
7.1 Introduction . 121
7.2 Prehistory . 122
7.3 Viewstamped Replication . 123

7.3.1 Replica Groups . 124
7.3.2 Architecture . 125
7.3.3 Approach . 125

7.4 The VR Protocol . 126
7.4.1 Normal Operation . 127
7.4.2 View Changes . 128
7.4.3 Recovery . 131

7.5 Discussion of VR . 134
7.5.1 Differences from the Original . 134
7.5.2 Two-Phase Commit . 134

XII Contents

7.5.3 Optimizations . 135
7.5.4 Performance in the Normal Case . 136
7.5.5 Performance of View Changes . 137
7.5.6 State Management . 137
7.5.7 Non-deterministic Operations . 138

7.6 Byzantine Fault Tolerance . 138
7.6.1 Approach . 139

7.7 The PBFT Protocol . 140
7.7.1 View Changes . 142

7.8 Discussion of PBFT . 144
7.8.1 Cryptography . 144
7.8.2 Optimizations . 144
7.8.3 Selecting the Primary . 146
7.8.4 Recovery . 146
7.8.5 Non-determinism . 146

7.9 Conclusions . 146
References . 147

8 Implementing Trustworthy Services Using Replicated State
Machines . 151
Fred B. Schneider and Lidong Zhou
8.1 Introduction . 151
8.2 The State-Machine Approach . 152
8.3 Compromise and Proactive Recovery . 153
8.4 Service Key Refresh and Scalability . 154

8.4.1 Service Private Keys . 155
8.4.2 Proactive Secret Sharing . 156

8.5 Server Key Refresh . 156
8.5.1 Trusted Hardware . 156
8.5.2 Offline Keys . 157
8.5.3 Attack Awareness . 157

8.6 Processor Independence . 158
8.7 Replica Coordination . 160
8.8 Computing with Server Confidential Data . 162
8.9 Discussion . 163
References . 165

9 State Machine Replication with Byzantine Faults 169
Christian Cachin
9.1 Introduction . 169
9.2 Building Blocks . 170

9.2.1 Broadcast Primitives . 170
9.2.2 Distributed Cryptography . 173
9.2.3 Byzantine Consensus . 175

9.3 Atomic Broadcast Protocols . 178
9.3.1 Consensus-Based Atomic Broadcast . 179

Contents XIII

9.3.2 Sequencer-Based Atomic Broadcast . 179
9.3.3 Hybrid Atomic Broadcast . 180

9.4 Service Replication . 181
9.4.1 Replicating Cryptographic Services . 181
9.4.2 Handling Responses Securely . 181
9.4.3 Preserving Causality of Requests . 182

9.5 Conclusion . 182
References . 183

10 Selected Results from the Latest Decade of Quorum Systems
Research . 185
Michael G. Merideth and Michael K. Reiter
10.1 Introduction . 185
10.2 Quorum Systems for Byzantine Faults . 186

10.2.1 Access Strategies and Load . 187
10.2.2 Probabilistic Quorum Systems . 188

10.3 Minimizing Delays of Quorum Accesses . 189
10.4 Uses of Byzantine Quorums in Protocols . 191

10.4.1 Read-Overwrite Protocols . 192
10.4.2 State-Machine-Replication Protocols . 195

10.5 Conclusion . 205
References . 205

11 From Object Replication to Database Replication 207
Fernando Pedone and André Schiper
11.1 Introduction . 207
11.2 Replication Model and Consistency . 208

11.2.1 Generic Functional Model . 209
11.2.2 Object and Database Consistency . 210

11.3 From Object Replication to Database Replication: Multi-primary
Passive Replication . 210

11.4 Deferred Update Database Replication . 211
11.4.1 Additional Definitions . 212
11.4.2 Atomic Commit-Based Termination . 212
11.4.3 Atomic Broadcast-Based Termination . 214
11.4.4 Reordering-Based Termination . 215
11.4.5 Generic Broadcast-Based Termination . 216

11.5 Final Remarks . 217
References . 218

12 Database Replication: A Tutorial . 219
Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and
Gustavo Alonso
12.1 Introduction . 219

12.1.1 Why Replication . 219
12.1.2 Organization of the Chapter . 220

XIV Contents

12.2 Basic Taxonomy for Replica Control Approaches 221
12.2.1 Eager Primary Copy . 223
12.2.2 Eager Update Anywhere . 225
12.2.3 Lazy Primary Copy . 228
12.2.4 Lazy Update Anywhere . 230
12.2.5 Eager vs. Lazy . 232

12.3 Correctness Criteria . 233
12.3.1 Atomicity and Consistency . 233
12.3.2 Isolation . 235
12.3.3 Session Consistency . 237

12.4 Other Parameters . 237
12.4.1 Message Management . 238
12.4.2 Executing Writes . 239
12.4.3 Concurrency Control Mechanisms . 240
12.4.4 Architectural Alternatives . 243
12.4.5 Cluster vs. WAN Replication . 245
12.4.6 Degree of Replication . 246
12.4.7 Recovery . 247

12.5 Existing Systems . 247
12.5.1 Early Work . 247
12.5.2 Commercial Systems . 247
12.5.3 Lazy Replication Made Serializable . 248
12.5.4 Cluster Replication . 248
12.5.5 Other Issues . 249
12.5.6 Related Areas of Research . 249

12.6 Conclusions . 250
References . 250

13 Practical Database Replication . 253
Alfrânio Correia Jr., José Pereira, Luı́s Rodrigues, Nuno Carvalho, and
Rui Oliveira
13.1 Introduction . 253
13.2 An Architecture for Practical Database Replication 254
13.3 Reflector: Replication-Friendly Database Support 257

13.3.1 Reflection for Replication . 257
13.3.2 Processing Stages . 258
13.3.3 Processing Contexts . 259
13.3.4 Base-Level and Meta-level Calls . 260
13.3.5 Exception Handling . 261
13.3.6 Existing Reflector Bindings . 261

13.4 GCS: Communication and Coordination Support 263
13.4.1 Architectural and Algorithmic Issues . 264
13.4.2 Existing GCS Bindings . 266

13.5 Replicator: Pluggable Replication Protocols . 267

Contents XV

13.6 Consistent Database Replication . 268
13.6.1 Replication with Conservative Execution 270
13.6.2 Replication with Optimistic Execution . 272
13.6.3 Active Replication . 275
13.6.4 Hybrid Replication . 276
13.6.5 Evaluation . 277

13.7 Conclusions . 282
References . 283

Index . 287

Chapter 1
Consistency Models for Replicated Data

Alan D. Fekete and Krithi Ramamritham

Abstract There are many different replica control techniques, used in different re-
search communities. To understand when one replica management algorithm can
be replaced by another, we need to describe more abstractly the consistency model,
which captures the set of properties that an algorithm provides, and on which the
clients rely (whether the clients are people or other programs). In this chapter we
describe a few of the different consistency models that have been proposed, and we
sketch a framework for thinking about consistency models. In particular, we show
that there are several styles in which consistency models can be expressed, and we
also propose some axes of variation among the consistency models.

1.1 Introduction

The research of decades has produced many ideas for managing replicated data,
in contexts including distributed systems, databases, and multiprocessor computer
hardware. The chapters of this book present many system designs, which differ in
how replicas are updated, when they are updated, how failures are handled, and so
on. In this chapter, we try to abstract away from particular system designs, to think
about the functionality that a replicated system gives to its users.

Even systems that are widely different internally can be functionally interchange-
able. For example, users should not be aware of whether the replicas are communi-
cating through a group communication infrastructure (described in Ch 3.2 and Ch
5), or running a consensus protocol (see Ch 3.3 and Ch 4); users shouldn’t need
to care whether each replica stores a single version of the data, or multiple ver-
sions. Different system designs may have different characteristics for performance
or fault-tolerance, but the users should be able to take code that runs on one system,
and run it on another system without changing the behavior.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A.D. Fekete and K. Ramamritham

However, in some cases, the functionality itself changes between one system de-
sign and another. For example, a common theme in replication research is to seek
improved performance by giving up some level of consistency between replicas (see
Ch 6.4). For a user, it is very important to know exactly what functionality one can
rely on, from each replicated data management system. A replication consistency
model is a way to abstract away implementation details, and to identify the func-
tionality of a given system. Like any other careful specification, a consistency model
is a way for people to come to a common understanding of each others rights and
responsibilities. For a consistency model, the people who must jointly understand
the model are the users (who learn what they can rely on the system to provide, and
what assumptions they might be inclined to make that are not guaranteed), and the
system designers (who document the features of their design that will not change,
as performance tuning, and other optimization is done).

A consistency model is a property of system designs, but a particular consistency
model is usually presented in terms of a condition that can be true or false for in-
dividual executions. That is, we can determine whether or not the condition holds
for a possible execution: one pattern of events that might occur at various places
and times as the system runs (including information about the type and contents of
messages, when and where these messages are sent and received, the state of each
replica after each event, etc). If every possible execution that can occur for a system
design makes the condition true, then we say that the system design itself satisfies
the consistency model.

1.1.1 Contributions

The remainder of the chapter is structured as follows. In Section 1.2 we deal with the
need to formalize the properties of the sequential data type which is being replicated.
In Section 1.3 we explain the strongest consistency model, where the users can’t ever
discover that the data is replicated. We also introduce two styles for presenting con-
sistency models: an operation-ordering style where there are logical conditions on
how operations can be ordered into a sequence that is allowed by the sequential data
type, and an ideal-system style where a abstracted state-machine model is given that
generates executions which are indistinguishable to the clients from those in the real
system. Section 1.4 looks at some weaker notions of consistency, that are provided
by many systems as a tradeoff for better performance or better availability. In Sec-
tion 1.5 we mention some of the ways in which consistency models can be defined
for replicated databases; here we have a richer interface, where several operations
can be grouped in a transaction. In Section 1.6 we comment on some general issues
that are raised by the wide variety of different consistency models that have been
proposed. Finally we conclude with a summary of the main ideas of this chapter.

1.2 Defining the Sequential Data Type

Before offering a definition of a particular consistency model, it is important to know
what operations the clients will be submitting, and how these operations should be

1 Consistency Models for Replicated Data 3

understood. This aspect of the model is captured by a sequential data type, which is a
formalization of the semantics of the operations, or equivalently, of the unreplicated
system that users understand or to which they relate the replicated system. Seminal
early work on specification of a data type was done by Liskov and Zilles [12].

The simplest possible sequential data type is the read-write single-bit register.
Here the operations are to read the value, or to write a new value (overwriting what-
ever is already present). Thus there would be three legal operations: read(), write(0),
write(1). The return value from a read is either 0 or 1; the return value from a write is
“OK”. With a bit more realism, we can consider the read-write 32-bit register, whose
operations are read(), and write(v) for each v from 0x00000000 to 0xFFFFFFFF.

The simple registers described above have read-only operations which do not af-
fect the state, and update operations that modify the state but do not reveal anything
about it. It is also possible to have more complicated operations that both mod-
ify state, and return a value based on the state. Many hardware platforms actually
support operations like that. For example, a CAS-register offers compare-and-swap
operations (as well as read and write). The effect of compare-and-swap(v1, v2) de-
pends on the previous value in the register. If the value present is equal to v1, the
operation changes the value to be v2; otherwise the effect is to leave the register un-
changed. The return value from this operation is always the value that was present
in the register before the operation.

In distributed computing theory, there has also been consideration of traditional
data types such as a queue or stack. Another direction for finding interesting sequen-
tial data types is to consider a type with many different locations. For example, a
multi-location read-write memory has a set of locations (or addresses) A, and opera-
tions such as read(a) for a ∈ A, or write(a, w) for a ∈ A and w in some finite domain
of values. One can then also allow operations that deal with several locations at
once. For example, a snapshot memory has an operation snapshot(), which doesn’t
modify the state but returns a collection of values, one value for each location.

We can formalize a sequential data type by a set of operations O, a set of states S,
an initial state s0, a set of return values R, and two functions1: next-state: O×S→ S
and return-value: O× S→ R. For example, a multi-location byte-valued snapshot
memory is a sequential data type where O = {read(a) for a ∈ A, write(a, w) for
a ∈ A and w ∈W (here W is the set of all 8-bit constants), and snapshot() }; the
set of states S consists of all functions A→W , the initial state has all locations
mapped to the zero word; the return values are elements of W (returned by read
operations), the single string “OK” (returned by write operations) and the set of
functions A→W (returned by snapshot operations; thus the return value from a
snapshot is actually a state). The next-state function is defined by next-state(read(a),

1 In this chapter we only deal with data types where the operations are total and deterministic,
so an operation has a unique next-state and return value, when applied in a given state. This is
implicit in having functions for next-state and return-value, and it sometimes requires adding error
return-values and error states to the model, for cases such as performing a pop() on an empty stack.
The theory becomes somewhat more complicated if we loosen the model to allow nondeterministic
operations (which may move to one of several next-states) or partial operations (which may not be
allowed in a particular state).

4 A.D. Fekete and K. Ramamritham

s) = s, next-state(write(a, w), s) = t where t is the function from A to W such that
t(l) = s(l) if l �= a, and t(a) = w, and next-state(snapshot(), s) = s. The return-value
function is return-value(read(a), s) = s(a) [recall that a state is a function A to W],
return-value(write(a, w) = “OK”, return-value(snapshot(), s) = s.

Using these functions, or indeed as an alternative formalization, we can look at
the possible legal histories of the data type: each history is a sequence of pairs (op-
eration, return-value), where an operation is paired with the return value it receives,
when performed in the state that results for all the operations before it in the se-
quence, done in order. Thus a legal history for a 4-location byte-valued snapshot
memory might be the following:

(write(1, 5), “OK”)

(read(1), 5)

(read(2), 0)

(write(2, 7), “OK”)

(snapshot(), (0 �→ 0, 1 �→ 5, 2 �→ 7, 3 �→ 0)

(write(3, 2), “OK”) (1.1)

One can use the sequential data type to carefully define concepts such as when an
operation does not modify the state, or when operations commute with one another.
Some techniques for implementing replication are specific to particular sequential
types, while other algorithms work oblivious of the sequential type. Similarly, some
consistency models rely on a particular sequential type, for example, by using the
fact that each operation is on a single location, or by treating read operations differ-
ently from writes.

1.3 Strong Consistency

The principal goal of research on consistency models is to help application develop-
ers understand the behavior they will see when they interact with a replicated storage
system, and especially so they can choose application logic that will function sen-
sibly. The very easiest way a developer can understand the behavior of a replicated
system, is to simply ignore the replication: if the application program gets the same
behavior as with a single site, unreplicated system, then writing the application logic
is no different to conventional programming. This transparency concept can be cap-
tured by saying that a system execution is linearizable; one similarly says that a
system is linearizable, if every execution it produces has this property. The term
“atomic” is often used instead of linearizable; we do not do so, to avoid confusing
with the database meaning of atomic, described in Section 1.5 below. The idea of
linearizability is very prominent in research in theory of distributed computing, hav-
ing been introduced in [8]. Below we give an example to illustrate the concept, and
then we discuss some ways to make this precise.

In Figure 1.1, we show one execution that is linearizable, for a system where
the underlying serial data is the 4-location byte-valued snapshot memory mentioned

1 Consistency Models for Replicated Data 5

T X Y U

snapshot()

0 �→ 0, 1 �→ 5,
2 �→ 7, 3 �→ 0

write(2,7)

read(1)

5

write(3,2)

read(2)

0

write(1,5)

����������
����������
������������������
����������

����������
������������������

����������
����������
������������������

Fig. 1.1 Linearizable Execution.

above. This execution could arise in a system that has two replicas of the data (at
sites X and Y), and clients located at T and U each follow a replica management
algorithm: each read or snapshot is done on one replica, each write is done on both
replicas, different writes are done in the same order at the replicas, and a write
doesn’t return to the client until all replicas are modified. A figure like this is called
a space-time diagram; it shows time increasing down the page; the activity at each
location (either a client or a replica) is shown as happening on a vertical line, and
messages are shown as diagonal arrows, starting at a point on the vertical line repre-
senting the sender, and ending on the line representing the destination location. We
use a rectangle around part of the client’s vertical line, to indicate the duration of
one operation, from its invocation till the operation returns and the next operation
can begin. The details of the operation are written next to the top of the rectangle,
and the return value is written next to the bottom of the rectangle (except that in this
diagram we omit the uninformative return value ”OK” from a write operation)

One approach to giving a precise definition of linearizable execution is based on
the operations and their order. We take all the operations that occur in the execution,
pairing the operation (name and arguments) with the return value produced in the
execution, and then we must find a sequence (total order) of these pairs that is al-
lowed by the sequential data type being replicated. An additional requirement is that
the order of operations as they occur in the sequence must not contradict any order
information visible to an observer of the system execution. Thus, we define a real-
time partial order <E,rt between operations that occur in the execution E, where
p <E,rt q means that the duration of operation p (from invocation till it returns) oc-
curs entirely before the duration of operation q; in other words, the return from p

6 A.D. Fekete and K. Ramamritham

occurs at an earlier real time than the invocation of operation q. Notice that this is
a partial order; if two operations overlap, they are unrelated in this order. We can
then define that an execution E is linearizable provided that there exists a sequence
H such that

[L1] H contains exactly the same operations that occur in E, each paired with the
return value received in E,

[L2] the total order of operations in H is compatible2 with the real-time partial
order <E,rt ,

[L3] H is a legal history of the sequential data type that is replicated.

We can apply this definition to the execution in Figure 1.1. For brevity in the dis-
cussion, we name an operation by mentioning only the location being written and
not the value written; the execution involved has at most one write on each loca-
tion, so there is no ambiguity introduced by eliding the value. In this execution, the
read(1) operation occurs entirely before the operations write(2), read(2), snapshot()
and write(3); however it overlaps with write(1). Similarly read(2) occurs entirely be-
fore snapshot() and write(3), but it overlaps write(2), and also write(3) overlaps both
write(2) and snapshot(). A suitable H is the sequence given as (1.1) in Section 1.2
above. Notice that the order of operations in H is compatible with “occurs entirely
before” , for example, read(1) is earlier in H than write(2), read(2), snapshot() and
write(3). In this particular example, there is only one possible H that meets all the
conditions [L1], [L2], and [L3]. In general, however, there may be several sequences
H with these properties. The definition of linearizable merely asks that at least one
such H exists.

A different style, based on an ideal system model, has also been used in the lit-
erature to define consistency properties. This style of definition involves providing
an explicit system model for the unreplicated system that users can imagine they
are dealing with. For linearizablity, we consider an ideal system, in which there is
a single site where the data is stored, and this site also has a collection of pend-
ing requests, and a collection of pending responses. Whenever a client requests an
operation, the operation is placed among the pending requests. At any time (non-
deterministically) the system can (in one indivisible step) chose a pending request,
perform it on the (unique) data, take the result into the collection of pending re-
sponses, and remove the chosen operation from the collection of pending requests.
At any time, the system can non-deterministically chose a pending response, re-
move it from the collection, and return that value to the client which had originally
requested the operation. This can be formalized as a state-transition machine. The
definition of a linearizable execution E is that there exists an execution F of the un-
replicated ideal system, such that E and F contain exactly the same steps at all the
clients, in exactly the same real-time order.

2 Two partial orders on the same set are called compatible provided that there exists a partial order
containing their union. Equivalently, their union has no cycle. In this particular situation, the order
in H is a total order, so compatibility is simply expressing that whenever p <E,rt q then p comes
before q in H.

1 Consistency Models for Replicated Data 7

1.3.1 Relaxing Inter-Client Operation Ordering

The intuitive justification for the definition of linearizable, is that the replicated sys-
tem gives the same functionality as the sequential data type. This is built on the idea
that there is an “external observer” who is aware of all the activities of all the clients
(but not internal activity within the replicas), and we require that what the observer
sees in the real system is the same as what they would see in a system with a sin-
gle copy of the sequential data. In particular, condition [L2] in the operation-order
based definition, builds in the notion that the observer knows whether one operation
occurs entirely before another, and similarly the ideal system model must have the
same order of client steps (that is, the observer can see which client steps occur first,
even when these are at different locations). For many issues in a distributed system,
it is normal to disregard the order of activity at different locations, in cases where
such order can’t be determined by any observer within the system. This leads to var-
ious relaxations of the consistency model, which allow some operations to appear
out of their real-time order. However, we do not usually allow arbitrary changes
in the apparent order, and insist that some operations form a session, whose order
must be respected in the apparent unreplicated system that users believe they are
dealing with.

A consistency model of this kind is used in research on theory of distributed
computing where it is called sequential consistency. An example of an execution
that is sequentially consistent, but is not linearizable, is shown in Figure 1.2. This
execution can be produced by an implementation in which each read or snapshot is
done on one replica, each write is done on both replicas, different writes are done
in the same order at the replicas, and a write returns to the client as soon as the
messages have been sent out to the replicas (in this replica management approach,
there is no need for the replica to reply to the client after a write, and indeed the
write operation may return before the replicas are actually modified).

An operation ordering definition of sequential consistency uses a client partial
order <E,c on the operations, in which p <E,c q means that the p and q occur at
the same client and that p returns before q is invoked. We can then define that an
execution E is sequentially consistent provided that there exists a sequence H such
that

[SC1] H contains exactly the same operations that occur in E, each paired with
the return value received in E,

[SC2] the total order of operations in H is compatible with the client partial order
<E,c ,

[SC3] H is a legal history of the sequential data type that is replicated.

We see that SC1 is the same as the earlier L1, and SC3 is the same as L3; thus the
only difference between the definition of sequential consistency and that of lineariz-
ability, is in the change from L2 to SC2; for sequential consistency, H is required to
be compatible with a weaker partial order. Thus any execution that is linearizable
is also sequentially consistent, but the converse does not hold, as we show in an
example.

8 A.D. Fekete and K. Ramamritham

T X Y U

snapshot()

0 �→ 0, 1 �→ 5,
2 �→ 7, 3 �→ 0

write(2, 7)

read(1)

5

write(3,2)

read(2)

0

write(1,5)

����������
��������������

����������

����� ���������

����������

����� ���������

Fig. 1.2 Sequentially Consistent Execution.

The execution of Figure 1.2 is sequentially consistent; the sequence (1.1) above is a
suitable choice for H to show this. Note that the operations write(3) and snapshot()
are not related by the location partial order because they are at different clients (even
though the duration of write(3) occurs entirely before the duration of snapshot()),
and so it is acceptable for H to place snapshot() before write(3). The execution
of Figure 1.2 is not linearizable, because for any sequence H in which snapshot()
has the return value found in the execution, write(3) must be after snapshot(); such
an order is not compatible with the real-time partial order on operations, where
write(3,2) <E,rt snapshot().

The term sequential consistency is also used by researchers in computer archi-
tecture3. For this community, the client is envisioned as a CPU issuing instructions
that operate on a shared memory (and also other instructions that are purely local
to the client, such as those on registers); in contrast to the model we gave above,
the client does not see the point at which an operation returns (merely, the return
value must be available to the client when a later instruction makes use of it). Thus,
in this community, the client order p <E,c q is defined by p and q are operations
of the same client, and p is submitted before q is submitted. If each client does not
submit any operation until it has the return value from the previous operation at that
client, then the two definitions are the same. Sequential consistency is the strongest
consistency model provided by common multiprocessor hardware.

3 Indeed, while the concept was invented by Leslie Lamport who is most prominent as a distributed
computing researcher, the paper[10] in which he defined the term is devoted to programming mul-
tiprocessor hardware.

1 Consistency Models for Replicated Data 9

T X Y U

snapshot0,1()

0 �→ 8, 1 �→ 0

write(2, 7)

write(0, 8)

write(1,5)

write(3,2)

snapshot2,3()

2 �→ 0, 3 �→ 2

�
�

�
�
�

�
�
�

�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
���

��������������
����������

	
	

	
	

	
	

	
	

�
�

�
�

�
�

�
��

����� ��������� ����������

Fig. 1.3 Sequential Consistency Does Not Compose.

One significant aspect of the definition is that sequential consistency is not a compo-
sitional property; if we separately replicate two data items, and each is managed to
be sequentially consistent, it may happen that the combined data is not sequentially
consistent.

To illustrate this, consider a system with two separate two-location byte-valued
snapshot data items. For clarity, we will give one data item locations called 0 and
1, and the other item’s locations will be called 2 and 3. Thus the system has an
operation (which we will call snapshot0,1()) to observe the values in locations 0
and 1; another operation snapshot2,3() observes locations 2 and 3. We might have
a system design based on read-any, write-all, with writes returning immediately,
and we could use a separate communication infrastructure for the messages that
deal with each data item; that is, the various replicas all see the same order for
messages that deal with writes to locations 0 and 1, and they all see the same order
for messages that deal with writes to locations 2 and 3; however, it can occur that the
relative order in which replicas receive two messages is different, in the case where
one message deals with locations 0 or 1, and the other message deals with the other
data item. In Figure 1.3, we show a possible execution of this system.

The execution of Figure 1.3 is not sequentially consistent. The return value of
snapshot0,1 reports that write(0) appears to occur before the snapshot, and write(1)
appears to occur after it; similarly the return value of snapshot2,3 shows that write(3)
appears to occur before write(2). The client partial order of T shows that write(2)
must be before write(0), and the client partial order of U shows that write(1) must
be before write(3). These relationships can’t all hold at once.

10 A.D. Fekete and K. Ramamritham

T X Y U

snapshot()

0 �→ 0, 1 �→ 0,
2 �→ 7, 3 �→ 2

write(2, 7) write(3, 2)

snapshot()

0 �→ 0, 1 �→ 5,
2 �→ 0, 3 �→ 0

write(1, 5)

����������

��������������

�����

�

����������

�
�

�
��

���������

Fig. 1.4 Execution that is not Sequentially Consistent.

On the other hand, if we just consider the data item with locations 0 and 1, the op-
erations on that item within Figure 1.3 are sequentially consistent. A suitable H to
demonstrate this is the sequence with write(0) snapshot0,1() write(1). Similarly the
sequence write(3) snapshot2,3 write(2) shows that when we just look at the opera-
tions on locations 2 and 3, they are also sequentially consistent.

In contrast, two linearizable replicated items run next to one another forms a
linearizable system for the combined data. We say that the property of being lin-
earizable is a compositional property.

1.4 Weak Consistency

Strong consistency can be provided by appropriate hardware and/or software mech-
anisms, but these are typically found to incur considerable penalties, in latency,
availability after faults, etc. In every research community where replication has been
used, there have been proposals to offer the clients less guarantees than a transparent
single-copy image, in order to deliver better performance. For example, strong con-
sistency designs typically require all replicas to receive messages in the same order.
A communication system that keeps messages in the same order typically sends all
messages through a single sequencer node or on a common bus, and this becomes
a bottleneck for the whole system. If instead we allow messages to be carried in-
dependently, and applied to each replica whenever they arrive, performance may be
much better, but the clients can see inconsistencies that would never happen with
unreplicated data [16]. Consider the execution in Figure 1.4.

In the execution shown in Figure 1.4, there is no possible history H that can
meet both SC1 and SC2, to fit with the information returned in the two snapshot()
operations. The snapshot() done by client T reveals the effects of the write(2) and
write(3) operations, but not the effects of write(1); thus any history that contains
this snapshot will have to place write(2) and write(3) before the snapshot(), and
place write(1) after the snapshot. In contrast, the snapshot() done by client U sees

1 Consistency Models for Replicated Data 11

the effect of write(1) but not the effects of write(2) or write(3); so any history that
contains it will have to place write(1) before both write(2) and write(3). These re-
quirements are contradictory. Thus in this execution, each client sees information
that is inconsistent with what the other sees. This execution also gives client U in-
formation which is internally inconsistent with the order in which the client itself
submits operations: the snapshot() in client U returns information which does not
show the previous write(3) operation. We can say that this execution has re-ordered
the write(3) and the snapshot() within client U. Effects like these are characteristic
of weak consistency models. Different weak models are separated from one another
by the precise details of which reorderings are allowed, and which are not, within
the activity of a client, and also by whether there are any constraints at all on the
information provided to different clients.

We now propose a common framework, within the operation-ordering style,
in which different weak consistency models can be defined. This is inspired by
the framework for multiprocessor hardware consistency models [17]. We base our
framework around each operation o in the execution E having a justification Jo,
which is a sequence of other operations that occurred in E, such that the return
value o received in E is that which the sequential data type would give to operation
o when performed in the state which is produced by starting in the initial state and
then applying each operation in Jo in turn. Note that we put a condition on the return
value of o in relation to Jo, but we do not require (in the general framework) that the
earlier operations have the same return values in Jo as they have in E, though this
might be an added constraint in particular weak consistency models.

In a typical read-any-write-all design (such as in Ch 2) of a replicated system,
we can take Jo to be the sequence of operations that had already been applied to the
replica where the return value of o was calculated. For the execution shown in Fig-
ure 1.4, a justification for the snapshot() at client T could be the sequence write(2)
write(3), and a justification for the snapshot() at U could be the sequence write(1).
A given consistency definition then places some constraints on the relationships be-
tween the justifications of various operations. More precisely, a consistency model
requires that justifications can be found for every operation, such that the set of
justifications are related as the consistency model constrains them.

As one example of a weak consistency model, the computer architecture commu-
nity describes some hardware as offering the release consistency model4. In release
consistency, some of the operations are labelled as special: a special read operation
is also called an acquire, and a special write operation is called a release. The re-
quirements of an execution E to satisfy release consistency are that there exists a
total order <spec on all the special operations, such that

[RC1] for every operation o, the order of special operations in Jo is compatible
with <spec

[RC2] for every operation o, Jo contains any acquire that occurs before o at the
same client

4 To be precise, the model we define here can be called RCsc; some authors instead give a slightly
relaxed meaning which can be called RCpc, as described in [1].

12 A.D. Fekete and K. Ramamritham

[RC3] for every operation o, if Jo contains a release operation r, and p is any
operation that occurs before r at the same client as r, then Jo contains p
before r,

[RC4] for every operation o, Jo contains an operation q, and a is an acquire that
occurs before q at the same client as q, then Jo contains a before q.

That is, the hardware makes sure that whatever order is seen anywhere in the system
respects the order at a single client from an acquire to a subsequent operation at the
same client, and from any operation to a subsequent release at the same client. A
similar but more complicated memory model with synchronizing operations is that
provided for Java programmers by the Java Virtual Machine [13].

To define a weak model within the ideal system style, one needs to come up with
a state-transition system whose executions are exactly those where each operation
has a justification. The ideal system typically can have a state which keeps all oper-
ations that have been requested and not yet dealt with, and also the state keeps a set
of operations that have been dealt with, each with its associated justification (and an
additional flag to show whether the return value has been given back to the client).
A transition is given for a non-deterministic hidden event which deals with one re-
quest: it chooses a request that has not been dealt with, and a set of operations to
justify it in accordance with all the requirements (such as RC1-RC4 above) on com-
patibility of justifications. Another transition is used for returning to the client, with
the unique return value that is allowed by the sequential data type, if the requested
operation were to be done immediately after all the justifying operations in turn.

In the distributed systems community, a model that has attracted a lot of atten-
tion is eventual consistency. This is the consistency model that allows the system
to be highly-available, even in the face of network partition; it is often described
as allowing “disconnected operation” [6]. The main implementation technique is to
allow the client to update any replicas, and then the information about the change
is propagated in the background5 to other replicas through gossip messages. Be-
cause non-commuting updates can arrive at different replicas in different orders, a
conflict-resolution mechanism is needed, in which some previously applied oper-
ations can be undone when a new message brings information about an operation
which ought to have preceded the ones already done; the missing operation is ap-
plied, and after that, the replica re-applies the earlier messages that it had just un-
done. The recent focus on cloud computing services has made eventual consistency
very well known[19]. Because eventual consistency is a liveness property rather
than a safety property, it is harder to make precise, and any definition will need to
deal with an infinitely long execution (representing one way the system can behave,
observed without limit). In much of the research literature, eventual consistency is
described using phrases similar to “replicas converge towards identical copies in the
absence of further updates”. This definition is less general than desirable, because
it is expressed in terms of implementation detail (the values in the replicas), and
because it involves a counter-factual (after all, updates never stop arriving in many
executions). We offer here a new definition based on operation justifications; our

5 This is also called anti-entropy.

1 Consistency Models for Replicated Data 13

definition does hold for a system built with gossip messages and conflict resolution,
as described above. An infinitely long execution E of the replicated system satisfies
eventual consistency if there exist justifications Jo and an sequence of operations F
of the sequential data type, such that

[EC1] F contains exactly the same operations that occur in E,
[EC2] for every prefix P of F, there exists a time t in E such that for every opera-

tion o that occurs after t, the justification Jo has P as a prefix.

In this definition, we call a prefix P the “agreed past” for all the operations o men-
tioned in (EC2). The sequence F orders all the operations in the way that conflict
resolution places them, and over time, longer and longer prefixes of F become fixed
at all the replicas. In a gossip-based implementation, the agreed past for an opera-
tion is the beginning of the justification, which contains operations that will never be
undone again, because all the previous operations have propagated to every replica.

To make an eventually consistent system more convenient for clients, it is com-
mon to place additional constraints on the contents of the justifications. These have
been called “session properties” because they allow the client to do several opera-
tions one after another, and avoid some confusing situations[18]. One session prop-
erty is Read Your Writes, which constrains the justifications so that for any read op-
eration o submitted by a client, Jo contains all write operations that were submitted
by the same client before o. The Monotonic Reads property constrains justifications
so that if a client submits read operation o1 and later submits a read operation o2,
then Jo2 includes all of Jo1.

The causal consistency session model is a restriction of eventual consistency,
based on the causal order between operations, defined by Lamport [11], where o1 <
o2 means that information from o1 can flow to o2; formally, the Lamport causality
partial order is the transitive closure of the order of operations at each client, and the
partial order which relates a message send and the receipt of the same message. In
causal consistency, the justification Jo must contain all operations that come before o
in the causal partial order; also, whenever q occurs within Jo, and p < q in the causal
partial order, then p occurs in Jo before q. An interesting twist on causal consistency
was proposed by Ladin et al [9], who allow the application code to choose, for each
operation, a subset of the causal precedent operations, and then require only this
subset to be in the justification for the operation, and always ordered before that
operation in justifications.

Another style of additional constraint in replicated distributed systems is to
bound the divergence between replicas, so clients see values that are reasonably
“fresh”. Several researchers introduced these ideas around the same time, one ex-
ample was [3]. Again, this model is sometimes explained in terms of the implemen-
tation internals (limiting how far apart the values are at a given time, or limiting the
time period between when an update is applied at different replicas). It can also be
expressed as a constraint on the justifications: for example, we may require that ev-
ery operation’s justification should include all operations that were submitted more
than ∆ time units before the read (time bound) or that the total impact of the opera-

14 A.D. Fekete and K. Ramamritham

tions submitted before o but not in Jo justification, is to change the return value of o
by less than ∆ (value bound).

1.5 Transactions

Replication has been extensively studied in the database research community (see
Ch 12). For this field, we need to consider not just separate operations, but also
how these operations are combined into transactions. A transaction contains a set of
the operations performed during an execution, and each operation belongs to exactly
one transaction. Some systems require all operations of a transaction to be submitted
by the same client; in other systems, a transaction may be distributed among several
clients. Sometimes each operation, when it is submitted, carries with it the identifier
of the transaction it is part of; in other systems, a client submits special operations
that begin and complete a transaction; each operation is then part of the transaction
whose begin operation most recently preceded the operation at that client.

There are two distinct outcomes for a transaction. The transaction may complete
with a commit, or with an abort. The term atomic is used by the database commu-
nity6, to say that all the operations of a transaction are performed (if the transac-
tion commits), or it is as if none of the operations are performed (if the transaction
aborts). This can be achieved by the system implicitly undoing each operation of the
transaction (in reverse chronological order) at the end of a transaction which aborts.

Strong consistency for a replicated database system means that the system looks
like a single-site, unreplicated database. The sequential data type of a database has
operations (usually given in the SQL language), these read and update sets of items,
determined by predicates on the contents of those items, there are also operations to
insert new items, and to delete items chosen by a predicate. This is a fairly sophis-
ticated data type, compared to those usual in computer architecture or distributed
computing. Many system optimizations depend on knowing when operations com-
mute on the sequential type, but determining the commutativity between operations
of a database takes care: for example, an insert may fail to commute with a read of
a set of items, when the inserted item satisfies the predicate that selects the items
being read.

Any database will have a mechanism for concurrency control, which provides
isolation between the transactions. Isolation constrains the values observed in op-
erations, and this is often done by delaying an operation of one transaction until
other, conflicting, transactions have completed. The traditional criterion for correct
concurrency control is serializability, so one-copy serializability (1SR) is a natural
consistency model for replicated databases, first defined by Bernstein and Goodman
[5]. A recent alternative isolation approach is called Snapshot Isolation (abbreviated
as SI) [4]; this is provided by several widely-used platforms, and so one-copy snap-
shot isolation (1SI) is also considered by researchers, where a replicated system is
indistinguishable from an unreplicated system with SI for concurrency control.

6 Notice that this is a different meaning from atomic in the distributed systems community, where
the term is used for a linearizable system or component.

1 Consistency Models for Replicated Data 15

In the 1SR model, for a given execution E of the replicated system, we can find
a single history H, called a serial history: H is valid for the sequential data-type,
H contains all the operations of the committed transactions of E (each paired with
its return value), and in H, all the operations of a transaction occur together in the
same order that these operations occurred in E. Typically one also demands external
consistency: that the history H should respect the partial order between transactions
that do not overlap in E. If we regard a transaction as a single super-operation,
1SR with external consistency is essentially the same as linearizability of the super-
operations.

As for other systems, performance is greatly degraded by the requirements to
keep strong consistency, and most commercial platforms provide weak consistency
models when replicating data. A common approach is to designate a master copy of
the data, where updates are done first; all the updates of a transaction then propagate
lazily as a group from the master to other replicas. Thus any read that uses a replica
may see an obsolete state of the data. The consistency model provided by a system
design with master-copy and lazy propagation, can be expressed in the framework
of justifications from Section 1.4: each read operation being justified by a sequence
of transactions, with the additional restriction that between any two operations’ jus-
tifications, one is a prefix of the other. However, different reads in a transaction may
have different sets of transactions that justify them.

Many other sophisticated consistency models have been proposed for “extended
transactions” which can share some data in managed ways, while being isolated on
other ways. A powerful framework for presenting these definitions is ACTA [15].

1.6 Discussion

The operation-ordering style of definition is much more widely used than the ideal-
system style. Operation ordering definitions are generally much more succinct, and
they are good at suggesting many variant models by slight changes of the con-
straints. Ideal-system models, on the other hand, allow one to use the extensive
theory of formal methods, when proving that a particular system design provides a
given consistency model. Examples of such proofs are in [2, 7, 14].

For users of systems which offer weak consistency, a vital need is some way to
know how to use the system without being inconvenienced by the lack of strong
guarantees. For multiprocessor hardware, there are several results that assist with
this; typically, each result says that if a program is written in a particular way, it can
work correctly with hardware which provides a particular weak consistency model.
For example, if the client programs are written to enclose any uses of common vari-
able within acquire-release blocks, then an execution on release-consistent memory
is equivalent to an execution on sequentially consistent memory. However, we do
not yet have similar guidance for common weak models in distributed computing,
such as eventual consistency with read your writes. As cloud computing platforms
offer this type of consistency model, the lack of such guidance becomes a threat to
sensible use of these platforms.

16 A.D. Fekete and K. Ramamritham

If we have an ideal-system style definition of a weak consistency model, this can
support formal proof of results about correct use of a system. For example, one can
give an abstracted model C of any client that is programmed in a certain way, and
one can then consider the composition of such clients and the weak-consistency-
ideal-system W. We need to prove that the composition of C and W refines the
composition of C and a strong ideal-system S. Here, “refines” is a relationship be-
tween transition machines (often also called “satisfies”), where A refines B means
that every execution of A is a possible execution of B.

Whichever style of consistency model one prefers, it is important for both users
and system designers, to have a clear mutual understanding of the properties that are
guaranteed for the clients, and those that are not.

1.7 Conclusion

We have shown how one can express the functionality provided by different replica
management algorithms, in a way that hides internal detail and only depends on
aspects that are observable by the clients. The same consistency model might be
offered by a system using quorums, or by a system using a group communication
infrastructure, and the clients will be portable from one system to the other. We have
shown examples of strong consistency models (where there is a single history of the
sequential data type that is compatible with all the observations made by clients in
the replicated system’s execution) and weaker models, where different clients, or
even different operations of one client, have different justifications in terms of other
operations which seem to have happened first. We have considered two styles for
defining a consistency model, either using properties of the orderings of operations,
or a state-transition model for an ideal system which can generate the required ob-
servations. In either style, however, we do not mention the actual implementation
details of sites, replicas, and messages. Many of the consistency models include
special operations that are used for synchronization between clients (some, such as
transaction begin and commit operations, do nothing else and are treated as no-ops
on the sequential data type, while in some models synchronization is an extra fea-
ture on some operations such as reads or writes that affect the sequential data type).
Another axis on which models vary is the session properties, which enforce some
amount of ordering between activities at a single client; an example is a requirement
to keep the effect of all the clients’ own earlier writes evident in any value seen by
that client.

We hope that whenever another chapter of this book describes a replica manage-
ment algorithm, the reader will find it useful to think about what functionality is
being given, by identifying how the system fits into the framework of consistency
models we have explained.

Acknowledgements We thank Shirley Goldrei for careful proofreading.

1 Consistency Models for Replicated Data 17

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. Compu-
ter 29(12), 66–76 (1996)

2. Afek, Y., Brown, G., Merritt, M.: A lazy cache algorithm. In: SPAA ’89: Proceedings of the
first annual ACM symposium on Parallel algorithms and architectures, pp. 209–222. ACM
Press, New York (1989)

3. Alonso, R., Barbará, D., Garcia-Molina, H., Abad, S.: Quasi-copies: Efficient data sharing for
information retrieval systems. In: Schmidt, J.W., Missikoff, M., Ceri, S. (eds.) EDBT 1988.
LNCS, vol. 303, pp. 443–468. Springer, Heidelberg (1988)

4. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ansi
sql isolation levels. In: SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international
conference on Management of Data, pp. 1–10. ACM Press, New York (1995)

5. Bernstein, P.A., Goodman, N.: Serializability theory for replicated databases. J. Comput. Syst.
Sci. 31(3), 355–374 (1985)

6. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swine-
hart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. In: Proc
ACM Conference on Principles of Distributed Computing (PODC’87), pp. 1–12 (1987)

7. Gibbons, P.B., Merritt, M., Gharachorloo, K.: Proving sequential consistency of high-
performance shared memories (extended abstract). In: SPAA ’91: Proceedings of the third
annual ACM symposium on Parallel algorithms and architectures, pp. 292–303. ACM Press,
New York (1991)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

9. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using lazy repli-
cation. ACM Trans. Comput. Syst. 10(4), 360–391 (1992)

10. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Trans. Comput. 28(9), 690–691 (1979)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

12. Liskov, B., Zilles, S.: Specification techniques for data abstractions. SIGPLAN Not. 10(6),
72–87 (1975)

13. Manson, J., Pugh, W., Adve, S.V.: The java memory model. SIGPLAN Not. 40(1), 378–391
(2005)

14. Park, S., Dill, D.L.: An executable specification and verifier for relaxed memory order. IEEE
Trans. Comput. 48(2), 227–235 (1999)

15. Ramamritham, K., Chrysanthis, P.K.: A taxonomy of correctness criteria in database applica-
tions. The VLDB Journal 5(1), 85–97 (1996)

16. Saito, Y., Shapiro, M.: Optimistic replication. Comput. Surveys 37(1), 42–81 (2005)
17. Steinke, R.C., Nutt, G.J.: A unified theory of shared memory consistency. J. ACM 51(5), 800–

849 (2004)
18. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J., Theimer, M.M., Welch, B.B.: Session

guarantees for weakly consistent replicated data. In: PDIS ’94: Proceedings of the third in-
ternational conference on on Parallel and distributed information systems, pp. 140–150. IEEE
Computer Society Press, Los Alamitos (1994)

19. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

Chapter 2
Replication Techniques for Availability

Robbert van Renesse and Rachid Guerraoui

Abstract The chapter studies how to provide clients with access to a replicated ob-
ject that is logically indistinguishable from accessing a single yet highly available
object. We study this problem under two different models. In the first, we assume
that failures can be detected accurately. In the second we drop this assumption, mak-
ing the model more realistic but also significantly more challenging. Under the first
model, we present the primary-backup and chain replication techniques. Under the
second model, we present techniques based on voting. We conclude with a discus-
sion on reconfiguration.

2.1 Introduction

Replication is creating multiple copies of a possibly mutating object (file, file sys-
tem, database, and so on) with the objective to provide high availability, high in-
tegrity, high performance, or any combination thereof. For high availability and in-
tegrity, the replicas need to be diverse, so failures are sufficiently independent. For
high performance, there just needs to be a sufficient number of replicas in order to
meet the load imposed on the replicated object.

In this chapter, we will focus on replication techniques that ensure high avail-
ability. In particular, we will study techniques that provide clients with access to
a replicated object that is logically indistinguishable from accessing a single (non-
replicated), yet highly available, object. This “indistinguishable from a single ob-
ject” property is sometimes called linearizability, one-copy semantics, or simply
consistency, and is ensured by enforcing a total order on client operations. Of course,
such a strategy can only work under a restricted failure model. For example, if failed
communication links partition the replicas, then it may be impossible to provide
both availability and consistency for an object.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 19–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 R. van Renesse and R. Guerraoui

While a number of different replication techniques exists, two different ap-
proaches have become particularly well-known: active replication and passive repli-
cation. In active replication, also known as state machine replication, client oper-
ations are ordered by an ordering protocol and directly forwarded to a collection
of replicas. Each replica individually executes the operation. Keeping the replicas
consistent requires that processing be deterministic: given the same client operation
and the same state, the same state update is produced by each replica.

In passive replication, also known as primary-backup replication, one of the
replicas is designated primary. It executes the operations and sends the resulting
state updates to each of the replicas (including itself), which, passively, apply the
state updates in the order received. Note that in passive replication it is not nec-
essary that operations be deterministic—typically, the primary will resolve non-
determinism and produce state updates, which are deterministic.

These approaches have various advantages and drawbacks when compared with
one another. If operations are compute intensive, then active replication can waste
computational resources, but if state updates are large, passive replication can waste
network bandwidth. Active replication cannot deal with non-deterministic process-
ing but can mask failures without performance degradation, while passive replica-
tion may involve a detection and recovery delay in case the primary crashes.

Various hybrid solutions that combine both approaches are common. Some pro-
cessing is executed on just one replica, while other processing is performed by all
replicas. They are neither purely active nor passive approaches, and face different
trade-offs.

This chapter avoids discussion of how operations are processed. Instead, it mod-
els an object’s state by the sequence of operations. For example, if the object rep-
resents a bank account, we keep track of the history of deposit and withdraw op-
erations, rather than of the running total. Doing so makes is easier to talk about
consistency, as we can compare histories stored at different replicas and determine
if one is a prefix of the other, or not. If all we had is a running total, then such a
comparison would be impossible.

The chapter is organized as follows. In Section 2.2 we will present a convenient
model of an unreplicated object. Then, using this model, we will describe two repli-
cation techniques that assume a simple failure model in Section 2.3. In Section 2.4
we will make the failure model more realistic (and more challenging) while dis-
cussing how to adapt the replication techniques accordingly. Section 2.5 discusses
approaches for reconfiguring a replicated object. Finally, Section 2.6 concludes with
a brief comparison of the techniques discussed in this chapter.

2.2 Model

For simplicity, we will assume that there is only one object. We find it con-
venient to model an object as a finite sequence of uniquely identified deltas,
H = 〈d1,d2, ...,db〉, encoding a history of b updates applied to the object. A delta
is a tuple (update identifier,operation). A particular update identifier can only
appear once in the history, although two different deltas may well contain the

2 Replication Techniques for Availability 21

same operation. A client may add a delta by invoking updateHist(operation).
The update identifier for the delta is automatically generated. An invocation of
updateHist(operation) is expected to return a new history that can be used
to compute the response of the operation.

While convenient for specification, in practice most services would not maintain
the history of operations, but instead only the state resulting from applying the oper-
ations to a well-defined initial state, while updateHist()would normally return
a simple result.

2.2.1 Environment

We also have to define a model of the distributed environment. Initially we will
assume that processors are fail-stop [17]. More specifically:

• a processor follows its specification until it crashes (we say it is faulty);
• a crashed processor does not perform any action (e.g., does not recover);
• a crash is detected eventually by every correct (non-crashed) processor;
• no process is suspected of having crashed until after it actually crashes.

The environment is assumed to be asynchronous: message delays and processing
delays are arbitrarily long, and clocks on the processors are not synchronized.

We assume the processors are totally ordered: p1 < p2 < We also assume
that the network is point-to-point and FIFO:

• messages from the same source are delivered in the order sent;
• messages between correct processors are eventually delivered.

2.2.2 Specification

In the unreplicated case, a single server stores the history of the object. Fig-
ure 2.1 depicts the specification (pseudo-code) for the client and the server. The
specification distinguishes the function that can be invoked by the application
(updateHist(operation)) and the events that can be invoked by the underlying
system.

In the face of concurrency, functions and events act like monitors: on a processor
only one thread of control can execute at a time. By invoking wait until condition
the thread releases control until the condition is satisfied. Examples of events include
failure notifications and receipt of messages.

Function updateHist(op) generates a unique identifier (typically consisting
of a client identifier and a sequence number incremented for each request), and then
sends a request message to the server. The response from the server contains the
unique identifier, as well as the server’s copy of the history, and is added to the set
responses. The client waits until the request identifier appears among the responses
or until the server is reported having failed. The server simply adds a delta to the
history for each new update request and returns the resulting history.

22 R. van Renesse and R. Guerraoui

(a) Client code

var server initially “server address”;
var responses initially /0;

event failure(p) :
if p = server then server :=⊥;

event receive(“response”, r) from p :
responses := responses∪{(p, r)};

function updateHist(op) :
if server �=⊥ then

uid := genUID();
send(“updateHist”, (uid,op)) to server;
wait until (·, (uid, ·)) ∈ responses∨ server =⊥ ;
if ∃H (·, (uid,H)) ∈ responses then return H;

end
return ERROR(“unavailable”);

(b) Server code

var H initially ⊥;

event receive(“updateHist”, (uid,op)) from client :
H := H :: (uid,op);
send(“response”, (uid,H)) to client;

Fig. 2.1 Code for an unreplicated object.

The code for the unreplicated case serves as the specification of the semantics that
we want to preserve when replicating the object onto multiple servers. From this
specification one may derive that:

• Consider any two invocations updateHist(op1) and updateHist(op2)
that return respectively histories H1 and H2. Either H1 is a strict prefix of H2 or
vice versa.

• Furthermore, if updateHist(op1) returns before updateHist(op2) is in-
voked, then H1 is a prefix of H2.

Note that a client can also use updateHist() to query the state of the object by
submitting a no-op update. We will look at optimizations for read-only operations
in Section 2.3.3.

2.3 Fail-Stop Failure Model

The basic approach to replicating an object is as follows:

1. allocate a collection of processors (also called servers) p1, ..., pn;
2. place an empty history Hi on each pi;
3. add updates in the same order to each Hi.

2 Replication Techniques for Availability 23

Primary-Backup

A client sends requests to the mini-
mum server. The minimum server for-
wards the request to the other servers
and awaits responses before respond-
ing to the client.

Chain Replication

A client sends update requests to the
maximum server (head), which for-
wards the request to the next lower
server until it reaches the minimum
server (tail). The tail responds to the
client.

Fig. 2.2 Normal case message patterns for Primary-Backup and Chain Replication.

In the following, we present two replication techniques, assuming a fail-stop model
of the environment: Primary-Backup and Chain Replication, which are summarized
in Figure 2.2.

2.3.1 Primary-Backup

In Primary-Backup (PB) [1, 3], perhaps the most common replication method in
use today, the processor that has not crashed and that has the lowest identifier is
designated primary. The remaining correct processors are called backups. During
normal operation, a client sends an “updateHist” request to the primary and receives
a response from the primary.

The client code (Figure 2.3) is similar to the unreplicated case, except that clients
deal with the case of a failed primary. If the primary fails, the client determines the
new primary to whom it retransmits its update. The client continues to do so until it
receives a response or until there are no servers left.

Figure 2.4 shows the server code. We describe the underlying steps below.

1. Upon receipt of an “updateHist” request, the server may conclude correctly that
it is the primary (because of accurate failure detection). If it had not yet detected
the crash of a former primary itself, then it can do so now by removing all servers
below itself from the list of servers that it maintains.

2. Next the server checks to see if the delta corresponding to the “updateHist” re-
quest is already in the history. This is possible because the primary may have

24 R. van Renesse and R. Guerraoui

var servers initially {p1, ..., pn};
var responses initially /0;

event failure(p) :
servers := servers\{p}

event receive(“response”, r) from p :
responses := responses∪{(p, r)};

function updateHist(op) :
uid := genUID();
repeat

if servers = /0 then return ERROR(“unavailable”);
primary := min(servers);
send(“updateHist”, (uid,op)) to primary;
wait until (·, (uid, ·)) ∈ responses∨primary �∈ servers ;
if ∃H (·, (uid,H)) ∈ responses then

return H;
end

Fig. 2.3 Client code for an object replicated using Primary-Backup.

received the update when it was still a backup. In the normal case, however, the
delta is not in the history.

3. In either case, the primary sends a “sync” request containing the primary’s de-
sired history to all backups.

4. A backup, upon receipt of a “sync” request, first updates its estimate of the list of
correct servers by removing all servers that are below the source of the request,
i.e., the current primary.

5. The backup verifies that indeed the request came from the primary (minimum
server on its list), as the request might be a tardy message from a server that
was primary but that has since crashed. If the request came from a current server
(which must be the primary), then the backup updates its history and sends a
response.

6. When the primary received responses from all current backups, it updates its own
copy of the history and sends the result as a response to the client.

It is important that the server does not respond to the client until after the server
received responses from all available backups. To see why, say a client submits an
“updateHist” request to the primary, and the primary adds the corresponding delta to
its history and responds. If the server crashes before sending a “sync” request to the
backups, the update may be lost even though the client receives a response. A new
client will contact a new primary and miss the previous update, violating one-copy
semantics.

The primary is allowed to stream multiple updates to the backups, without wait-
ing for responses between updates. This allows for higher throughput. An important
invariant of PB replication, however, is that whenever the primary responds to the
client, the history of the primary is a prefix of the histories held by the backups. By
implication, a response received by the client reflects a history that is stored at all

2 Replication Techniques for Availability 25

const me = “my address”;
var H initially ⊥;
var servers initially {p1, ..., pn};
var responses initially /0;

event failure(p) :
servers := servers\{p}

event receive(“response”, r) from p :
responses := responses∪{(p, r)};

event receive(“sync”, (H ′,uid)) from primary :
∀p ∈ servers : p < primary⇒ servers := servers\{p};
if primary ∈ servers then

H := H ′;
send(“response”, uid) to primary;

end

function sync(H ′) :
uid2 := genUID();
∀p ∈ servers : send(“sync”, (uid2,H ′)) to p;
wait until ∀p ∈ servers : (p,uid2) ∈ responses ;

event receive(“updateHist”, (uid,op)) from client :
∀p ∈ servers : p < me⇒ servers := servers\{p};
H ′ := if (uid, ·) �∈H then H :: (uid,op) else H ;
sync(H ′);
H := H ′;
send(“response”, (uid,H)) to client;

Fig. 2.4 Server code for an object replicated using Primary-Backup.

available replicas. Without this invariant, a future “sync” request by a new primary
might remove the client’s update, violating consistency guarantees.

For simplicity, a “sync” request sends the entire history from the primary to the
backup. In practice it is usually sufficient to send the update along with a collision-
resistant hash of the history prior to applying the update. On receipt, a server checks
to make sure that the hash matches its history, and if so appends the update. In the
rare case that there is no match (which is possible in certain failure scenarios), then
the primary and the backup have to synchronize the entire history using additional
messages.

Why It Works

Consider first liveness (i.e., the property that each updateHist() operation even-
tually terminates) and assume there is at least one correct replica. Suppose by con-
tradiction that a correct client submits an “updateHist” request and never receives
any response. Consider now the time after which all faulty replicas have crashed.
By the fail-stop model, there is a time after which a correct primary is elected and
known as such to the client. (Such a primary exists for we assume at least one cor-
rect replica). The client eventually submits its request to this correct primary. This

26 R. van Renesse and R. Guerraoui

primary sends its “sync” message to all correct backups, which eventually respond.
The primary responds back to the client: a contradiction.

For safety (i.e., linearizability), suppose two invocations updateHist(op1)
and updateHist(op2) return respectively histories H1 and H2. If both return
results from the same primary, then clearly one is a prefix of the other. Moreover,
H1 is a prefix of H2 if updateHist(op2) is invoked after updateHist(op1)
has returned. Now assume they came from two primaries, p1 returning H1, and then
p2 returning H2, such that p1 < p2. This means p2 became primary only after p1

crashed. For p1 to return H1, p1 had to make sure all backups have acknowledged,
and thus stored, H1. No matter which processes become primary subsequently, all
histories of p2 must have H1 as a prefix, including H2.

For a complete treatment of the Primary-Backup technique and its correctness
under various failure models, see [3].

2.3.2 Chain Replication

In Chain Replication (CR) [16], the servers are organized in a chain with a head (the
maximum server) and a tail (the minimum server). A client sends update requests
to the head, which forwards the request along the chain towards the tail. The tail
responds to the client.

Figures 2.5 and 2.6 show the pseudo-code. Functionpredecessor(servers, p),
returns the smallest p′ ∈ servers larger than p, or ⊥ if p is the largest element
in servers. Similarly, function successor(servers, p) returns the largest p′ ∈
servers smaller than p, or ⊥ if p is the smallest element. As in PB replication, we
have simplified the presentation by sending the entire history along the chain instead
of only a collision-resistant hash and the update.

The CR technique simplifies the server code compared to PB replication. In par-
ticular, it is never necessary for a server to wait for other servers. An “updateHist”
request received by the head can be applied immediately to the local history, for-
warded (as a “sync” request) to the next server, and then forgotten. The head is re-
sponsible for ordering requests as they arrive from clients, but otherwise just serves
as a backup. When a “sync” request arrives at the tail, the tail applies the update just
like the other servers on the chain. Knowing that the update is now applied to all
non-crashed replicas, the tail can respond to the client, finishing the entire update
request.

No complicated recovery is necessary after a server fails. All that is necessary is
for servers to keep track of who their successor and predecessor are. For this, the
servers use two techniques. First, failure notification allow servers to update their
estimate of the list of correct servers. Second, a server can make deductions based
on the messages that it receives. For example, if a replica receives an update request
from a client, the replica knows that any predecessors on the chain must have failed
and that it is now the head of the chain.

In the face of failures, a client may have to retransmit an outstanding update re-
quest. Because an update can get lost anywhere in the chain, the client code of Fig-
ure 2.5 implements this by periodically retransmitting until a response is received.

2 Replication Techniques for Availability 27

const T = retransmission delay;
var servers initially {p1, ..., pn};
var responses initially /0;

event failure(p) :
servers := servers\{p}

event receive(“response”, r) from p :
responses := responses∪{(p, r)};

function updateHist(op) :
uid := genUID();
repeat

if servers = /0 then return ERROR(“unavailable”);
head := max(servers);
send(“updateHist”, (uid,op)) to head;
wait up to T seconds until (·, (uid, ·)) ∈ responses;
if ∃H (·, (uid,H)) ∈ responses then

return H;
end

Fig. 2.5 Client code for an object replicated using Chain Replication.

The time between retransmissions is defined by a constant T , which in practice
should be set to a value so that most responses are expected to be received within
that amount of time. There is a trade-off: if T is set too short, unnecessary retrans-
missions would create additional load. On the other hand, the larger T , the longer
it takes to recover from a failure. However, the actual value of T does not affect
correctness.

As in PB replication, multiple update requests can be streamed for increased
throughput. The important invariant maintained by the chain is that for any two
servers, the history of the server with the lower identifier is a prefix of the server
with the higher identifier. This is true at any point in time, even in the face of crashes,
and thus simplifies recovery with respect to Primary-Backup.

Why It Works

The liveness and safety arguments are similar to those of PB replication. Assume
there is at least one correct replica and consider a correct client that submits an
“updateHist” request and never receives any response. Consider the time after which
all faulty replicas have crashed and the chain is stable. The client eventually submits
its request to the head and eventually gets a response from the tail (possibly the head
and the tail are the same replica if only one server is correct): a contradiction.

For safety, suppose invocations updateHist(op1) and updateHist(op2)
return histories H1 and H2 resp. If both return results from the same tail, then clearly
one is a prefix of the other. Moreover, H1 is a prefix of H2 if updateHist(op2)
is invoked after updateHist(op1) has returned. Now assume they came from
two tails, p1 returning H1 and p2 returning H2, such that p1 < p2. This means p2

28 R. van Renesse and R. Guerraoui

const me = “my address”;
var H initially ⊥;
var servers initially {p1, ..., pn};
event failure(p) :

servers := servers\{p}
event receive(“sync”, (H ′,client,uid)) from prev :
∀p ∈ servers : me < p < prev⇒ servers := servers\{p};
if prev = predecessor(servers, me) then

H := H ′;
sync(H,client,uid);

end

function sync(H ′,client,uid) :
next = successor(servers, me);
if next �=⊥ then

send(“sync”, (H ′,client,uid)) to next;
else

send(“response”, (uid,H)) to client;
end

event receive(“updateHist”, (uid,op)) from client :
∀p ∈ servers : p > me⇒ servers := servers\{p};
if (uid, ·) �∈H then H := H :: (uid,op);
sync(H,client,uid);

Fig. 2.6 Server code for an object replicated using Chain Replication.

became tail only after p1 crashed. Because of the invariant discussed above, at the
time p1 crashed p2’s history must have H1 as a prefix. From there on, all histories
of p2 must have had H1 as a prefix, including H2.

For a complete treatment of Chain Replication and its correctness under the fail-
stop model, see [16].

2.3.3 Queries

In many cases, one would like to distinguish query operations, operations that do
not modify the state of the object, and optimize their performance. We explain below
how this can be achieved in both PB and CR.

We provide a function queryHist() through which a client can consult a his-
tory without modifying it. The pseudo-code for the unreplicated case is depicted in
Figure 2.7.

The queryHist() function also generates a unique identifier and sends a mes-
sage to the server. The server simply returns the history for query operations. The
following properties are now also ensured:

• Consider any two invocations (updateHist(op) or queryHist()) that re-
turn respectively histories H1 and H2. Either H1 is a strict prefix of H2 or vice et
versa. Furthermore, if the first invocation returns before the second is invoked,
then H1 is a prefix of H2.

2 Replication Techniques for Availability 29

(a) Client code

function queryHist() :
if server �=⊥ then

uid := genUID();
send(“queryHist”, uid) to server;
wait until (·, (uid, ·)) ∈ responses∨ server =⊥ ;
if ∃H (·, (uid,H)) ∈ responses then return H;

end
return ERROR(“unavailable”);

(b) Server code

event receive(“queryHist”, uid) from client :
send(“response”, (uid,H)) to client;

Fig. 2.7 Code for the query function of an unreplicated object.

(a) Client code

function queryHist() :
uid := genUID();
repeat

if servers = /0 then return ERROR(“unavailable”);
primary := min(servers);
send(“queryHist”, uid) to primary;
wait until (·, (uid,H)) ∈ responses∨primary �∈ servers ;
if ∃H (·, (uid,H)) ∈ responses then

return H;
end

(b) Server code

var first initially true;

event receive(“queryHist”, uid) from client :
∀p ∈ servers : p < me⇒ servers := servers\{p};
if first then

sync(H);
first := false;

end
send(“response”, (uid,H)) to client;

Fig. 2.8 Code for the query function of a replicated object using Primary-Backup.

In PB, during normal operation, a client c sends requests (“updateHist” or “query-
Hist”) to the primary and receives responses from the primary. The client code for
PB’s queryHist function is given in Figure 2.8(a). Figure 2.8(b) shows the server
code. Both are almost the same as in the unreplicated case. Normally the primary
can respond immediately. There is, however, a special case. If a server that used to
be a backup but is now a primary receives a request for the first time, it must syn-
chronize its state with that of the other backups. The reason for this is that the current

30 R. van Renesse and R. Guerraoui

(a) Client code

function queryHist() :
uid := genUID();
repeat

if servers = /0 then return ERROR(“unavailable”);
tail := min(servers);
send(“queryHist”, uid) to tail;
wait until (·, (uid, ·)) ∈ responses∨ tail �∈ servers ;
if ∃H (·, (uid,H)) ∈ responses then

return H;
end

(b) Server code

event receive(“queryHist”, uid) from client :
∀p ∈ servers : p < me⇒ servers := servers\{p};
send(“response”, (uid,H)) to client;

Fig. 2.9 Code for the query function of an object replicated using Chain Replication.

primary may have received deltas from the former primary that are not included in
some of the backup servers. If they would be reflected in the response to the client,
a crash of this new primary could lose deltas that a client has seen. Synchronizing
state on the first query operation ensures that the backups have the same state as the
primary.

Figure 2.9 shows the client and server code for the queryHist function in the
context of Chain Replication. It is the tail that responds to the client. The tail han-
dles a query request in much the same way as in the unreplicated case, responding
immediately to the client. Unlike update requests, the client need only interact with
the tail of the chain for queries.

2.4 Crash Failure Model

So far we assumed a fail-stop model. In particular, (1) if a server fails, all processes
(clients and servers) eventually detect the failure, and (2) no process detects the
failure of a server unless that server has actually failed. It is common to call this
perfect failure detection [4]. In practice, failure detection is achieved using timeouts:
Every server is periodically pinged and if it does not respond within a predetermined
time period, the failure of the server is suspected. Unfortunately, unless there is a
known bound on message latency, such a mechanism does not implement perfect
failure detection. While crashes are correctly detected eventually, correct servers
may be falsely suspected.

False failure detections might partition the distributed system into two disjoint
subsets each containing clients and servers, that is, the processes in each of the

2 Replication Techniques for Availability 31

subsets might wrongly consider those in the other subset as having failed. In each
partition, the processes might elect a primary under PB replication (resp. construct
a chain in CR) and clients in different partitions might see divergent histories as
a result. For instance, one client might deposit an amount of money in an account
after accessing the first partition, and, later, another client, which accesses the same
account but within the other partition, might not see the deposited amount.

To avoid such inconsistencies, implementations of Primary-Backup and Chain
Replication have to use large timeouts to make the probability of false detection
low. The larger the timeout period, the larger the response time of a request directly
following a failure. Setting the timeout period low increases the probability of false
detections. This is not a good trade-off, and thus it would be better if we devised a
replication technique that can tolerate false detections.

In this section, we present replication techniques that do not attempt to detect
failures; instead the techniques seamlessly mask failures altogether. The first such
technique is Stake Replication. The second technique, Broker Replication, builds
on the first. Both techniques are summarized in Figure 2.10. Before describing the
techniques in more detail, we will briefly review the quorum concept.

2.4.1 Quorums

Consistency and availability of a replicated object can be preserved in the face of
false failure detections using a mathematical abstraction called quorums [18, 9, 19].
A quorum system is a set of subsets of processes, each called a quorum, such that
the following properties are satisfied (see [8, 14] for more formal treatments):

Consistency: any two quorums intersect in at least one process;
Availability: at least one of the quorums (which ones is unknown) contains pro-
cesses that never crash.

A simple instantiation of quorums is the following. There are n processes, of which
fewer than n/2 are allowed to crash. Quorums then are all sets that have � n+1

2 �
processes. It is easy to verify that this construction satisfies Consistency and Avail-
ability.

2.4.2 Stake Replication

In Stake Replication (SR), the division of labor between clients and servers is much
different from before. The servers are still responsible for ordering client operations
and making sure that there is a persistent history of deltas. They do so, for each
position in the history, by voting on what the next delta should be. Once a quorum of
servers voted for the same delta, then the delta is decided and permanent. However,
servers not in that quorum may have voted differently or not at all. This is the case
for every individual delta, and thus none of the servers knows what the history is.
They only know how they voted for each delta.

32 R. van Renesse and R. Guerraoui

Stake Replication

A client broadcasts first a “stake-
request” to all servers. Upon success-
ful completing, the client requests all
servers to vote.

Broker Replication

A client sends an update request to a
broker. Brokers use an optimized ver-
sion of Stake Replication (eliminat-
ing “stake-request” messages in the
common case) before responding to
clients.

Fig. 2.10 Normal case message patterns for Stake Replication and Broker Replication.

In the SR implementation that we will present, the clients reconstruct the history
from examining the votes rather than by obtaining the history directly from the
servers as before. The servers do not communicate with one another; they only re-
spond to requests from clients. Because the technique uses quorums, the technique
can tolerate at most �(n−1)/2� failures given n servers.

Figures 2.11 to 2.13 show the code for Stake Replication. The updateHist()
function, in Figure 2.11, simply invokes another function consensus() for each
delta in the history. The client passes the desired delta to consensus(), but be-
cause of concurrent updates introduced by other clients, the actual delta added to
the history may be different from the desired one. The client repeats until the de-
sired delta has been successfully added to the history, and then the function can
return the history.

The secret sauce is in the client’s consensus() function of Figure 2.12 and
the server code of Figure 2.13. Define version to be the length of the history, |H|.
The consensus protocol only deals with one version at a time. Within a version,

2 Replication Techniques for Availability 33

var H initially ⊥;

function updateHist(op) :
uid := genUID();
repeat

delta := consensus(|H|, uid, op);
H := H :: delta;
if delta = (uid,op) then

return H;
end

Fig. 2.11 Client code for Stake Replication, part 1.

there is a notion of logical time that we call stakes. A stake is a tuple consisting
of a round number and the identifier of the client that owns the stake, so that two
different clients cannot own the same stake. Stakes are lexicographically ordered,
first by round, and then by client identifier.

A vote is a tuple consisting of a stake and a delta. In the implementation that we
are describing, the client that owns the stake picks the delta, and therefore guarantees
that two votes with the same stake will also have the same delta. The objective of a
client is to get a quorum of servers to vote on the same stake and delta. We say that
a vote is decided when this objective is reached. The consensus protocol runs in a
loop, trying monotonically increasing stakes, until its corresponding vote is decided.

Each server maintains a stake and a vote for each version. In each iteration of the
client’s loop, the client first creates a new stake and tries to get a quorum of servers
to progress to that particular stake. For this, the client broadcasts a “stake-request”
message to all servers, containing the current version and the stake. Upon receipt, the
server checks to see what stake it is at for that particular version. If the client’s stake
is further along, then the server advances its stake accordingly. In any case, it returns
the stake that it now holds, as well as its last vote for that version. The client waits
until it has received more than n/2 responses to ensure that it has responses from
a quorum of servers.. Because fewer than n/2 are faulty, it will eventually receive
a sufficient number of responses. Also, all servers that respond have advanced their
stake to at least the client’s stake.

The client now determines the maximum stake among the responses. If this max-
imum is further along than the client’s, then the client declares failure, and tries
again with a new stake. However, if all servers are at the client’s stake, then the
client tries to get all servers to vote using its current stake. However, for reasons
explained below, it cannot just use the delta that it is trying to add to the history. In-
stead, it determines among the responses from the servers the maximum vote (that
is, the vote with the maximum stake). If that maximum vote is ((0,0),⊥), meaning
that no server has voted as of yet, then the client can use its own delta. But if not,
the client uses the delta with the maximum stake.

Subsequently, the client tries to get all servers to vote on its selected delta for
the given stake by broadcasting a “vote-request” message. Each server, upon re-

34 R. van Renesse and R. Guerraoui

const servers = {p1, ..., pn};
const me = genUID();
var sResponses initially /0;
var vResponses initially /0;

event receive(“stake-response”, r) from p :
sResponses := sResponses∪{(p, r)};

event receive(“vote-response”, r) from p :
vResponses := vResponses∪{(p, r)};

function staked(version, stake) :
return {(p, (vn, s, s′,vote)) ∈ sResponses | vn = version∧ s = stake};

function voted(version, stake) :
return {(p, (vn, s,c)) ∈ vResponses | vn = version∧ s = stake};

function consensus(version, uid, op) :
round := 0;
repeat

stake := (round,me);
broadcast(“stake-request”, (version, stake)) to servers;
wait until |staked(stake)|> n/2 ;
S := staked(stake);
maxStake := max{s′ | (p, (vn, s, s′,vote)) ∈ S};
if stake = maxStake then

maxVote := max{vote | (p, (vn, s, s′,vote)) ∈ S};
if maxVote = ((0,0),⊥) then

delta := (uid,op);
else

delta := maxVote.delta;
broadcast(“vote-request”, (version, stake,delta)) to servers;
wait until |voted(stake)|> n/2 ;
V := {(p, (vn, s,c)) ∈ voted(stake) | c = ACCEPTED};
if |V |> n/2 then

return delta;
end
round := maxStake.round +1;

end

Fig. 2.12 Client code for Stake Replication, part 2.

ceipt, checks to see if it has not advanced its stake (because of a concurrent “stake-
request” by another client). If so, the server votes as requested and responds with
an ACCEPTEDmessage. If the server did advance its stake, the server abstains from
voting and respondsDENIED. The client again waits for more than n/2 responses. If
more than n/2 servers accepted the vote, then the vote is decided and consensus()
returns the corresponding delta. If not, the client tries again with a new stake.

Why It Works

Again, we consider both liveness and safety. This technique, in fact, cannot guar-
antee termination of updateHist(), because two clients can alternate advancing

2 Replication Techniques for Availability 35

var stakes[] initially (0,0);
var votes[] initially ((0,0),⊥);

event receive(“stake-request”, (vn, s)) from client :
if s > stakes[vn] then

stakes[vn] := s;
send(“stake-response”, (vn, s, stakes[vn],votes[vn])) to client;

event receive(“vote-request”, (vn, s,vote)) from client :
if s = stakes[vn] then

votes[vn] := vote;
send(“vote-response”, (vn, s,ACCEPTED)) to client;

else
send(“vote-response”, (vn, s,DENIED)) to client;

Fig. 2.13 Server code for Stake Replication.

stakes for a version without ever getting the servers to vote for one of their stakes.
Indeed, no replication protocol can be designed that is guaranteed to terminate (a
consequence of [7]). However, we can show that in the absence of contention, the
protocol that we described is guaranteed to terminate.

To wit, consider any particular version, and assume only one client is active. It
will send a “stake-request” to all servers, and wait for a response from more than
n/2 servers. Because fewer than n/2 servers are faulty, eventually it will receive the
required responses. If some of the servers have advanced further than the client, the
client chooses a new stake that is further than any in the responses. Because there are
no other clients active by assumption, eventually the client will be able to advance
its stake sufficiently far along so that more than n/2 of the servers will advance to
the client’s stake and no further. At this point the subsequent “vote-request” is also
guaranteed to succeed, with all servers accepting the stake and delta selected by
the client.

For safety, we have to make sure that no two votes, with different deltas, can
be decided for the same version. Stake Replication guarantees safety through the
following invariant: if a vote (s,v) is decided, then any vote (s′,v′) (decided or not)
with s′ > s has v′ = v. This invariant depends on two important features of the pro-
tocol. First, when a client receives responses to its “stake-request” from a quorum
of servers, it knows that the servers that responded can no longer vote using lower
stakes than the one it requested. Second, it also collected for those servers the max-
imum stake that they voted on thus far. If any vote has decided, then, by quorum
intersection, the responses must include a response from one of those servers. By
clients always selecting the maximum vote, the invariant is guaranteed. If the max-
imum vote is ((0,0),⊥), it is guaranteed that no stake lower than the client’s can
have decided, and thus the client is free to choose any delta in that case, without
fear of violating the invariant.

For good examples and treatments of Stake Replication techniques, see [6, 11].

36 R. van Renesse and R. Guerraoui

var H initially ⊥;
var requests initially /0;

event receive(“updateHist”, delta) from client :
requests := requests∪{(client,delta)};

function mainLoop() :
repeat

wait until requests �= /0 ;
r := selectOne(requests);
requests := requests\{r};
while r.delta �∈H do

delta := consensus(|H|, r.delta.uid, r.delta.op);
H := H :: delta;

end
send(“response”, (r.delta.uid,H)) to r.client;

end

Fig. 2.14 Broker code for Broker Replication, which is an extension of the client code of Stake
Replication.

2.4.3 Broker Replication

A disadvantage of Stake Replication is that clients need to reconstruct the history.
This is inconvenient, and can involve considerable overhead. To remedy this, most
SR implementations only support an “overwrite” delta, such that the last delta in a
history completely determines the state of the replicated object. Then it is unneces-
sary to reconstruct the entire history, but only the last delta.

Broker Replication (BR) is an extension of Stake Replication that overcomes this
disadvantage of SR in a different way. Unlike SR, BR does incorporate a collection
of servers that maintain the state. BR is a three-tiered solution. One tier contains
servers just like in Stake Replication. The middle-tier contains a set of processes
that we shall call brokers. They run essentially the client code of SR in an infinite
loop, deciding deltas and maintaining the resulting history (see Figure 2.14). The
remaining tier are the ultimate clients that send requests to, and receive responses
from, brokers. To tolerate f failures, the middle-tier must include f + 1 brokers.
(To save on hardware and messages, the broker processes usually run on the same
machines that are used for running server processes.)

Clients can go through any broker in order to update and access history. However,
contention between brokers is avoided, and performance thus improved, if all clients
used the same broker. To accomplish this, BR implementations use a weak leader
election protocol to elect a leader among available brokers. The election is weak in
the sense that the protocol may accidentally elect more than one leader at a time.
This does not affect safety, but does affect performance and liveness.

Figure 2.15 shows a simple example of client code that uses weak leader election.
The event up(p) signifies that broker p is now believed to be reachable by the client,
while down(p) signifies that the connection between the client and p is suspicious.
These events may provide mistaken information, but we assume that if a broker has

2 Replication Techniques for Availability 37

var brokers initially /0;
var responses initially /0;

event up(p) :
brokers := brokers∪{p};

event down(p) :
brokers := brokers\{p};

event receive(“response” , r) from p :
responses := responses∪{(p, r)};

function updateHist(op) :
uid := genUID();
repeat

wait until brokers �= /0 ;
leader := min(brokers);
send(“updateHist”, (uid,op)) to leader;
wait until (·, (uid, ·)) ∈ responses∨ leader �∈ brokers ;
if ∃H (·, (uid,H)) ∈ responses then

return H;
end

Fig. 2.15 Client code for Broker Replication.

in fact crashed, then it will eventually be marked down and never up again. The
client uses the broker with the minimum identifier among the brokers that it thinks
are reachable.

An important optimization of the BR technique is to use a single stake for multi-
ple operations. That is, when a broker receives an “updateHist” request, it first tries
to re-use its last stake. It broadcasts a “vote-request” message to all servers. If it re-
ceives ACCEPTED responses from a quorum of servers, then the request completes
and the broker can respond to the client. If not, then the broker has to establish a
new stake. Assuming the weak leader election mechanism works reasonably well,
establishing a stake will be a rare event.

Why It Works

Consider liveness of updateHist(). If there is a broker that never crashes, there
is a lowest broker b that never crashes. If no broker lower than b completes the
client’s request, then b will eventually receive and execute the request. The liveness
thus depends on the liveness of SR. As updates are performed by brokers, safety is
inherited from the brokers as well.

Good examples of the BR technique are Viewstamped Replication [15] and
Paxos [13].

38 R. van Renesse and R. Guerraoui

New server as a client

To join (again), a server acts as a client
of the replicated system and issues a
reconfiguration request.

New server is now in

Another client can now make use of
the new server.

Fig. 2.16 Reconfiguration.

2.5 Recovery and Reconfiguration

So far, we assumed that a process that fails does not recover. From a practical per-
spective, this is too strict a limitation, especially for long lived services that need to
be permanently available. One would typically seek for techniques where a replica
that recovers after crashing is integrated again into the system.

In the PB and CR techniques, a failed server is removed from the configuration
altogether. On the other hand, in theory, the SR technique supports reconfiguration
already. If a server stores its state on disk, then a crash followed by a recovery is
not technically a crash, but appears as a transient network outage during which the
server could not be reached. However, some servers may never be able to recover.

We want to be able to dynamically add servers to a replicated service. A new
replica needs to obtain a unique identifier. Also, except for the SR technique, each
server (or broker in the case of BR) needs to obtain a copy of the current version
of the history. A general way of handling configuration changes is to make the con-
figuration part of the replicated object, and add special update operations to change
the configuration [12]. A server initially acts like a client, executing the operation
updateHist(ADD SERVER(network address)). The operation returns the cur-
rent history, which the new server adopts as its own current history. The identifier of

2 Replication Techniques for Availability 39

the server is simply the number of ADD SERVER operations in the history, guar-
anteeing uniqueness. At this point, the server is fully integrated into the system.

Treating configuration update requests the same as normal update requests pre-
cisely ensures that the joining of this replica is totally ordered with other requests
and this is key to ensuring consistency without hampering availability [12]. When
completed, clients are informed about the new configuration (Figure 2.16). The
same technique can also be used to remove servers from a configuration.

Many group communication systems such as Isis [2] integrate replication and
reconfiguration mechanisms into a single tool for simplifying development of highly
available services. For a treatment of group communication systems, see [5, 10].

Table 2.1 Comparison between the replication techniques discussed in this chapter. The table
shows (normal case) latency in number of rounds, overhead in number of messages per update
operation, and the number of failures tolerated. Here n is the number of servers.

technique # rounds # messages # failures tolerated

PB 4 2n n−1
CR n+1 n+1 n−1
SR 4 4n �(n−1)/2�
BR 4 2n �(n−1)/2�

2.6 Conclusion

In this chapter we discussed four techniques to replication: Primary-Backup, Chain
Replication, Stake Replication, and Broker Replication. Table 2.1 compares the four
techniques with respect to update operations. Latency and message overheads in this
table are simplified, and the extensive literature on replication techniques discusses
many variants of these basic techniques. The first two are appropriate only for envi-
ronments in which crash failures can be accurately detected, and depend on recovery
for continued availability. The latter two techniques are significantly more robust,
masking crash failures without attempting to detect them, but tolerate about half as
many failures for the same number of servers.

References

1. Alsberg, P., Day, J.: A principle for resilient sharing of distributed resources. In: Proc. of the
2nd Int. Conf. on Software Engineering, pp. 627–644 (Oct. 1976)

2. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems. In: Proc. of
the 11th ACM Symp. on Operating Systems Principles, Austin, TX, pp. 123–138 (Nov. 1987)

3. Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: The primary-backup approach. In: Mul-
lender, S. (ed.) Distributed systems, 2nd edn., ACM Press, New York (1993)

4. Chandra, T., Toueg, S.: Unreliable failure detectors for asynchronous systems. In: Proc. of
the 11th ACM Symp. on Principles of Distributed Computing, pp. 325–340. ACM SIGOPS-
SIGACT, Montreal (Aug. 1991)

40 R. van Renesse and R. Guerraoui

5. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehensive
study. ACM Computing Surveys 33, 427–469 (1999)

6. El Abbadi, A., Skeen, D., Cristian, F.: An efficient, fault-tolerant protocol for replicated data
management. In: Proc. of the 4th ACM Symp. on Principles of Database Systems, pp. 215–
229. ACM SIGACT, Portland (Mar. 1985)

7. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with one faulty
process. J. ACM 32(2), 374–382 (1985)

8. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. J. ACM 32(4),
841–860 (1985)

9. Gifford, D.: Weighted voting for replicated data. In: Proc. of the 7th ACM Symp. on Operating
Systems Principles, pp. 150–162. ACM SIGOPS, Pacific Grove (Dec. 1979)

10. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. IEEE Com-
puter 30(4) (1997)

11. Herlihy, M.: A quorum consensus replication method for abstract data types. Trans. on Com-
puter Systems 4(1), 32–53 (1986)

12. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. Trans. on
Programming Languages and Systems 6(2), 254–280 (1984)

13. Lamport, L.: The part-time parliament. Trans. on Computer Systems 16(2), 133–169 (1998)
14. Naor, M., Wool, A.: The load, capacity, and availabiliity of quorum systems. SIAM Journal

on Computing 27(2), 423–447 (1998)
15. Oki, B., Liskov, B.: Viewstamped replication: A general primary-copy method to support

highly-available distributed systems. In: Proc. of the 7th ACM Symp. on Principles of Dis-
tributed Computing, pp. 8–17. ACM SIGOPS-SIGACT, Ontario (Aug. 1988)

16. van Renesse, R., Schneider, F.: Chain Replication for supporting high throughput and avail-
ability. In: Sixth Symposium on Operating Systems Design and Implementation (OSDI ’04),
San Francisco, CA (Dec. 2004)

17. Schlichting, R., Schneider, F.: Fail-stop processors: an approach to designing fault-tolerant
computing systems. Trans. on Computer Systems 1(3), 222–238 (1983)

18. Thomas, R.: A solution to the concurrency control problem for multiple copy data bases. In:
Proc. of COMPCON’78, pp. 88–93 (1978)

19. Thomas, R.: A majority consensus approach to concurrency control for multiple copy
database. ACM Trans. Database Syst. 4(2), 180–209 (1979)

Chapter 3
Modular Approach to Replication
for Availability

Fernando Pedone and André Schiper

Abstract In this chapter, we show a modular, layered way to implement replica-
tion. This will lead us to introduce notions such as group communication primitives
(atomic broadcast, generic broadcast), the consensus problem, failure detectors, and
the round based model, and will allow us to better understand the challenges that
underly the implementation of replication techniques. The chapter considers only
benign faults.

3.1 Introduction

The goal of this chapter is to show that replication techniques can be implemented in
a modular way, by relying on adequate abstractions. We will present several abstrac-
tions, starting with group communication primitives. A group refers here to a set of
processes. If g is a group of processes with members p1, p2, and p3, then a message
m can be multicast to p1, p2, and p3 by referring simply to g: the sender does not
need to know what processes are member of g. This is similar to IP-multicast groups
in the context of the UDP internet protocol, where a process can multicast a mes-
sage m to a group identified by a number: the message m is sent to all processes that
are members of the group. However, IP-multicast groups are not adequate for man-
aging replication because they provide only weak guarantees. Implementing repli-
cation with strong consistency requires strong communication guarantees: reliable
and ordered message transmission, neither one provided by IP-multicast. The group
communication primitives that we will introduce provide such strong guarantees.
We will also discuss the implementation of group communication primitives, which
will lead us to introduce additional abstractions. Note that the chapter is restricted
to benign faults: malicious faults (also called Byzantine faults) are not considered
here.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 41–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 F. Pedone and A. Schiper

3.2 Atomic Broadcast for State Machine Replication

Consider some service replicated on three servers p1, p2, and p3. With state machine
replication, all servers handle client requests in the same order. In other words, state
machine replication can be implemented by ensuring that all servers receive client
requests in the same order. This property is provided by a group communication
primitive called atomic broadcast, or simply abcast.

Consider a group g and the primitive abcast(g,m), which broadcasts m to the
members of g. Specifying abcast(g,m) can be more or less complex, depending
on the assumptions relative (i) to the properties of g, (ii) to the properties of the
members of g, and (iii) to the membership of the sender process. The simplest case
is the following: (i) the membership of g never changes (g is a static group), (ii)
processes in g do not recover after a crash (called crash-stop model), and (iii)
processes are member of at most one group and the sender process (i.e., the process
that executes abcast(g,m)) is a member of that group. Such a model is too restrictive
from a practical point of view, but has the advantage to lead to a relative simple
definition of atomic broadcast. For example, the crash-stop model allows us to refer
to correct as processes that never crash and to faulty as processes that are not correct.
Assumption (iii) allows us to ignore g and simply refer to abcast(m).

With the assumptions (i), (ii) and (iii) we can define atomic broadcast by
abcast(m) and adeliver(m) that satisfy the following properties [13] ([1] for the
last property)1:

• Validity: If a correct process abcasts message m, then it eventually adelivers m.
• Uniform agreement: If a process adelivers message m, then all correct processes

eventually adeliver m.
• Uniform integrity: For any message m, every process adelivers m at most once,

and only if m was previously abcast.
• Uniform total order: If some process adelivers message m before message m′,

then every process p adelivers m′ only after it has adelivered m.

Atomic broadcast is also called total order broadcast. Note that atomic broadcast
does not ensure FIFO ordering of messages: if p executes abcast(m) and then
abcast(m′), message m′ may be adelivered before m. The FIFO property can be
added to the four properties above, which leads to FIFO atomic broadcast.

State machine replication is easy to implement with atomic broadcast: clients
simply send their requests using abcast (see Figure 3.1(a)), and wait for the first
reply (other replies are identical and can be ignored). The reader may observe that
the use of atomic broadcast illustrated on Figure 3.1(a) violates assumption (iii),
since the sender is not member of the group. Figure 3.1(b) shows a use of atomic
broadcast that is consistent with (iii): the client sends its request to one of the server
replicas, which invokes atomic broadcast.

1 Actually, the primitive defined here is called uniform atomic broadcast. For simplicity, we call it
atomic broadcast.

3 Modular Approach to Replication for Availability 43

p1

p2

p3

client

request reply

request handling

abcast

client waits for 1st reply
re

pl
ic

at
ed

 s
er

vi
ce

(a)

p1

p2

p3

client

request

abcast

client

abcast

request

re
pl

ic
at

ed
 s

er
vi

ce

(b)

Fig. 3.1 (a) State machine replication using atomic broadcast. (b) Atomic broadcast invoked by
the servers (request handling and replies not shown).

Atomic Broadcast vs. Atomic Multicast The difference between atomic “broad-
cast” and atomic “multicast” is related to the destination of a message. Strictly
speaking, broadcast is used whenever a message is sent to “all” processes in the
system, while multicast is used to denote a message sent to a specified subset of
processes. According to this definition, we should use the term “atomic multicast”
rather than “atomic broadcast” when referring to Figure 3.1. However, a slightly
different usage of the terms broadcast/multicast has been adopted. Broadcast tends
to be used whenever, given two messages, the destinations are either (i) identical or
(ii) different and non-overlapping; multicast is used otherwise. For example, in the
context of Figure 3.1, if any message sent to the group of three replicas is only sent
to this group, the term “broadcast” is used. However, if a message sent to this group,
may (or may not) sometimes also be sent to a different group of servers, destinations
of messages may differ and overlap, and the term “multicast” is used.

3.3 The Consensus Problem, or How to Implement
Atomic Broadcast in a Modular Way

3.3.1 Consensus

One dimension of modularity in the context of replication is the use of atomic broad-
cast. Another dimension of modularity is to identify an abstraction that simplifies
the implementation of atomic broadcast. This abstraction is the consensus problem,
which encapsulates the hard part of the implementation of atomic broadcast.

Informally, in the consensus problem we consider a set of n processes, each
process pi with an initial value vi. These n processes have to agree on a common
value v that is the initial value of one of the processes. For example if n = 3, v1 = 3,
v2 = 10 and v3 = 1, then p1, p2, and p3 may agree on 10, but not on 2. Formally, the

44 F. Pedone and A. Schiper

consensus problem is defined by the invocation of propose(vi) by which process pi

proposes its initial value, and the execution of decide(v) by which pi decides v. The
decision must satisfy the following properties:

• Validity: If a process decides v, then v is the initial value of some process (i.e., v
was proposed by some process).

• Uniform Agreement: Two processes cannot decide differently.
• Termination: Every correct process eventually decides.

If processes do not crash, consensus is trivial to solve: One of the processes, say
p1, sends its initial value v1 to all processes, which wait to receive v1 and then de-
cide v1. However, if processes can crash, consensus becomes tricky to solve. Since
consensus is solvable exactly when atomic broadcast (and thus state machine repli-
cation) can be implemented [4], understanding the condition under which consensus
is solvable is crucial. In Section 3.3.2 we discuss the use of consensus to implement
atomic broadcast. Solutions to consensus will be discussed in Section 3.4.

3.3.2 Implementation of Atomic Broadcast

We describe two algorithms for atomic broadcast. The first one uses consensus as
a black box and illustrates modularity. The second one does not use consensus, but
is itself — in addition of being an atomic broadcast algorithm — also a consensus
algorithm. Additional information, including algorithms for atomic multicast, can
be found in [9, 22].

Modular Consensus-Based Algorithm

We show now an implementation of atomic broadcast that uses consensus: all the
complexity of the solution is hidden in the consensus black box. The algorithm has
been proposed in [4]. The principle of the algorithm is the following. Every process
executes a sequence of consensus numbered 1, 2, The initial value for each
consensus, for some process p, is the set of messages received by p but not yet
adelivered. Let msgk be the set of messages decided by consensus #k:

• Each process adelivers the messages in msgk before the messages in msgk+1.
• Each process adelivers the messages in msgk in some deterministic order (e.g.,

according to their unique IDs).

The algorithm assumes quasi-reliable channels.2 The details are given by Algo-
rithm 3.1. Consensus is invoked at line 13 and the decision occurs at line 14. A new
instance of consensus is launched whenever the condition of line 10 is true; the ini-
tial value for consensus is the set of messages received but not yet adelivered. Note
that the algorithm does not launch one instance of consensus for every execution of
abcast(m): more than one message may be adelivered by one instance of consensus.

2 If pi sends m to p j , and the two processes are correct, then m is eventually received by p j . With
reliable channels, the reception of m is guaranteed if p j is correct.

3 Modular Approach to Replication for Availability 45

Algorithm 3.1 Atomic broadcast implemented by reduction to consensus (code of
process p) [4].
1: Initialization
2: kp := 0 {consensus number}
3: adeliveredp := /0 {set of messages adelivered by p}
4: receivedp := /0 {set of messages received by p}

5: To abcast(m) :
6: send m to all

7: upon receive(m) do
8: receivedp := receivedp ∪{m}
9: if received m for the first time then send m to all

10: upon receivedp \adeliveredp �= /0 do
11: kp← kp +1
12: a undelivered := receivedp−adeliveredp

13: propose(kp , a undelivered) {start consensus #kp}
14: wait until decide(kp , msgkp) {msgkp is the decision of consensus #kp}
15: adeliver the messages in msgkp in some deterministic order
16: adeliveredp := adeliveredp ∪msgSetkp

Non Modular Sequencer-Based Algorithm

For completeness, we sketch a largely referenced — although not modular — al-
gorithm for atomic broadcast. It is basically the idea behind the multi-Paxos state
machine replication algorithm [15], and the Viewstamped replication algorithm (see
Chapter 7).

The algorithm is not modular in the sense that it does not use consensus as a black
box. However, since every atomic broadcast algorithm can be used to solve consen-
sus, the algorithm also solves consensus. The non modularity has the following
consequence. In order to understand the conditions under which the algorithm im-
plements atomic broadcast, it is necessary to understand the conditions under which
consensus is solvable, which is only discussed later in Section 3.4. Some readers
may find more convenient to read the following description after Section 3.4.

The algorithm is based on a sequencer process responsible for ordering mes-
sages. In a sequencer-based algorithm, one process s acts as the sequencer. When
some process wants to broadcast message m, it sends m to s. Upon receiving m, the
sequencer s assigns it a sequence number and relays m with its sequence number to
the destinations. The latter deliver messages according to the sequence numbers.

This simple idea needs to be completed to handle the crash of the sequencer. To
illustrate the issues to be addressed, consider the following scenario:

• The sequencer has received message m, assigned sequence number i to m, and
has sent (m, i) to the destinations. One destination process p receives (m, i) and
delivers m at rank i.

• The sequencer crashes, and no other destination process receives (m, i).

46 F. Pedone and A. Schiper

The crash of s requires to select a new sequencer s′. However, if the system is not
synchronous, s′ might not be able to learn that message m was delivered at rank i
by p. Without this information, s′ might assign the sequence number i to some other
message m′, leading to the violation of the properties of atomic broadcast.

To address this problem, a process p that (i) has delivered message m′ with se-
quence number i−1, and (ii) receives (m, i), cannot deliver m immediately. Let n be
the total number of destinations, and f the maximum number of faulty destinations.
Process p can deliver m only once it knows that f + 1 processes (i.e., one correct
process) have received (m, i). This can be implemented by having each destination
process, once it has received (m, i), send an acknowledgement message (ack,m, i)
to all destinations. Message m is delivered by p only once p has received f + 1
messages (ack,m, i).3

This mechanism allows the new sequencer s′ to learn the existence of any mes-
sage that could have been delivered thanks to the previous sequencer, but not
yet delivered by all correct destinations. The idea is the following. When the
sequencer changes to s′, all destinations p send to s′ the set rcvp,s = {(m, i) |
(m, i) received by p from s}.4 The sequencer s′ waits to receive rcvp,s from n− f
processes p. If one single set rcvp,s received by s′ contains some pair (m, i), then
s′ knows that, if some message has been delivered by a destination at rank i, it is
message m. Moreover, if s′ receives no rcvp,s with (−, i′) ∈ rcvp,s, then no process
can have delivered any message at rank i′. This is easy to show. Assume that some
message m′ is delivered by some process at rank i′. Therefore, f + 1 processes p
have sent rcvp,s with (m′, i′) ∈ rcvp,s to s′. The sequencer s′ receives sets rcvp,s from
n− f processes. Since (n− f)+ (f + 1) > n, at least one set rcvp,s received by s′
contains (m′, i′).

Some other issues remain to be addressed. One issue is the selection of the se-
quencer. For this, we refer the reader to the discussion related to the choice of the
coordinator for Algorithm 3.3 (page 50): selection of the sequencer here, or of the
selection of the coordinator for Algorithm 3.3, is exactly the same problem. Another
important issue is the system model, which specifies assumptions about processes
and channels. This issue is discussed in the next section. Indeed, as we pointed out
there, without adequate assumptions, consensus (and atomic broadcast) is simply
not solvable.

We have only sketched the non-modular atomic broadcast algorithm. The com-
plete algorithm requires to combine the ideas presented here with the consensus
algorithm of Algorithm 3.3.

3 Waiting for f +1 messages will not block p if f +1≤ n− f , i.e., n > 2 f .
4 The information sent to s′ can be optimized.

3 Modular Approach to Replication for Availability 47

3.4 Solving Consensus

3.4.1 About System Models

As explained in the previous section, consensus is trivial to solve when processes
do not crash. With crashes, solutions to consensus depend on the underlying system
model. The two extreme models are the synchronous and the asynchronous system
models. In a synchronous system there is (1) a bound ∆ on the transmission delay of
messages, and (2) a bound Φ on the relative speed of processes. This allows accurate
failure detection. In an asynchronous system there is no bound on the transmission
delay of messages and no bound on the relative speed of processes. This typically
models a system with unpredictable load on the network and on the CPUs. The
consequence is that in an asynchronous system, it is never possible to know whether
a process has crashed or not.

Unfortunately, consensus is not solvable in an asynchronous system. This result
has been established by Fischer-Lynch-Paterson, and is known as the FLP impossi-
bility result [11] (see Chapter 4). The result states that there exists no deterministic
algorithm that solves consensus in an asynchronous system with reliable channels
if one single process may crash. Consensus is solvable in a synchronous system
with process crashes. However, the synchronous system model has drawbacks from
a practical point of view. Since the bounds on message transmission delays and
process relative speeds must “never” be violated, worst case bounds must be con-
sidered. These worst case bounds have a negative impact on the performance of
consensus algorithms in the case of process crashes: worst case bounds lead to
a large black-out period that ends when the crash is detected. This explains why
weaker models, strong enough to solve consensus, have been defined. We describe
two such models: the partially synchronous system model and the asynchronous
system augmented with failure detectors model.

3.4.2 Partially Synchronous Systems

Roughly speaking, a partially synchronous system is a system that is initially asyn-
chronous and eventually becomes synchronous. The time at which the system be-
comes synchronous is called the Global Stabilization Time (or GST). Note that GST
is not known to the processes (GST may be different in two different executions).
This system model has been proposed by Dwork, Lynch and Stockmeyer [10]. In
addition to the definition of the partially synchronous system model, the paper also
proposes an abstraction on top of the system model, used to express consensus al-
gorithms. This abstraction is called the basic round model.

The Basic Round Model Abstraction

In the basic round model, processing is divided into rounds of message exchange.
Each round r consists of a send step, a receive step, and a state transition step. In
a send step, each process sends a message to all. In a receive step of some round r,
for each process, some subset of messages sent in round r is received (i.e., messages

48 F. Pedone and A. Schiper

may be lost). In a state transition step each process updates its state based on the set
of messages received.

In all rounds executed before GST messages may be lost. However, messages are
not lost after GST. We can state this property in terms of rounds: there exists a round
GSR such that no messages are lost in rounds r ≥ GSR. This can also be expressed
by the following predicate, where C denotes the set of correct processes, σ r

p denotes
the message sent by p in round r,5 and µ r

p[q] denotes the message received by p
from q in round r, or ⊥ if no message is received:

∀r ≥ GSR : ∀p,q ∈C : µ r
p[q] = σ r

q .

The basic round model can be implemented on top of a partially synchronous sys-
tem [10].

Solving Consensus in the Basic Round Model

Let f be the maximum number of faulty processes. Dwork et al. [10] describe an al-
gorithm that solves consensus in the basic round model with f < n/2 (see [6] for the
pseudo-code). We give here a simpler consensus algorithm, namely Algorithm 3.2,
which requires f < n/3 [7]. Line 5 is the send step, and lines 7 to 10 are the state
transition step. The receive step is implicit (between lines 5 and 7).

Algorithm 3.2 OneThirdRule (OTR) algorithm: Solving consensus in the basic
round model, f < n/3 (code of process p) [7].

1: Initialization:
2: xp ← vp { vp is the initial value of p }
3: Round r:
4: Send step:
5: send 〈xp 〉 to all processes

6: State transition step:
7: if number of messages received ≥ n− f then
8: xp ← the smallest most often received value {select the most frequent; if not unique, take the

smallest}
9: if (at least n− f values received are equal to v) and not decidedp then
10: DECIDE(v)

The algorithm works as follows. Each process p manages a variable xp that is ini-
tially set to vp, the initial value of p. In each round r, every process sends xp to all
(line 5). If a process p receives n− f values equal to some value v, then it decides v
(line 10). Validity trivially holds. Uniform agreement holds because the algorithm
ensures that once n− f processes p have xp = v, then by lines 7 and 8 variable xp

will be updated to v. This ensures that no process can decide on a value different
from v. Termination holds after GSR for the following reason. Consider the smallest

5 For simplicity, assume that p sends the same message to all.

3 Modular Approach to Replication for Availability 49

round r0 larger than GSR, such that all faulty processes have crashed before round
r0. By the property of the basic round model, in round r0 all correct processes re-
ceive at least n− f messages and the same set of messages, and so update xp to the
same value at line 8, say v. In round r0 +1 all correct processes receive at least n− f
messages with v and so decide at line 10.

A Consensus Algorithm “à la Paxos”

We give now a second consensus algorithm in the basic round model that requires
only f < n/2, see Algorithm 3.3. The algorithm, called LastVoting [7], follows the
basic line of Paxos [15], and can be seen as Paxos expressed in the basic round
model.6

The rounds r in Algorithm 3.3 are grouped into phases φ , where one phase φ
consists of four consecutive rounds 4φ − 3 to 4φ . The last round 4φ of phase φ
is followed by the first round 4(φ+1)−3 of phase φ + 1. The algorithm relies on a
coordinatorCoord(p,φ), which is p’s coordinator for phase φ . The algorithm is safe
with multiple coordinators in the same phase, i.e., with Coord(p,φ) �= Coord(q,φ)
for two different processes p and q. Termination requires one phase that starts after
GSR in which all alive processes consider the same coordinator.

The algorithm uses variable xp initially set to the initial value of p, and variable
tsp equal to the latest phase in which p has updated xp. Each phase works as follows.
Round 4φ −3, thanks to the condition “number of 〈ack〉 received > n/2” (line 11),
ensures that at most one coordinator sets commitp to true at line 14. This coordinator
also updates votep based on the value received. We explain the update of votep

below.
In round 4φ − 2, at most one coordinator sends votep to all. Process q, upon

receiving this message, updates xq and sets tsq to the current phase number (line 21).
After that, in the next round 4φ−1, q sends 〈ack〉 to the coordinator. A coordinator p
that receives a majority of 〈ack〉 (line 27) can decide on votep. This is done in round
4φ by sending 〈votep〉 at line 32. The reception of this messages leads a process to
decide on the value received.

The decision after the reception of a majority of 〈ack〉 ensures the following
property. If some process has decided v in phase φ , then a majority of processes have
xp = v and tsp = φ at the end of phase φ , and the other have tsp < φ . It follows that in
the first round of phase φ + 1, a coordinator p that receives a majority of messages,
necessarily receives at least one message with 〈v, φ〉; the messages received with
〈v′, φ ′〉, v′ �= v all have φ ′ < φ . Therefore, in phase φ +1 a coordinator can only set
its vote to v, which ensures uniform agreement.

For termination, it is easy to show that if all processes agree on the same coor-
dinator in some phase φ0 that starts after GSR, then all correct processes decide in
round 4φ0.

One remaining issue is the selection of the coordinator. A simple solution is to
rely on the rotating coordinator paradigm: if processes are denoted p0 to pn−1, and

6 We refer here to the Paxos consensus algorithm. In Section 3.3.2 we were referring to the multi-
Paxos atomic broadcast algorithm.

50 F. Pedone and A. Schiper

Algorithm 3.3 The LastVoting algorithm: consensus algorithm “à la Paxos” in the
basic round model, f < n/2 (code of process p) [7].
1: Initialization:
2: xp ← vp { vp is the initial value of p }
3: votep←?
4: commitp← f alse
5: readyp← f alse
6: tsp← 0 {integer time-stamp}
7: Round r = 4φ −3 :
8: Send step:
9: send 〈xp , tsp〉 to Coord(p,φ)

10: State transition step:
11: if p = Coord(p,φ) and number of 〈ν , θ〉 received > n/2 then
12: let θ be the largest θ from 〈ν , θ〉 received
13: votep ← one ν such that 〈ν , θ〉 is received
14: commitp ← true

15: Round r = 4φ −2 :
16: Send step:
17: if p = Coord(p,φ) and commitp then
18: send 〈votep〉 to all processes

19: State transition step:
20: if received 〈v〉 from Coord(p,φ) then
21: xp ← v ; tsp← φ

22: Round r = 4φ −1 :
23: Send step:
24: if tsp = φ then
25: send 〈ack〉 to Coord(p,φ)

26: State transition step:
27: if p = Coord(p,φ) and number of 〈ack〉 received > n/2 then
28: readyp ← true

29: Round r = 4φ :
30: Send step:
31: if p = Coord(p,φ) and readyp then
32: send 〈votep〉 to all processes

33: State transition step:
34: if received 〈v〉 from Coord(p,φ) then
35: DECIDE(v)
36: if p = Coord(p,φ) then
37: readyp ← f alse ; commitp ← f alse

φ = 1 is the first phase, then p(φ−1)mod n is the coordinator of phase φ . Another
option, used by Paxos, is to select the coordinator dynamically, using for example a
leader election algorithm [2].

3.4.3 Asynchronous System Augmented with Failure Detectors

The Failure Detector Abstraction

The failure detector model has been proposed by Chandra and Toueg [4]. The idea
is different from the partial synchrony model: the asynchronous system is “aug-
mented” with devices that can be queried by processes. Each process pi is equipped

3 Modular Approach to Replication for Availability 51

with such a device FDi, the failure detector device of pi. When queried by pi, FDi

gives pi a hint about the status crashed/alive of the other processes. The output of
failure detectors may be incorrect, and failure detectors may change their mind. For
example the failure detector FDi may suspect p j at time t, and no more suspect p j

at time t ′ > t. Moreover, it is important to note that, since the failure detectors FDi

is “queried” by pi, even though FDi has a state defined for all times t, not all these
states are observed by pi.

If we do not set any constraints on the output of the failure detectors, the model
does not add anything with respect to an asynchronous system, and the FLP impos-
sibility result still holds. To make consensus solvable, restrictions must be put on
the output of the failure detectors. These restrictions are expressed in terms of two
abstract properties, a completeness property and an accuracy property. Complete-
ness defines constraints with respect to crashed processes, while accuracy defines
constraints with respect to correct processes. We consider here only one example
(see [4] for the complete failure detector hierarchy), namely the eventual perfect
failure detector ♦P , defined by the two following properties:

• Strong completeness: Eventually every process that crashes is permanently sus-
pected by every correct process.

• Eventual strong accuracy: There is a time after which correct processes are not
suspected by any correct process.

Solving Consensus with ♦P

We adapt Algorithm 3.2 to solve consensus with the failure detector ♦P (see Al-
gorithm 3.4). The algorithm requires quasi-reliable channels (see footnote 2), and
consists of two parallel tasks, Task 1 and Task 2. Task 1 of Algorithm 3.4, similarly
to Algorithm 3.2, consists of a sequence of rounds, but rounds here are different:
the handling of round numbers (line 4) and the receive step (line 8) are explicit.
By Task 1, as in Algorithm 3.2, every process p in every round rp sends xp to all
(line 7). The explicit reception of this message is handled as follows (see line 8):
process p waits for messages, and from time to time queries its failure detector, de-
noted by ♦Pp. Message reception ends when p has received a message from all
processes that are not crashed according to the failure detector. Then p proceeds as
in Algorithm 3.2 with one difference. When p is about to decide in Task 1, it sends
the decision to all other processes (line 12), and Task 1 ends. A process q, upon
receiving this message (line 17), decides if it has not yet done so, and forwards the
message to all other processes (line 19). This mechanism ensures that if one correct
process decides, then all correct processes also decide. Such a mechanism is not
needed in Algorithm 3.2, since the algorithm is not quiescent—a quiescent algo-
rithm eventually stops sending messages. This is related to the unreliable channel
assumption of Algorithm 3.2.

The correctness arguments for validity and uniform agreement are the same for
Algorithm 3.2 and Algorithm 3.4. The argument for termination is the following.
First, the completeness property of ♦P together with the quasi-reliable channel
assumption ensures that no correct process is blocked forever at line 8. Consider a

52 F. Pedone and A. Schiper

Algorithm 3.4 Solving consensus with ♦P , f < n/3 (code of process p).

1: Initialization:
2: xp ← vp { vp is the initial value of p }
3: decidep ← f alse {true once p has decided}
4: rp← 1 {round number}
5: Task 1:
6: while not decidedp do
7: send (rp, xp) to all processes
8: wait until received (rp,−) from all processes not in ♦Pp
9: if at least n− f values received then
10: xp ← most frequent value received (if more than one value satisfies the condition, take the smallest)
11: if at least n− f value received are equal to some value v then
12: send (decision, rp, v) to all processes
13: DECIDE(v)
14: decidedp ← true
15: rp ← rp +1

16: Task 2:
17: upon reception of (decision,−, v) for the first time do
18: if not decidedp then
19: send (decision, rp, v) to all processes
20: DECIDE(v)
21: decidedp ← true

correct process p waiting at line 8 for a message from q: if q is correct, its message
is eventually received; if q is not correct, q eventually crashes and is eventually
suspected forever. Therefore, consider time t such that after t all faulty processes
have crashed, and after t no correct process is suspected by any correct process
(eventual strong accuracy). Let round r0 be the smallest round such that no correct
process has started round r0 before t. In round r0 all correct processes receive at
least n− f messages and the same set of messages, and so update xp to the same
value, say v. In round r0 + 1 all correct processes receive at least n− f messages
with v and so decide.

3.4.4 Discussion

Although Algorithms 3.2 and 3.4 were designed for different system models, they
are not very different. This may suggest that the two underlying system models are
also similar. However, there are major differences between them. First, the notion
of failure detector makes no sense if channels are not quasi-reliable. Consider for
example line 8 of Algorithm 3.4 and the channel from q to p. If q is correct and the
message sent by q to p is lost, then p waits forever. Second, message exchange is
part of the round based model, while it is not part of the failure detector abstraction
As a consequence, failure detectors do not have a simple extension from the crash-
stop model to the crash-recovery model, contrary to the round based model [14].
Third, the fact that failure detectors extend the asynchronous model with an addi-
tional module imposes some restrictions on their output. In particular, to be useful,
failure detectors properties must hold for an infinite period of time [5]. This is not
the case with the partially synchronous model and its round abstraction, where the

3 Modular Approach to Replication for Availability 53

duration of a synchrony period sufficient for a given consensus algorithm can be
expressed [10, 14].

It should be pointed out that the failure detector model, the partially synchronous
model and its basic round model abstraction, as well as for example the Round-
by-Round Failure Detector model proposed by Gafni [12], are all models in which
the blame for not receiving messages is put on system components, namely links
or processes. As pointed out by Santoro and Widmayer, these component failure
models “do not fully capture the reality of systems subject to (possibly transient)
ubiquitous failures” [19]. Influenced by [18], a model without component failure has
been proposed by Charron-Bost and Schiper [7]. This model, called the HO model
(Heard Of), is a round-based model that uses predicates as in [12], and allows a
uniform handling of all benign faults.

3.5 Generic Broadcast

Although the state machine approach requires that all servers receive the client re-
quests in the same order, this is not always necessary for the correctness of the
applications. For example, consider a replicated Account object, defined by the op-
erations deposit(x) and withdraw(x). While deposit operations commute with each
other, withdraw operations do not, neither with each other nor with deposit op-
erations, assuming that the account cannot overdraw. As a consequence, although
totally ordering all account operations will produce a correct execution, it is not al-
ways required for the correctness of the replicated Account object. Since totally or-
dering requests has a cost (the atomic broadcast of Figure 3.1, for example, requires
a consensus execution), better performance can be achieved if only non-commuting
requests are ordered.

Generic broadcast is a group communication primitive that allows applications
to specify their order requirements by means of a conflict relation. Two requests
conflict if their order matters. In the previous example, if we let Md and Mw be,
respectively, the set of messages that carry a deposit and a withdraw operation, then
the conflict relation∼Account can be defined as∼Account= {(m,m′) : m∈Mw or m′ ∈
Mw}. Generic broadcast guarantees that conflicting requests are delivered in the
same order by all processes; non-conflicting requests, that is, those that commute,
may be delivered in different orders by different processes.

However, the implementation of generic broadcast is more complex than the im-
plementation of atomic broadcast. We illustrate its complexity with a run in which
only two messages are broadcast, m and m′. A generalization of this idea for an
unbounded number of messages can be found in [16]. To broadcast message m, a
process sends it to all processes. Upon reception of m by some process pi, there are
three cases to consider:

1. pi has not received message m′,
2. pi has received message m′, and m′ does not conflict with m, or
3. pi has received message m′, and m′ conflicts with m.

54 F. Pedone and A. Schiper

In cases 1 and 2, pi sends a message to all processes acknowledging the reception
of m, denoted ACK(m). If pi receives ACK(m) from some other process before m,
it locally assumes the reception of m and acts as described above. A process that
receives ACK(m) from nack processes delivers m. If m and m′ do not conflict, all
correct processes eventually receive nack messages of type ACK(m) and deliver m.

In case 3, pi launches an instance of consensus to decide on the delivery order
of m and m′. This should be done carefully though because some process may have
already delivered m′, in which case pi should deliver m′ before m—to avoid the
case in which both m and m′ could be delivered (by different processes), we require
nack ≥ n/2. Thus, before executing consensus, pi should find out whether m′ could
have been possibly delivered by some other process. For this purpose, pi sends to
all processes a message, denoted CHK, containing the message it has acknowledged
(i.e., m′), and waits for nchk similar CHK messages before starting consensus. Pro-
vided that the condition 2nack + nchk ≥ 2n + 1 holds, pi will receive enough CHK
messages to be able to determine if any message received enough ACKs and was
possibly delivered.

This algorithm allows processes to deliver non-conflicting messages in two com-
munication steps (i.e., the initial message propagation and the acknowledgments).
To satisfy the constraints on nack and nchk it assumes that fewer than one third of
the processes are faulty. While this has been shown to be optimal [17], there are
generic broadcast algorithms that require a majority of correct processes only, al-
though non-conflicting messages need more than two communication steps to be
delivered [1].

3.6 Dynamic Groups

In Section 3.2 we have explained the difference between static and dynamic groups,
and have defined atomic broadcast in the context of static groups. From a practical
point of view, static groups are too limitative. For example, if g is a group of three
server replicas on three different machines, and replica p3 crashes, it might be desir-
able to remove p3 from g and to replace it with a new replica p4. Consider another
example. Assume that, in order to update the operating system on machine M3, one
may want to move replica p3 from M3 to some other machine M4. This may be done
by removing p3 from g, and adding to g a new replica p4 on M4.

Dynamic groups lead to new problems. The first problem is to adequately model
dynamic groups. The second problem is how to add and remove processes from
a group. The third problem is how to extend the definition and implementation of
group communication primitives from static groups to dynamic groups.

3.6.1 Group Membership Service

The group membership service allows to add and remove processes from a group.
This is not very different from a set membership service, where a set of processes Π
maintain and agree on the dynamically changing set of elements drawn from an ar-
bitrary universe [21]. Processes can request the addition and removal of elements

3 Modular Approach to Replication for Availability 55

to/from the set, and the set changes accordingly. Each time the set changes, all pro-
cesses are notified of the new value of the set. Each successive value of the set is
called a view. The group membership service is a special case of the set member-
ship, where the set maintained by processes in Π happens to be a subset of Π . A
view of group g is a tuple (i,S), where S is a set of processes, and i an identifier.
We refer below to the following terminology: if p ∈ S, then p is member of view
v = (i.S), and S is the membership of view v; the event by which a process adopts
view v is called view installation; if view v = (i,S) and view v′ = (i′,S′), then v = v′
holds if both i = i′ and S = S′. The basic requirement for a group membership ser-
vice is an agreement among processes on the membership of the sequence of views.
Examples of other possible requirements are given in [21].

In the literature, group membership is often defined and implemented as a ser-
vice to maintain and agree on a particular set of processes, namely the set that is
deemed to be alive [8]. To provide this service, one must solve two orthogonal
problems [21]: (i) determining the set of processes that are alive, and (ii) agreeing
on each successive view of this dynamically changing set. Both problems are un-
solvable in an asynchronous system with failures. Nevertheless it is important to
decouple the issue of why processes are added or removed from the group from how
they are added or removed. The group membership service is only responsible for
the latter.

3.6.2 Group Communication in Dynamic Groups

Historically, group communication in dynamic groups [8], were defined quite dif-
ferently from group communication in static groups [13]. For example, when the
group membership does not change, the dynamic definitions of atomic broadcast do
not lead to the static definitions. This is rather confusing. New definitions for dy-
namic groups, which do lead to the static definitions when the group membership
does not change, were proposed in [20]. We refer to these definitions here.

The definitions of static group communication distinguish correct processes from
faulty processes. The obligation to adelivery messages is put on correct processes.
This is not the case with dynamic groups, where a correct process can be removed
from a group: a correct process p has no obligation with respect to messages abcast
to g after p is removed from the group. Therefore, dynamic groups cannot be spec-
ified with respect to correct processes. Instead, the new notion of v-correct/v-faulty
processes (where v is a view of g) is introduced. Given a view v of g, and a process
p member of v, process p is v-correct if (i) p installs view v, (ii) p does not crash
while its view is view v, and (iii) if v′ follows immediately view v in the sequence
of views of g, then p is a member of view v′. Specifically, if p installs v, but is not
member of v′ (p was removed from g), then p is v-faulty. We need also to refer to
g-correct processes. Consider process p that installs vinit

p as its first view of group g.
Process p is g-correct if p is vinit

p -correct, and is v′-correct for all views v′ that follow
view vinit

p . If group g is static, then v-correct and correct are equivalent. Similarly,
g-correct and correct are equivalent.

56 F. Pedone and A. Schiper

With these notions, we can now adapt the static definition of atomic broadcast to
dynamic groups with little changes:

• Validity: If a g-correct process abcasts message m, then it eventually adelivers m.
• Uniform agreement: If a process adelivers message m in view v, then all v-correct

processes eventually adeliver m.
• Uniform integrity: For any message m, every process adelivers m at most once,

and only if m was previously abcast.
• Uniform same view delivery: If two processes p and q adeliver a message in view

vp (for p) and vq (for q), then vp = vq.
• Uniform total order: If some process adelivers message m in view v before it

adelivers message m′, then every process p in view v adelivers m′ only after it
has adelivered m.

Uniform same view delivery is the main change with respect to static groups. As the
name suggests, it prevents p and q from adelivering m in different views. Without
this property, uniform agreement could hold for p, but not for q [20].

If group g is static, then the same view property is trivially ensured. Moreover,
since v-correct and g-correct are in this case equivalent to correct, it is easy to see
that we are back to the static definitions.

The uniform “same” view delivery property can be strengthened into a “sending”
view delivery property:

• Uniform sending view delivery: If two processes p and q adeliver a message in
view vp (for p) and vq (for q), then vp = vq, where vp = vq is the view in which
abcast(m) was executed.

This property has been also called virtual synchrony and view synchrony, and has
been popularized by the Isis system [3] (see also Chapter 6).

The implementation of atomic broadcast with dynamic groups can also be based
on consensus [20]. Other implementations that rely on the membership change are
described in [9].

3.7 Conclusion

We have shown that replication can be implemented in a modular, layered, way.
In doing so, we have identified several layers, each defining a useful abstraction:
atomic broadcast, consensus, failure detectors, and the round based model. In ad-
dition we have pointed out additional issues such as a dynamic set of servers, and
using generic broadcast instead of atomic broadcast.

A modular implementation may be less efficient than a monolithic implementa-
tion. However, a modular description has other advantages: it allows us to under-
stand the challenges that underly the implementation of replication. For example,
the FLP impossibility result (Sect. 3.4.1), which applies to consensus, applies as
well to replication. Positive results are also useful. For example, system models
under which consensus is solvable are system models under which replication is
implementable. Identifying such system models is of utmost importance.

3 Modular Approach to Replication for Availability 57

Acknowledgements We would like to thank Bernadette Charron-Bost for her useful comments
and suggestions.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Thrifty generic broadcast. In:
Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, p. 268. Springer, Heidelberg (2000)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing Ω with
weak reliability and synchrony assumptions. In: Proc. of the 22nd ACM Symp. on Principles
of Distributed Computing, PODC (July 2003)

3. Birman, K.: The Process Group Approach to Reliable Distributed Computing. Comm.
ACM 36(12), 37–53 (1993)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of ACM 43(2), 225–267 (1996)

5. Charron-Bost, B., Hutle, M., Widder, J. In Search of Lost Time. Tech. Rep. LSR-REPORT-
2008-006, EPFL (October 2008)

6. Charron-Bost, B., Schiper, A.: Consensus with partial synchrony. In: Encyclopedia of Algo-
rithms, pp. 198–202. Springer, Heidelberg (2008)

7. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed systems with
benign failures. Distributed Computing 22(1), 49–71 (2009)

8. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications: A Compre-
hensive Study. ACM Computing Surveys 4(33), 1–43 (2001)

9. Défago, X., Schiper, A., Urban, P.: Totally Ordered Broadcast and Multicast Algorithms: Tax-
onomy and Survey. ACM Computing Surveys 4(36), 1–50 (2004)

10. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal
of ACM 35(2), 288–323 (1988)

11. Fischer, M., Lynch, N., Paterson, M.: Impossibility of Distributed Consensus with One Faulty
Process. Journal of ACM 32, 374–382 (1985)

12. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony. In: Proc. of
the 17th ACM Symp. Principles of Distributed Computing, PODC (June-July 1998)

13. Hadzilacos, V., Toueg, S.: Fault-Tolerant Broadcasts and Related Problems. Tech. Rep. 94-
1425, Department of Computer Science, Cornell University (May 1994)

14. Hutle, M., Schiper, A.: Communication Predicates: A High-Level Abstraction for Coping with
Transient and Dynamic Faults. In: Proc. of the 37th IEEE Int. Conf. on Dependable Systems
and Networks (DSN) (June 2007)

15. Lamport, L.: The Part-Time Parliament. ACM Trans. on Computer Systems 16(2), 133–169
(1998)

16. Pedone, F., Schiper, A.: Handling Message Semantics with Generic Broadcast Protocols. Dis-
tributed Computing 15(2), 97–107 (2002)

17. Pedone, F., Schiper, A.: Brief announcement: On the inherent cost of generic broadcast. In:
Proc. of the 23rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 401–401
(July 2004)

18. Santoro, N., Widmayer, P.: Time is not a healer. In: Proc. of the 6th Symp. on Theor. Aspects
of Computer Science (STAC) (February 1989)

19. Santoro, N., Widmayer, P.: Agreement in synchronous networks with ubiquitous faults. Theo-
retical Computer Science 384, 232–249 (2007)

20. Schiper, A.: Dynamic Group Communication. Distributed Computing 18(5), 359–374 (2006)
21. Schiper, A., Toueg, S.: From Set Membership to Group Membership: A Separation of Con-

cerns. IEEE Transactions on Dependable and Secure Computing (TDSC) 3(1), 2–12 (2006)
22. Schiper, N., Sutra, P., Pedone, F.: Genuine versus Non-Genuine Atomic Multicast Protocols

for Wide Area Networks: An Empirical Study. In: Proc. of the 28th IEEE Symp. on Reliable
Distributed Systems (SRDS) (September 2009)

Chapter 4
Stumbling over Consensus Research:
Misunderstandings and Issues

Marcos K. Aguilera

Abstract The consensus problem has recently emerged as a major interest in sys-
tems conferences, yet the systems community tends to ignore most of the large body
of theory on this subject. In this chapter, I examine why this might be so. I point out
misunderstandings by the systems community of the theory. I also consider some
issues in this work that remains to be addressed by the theory community.

4.1 Introduction

In the consensus problem, each process proposes some initial value, and processes
that do not fail must reach an irrevocable decision on exactly one of the proposed
values. The consensus problem captures an essential component of replication in
distributed systems: the fact that replicas (processes) need to agree on the next re-
quest they handle, so that they can remain in identical states.

The consensus problem has been a fertile topic for theoretical study and it has
recently become a major interest in systems conferences. Yet, theory and practice are
divorced: the large body of theoretical work on this subject has had limited impact,
and the systems community tends to ignore most of that theory. In this chapter, I
examine why this may be so.

The chapter is divided into two main parts. In Section 4.2, I consider some mis-
understandings by the systems community of the theoretical work on the consensus
problem. In Section 4.3, I consider some issues in this body of work that remains to
be addressed by the theory community. Section 4.4 concludes the chapter.

The chapter presents a somewhat personal point of view. Another perspective on
consensus misunderstandings is provided in [8], while [3] describes an experience
of applying consensus in practice.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 59–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

60 M.K. Aguilera

4.2 Misunderstandings

There are some deep misunderstandings by the systems community of a signifi-
cant part of the theoretical research on the consensus problem. This section covers
these misunderstandings. They have hindered the adoption of many interesting tech-
niques, ideas, and algorithms, for incorrect reasons. My hope is that, once the mis-
understandings are clarified, systems researchers can make better informed choices
and benefit from work that they once thought to be inapplicable. At the same time, I
hope that theory researchers can become sensitized to the misunderstandings so that
they can present their research in a more effective manner.

4.2.1 Asynchronous Systems

An asynchronous (distributed) system is a system in which processes need not sat-
isfy any timeliness properties. There are no bounds on the relative rate of execution
of processes, so one process may execute at a much faster rate than another. More-
over, there are no bounds on message delays, so messages sent from one process
to another may be delivered quickly or slowly. On the other hand, in a synchronous
system, there are bounds on the rate of execution of non-faulty processes and on
message delays.

Critics say that asynchronous systems are not realistic, because in reality one
process cannot be 10999999 slower than another process, and a message never takes
10999999 seconds to be delivered. That is a fair criticism and, indeed, it is un-
likely that asynchronous systems accurately model any real system. However, asyn-
chronous systems have an important practical aspect: algorithms developed for them
are very general, because they work irrespective of whether the system is fast or
slow. In contrast, algorithms developed for synchronous systems explicitly rely on
particular timing assumptions, and the algorithms can fail if those assumptions are
violated. The problem is that it is hard for the system designer to decide what tim-
ing assumptions he should make, because the timing behavior of a real system tends
to be imprecise and highly variable in practice. Specifically, the average message
delay of a network could be 1 millisecond, but infrequently messages may take 1
second or much longer when there is congestion. In that case, what should the sys-
tem designer assume as the maximum message delay? On one hand, if he chooses
1 millisecond then this choice will be incorrect sometimes, which can cause a pre-
mature timeout and lead to consistency problems (e.g., a premature timeout may
cause a backup process to be promoted to the primary, while another primary is
still active). On the other hand, if the system designer picks 1 second or more as
the maximum message delay, then when a message is really missing (because, say,
a server or a process crashes), it will take long to timeout on the message, caus-
ing the system to block in the meantime, leading to a loss of availability. Thus, the
system designer is left with two bad choices: assuming a small maximum message
delay affects consistency, while assuming a large conservative delay affects avail-
ability. With asynchronous systems, the system developer does not have to choose
what timing assumptions to make: he simply develops an algorithm that works irre-

4 Stumbling over Consensus Research: Misunderstandings and Issues 61

spective of whether the system is fast or slow. From this point of view, it is much
harder to criticize asynchronous systems: they merely embody the fact that timing
assumptions should be avoided. The fewer the assumptions needed by an algorithm,
the smaller the likelihood that it will fail when used in practice. Thus, from a prac-
tical perspective, asynchronous systems can be highly desirable when it comes to
designing algorithms.

However, asynchronous systems have some practical shortcomings. Impossibil-
ity results, which state that a problem cannot be solved in asynchronous systems,
are particularly limited. These results rely on the fact that asynchronous systems ad-
mit executions where messages and processes are delayed arbitrarily, whereas these
executions may be unlikely. Thus, these results are of limited interest in practice;
even in theory, these results are weak because they do not carry over to a system
with any form of synchrony. I will elaborate on this topic, focusing specifically on
the consensus impossibility result, in Section 4.2.4.

4.2.2 Eventually-Forever Assumptions

In the consensus literature, it is common to find assumptions in the form of
eventually-forever properties. An eventually-forever property is a property of the
form “eventually X is true and continues to be true forever after”. Common exam-
ples include the following:

• Eventual leader election. Eventually some correct process is elected as leader
and it remains leader forever after [5, 4].

• Eventual timeliness. Eventually non-faulty processes are timely and messages are
delivered and processed in a timely fashion, and this timeliness continues forever
after [6].

These assumptions are made as a condition for the algorithms to solve consensus.
Practitioners object that these assumptions are not realistic and therefore the algo-
rithms that depend on them are not useful. However, it turns out that these assump-
tions are actually reasonable from a pragmatic perspective. Practitioners are right
that these properties cannot hold in practice, but the misunderstanding is that they
are not really required to hold; they are only assumed to hold for purely technical
reasons. In reality, what is required to hold are somewhat weaker properties, such as
“a process remains the leader for sufficiently long”. These weaker properties, how-
ever, are cumbersome to formalize, and that is why eventually-forever properties are
used instead.

To illustrate this point, consider the simple example of a washing machine. Its
manufacturer would like to say that, after the machine is started, it eventually ter-
minates the washing cycle. But it will not terminate if the machine is disconnected
from the power supply during operation. Hence, to ensure termination one needs an
assumption such as “eventually the machine is connected to the power supply and
remains connected for 60 minutes”. However, if the washing machine has a variable
washing time that depends on its load, 60 minutes may not be enough and, in fact, it
may be impossible to determine how long is enough without knowing the exact load.

62 M.K. Aguilera

An eventually-forever property comes handy in this case: the manufacturer simply
assumes that “eventually the machine is connected to the power supply and it re-
mains connected forever after”. This assumption handles the case of every possible
load. Note that, once the machine terminates, it is irrelevant whether or not the ma-
chine is connected to the power supply. Saying that the machine remains connected
forever is just a simple way to say that the machine is connected for sufficiently
long.

Similarly, consider a consensus algorithm that uses a leader election service. The
algorithm designer assumes that some process eventually gets elected as leader and
remains leader forever after. The algorithm does not really need the leader for eter-
nity, but it can be hard or impossible to know in advance for how long the leader is
needed, as this can depend on many factors, such as actual message delays and the
load on processes.

The washing machine manufacturer could give a table that shows, for each load,
how long the machine needs to be plugged in to terminate. Similarly, algorithm de-
signers could state assumptions that depend on all factors that influence the behavior
of their algorithm. Doing so, however, requires a more refined model than the asyn-
chronous model—something that algorithm designers prefer to avoid to keep the
model simple.

4.2.3 Eventual Guarantees

Many algorithms for consensus satisfy a progress guarantee described by eventual
properties. An eventual property is a property of the form “eventually X holds”. A
common example is the termination property, which says that “eventually non-failed
processes reach a decision”. Such a property does not say exactly when processes
reach a decision, only that sooner or later they do so.

Practitioners object that such a guarantee is not sufficient in practice, because
it allows processes to terminate, say, only after 1099999 years. This is a valid ob-
jection, but there is a reason to do things in this way: to separate correctness from
performance. As an analogy, the specification of the sorting problem requires that
the algorithm eventually terminate. The exact running time of the algorithm, per-
haps O(n logn), is a performance characteristic of the algorithm not a correctness
guarantee, and it is good form to separate performance from correctness.

One way to address this objection is to include an analysis of the running time
of the proposed algorithm, rather than just a termination proof. In an asynchronous
system, this analysis can be done in terms of the maximum observed message delay
(e.g., as in [1]), or in terms of the the largest causal chain of messages (e.g., as in
[13]), or based on the time when the system starts “behaving well” (e.g., as in [6],
using a partially synchronous system with a global stabilization time). This type of
analysis should be done more often.

4 Stumbling over Consensus Research: Misunderstandings and Issues 63

4.2.4 The Consensus Impossibility Result

The consensus impossibility result by Fischer, Lynch, and Paterson [7] is one of
the most cited results in the consensus literature. It states that there does not exist
a (deterministic) algorithm for the consensus problem in an asynchronous system
subject to failures, even if messages can never be lost, at most one process may fail,
and it can only fail by crashing (stopping executing).

This result is misunderstood because the exact nature of asynchronous systems is
itself misunderstood. To get a better appreciation of what the result means exactly,
let us examine its proof in some detail.

The proof considers a purported algorithm A that satisfies the safety properties
of consensus1, namely, that processes never decide differently and they never decide
a value that is not proposed. It then shows that A violates the liveness property of
consensus by constructing an execution of A in which processes never decide. The
proof proceeds as follows. Consider the set of all possible global states of the system
running algorithm A . A state is said to be bivalent if the consensus decision has not
been fixed yet: from that state, there are ways for processes to decide one value or
another value. Note that I distinguish between the decision being known and it being
fixed. For example, consider an initial state where all processes have proposed the
same value v, but they have not yet communicated with each other. Then, the only
possible decision is v, so the decision is certain to be v. However, the processes in
the system have not yet learned that this is the case.

The proof is based on two key propositions. The first key proposition is that al-
gorithm A has some initial state that is bivalent. This proposition is depicted in
Figure 4.1, where the grey area represents the set of bivalent states and the leftmost
disc represents a bivalent initial state. For example, in the ♦S-based algorithm of

bivalent states of A

p
p...

proposition 1

proposition 2

s �

Fig. 4.1 Depiction of key propositions in the proof of impossibility of consensus.

1 Roughly speaking, a safety property is a property that states that something bad does not hap-
pen, while a liveness property is a property that states that something good eventually happens.
The safety properties of consensus are Agreement and Validity. Agreement says that no processes
decide different values, and Validity says that a process can only decide on a value that is the initial
value of some process. The liveness property of consensus is Termination. Termination says that
eventually correct processes decide on a value.

64 M.K. Aguilera

Chandra-Toueg [5] or in the Paxos algorithm [11],2 one bivalent initial state is the
initial state in which half of the processes proposes some value and the other half
proposes a different value. In fact, this initial state is bivalent in many of the known
algorithms for consensus in partial synchrony models or in models with failure de-
tectors.

The second key proposition is that if s is a bivalent state but after a step of some
process p the state is no longer bivalent, there exists a sequence σ of steps such
that if σ is inserted before the step of process p then p’s step leads to a state that
is still bivalent. This proposition is depicted in Figure 4.1, where the leftmost ar-
row labeled p is a step of process p after state s, which leads to a state that is not
bivalent; the very same step by process p, if taken after the sequence σ , leads to a
state that is still bivalent. For example, in the ♦S-based algorithm of Chandra and
Toueg, a step that leaves the grey region occurs when the last process in a majority
receives the new estimate proposed by the coordinator. However, if this receipt step
is delayed until after the process sees that the coordinator is suspected and abandons
the round, then this receipt no longer leaves the grey region. As another example,
in the Paxos algorithm, a step that leaves the grey region occurs when the last pro-
cess in a majority receives a high-numbered proposal. But if this step is delayed
for long enough—until another higher-number proposal appears—then the proposal
becomes stale and useless.

The first and second key propositions can be shown by contradiction with rela-
tively simple arguments, whose details are not relevant here (they are given in [7]).

These two propositions allow us to find an execution of algorithm A in which
processes never decide. Intuitively, in Figure 4.1, the execution starts in an initial
state in the grey region and all processes keep taking steps, say in a round-robin
fashion. If any step by some process leaves the grey region, then one inserts a se-
quence of steps by other processes such that, after those steps, the aforementioned
step no longer leaves the grey region. This gives us an execution in which all pro-
cesses keep taking steps but the state always remain bivalent. As a result, processes
never decide.

So where is the misunderstanding of the impossibility result? Most computer
scientists understand impossibility results from the halting problem, which suggests
that one should not even try to solve it. On the other hand, the consensus impossibil-
ity says that, given any purported solution, the consensus decision may keep getting
delayed forever if processes are scheduled in an unfavorable way. This is different
from the halting problem impossibility in two ways. First, the consensus impossi-
bility result is based on a model where processes can be scheduled according to the
worst case, but in reality process scheduling tends to have a random aspect to it, and
the probability of an unfavorable schedule could be small. Second, these unfavor-
able schedules produce a problem that is transient, not permanent: if processes fail
to terminate because the schedule has been unfavorable, processes are still able to
terminate subsequently if the schedule stops being unfavorable. A more enlighten-

2 Technical remark: to illustrate the FLP proof, here I consider the behavior of these algorithms in
an asynchronous model, where the failure detector or the leader election service output unreliable
information.

4 Stumbling over Consensus Research: Misunderstandings and Issues 65

ing formulation of the consensus impossibility result might be that any algorithm
that ensures the safety properties of consensus could be delayed indefinitely during
periods with no synchrony (the schedule is unfavorable). In fact, it can be shown that
consensus is solvable when there is a very small amount of temporary synchrony in
the system, namely, if there is a single link from one process to another such that
this link is timely [2].

4.2.5 Uses of Replication

Most people realize that a consensus algorithm lies at the heart of a service repli-
cated using the state machine approach [10, 14]. Fewer people realize that the repli-
cated service need not be the entire system; it could be just a smaller component of
the system. For example, each node in the system may need to know some set of
system parameters, such as buffer sizes, resource limits, and/or a list that indicates
what machines are responsible for what function. One could use a state machine to
replicate just this information across nodes. This is illustrated in Figure 4.2.

Fig. 4.2 Squares show what is replicated by consensus. On the left, the entire system is replicated.
On the right, just some service within a larger (non-replicated) system is replicated.

There are some caveats in using consensus and state machines in that way. First,
the number of replicas can be much larger than the minimum needed. (The mini-
mum number of replicas needed is usually 2 f+1 or 3 f+1, depending on the failure
model, where f is the maximum number of failures to be tolerated.) For example,
if one replicates the set of system parameters as described above, then the number
of replicas is the number of nodes in the system, which can be very large. In this
case, it is important to use simple optimizations in which not all replicas actively
participate in the consensus protocol, instead of, say, using all available replicas to
increase the fault tolerance threshold f . Increasing f beyond the necessary is bad
because consensus protocols scale poorly in f .

The second caveat is that only requests processed through the state machine are
guaranteed to see the current state of the state machine, because some replicas may

66 M.K. Aguilera

be missing some state machine updates. In the above example, suppose that a com-
ponent of the system wants to know the current system parameters. If it tries to read
the system parameters directly from the local replica, it may obtain stale informa-
tion, because the local replica may be lagging behind. To ensure it obtains up-to-date
information, the component must submit a read request to the state machine and wait
for the request to execute through the consensus protocol. Note that, even if the read
request executes through consensus, the returned information is guaranteed to be up-
to-date only for a brief moment. By the time the component uses this information
(perhaps immediately after obtaining it), the system parameters may have changed
already. If this is a problem then the component needs to be placed as part of the
state machine, so that the component’s actions can be ordered using consensus. The
bottom line is that, one needs to be very careful about how components outside the
state machine interact with components inside the state machine.

4.2.6 Correlated Failures

The consensus problem has solutions in synchronous models, in models of partial
synchrony, or in models with unreliable failure detectors. These solutions typically
require that there exist an upper bound t on the number of failures in the system.
Practitioners argue that these upper bounds are not realistic, even for relatively large
values of t, because in practice failures could be correlated. For example, power
failures, security exploits, and bugs could all result in the simultaneous failure of all
processes in the system, which exceed the threshold t.

I argue that, even though correlated failures exist, there are also many situations
where failures are certainly not correlated, where consensus can be useful. For in-
stance, one could argue that tolerating crash failures is not always about tolerating
crashes, but about tolerating slowness caused by busy processes, swapping to disk,
or other unexpected local events. Slowness is less likely to be correlated across ma-
chines. Moreover, bugs are one of the leading cause of process crashes, and heisen-
bugs (bugs that are not deterministic) are probably the hardest ones to detect, and
hence they are the bugs most likely to be left in a working system. Heisenbugs tend
to produce failures that are not correlated.

One could argue that the techniques for handling correlated failures would auto-
matically take care of uncorrelated failures, thus obviating the need for consensus.
However, the costs of using those techniques are very different. For example, if there
is a power failure, recovery may involve rebooting the machine and retrieving state
from stable storage, which can take a long time, leading to a loss of availability. In
contrast, one can use consensus-based replication to handle a single (uncorrelated)
node crash without any downtime.

The jury is still out on whether most failures are correlated or not. But even if
many failures are correlated, I believe there is still significant benefit in tolerating
those cases when they are not.

4 Stumbling over Consensus Research: Misunderstandings and Issues 67

4.3 Issues

Besides misunderstandings, there are also some issues in the consensus literature
that have prevented a wider adoption of existing results, algorithms, and techniques.
This section covers these issues. I do not adopt an absolute notion of what is an
issue—this would amount to subscribing to moral dualism. Instead, my notion of an
issue is relative to the point of view of a practitioner who would like to benefit from
the research on consensus. It is worth noting that some of the issues that I describe,
particularly in Sections 4.3.3–4.3.6, extend beyond just the consensus problem: they
apply to research in theory of distributed computing in general.

4.3.1 The Application Interface

The notion of an interface to an abstraction is well-known to computer scientists.
For example, the problem of sorting a list has a very simple, intuitive, and agreed-
upon interface. If one needs to implement the interface, it is clear what must be
done, and if one wants to use the interface, it is clear how to do that. Unfortunately,
such is not the case for consensus, for the following reasons:

• Multiple application interfaces. In order for an abstraction to be well specified,
it should have a single application interface that everyone adopts. Unfortunately,
consensus has two commonly adopted interfaces. The first is the interface used by
the Paxos algorithm, which I shall call the p-interface. The second is the interface
used by all other consensus algorithms, including algorithms based on failure de-
tection, randomization, or partial synchrony. I shall call the latter the r-interface.
There are a number of differences between these interfaces, and practitioners do
not understand why there are these differences and which interface they should
use. The differences are the following:

1. Process roles. In the p-interface, processes are divided into proposers, learn-
ers, and deciders3 while in the r-interface there are just processes.

2. Termination condition. With the r-interface, all correct processes are required
to terminate, while with the p-interface, correct processes are required to ter-
minate only if certain conditions are met (e.g., eventually a leader is elected
for sufficiently long). With the r-interface, these conditions are assumptions
made in the model.

3. Initial state of processes. With the r-interface, all non-faulty processes initially
propose a value, while with the p-interface, any positive number of non-faulty
processes initially propose a value.

Of these differences, the first and second are cosmetic, but the third is more
significant, so let us examine it more closely. The p-interface is more directly ap-
plicable to implementing a state machine, because only one replica may receive
a request for the state machine to execute, and so only one replica may propose
a value. However, the r-interface can also be used to implement a state machine:

3 In the original Paxos paper, this division did not exist, but it appeared in a later description [12].

68 M.K. Aguilera

state
machine

consensus

r-interface

p-interface

Fig. 4.3 The two different interfaces for the consensus problem.

when a replica receives a request v for the state machine, it sends this request
to other replicas telling them to propose v if they have not proposed yet. In this
way, all correct replicas will propose, as required by the r-interface. An inspec-
tion of the algorithms that implement the p-interface reveals that the first thing
that a process does after proposing is to send a message to all other processes.
Thus, intuitively, one can think that algorithms for the r-interface “leave out” this
send-to-all step for the application to do before invoking consensus. This dif-
ference essentially corresponds to two different cuts in the boundary between a
state machine and consensus, shown in Figure 4.3. The r-interface cuts at a lower
level, requiring that the state machine perform a send-to-all before invoking con-
sensus. With the p-interface, this send-to-all is effectively done by the consensus
algorithm.
So this difference is not inherent. However, it is problematic because it makes
it difficult for practitioners to understand the consensus literature. For example,
there is an algorithm for the r-interface in which all non-faulty processes decide
in one communication step if all processes propose the same value. At the same
time, one can show that this is not possible for the p-interface. (Intuitively, this is
because with the r-interface, all correct process can initially send their proposed
value to all and then wait to receive n− f messages, but this initial waiting is not
possible with the p-interface since only a few processes may propose.) These two
results look contradictory, but they are not.
The reason for having two interfaces is historic. The r-interface appeared as a
variation of the interactive-consistency problem, in which every process starts
with some initial value. The p-interface was later proposed as an interface more
directly applicable to the state machine approach. Regardless of the historical
development, it is about time to converge on a single interface for consensus.

• Usability issues. Another problem with the consensus interface is usability, and
this problem has multiple facets.
First, consensus is a single-use service: after decision is reached, the consensus
instance is stuck and must be eventually garbage collected. Garbage collection
must be done manually by the application, and this can be tricky, because a pro-
cess that crashes before the decision may subsequently recover and want to learn

4 Stumbling over Consensus Research: Misunderstandings and Issues 69

the decision, but it cannot do that if the consensus instance has been garbage
collected. Another problem with a single-use service is that it needs to be instan-
tiated repeatedly, which imposes overhead and impacts performance. This can be
an issue for applications that must solve consensus repeatedly at a high rate.
Second, the consensus problem assumes that the set of processes that propose
and decide (the participants) is fixed and known a priori. However, in practice, a
machine may crash and remain crashed for long periods (even permanently), and
this machine must be excluded from the set of participants and eventually be re-
placed. How to do that is explained in an extension of Paxos to multiple instances,
called Multi-Paxos, but Multi-Paxos is an algorithm not an interface. This feature
needs to be described by the interface, by specifying it independently of how it
is implemented. Furthermore, Multi-Paxos has several important optimizations
but these optimizations are not expressible through the consensus interface: they
apply neither for a (one-instance) consensus algorithm nor for multiple instances
of a consensus algorithm given as a black box.

The above problems perhaps indicate that consensus is the wrong abstraction to ex-
pose. In other words, the consensus problem does not have the same simple and
universal appeal that the sorting problem has. Consensus may not be the most intu-
itive and applicable abstraction for practitioners. An alternative to consensus is the
atomic multicast abstraction as defined in [9], which provides reliable and totally-
ordered delivery to a variable subset of users which need not include the broadcaster.
In my opinion, this abstraction should be studied and adopted more often in the the-
oretical literature.

4.3.2 Violation of Abstraction Boundaries

The consensus literature often states key properties and results by referring to the
inside of a consensus algorithm, instead of referring to the interfaces exposed by the
consensus algorithm. This is problematic for practitioners because often they do not
want to know what is “inside the box”; they only care about how the box behaves
externally.

A common example is to analyze the performance of a consensus algorithm in
terms of the number of phases that it needs to decide, where a phase is an algorithm-
specific notion. This metric looks inside the box and it is not useful to compare
different algorithms, since each algorithm may have its own notion of what is a
phase, or may not have phases at all.

Another common example is to state the timeliness requirements of an algorithm
in terms of a communication primitive implemented by the algorithm itself. For ex-
ample, some consensus algorithms in a partially synchronous system require that
some non-faulty process be able to receive responses to its queries in a timely fash-
ion. However, a query is an algorithm-specific notion.

To follow the principles of abstraction, results and properties about an algorithm
should always be stated in terms of the algorithm’s upper and lower interfaces.
The upper interface is the consensus application interface, while the lower interface

70 M.K. Aguilera

refers to the services on top of which the consensus algorithm runs, such as interpro-
cess communication and leader election or failure detection. Rather than analyzing
the performance of an algorithm in number of phases, it is more useful to do so in
terms of the lower interface—say, based on the maximum observed message delay,
in executions where the failure detector makes no mistakes (e.g., as in [1]). Rather
than stating the synchrony requirements of an algorithm in terms of timeliness of a
query-response mechanism implemented by the algorithm, it is more useful to do
so in terms of properties in the lower interface—say, by indicating which links in
the message-passing service are timely (e.g., as in [2]). If this is not possible, then
the query-response mechanism needs to be placed in the lower interface so that it is
exposed outside the algorithm.

4.3.3 Ambiguities and Errors

In distributed computing, it is easy to make mistakes in algorithms and results. This
is because distributed systems are inherently non-sequential and failures create ex-
ceptional conditions, resulting in many corner cases that are easy to overlook. This,
in turn, leads to technical glitches, ambiguous results, or even more serious mis-
takes in published results.4 These problems are eventually detected (and perhaps
corrected), but many times they are only publicized informally through word of
mouth. This method may suffice for the researchers in the area, but may not reach
practitioners and outsiders, making it very hard for them to understand the literature.

One proposal to address this issue is to publish the mistakes and possible correc-
tions in the form of small notes. These notes could appear as short papers or brief
announcements in one of the important theory conferences in distributed comput-
ing. This would create a public record of the problem for outsiders (and insiders) to
be aware of.

4.3.4 Unfriendly Formalisms

As a reaction to ambiguous algorithms and incorrect results, the theoretical commu-
nity has proposed the use of formal frameworks to present algorithms and results,
and to prove their correctness. These formalisms certainly eliminate ambiguity and
reduces errors, but they are difficult for practitioners to digest because they are too
low-level or abstract.

A common practice is to explain results both intuitively and formally, in order
to reap the benefits of both approaches. However, it is dangerously easy to provide
intuitions that are much too superficial, using as justification a formal presentation
“given later”. It is also dangerous to provide formal presentations that are much too
low-level, using as justification the intuition “given earlier”. The result is that neither
intuitive nor formal presentations end up being useful.

4 Lest this discussion be interpreted as a remark about any particular paper, I note that there are
many results about which this concern can be raised.

4 Stumbling over Consensus Research: Misunderstandings and Issues 71

Researchers in the theoretical community must find the right balance between
formalism and intuition for the particular result that they want to convey. A one-
size-fits-all solution cannot adequately address every case, or even most cases.

4.3.5 Lack of Feedback from Practitioners

Practitioners provide very little feedback to theoretical algorithm designers on what
needs to be improved, and algorithm designers rarely seek feedback from practition-
ers. As a result, one often finds algorithm designers optimizing for many different
variations of cases and parameters, without knowing which are relevant. That is a
somewhat inefficient way to proceed, because only a few cases and parameters re-
quire optimization in practice. It would be much better to get input on an actual
system from practitioners on what is not working well, and thereby focus on im-
provements that are likely to be used. Perhaps part of the problem is that it is often
difficult to understand a system and isolate which aspects are likely to benefit from
better algorithms. Doing so requires close collaboration between theoreticians and
practitioners.

4.3.6 Hidden Limitations in Algorithms

Sometimes algorithms proposed in the literature have hidden limitations that could
be troublesome in practice. For example, there are many consensus algorithms that
decide quickly if some fixed designated process is the leader (“process 1”), but these
algorithms become much slower if this process crashes or is not the leader. Such
limitations can often be circumvented, but only if practitioners are aware of them.
For that to happen, algorithm designers need to be explicit about the weaknesses of
their algorithms.

In some cases, the limitations of an algorithm are inherent and cannot be over-
come, and whether they are tolerable in practice depends on factors that only prac-
titioners can determine. In these cases, it is even more important for them to be
disclosed. If limitations are hidden, a practitioner that implements the algorithm
eventually finds out the limitation by herself, but only after much effort. At that
point, the practitioner will conclude that either the algorithm designer could not see
the problem or, perhaps worse, he was trying to hide it.

Limitations of an algorithm should be explained by the designer of the algorithm,
when the algorithm is published. It is better if the designer tell readers of a limitation
than if readers later tell the designer.

4.4 Conclusion

The consensus problem is at the heart of replicated distributed systems, which are
increasingly becoming a vital part of our society in areas such as commerce, bank-
ing, finance, communication, critical infrastructure, and others. While consensus has
recently attracted the attention of the systems community and practitioners, the the-
oretical work on this problem remains underutilized due to misunderstandings and

72 M.K. Aguilera

issues. This situation is a loss for everyone: theoreticians are missing an opportunity
to apply their work, while practitioners are overlooking an untapped resource. To ad-
dress this problem, the theory and practical communities need to engage in a more
open dialog. This step is sorely needed. The conceptual mechanisms and techniques
underlying the consensus problem are very subtle and, without a firm theoretical
foundation, it will be hard to go very far. At the same time, consensus is a problem
initially motivated by practical concerns, and without interest and feedback from
practitioners, the theory will have limited impact.

Acknowledgements I am grateful to Ken Birman, who provided many valuable comments that
helped improve this chapter.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-recovery
model. Distributed Computing 13(2), 99–125 (2000)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient
leader election and consensus with limited link synchrony. In: ACM Symposium on Principles
of Distributed Computing, pp. 328–337 (July 2004)

3. Chandra, T., Griesemer, R., Redstone, J.: Paxos made live—an engineering perspective. In:
ACM symposium on Principles of distributed computing, pp. 398–407 (Aug. 2007)

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
J. ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

6. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony.
J. ACM 35(2), 288–323 (1988)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. J. ACM 32(2), 374–382 (1985)

8. Guerraoui, R., Schiper, A.: Consensus: the big misunderstanding. In: IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems, pp. 183–188 (Oct. 1997)

9. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related prob-
lems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornelpublisl University,
Dept. of Computer Science, Cornell University, Ithaca, NY (May 1994)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

11. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2), 133–
169 (1998)

12. Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Computing Col-
umn) 32(4), 51–58 (2001)

13. Schiper, A.: Early consensus in an asynchronous system with a weak failure detector. Dis-
tributed Computing 10(3), 149–157 (1997)

14. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

Chapter 5
Replicating for Performance: Case Studies

Maarten van Steen and Guillaume Pierre

Abstract In this chapter we take a look at the application of replication techniques
for building scalable distributed systems. Unlike using replication for attaining de-
pendability, replicating for scalability is generally characterized by higher replica-
tion degrees, and thus also weaker consistency. We discuss a number of cases il-
lustrating that differentiation of replication strategies, for different levels of data
granularity, is needed. This observation leads us to conclude that automated replica-
tion management is a key issue for future research if replication for scalability is to
be successfully deployed.

5.1 Introduction

Building scalable distributed systems continues to be one of the more challenging
tasks in systems design. There are three independent and equally important perspec-
tives on scalability [20]:

• Size scalability is formulated in terms of the growth of number of users or data,
such that there is no noticeable loss in performance or increase in administrative
complexity.

• A system is said to be geographically scalable when components can be placed
far apart without seriously affecting the perceived performance. This perspective
on scalability is becoming increasingly important in the face of distributing a
service across the Internet.

• Administrative scalability describes the extent to which a system can be put
under the control of multiple administrative organizations without suffering from
performance degradation or increase of complexity.

In this chapter, we will concentrate on size and geographical scalability, in partic-
ular in relation to the perceived performance of a system. More specifically, we
are interested in scalability problems that manifest themselves through performance
degradation. To keep matters simple, in the following we will refer to scalability in
only this more narrow context.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 73–89, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 M. van Steen and G. Pierre

To address scalability problems, there are essentially only two techniques that
we can apply. Following the terminology as proposed in [5], we can partition the
set of processes and the collection of data those processes operate on, and spread
those parts over different nodes of the distributed system. An excellent example of
where this scaling technique has been successfully applied is the Web, which can
be viewed as a huge, distributed information system. Each Web site is responsible
for handling its own part of the entire data set, allowing hundreds of millions of
users to access the system simultaneously. As we will discuss later, numerous sites
need further partitioning as a single machine can not handle the stream of requests
directed to them.

Another illustrative example of where partitioning has been successfully applied
is in the Internet’s Domain Name System. By October 2008, the entire name space
had been partitioned across an estimated 11.9 million servers1. These servers col-
laborate in resolving names, and in such a way that many requests can be handled si-
multaneously. However, an important reason why DNS generally performs so well,
is also because much of its data has been cloned, or more formally, replicated.

Cloning processes and associated data is useful for addressing geographical scal-
ability problems. The principle is simple: by placing services close to where they
are needed, we can reduce performance degradation caused by network latencies,
and at the same time by placing a service everywhere it is needed, we address size
scalability by dividing the load across multiple servers. In the following, we shall
often use the term replication instead of cloning.

A main issue with replication is that it requires each update to be carried out
at each replica. As a consequence, it may take a while before all replicas are the
same again, especially when updates need to be carried out at many replicas spread
across a large network such as the Internet. More problematic is when multiple
updates need to be carried out concurrently, as this requires global synchronization
if we wish to guarantee that in the end the replicas are indeed the same. Global
synchronization requires the execution of an agreement protocol. Such an execution
is generally not scalable: too many parties may need to communicate and wait for
results before an update can be finally committed. An important consequence is that
if we apply replication as a scaling technique, then we generally need to compromise
on consistency: copies cannot be kept the same at all time.

This observation is not new. For example, it is well known among architects of
very large Web-based systems such as Amazon, Google, and eBay that scalability
can be attained only by “embracing inconsistency”2. A keyword here is eventual
consistency: in the absence of further updates, replicas will converge to the same
state (see also [34]). Accepting eventual consistency as the best possible option is
needed when dealing with cloned services. The problem is that there is no way that
one can guarantee the combination of strong consistency, availability, and coping
with partitionable networks at the same time. This so-called CAP conjecture was
postulated by Eric Brewer in 2000 and proved correct two years later [9]. For large-

1 http://dns.measurement-factory.com/surveys/200810.html
2 eBay’s Randy Shoup at his presentation at Qcon, London, 2008.

http://dns.measurement-factory.com/surveys/200810.html

5 Replicating for Performance: Case Studies 75

scale distributed systems, it simply means that one cannot guarantee full systemwide
consistency of update operations unless we avoid cloning services.

Unfortunately, there are no general, application-independent rules by which we
can specify to what extent inconsistencies can be tolerated. In other words, replica-
tion for scalability is inherently coupled to the access, usage, and semantics of the
data that are being replicated. For example, caching in DNS generally works because
name-to-address bindings are relatively stable, allowing caches to be refreshed only
once every few hours. Such dependencies, in turn, have led to a myriad of solutions
regarding replication strategies. In addition, determining the appropriate granularity
of the data to be replicated turns out to be crucial.

In this chapter, we will take a closer look at replication as a scaling technique,
and in particular consider those situations in which scalability can be achieved only
if the replication degree is relatively large. Such replication is necessarily coupled to
applications, but also requires that we can tolerate inconsistencies between replicas.
For these reasons, we follow an approach by discussing several cases, each dealing
in its own with inconsistencies. In particular, we will argue that in order to achieve
performance, we need to automatically decide on (1) which data needs to be repli-
cated, (2) at which granularity, and (3) according to which replication strategy.

To keep matters simple, we assume that updates are coordinated such that write-
write conflicts will not occur. In effect, this means that concurrent updates are serial-
ized such that all replicas will process all updates in the same order. This assumption
is realistic: in many practical settings we see that potential conflicts on some data set
are avoided by having a coordinator for that data set. This coordinator sees all write
requests and orders them accordingly, for example, by first timestamping requests
before they are passed on to replicas. Furthermore, we focus on scalable Web-based
distributed systems, which makes it easier to compare the various trade-offs regard-
ing replication for scalability. Note that many issues we bring up are also applicable
to other types of distributed systems, such as large-scale enterprise information sys-
tems. We ignore replication for wireless distributed systems, including large-scale
systems based on sensor networks, mobile ad hoc networks, and so on. These type of
distributed systems are becoming increasingly important, but often require specific
solutions when it comes to applying scaling techniques.

In the remainder of this chapter, we start with discussing the large variety of pos-
sible replication strategies in Section 5.2. This is followed by a discussion on the
data granularity at which these strategies must be applied in Section 5.3. Different
forms of consistency guarantees are discussed in Section 5.4, followed by replica-
tion management (Section 5.5). We come to conclusions in Section 5.6.

5.2 Replication Strategies

A replication strategy describes which data or processes to replicate, as well as
how, when, and where that replication should take place. In the case of replication
for fault tolerance, the main distinguishing factor between strategies is arguably
how replication takes place, as reflected in a specific algorithm and implementation
(see also [35]). Replication for scalability also stresses the what, where and when.

76 M. van Steen and G. Pierre

Moreover, where algorithms for fault-tolerance replication strategies are compared
in terms of complexity in time, memory, and perhaps messages, the costs of a repli-
cation strategy employed for performance should be expressed in terms of usage of
resources, and the trade-off that is to be made concerning the level of consistency.

The costs of replication strategies are determined by many different factors. In
particular, we need to consider replica placement, caching versus replication, and
the way that replicated content is updated. Let us briefly consider these aspects in
turn (see also [30]), in order to appreciate replica management when performance is
at stake.

5.2.1 Replica Placement

Replica placement decisions fall into two different categories: decisions concerning
the placement of replica servers, and those concerning the placement of replicated
data. In some cases, the decisions on server placement are irrelevant, for example,
when any node in a distributed system can be used for replica placement. This is, in
principle, the case with data centers where the actual physical location of a replica
server is less important. However, in any distributed system running on top of a
large computer network such as an intranet or the Internet, where latencies to clients
and between servers play a role, server placement may be an important issue and
precedes decisions on data placement.

In principle, server placement involves identifying the K out of N best locations
in the network underlying a distributed system [22, 25]. If we can assume that clients
are uniformly distributed across the network, it turns out that server placement deci-
sions are relatively insensitive to access patterns by those clients, and that one need
only take the network topology into account when making a decision. An obvious
strategy is to place servers close to the center of a network [3], that is, at locations
to which most communication paths to clients are short. Unfortunately, the problem
has been proven to be NP-hard, and finding good heuristics is far from trivial [12].
Also, matters become complicated when going to more realistic scenarios, such as
when taking actual traffic between clients and servers into account [10].

Once replica servers are in place, we have the facilities to actually place repli-
cated data. A distinction should be made between client-initiated and server-initiated
replication [31]. With server-initiated replication, an origin server takes the deci-
sion to replicate or migrate data to replica servers. An origin server is the main
server from which content is being served and where updates are coordinated. This
technique is typically applied in Content Delivery Networks (CDNs) [23], and is
based on observed access patterns by clients.

Client-initiated replication is also known as client-side caching. The most impor-
tant difference with server-initiated replication is that clients can, independently of
any replication strategy followed by an origin server, decide to keep a local copy
of accessed data. Client-initiated replication is widely deployed in the Web for all
kinds of content [11]. It has the advantage of simplicity, notably when dealing with
mostly-read data, as there is no need for global coordination of data placement.
Instead, clients copy data into local caches based completely on their own access

5 Replicating for Performance: Case Studies 77

patterns. Using shared caches or cooperative caches [1], highly effective data repli-
cation and placement can be deployed (although effectiveness cannot be guaranteed,
see [36]).

As an aside, note that caching techniques can be deployed to establish server-
initiated replication. In the protocol for the Akamai CDN, a client is directed to
a nearby proxy server. The proxy server, configured as a traditional Web caching
server, inspects its local cache for the referred content, and, if necessary, first fetches
it from the origin server before returning the result to the client [19].

5.2.2 Content Distribution

Once replicas are in place, various techniques can be deployed for keeping them
up-to-date. Three different aspects need to be considered:

State versus function shipping: A common approach for bringing a replica up-to-
date is to simply transfer fresh data and overwrite old data, with variations based
on data compression or transferring only differences between versions (i.e., delta
shipping). As an alternative to this form of passive replication, a replica can also
be brought up-to-date by locally executing the operation that led to the update,
leading to active replication [28]. This form of update propagation is known as
function or operation shipping, and has proven to be an alternative when com-
munication links are slow [17].

Pull versus push protocols: Second, it is important to distinguish between proto-
cols that push updates to replica servers, or the ones by which updates are pulled
in from a server holding fresher updates. Pushing is often initiated by a server
where an update has just taken place, and is therefore generally proactive. In
contrast, pulling in updates is often triggered by client requests and can thus be
classified as on-demand. Combinations of the two, motivated by performance
requirements, is also possible through leases by which servers promise to push
updates until the lease expires [6].

Dissemination strategies: Finally, we need to consider which type of channels to
use when delivering updates. In many cases, unicasting is used in the form of
TCP connections between two servers. Alternatively, multicasting techniques
can be deployed, but due to lack of network-level support we generally see
these being used only at application level in (peer-to-peer) content delivery net-
works [37]. Recently, probabilistic, epidemic-style protocols have been devel-
oped as an alternative for content delivery [14, 7].

Clearly, these different aspects together result in a myriad of alternatives for imple-
menting replication strategies. Note also that although such implementations could
also be used for replicating for fault tolerance, emphasis is invariably on efficiently
delivering content to replica servers, independently of requirements regarding con-
sistency.

78 M. van Steen and G. Pierre

5.2.3 Strategy Evaluation

With so many ways to maintain replicas, it becomes important to compare and eval-
uate strategies. Unfortunately, this is easier said than done. In fact, it can be argued
that a blatant omission in the scientific approach to selecting replication strategies
is a useful framework for comparing proposals (although such an attempt has been
made [13]). The difficulty is partly caused by the fact that there are so many perfor-
mance metrics that one could consider. Moreover, metrics are often difficult if not
impossible to compare. For example, how does one compare a replication strategy
that results in low perceived latencies but which consumes a lot of bandwidth, to
one that saves network bandwidth at the cost of relatively poor response times?

An approach followed in the Globule system (and one we describe below), is to
make use of a general cost function (which is similar to a payoff or utility function
in economics). The model considers m performance metrics along with a (nonde-
creasing) cost ck(s) of the kth metric. The cost ck(s) is dependent on the deployed
replication strategy s. Combined, this leads to a total replication cost expressed as

rep(s) =
m

∑
k=1

wkck(s)

where wk is the (positive) weight associated with making costs ck(s). With this
model, it becomes possible to evaluate and compare strategies, with the obvious
goal to minimize the total costs of replication. Note that there may be no obvious
interpretation in what the total costs actually stand for. Also, it is up to the designers
or administrators of the system in which data are being replicated to decide on the
weights. For example, in some cases it may be more important to ensure low latency
at the cost of higher usage of bandwidth. Besides latency and network bandwidth,
typical performance metrics include used storage, energy consumption, monetary
costs, computational efforts, and the “cost” of delivering stale data.

5.3 Replication Granularity

We now take a closer look at a number of cases where replication is used to improve
the scalability of a system. In all cases, the improvement comes from adapting the
system in such a way that it can simultaneously support several replication strate-
gies, and differentiate among these strategies for smaller units of data than before.
Concretely, in our first example, we will demonstrate that supporting a replication
strategy on a per-page basis for sites storing static Web pages leads to higher scal-
ability and better performance. In our second example, this kind of differentiation
and higher granularity will be shown to also benefit cloning of Web services. As a
last example, we take a look at an extensive analysis of Wikipedia traces. The over-
all conclusion is that replicating for performance requires differentiating replication
strategies for smaller data units than is presently common.

5 Replicating for Performance: Case Studies 79

5.3.1 Example 1: Content Delivery Networks

An important class of large-scale distributed systems is formed by content deliv-
ery networks (CDNs) Internet. Specific content, such as a collection of Web pages,
is serviced by what is known as an origin server. As mentioned before, an origin
server is responsible for handling updates as well as client requests. Also, it pro-
vides replica servers with content to which client requests can then be redirected.
The size of a typical CDN may vary between a few tens of servers to tens of thou-
sands of servers.

In order to guarantee availability and performance, replication of content plays a
key role in any CDN. Besides the general issues discussed above concerning where
to place replicas and how to keep them up-to-date, it turns out that the granularity of
the data to consider for replication is equally important. For example, applying a sin-
gle replication strategy to an entire Web site leads to much worse performance than
replicating each Web page separately according to a page-specific strategy. Further-
more, even for seemingly stable Web sites, we have found that access patterns orig-
inating from a site’s clients, change enough to warrant continuous monitoring and
adaptation of per-page replication strategies. We briefly report on one such study.

Pierre et al. [21] conducted experiments to examine to what extent differentiating
replication strategies could make a difference in the overall performance of a Web
site. To that end, they considered several sites consisting of only static Web pages.
Experiments were conducted by choosing a single replication strategy for an entire
site, as well as experiments in which each document, i.e. Web page, would be sub-
ject to its own replication strategy. In the experiments, clients were traced to their
autonomous system (AS), measuring latency as well as bandwidth. In addition, they
kept an accurate account of updates on documents. Using these data, a what-if anal-
ysis was performed using a situation in which so-called edge servers were assumed
to be placed in the various ASes as sketched in Figure 5.1.

Edge
server

Edge
server

Edge
server

Origin
server

Client Client

Client

ClientClient Client

Client

ClientClient

Client

Client

Client

Client

Client

Client

Clients in an
unknown AS

AS 1 AS 2 AS 3

AS of document’s
origin server

Fig. 5.1 Set-up of the CDN experiment with Web sites having static Web pages.

80 M. van Steen and G. Pierre

Table 5.1 Evaluated caching and replication strategies.

Abbr. Name Description

NR No replication No replication or caching takes place. All clients forward their
requests directly to the origin server.

CV Verification Edge servers cache documents. At each subsequent request,
the origin server is contacted for revalidation.

CLV Limited validity Edge servers cache documents. A cached document has an
associated expiration time before it becomes invalid and is
removed from the cache.

CDV Delayed verification Edge servers cache documents. A cached document has an
associated expiration time after which the primary is contacted
for revalidation.

SI Server invalidation Edge servers cache documents, but the origin server invalidates
cached copies when the document is updated.

SUx Server updates The origin server maintains copies at the x most relevant edge
servers; x = 10, 25 or 50

SU50+CLV Hybrid SU50 & CLV The origin server maintains copies at the 50 most relevant edge
servers; the other edge servers follow the CLV strategy.

SU50+CDV Hybrid SU50 & CDV The edge server maintains copies at the 50 most relevant edge
servers; the other edge servers follow the CDV strategy.

Clients for whom the AS could not be determined were assumed to directly contact
the origin server when requesting a Web page. In all other cases, client requests
would be assumed to pass through the associated AS’s edge server. With this setup,
the caching and replication strategies listed in Table 5.1 were considered.

The traces were used to drive simulations in which different strategies were ex-
plored, leading to what is generally known as a what-if analysis. As a first experi-
ment, a simple approach was followed by replicating an entire Web site according to
a single strategy. The normalized results are shown in Table 5.2. Normalized means
that the best results were rated as 100. If bandwidth for a worse strategy turned out
to be 21% more, that strategy was rated as 121. Stale documents returned to clients
are measured as the fraction of the different documents requested.

What these experiments revealed was that there was no single strategy that would
be best in all three metrics. However, if the granularity of replication is refined to
the level of individual Web pages, overall performance increases significantly. In
other words, if we can differentiate replication strategies on a per-page basis, op-
timal values for resource usage are much more easily approached. To this end, the
cost-based replication optimization explained above was explored. Not quite sur-
prisingly, regardless the combination of weights for total turnaround time, stale doc-
uments, and or bandwidth, making replication decisions at the page level invariably
led to performance improvement in comparison to any global replication strategy.
Moreover, it turned out that many different strategies needed to be deployed in or-
der to achieve optimal performance. The study clearly showed that differentiating
replication strategies at a sufficient level of granularity will lead to significant per-
formance improvements. The interested reader is referred to [21] for further details.

5 Replicating for Performance: Case Studies 81

Table 5.2 Normalized performance results using the same strategy for all documents, measuring
the total turnaround time, the fraction of stale documents that were returned, and the total consumed
bandwidth. Optimal values are highlighted for each metric.

Site 1 Site 2

Strategy Turnaround Stale docs Bandwidth Turnaround Stale docs Bandwidth

NR 203 0 118 183 0 115

CV 227 0 113 190 0 100

CLV 182 0.61% 113 142 0.60% 100

CDV 182 0.59% 113 142 0.57% 100

SI 182 0 113 141 0 100

SU10 128 0 100 160 0 114

SU25 114 0 123 132 0 119

SU50 102 0 165 114 0 132

SU50+CLV 100 0.11% 165 100 0.19% 125

SU50+CDV 100 0.11% 165 100 0.17% 125

5.3.2 Example 2: Edge-Server Computing

The previous example dealt only with static Web pages. However, modern CDNs
require replication of dynamic pages and even programs [23, 24]. In general, this
means that the architecture needs to be extended to what is known as an edge-server
system. In such a system, the origin server is supported by several servers situated
at the “edge” of the network, capable of running a (partial) replica of the origin
server’s database, along with programs accessing those data. There are essentially
four different organizations possible, as shown in Figure 5.2.

The simplest organization is to clone only the application logic to the edge
servers, along with perhaps some data. In this case, requests are processed locally,
but if necessary, data are still fetched from the origin server. This scheme is typ-
ically used to address size scalability by reducing the computational load of the
origin server. However, it will not be sufficient if performance costs are dominated
by accesses to the database. If data has been copied to the edge server, it is assumed
to be mostly read-only and any updates can be easily dealt with offline [24].

With full replication, the database at the origin server is cloned to the edge servers
along with the logic by which data are accessed and processed. Instead of fully
cloning the database, it is also possible to clone only those parts that are accessed
by the clients contacting the particular edge server. In practice, this means that the
origin server needs to keep track of access traces and actively decide which parts of
the database require replication.

An alternative scheme is to deploy content-aware caching. In this case, the
queries that are normally processed at the origin server are assumed to fit specific
templates, comparable to function prototypes in programming languages. In effect,
templates implicitly define a simple data model that is subsequently used to store
results from queries issues to the origin server. Whenever a query addresses data

82 M. van Steen and G. Pierre

Authoritative

database
Schema Schema

full/partial data replication

full schema replication/

query templates

Content-aware

Database

copy

Web
server

Web
server

query

response

Content-blind

cache

cache

Client

Edge-server side Origin-server side

Appl
logic

Appl
logic

Fig. 5.2 Different ways to organize edge-server computing.

that has already been cached, the result can be retrieved locally. To illustrate, con-
sider a query for listing all books by a given author of which the result is cached
at the edge server from which the query originated. Then, when a subsequent query
is issued for listing all books by that same author, but for a specific time frame, the
edge server need, in principle, only inspect its local cache. This approach is feasible
only if the edge server is aware of the templates associated with the queries.

Finally, edge servers can follow a content-blind caching scheme by which a query
is first assigned a unique key (e.g., through hashing the query including its parameter
values), after which the results are cached under that key. Whenever the exact same
query is later issued again, the edge server can look up the previous result from its
cache.

All these schemes require that edge servers register for updates at the origin
server. In principle, this means that the cloned data at an edge server can be kept
identical with that stored at the origin server. For scalability purposes, updates may
not be propagated simultaneously to all edge servers, but instead an update is de-
livered only when there is a need to do so. This may happen, for example, because
cloned data are requested by an edge server’s client.

For scalability purposes, it is often convenient to let the edge server decide when
updates are actually fetched from the origin server. In effect, an edge server will
allow its clients to operate on stale data for some time. As long as clients are un-
aware that some updates have taken place, they will rightfully perceive the cloned
data to be consistent. This approach toward delaying update propagation has been
used in the file sharing semantics of the Coda distributed file system [15]. Problems

5 Replicating for Performance: Case Studies 83

Edge Computing

Content-aware

Full Replication

Content-blind

Edge Computing

Content-blind

Content-aware

Full Replication

Edge Computing

Content-blind

Content-aware

Full Replication

(a) Flashcrowd (b) Web browsing (c) Web ordering

Fig. 5.3 Performance of edge-server systems for different workloads. The x-axis shows increased
client-side browsing activity, whereas the y-axis shows response times.

with such schemes occur when clients are allowed to switch between edge servers.
In that case, it may happen that a client observes a version Dt of same data at one
edge server, and later a previous version Dt−1 of that data at another edge server.
Of course, this is not supposed to happen. One solution that has been extensively
explored in the Bayou system, is to support client-centric consistency models [32].
Simplifying matters somewhat, these models guarantee that data are kept consistent
on a per-client basis. In other words, an individual client will always see the same
or fresher data when issuing requests, regardless through which edge server it is ac-
cessing that data. However, guaranteeing client-centric consistency requires keeping
track of what clients have accessed, which imposes an extra burden on edge servers.

Having a choice from different replication and caching strategies immediately
brings up the question which strategy is the best one. Again, in line with the re-
sults discussed for simple CDNs, there is no single best solution. Sivasubramanian
et al. conducted a series of trace-driven simulations using different workloads for
accessing Web services. The results of these experiments are shown in Figure 5.3,
of which a detailed report can be found in [29]. Again, what these studies show is
that differentiating strategies is important in order to achieve higher performance.
In addition, edge-server computing also puts demands on which edge servers clients
are allowed to access in order to circumvent difficult consistency problems. Similar
results have been reported by Leff et al. [18] in the case of Java-based systems, and
distributed objects [8].

5.3.3 Example 3: Decentralized Wikipedia

As a final example, consider the increasingly popular Wikipedia system. This sys-
tem is currently organized in a near-centralized fashion by which traffic is mostly
directed to one of two major sites. Each site maintains a database of so-called wikis:
a collection of (hypertext) pages marked up in the wikitext markup language. The
Wikipedia system provides a Web-based interface by which a Wiki document is
returned in HTML form for display in standard Web browsers.

A serious problem for the Wikimedia organization hosting the various wiki’s is
that the increase in traffic is putting a significant burden on their infrastructure. Be-
ing a noncommercial and independent organization means that financial support is

84 M. van Steen and G. Pierre

Table 5.3 Wikipedia workload analysis and impact for decentralization.

Type of page % Requests Strategy to follow

Pages that are read-only in practice and
are mostly read (>75%) in default HTML
format.

27.5% HTML caching or replication with the degree of
replication depending on the popularity of the page.

Pages that are almost read-only and
have a significant fraction (>25%) of
reads in alternate formats.

10.9% Wikitext replication in combination with HTML
caching. The degree of replication should depend
on the popularity of the page.

Maintained pages that are mostly read
(>75%) in default HTML format.

46.7% HTML replication with a replication factor controlled
by the popularity of the page.

Maintained pages that have a significant
fraction (>25%) of reads in alternate for-
mats.

8.3% Wikitext replication with a replication factor con-
trolled by the popularity of the page. HTML caching
can be considered if the read/save ratio is consid-
erably high.

Nonexisting pages. 8.3% Negative caching combined with attack detection
techniques.

always limited. Therefore, turning over to a truly collaborative, decentralized orga-
nization in which resources are provided and shared by the community would most
likely significantly relieve the current infrastructure allowing further growth.

To test this hypothesis, Urdaneta et al. conducted an extensive analysis of
Wikipedia’s workload, as reported in [33]. The main purpose of that study was to
see whether and how extensive distributed caching and replication could be applied
to increase scalability. Table 5.3 shows the main conclusions.

Although most requests to Wikipedia are for reading documents, we should dis-
tinguish between their rendered HTML forms and data that is read from the lower-
level wikitext databases. However, it is clear that there are still many updates to
consider, making it necessary to incorporate popularity when deciding on the repli-
cation strategy for a page. Surprisingly is the fact that so many nonexisting pages
are referenced. Performance can most likely be boosted if we keep track of those
pages through negative caching, i.e. storing the fact that the page does not exist, and
thus avoiding the need to forward a request.

5.4 Replicating for Performance versus Consistency

From the examples discussed so far, it is clear that differentiating replication strate-
gies and considering finer levels of replication granularity in order to improve per-
formance will help. However, we have still more or less assumed that consistency
need not be changed: informally, clients will always be able to obtain a “fresh” copy
of the data they are accessing at a replica server. Note that in the case of content
delivery networks as well as edge-server computing, we made the assumption that
clients will always access the same server. Without this assumption, maintaining
client-perceived strong consistency becomes more difficult.

Of course, there may be no need to sustain relatively strong consistency. In their
work on consistency, Yu and Vahdat [38] noted that consistency can be defined along
multiple dimensions:

5 Replicating for Performance: Case Studies 85

Numerical deviation: If the content of a replicated data object can be expressed
as a numerical value, it becomes possible to express the level of consistency
in terms of tolerable deviations in values. For example, in the case of a stock
market process, it may be allowed to let replicas deviate to a maximum of 1%
before update propagation is required, or likewise, that values are not allowed to
differ by more than $0.02.
Numerical deviations can also be used to express the number of outstanding up-
date operations that have not yet been seen by other replica servers. This form of
consistency is analogous to allowing transactions to proceed while being ignorant
of the result of N preceding transactions [16]. However, this type of consistency is
generally difficult to interpret in terms of application semantics, rendering them
practically useless.

Ordering of updates: Related to the number of outstanding update operations, is
the extent to which updates need to be carried out in the same order everywhere.
Tolerating deviations in these orders may lead to conflicts in the sense that two
replicas cannot be brought into the same state unless specific reconciliation al-
gorithms are executed. Consistency in terms of the extent that out-of-order ex-
ecution of operations can be tolerated is highly application specific and may be
difficult to interpret in terms of application semantics.

Staleness: Consistency can also be defined in terms of how old a replica is allowed
to be in comparison to the most recent update. Staleness consistency is naturally
associated with real-time data. A typical example of tolerable staleness is formed
by weather reports, of which replicas are generally allowed to be up to a few
hours old.

This so-called continuous consistency is intuitively simple when dealing with de-
viations in the value of content, as well as in the staleness of data. However, prac-
tice has shown that as soon as ordering of operations come into play, applica-
tion developers generally find it difficult to cope with the whole concept of data
(in)consistency. As mentioned by Saito and Shapiro [27], we would need to deal
with a notion of bounded divergence between replicas that is properly understood
by application developers. Certainly when concurrent updates need to be supported,
understanding how conflict resolution can be executed is essential.

Researchers and practitioners who have been working on replication for per-
formance seem to agree that, in the end, what needs to be offered to end users and
application developers is a perception of strong consistency: what they see is always
perceived as what they saw before, or perhaps fresher. In addition, if they are aware
of the fact that what they are offered deviates from the most recent value, then at the
very least the system should guarantee eventual consistency. This observation had
already led researchers in the field of distributed shared memory (DSM) to simplify
the weaker consistency models by providing, for example, software patterns [4]. In
other cases, only simple primitives were offered, or weaker consistency was sup-
ported at the language level, for example in object-based DSM systems, which pro-
vided an workable notion of weak consistency (called entry consistency [2]).

86 M. van Steen and G. Pierre

+/-

Web hosting system

Metric

estimation

Analysis

+/-+/- +/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing
Data

granularity

Fig. 5.4 The feedback control loop for automated replica management.

5.5 Replication Management

What all these examples illustrate is that when applying replication for performance,
there is no single best solution. We will need to take application semantics into
account, and in general also stick to relatively simple consistency models: well-
ordered updates and eventual consistency (be it in time or space).

This brings us immediately to one of the major issues in replication for perfor-
mance: because acceptable weak consistency is dependent on application seman-
tics, we are confronted with a serious replication management problem, which is
now also application dependent. By replication management we mean deciding on
a replication strategy and ensuring that the selected strategy can be implemented
(e.g., by ensuring that appropriate replica servers are in place). As we have dis-
cussed above, not only do we need to choose from multiple strategies, we also need
to figure out at which level of data granularity we should differentiate strategies.

Manually managing replication for performance in large-scale systems is a
daunting task. What is needed is a high degree of automated management, effec-
tively meaning that we are required to implement a feedback loop as shown in Fig-
ure 5.4. The control loop shows four different adjustment measures: replica place-
ment (where to replicate), consistency enforcement (how and when to replicate),
request routing (how to route requests to replicas), and deciding on data granularity
(what to replicate).

Notably the deciding on the granularity of data is important for efficient analysis
and selection of strategies. For example, by grouping data items into the largest
possible group to which the same strategy can be applied, fewer comparisons to
reference input is needed thus improving the throughput of feedback.

However, the real problem that needs to be addressed in this scheme is the re-
alization of the analysis component. In content delivery networks such as Globule
where data items have an associated origin server, this server is an obvious candi-
date to carry out the analysis. Doing so will lead to a natural distribution of the load

5 Replicating for Performance: Case Studies 87

across the system. In this case, an origin server simply logs requests, or collects
access traces from replica servers that host content it is responsible for.

Such a scheme cannot be universally applied. Consider, for example, the case of
a collaborative, decentralized Wikipedia system. Unlike content delivery networks,
there is no natural owner of a Wikipedia document: most pages are actively main-
tained by a (potentially large) group of volunteers. Moreover, considering that ex-
tensive replication is a viable option for many pages, many requests for the same
page may follow completely independent paths, as is often also the case in unstruc-
tured peer-to-peer networks [26]. As a consequence, knowledge on access patterns
is also completely distributed, making analysis for replication management more
difficult in comparison to that in content delivery networks.

There seems to be no obvious solution to this problem. What we are thus witness-
ing is the fact that replication for performance requires differentiating replication
strategies at various levels of data granularity and taking application semantics into
account when weak consistency can be afforded. However, this replication manage-
ment requires the instantiation of feedback control loops of which it is not obvious
how to distribute their components. Such a distribution is needed for scalability pur-
poses.

5.6 Conclusions

Replicating for performance differs significantly from replicating for availability or
fault tolerance. The distinction between the two is reflected by the naturally higher
degree of replication, and as a consequence the need for supporting weak consis-
tency when scalability is the motivating factor for replication. In this chapter, we
have argued that replication for performance requires automated differentiation of
replication strategies and at different levels of data granularity.

In many cases, this automated differentiation implies the instantiation of decen-
tralized feedback control loops, an area of systems management that still requires
much attention. If there is one conclusion to be drawn from this chapter, it is that
research should focus more on decentralized replication management if replication
is to be a viable technique for building scalable systems.

Acknowledgements This chapter could not have been written without the hard research work
conducted by a number of people at (one time working at) VU University. We thank Michal Szy-
maniak, Swaminathan Sivasubramanian, and Guido Urdaneta for their contributions.

References

1. Annapureddy, S., Freedman, M., Mazieres, D.: Shark: Scaling File Servers via Coopera-
tive Caching. In: Second Symp. Networked Systems Design and Impl. USENIX, USENIX,
Berkeley, CA (May 2005)

2. Bershad, B., Zekauskas, M., Sawdon, W.: The Midway Distributed Shared Memory System.
In: COMPCON, pp. 528–537. IEEE Computer Society Press, Los Alamitos (1993)

3. Bondy, J., Murty, U.: Graph Theory. Springer, Berlin (2008)

88 M. van Steen and G. Pierre

4. Carter, J., Bennett, J., Zwaenepoel, W.: Techniques for Reducing Consistency-Related Com-
munication in Distributed Shared Memory Systems. ACM Trans. Comp. Syst. 13(3), 205–
244 (1995)

5. Devlin, B., Gray, J., Laing, B., Spix, G.: Scalability Terminology: Farms, Clones, Partitions,
Packs, RACS and RAPS. Tech. Rep. MS-TR-99-85, Microsoft Research (Dec. 1999)

6. Duvvuri, V., Shenoy, P., Tewari, R.: Adaptive Leases: A Strong Consistency Mechanism
for the World Wide Web. In: 19th INFOCOM Conf., pp. 834–843. IEEE Computer Society
Press, Los Alamitos (Mar. 2000)

7. Eugster, P., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: Epidemic Information Dissemi-
nation in Distributed Systems. IEEE Computer 37(5), 60–67 (2004)

8. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application Specific Data Replication
for Edge Services. In: 12th Int’l WWW Conf., ACM Press, New York (2003)

9. Gilbert, S., Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)

10. Ho, K.-H., Georgoulas, S., Amin, M., Pavlou, G.: Managing Traffic Demand Uncertainty in
Replica Server Placement with Robust Optimization. In: Boavida, F., Plagemann, T., Stiller,
B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 727–739.
Springer, Heidelberg (2006)

11. Hofmann, M., Beaumont, L.: Content Networking: Architecture, Protocols, and Practice.
Morgan Kaufman, San Mateo (2005)

12. Karlsson, M., Karamanolis, C.: Choosing Replica Placement Heuristics for Wide-Area Sys-
tems. In: 24th Int’l Conf. on Distributed Computing Systems, Mar. 2004, pp. 350–359. IEEE
Computer Society Press, Los Alamitos (2004)

13. Karlsson, M., Karamanolis, C., Mahalingam, M.: A Framework for Evaluating Replica
Placement Algorithms. Tech. rep., HP Laboratories, Palo Alto, CA (2002)

14. Kermarrec, A.M., Massoulié, L., Ganesh, A.: Probabilistic Reliable Dissemination in Large-
Scale Systems. IEEE Trans. Par. Distr. Syst. 14(3), 248–258 (2003)

15. Kistler, J., Satyanaryanan, M.: Disconnected Operation in the Coda File System. ACM Trans.
Comp. Syst. 10(1), 3–25 (1992)

16. Krishnakumar, N., Bernstein, A.J.: Bounded Ignorance: A Technique for Increasing Concur-
rency in a Replicated System. ACM Trans. Database Syst. 4(19), 586–625 (1994)

17. Lee, Y.W., Leung, K.S., Satyanarayanan, M.: Operation Shipping for Mobile File Systems.
IEEE Trans. Comp. 51(12), 1410–1422 (2002)

18. Leff, A., Rayfield, J.T.: Alternative Edge-Server Architectures for Enterprise JavaBeans
Applications. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 195–211.
Springer, Heidelberg (2004)

19. Leighton, F., Lewin, D.: Global Hosting System. United States Patent, Number 6,108,703
(Aug. 2000)

20. Neuman, B.: Scale in Distributed Systems. In: Casavant, T., Singhal, M. (eds.) Readings in
Distributed Computing Systems, pp. 463–489. IEEE Computer Society Press, Los Alamitos
(1994)

21. Pierre, G., van Steen, M., Tanenbaum, A.: Dynamically Selecting Optimal Distribution
Strategies for Web Documents. IEEE Trans. Comp. 51(6), 637–651 (2002)

22. Qiu, L., Padmanabhan, V., Voelker, G.: On the Placement of Web Server Replicas. In: 20th
INFOCOM Conf., Apr. 2001, pp. 1587–1596. IEEE Computer Society Press, Los Alamitos
(2001)

23. Rabinovich, M., Spastscheck, O.: Web Caching and Replication. Addison-Wesley, Reading
(2002)

24. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the Edge: A Platform for Replicating
Internet Applications. In: Eighth Web Caching Workshop (Sep. 2003)

25. Radoslavov, P., Govindan, R., Estrin, D.: Topology-Informed Internet Replica Placement. In:
Sixth Web Caching Workshop, Jun. 2001, North-Holland, Amsterdam (2001)

26. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Comp. Netw. 50(17), 3485–3521 (2006)

5 Replicating for Performance: Case Studies 89

27. Saito, Y., Shapiro, M.: Optimistic Replication. ACM Comput. Surv. 37(1), 42–81 (2005)
28. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: A

Tutorial. ACM Comput. Surv. 22(4), 299–320 (1990)
29. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of Caching and Repli-

cation Strategies for Web Applications. IEEE Internet Comput. 11(1), 60–66 (2007)
30. Sivasubramanian, S., Szymaniak, M., Pierre, G., van Steen, M.: Replication for Web Hosting

Systems. ACM Comput. Surv. 36(3), 1–44 (2004)
31. Tanenbaum, A., van Steen, M.: Distributed Systems, Principles and Paradigms, 2nd edn.

(translations: German, Portugese, Italian). Prentice-Hall, Upper Saddle River (2007)
32. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M., Welsh, B.: Session Guaran-

tees for Weakly Consistent Replicated Data. In: Third Int’l Conf. on Parallel and Distributed
Information Systems, Sep. 1994, pp. 140–149. IEEE Computer Society Press, Los Alamitos
(1994)

33. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia Workload Analysis for Decentralized
Hosting. Comp. Netw. (to be published 2009)

34. Vogels, W.: Eventually Consistent. ACM Queue, pp. 15–18 (Oct. 2008)
35. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding Replica-

tion in Databases and Distributed Systems. In: 20th Int’l Conf. on Distributed Computing
Systems, Taipei, Taiwan, Apr. 2000, pp. 264–274. IEEE (2000)

36. Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Karlin, A., Levy, H.: On the Scale and
Performance of Cooperative Web Proxy Caching. In: 17th Symp. Operating System Princi-
ples, Kiawah Island, SC, Dec. 1999, pp. 16–31. ACM (1999)

37. Yeo, C., Lee, B., Er, M.: A Survey of Application Level Multicast Techniques. Comp.
Comm. 27(15), 1547–1568 (2004)

38. Yu, H., Vahdat, A.: Design and Evaluation of a Conit-Based Continuous Consistency Model
for Replicated Services. ACM Trans. Comp. Syst. 20(3), 239–282 (2002)

Chapter 6
A History of the Virtual Synchrony
Replication Model

Ken Birman

Abstract In this chapter, we discuss a widely used fault-tolerant data replication
model called virtual synchrony. The model responds to two kinds of needs. First,
there is the practical question of how best to embed replication into distributed sys-
tems. Virtual synchrony defines dynamic process groups that have self-managed
membership. Applications can join or leave groups at will: a process group is al-
most like a replicated variable that lives in the network. The second need relates to
performance. Although state machine replication is relatively easy to understand,
protocols that implement state machine replication in the standard manner are too
slow to be useful in demanding settings, and are hard to deploy in very large data
centers of the sort seen in today’s cloud-computing environments. Virtual synchrony
implementations, in contrast, are able to deliver updates at the same data rates (and
with the same low latencies) as IP multicast: the fast (but unreliable) Internet multi-
cast protocol, often supported directly by hardware. The trick that makes it possible
to achieve these very high levels of performance is to hide overheads by piggyback-
ing extra information on regular messages that carry updates. The virtual synchrony
replication model has been very widely adopted, and was used in everything from
air traffic control and stock market systems to data center management platforms
marketed by companies like IBM and Microsoft. Moreover, in recent years, state
machine protocols such as those used in support of Paxos have begun to include
elements of the virtual synchrony model, such as self-managed and very dynamic
membership. Our exploration of the model takes the form of a history. We start by
exploring the background, and then follow evolution of the model over time.

6.1 Introduction

A “Cloud Computing” revolution is underway, supported by massive data centers
that often contain thousands (if not hundreds of thousands) of servers. In such sys-
tems, scalability is the mantra and this, in turn, compels application developers to
replicate various forms of information. By replicating the data needed to handle
client requests, many services can be spread over a cluster to exploit parallelism.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 91–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 K. Birman

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Fig. 6.1 Synchronous run.

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Fig. 6.2 Virtually synchronous run.

Servers also use replication to implement high availability and fault-tolerance mech-
anisms, ensure low latency, implement caching, and provide distributed manage-
ment and control. On the other hand, replication is hard to implement, hence devel-
opers typically turn to standard replication solutions, packaged as sharable libraries.

Virtual synchrony, the technology on which this article will focus, was created
by the author and his colleagues in the early 1980’s to support these sorts of ap-
plications, and was the first widely adopted solution in the area. Viewed purely as
a model, virtual synchrony defines rules for replicating data or a service that will
behave in a manner indistinguishable from the behavior of some non-replicated ref-
erence system running on a single non-faulty node. The model is defined in the
standard asynchronous network model for crash failures. This turns out to be ideal
for the uses listed above.

The Isis Toolkit, which implemented virtual synchrony and was released to the
public in 1987, quickly became popular [40, 14, 65, 10]. In part this was because
the virtual synchrony model made it easy for developers to use replication in their
applications, and in part it reflected the surprisingly good performance of the Isis
protocols. For example, Isis could do replicated virtually synchronous updates at
almost the same speed as one could send raw, unreliable, UDP multicast messages:
a level of performance many would have assumed to be out of reach for systems
providing strong guarantees. At its peak Isis was used in all sorts of critical settings
(we’ll talk about a few later). The virtual synchrony model was ultimately adopted
by at least a dozen other systems and standardized as part of the CORBA fault-
tolerance architecture.

Before delving into the history of the area and the implementation details and
tradeoffs that arise, it may be useful to summarize the key features of the approach.
Figures 6.1 and 6.2 illustrate the model using time-space diagrams. Let’s focus ini-
tially on Figure 6.1, which shows a nearly synchronous execution; we’ll talk about
Figure 6.2 in a moment. First, notation. Time advances from left to right, and we see
timelines for processes p, q, r, s and t: active applications hosted in a network (some
might run on the same machine, but probably each is on a machine by itself). Notice
the shaded oval: the virtual synchrony model is focused on the creation, manage-
ment and use of process groups. In the figures, process p creates a process group,
which is subsequently joined by process q, and then by r, s and t. Eventually p and
q are suspected of having crashed, and at time 60 the group adjusts itself to drop
them. Multicasts are denoted by arrows from process to process: for example, at

6 A History of the Virtual Synchrony Replication Model 93

time 32, process q sends a multicast to the group, which is delivered to p, r, s and t:
the current members during that period of the execution.

Process groups are a powerful tool for the developer. They can have names, much
like files, and this allows them to be treated like topics in a publish-subscribe system.
Indeed, the Isis “news” service was the first widely used publish-subscribe solution
[8]. One thinks of a process group as a kind of object (abstract data type), and the
processes that join the group as importing a replica of that object.

Virtual synchrony standardizes the handling of group membership: the system
tracks group members, and informs members each time the membership changes,
an event called a view change. In Figure 6.1, new group views are reported at time
0, 10, 30 and 60. All members are guaranteed to see the same view contents, which
includes the ranking of members, the event that triggered the new view, and an
indication of whether the view is a “primary” one, in a sense we’ll define just below.
Moreover, virtually synchronous groups can’t suffer “split brain” problems. We’ll
say more about this topic later, but the guarantee is as follows: even if p and q didn’t
actually fail at time 60, but simply lost connectivity to the network, we can be sure
that they don’t have some divergent opinion about group membership.

When a new member joins a group, it will often need to learn the current state
of the group — the current values of data replicated within it. This is supported
through a state transfer: when installing a new view that adds one or more mem-
bers to a group, the platform executes an upcall in some existing member (say, q)
to request a state checkpoint for the group. This checkpoint is then sent to the join-
ing member or members, which initialize their group replica from it. Notice that
state transfer can be thought of as an instantaneous event: even if a multicast is
initiated concurrently with a membership change, a platform implementing virtual
synchrony must serialize the events so that the membership change seems atomic
and the multicast occurs in a well-defined view.

The next important property of the model concerns support for group multicast.
Subject to permissions, any process can multicast to any group, without knowing its
current membership (indeed, without even being a member). Multicast events are
ordered with respect to one-another and also with respect to group view events, and
this ensures that a multicast will be delivered to the “correct” set of receivers. Every
process sees the same events in the same order, and hence can maintain a consistent
perspective on the data managed by the group.

Now, consider Figure 6.2. We referred to the run shown in Figure 6.1 as nearly
synchronous: basically, one event happens at a time. Virtual synchrony (Figure 6.2)
guarantees an execution that looks synchronous to users, but event orderings some-
times deviate from synchrony in situations where the processes in the system won’t
notice. These departures from synchrony are in situations where two or more events
commute. For example, perhaps the platform has a way to know that delivering
event a followed by b leaves q in the same state as if b was delivered first, and
a subsequently. In such situations the implementation might take advantage of the
extra freedom (the relaxed ordering) to gain higher performance.

We mentioned that protocols implementing virtual synchrony can achieve high
update and group membership event rates — at the time this chapter was written, in

94 K. Birman

2009, one could certainly implement virtual synchrony protocols that could reach
hundreds of thousands of events per second in individual groups, using standard
commodity hardware typical of cloud computing platforms.1 We’ll say more about
performance and scale later, but it should be obvious that these rates can support
some very demanding uses.

In summary: virtual synchrony is a distributed execution model that guaran-
tees a very strong notion of consistency. Applications can create and join groups
(potentially, large numbers of them), associate information with groups (the state
transferred during a join), send multicasts to groups (without knowing the current
membership), and will see the same events in equivalent orders, permitting group
members to update the group state in a consistent, fault-tolerant manner. Moreover,
although we’ve described the virtual synchrony model in pictures, it can also be ex-
pressed as a set of temporal logic equations. For our purposes in this chapter,2 we
won’t need that sort of formalism, but readers can find temporal logic specifications
of the model in [72, 25].

6.2 Distributed Consistency: Who Needs It?

Virtual synchrony guarantees a very powerful form of distributed, fault-tolerant con-
sistency. With a model such as this, applications can replicate objects (individual
variables, large collections of data items, or even files or databases), track their
evolving state and cooperate to perform such actions as searching in parallel for
items within the collection. The model can also easily support synchronization by
locking, and can even provide distributed versions of counting semaphores, monitor-
like behavior, etc. But not every replicated service requires the sorts of strong guar-
antees that will be our focus here, and virtual synchrony isn’t the only way to provide
them.

Microsoft’s scalable cluster service uses a virtual synchrony service at its core
[54], as does IBM’s DCS system, which provides fault-tolerant management and
communication technology for WebSphere and server farms [30, 29]. Yahoo’s
Zookeeper service [64] adopts a closely related approach. Google’s datacenters are
structured around the Google File System which, at its core, depends on a replicated
“chunk master” service (it uses a simple primary/backup scheme), and a locking ser-
vice called Chubby [19, 21]. The Chubby protocols were derived from Lamport’s
Paxos algorithm [48]. Most Google applications depend on Chubby in some way:
some share a Chubby service, others instantiate their very own separate Chubby ser-
vice and use it privately, while others depend on services like Big Table or MapRe-
duce, and thus (indirectly) on Chubby. But not all roads lead to state machines. HP’s

1 The highest event rates are reached when events are very small and sent asynchronously (with-
out waiting for recipients to reply). In such cases an implementation can pack many events into
each message it sends. Peak performance also requires network support for UDP multicast, or an
efficient overlay multicast.
2 We should note that [72] is a broad collection of Isis-related papers and hence probably the best
reference for readers interested in more detail. A more recent text [11] covers the material reviewed
in this chapter in a more structured way, aimed at advanced undergraduates or graduate students.

6 A History of the Virtual Synchrony Replication Model 95

Sinfonia service implements a distributed shared memory abstraction with transac-
tional consistency guarantees [1].

The need for consistent replication also arises in settings outside of data centers
that support cloud computing. Edge Computing may be the next really big thing: this
involves peer-to-peer technologies that allow applications such as the widely pop-
ular Second Life game to run directly between client systems, with data generated
on client machines or captured from sensors transmitted directly to applications that
consume or render it [60]. Although highly decentralized, when edge computing
systems need consistency guarantees, they require exactly the same sorts of mecha-
nisms as in the datacenter services mentioned above. On the other hand, many peer-
to-peer applications manage quite well without the forms of consistency of interest
here: Napster, Gnutella, PPLive and BitTorrent all employ stochastic protocols.

6.3 Goals in This Chapter

Whether one’s interest is focused on the cloud, looks beyond it to the edge, or is
purely historical, it makes sense to ask some basic questions. What sorts of mecha-
nisms, fundamentally, are needed, and when? How were these problems first iden-
tified and solved? What role does the classic consensus problem play? What are
the arguments for and against specific protocol suites, such as virtual synchrony or
Paxos? How do those protocol families relate to one-another?

This article won’t attempt to answer all of those questions; to do so would require
a much longer exposition than is feasible here, and would also overlap other articles
in this collection. As the reader will already have gathered, we’ll limit ourselves to
virtual synchrony, and even within this scope, will restrict our treatment. We’ll try
to shed light on some of the questions just mentioned, and to record a little snapshot
of the timeline in this part of the field. For reasons of brevity, we won’t get overly
detailed, and have opted for a narrative style rather light on theoretical formalism.
Moreover, although there were some heated arguments along the way, we won’t
spend much time on them here. As the old saying goes, academic arguments are
especially passionate because the underlying issues are so unimportant!

6.4 Historical Context

Virtual synchrony arose in a context shaped by prior research on distributed com-
puting, some of which was especially influential to the model, or to the Isis Toolkit
architecture:

1. Leslie Lamport’s seminal papers had introduced theoretical tools for dealing with
time in distributed systems — and in the process, suggested what came to be
known as the “replicated state machine” approach to fault-tolerance, in which
a deterministic event-driven application is replicated, and an atomic broadcast
primitive used to drive its execution. Especially relevant were his 1978 paper,
which was mostly about tracking causality with logical clocks but introduced

96 K. Birman

state machine replication in an example [45], and his 1984 paper, which explored
the approach in greater detail [46]. Fred Schneider expanded on Lamport’s re-
sults, showing that state machine replication could be generalized to solve other
problems [68].

2. The Fischer, Lynch and Patterson result proved the impossibility of asynchronous
fault-tolerant consensus [35]. One implication is that no real-world system can
implement a state machine that would be guaranteed to make progress; another is
that no real system can implement an accurate failure detector. Today, we know
that most forms of “consistency” for replicated data involve solving either the
consensus problem as originally posed in the FLP paper, or related problems for
which the impossibility result also holds [20, 25].

3. On the more practical side of the fence, Cheriton, Deering and Zwaenepoel pro-
posed network-level group communication primitives, arguing that whatever the
end-to-end abstraction used by applications, some sort of least-common denom-
inator would be needed in the Internet itself (this evolved into IP multicast,
which in turn supports UDP multicast, much as IP supports UDP). Zwaenepoel’s
work was especially relevant; in [24] he introduced an operating-system con-
struct called a “process group”, and suggested that groups could support data
replication, although without addressing the issue of replication models or fault-
tolerance.

4. Database transactions and the associated theory of transactional serializability
were hot topics. This community was the first to suggest that replication plat-
forms might offer strong consistency models, and to struggle with fundamen-
tal limits. They had their own version of the FLP result: on the one hand, the
fault-tolerant “available copies” replication algorithm, in which applications up-
dated replicas using simple timeout mechanisms for fault-tolerance, was shown
to result in non-serializable executions [5]. On the other, while quorum mecha-
nisms were known to achieve 1-copy serializability [4], they required two-phase
commit (2PC) protocols that could block if a failure occurred. Skeen proposed
a three-phase commit (3PC) [70]: with a perfect failure detector, it was non-
blocking. (The value of 3PC will become clear later, when we talk about group
membership services.)

5. Systems such as Argus and, later, Clouds were proposed [49, 55]. The basic
premise of this work was that the transactional model could bring a powerful
form of fault-tolerance to the world of object-oriented programming languages
and systems. A criticism of the approach was that it could be slow: the method-
ology brings a number of overheads, including locking and the need to run 2PC
(or 3PC) at the end of each transaction.

All of this work influenced the virtual synchrony model, but the state machine model
[45, 46, 68] was especially important. These papers argued that one should think of
distributed systems in terms of event orderings and that doing so would help the
developer arrive at useful abstractions for fault-tolerance and replication. The idea
made sense to us, and we set out to show that it could have practical value in real
systems.

6 A History of the Virtual Synchrony Replication Model 97

To appreciate the sense of this last remark, it is important to realize that in 1983,
state machine replication meant something different than it does today. Today, as
many readers are probably aware, the term is used in almost any setting where a
system delivers events in the same order to identical components, and they pro-
cess them deterministically, remaining in consistent states. In 1983, however, the
state machine model was really offered as an illustration of how a Byzantine atomic
broadcast primitive could be used in real applications. It came with all sorts of as-
sumptions: the applications using state machine replication were required to be de-
terministic (ruling out things like threads and exploitation of multicore parallelism),
and the network was assumed to be synchronous (with bounded message delays,
perfectly synchronized clocks, and a way to use timeout to sense failures). Thus,
state machine replication was really a conceptual tool of theoretical, but not prac-
tical, value at the time the virtual synchrony work began. This didn’t change until
drafts of the first Paxos paper began to circulate in 1990 [48], and then Paxos was
used as a component of the Frangiapani file server in 1997.

In our early work on virtual synchrony, we wanted to adapt the state machine con-
cept of “ordered events” to practical settings. Partly, this involved reformulating the
state machine ideas in a more object oriented manner, and under assumptions typi-
cal of real systems. But there was also the issue of the Byzantine atomic broadcast
protocol: a very slow protocol, at least as the community understood such protocols
at the time (faster versions are common today). Our thinking led us to ask what other
sorts of fault-tolerant multicast protocols might be options.

This line of reasoning ultimately took us so far from the state machine model
that we gave our model its own name. In particular, virtual synchrony weakened the
determinism assumptions, targeted asynchronous networks, added process groups
with completely dynamic membership, and addressed network partitioning faults.
All were innovations at that time. By treating process groups as replicated objects,
we separated the thing being replicated (the object) from the applications using it
(which didn’t need to even be identical: a process group could be shared among an
application coded in C, a second one coded in Ada, and a few others coded in C++).
Groups could be used to replicate a computation, but also to replicate data, or even
for purposes such as synchronization.

Today, as readers will see from other chapters in this collection, the distinctions
just listed have been eroded because the two models both evolved over time (and
continue to do so). The contemporary state machine approach uses dynamic pro-
cess group membership mechanisms very similar to those used in virtual synchrony.
These mechanisms, however, were introduced around 1995, almost a decade after
the first virtual synchrony papers were published. Virtual synchrony evolved too,
for example by adding support for partitionable groups (work done by the Transis
group; we’ll say more about it later). Thus, today, it isn’t easy to identify clear dif-
ferences between the best replicated state machine implementations and the most
sophisticated virtual synchrony ones: the approaches have evolved towards one-
another over the decades. But in 1983, the virtual synchrony work was a real de-
parture from anything else on the table.

98 K. Birman

6.4.1 Resilient Objects in Isis V1.0

We’ve summarized the background against which our group at Cornell first decided
to develop a new system. Staying with the historical time-line, it makes sense to
discuss this first system briefly: it had some good ideas that lived on, although it also
embodied a number of questionable decisions. This first system was called Isis (but
not the Isis “Toolkit”), and was designed to support something we called resilient
objects. The goal was to help developers build really fast, fault-tolerant services.

Adopting what was then a prevailing paradigm, Isis V1.0 was a translator: it
took simple object-oriented applications, expressed in a language similar to that of
Argus or Clouds, and then translated them into programs that could run on multiple
machines in a network, and would cooperate to implement the original object in a
fault-tolerant, replicated manner. When an application issued a request to a resilient
object, Isis would intercept the call, then distribute incoming queries in a way that
simultaneously achieved high availability and scalable performance [16, 8]. The
name Isis was suggested by Amr El Abbadi, and refers to an Egyptian resurrection
myth in which Isis revived Osiris after he had been torn apart by his enemy, Seth.
Our version of Isis revived resilient objects damaged by failure.

In retrospect, the initial version of Isis reflected a number of misconceptions on
our part. Fortunately, it wasn’t a complete wash: in building the system, we got
one thing right, and it had a huge impact on the virtual synchrony model. Isis dealt
with failure detection in an unusual way, for the time. In most network applications,
failures are detected by timeout at the network layer, and throw exceptions that are
handled “end to end” by higher layer logic. No failure detector can achieve perfect
accuracy, hence situations can arise in which processes p, q, and r are communi-
cating, and p believes that q has failed — but r might still believe both are healthy.
Interestingly, this is almost exactly the scenario that lies at the core of the prob-
lem with the transactional available copies replication scheme. Moreover, one can
provoke such a problem easily. Just disrupt your local area network. Depending on
the value of the TCP KEEPALIVE parameter, connections will begin to break, but
if the network outage is reasonably short, some connections will survive the out-
age, purely as a random function of when the two endpoints happen to have last
exchanged messages or acknowledgements. This illustrates a pervasive issue: time-
outs introduce inconsistency. FLP teaches us that the problem is fundamental.

Transactional systems generally overcome such problems using quorum meth-
ods, but Isis adopted a different approach: it included a separate failure detection
service. When an Isis component detected a timeout, rather than severing the as-
sociated connection, it would complain to the failure detection service (which was
itself replicated using a fault-tolerant protocol [15]). This group membership service
(GMS) virtualized the notion of failure, transforming potentially inaccurate failure
suspicions into what the system as a whole treated as bedrock truth. Returning to
our example above, p would report q as faulty, and the service would dutifully echo
this back out to every process with a connection to q. The word of this detection
service was authoritative: once it declared a component faulty, the remainder of our
system believed the declaration and severed connections to q. If a mistake occurred

6 A History of the Virtual Synchrony Replication Model 99

and process q was still alive, q would be forced to rejoin the system much like a
freshly-launched process. In particular, this entails rejoining the process groups to
which it previously belonged, and reinitializing them.

Today, it would be common to say that Isis implemented a fail-stop model [69]:
one in which processes fail by halting, and where those failures are detectable.
In effect, the Isis GMS creates a virtual network abstraction, translating imprecise
timeouts into authoritative failure events, and then notifying all components of the
system so that they can react in a coordinated way. This simplifies the design of
fault-tolerant protocols, although they remain challenging to prove correct.

The reader may be puzzled by one issue raised by this approach. Recall from
the introduction that we need to avoid split-brain behavior, in which a system be-
comes logically partitioned into two or more subsystems that each think the other
has failed, and each think themselves to be running the show. We mentioned that
the GMS itself was replicated for high availability. How can the GMS itself avoid
split-brain failures?

Isis addressed this by requiring a form of rolling majority consent within the
GMS. Membership in the service was defined as a series of membership epochs
— later, we began to use the term “view.”3 To move from view i to view i + 1, a
majority of the GMS processes in view i were required to explicitly acknowledge
view i + 1. The protocol was initiated by the oldest GMS process still operational,
and requires a 2PC as long as the leader is healthy. If any process suspects the current
leader of being faulty, it can trigger a 3PC whereby the next oldest process replaces
the apparently faulty one as leader. Our 1985 SOSP paper focused on the system
issues and performance [8]; a technical report gave the detailed protocols [13], and
later those appeared as [15]. In a departure from both the Byzantine Agreement
work and the Consensus model used in FLP, Isis made no effort to respect any sort
of ground-truth about failures. Instead, it simply tried to detect real crash failures
quickly, without making too many mistakes.4

In adopting this model, Isis broke new ground. Obviously, many systems devel-
oped in that period had some form of failure detection module. However, Isis used

3 Isis was the first to use this term, which was intended as an allusion to “dynamically material-
ized views”, a virtualization mechanism common in relational database systems: the user poses
a standing query, and as the database is updated, the result of the query is continuously recom-
puted. Queries treat the resulting relation as if it were a real one. At the time, we were thinking
of the membership of a group as a sequence of records: membership updates extend the sequence,
and multicast operations read the current membership and deliver messages to the operational
processes within it. In effect, a multicast is delivered to a “dynamically materialized view of the
membership sequence” containing the target processes. The term was ultimately adopted by many
other systems.
4 Obviously, this approach isn’t tolerant of malicious behavior: any mistaken failure detection
could force an Isis process to drop out of the system and then rejoin. Our reasoning was prag-
matic: Isis was a complex system and early versions were prone to deadlock and thrashing. We
included mechanisms whereby a process would self-check and terminate itself if evidence of prob-
lems arose, but these didn’t always suffice. By allowing any process to eject any other process
suspected as faulty, Isis was able to recover from many such problems. The obvious worry would
be that a faulty process might start to suspect everyone else, but in practice, this sort of thing was
never observed.

100 K. Birman

its membership module throughout, and the membership protocol can be recognized
as a fault-tolerant agreement (consensus) solution.

Today, this mechanism may seem much less novel. For example, contemporary
implementations of the state machine approach, such as the modern Paxos proto-
cols, have a dynamically tracked notion of membership (also called a view), and use
a leader to change membership. However, as noted earlier, when Paxos was intro-
duced in 1990, the protocol wasn’t leader-based: it assumed a fixed set of members,
and all of them had perfectly symmetric roles. Leaders were introduced into Paxos
much later, with a number of performance-enhancing optimizations. Thus when Isis
introduced the approach in 1983, it was the first system to use this kind of dynamic
membership tracking.

In adopting this approach, we rejected a tenet of the standard Internet TCP pro-
tocol: in keeping with the end-to-end philosophy, TCP (and later, early RPC proto-
cols) used timeouts to detect failures in an uncoordinated manner. We also departed
from the style of quorum-based update used in database systems, where the under-
lying set of nodes is fixed in advance (typically as a set of possible participants,
some of which might be unavailable from time to time), and where each update
must run as a 2PC: a first phase in which an attempt is made to reach a write-
quorum of participants, and a second phase in which the participants are told if the
first phase succeeded. As we’ll see momentarily, the cheapest virtually synchronous
multicast avoids this 2PC pattern and yet still ensures that delivery will occur within
the primary partition of the system: not the identical guarantee, but nonetheless,
very useful.

With the benefit of hindsight, one can look back and see that the convergence
of the field around uncoordinated end-system based failure detection enshrined a
form of inconsistency into the core layers of almost all systems of that period. This,
in turn, drove developers towards quorum-based protocols, which don’t depend on
accurate failure detection — they obtain fault-tolerance guarantees by reading and
writing to quorums of processes, which are large enough to overlap. Yet as we just
saw, such protocols also require a two phase structure, because participants con-
tacted in the first phase don’t know yet whether a write quorum will actually be
achieved. Thus, one can trace a line of thought that started with the end-to-end
philosophy, became standardized in TCP and RPC protocols, and ultimately com-
pelled most systems to adopt quorum-based replication. Unfortunately, quorum-
based replication is very slow when compared with unreliable UDP multicast, and
this gave fault-tolerance a bad reputation. The Isis protocols, as we’ve already men-
tioned, turned out to do well in that same comparison.

We’ve commented that a GMS greatly simplifies protocol design, but how? The
key insight is that in a failstop setting, protocols benefit from a virtualized envi-
ronment where processes appear to fail by halting, and where failures are reported
as an event, much like the delivery of a “final message” from the failed process
(in fact, Isis ignored messages from processes reported as faulty, to ensure that if
a failure was transient, confusion couldn’t arise). For example, it became safe to
use the available copies replication scheme, an approach that risks non-serializable
executions when timeouts are used to detect failures. Internally, we were able to use

6 A History of the Virtual Synchrony Replication Model 101

protocols similar in style to Skeen’s 3PC, which is non-blocking with “accurate”
failure detections.

Above, we indicated that this article won’t say very much about the various aca-
demic arguments that erupted around our work. It is interesting, however, to re-
alize that while Isis drew on ideas from many research communities, it also had
elements that were troubling to just about every research community of that period.
We used a technology reminiscent of state machines, but in a non-Byzantine setting.
We use terminology close to that of the consensus literature, but proposed a solution
in which a healthy process might be treated as faulty and forced to restart, some-
thing that a normal consensus definition wouldn’t allow. Our GMS service violated
the end-to-end approach (network-level services that standardize failure detection
are the antithesis of end-to-end design). Finally, we claimed that our design was
intended to maximize performance, and yet we formalized the model and offered
protocols with (partial) correctness proofs. Not surprisingly, all of this resulted in a
mixed reception.

6.4.2 Beyond Resilient Objects

As it turned out, resilient objects in Isis V1.0 weren’t much of a success even rel-
ative to our own goals. Beyond its departures from the orthodoxies of the period,
the system itself had all sorts of problems. First, resilient objects used a transac-
tional programming language similar to the ones used by Argus and Clouds. How-
ever, whereas those systems can now be understood as forerunners of today’s trans-
actional distributed computing environments and software transactional memories,
Isis was aimed at what we would now call the cloud computing community. To con-
vince users that this language was useful, we needed to apply it to network services
such as load balancers, DNS resolvers, etc. But most such services are implemented
in C or C++, hence our home-brew language seemed unnatural. Moreover, it turned
out to be difficult to adapt the transactional model for such uses.

The hardest problems relate to transactional isolation (the “I” in the ACID
model). In a nutshell, transactional systems demand that uncommitted actions be
prevented from interacting. For example, if an uncommitted transaction does a DNS
update, that DNS record must be viewed as provisional. Until the transaction com-
mits or aborts, other applications either can’t be allowed to look at it or, if they
“optimistically” read the record, the readers become dependent upon the writer.

This may seem straightforward, but creates a conundrum. Locking records in
a heavily-used service such as the DNS isn’t practical. But if such records aren’t
locked, long dependency chains arise. Should an abort occur, it may cascade through
the system. Moreover, no matter how one implements concurrency control, it is hard
to achieve high performance unless transactions are very short-lived. This forces
applications to use lots of very short atomic actions, and to employ top-level actions
whenever possible. But such steps “break” the transactional model. There was a
great deal of work on this issue at the time (the Argus team had one approach,
but it was just one among many: others included Recovery Blocks [63] and Sagas

102 K. Birman

[26]). None of these solutions, however, appeared to be well matched with our target
environment.

Faced with these issues, it occurred to us that perhaps the core Isis infrastructure
might be more effective if we unbundled it and offered it as a non-transactional li-
brary that could be called directly from C or C++. Of course, the system had been
built to support transactions, and our papers had stressed transactional consistency
models. This led us to think about what it would mean to offer a “transactional pro-
cess group” in which we could retain strong consistency and fault-tolerance prop-
erties, but free applications from the problematic consequences of the transactional
model.

The key idea was to think of the membership of each group as a kind of shared
database that would be updated when processes joined and left the group, and “read”
by multicast protocols, resulting in a form of transactional serializability at the level
of the multicasts used to send updates to replicated data. This perspective led us
to the virtual synchrony model. Stripped down versions of the model were later
proposed, notably “view-atomic multicast” as used by Schiper and Sandoz [66] and
“view synchrony”, proposed by Guerraoui and Schiper in [36] (the Isis literature
used the term “virtually synchronous addressing” for this property). In [3], Babaoglu
argued that view synchrony should be treated as the more fundamental model, and
developments have tended to reinforce this perspective.

6.4.3 The Isis Toolkit and the Virtual Synchrony Model

Accordingly, we set out to re-implement the Isis system as a bare-bones infras-
tructure that would present a “toolkit” API focused on processes that form groups
to replicate data, back one-another up for fault-tolerance, coordinate and synchro-
nize their actions, and perform parallel operations such as concurrent search of
large databases.5 Other tools within the toolkit offered access to the group mem-
bership data structure, delivered event upcalls when membership changed, and sup-
ported state transfer. A “news” service developed by Frank Schmuck provided topic-
oriented publish/subscribe. None of these services was itself transactional, but all
gained consistency and fault-tolerance from the underlying model. Isis even in-
cluded a conventional transactional subsystem (nobody used it).

Of course, our goal wasn’t just to make our own tools fault-tolerant: we wanted
to make the life the application developer simpler, and for this reason, the virtual
synchrony model was as much a “tool” as the ones just listed: those were library
tools, while the model was more of a conceptual tool. As we saw in the introduc-
tion, a virtually synchronous system is one indistinguishable from a synchronous
one. This is true of applications built using virtual synchrony too: the developer
starts with a very synchronous design, and is assisted in developing a highly con-

5 The system also included a home-brew threads package, and a standard library for serializing
data into messages and extracting data from them. Cthreads weren’t yet available, and we learned
later that quite a few of the early Isis users were actually looking for a threads package when they
downloaded the toolkit!

6 A History of the Virtual Synchrony Replication Model 103

current, performance-efficient solution that retains the simplicity and correctness
characteristics of the original synchronous version.

The key to this methodology is to find systematic ways that event ordering can
be relaxed, leaving the platform the freedom to deliver some messages in different
orders at different group members. We’ll discuss the conditions under which this
can happen below, but the essential idea is to allow weaker delivery orderings when
the delivery events commute, so that the states of the members turn out to be iden-
tical despite the different event orderings. One benefit of this approach is to reduce
the risk of a “poison pill” scenario, in which a state-sensitive bug might cause all
members of a traditional state-machine replicated service to crash simultaneously.
In virtual synchrony, the members of a group are in equivalent states, but recall that
a group is usually a replicated object: Isis rarely replicated entire processes. Thus
the processes joining a group might actually differ widely: they could be coded in
different languages, may have joined different sets of additional groups, and their
executions could be quite non-deterministic. In contrast the code implementing a
typical object replica might be very small: often, just a few lines of simple logic.
All of this makes it much less likely that a single event will cause many members to
crash simultaneously.

Another difference is visible at the “end” of the execution, on the right: two
processes become partitioned from the others, and continue to exchange some mes-
sages for a short while before finally detecting their isolated condition and halting.
Although the application developer can ask Isis not to allow such runs (they use the
gbcast primitive to send messages, or invoke the flush primitive before delivering
messages), the default allows them to arise for bounded periods of time.6 These
messages may never be delivered at all in the other processes, and if they are, may
not be delivered in the order seen by the processes that failed. Given an application
that can tolerate these kinds of minor inconsistencies, Isis gained substantial perfor-
mance improvements by permitting them. Moreover, by working with application
developers, we discovered that stronger guarantees are rarely required. Often, an
application that seems to need strong guarantees can easily be modified into one for
which weaker guarantees suffice.7

One proves that a system implements virtual synchrony by looking at the runs
it can generate. Given a run, the first step is to erase any invisible events — events
that occurred at processes that later failed, and that didn’t have a subsequent causal

6 The internal timeout mechanisms mentioned earlier ensure that an isolated process would quickly
discover the problem and terminate itself; developers could fine-tune this delay.
7 Few Isis applications maintained on-disk state that couldn’t be discarded after a restart. For
example, consider a load-balancing service, in which nodes report their loads through periodic
multicasts, and assign new tasks to lightly-loaded nodes. Now suppose that a node running the
service crashes and later restarts. It won’t need any state from prior to the crash: a state-transfer
can be used to bring it up to date. The example illustrates a kind of multicast that reports a transient
state change: one that becomes stale and is eventually forgotten as the system evolves over time.
Experience with Isis suggested that these kinds of multicasts are not merely common, but constitute
the overwhelming majority of messages transmitted within applications. The insight here is that
even if a transient multicast is delivered non-atomically, the service using the multicast might not
be at risk of user-visible inconsistencies.

104 K. Birman

path to the processes that survived. Next, where events are known to commute, we
sort them. If we can untangle Figure 6.2 and end up with Figure 6.1, our run was
“indistinguishable” from a synchronous run; if all runs that a protocols permits are
indistinguishable from synchronous runs, it is virtually synchronous.

As discussed earlier, network partitioning is avoided by requiring that there can
only be one “primary” partition active in the network. In Figure 6.2, the major-
ity of the processes are on the side of the system that remains active. The isolated
processes are too few in number to form a primary partition, and will quickly dis-
cover this problem and then shut down (or, in fancier applications, shift to a “dis-
connected” mode of operation).8 A special mechanism was used to handle “total”
failure, in which the primary partition is lost. Basically, the last processes to fail
are able to restart the group, resuming execution using whichever state reflects the
most updates. Although the problem is difficult in general settings [71], in a virtual
synchrony environment identifying these last failed processes becomes easy if we
simply log each group view.

6.4.4 A Design Feature Motivated by Performance
Considerations

The most controversial aspect of virtual synchrony centers on the willingness of the
system to deliver unstable events to applications, despite the risk that a failure might
“erase” all evidence that this occurred. Doing so violates one of the tenants of the
Consensus model as articulated by the FLP paper: the uniform agreement property,
which requires that if one process decides v ∈ {0,1}, then every non-faulty process
that decides, decides v. As stated, this implies that even if a process decides and
then crashes immediately, the rest of the system will make the identical decision
value. Paxos, for example, provides this guarantee for message delivery, as does the
uniform reliable multicast [65]. Moreover, virtual synchrony sometimes does so as
well: this is the case for process group views, uniform multicast protocols, and for
events delivered using gbcast. Why then did we offer a “broken” multicast primitive
as our default mode of operation?

To understand our reasoning, the reader will need to appreciate the emphasis on
performance that dominated the systems community during that period, and contin-
ues to dominate today. For the networking community, there will never be a point
at which the network is “too fast” to be seen as a bottleneck. Even our earliest
papers came under criticism because reviewers argued that in the real world, no
protocol slower than UDP multicast would be tolerated. Yet UDP multicast is a
hardware-supported unreliable protocol in which the sender sends a message, and
“one hop downstream”, the receivers deliver it! Competing with such a short criti-
cal path creates all sorts of pressures. The features of the virtual synchrony model,

8 The developer controlled the maximum delay before such a problem would be detected. By
manipulating timeout parameters, the limit could be pushed to as little as three to five seconds.
Modern machines are faster, and today the limit would be a small fraction of a second. By using
gbcast or flush, “lost events” such as the ones shown in Figure 6.2 are eliminated, but performance
is sharply reduced.

6 A History of the Virtual Synchrony Replication Model 105

taken as a whole, represent a story that turned out to be competitive with this sort
of raw communication primitive: most virtually synchronous multicasts could be
sent asynchronously, and delivered immediately upon receipt, just as would be the
case if one were using raw UDP multicast. This allowed us to argue that users could
have the full performance of the hardware, and yet would also gain much stronger
fault-tolerance and consistency semantics.

As we’ve emphasized, an application can be designed so that if a multicast needs
the stronger form of safety, in which any multicast is delivered to all operational pro-
cesses, or to none, the developer simply sends it with a uniform multicast primitive,
or with gbcast, or invokes flush prior to delivery. But our experience with Isis re-
vealed that this is a surprisingly rare need. The common case was simply to send the
multicast unsafely. Doing so works because the great majority of multicasts either
don’t change the application state at all, or update what can be understood as “tran-
sient” state, relevant to the system for a short period of time, but where persistency
isn’t needed. In such cases, it may not matter if a failed process received a multicast
that nobody else will receive, or so an unusual event ordering: if it ever recovers, no-
body will notice that immediately before crashing, it experienced a strange sequence
of events.

For example, a query might be multicast to a group in order to request some form
of parallel search by its members. Queries don’t change application state at all, so
this kind of multicast can certainly be delivered without worrying about obscure
failure cases.

Many kinds of updates can be sent with a non-uniform multicast primitive, too.
Probably the best example is an update to a cache. If a process restarts from a crash,
it certainly won’t assume that cached data is currently accurate; either it will val-
idate cached items or it will clear the cache. Thus a really fast, reliable, ordered
multicast is exactly what one wants for cache updates; uniform delivery simply
isn’t needed. Other examples include updates that only touch transient state such
as load-balancing data, and internal chit-chat about the contents of transient data
structures such as a cache, a lock queue or a pending-task queue (a “work queue”).
On recovery from failure, a process using such a data structure will reinitialize it-
self using a state transfer from an operational process. If the whole group fails, we
either restart in a default state, or have one of the last processes to fail restart from
a checkpoint.

The application that really needs uniform delivery guarantees, because it main-
tains persistent state, would be a big on-disk database. Obviously, databases are
important, but there aren’t many more such examples. Our point, then, is that this
category is relatively small and the stronger guarantees they need are costly. In Isis,
we simply made the faster, more common multicast the default, and left it to the de-
veloper to request a stronger guarantee if he or she needed it. In contrast, the Paxos
protocols offer the stronger but more costly protocol by default, whether needed
or not.

106 K. Birman

6.5 Dynamic Membership

Let’s revisit the features of the model somewhat more carefully. As we’ve seen, the
basic idea of replicating data within a group of processes traces to Lamport’s state
machine concept. In addition to removing state machines from the Byzantine world
where they were first proposed, Isis departed from Lamport’s work in several ways.

We’ve already seen one departure, namely our use of a dynamic membership
model. At the time we built Isis, one might think that a static model of the sort
used in databases (and later in Paxos) would have seemed more natural, but in fact
our model of how process groups would be used made dynamic membership seem
much more obvious. After all: we assumed that applications might use large num-
bers of groups, because for us, the granularity of a group was a single object, not
an entire application. Like files that applications open, access, then close, we saw
groups as shared structures that applications would join, participate in for a while,
and then depart from. With completely dynamic membership, a group becomes an
organic abstraction that can, in effect, wander around the system, residing at pro-
cesses that are currently using it, but over time, moving arbitrarily far from the
initial membership.

Of course, we realized that some systems have groups of server platforms and
need to know that groups will always contain a majority of the servers (databases
often require this). In fact, Isis supported both models. Implicit in the normal behav-
ior was a weighting function and a minimum group commit weight. By default, the
weighting function weighted all processes 1.0, and used a minimum commit weight
of 0.0, but it was possible to override these values, in which case no new view could
be committed unless a majority of the members of the previous view had consented
to it and the sum of weights of the new group view exceeded the minimum. Thus,
to ensure that the majority of some set of k servers would always be present in each
new group view, one simply told Isis to weight the servers 1.0 and all non-servers
0.0, and then specified that new views have a weight greater than k/2.

6.5.1 Local Reads and Fast Updates

Dynamic membership is the key to an important performance opportunity: many of
the protocols we were competing with at the time assumed that their role was to
replicate some service at a statically defined set of replicas, and used quorum meth-
ods to do both reads and updates. To tolerate failures, even reads needed to access at
least two members, since any single member might have been down when an update
was done and hence have a stale state. By tracking membership dynamically, in a
setting where a trusted primary-partition GMS reports liveness, we could be sure
that every member of a group was also up to date, and reads could then be done
entirely locally. In [38] we showed this, and also gave a locking protocol in which
read-locks are performed locally. Thus, reads never require sending messages, al-
though updates obviously do — for locking, to communicate the changes to data,
and for the commit protocol when the transaction completes. The resulting protocol
far outperforms quorum-based algorithms in any setting where reads are common,

6 A History of the Virtual Synchrony Replication Model 107

or where updates are bursty. In the worst case, when updates are common and each
transaction performs just one, performance is the same as for a quorum scheme.

The key insight here is that within a virtual synchrony system, the group view
represents a virtual world that can be “trusted”. In the event of a partitioning of the
group, processes cut off from the majority might succeed in initiating updates (for
example if they were holding a lock at the time the network failed), but would be
unable to commit them — the 2-phase protocol would need to access group mem-
bers that aren’t accessible, triggering a view change protocol that would fail to gain
majority consent. Thus any successful read will reflect all prior updates: commit-
ted ones by transactions serialized prior to the one doing the read, plus pending
updates by the reader’s own transaction. From this we can prove that our proto-
col achieves one-copy serializability when running in the virtual synchrony model.
And, as noted, it will be dramatically faster than a quorum algorithm achieving the
identical property.

This may seem like an unfair comparison: databases use quorums to achieve
serializability. But in fact Isis groups, combined with locking, also achieve serial-
izability. Because the group membership has become a part of the model, virtually
synchronous locking and data access protocols guarantee that any update would be
applied to all replicas and that any read-locked replica reflects all prior updates. In
contrast, because quorum-based database systems lack an agreed-upon notion of
membership, to get the same guarantees in the presence of faults, a read must access
two or more copies: a read quorum. Doing so is the only way to be sure that any
read will witness all prior updates.

Enabling applications to read a single local replica as opposed to needing to read
data from two or more replicas, may seem like a minor thing. But an application that
can trust the data on any of its group members can potentially run any sort of arbi-
trary read-oriented computation at any of its members. A group of three members
can parallelize the search of a database with each member doing 1/3 of the work,
or distribute the computation of a costly formula, and the code looks quite normal:
the developer builds any data structures that he or she likes, and accesses them in
a conventional, non-distributed manner. In contrast, application programmers have
long complained about the costs and complexity of coding such algorithms with
quorum reads. Each time the application touches a data structure, it needs to pause
and do a network operation, fetching the same data locally and from other nodes and
then combining the values to extract the current version. Even representing data be-
comes tricky, since no group member can trust its own replicas. Moreover, whereas
virtually synchronous code can execute in straight-line fashion without pausing, a
quorum-read algorithm will be subjected to repeated pauses while waiting for data
from remote copies.

Updates become faster, too. In systems where an update initiator doesn’t know
which replicas to “talk to” at a given point in time, there isn’t much choice but to use
some kind of scatter-shot approach, sending the update to lots of replicas but waiting
until a quorum acknowledged the update before it can be safely applied. Necessarily,
such an update will involve a 2PC (to address the case in which a quorum just can’t

108 K. Birman

be reached). In virtual synchrony, an update initiated by a group member can be sent
to the “current members”, and this is a well-defined notion.

6.5.2 Partitionable Views

This discussion raises questions about the conditions under which progress can be
guaranteed during partitioning failures. Danny Dolev’s research group became fas-
cinated with the topic and went much further with it than we ever did at Cornell.
Dahlia Malkhi, visiting with us in 1992, helped formalize the Isis model; the model
in Chapter 6 of the book we published on the Isis system was due to her [72]. Upon
returning to Hebrew University, she was the lead developer for the Transis [31] sys-
tem, sharing some code with our Horus system, but using her own GMS protocols
redesigned to maximize availability during partitioning failures, and including mul-
ticast protocols that can be traced back to the UCSB Totem project. The Transis
protocol achieves the highest possible availability during partitioning failures [42].
However, this author always found the resulting model tricky to work with, and it
was not widely adopted by application developers. Subsequent work slightly sim-
plified the model, which became known as extended view synchrony [57], but it
remains hard to develop non-trivial applications that maximize availability during
partitioning failures.

6.6 Causally Ordered Multicast: cbcast

Dynamic membership only addresses some costs associated with multicasts that
carry updates. In the timeframe when we developed our update protocols, the topic
was very much in the air. Lamport’s papers had been followed by a succession of
theoretical papers proposing all sorts of protocols solving such problems as Byzan-
tine Agreement, totally ordered atomic broadcast, and so forth — again, within static
groups. For example, one widely cited paper was the Chang and Maxemchuck pro-
tocol [22], which implemented a totally ordered atomic multicast that used a cir-
culating token to order messages. To deliver an update, one might have to wait for
the token to do a full circuit of a virtual ring linking the group members. Latency
increased linearly in the size of the group: a significant cost for large groups, but
tolerable for a group with just two or three members.

Our initial work with Isis used a totally ordered protocol proposed by Dale Skeen
and based on a similar, earlier, protocol by Leslie Lamport: it involved a 2PC in
which logical timestamps were exploited to order multicasts [15, 45]. This was
faster than most other total ordering protocols, but still was potentially as slow as
the slowest group member. We wanted to avoid the two-phase flavor that pervade
such protocols, and became interested in protocols that exploited what might be
called application-specific optimizations. For example, knowing that the sender of a
multicast holds a mutually exclusive lock within a group, a totally ordered multicast
can be built using a protocol with the “cost” of a sender-ordered (FIFO) multicast.
Frans Kaashoek, who ultimately wrote his PhD thesis on this topic [41], showed

6 A History of the Virtual Synchrony Replication Model 109

that token-based protocols of this sort have all sorts of other advantages too, includ-
ing better opportunities to aggregate small messages into big ones, the possibility
of asynchronous garbage collection, and also match well with applications that pro-
duce updates in a bursty pattern.

In our work, we realized that FIFO order has a generalization that can extend
the power of the multicast primitive at surprisingly low cost — just a few bytes per
message. The trick is to put a little extra ordering information onto the message (the
solution we ultimately favored used a small vector timestamp with a single counter
per member of the current group view [17]). The rule for delivering a message gen-
eralizes the rule used for FIFO ordering: “if message x arrives and its header indi-
cates that there is a prior message y, delay x until y has been delivered”. But now,
“prior” is interpreted using the vector timestamp ordering rule, rather than the usual
comparison of sender sequence numbers.

Isis used this approach to support a protocol we called cbcast: a reliable, view-
synchronous multicast that respected the potential causality ordering (the transitive
closure of the FIFO ordering). One way to visualize this ordering property is to
think about a system in which process p does some work, and then sends an RPC to
process q asking it to do a subtask, and so forth. When the RPC returns, p resumes
working. Now suppose that “work” involves sending multicasts. A FIFO ordering
would deliver messages from x in the order it sent them, and similar for y, but a node
receiving messages from both p and q could see them in an arbitrary order. We see
this in the figure below; the heavy lines denote the “thread of execution”.

p

q

r

Fig. 6.3 Causally ordered multicasts.

One way to think about Figure 6.3 is to imagine that process p “asked” q to do
that work, and q in turn issued a request to r. In some sense, q is a continuation
of a thread of execution running in p. The figure highlights this visually: the single
thread of control is the one shown in dark black, first running at p, then q, then
r, and then finally returns back to p. The cbcast primitive respects ordering along
this kind of thread of control. If multicast b (perhaps sent by q) could be causally
ordered after multicast a (perhaps sent by p), a FIFO ordering won’t necessarily
deliver the messages in the order they were sent because they had different senders.
In contrast, cbcast will deliver a before b at any destinations they share. The idea is
very intuitive if one visualizes it this way.

Performance for cbcast can be astonishingly good: running over UDP multicast,
this primitive is almost as fast as unreliable UDP multicast [17]. By using cbcast

110 K. Birman

to carry updates (and even for locking, as discussed in [39]), we accomplished our
goal, which was to show that one could guarantee strong reliability semantics in a
system that achieved performance fully comparable to that of Zwaenepoel’s process
groups running in the V system.

6.7 Time-Critical Applications

With its focus on speed, one major class of Isis applications turned out to involve
systems that would traditionally have been viewed as “real-time” by the research
community. As a result, Isis was often contrasted with the best known protocols
in the fault-tolerant real-time community, notably the so-called ∆ -T fault-tolerant
broadcast protocols developed by Flaviu Cristian and his colleagues [27].

These protocols work in the following manner. The designer starts by specifying
bounds on the numbers and types of failures that can occur (process failures, packet
loss, clock failures). They also bound delays for packet delivery and clock skew by
correct processes. Then, through multiple all-to-all broadcast stages, each multicast
is echoed by its receivers until one can prove that at least one round included a
correct sender and experienced no network faults (in effect: there must be enough
rounds to use up the quota of possible failures). Finally, received multicasts are
delayed for long enough to ensure that even if correct processes have worst-case
clock skew and drift, they will still deliver messages in the same order and at roughly
the same time as all other correct processes.

All of this takes time: at one workshop in the early 1990’s, a speaker concerned
about costs worked out the numbers for this and other broadcast protocols and ar-
gued that with as few as 10 processes under assumptions reasonable for that time, a
∆ -T broadcast could take between 5 and 20 seconds to be delivered, depending upon
the failure model selected (the protocols cover a range from fail-stop to Byzantine
behavior). Most of the delay is associated with overcoming clock-drift and skew so
as to deliver messages within a tight temporal window: the multicast relaying phases
would normally run very quickly.

The strength of the ∆ -T suite was its guarantee that messages will be delivered
fault-tolerantly, in total order, and within a bounded temporal delay despite failures.
On the other hand, these protocols lack the consistency property of virtual syn-
chrony. For example, a “faulty” group member using the ∆ -T protocols could miss
a message, or deliver one out of order. This may not seem like a big deal until one
realizes that a process can be temporarily faulty by simply running a bit slower than
the bounds built into the system, or temporarily having a higher-than-tolerable clock
skew. Since the ∆ -T protocols have no explicit notion of group view, the protocols
work around faults, rather than excluding faulty members. A discussion of the issue,
with diagrams showing precisely how it can arise, can be found in [11].

Since no process can be sure it hasn’t ever been faulty, no group member can
ever be sure that its own data is current, because the protocol isn’t actually required
to operate correctly at faulty participants. This is a bit like obeying the speed limit
without a reliable speedometer. One does the best one can, but short of driving ab-
surdly slowly, there is a definite risk of briefly breaking the law. And indeed, driving

6 A History of the Virtual Synchrony Replication Model 111

slowly is the remedy ∆ -T protocol designers recommended: with these protocols,
it was critical to set the parameters to very conservative values. One really doesn’t
want a correct process to be transiently classified as faulty; if that happens, all guar-
antees are lost.

Thus, builders of real-time systems who needed provable temporal guarantees,
but could sacrifice speed and consistency, would find what they wanted in the ∆ -T
protocols. Isis, in contrast, offered much better performance and strong consistency,
but without hard temporal delivery guarantees. The real-time community found it-
self immersed in a philosophical debate that continues to this day: Is real-time about
predictable speed, or provable worst-case deadlines? The question remains unan-
swered, but Isis was used successfully in many sensitive settings, including air traffic
control and process control in chemical refineries.

6.8 A Series of Commercial Successes, but Ultimately,
a Market Failure

The combination of the virtual synchrony consistency model with an easily used
toolkit turned out to be quite popular. Isis soon had large numbers of real users, who
downloaded the free release from a Cornell web site. Eventually, the user base be-
came so demanding that it made sense to launch a company that would do support,
integration work and enhance the platform. Thus, the same protocols we designed
and implemented at Cornell found their way into all sorts of real systems (details on
a few can be found in [15] and [72]). These included the New York and Swiss Stock
Exchange, the French Air Traffic Control System, the US Navy AEGIS, dozens of
telecommunications provisioning systems, the control system of some of the world’s
largest electric and gas grid managers, and all sorts of financial applications. Many
of these live on: today, the French ATC solution has expanded into many other parts
of Europe and, to this author’s knowledge, has never experienced a single prob-
lem. The New York Stock Exchange system operated without problems for more
than a decade (they phased the Isis solution out in early 2007), running the fault-
tolerant system that delivers data to the overhead displays and to external “feeds”
like Reuters, Bloomberg and the SEC. During that decade, there were plenty of
component crashes, but not a single disruption of actual trading.

Virtual synchrony was also adopted by a number of other research groups, in-
cluding the Totem project developed by Moser and Melliar Smith [58], Dolev’s
Transis project [31], the European Phoenix project [52], Babaoglu’s early e-Grid
project, Amir’s Spread system [2] (which continues to be widely used), and others.
The UCSB team led a successful effort to create a CORBA fault-tolerance standard
based on virtual synchrony. It offers lock-step state-machine replication of deter-
ministic CORBA objects, and there were a number of products in the area, including
Eternal [59], and Orbix+Isis, offered by IONA.

Unfortunately, despite these technical successes, virtual synchrony never became
a huge market success [12]. The main commercial applications tended to be for
replication of services, and in the pre-cloud computing data, revenue was mostly

112 K. Birman

generated on the “client side”. The model continues to play an important role in
many settings, but at the time of this writing there are only three commercial prod-
ucts using the model: JGroups, Spread and C-Ensemble. Of these, JGroups and
Spread are the most widely used.

At Cornell, after completing Isis, we developed two Isis successors: first Horus
[73], in which Van Renesse showed that a virtual synchrony protocol stack could be
constructed as a composition of microprotocols (and set performance records along
the way), and then Ensemble [37], a rewrite of Horus into O’CaML (a dialect of
ML) by Mark Hayden. Ensemble was the basis of an interesting dialog with the
formal type theory community. In a collaboration that drew upon an I/O Automata
specification developed jointly by the Cornell team and Lynch’s group at MIT, and
used the Cornell NuPRL automated theorem proving system developed by Con-
stable’s group[50], a specification of many of the Ensemble protocols was created.
NuPRL was then used to prove protocol properties and (through a form of partial
evaluation) to generate optimized versions of the Ensemble protocols. Although the
protocol stack as a whole was never “proved correct”, the resulting formal structure
was still one of the largest ever treated this way: the Ensemble protocol stacks that
implement virtual synchrony included nearly 25,000 lines of code!

Virtual synchrony continues to play some important roles hidden within products
that don’t expose any form of directly usable group communication API. IBM has
described patterning its DCS product on Ensemble [30, 29]. As mentioned early in
this article, DCS is used for fault-tolerance and management layer in Websphere
and in other kinds of services deployed within datacenters. We also worked with
Microsoft to develop a scalable cluster management solution that ultimately shipped
with the recent Longhorn enterprise server product; it runs large clusters and pro-
vides core locking and state replication services [54]. Again, a virtual synchrony
protocol is used where strong consistency matters. Moreover, Google’s Chubby and
Yahoo’s Zookeeper services both have structures strongly reminiscent of virtually
synchronous process groups.

6.8.1 How Replication Was Used

In light of the focus on this volume on replication, it makes sense to review some of
the uses to which these applications put the technology. Details can be found in [15]
and [72].

• One popular option was to simply replicate some sort of abstract data type, in ef-
fect associating the object with the process group. In Isis, we saw two “styles” of
data replication. For non performance-intensive uses, applications simply used
the totally ordered multicast protocol, abcast, to propagate updates, and per-
formed reads against any local copy. For performance-critical purposes, devel-
opers typically started with abcast but then optimized their applications by in-
troducing some form of locking and then replacing the abcast calls with asyn-

6 A History of the Virtual Synchrony Replication Model 113

chronous9 fbcast (the FIFO multicast) or its cousin cbcast. One common pattern
used cbcast for both purposes: to request and grant locks, and to replicate updates
[39]. With the Isis implementation of cbcast this implements the Herlihy-Wing
linearizability model [38].

• Replication was also applied to entire services. We expected that state-machine
replication would be common among Isis users, but in fact saw relatively little
use of this model until the CORBA “Orbix+Isis” product came out. Users ob-
jected to the requirement that applications be deterministic. The problem is that
on modern platforms, concurrency through multithreading, timer interrupts, and
non-deterministic I/O is so common that most developers couldn’t develop a de-
terministic application even if they wanted to do so.

• Some applications used request replication for parallelism. Most servers are I/O
bound, hence response time for many applications is limited by the speed with
which a file or database can be searched. Many virtual synchrony applications
replicate requests by multicasting them to a process group consisting of identi-
cal servers, which subdivided the work. For example, perhaps one server could
search the first half of a database, and another the second half. This was a popular
model, and is a very good match with search in datacenters, which often work
with enormous files and databases. One can think of it as a very simple form of
“map-reduce”.

• Variations on primary-backup fault-tolerance were common. Isis users were
loath to dedicate one machine to simply backing up another machine. However,
the system also supported a generalization of primary-backup that we called
“coordinator-cohort” that could be combined with a transparent TCP fail-over
mechanism. In this model, each request was assigned to a different process group
member, with another group member functioning as a backup, stepping in only
if the primary crashed. The coordinator role was spread evenly within the group.
Since the cost of replicating the request itself is negligible, with k members avail-
able to play the coordinator role for distinct requests, users obtained a k-fold
speedup. Moreover, because the client’s connection to the group wouldn’t break
even if a fault did occur, the client was completely insulated from failures. The
mechanism was very popular.

• Many applications adopted a publish-subscribe communication pattern. As men-
tioned above, Isis offered a “news” interface that supported what later became
known as topic-based publish-subscribe. In the simplest model, each topic maps
one-to-one to a process group, but this creates huge numbers of groups. Accord-
ingly, the tool used a form of channelization, mapping each topic to one of a small
set of groups and then filtering incoming messages to deal with the resulting in-
accuracy. This approach remains common in modern publish-subscribe products.

With the exception of publish-subscribe applications, it is interesting to realize that
most uses of Isis involved servers running on small clusters. For example, the French
Air Traffic Control System runs Isis in datacenters with hundreds of machines, but

9 In Isis, a multicast could be invoked asynchronously (no replies), or could wait for replies from
one, several, or all group members.

114 K. Birman

organized as clusters of 3 to 5 consoles. Isis was configured to run in disjoint con-
figurations, keeping loads light and providing fault isolation.

Publish-subscribe, however, is a very different world: data rates can be very high,
groups can be big, and enterprises may have other desires too, such as security or
management interfaces. Group communication of all kinds, not merely virtual syn-
chrony, is challenged by such goals — indeed, operators of today’s largest data-
center platforms report that instability of large-scale publish-subscribe deployments
represents a very serious problem, and we know of a number of very high-profile
settings in which publish-subscribe has effectively been banned because the tech-
nology proved to be unreliable at high data rates in large-scale uses. Such stories
make it clear that the French Air Traffic Control project made a very wise decision.
Later, we’ll comment on our recent work to overcome these issues, but they clearly
point to important research challenges.

6.8.2 Causal and Other Controversies

Although virtual synchrony has certainly been successful and entered the main-
stream computing world, this history wouldn’t be complete without at least allusion
to some of the controversies mentioned earlier. There were many of them:

• The causally ordered multicast primitive used in Isis was debated with enormous
enthusiasm (and much confusion) [23, 9].

• There was a period of debate about the applicability of the FLP result. The ques-
tion was resolved emphatically with the not-surprising finding that indeed, con-
sensus and virtual synchrony are related [25, 53, 67].

• We noted that the formal definition of consensus includes an agreement property
that Isis violates by default. Is virtual synchrony therefore incorrect by default?

• Because Paxos can be used to build multicast infrastructures, and virtual syn-
chrony communication systems can be used to solve consensus, one can ask
which is “better”. Earlier, we noted that virtual synchrony can implement guar-
antees identical to Paxos if the user limits himself to uniform multicast or gbcast,
or uses flush. As noted earlier, systems like Chubby do use Paxos, but tend to be
engineered with all sorts of optimizations and additional mechanisms: Paxos is
just one of several protocols, just as the virtual synchrony view update protocol
is just one of many Isis protocols. Thus, it makes little sense to talk about choos-
ing “between” Paxos and virtual synchrony. The protocol suites we end up using
incorporate elements of both.

• There was much interest in using groups to securely replicate keys for purposes
of end-to-end cryptographic security. Interestingly, this model runs afoul of the
cloud-computing trend towards hosting everything: these days, companies like
Google want to manage our medical records, provide transcripts of telephone calls,
and track our digital lives. Clearly, one is supposed to trust one’s cloud provider,
and perhaps for this reason, the major security standards are all client-server in-
frastructures; true end-to-end security keys that might deny the cloud platform a
chance to see the data exchanged among clients have no obvious role. But this
could change, and if so, secure group keys could be just what the doctor ordered.

6 A History of the Virtual Synchrony Replication Model 115

6.8.3 What Next? Live Objects and Quicksilver Scalable
Multicast!

The story hasn’t ended. Today’s challenges relate to scale and embeddings. With re-
spect to scalability, the push towards cloud computing has created a new interest on
infrastructure for datacenter developers. The tools used in such settings must scale
to accommodate deployments on tens or hundreds of thousands of machines and
correspondingly high data rates. Meanwhile, out at the edge, replication and mul-
ticast patterns are increasingly interesting in support of new forms of collaboration
and new kinds of social networking technologies.

At Cornell, our current focus is on solving these next generation scalability chal-
lenges, while also integrating reliable multicast mechanisms with the modern gener-
ation of componentized platforms that support web services standards — for exam-
ple, the Microsoft .net platform and the J2EE platform favored by Java developers.
We’ve created a system that implements what we are calling “Live Distributed Ob-
jects10 ” [60, 62]. The basic idea is to enable end-users, who may not be program-
mers, to build applications by drag-and-drop, much as one pulls a figure or a table
into a text document.

From the perspective of the application designer, live objects are edge-mashups,
created on the client platform much in the same sense as a Google mashup that
superimposes push-pin locations on maps: the user drags and drops objects, con-
structing a graph of components that interact by event passing. The main difference
is that the Google mashup is created on Google’s platform and exported through a
fairly sophisticated minibrowser with zoom, pan and layer controls; a live object is
a simpler component designed to connect with other live objects within the client
machine to form a graph that might have similar functionality to the Google version,
but could import content from multiple hosted platforms (for example, we routinely
combine Google maps with Yahoo! weather and population data from the National
Census), and with peer-to-peer protocols that can achieve very low latency and jit-
ter when clients communicate with one-another. Once created, a Live Object-based
application can be shared by making copies — it can even be emailed — and each
node that activates it will effectively become an endpoint of a group associated with
that object.

We’ve packaged a number of multicast protocols as Live Objects, and this cre-
ates a connection to the theme of the present article: one of the protocols supports
virtually synchronous replication at high data rates and large scale. However, not all
objects have complex distributed behaviors. Live objects can also be connected to
sensors, actuators, applications that generate events, and even databases or spread-
sheets.

With Live Objects, we’re finding that even an unskilled user can build non-trivial
distributed collaboration applications, workflow systems, or even games. The expe-
rience is very similar to building scenarios in games like Second Life, but whereas
Second Life “runs” on a data center, Live Objects run directly on and between the
client platforms where the live application is replicated. Although doing so poses

10 A video of a demo can be seen at http://liveobjects.cs.cornell.edu

116 K. Birman

many challenges, one of our research goals is to support a version of Second Life
built entirely with Live Objects.

In support of Live Objects, we’ve had to revisit reliable multicast and replica-
tion protocols [61]. As noted, existing solutions can scale a single group to perhaps
100 members, but larger groups tend to destabilize at high data rates. None of the
systems we’ve evaluated can handle huge numbers of groups with irregular over-
lap. Yet, even simple Live Object applications can create patterns of object use in
which a single machine might end up joining thousands of replication groups, and
extremely high data rates. In [60] we discuss some of the mechanisms we’re ex-
ploring in support of these new dimensions of scalability. With these, we believe
that groups providing a slightly weaker reliability model than virtual synchrony can
scale to at least hundreds of members, can sustain data rates as high as 10,000 1-
kbyte messages per second, and individual nodes can join thousands of groups that
overlap in irregular ways.

We’re also revisiting the way that virtual synchrony, consensus and transactional
guarantees are implemented. The standard way to build such protocols is to do so as
a library constructed directly over UDP message passing. We’re currently working
on a scripting language (we call it the properties framework) in which higher level
reliability properties can be described. An interpretive runtime executes these scripts
in a scalable, asynchronous, dataflow manner. Preliminary results suggest that strong
reliability properties can scale better than had previously been believed, but we’ll
need to complete the work to know for sure.

Live objects include a simple type system, matched to the limited interface model
favored in modern web services platforms, but far from the state of the art. Readers
interested in connections between replication and type theory may want to look
at papers such as [43, 44, 47, 51]. Research on componentized protocols includes
[6, 7, 37, 39, 56, 73]. These lines of study come together in work on typed endpoints
in object oriented systems, such as [18, 28, 32, 34, 33].

6.9 Closing Thoughts

It seems appropriate to end by sharing an observation made by Jim Gray, who
(over dinner at a Microsoft workshop) commented on a parallel between the early
database community, and what he believed has happened with virtual synchrony
and other strong replication models. In its early days, the transactional community
aggressively embraced diversity. Researchers published on all sorts of niche appli-
cations and papers commonly argued for specialized variations on the transactional
model. The field was awash in specialized database systems. Yet real success only
came with consolidation around transactions on relational databases: so much in-
vestment was focused on the model that the associated technology advanced enor-
mously.

With this success, some researchers probably felt that the field was taking a step
“backwards”, abandoning superior solutions in favor of less elegant or less efficient
ones. Yet success also brought research opportunities: research was needed to over-

6 A History of the Virtual Synchrony Replication Model 117

come a new set of challenges of scale, and performance. The science that emerged
was no less profound than the science that had been “displaced.”

In this, Jim saw a general principle. If a technology tries too hard to make every
user happy, so much effort is needed to satisfy the 20% with the hardest problems
that the system ends up being clumsy and slow. The typical user won’t need most of
its features, and many will opt for a simpler, cheaper solution that’s easier to use. The
irony is that in striving to make every user happy, a technology can actually leave the
majority unhappy. In the end, an overly ambitious technology merely marginalizes
itself.

Did the Isis system actually “need” four flavors of ordered multicast? Probably
not: we got carried away, and it made the system difficult for the community to
understand.

Today, the opportunity exists to create consistency-preserving replication tools
that might be widely adopted, provided that we focus on making replication as easy
as possible to use in widely standard platforms. In some ways this may force us to
focus on a least common denominator approach to our past work. Yet making repli-
cation with strong semantics work for real users, on the scale of the Internet, also
reveals profound new challenges, and as we solve them, we may well discover that
the underlying science is every bit as interesting and deep as anything we discovered
in the past.

Acknowledgements The author is grateful to André Schiper, Robbert van Renesse and Fred
Schneider. Not only would virtual synchrony not exist in its current form without the efforts of
all three, but they were generous enough to agree to read an early draft of this paper. This revision
is certainly greatly improved as a result.

References

1. Aguilera, M., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia: a new paradigm
for building scalable distributed systems. In: 21st ACM SOSP, Nov. 2007, pp. 159–174
(2007)

2. Amir, Y., Nita-Rotaru, C., Stanton, J., Tsudik, G.: Secure Spread: An Integrated Architecture
for Secure Group Communication. IEEE TDSC 2(3) (2005)

3. Babaoglu, Ö., Bartoli, A., Dini, G.: Enriched view synchrony: A programming paradigm
for partitionable asynchronous distributed systems. IEEE Transactions on Computers 46(6),
642–658 (1997)

4. Bernstein, P., Goodman, N.: Concurrency Control in Distributed Database Systems. ACM
Computing Surveys 13(2) (1981)

5. Bernstein, P., Goodman, N.: An algorithm for concurrency control and recovery in replicated
distributed databases. ACM Transactions on Database Systems 9(4), 596–615 (1984)

6. Bhatti, N., Hiltunen, M., Schlichting, R., Chiu, W.: Coyote: A System for Constructing
Fine-Grain Configurable Communication Services. ACM Transactions on Computer Sys-
tems 16(4), 321–366 (1998)

7. Biagioni, E., Harper, R., Lee, P.: A Network Protocol Stack in Standard ML. Journal of
Higher-Order and Symbolic Computation 14(4) (2001)

8. Birman, K.: Replication and Fault-Tolerance in the ISIS System. In: 10th ACM Symposium
on Operating Systems Principles, Dec. 1985, pp. 79–86 (1985)

9. Birman, K.: Responses to Cheriton and Skeen’s SOSP paper on Understanding the Limita-
tions of Causal and Total Event Ordering. SIGOPS Operating Systems Review 28(1) (1994)

118 K. Birman

10. Birman, K.: A review of experiences with reliable multicast. Software Practice and Experi-
ence 29(9) (1999)

11. Birman, K.: Reliable Distributed Systems. Springer, New York (2004)
12. Birman, K., Chandersekaran, C., Dolev, D., Van Renesse, R.: How the Hidden Hand Shapes

the Market for Software Reliability. In: Proceedings IEEE Workshop on Applied Software
Reliability, Philadelphia, PA (June 2006)

13. Birman, K., Joseph, T.: Reliable communication in the presence of failures. Tech. Rep. TR85-
694 (August 1985)

14. Birman, K., Joseph, T.: Exploiting Virtual Synchrony in Distributed Systems. In: 11th ACM
Symposium on Operating Systems Principles (Dec. 1987)

15. Birman, K., Joseph, T.: Reliable communication in the presence of failures. ACM Transac-
tions on Computer Systems 5(1) (1987)

16. Birman, K., Joseph, T., Raeuchle, T., El Abbadi, A.: Implementing Fault-Tolerant Distributed
Objects. IEEE Transactions on Software Engineering 11(6) (1985)

17. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems 9(3), 272–314 (1991)

18. Briot, J., Guerraoui, R., Lohr, K.: Concurrency and Distribution in Object-Oriented Program-
ming. ACM Comput. Surv. 30(3), 291–329 (1998)

19. Burrows, M.: The Chubby Lock Service for Loosely-Coupled Distributed Systems. In: OSDI,
pp. 335–350 (2006)

20. Chandra, T., Hadzilacos, V., Toueg, S., Charron-Bost, B.: On the impossibility of group mem-
bership. In: Proc. 15th PODC, May 23-26, 1996, pp. 322–330 (1996)

21. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos Made Live — An Engineering Perspective
(based on Chandra’s 2006 invited talk). In: Proc. 26th PODC, Aug. 2007, pp. 398–407 (2007)

22. Chang, J., Maxemchuk, N.: Reliable broadcast protocols. ACM Trans. on. Computer Sys-
tems 2(3), 251–273 (1984)

23. Cheriton, D., Skeen, D.: Understanding the Limitations of Causally and Totally Ordered
Communication. In: SOSP, pp. 44–57 (1993)

24. Cheriton, D., Zwaenepoel, W.: Distributed process groups in the V Kernel. ACM Transac-
tions on Computer Systems (TOCS) 3(2), 77–107 (1985)

25. Chockler, G., Keidar, I., Vitenberg, R.: Group Communication Specifications: A Compre-
hensive Study. ACM Computing Surveys 33(4) (2001)

26. Chrysanthis, P.K., Ramamritham, K.: ACTA: the SAGA Continues. In: Elmagarmid, A. (ed.)
Database transaction models for advanced applications, Morgan Kaufmann, San Francisco
(1992)

27. Cristian, F., Aghili, H., Strong, R., Volev, D.: Atomic Broadcast: From Simple Message
Diffusion to Byzantine Agreement. In: Proc. 15th Int. Symp. on Fault-Tolerant Computing
(FTCS-15), Ann Arbor, MI, USA, June 1985, pp. 200–206. IEEE Computer Society Press,
Los Alamitos (1985)

28. Damm, C., Eugster, P., Guerraoui, R.: Linguistic Support for Distributed Programming Ab-
stractions. In: CDCS, pp. 244–251 (2004)

29. Dekel, E., et al.: Distribution and Consistency Services (DCS),
http://www.haifa.ibm.com/projects/systems/dcs/index.html

30. Dekel, E., Frenkel, O., Goft, G., Moatti, Y.: Easy: engineering high availability QoS in wser-
vices. In: Proc. 22nd Reliable Distributed Systems, pp. 157–166 (2003)

31. Dolev, D., Malkhi, D.: The Transis Approach to High Availability Cluster Communication.
Comm. ACM 39(4), 87–92 (1996)

32. Eugster, P.: Type-based Publish/Subscribe: Concepts and Experiences. ACM Transactions on
Programming Languages and Systems (TOPLAS) 29(1) (2007)

33. Eugster, P., Damm, C., Guerraoui, R.: Towards Safe Distributed Application Development.
In: ICSE, pp. 347–356 (2004)

34. Eugster, P., Guerraoui, R., Damm, C.: On Objects and Events. In: OOPSLA, pp. 254–269
(2001)

http://www.haifa.ibm.com/projects/systems/dcs/index.html

6 A History of the Virtual Synchrony Replication Model 119

35. Fischer, M., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one
faulty process (initially published in ACM PODS, August 1983). Journal of the ACM
(JACM) 32(2) (1985)

36. Guerraoui, R., Schiper, A.: Consensus Service: A Modular Approach for Building Agree-
ment Protocols in Distributed Systems. In: Proc. 26th FTCS, Japan, June 1996, pp. 168–177
(1996)

37. Hayden, M.: The Ensemble System. Ph.D. thesis, Cornell University, available as TR 98-
1662 (May 1998)

38. Herlihy, M., Wing, J.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM TOPLAS 12(3), 463–492 (1990)

39. Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An architecture for implementing network
protocols. IEEE Trans. Software Eng. 17(1) (1991)

40. Joseph, T.A., Birman, K.: Low Cost Management of Replicated Data in Fault-Tolerant Dis-
tributed Systems. ACM Trans. Comput. Syst. 4(1), 54–70 (1986)

41. Kaashoek, M.F., Tanenbaum, A.S., Verstoep, K.: Group Communication in Amoeba and its
Applications. Distributed Systems Engineering 1(1), 48–58 (1993)

42. Keidar, I., Dolev, D.: Increasing the Resilience of Atomic Commit at no Additional Cost. In:
ACM PODS, May 1995, pp. 245–254 (1995)

43. Keidar, I., Khazan, R., Lynch, N., Shvartsman, A.: An Inheritance-Based Technique for
Building Simulation Proofs Incrementally. ACM TOSEM 11(1) (2002)

44. Krumvieda, C.: Distributed ML: Abstractions for Efficient and Fault-Tolerant Programming.
Ph.D. thesis, Cornell University, available as TR 93-1376 (1993)

45. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Comm.
ACM 21(7) (1978)

46. Lamport, L.: Using Time Instead of Timeout for Fault-Tolerant Distributed Systems. ACM
TOPLAS 6(2) (1984)

47. Lamport, L.: The temporal logic of actions. ACM TOPLAS 16(3), 872–923 (1994)
48. Lamport, L.: The Part-Time Parliament (technical report version: 1990). ACM Transactions

on Computer Systems 16(2), 133–169 (1998)
49. Liskov, B., Scheifler, R.: Guardians and Actions: Linguistic Support for Robust, Distributed

Programs. ACM TOPLAS 5(3) (1983)
50. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.:

Building reliable, high-performance communication systems from components. In: 17th
ACM SOSP (Dec. 1999)

51. Lynch, N., Tuttle, M.: An Introduction to Input/Output automata (also Technical Memo
MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technol-
ogy). CWI Quarterly 2(3), 219–246 (1989)

52. Malloth, C.P., Felber, P., Schiper, A., Wilhelm, U.: Phoenix: A Toolkit for Building Fault-
Tolerant Distributed Applications in Large Scale. In: Proc. of IEEE Workshop on Parallel
and Distributed Platforms in Industrial Products, San Antonio, TX (Oct. 1995)

53. Malloth, C.P., Schiper, A.: View Synchronous Communication in the Internet. Tech. Rep.
94/84, EPFL (Oct. 1994)

54. Manferdelli, J.: Microsoft Corporation. Unpublished correspondence (Oct. 2007)
55. McKendry, M.S.: Clouds: A fault-tolerant distributed operating system. IEEE Tech. Com.

Distributed Processing Newsletter 2(6) (1984)
56. Mishra, S., Peterson, L.L., Schlichting, R.D.: Experience with modularity in Consul.

Software—Practice and Experience 23(10) (1993)
57. Moser, L.E., Amir, Y., Melliar-Smith, P.M., Agarwal, D.A.: Extended virtual synchrony. In:

Proceedings of the 14th IEEE International Conference on Distributed Computing Systems,
Poznan, Poland, June 1994, pp. 56–65 (1994)

58. Moser, L.E., Melliar-Smith, P.M., Agarwal, D., Budhia, R.K., Lingley-Papadopoulos, C.A.,
Archambault, T.: The Totem system. In: Proceedings of the 25th Annual International Sym-
posium on Fault-Tolerant Computing, Pasadena, CA (June 1995)

59. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P.: The Eternal System. In: Workshop on
Dependable Distributed Object Systems, OOPSLA’97, Atlanta, Georgia (October 1997)

120 K. Birman

60. Ostrowski, K., Birman, K., Dolev, D.: Live Distributed Objects: Enabling the Active Web.
IEEE Internet Computing (Nov./Dec. 2007)

61. Ostrowski, K., Birman, K., Dolev, D.: QuickSilver Scalable Multicast. In: Network Comput-
ing and Applications (NCA), Cambridge, MA (2008)

62. Ostrowski, K., Birman, K., Dolev, D., Ahnn, J.H.: Programming with live distributed objects.
In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 463–489. Springer, Heidelberg (2008)

63. Randell, B., Xu, J.: The Evolution of the Recovery Block Concept. In: Lyu, M.R. (ed.) Soft-
ware Fault Tolerance, pp. 1–21. John Wiley & Sons, Chichester (1995)

64. Reed, B., Junqueira, F., Konar, M.: Zookeeper: Because Building Distributed Systems is a
Zoo. Submitted for publication (Oct. 2007)

65. Ricciardi, A., Birman, K.: Using Process Groups to Implement Failure Detection in Asyn-
chronous Environments. In: PODC, pp. 341–353 (1991)

66. Schiper, A., Sandoz, A.: Uniform reliable multicast in a Virtually Synchronous Environment.
In: Proc. 13th ICDCS, Pittsburgh (May 1993)

67. Schiper, A., Sandoz, A.: Primary Partition “Virtually-Synchronous Communication” Harder
than Consensus. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 39–52.
Springer, Heidelberg (1994)

68. Schneider, F.: Implementing fault-tolerant services using the state machine approach: A tu-
torial. ACM Computing Surveys 22(4), 299–319 (1990)

69. Schneider, F., Schlichting, R.: Fail-stop processors: An approach to designing fault-tolerant
computing systems. TOCS 1(3), 222–238 (1983)

70. Skeen, D.: Nonblocking Commit Protocols. In: Proc. ACM SIGMOD, pp. 133–142 (1981)
71. Skeen, D.: Determining the Last Process to Fail. In: ACM PODS, pp. 16–24 (1983)
72. Van Renesse, R., Birman, K.: Reliable Distributed Computing with the Isis Toolkit. IEEE

Computer Society Press, Los Alamitos (1994)
73. Van Renesse, R., Birman, K., Maffeis, S.: Horus: A Flexible Group Communication System.

Communications of the ACM 39(4), special issue on Group Communication Systems (1996)

Chapter 7
From Viewstamped Replication to Byzantine
Fault Tolerance

Barbara Liskov

Abstract The paper provides an historical perspective about two replication proto-
cols, each of which was intended for practical deployment. The first is Viewstamped
Replication, which was developed in the 1980’s and allows a group of replicas to
continue to provide service in spite of a certain number of crashes among them.
The second is an extension of Viewstamped Replication that allows the group to
survive Byzantine (arbitrary) failures. Both protocols allow users to execute general
operations (thus they provide state machine replication); both were developed in the
Programming Methodology group at MIT.

7.1 Introduction

This paper describes two replication algorithms. The first, Viewstamped Replica-
tion, was developed in the 1980’s; it handles failures in which nodes fail by crash-
ing. The second, PBFT (for “Practical Byzantine Fault Tolerance”), was developed
in the late 1990’s and handles Byzantine failures in which failed nodes can behave
arbitrarily and maliciously. Both replication techniques were developed in my re-
search group, the Programming Methodology Group at the Massachusetts Institute
of Technology.

The paper has three goals:

• To describe Viewstamped Replication. The protocol is not very complex but this
was not evident in the papers that described it since they presented it in the con-
text of specific applications that used it. The goal in this paper is to strip out the
extra information and focus on the basics of the protocol.

• To show how PBFT is based on Viewstamped Replication. I believe that because
my group had developed Viewstamped Replication, we were in an advantageous
position relative to other groups when it came to working on replication tech-
niques that survived Byzantine failures. Furthermore, PBFT can be viewed as an
extension of Viewstamped Replication; the paper shows how this works.

• To provide some historical information about what was happening when these
two protocols were invented.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 121–149, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

122 B. Liskov

7.2 Prehistory

I began work in distributed computing in about 1980. Prior to that time I had been
working on data abstraction [21, 22] and the design of the CLU programming lan-
guage [20]. In the work on CLU I decided to focus on sequential programs since
there seemed to be enough other things to worry about. The work on CLU led to
the invention of a number of novel programming language constructs in addition to
support for data abstraction, including support for parametric polymorphism, itera-
tion abstraction, and exception handling. However, the design of CLU ignored all
issues of concurrency.

I always intended to return to consideration of concurrency when the design of
CLU was complete. However, when this happened in the late 1970’s, distributed
computing had become a possibility. At that point the Internet existed and it was
being used to send email and do file transfer. Additionally, it was hoped that the
Internet could be used to run applications distributed over many machines, but there
was little understanding of how that could be accomplished.

Therefore, I decided to focus on distributed computing rather than thinking just
about parallel programs that ran on a single machine. I started a project to define a
programming language for use in building distributed implementations. This work
led to the invention of a programming language and system called Argus [17, 19].

Argus was an object-oriented language. Its programs were composed of objects
called guardians, which provided operations called handlers. Each guardian ran
entirely on one machine. However a computation running in one guardian could
transfer control to another by making a handler call; these calls were one of the
early examples of remote procedure calls.

Additionally, Argus ran computations as atomic transactions. A transaction
started in some guardian, perhaps in response to input from a user. The execution
of the transaction could include remote handler calls, and these in turn might do
further remote calls. At the end, the transaction either committed, in which case all
modifications at all guardians had to be installed, or it aborted, in which case all its
modifications were undone. Additionally there could be many transactions running
in parallel, and Argus ensured that they did not conflict. In other words it provided
serializability for transactions.

One of our concerns in Argus was ensuring that effects of committed transactions
survived even in the presence of failures. Clearly one way to achieve this is to record
these effects on a stable storage medium, such as a disk, as part of committing
the transactions. However, that approach only ensures that modifications will not
be lost. It does not provide availability since there could be times when clients
are unable to access the information; in fact clients could see less availability over
what they could obtain by storing the information on their own machine since a
failure of either the client machine or the machine that stored the information would
make the information unavailable. Additionally, distributed computing provides the
possibility of better availability for clients: with enough replicas we could ensure
that the service would always be available with high probability.

7 From Viewstamped Replication to Byzantine Fault Tolerance 123

The question then became how to achieve a correct and efficient replication pro-
tocol. This concern led to the development of Viewstamped Replication.

7.3 Viewstamped Replication

Viewstamped Replication, which I will refer to as VR from now on, was invented
by Brian Oki and myself. The goal was to support a replicated service, running on
a number of replicas. The service maintains a state, and makes that state accessible
to a set of client machines.

VR was intended from the outset to satisfy two goals. The first was to provide
a system where the user code running on the client machines could be unaware
that it was dealing with a replicated service. As far as this code was concerned it
was interacting with a service provided by a single server, albeit one that was more
available than one might expect if the service ran on a single machine. Thus we
required that the effect of running operations against the service be identical to what
would happen if there were just one copy of the information [27, 2].

The second goal for VR was to provide state machine replication [13, 30]: clients
could run general operations to observe and modify the service state. An alterna-
tive to state machine replication is to provide clients only the ability to read and
overwrite individual words or blocks. To illustrate the difference between these two
approaches, consider a banking system that provides operations to deposit and with-
draw money from an account, as well as operations to observe an account balance
and to transfer money from one account to another. These operations typically in-
volve both reads and writes of the system state. State machine replication allows the
banking system to be implemented directly: the replicated service provides opera-
tions to deposit, withdraw, etc. If only reads and writes are provided, the operations
and the synchronization of concurrent requests must be implemented by the appli-
cation code. Thus state machine replication provides more expressive power than
the alternative, and simplifies what application code needs to do. The decision to
support state machine replication meshed with the goal of Argus to make it easier
to implement applications.

State machine replication requires that replicas start in the same initial state, and
that operations be deterministic. Given these assumptions, it is easy to see that repli-
cas will end up in the same state if they execute the same sequence of operations.
The challenge for the replication protocol is to ensure that operations execute in the
same order at all replicas in spite of failures.

VR was developed under the assumption that the only way nodes fail is by
crashing: we assumed that a machine was either functioning correctly or it was
completely stopped. We made a conscious decision to ignore Byzantine failures,
in which nodes can fail arbitrarily, perhaps due to an attack by a malicious party.
At the time, crashes happened fairly frequently and therefore they seemed the most
important to cope with. Additionally, the crash model is simpler to handle than the
Byzantine model, and we thought we had enough to deal with trying to invent a
replication method for it.

124 B. Liskov

VR was intended to work in an asynchronous network, like the Internet, in which
the non-arrival of a message indicates nothing about the state of its sender. We as-
sumed that messages might be lost, delivered late or out of order, and delivered more
than once; however, we assumed that if sent repeatedly a message would eventually
be delivered. Messages might be corrupted in transit, but we assumed we could dis-
tinguish good and bad messages, e.g., through checksums. We did not consider a
malicious party that controls the network and therefore we did not think about the
need to use cryptography to prevent spoofing.

Brian and I began working on replication in the fall of 1985. Brian completed his
Ph.D. thesis in May 1988 [26] and a paper on our approach appeared in PODC in
August 1988 [25]. These papers explained replication within the context of support
for distributed transactions. In this paper I focus on just the replication protocol and
ignore the details of how to run transactions. The description of VR provided here
is very close to what appeared in 1988; I discuss the differences in Section 7.5.1.

A later project on the Harp file system applied VR to building a highly available
file system. A paper on Harp appeared in SOSP in 1991 [18]. The Harp project
extended VR to provide efficient recovery of failed replicas. It also introduced two
important optimizations, to speed up the processing of read operations, and to reduce
the number of replicas involved in normal case execution.

The work on VR occurred at about the same time as the work on Paxos [14, 15]
and without knowledge of that work.

The papers on VR and Harp distinguished what was needed for replication from
what was needed for the application (transaction processing in VR, a file system
in Harp), but in each case a specific application was also described. In this paper I
focus on VR as a generic replication service, independent of the application.

7.3.1 Replica Groups

VR ensures reliability and availability when no more than a threshold of f replicas
are faulty. It does this by using replica groups of size 2 f + 1; this is the minimal
number of replicas in an asynchronous network under the crash failure model. The
rationale for needing this many replicas is as follows. We have to be able to carry
out a request without f replicas participating, since those replicas might be crashed
and unable to reply. However, it is possible that the f replicas we didn’t hear from
are merely slow to reply, e.g., because of congestion in the network. In this case up
to f of the replicas that processed the operation might fail after doing so. Therefore
we require that at least f + 1 replicas participate in processing the operation, since
this way we can guarantee that at least one replica both processed the request and
didn’t fail subsequently. Thus the smallest group we can run with is of size 2 f + 1.

The membership of the replica group was fixed in VR. If a replica crashed, then
when it recovered it rejoined the group and continued to carry out the replication
protocol.

7 From Viewstamped Replication to Byzantine Fault Tolerance 125

7.3.2 Architecture

The architecture for running VR is presented in Figure 7.1. The figure shows some
client machines that are using VR, which is running on 3 replicas; thus f = 1 in
this example. Client machines run the user code on top of the VR proxy. The user
code communicates with VR by making operation calls to the proxy. The proxy then
communicates with the replicas to cause the operation to be carried out and returns
the result to the client when the operation has completed.

The replicas run code for the service that is being replicated using VR, e.g., the
banking service. The replicas also run the VR code. The VR code accepts requests
from client proxies, carries out the protocol, and when the request is ready to be
executed, causes this to happen by making an up-call to the service code at the
replica. The service code executes the call and returns the result to the VR code,
which sends it in a message to the client proxy that made the request.

Fig. 7.1 VR Architecture; the figure shows the configuration when f = 1.

7.3.3 Approach

One key requirement for a replication protocol is to ensure that every operation
executed by the replica group survives into the future in spite of up to f failures.
The second key requirement is providing a means to handle concurrent client oper-
ations. State machine replication requires a single total ordering of client requests;
the challenge is to ensure this when client requests are made concurrently.

Very early in our work on VR, we settled on an approach to replication that uses
a primary. The primary is just one of the replicas, but it has a special responsibility:
it decides on the order for client requests. This way we provide an easy solution to
the ordering requirement. Additionally the primary executes the client request and
returns the result to the client, but it does this only after at least f + 1 replicas (in-
cluding itself) know about the request. Thus we ensure that no matter what happens
in the future, at least one non-faulty replica knows about the request.

126 B. Liskov

The downside of having a primary, however, is that it might fail, yet the protocol
needs to continue. Furthermore the continuation must be a legal extension of what
happened in the past: the state of the system must reflect all client operations that
were previously executed, in the previously selected order.

Our solution to the problem of a faulty primary is to allow different replicas to
assume this role over time. The system moves through a sequence of views. In each
view one of the replicas is selected to be the primary. The other replicas monitor the
primary, and if it appears to be faulty, they carry out a view change protocol to select
a new primary.

Thus VR consists of three protocols, to handle processing of requests, view
changes, and also node recovery. These protocols are described in the next section.

7.4 The VR Protocol

This section describes how VR works.
Figure 7.2 shows the state of the VR layer at a replica. The identity of the primary

isn’t recorded in the state but rather is computed from the view-number; the primary
is chosen round-robin, starting with replica 1, as the system moves to new views.
A status of normal indicates the replica is handling client requests; this case is dis-
cussed in Section 7.4.1. A status of view-change indicates a replica is engaged in
carrying out the view change protocol, which is discussed in Section 7.4.2. A node
that has crashed and recovered has a status of recovering while it interacts with the
other replicas to find out what happened while it was failed; recovery is discussed
in Section 7.4.3.

The client-side proxy also has state. It records the configuration and what it be-
lieves is the current view-number, which allows it to know which replica is currently
the primary. In addition it records its own client-id and a count of the number of re-
quests it has made. A client is allowed to have only a single outstanding request at a
time. Each request is given a number by the client and later requests must have larger
numbers than earlier ones. The request number is used by the replicas to avoid run-
ning requests more than once and therefore if a client crashes and recovers it must
start up with a number larger than what it had before it failed; otherwise its request
will be ignored. The request number is also used by the client to discard duplicate
responses to its requests.

Every message sent to the client informs it of the current view-number; this al-
lows the client to track the primary. Every message sent from one replica to another
contains the view-number known to the sender. Replicas only process messages that
match the view-number they know. If the sender has a smaller view-number, the
receiver discards the message but sends a response containing the current view-
number. If the sender is ahead, the replica performs a state transfer: it requests
information it is missing from the other replicas and uses this information to bring
itself up to date before processing the message.

7 From Viewstamped Replication to Byzantine Fault Tolerance 127

• The configuration, i.e., the IP address and replica number for each of the 2 f + 1 replicas.
The replicas are numbered 1 to 2 f +1. Each replica also knows its own replica number.

• The current view-number, initially 0.
• The current status, either normal, view-change, or recovering.
• The op-number assigned to the most recently received request, initially 0.
• The log. This is an array containing op-number entries. The entries contain the requests that

have been received so far in their assigned order.
• The client-table. This records for each client the number of its most recent request, plus, if

the request has been executed, the result sent for that request.

Fig. 7.2 VR state at a replica.

7.4.1 Normal Operation

This section describes how VR works when the primary isn’t faulty. The protocol
description assumes that the status of each participating replica is normal, i.e., it is
handling client requests; this assumption is critical for correctness as discussed in
Section 7.4.2.

The protocol description assumes the client and all the participating replicas are
in the same view; nodes handle different view numbers as described above. The de-
scription ignores a number of minor details, such as re-sending requests that haven’t
received responses. It assumes that each client request is a new one, and ignores
suppression of duplicates. Duplicates are suppressed using the client-table, which
allows old requests to be discarded, and the response for the most recent request to
be re-sent.

The request processing protocol works as follows:

1. The client sends a 〈REQUEST op, c, s, v〉message to the primary, where op is the
operation (with its arguments) the client wants to run, c is the client-id, s is the
number assigned to the request, and v is the view-number known to the client.

2. When the primary receives the request, it advances op-number and adds the re-
quest to the end of the log. Then it sends a 〈PREPARE m, v, n〉 message to the
other replicas, where m is the message it received from the client, n is the op-
number it assigned to the request, and v is the current view-number.

3. Non-primary replicas process PREPARE messages in order: a replica won’t ac-
cept a prepare with op-number n until it has entries for all earlier requests in its
log. When a non-primary replica i receives a PREPARE message, it waits until it
has entries in its log for all earlier requests (doing state transfer if necessary to
get the missing information). Then it adds the request to the end of its log and
sends a 〈PREPAREOK v, n, i〉 message to the primary.

4. The primary waits for f PREPAREOK messages from different replicas; at this
point it considers the operation to be committed. Then, after it has executed all
earlier operations (those assigned smaller op-numbers), the primary executes the
operation by making an up-call to the service code, and sends a 〈REPLY v, s,
x〉 message to the client; here v is the view-number, s is the number the client
provided in the request, and x is the result of the up-call.

128 B. Liskov

5. At some point after the operation has committed, the primary informs the other
replicas about the commit. This need not be done immediately. A good time to
send this information is on the next PREPARE message, as piggy-backed infor-
mation; only the op-number of the most recent committed operation needs to be
sent.

6. When a non-primary replica learns of a commit, it waits until it has executed
all earlier operations and until it has the request in its log. Then it executes the
operation by performing the up-call to the service code, but does not send the
reply to the client.

Figure 7.3 shows the phases of the normal processing protocol.

Fig. 7.3 Normal case processing in VR for a configuration with f = 1.

The protocol could be modified to allow non-primary replicas to process PREPARE

messages out of order in Step 3. However there is no great benefit in doing things
this way, and it complicates the view change protocol. Therefore VR processes PRE-
PARE messages in op-number order.

The protocol need not involve any writing to disk. For example, replicas do not
need to write the log to disk when they add the operation to the log. This point is
discussed further in Section 7.4.3.

7.4.2 View Changes

View changes are used to mask failures of the primary.
Non-primary replicas monitor the primary: they expect to hear from it regularly.

Normally the primary is sending PREPARE and COMMIT messages, but if it is idle
(due to no requests) it sends pings. If a timeout expires without communication (and
after some retries), the replicas carry out a view change to switch to a new primary.
Additionally, if the client receives no reply to a request, it resends the request to all;
this way it learns about the new view, and also prompts the new primary to send it
the reply.

The correctness condition for view changes is that every operation that has been
executed by means of the up-call to the service code at one of the replicas must
survive into the new view in the order selected for it at the time it was executed.
This up-call is usually done at the old primary first, and the replicas carrying out

7 From Viewstamped Replication to Byzantine Fault Tolerance 129

the view change may not know whether the up-call occurred. However, the up-call
occurs only for committed operations. This means that the primary has received at
least f PREPAREOK messages from other replicas, and this in turn implies that the
operation has been recorded in the logs of at least f + 1 replicas (the primary and
the f replicas that sent the PREPAREOK messages).

Therefore the view change protocol must obtain information from the logs of at
least f + 1 replicas. This is sufficient to ensure that all committed operations will
be known, since each must be recorded in at least one of these logs. Operations that
had not committed might also survive, but this is not a problem: it is beneficial to
have as many operations survive as possible.

However, it’s impossible to guarantee that every client request that was preparing
when the view change occurred makes it into the new view. For example, operation
25 might have been preparing when the view change happened, but none of the
replicas that knew about it participated in the view change protocol and as a result
the new primary knows nothing about operation 25 and might assign this number
to a different operation. However if two operations are assigned the same number,
how can we ensure that the right one is executed at that point in the order?

To solve this problem, we introduced the notion of a viewstamp. A viewstamp is
a pair 〈view-number, op-number〉, with the natural order: the view-number is consid-
ered first, and then the op-number for two viewstamps with the same view-number.
Operations are assigned viewstamps: each operation processed by the primary of
view v has a viewstamp with that view number, and we associate a viewstamp with
every entry in the log. VR guarantees that viewstamps are unique: different client
requests are never assigned the same viewstamp. Should a replica receive informa-
tion about two different operations with the same op-number it retains the operation
with the higher viewstamp.

VR got its name from these viewstamps.
Viewstamps are used in the view change protocol, which works as follows. Again

the presentation ignores minor details having to do with filtering of duplicate mes-
sages and with re-sending of messages that appear to have been lost.

1. A replica i that suspects the primary is faulty advances its view-number, sets its
status to view-change, and sends a 〈DOVIEWCHANGE v, l, k, i〉 to the node that
will be the primary of the next view (recall that the identity of the primary can be
determined from the view number). Here v is its view-number, l is the replica’s
log, and k is the op-number of the latest committed request known to the replica.

2. When the new primary receives f + 1 of these messages from different replicas,
including itself, it selects as the new log the most recent of those it received in
these messages: this is the one whose topmost entry has the largest viewstamp.
It sets the op-number to that of the latest entry in the new log, changes its status
to normal, and informs the other replicas of the completion of the view change
by sending a 〈STARTVIEW v, l, k〉 message, where l is the new log and k is the
op-number of the latest committed request it heard about in the responses.

3. The new primary executes (in order) any committed operations that it hadn’t
executed previously, sends the replies to the clients, and starts accepting client
requests.

130 B. Liskov

4. When other replicas receive the STARTVIEW message, they replace their log with
that in the message, set their op-number to that of the latest entry in the log, set
their view-number to the view number in the message, and change their status to
normal. Then they continue the protocol for all operations not yet known to be
committed by sending PREPAREOK messages for these operations.

A view change may not succeed, e.g., because the new primary fails. In this case the
replicas will start a further view change, with yet another primary.

To avoid storing a viewstamp in every log entry, VR maintained this informa-
tion in an auxiliary view-table. The view-table contained for each view up to and
including the current one the op-number of the latest request known in that view.

The view-table can be used to improve the performance of the view change pro-
tocol. The protocol described above is costly because the DOVIEWCHANGE and
STARTVIEW messages contain the full log and therefore are large. The cost can be
greatly reduced by sending only a suffix of the log in the messages. To send less
than the full log, however, requires a way to bring a replica that has missed some
earlier view changes up to date. That replica may have requests in its log that were
renumbered in subsequent view changes that it didn’t participate in. The view-table
can be used to quickly determine which of its log entries need to be replaced; then
it can be brought up to date by providing it with the requests it is missing.

The view table can also be used during state transfer to identify the information
needed to bring the replica up to date.

Correctness

Safety. The correctness condition for view changes is that every committed opera-
tion survives into all subsequent views in the same position in the serial order. This
condition implies that any request that had been executed retains its place in the
order.

Clearly this condition holds in the first view. Assuming it holds in view v, the
protocol will ensure that it also holds in the next view, v’. The reasoning is as fol-
lows:

Normal case processing ensures that any operation o that committed in view v is
known to at least f + 1 replicas, each of which also knows all operations ordered
before o, including (by assumption) all operations committed in views before v. The
view change protocol starts the new view with the most recent log received from
f +1 replicas. Since none of these replicas accepts PREPARE messages from the old
primary after sending the DOVIEWCHANGE message, the most recent log contains
the latest operation committed in view v (and all earlier operations). Therefore all
operations committed in views before v′ are present in the log that starts view v′ in
their previously assigned order.

It’s worth noting that it is crucial that replicas stop accepting PREPARE messages
from earlier views once they start the view change protocol. Without this constraint
the system could get into a state in which there are two active primaries: the old
one, which hasn’t failed but is merely slow or not well connected to the network,
and the new one. If a replica sent a PREPAREOK message to the old primary after

7 From Viewstamped Replication to Byzantine Fault Tolerance 131

sending its log to the new one, the old primary might commit an operation that the
new primary doesn’t learn about in the DOVIEWCHANGE messages.

Liveness. The protocol executes client requests provided a group of at least f +1
non-failed replicas is able to communicate. This follows because if the replicas are
unable to execute the client request in the current view, they will move to a new
one. Replicas monitor the primary and start a view change if the primary is un-
responsive. Furthermore, once a node has advanced its view-number it no longer
accepts messages from older views; instead it informs senders in older views about
the new view. This in turn causes those replicas to advance their view-number and
to take steps to move to that view. As a result the new primary will receive enough
DOVIEWCHANGE messages to enable it to start the next view. And once this hap-
pens it will be able to carry out client requests. Additionally, clients send their re-
quests to all replicas if they don’t hear from the primary, and thus learn about new
views and cause requests to be executed in a later view if necessary.

More generally liveness depends on properly setting the timeouts used to deter-
mine whether the primary is faulty so as to avoid unnecessary view changes.

7.4.3 Recovery

VR assumes a fixed group of replicas. When a replica recovers after a crash it rejoins
the system, so that it can start acting as one of the group members again. A replica
is considered to be failed from the moment it crashes until the moment when it is
ready to rejoin the group.

If nodes record their state on disk before sending messages, a node will be able
to rejoin the system immediately. The reason is that in this case a recovering node
is the same as a node that has been unable to communicate for some period of time:
its state is old but it hasn’t forgotten anything it did before. However, running the
protocol this way is unattractive since it adds a delay to normal case processing: the
primary would need to write to disk before sending the PREPARE message, and the
other replicas would need to write to disk before sending the PREPAREOK response.

Furthermore, it is unnecessary to do the disk write because the state is also stored
at the other replicas and can be retrieved from them, using a recovery protocol.
Retrieving state will be successful provided replicas are failure independent, i.e.,
highly unlikely to fail at the same time. If all replicas were to fail simultaneously,
state will be lost if the information on disk isn’t up to date; with failure independence
a simultaneous failure is unlikely. Failure independence can be accomplished by
placing the replicas at different geographical locations to avoid loss of availability
when there is a power failure or some local problem like a fire.

VR assumed failure independence and did not require writing to disk during
normal case processing. Instead it wrote to disk during the view change. This section
describes a recovery protocol that assumes the disk write during a view change. A
protocol that requires no disk writes even during the view change is described in
Section 7.4.3.

Each replica has non-volatile state consisting of the configuration and the view-
number of the latest view it knows; the rest of the state, e.g., the log, is volatile.

132 B. Liskov

The view change protocol is modified slightly, to update the view-number on
disk. A non-primary replica does the disk write before sending its log in the
DOVIEWCHANGE message and the primary does the disk write before sending the
STARTVIEW message to the other replicas.

When a node recovers it reads the non-volatile information from disk and sets
its status to recovering. It also computes a starting view-number: this is what it read
from disk, except that if it would be the primary of this view, it advances this number
by one. Then it carries out the recovery protocol.

While a replica’s status is recovering it does not participate in either the request
processing protocol or the view change protocol.

The recovery protocol is as follows:

1. The recovering replica, r, sends a 〈RECOVERY v, r〉message to all other replicas,
where v is its starting view-number.

2. A replica i replies to a RECOVERY message only when its status is normal, its
view-number ≥ v, and it is the primary of its view. In this case the replica sends
a 〈RECOVERYRESPONSE v, l, k, i〉 message to the recovering replica, where v is
its view-number, l is its log, and k is the latest committed request.

3. The recovering replica waits to receive a RECOVERYRESPONSE message. Then
it updates its state using the information in the message. It writes the new view-
number to disk if it is larger than what was stored on disk previously, changes its
status to normal, and the recovery protocol is complete. The replica then sends
PREPAREOK messages for all uncommitted requests.

The protocol just described is expensive because logs are big and therefore the mes-
sages are big. A way to reduce this expense is discussed in Section 7.5.6.

Correctness

The recovery protocol is correct because it guarantees that when a recovering replica
changes its status to normal it does so in a state at least as recent as what it knew
when it failed. This condition is sufficient to ensure that any action the replica took
before it fails, such as sending a DOVIEWCHANGE message, will be reflected in its
state.

The reason why the condition holds is because the recovering replica always
starts up in a view at least as recent as the view it was in when it failed, and it gets
its state from the primary of that view, which ensures it learns the latest state of the
view. In more detail, there are three cases of interest:

1. If before it failed the replica had just sent a PREPAREOK response to a PREPARE

message, when it recovers it will either hear from the primary that sent that PRE-
PARE message, or from the primary of a later view. In the former case, the log
it receives will include the operation it sent a PREPAREOK message for previ-
ously. In the latter case, the log will reflect a later state that takes account of its
PREPAREOK message if it mattered, i.e., if it led to a commit.

7 From Viewstamped Replication to Byzantine Fault Tolerance 133

2. If before it failed the replica had just sent a DOVIEWCHANGE message contain-
ing its log, when it recovers it will either hear from the primary of that view,
or from the primary of a later view. In the former case it will receive a log that
takes account of its message if it was used by the primary; in the latter case, it
will receive a log that reflects a later state that takes account of its message if it
mattered for moving to the later view.

3. If before it failed the node had just sent a RECOVERYRESPONSE message then
it was the primary when it failed and therefore when it recovers it will hear from
a primary of a later view. The log it receives from this primary will reflect a later
state that takes account of this RECOVERYRESPONSE message if it mattered for
moving to the later view.

Avoiding Non-volatile Storage

It is possible to avoid any use of non-volatile storage during the protocol. This can
be accomplished by adding a “pre-phase” to the view change protocol:

1. A replica i that notices the need for a view change advances its view-number, sets
its status to view-change, and sends a 〈STARTVIEWCHANGE v, i〉message to the
other replicas, where v identifies the new view.

2. When replica i receives f + 1 STARTVIEWCHANGE messages from different
replicas, including itself, it sends a 〈DOVIEWCHANGE v, l, k, i〉 message to the
new primary.

After this point the view change protocol proceeds as described previously.
The recovery protocol also needs to be a bit different:

1. The recovering replica, r, sends a 〈RECOVERY r〉 message to all other replicas.
2. A replica i replies to a RECOVERY message only when its status is normal. In

this case the replica sends a 〈RECOVERYRESPONSE v, l, k, i〉 message to the
recovering replica, where v is its view-number. If i is the primary of its view, l is
its log, and k is the latest committed request; otherwise, these values are nil.

3. The recovering replica waits to receive f + 1 RECOVERYRESPONSE messages
from different replicas, including one from the primary of the latest view it learns
of in these messages. Then it updates its state using the information from the
primary, changes its status to normal, and the recovery protocol is complete. The
replica then sends PREPAREOK messages for all uncommitted requests.

This protocol works (in conjunction with the revised view change protocol) because
it is using the volatile state at f + 1 replicas as stable state. When a replica recovers
it doesn’t know what view it was in when it failed and therefore it can’t send this
information in the RECOVERY message. However, when it receives f + 1 responses
to its RECOVERY message, it is certain to learn of a view at least as recent as the
one that existed when it sent its last PREPAREOK, DOVIEWCHANGE, or RECOV-
ERYRESPONSE message.

134 B. Liskov

7.5 Discussion of VR

7.5.1 Differences from the Original

The protocol described in the previous section is close to what was described in the
VR papers, but there are a few differences. In all cases, the technique described here
was adopted from our later work on Byzantine fault tolerance.

First, in the original protocol only replicas that participated in the view change for
a particular view were considered to be in that view. This means that view changes
happened more frequently than in the protocol described in this paper. In the proto-
col described here, view changes happen only to mask a failed primary (or a primary
that appears to be failed, but is merely slow or has trouble communicating). In the
original protocol, a view change was also needed when a non-primary replica failed
or became partitioned from the group, and another view change was needed when
the replica recovered or the partition healed.

Second, in the original protocol the primary was chosen differently. Rather than
being selected deterministically based on the view-number, as discussed here, it was
chosen at the end of the view change to be the replica with the largest log. This
allowed the old primary to continue in this role in view changes that were run for
other reasons than failure of the primary.

Third, in the original protocol, replicas competed to run a view change. Several
replicas might be running the protocol at once; each of them collected state infor-
mation from the other replicas and since they might end up with a different initial
state for the next view, there had to be a way to choose between them. The approach
presented in this paper takes advantage of our way of choosing the primary (using
just the view-number) to avoid this problem by having the primary of the next view
determine the initial state of the view.

A final point is that in the original protocol, replicas exchanged “I’m alive” mes-
sages. These exchanges allowed them to notice failures of other replicas and thus do
view changes; they were needed because a failure or recovery of any replica led to a
view change. The protocol described here instead depends on the client sending to
all replicas when it doesn’t get a response.

7.5.2 Two-Phase Commit

Clearly VR was heavily influenced by the earlier work on two-phase commit [10].
Our primary is like the coordinator, and the other replicas are like the participants.
Furthermore the steps of the protocol are similar to those in 2PC and even have
names (prepare, commit) that come from 2PC. However, unlike in two-phase com-
mit, there is no window of vulnerability in VR: there is never a time when a failure of
the primary prevents the system from moving forward (provided there are no more
than f simultaneous failures). In fact, VR can be used to replicate the coordinator
of two-phase commit in order to avoid this problem.

7 From Viewstamped Replication to Byzantine Fault Tolerance 135

7.5.3 Optimizations

Latency

As illustrated in Figure 7.3, the VR protocol requires four message delays to process
operations. This delay can be reduced for both read operations that observe but do
not modify the state and update operations that both observe and modify the state.

Read Operations. The paper on Harp [18] proposed a way to reduce the delay to
two messages for reads. The primary immediately executed such a request by mak-
ing an up-call to the service code, and sent the result to the client, without any com-
munication with the other replicas. This communication is not needed because read
operations don’t modify state and therefore need not survive into the next view. This
approach not only reduced the latency of reads (to the same message exchange that
would be needed for a non-replicated service); it also reduced bandwidth utiliza-
tion and improved throughput since PREPARE messages for read operations didn’t
need to be sent to the other replicas (although it isn’t clear that Harp took advantage
of this).

However, executing read operations this way would not be correct if it were pos-
sible that a view change had occurred that selected a new primary, yet the old one
didn’t know about this. Such a situation could occur, for example, if there were a
network partition that isolated the old primary from the other replicas, or if the old
primary were overloaded and stopped participating in the protocol for some period
of time. In this case the old primary might return a result for the read operations
based on old state, and this could lead to a violation of external consistency [9]. To
prevent this violation, Harp used leases: the primary processed reads unilaterally
only if it held valid leases from f other replicas, and a new view could start only
when the leases at all participants in the view change protocol had expired. The
Harp mechanism depended on loosely-synchronized clocks for correctness [24]. In
fact it is easy to see that loosely synchronized clock rates (i.e., assuming a bound on
the skew of the rates at which the clocks tick) are all that is needed.

Updates. One message delay can be removed from operations that modify the ser-
vice state as follows. When a replica receives the PREPARE message, in addition
to sending a PREPAREOK message to the primary it does the up-call (after it has
executed all earlier requests) and sends a reply to the client. The client must wait
for f +1 replies; this way we are certain that the operation has committed since it is
known at this many replicas.

The approach leads to a delay of 3 messages to run an update. The revised proto-
col requires more messages, since the non-primaries must reply to the client (as well
as to the primary). However, these messages can be small: the client can identify a
“preferred” replier, and only this replica needs to send the full reply; the others just
send an ack.

A final point is that reduced latency for updates is possible only with some help
from the service code. The problem is that the update requests are being executed
speculatively, since up-calls are made before the operation commits. Therefore it’s

136 B. Liskov

possible that a view change will make it necessary to undo the effects of that up-call
on the service state.

The optimization for updates was not proposed in Harp, but instead is based on
later work done on Byzantine-fault tolerance as discussed in Section 7.8.2.

Witnesses

Another innovation in Harp was a way to avoid having all replicas run the service.
In Harp the group of 2 f + 1 replicas included f + 1 active replicas that stored the
system state and executed operations. The other f replicas, which were referred to as
witnesses, did not. The primary was always an active replica. The witnesses didn’t
need to be involved in the normal case protocol at all as long as the f + 1 active
replicas were processing operations. Witnesses were needed for view changes, and
also to fill in for active replicas when they weren’t responding. However most of
the time witnesses could be doing other work; only the active replicas had to be
dedicated to the service.

7.5.4 Performance in the Normal Case

Avoiding disk writes during operation execution provides the opportunity for VR
to outperform a non-replicated service in the case where the message delay to the
replicas is less than the delay due to a disk I/O.

The Harp paper shows this effect. The paper presents results for NFS [29] run-
ning the Andrew benchmark [11] and also Nhfstone [31], for a configuration where
the communication delay between the replicas was about 5 ms. In both cases Harp
was able to do better than an unreplicated system. The paper reports that in addi-
tion the system saturated at a higher load than the unreplicated system did. In these
experiments, the gain came from avoiding synchronous disk I/O in the foreground;
these disk writes are required for update operations done at a single machine by the
NFS specification.

At the time we did the work on Harp, a delay of 5 ms was possible only on a
local area net. Harp ran in such a setting; Harp placed all replicas in the same data
center connected by a local area network. This was not an ideal set up, because, as
mentioned earlier, the replicas ought to be failure independent. The paper on Harp
proposed a partial solution for the failure-independence problem, by handling power
failures. Each replica had an Uninterruptible Power Supply, to allow nodes to write
some information to disk in the case of a power failure. Harp pushed the log to
disk on a regular basis (in the background), so that it would be able to write what
remained in volatile memory to disk in the case of a power failure.

Today we need not sacrifice failure independence to outperform an unreplicated
system. Instead we can place replicas in different data centers to achieve failure
independence, yet still have a communication delay that is smaller than writing to
disk.

7 From Viewstamped Replication to Byzantine Fault Tolerance 137

7.5.5 Performance of View Changes

The Harp project also addressed the problem of efficient view changes.
The view change protocol is lightweight: there is only a single message delay

from the time the replicas decide a view change is needed until the new primary
has the state of the new view. After this point the primary can run the protocol for
uncommitted requests and it can accept new requests. However it cannot execute
these requests until it has executed all earlier ones.

Harp ensured that a new primary can start processing new requests with little de-
lay. It accomplished this by having non-primary replicas execute operations eagerly,
so that they were almost up to date when they took over as primary.

7.5.6 State Management

When a replica recovers from a crash it needs to bring itself up to date. The question
is how to do this efficiently.

One way for a replica to recover its state after a crash is to start with the initial
application state and re-run the log from the beginning. But clearly this is not a
practical way to proceed, since the log can get very large, and recovery can take a
long time, even if we eliminate read operations and updates whose modifications
are no longer needed, e.g., modifications of files that were subsequently deleted.

Harp had a more efficient solution that took advantage of non-volatile state at
the replica, namely the state of the service running at the replica. Given this state, it
is only necessary to run the requests in the suffix of the log after the latest request
executed before the replica failed. Doing things this way allowed the size of the
log to be reduced, since only the suffix was needed, and greatly shortened the time
needed to recover.

The solution in Harp was to retain a log suffix large enough to allow any active
replica to recover. (Recall that Harp had f +1 active replicas and f witnesses that did
not store state nor participate in normal processing when the active replicas were not
faulty.) Each active replica tracked when effects of requests made it to disk locally.
As soon as the effects of a request had made it to disk at all active replicas, the
request could be removed from the log. In Harp this point was reached speedily in
the normal case of no failures of active replicas because even non-primary replicas
executed requests eagerly, as discussed in the preceding section. Removal of log
entries stalled while an active replica was out of service and therefore the log was
certain to contain all requests that replica might not have processed. When an active
replica recovered, it fetched the log from the other replicas, and re-ran the requests
in log order.

This approach ensures that all requests needed to recover the replica state exist
in the log. But it leads to the possibility that an operation might be executed both
before a node fails and again as part of recovery. Note that even if a replica wrote the
latest viewstamp to disk each time it executed an operation, it cannot know for sure
whether the service code executed the operation before the failure. And in general
we would like to avoid writing the viewstamp to disk on each operation.

138 B. Liskov

Of course there is no difficulty in re-executing operations on the service state
if those operations are idempotent. The solution in Harp was to make operations
idempotent by doing extra processing. It pre-processed operations at the primary to
predict their outcome, and stored this extra information along with the request in the
log. For example, if the request created a file in a directory, Harp predicted the slot
into which the file would be placed and stored the slot number in the log. Therefore,
when the operation re-ran, the file would be placed in that slot, even though this is
not where it would have gone based on the current state (which recorded the result
of operations ordered after that one).

In the work on Byzantine-fault tolerance, we came up with a different approach
that avoided the need to make operations idempotent. That approach is discussed
briefly in Section 7.8.4.

7.5.7 Non-deterministic Operations

State machine replication requires that each operation be deterministic. However,
applications frequently have non-deterministic operations. For example, reads and
writes are non-deterministic in NFS because they require setting “time-last-read”
and “time-last-modified”. If this is accomplished by having each replica read its
clock independently, the states at the replicas will diverge.

The paper on Harp explained how to solve the problem, using the same pre-
processing approach that was used to provide idempotency. The primary prepro-
cessed the operation to predict the outcome and sent the information to the other
replicas in the PREPARE message. All replicas then used the predicted outcome
when the request was executed.

7.6 Byzantine Fault Tolerance

After the end of the Harp project, we stopped working on replication protocols for
a while. Then toward the end of 1997, DARPA published a Broad Area Announce-
ment (BAA) requesting proposals on the topic of survivability, and I asked Miguel
Castro, who was a student in my group at the time, to think about how we might
respond.

By this time there was a realization that malicious attacks and Byzantine behavior
needed to be dealt with, and this kind of issue was central to the BAA. Looking at
this BAA got us interested in Byzantine-fault-tolerant replication protocols, and we
began trying to invent such a protocol. This work led to PBFT, the first practical
replication protocol that handles Byzantine faults.

A first paper on PBFT was published in OSDI 1999 [5]. That paper described the
basic approach using public-key cryptography and it did not include the recovery
mechanism. The complete protocol is described in in OSDI 2000 [6], in TOCS [7],
and also in Miguel’s Ph.D. thesis [4].

In this section I do not attempt to describe PBFT, which is well-covered in the
literature. What I do instead is to present a simplified version of PBFT, similar to
what was described in the first OSDI paper, with the goal of showing how PBFT

7 From Viewstamped Replication to Byzantine Fault Tolerance 139

grew out of VR. In retrospect PBFT can be seen as an extension of VR to handle
the possibility of Byzantine-faulty nodes. However, it was far from straightforward
to come up with the extension at the time we were doing the work.

In addition to extending VR to handle Byzantine nodes, PBFT introduced an in-
novation in the form of proactive recovery, and provided a number of optimizations
to improve performance; a brief discussion is provided in Section 7.8.

7.6.1 Approach

Like VR, PBFT ensures reliability and availability when up to f replicas are faulty.
However, it allows replicas to fail in a Byzantine manner. This means they can be-
have arbitrarily: in addition to not replying to requests, or to replying in obviously
bad ways, they can also appear to be working correctly as far as other nodes can
tell. For example, they might appear to accept modification requests, yet discard the
state.

PBFT uses 3 f + 1 replicas to tolerate up to f faulty nodes; this many replicas
is known to be the minimum required in an asynchronous network [3]. The system
must be able to execute a request using responses from 2 f + 1 replicas. It can’t
require more than this many replies because the other f replicas might be faulty and
not replying. However, the f replicas we do not hear from might merely be slow to
reply, and therefore up to f of the replies might be from faulty nodes. These replicas
might later deny processing the request, or otherwise act erroneously.

We can mask such bad behavior, however, since we have replies from at least
2 f +1 replicas, and therefore we can be sure that at least f +1 honest replicas know
about the request. Since every request will execute with 2 f + 1 replicas, we can
guarantee that at least one honest replica that knows of this request will also partic-
ipate in the processing of the next request. Therefore we have a basis for ensuring
ordered execution of requests.

Like VR, PBFT uses a primary to order client requests and to run a protocol in
a way that ensures that each request that is executed will survive into the future, in
spite of failures, in its assigned place in the order. However, in PBFT we have to
allow for the fact that replicas might be Byzantine, which leads to differences in the
PBFT protocol compared to the VR protocol.

Additionally PBFT needs to allow for an adversary that controls the network.
The adversary can remove messages, cause them to be delivered late and out of
order, and corrupt them; it can also create new messages and attempt to spoof the
protocol. To prevent spoofing, PBFT uses cryptography; all messages are signed
by the sender, and we assume that the secret key used by an honest node to sign
messages is not known to the adversary. PBFT also needs to avoid replay attacks,
but the needed ingredients are already present in the VR protocol, e.g., viewstamps,
since VR had to handle replays, although in that case we assumed the network was
not acting maliciously.

The architecture for PBFT is similar to that shown in Figure 7.1, except that now
there must be 3 f + 1 replicas to survive f failures instead of 2 f + 1. Another point
is that PBFT was explicitly based on this architecture: PBFT separated the protocol

140 B. Liskov

layer from the application layer. The code for PBFT was made available as a library
that could be loaded on the clients and the replicas.

7.7 The PBFT Protocol

One way in which PBFT handles Byzantine faulty nodes is by doing each step of
the protocol at at least 2 f +1 replicas, rather than the f +1 needed in VR. However
this change alone is not sufficient to provide a correct protocol. The problem is that
in VR some decisions are made by just one replica. For example, in normal case
processing the primary tells the other replicas the viewstamp assigned to each client
request. In VR the other replicas act on this information; since we assume that the
primary is honest, we can rely on the viewstamp it assigns and also we can assume
it reports honestly on the client request.

In PBFT, however, the primary might be lying. For example, it might assign
the wrong viewstamp, one assigned in the past to a different request. Or, it might
provide a bogus client operation or replay a previous request by the client. Another
possibility is that it might send different PREPARE messages to the other replicas,
e.g., instructing some of them to perform request r1 at viewstamp v and others to
perform request r2 at the same viewstamp. Note that the interesting case here is
when the primary does something that can’t be recognized as bad just by looking
at the message! It’s much easier to handle cases where the message is not sent or is
garbled.

Our solution to handling these misbehaviors of the primary was to add an extra
phase to the protocol, at the beginning, prior to the prepare phase. We called this the
pre-prepare phase. Additionally replicas check various details of what the primary
is doing and refuse to process messages that are not what they should be.

The following is a description of a simplified version of the PBFT protocol. The
protocol is based on the one presented in [5] and uses public-key cryptography rather
than symmetric cryptography. Both clients and replicas have known public keys
and use their secret keys to sign their messages; all messages are signed in this
way. In the full version of PBFT, public key cryptography is avoided almost always.
This improves the performance of the protocol but also complicates it, as discussed
further in Section 7.8.1.

The protocol presented here requires that replicas process requests in order, sim-
ilar to what was done in VR. For example, a replica won’t process a PREPARE

message for a particular viewstamp unless it knows about all requests that have
been assigned earlier viewstamps. The unsimplified version of PBFT relaxed this
constraint and allowed various protocol messages to be processed out of order.

The state of a PBFT replica is the same as was presented before, in Figure 7.2,
with one important difference. In VR the log contains just the request messages sent
by the client. In PBFT, each log entry also contains some of the protocol messages
used to run the request assigned to that op-number.

The simplified request processing protocol works as follows. As in VR, replicas
process requests only when their status is normal. Also they ignore requests from

7 From Viewstamped Replication to Byzantine Fault Tolerance 141

earlier views and if they learn of a later view, or if they learn they are missing entries
in their log, they bring themselves up to date before processing the request.

1. The client c sends a 〈REQUEST op, c, s, v〉σc message to the primary, where op
is the request, c is the client-id, s is the number the client assigned to the request,
v is the view-number known to the client, and σc is the client’s signature over the
message.

2. If this is not a new request, or if the signature isn’t valid, the request is discarded.
Otherwise the primary advances op-number and adds the request to the end of the
log. Then it sends a 〈〈PREPREPARE d, v, n〉σp m〉 message to the other replicas,
where m is the client message, d is a digest (a cryptographic hash) of m, n is the
op-number assigned to the request, and σp is the primary’s signature.

3. A replica i discards PREPREPARE requests with invalid signatures, or if it had
already accepted a different request at that viewstamp. If the request is valid,
it waits until it has PREPREPARE entries in its log for all requests with earlier
op-numbers. Then it adds the PREPREPARE message to its log (and updates the
client-table) and sends a 〈PREPARE d, v, n, i〉σi message to all replicas, where d
is the digest of the client request and σi is i’s signature.

4. When replica i receives valid PREPARE messages for which it has the match-
ing PREPREPARE message in its log, it adds them to the log. When it has the
PREPREPARE message from the primary and 2 f valid matching PREPARE mes-
sages, all from different non-primary replicas, including itself, for this request
and all earlier ones, we say the request is prepared at replica i. At this point,
replica i sends a 〈COMMIT d, v, n, i〉σi message to all other replicas.

5. When replica i receives 2 f +1 valid COMMIT messages, all from different repli-
cas including itself, and when additionally the request is prepared at replica i,
replica i executes the request by making an up-call to the service code, but only
after it has executed all earlier requests. Then it returns the result to the client.

The first thing to notice about the protocol is the extra pre-prepare phase. Since we
can’t trust the primary to tell the truth we instead use 2 f + 1 replicas; if this many
replicas agree, we can rely on what they say since at least f + 1 of them will be
honest, and at least one honest replica will know what has happened before, e.g.,
whether some other request has already been assigned that viewstamp.

Here we are relying on a principle at work in a Byzantine setting: we can trust
the group but not the individuals. This principle is used in every step of the protocol;
messages from a sufficient number of replicas are needed to ensure that it is correct
to take that step.

Thus each replica needs to see 2 f + 1 valid matching COMMIT messages to de-
cide that it can execute the request. Additionally the client needs to see matching re-
ply messages. In this case, however, f + 1 matching responses is sufficient because
at least one of them comes from an honest replica, and an honest replica won’t send
such a response unless the request has gone through the complete protocol.

The phases of the protocol are illustrated in Figure 7.4. It may seem that the PBFT
protocol has an extra commit phase as well as the pre-prepare phase. However, the
COMMIT messages in PBFT correspond to the PREPAREOK messages in VR.

142 B. Liskov

Fig. 7.4 Normal case processing in PBFT.

The protocol uses all-to-all communication for the PREPARE and COMMIT mes-
sages and therefore uses O(n2) communication. All-to-all communication wasn’t
needed for VR. It could be avoided in PBFT by funneling messages through the
primary, but the primary would need to sends copies of the messages it received,
since ultimately all replicas need to be able to see the messages of all the others.
Thus if we funneled messages through the primary, its messages would be bigger
(i.e., there would be no change in bandwidth utilization), and the protocol latency
would increase.

7.7.1 View Changes

The main problem with view changes in a Byzantine setting is figuring out which
operations must make it into the new view. We must ensure that any operations
that executed at an honest replica survive into the next view in their assigned order.
In PBFT, an honest replica will execute an operation only after it receives 2 f + 1
COMMIT messages. The problem now, however, is that it’s possible that only one
honest replica that received this many messages participates in the view change pro-
tocol, and furthermore, dishonest replicas might also participate in the view change
protocol and claim that some other operation should receive that viewstamp.

For example, suppose that request r1 has executed at viewstamp v at some honest
replica, and then a view change occurs. The view change protocol will hear from
at least one honest replica that knows about r1. However, as many as f dishonest
replicas might participate in the view change protocol and claim that some other
request r2 has been assigned to v. In fact, if the primary is bad and assigns different
requests to the same viewstamp, 2 f replicas might claim this: the f liars and also f
honest replicas that were told that r2 should run at viewstamp v.

Clearly we can’t resolve this question by relying on a majority opinion!
The way PBFT resolves this dilemma is to rely on certificates. A certificate is

a collection of matching valid signed messages from 2 f + 1 different replicas. A
certificate represents a proof that a certain thing has happened, e.g., that a request
has prepared. Since the messages are signed using public key cryptography, any
replica is able to evaluate a certificate and decide for itself whether it is valid.

7 From Viewstamped Replication to Byzantine Fault Tolerance 143

The certificates are composed of the messages replicas receive while running the
protocol. In particular we use a prepare certificate consisting of a 〈PREPREPARE d,
v, n〉σp message and 2 f PREPARE messages, all for the same request (represented as
a digest) with the same viewstamp. A replica has such a certificate for each request
that has prepared at it.

The view change protocol works as follows:

1. A replica i that decides there needs to be a view change advances its viewstamp
and sends a 〈DOVIEWCHANGE v, P, i〉σi to the new primary, where v is the new
viewstamp and P is the set of prepare certificates known to i. Since i processes
the protocol in request order, there will be prepare certificates for a prefix of its
log entries.

2. When the new primary receives 2 f + 1 such messages from different replicas,
including itself, it sets its viewstamp to the one in the messages and constructs a
new log containing an entry for each prepare certificate it received. Then it sets
its status to normal and sends a 〈STARTVIEW mlist, v, O〉 message to the other
replicas, where mlist is the set of 2 f +1 DOVIEWCHANGE messages it received,
all from different replicas, and O is a set of 〈PREPREPARE d, v, n〉σp messages,
one for each request in the log.

3. When replica i receives a valid STARTVIEW message, it processes the messages
in the mlist and reconstructs its log. Then it sets its status to normal and re-runs
the protocol for each request in O (but it only executes requests that it hasn’t
already executed).

Certificates are used in step 1 of this protocol, so that a replica can reliably inform
the primary about the requests that have prepared at it. They are also used in step 2
of the protocol. In this case the certificate consists of the 2 f + 1 DOVIEWCHANGE

messages; these allow the other replicas to construct a valid log and to check that
the set O is correct. Note that all honest replicas will construct the same log given
the same set of DOVIEWCHANGE messages.

It’s easy to see the relationship of this protocol to the view change protocol in VR.
Of course the protocol now needs to run at 2 f +1 replicas rather than f +1. Further-
more, since individual replicas aren’t trusted in a Byzantine environment, replicas
have to prove what they have using certificates, rather than just reporting. A final dif-
ference is that to rerun the protocol in the next view, the primary must produce the
PREPREPARE messages for all the requests, since these will need to be combined
with PREPARE messages to produce certificates in later views. In VR, replicas ran
the protocol for preparing requests without requiring the additional PREPREPARE

messages.
The protocol above handles view changes where all honest replicas notice a prob-

lem with the primary, e.g., that it hasn’t sent messages for some time period. In ad-
dition, an individual replica can force a view change by proving that the primary is
lying. The proof consists of contradictory messages, e.g., two PREPREPARE mes-
sages for the same viewstamp but different requests.

The protocol is robust against bad replicas trying to force a view change when
one isn’t needed. Each replica decides independently about whether a view change

144 B. Liskov

is necessary and therefore f + 1 honest replicas must make this decision before the
view change will happen.

The protocol isn’t very efficient because the DOVIEWCHANGE and STARTVIEW

messages are very large. PBFT solves this problem by taking a checkpoint period-
ically. A checkpoint summarizes a prefix of the log. Once the checkpoint has been
taken, all entries in the log below that point are discarded. Only the portion of the
log beyond the checkpoint need be sent in the view change messages. Checkpoints
are discussed further in Section 7.8.4.

Correctness

The correctness condition we need to satisfy is that every operation executed by an
honest replica makes it into the next view in the order assigned to it previously. This
condition is satisfied because an operation executes at an honest replica only after
the replica receives 2 f + 1 COMMIT messages for it. Here we are concerned only
with what happens at correct replicas, because dishonest replicas can do anything.

If an honest replica receives this many COMMIT messages, this means that that
request has prepared at at least f + 1 honest replicas, and each of these replicas has
a prepare certificate for it and also for all earlier requests. Furthermore at least one
of these f + 1 honest replicas will participate in the view change and report these
requests with their certificates. Therefore the request will end up in the new log in
the position assigned to it previously.

7.8 Discussion of PBFT

This section provides a brief discussion of some of the issues addressed by the full
PBFT protocol; more information can be found in [5, 6, 7, 4].

7.8.1 Cryptography

PBFT uses symmetric cryptography most of the time. It uses public keys only to
establish secret keys between pairs of replicas and also between replicas and clients.

Using symmetric cryptography represents an important optimization, since it is
much more efficient than public key cryptography. However, it has a fairly substan-
tial impact on the protocol because it is now more difficult for replicas to provide
proofs. With public keys a certificate containing 2 f + 1 valid matching messages
acts as a proof: any of the other replicas can vouch for the validity of these messages
since all of them do this using the sender’s public key. With symmetric cryptogra-
phy this simple technique no longer works, and PBFT contains mechanisms to get
around this shortcoming.

7.8.2 Optimizations

PBFT provides a number of important optimizations. Most significant are optimiza-
tions that reduce the latency for request processing from 5 message delays, as shown

7 From Viewstamped Replication to Byzantine Fault Tolerance 145

in Figure 7.4, to 2 (for reads) and 4 (for updates), and an optimization to reduce the
overhead of running the protocol by batching.

Read Operations

The simple and very robust VR technique of having the primary carry out the read
doesn’t work for PBFT since the primary can lie. Instead the client sends the request
to all replicas, which execute the request immediately and send the reply to the
client. The client waits for 2 f + 1 matching replies (actually one full reply and 2 f
digests). If it succeeds in getting this many matching replies it accepts the answer
and the operation is over. Otherwise the operation must run through the primary in
the normal way.

This optimization succeeds provided there is no contention (and also assuming
that the replicas aren’t faulty). Each replica runs the request when it arrives, which
means that different replicas will run it at different spots in the serial order. However,
even so they will produce the same answer provided there is no update operation
that modifies the portion of the state being observed by the read and that happens at
about the same time as the read.

Update Operations

Rather than waiting until they receive 2 f + 1 COMMIT messages, replicas instead
execute an update operation at the time they send their COMMIT message for it
(and after executing all operations before it). The client waits for 2 f + 1 matching
responses (again, one full reply and 2 f digests). This way we are sure that the op-
eration will survive into the new view, since at least one of the replicas that sent the
response is honest and will be consulted in the next view change. Waiting for only
f + 1 replies, as is done in the base protocol, isn’t sufficient since with this many
replies, it is possible that only one honest replica knows of the prepare, and it might
not be consulted in the next view change.

A final point is that this way of running updates is the basis for the update opti-
mization for VR that was discussed in Section 7.5.3.

Batching

PBFT is a fairly heavyweight protocol in terms of the amount of message traffic
required to run it. However, this traffic can be greatly reduced through batching.
Batching simply means running the protocol for a number of requests at once.

Batching has no impact on latency when the system isn’t busy: in this case the
primary doesn’t batch, but instead starts the protocol for each operation when its
request message arrives. However, when the load goes up, the primary switches
to running requests in batches. Batching thus reduces the overhead of running the
protocol by amortizing the cost across all the requests in the batch, without much
impact on latency, since when the system is busy the next batch fills up quickly.

146 B. Liskov

7.8.3 Selecting the Primary

The idea of selecting the primary round-robin based on the current view-number
comes from PBFT. PBFT requires a way of choosing the primary that cannot be af-
fected by the adversary. In the original version of VR the same node could continue
as primary as long as it participated in the view changes. In a Byzantine setting this
wouldn’t work because the primary might be malicious.

7.8.4 Recovery

PBFT provides a full recovery solution that supports doing disk writes in the back-
ground; it does not require disk writes during either normal case processing or view
changes, and does not require making requests idempotent. The technique also pro-
vides for efficient application-level state transfer using Merkle trees [23], and a way
of keeping the log small by taking checkpoints. The recovering replica uses the
application-level state transfer to recover its state to the most recent checkpoint, and
then runs the log from that point on to get up to date.

Checkpoints require some help from the application, both to create the check-
point, and to revert to a checkpoint. Reverting is needed to support the update op-
timization. Since the update is performed speculatively before it commits, it might
need to be undone in case of a view change. In PBFT, undoing is accomplished
by reverting to the previous checkpoint and then running forward using the log.
The application can make use of conventional copy-on-write techniques to support
checkpoints.

In addition PBFT provides a proactive recovery mechanism, in which nodes are
shut down periodically and restarted with their memory intact but with a correct
copy of the code. Proactive recovery reduces the likelihood of more than f replicas
being faulty simultaneously because their code has been corrupted by a malicious
attack.

7.8.5 Non-determinism

VR handles the requirement for determinism by having the primary predict the out-
come, as discussed in Section 7.5.7. PBFT can’t use this technique since the primary
might lie. Instead, PBFT relies on the group to predict the outcome: the primary runs
a first phase in which it collects predictions from 2 f +1 different replicas, including
itself, and places these predictions in the PREPREPARE message. Later, when the
request is executed, replicas compute the outcome using a deterministic function of
this information.

7.9 Conclusions

This paper has described two replication protocols. The first is Viewstamped Repli-
cation, which was a very early state machine replication protocol that handled ma-
chines that failed by crashing. The descriptions of VR that appeared in the litera-

7 From Viewstamped Replication to Byzantine Fault Tolerance 147

ture describe the protocol along with an application that uses it. The presentation
here strips out the application details and presents the protocol in an application-
independent way; additionally, some details have been changed so that the protocol
described here is close to what was described in the literature, but not identical.

VR allowed failed nodes to restart and then run a recovery protocol to recover
their state. The protocol was based on the assumption that replicas were failure
independent, and therefore we were able to avoid the use of non-volatile storage
during normal request processing. VR did make use of a disk write as part of a view
change. The paper describes a variation on the protocol that avoids the need for disk
writes entirely, even during view changes.

The paper also presented a simplified version of PBFT. PBFT was the first prac-
tical replication protocol that supported state machine replication in a way that sur-
vived Byzantine failures. PBFT grew out of VR. It required the use of 3 f +1 replicas
rather than 2 f + 1. It added an extra phase to normal case processing, to prevent a
malicious primary from misleading the other replicas. Also, it used the notion of
certificates to ensure that all committed operations make it into the next view in
spite of whatever faulty replicas might attempt to do.

Since PBFT was invented there has been quite a bit of research on related proto-
cols. This work covers a number of topics, including: techniques for heterogeneous
replication to avoid the problem of correlated failures causing many replicas to fail
simultaneously [28, 32]; study of system properties when more than f replicas fail
simultaneously [16]; avoiding the use of a primary, either entirely or during normal
case processing [1, 8]; reducing the number of replicas that must run the applica-
tion [34]; and reducing the latency of normal case processing [12, 33].

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
Byzantine Fault-Tolerant Services. In: SOSP 2005, Brighton, United Kingdom (Oct. 2005)

2. Bernstein, P.A., Goodman, N.: The Failure and Recovery Problem for Replicated Databases.
In: Second ACM Symposium on the Principles of Distributed Computing, Aug. 1983, pp.
114–122 (1983)

3. Bracha, G., Toueg, S.: Asynchronous Consensus and Broadcast Protocols. Journal of the
ACM 32(4), 824–840 (1985)

4. Castro, M.: Practical Byzantine Fault Tolerance. Technical Report MIT-LCS-TR-817, Labo-
ratory for Computer Science, MIT, Cambridge, ph.D. thesis (Jan. 2000)

5. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Proceedings of OSDI 1999,
New Orleans, LA (Feb. 1999)

6. Castro, M., Liskov, B.: Proactive Recovery in a Byzantine-Fault-Tolerant System. In: Pro-
ceedings of the Fourth Symposium on Operating Systems Design and Implementation
(OSDI), San Diego, CA (Oct. 2000)

7. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recovery. ACM
Transactions on Computer Systems 20(4), 398–461 (2002)

8. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ Replication: A Hybrid
Quorum Protocol for Byzantine Fault Tolerance. In: Proceedings of the Seventh Symposium
on Operating Systems Design and Implementations (OSDI), Seattle, Washington (Nov. 2006)

9. Gifford, D.K.: Information Storage in a Decentralized Computer System. Technical Report
CSL-81-8, Xerox Corporation, ph.D. thesis (Mar. 1983)

148 B. Liskov

10. Gray, J.N.: Notes on database operating systems. In: Flynn, M.J., Jones, A.K., Opderbeck, H.,
Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K., Popek, G.J., Saltzer, J.H. (eds.) Operating
Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978)

11. Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R., West,
M.: Scale and Performance in a Distributed File System. ACM Transactions on Computer
Systems 6(1), 51–81 (1988)

12. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine
Fault Tolerance. In: Proceedings of SOSP 2007, Stevenson, WA (October 2007)

13. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of
the ACM 21(7), 558–565 (1978)

14. Lamport, L.: The Part-Time Parliament. Research Report 49, Digital Equipment Corporation
Systems Research Center, Palo Alto, CA (Sep. 1989)

15. Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems 10(2)
(1998)

16. Li, J., Mazieres, D.: Beyond One-third Faulty Replicas in Byzantine Fault Tolerant Systems.
In: Proceedings of the 4th NSDI, Apr. 2007, USENIX, Cambridge, MA, USA (2007)

17. Liskov, B.: Distributed Programming in Argus. Comm. of the ACM 31(3), 300–312 (1988)
18. Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., Williams, M.: Replication in

the Harp File System. In: Proceedings of the Thirteenth ACM Symposium on Operating
System Principles, Pacific Grove, California, pp. 226–238 (1991)

19. Liskov, B., Scheifler, R.W.: Guardians and Actions: Linguistic Support for Robust, Dis-
tributed Programs. ACM Transactions on Programming Languages and Systems 5(3), 381–
404 (1983)

20. Liskov, B., Snyder, A., Atkinson, R., Schaffert, J.C.: Abstraction Mechanisms in CLU.
Comm. of the ACM 20(8), 564–576 (1977), also in Zdonik, S. and Maier, D. (eds.) Readings
in Object-Oriented Database Systems

21. Liskov, B., Zilles, S.: Programming with Abstract Data Types. In: Proceedings of the ACM
SIGPLAN Conference on Very High Level Languages, vol. 9, Apr. 1974, pp. 50–59. ACM
Press, New York (1974)

22. Liskov, B., Zilles, S.: Specification Techniques for Data Abstractions. IEEE Transactions on
Software Engineering 1(1) (1975)

23. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

24. Mills, D.L.: Network time protocol (version 1) specification and implementation. DARPA-
Internet Report RFC 1059 (Jul. 1988)

25. Oki, B., Liskov, B.: Viewstamped Replication: A New Primary Copy Method to Support
Highly-Available Distributed Systems. In: Proc. of ACM Symposium on Principles of Dis-
tributed Computing, pp. 8–17 (1988)

26. Oki, B.M.: Viewstamped Replication for Highly Available Distributed Systems. Technical
Report MIT-LCS-TR-423, Laboratory for Computer Science, MIT, Cambridge, MA, ph.D.
thesis (May 1988)

27. Papadimitriou, C.H.: The Serializability of Concurrent Database Updates. Journal of the
ACM 26(4), 631–653 (1979)

28. Rodrigues, R., Liskov, B., Castro, M.: BASE: Using Abstraction to Improve Fault Tolerance.
ACM Transactions on Computer Systems 21(3) (2003)

29. Sandberg, R., et al.: Design and Implementation of the Sun Network Filesystem. In: Pro-
ceedings of the Summer 1985 USENIX Conference, Jun. 1985, pp. 119–130 (1985)

30. Schneider, F.: Implementing Fault-Tolerant Services using the State Machine Approach: a
Tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

31. Shein, B., et al.: NFSSTONE - A Network File Server Performance Benchmark. In: USENIX
Summer ’89 Conference Proceedings, pp. 269–274 (1989)

32. Vandiver, B., Liskov, B., Madden, S., Balakrishnan, H.: Tolerating Byzantine Faults in
Database Systems using Commit Barrier Scheduling. In: Proceedings of SOSP 2007, Steven-
son, WA (October 2007)

7 From Viewstamped Replication to Byzantine Fault Tolerance 149

33. Wester, B., Cowling, J., Nightingale, E., Chen, P., Flinn, J., Liskov, B.: Tolerating Latency
in Replicated State Machines through Client Speculation. In: Proceeding of the 6th NSDI,
Boston, MA (April 2009)

34. Yin, J., Martin, J., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating Agreement from Ex-
ecution for Byzantine Fault Tolerant Services. In: Proceedings of the 19th ACM Symposium
on Operating Systems Principles (Oct. 2003)

Chapter 8
Implementing Trustworthy Services Using
Replicated State Machines

Fred B. Schneider and Lidong Zhou

Abstract A thread of research has emerged to investigate the interactions of repli-
cation with threshold cryptography for use in environments that satisfy weak as-
sumptions. The result is a new paradigm known as distributed trust, and this chapter
attempts to survey that landscape.

8.1 Introduction

“Divide and conquer” can be a powerful tool for disentangling complexity when
designing a computing system. However, some aspects of a system design are in-
separable. Treating these as though they were independent leads to one interfering
with the other, and “divide and be conquered” perhaps better characterizes the con-
sequences. For some years, we have been investigating how to construct systems
that continue functioning despite component failures and despite attacks. A ques-
tion we have pondered is to what extent does divide and conquer apply? Somewhat
less than you might hope is, unfortunately, the answer.

One could argue that attacks can be seen as just another cause for component fail-
ure. The Byzantine fault model asserts that a faulty component can exhibit arbitrarily
malicious (so-called “Byzantine”) behavior; a system that tolerates Byzantine faults
should then be able to handle anything. Moreover, because any component can be
viewed abstractly in terms of its state and a set of possible next-state transitions—in
short, a state machine—fault-tolerant services could be built by assembling enough
state machine copies so that outputs from the ones exhibiting Byzantine behavior
are outvoted by the correctly functioning ones. The fault-tolerance of the ensemble
thus exceeds the fault-tolerance of any individual state machine, and a distributed
fault-tolerance is the result.

A closer look at such replicated state machines, however, reveals problems when
attacks are possible. Specific difficulties with the approach and how we can over-

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 151–167, 2010.
c© IEEE 2005. Reprinted with permission from IEEE Security & Privacy, Sept./Oct. 2005, pp. 34-43

152 F.B. Schneider and L. Zhou

come these are described later in this chapter, but the overall vision remains com-
pelling: placing more trust in an ensemble than in any of its individual components.
In analogy with distributed fault-tolerance, then, we are seeking ways to implement
distributed trust.

8.2 The State-Machine Approach

The details for using replicated state machines and implementing a Byzantine fault-
tolerant service [19, 29] are well-known.

1. Start with a server, structured as a deterministic state machine, that reads and pro-
cesses client submitted requests, which are the sole means to change the server’s
state or cause the server to produce an output.

2. Run replicas of that server on distinct hosts. These hosts communicate through
narrow-bandwidth channels and thus form a distributed system.

3. Employ a replica-coordination protocol to ensure that all non-faulty server repli-
cas process identical sequences of requests.

Correctly operating server replicas will produce identical outputs for each given
client request. Moreover, the majority of the outputs produced for each request will
come from correct replicas provided that at most t server replicas are faulty and
that the service comprises at least 2t + 1 server replicas. So, we succeed in imple-
menting availability and integrity for a service that tolerates at most t faulty replicas
by defining the service’s output to be any response produced by a majority of the
server replicas. Implicit in the approach are two assumptions: First, we assume that a
replica-coordination protocol exists. Second, we assume processor independence—
that the individual state-machine replicas do not influence each other if executed
on separate hosts in a distributed system. That is, the probability prm of m replicas
exhibiting Byzantine behavior is approximately (pr1)m, where pr1 is the probability
of a single replica exhibiting Byzantine behavior.

A trustworthy service must tolerate attacks as well as failures. Availability, in-
tegrity, and confidentiality are typically of concern. The approach outlined above is
thus seriously deficient:

• Confidentiality is not just ignored, but n-fold replication actually increases the
number of sites that must resist attack because they store copies of confidential
information. Even services that do not operate on confidential data per se are
likely to store cryptographic keys (so responses can be authenticated). Because
these keys must be kept secret, support for confidentiality is needed even for
implementing integrity.

• Any vulnerability in one replica is likely present in all, enabling attacks that
succeed at one replica to succeed at all. The independence assumption, mani-
festly plausible for hardware failures and many kinds of software failures (such
as Heisenbugs), is thus unlikely to be satisfied once vulnerabilities and attacks

8 Implementing Trustworthy Services Using Replicated State Machines 153

are taken into account. So the probability that more than t servers are compro-
mised is now approximately pr1 rather than (pr1)m; therefore, replication does
not improve the service’s trustworthiness.

• Replica-coordination protocols are typically designed assuming the synchronous
model of distributed computation. This is problematic because denial-of-service
(DoS) attacks can invalidate such timing assumptions. Once an attacker has in-
validated an assumption on which the system depends, correct system operation
is no longer guaranteed.

Using cryptography or using algorithms for coordination can remedy a few of these
deficiencies; other deficiencies drive current research. This chapter’s goal is to pro-
vide a principled account of that landscape: instead of dwelling on individual fea-
tures, we’ll show how each contributes to implementing trustworthy services with
replicated state machines. Each of the landscape’s individual features is well under-
stood in one or another research community, and some of the connections are as
well, but what is involved in putting them together is not widely documented nor
broadly understood. Space limitations, however, allow only a superficial survey of
the related literature, so view this chapter as a starting point and consult the arti-
cles we cite (and their reference lists) for a more in-depth study. Finally, it’s worth
emphasizing that the replication-based approaches we discuss only address how to
implement a more-trustworthy version of some service whose semantics are defined
by a single state machine. We thus do not address vulnerabilities intrinsic in what
that single state machine does. To solve the real trustworthiness problem requires
determining that a state machine’s semantics cannot be abused; unfortunately, this
is still an open research problem.

8.3 Compromise and Proactive Recovery

Two general components are involved in building trustworthy services: processors
and channels. Processors serve as hosts; channels enable hosts to communicate.

A correct component only exhibits intended behavior; a compromised compo-
nent can exhibit other behavior. Component compromise is caused by failures or
attacks. We make no assumption about the behavior of compromised components,
but we do conservatively assume that a component C compromised by a success-
ful attack is then controlled by the adversary, with secrets C stores then becoming
known to the adversary.

Secrets the adversary learns by compromising one component might subse-
quently lead to the compromise of other components. For example, a correct channel
protects the confidentiality, integrity, and authenticity of messages it carries. This
channel functionality is typically implemented cryptographically, with keys stored
at those hosts serving as the channel’s endpoints. An attack that compromises a host
thus yields secrets that then allow the adversary to compromise all channels attached
to the host.

Because channel compromise is caused by host compromise, a service’s trust-
worthiness is often specified solely in terms of which or how many host compro-

154 F.B. Schneider and L. Zhou

mises it can tolerated; the possibility of channel compromise distinct from host
compromise is ignored in such a specification. This simplification—also adopted in
this chapter—is most defensible when the network topology provides several phys-
ically independent paths to each host, because then the channel connecting a host is
unlikely to fail independent of that host.

The system builder has little control over how and when a component transitions
from being correct to being compromised. A recovery protocol provides the means
to reverse such transitions. For a faulty component, the recovery protocol might
involve replacing or repairing hardware. For a component that has been attacked,
the recovery protocol must

• evict the adversary, perhaps by restoring code from clean media (ideally with the
recently exploited vulnerabilities patched);

• reconstitute state, perhaps from other servers; and
• replace any secret keys the adversary might have learned.

The reason that a component should execute a recovery protocol after detecting a
failure or attack is obvious. Less obvious are benefits that accrue from a component
executing a recovery protocol periodically, even though no compromise has been
detected [15]. To wit, such proactive recovery defends against undetected attacks
and failures by transforming a service that tolerates t compromised hosts over its
lifetime into a system that tolerates up to t compromised hosts during each win-
dow of vulnerability delimited by successive executions of the recovery protocol.
The adversary that cannot compromise t +1 hosts within a window of vulnerability
is foiled and forced to begin anew on a system with all defenses restored to full
strength.

DoS attacks slow execution, thereby lengthening the window of vulnerability
and increasing the interval available to perpetrate an attack. Whether such a length-
ened window of vulnerability is significant will depend on whether the adversary
can compromise more than t servers during the window. But whatever the adver-
sary, systems with proactive recovery can, in principle, be more resilient than those
without it, simply because proactive recovery (if implemented correctly) affords an
opportunity for servers to recover from past compromises—including some com-
promises that haven’t been detected.

8.4 Service Key Refresh and Scalability

With the state machine approach, a client, after making a request, awaits responses
from servers. When the compromise of up to t servers must be tolerated, the same
response received from fewer than t servers cannot be considered correct. But if the
response is received from t + 1 or more servers, then that response was necessarily
produced by a correct server. So sets of t + 1 servers together speak for the service,
and clients require some means to identify when equivalent responses have come
from t + 1 distinct server replicas.

One way to ascertain the origin of responses from (correct) servers is to em-
ploy digital signatures. Each server’s response is digitally signed using a private key

8 Implementing Trustworthy Services Using Replicated State Machines 155

known only to that server; the receiver validates a response’s origin by checking
the signature using that server’s public key. A server’s private key thus speaks for
that server. Less expensive schemes, involving message authentication codes (MAC)
and shared secrets, have also been developed; such schemes contribute to the per-
formance reported for toolkits (for example, BFT mentioned in table 2) that have
recently become available to system builders.

8.4.1 Service Private Keys

The use of secrets—be it private keys or shared secret keys—for authenticating
server replicas to clients impacts the scalability of a service that employs proactive
recovery. This is because servers must select new secrets at the start of each window
of vulnerability, and clients must then be notified of the changes. If the number of
clients is large then performing the notifications will be expensive, and the resulting
service ceases to be scalable.

To build a service that is scalable, we seek a scheme whereby clients don’t need
to be informed of periodic changes to server keys. Because sets of t + 1 or more
servers speak for the service, a client could identify a correct response from the
service if the service has a way to digitally sign responses if and only if a set of
servers that speak for the service agree on that response:

TC1: Any set of t + 1 or more server replicas can cooperate and digitally sign a
message on behalf of the service.

TC2: No set of t or fewer server replicas can contrive to digitally sign a message
on behalf of the service.

TC1 implies that information held by t +1 or more servers enables them to together
construct a digital signature for a message (namely, for the service’s response to a
request), whereas TC2 implies that no coalition of t or fewer servers has enough in-
formation to construct such a digital signature. In effect, TC1 and TC2 characterize
a new form of private key for digital signatures—a key associated with the service
rather than with the individual servers. This private key speaks for the service but is
never entirely materialized at individual servers comprising the service.

A private key satisfying TC1 and TC2 can be implemented using secret shar-
ing [30, 2]. An (n,t +1) secret sharing for a secret s is a set of n random shares such
that: s can be recovered with knowledge of t + 1 shares, and no information about
s can be derived from t or fewer shares. Not only do protocols exist to construct
(n,t + 1) secret sharings but threshold digital signature protocols [3, 10] exist that
allow construction of a digital signature for a message from t +1 partial signatures,
where each partial signature is computed using as inputs the message along with
only a single share of the private key. Thus, a system can implement TC1 and TC2
using (n,t +1) secret sharing and dividing the service private key among the server
replicas—one share per replica—and then having servers use threshold digital sig-
natures to collaborate in signing responses.

If the shares are fixed then, over time, an attacker might compromise t +1 servers,
obtain t + 1 shares, and thus be able to speak for the service, generating correctly

156 F.B. Schneider and L. Zhou

signed bogus service responses. Such an attacker is known as a mobile adversary
[25], because it attacks and controls one server for a limited time before moving
to the next. The defense against mobile adversary attacks is, as part of proactive
recovery, for servers periodically to create a new and independent secret sharing
for the service’s private key, and then delete the old shares, replacing them with new
ones. Because the new and old secret sharings are independent, the mobile adversary
can’t combine new shares and old shares to obtain the service’s signing key. And
because old shares are deleted when replaced by new shares, a mobile adversary
must compromise more than t servers within a single window of vulnerability in
order to succeed.

8.4.2 Proactive Secret Sharing

Protocols to create new, independent sharings of a secret are called proactive secret
sharing protocols and have been developed for the synchronous model [15] as well
as for the asynchronous model, which makes no assumptions about process execu-
tion speeds and message delivery delays [4, 37]. Proactive secret sharing protocols
are tricky to design: First, the new sharing must be computed without ever materi-
alizing the shared secret at any server. (A server that materialized the shared secret,
if compromised, could reveal the service’s signing key to the adversary.) And, sec-
ond, the protocol must work correctly in the presence of as many as t compromised
servers, which might provide bogus shares to the protocol.

8.5 Server Key Refresh

Secure communication channels between servers are required for proactive secret
sharing and for various other protocols that servers execute. Because a host stores
the keys used to implement the secure channels with which it communicates, we
conclude that, not withstanding the use of secret sharing and threshold cryptogra-
phy for service private keys, there will be other cryptographic keys stored at servers.
If these other keys can be compromised then they too must be refreshed during
proactive recovery. Three classes of solutions for server key refresh have been pro-
posed.

8.5.1 Trusted Hardware

Although not in widespread use today, special-purpose cryptographic hardware that
stores keys and performs cryptographic operations encryption, decryption and dig-
ital signing) does exist. This hardware is designed so that, if correctly installed, it
will not divulge keys or other secret parameters, even if the software on the attached
host has been compromised. When keys stored by a server cannot be revealed, there
is no reason to refresh them. So, storing server keys in this hardware eliminates the
need to refresh server keys as part of proactive recovery for as long as that hardware
can be trusted.

8 Implementing Trustworthy Services Using Replicated State Machines 157

However, using special-purpose cryptographic hardware for all cryptographic
operations doesn’t prevent a compromised server from performing cryptographic
operations for the adversary. The adversary might, for example, cause the server
to generate signed or encrypted messages for later use in attacks. A defense against
such attacks is to maintain an integer counter in stable memory (so that the counter’s
value will persist across failures and restarts) that’s part of the special-purpose cryp-
tographic hardware. This counter is incremented every time a new window of vul-
nerability starts, and the current counter value is included in every message that
is encrypted or signed using the tamper-proof hardware. A server can now ignore
any message it receives that has a counter value too low for the current window of
vulnerability.

The need for special-purpose hardware would seem to limit adoption of this
approach. However, recent announcements from industry groups like the Trusted
Computing Group (https://www.trustedcomputinggroup.org/home) and hardware
manufacturers like IBM and Intel imply that standard PC computing systems soon
will support reasonable approximations to this hardware functionality, at least for
threats common on the Internet today.

8.5.2 Offline Keys

In this approach to server key refresh, new keys are distributed using a separate se-
cure communications channel that the adversary cannot compromise. This channel
typically is implemented cryptographically by using secrets that are stored and used
in an off-line stand-alone computer, thereby ensuring inaccessibility to a network-
borne adversary. For example, an administrative public/private key pair could be
associated with each server H. The administrative public key K̂H is stored in ROM
on all servers; the associated private key k̂H is stored offline and is known only to
H ′s administrator. Each new server private key kA for a host A would be generated
offline. The corresponding public key KA would then be distributed to all servers
by including KA in a certificate signed using the administrative private key k̂A of
server A.

8.5.3 Attack Awareness

Instead of relying on a full-fledged tamper-proof co-processor, a scheme suggested
by Ran Canetti and Amir Herzberg[7] uses nonmodifiable storage (such as ROM) to
store a special service-wide public key whose corresponding private key is shared
among servers using an (n,t + 1) secret sharing. To refresh its server key pair, a
server H generates its new private-public key pair, signs the new public key using
the old private key, and then requests that the service endorse the new public key. A
certificate that associates the new public key with server H , signed using the special
service private key, represents the endorsement.

The service private key is refreshed periodically using proactive secret sharing,
thereby guaranteeing that an attacker cannot learn the service private key, provided
the attacker cannot compromise more than t servers in a window of vulnerability.

158 F.B. Schneider and L. Zhou

Therefore, an attacker cannot fabricate a valid endorsement because servers can de-
tect bogus certificates using the service public key stored in their ROM. A server
becomes aware of an attack if it doesn’t receive a valid certificate for its new public
key within a reasonable amount of time or if it receives two conflicting requests that
are both signed by the same server’s private key during the same window of vulner-
ability. In either case, system administrators should implement actions in order to
re-introduce the server into the system and remove the possible imposter.

8.6 Processor Independence

We approximate the processor independence assumption to the extent that a single
attack or host failure cannot compromise multiple hosts. Independence is reduced,
for example, when hosts

• employ common software (and thus replicas have the same vulnerabilities),
• are operated by the same organization (because a single maleficent operator could

then access and compromise more than a singled host), or
• rely on a common infrastructure, such as name servers or routers used to support

communications, compromising that infrastructure violates an assumption that
hosts need to function.

One general way to characterize a service’s trustworthiness is by describing which
sets of components could together be compromised without disrupting the service’s
correct operation. Each vulnerability V partitions server replicas into groups, in
which replicas in a given group share that vulnerability. For instance, attacks ex-
ist that compromise server replicas running Linux but not those running Windows
(and vice versa), which leads to a partitioning according to the OS; the effects of
a maleficent operator are likely localized to server replicas under that operator’s
control, which leads to a partitioning according to system operator.

Sets of a system’s servers whose compromise must be tolerated for the service’s
correct operation of the service can be specified using an adversary structure [16,
22]. This is a set A = {S1, . . . ,Sr} whose elements are sets of system servers that
we assume the adversary can compromise during the same window of vulnerability.
A trustworthy service is then expected to continue operating as long as the set of
compromised servers is an element of A . Thus, the adversary structure A for a
system intended to tolerate attacks on the OS would contain sets Si whose elements
are servers all running the same OS.

When there are n server replicas and A contains all sets of servers of size at
most t, the result is known as an (n, t) threshold adversary structure [30]. The basic
state-machine approach described earlier involves a threshold adversary structure,
as does much of the discussion throughout this chapter. Threshold adversary struc-
tures correspond to systems in which server replicas are assumed to be independent
and equally vulnerable. They are, at best, approximations of reality. The price of em-
bracing such approximations is that single events might actually compromise all of
the servers in some set that isn’t an element of the adversary structure—the service
would then be compromised.

8 Implementing Trustworthy Services Using Replicated State Machines 159

Protocols designed for threshold adversary structures frequently have straightfor-
ward generalizations to arbitrary adversary structures. What is less well understood
is how to identify an appropriate adversary structure for a system, because doing
so requires identifying all common vulnerabilities. Today’s systems often employ
commercial off-the-shelf (COTS) components, so access to their internal details is
restricted. Yet those internal details are what is needed in identifying common vul-
nerabilities.

Independence by Avoiding Common Vulnerabilities

Eliminating software bugs eliminates vulnerabilities that would impinge on replica
independence. Constructing bug-free software is quite difficult, however. So instead,
we turn to another means of increasing replica independence: diversity. In particular,
the state machine approach doesn’t require that server replicas be identical in either
their design or their implementation—only that different replicas produce equivalent
responses for each given request. Such diversity can be obtained in three ways.

Develop Multiple Server Implementations. This, unfortunately, can be expensive.
The cost of all facets of system development is multiplied, because each replica now
has its own design, implementation, and testing costs. In addition, interoperation of
diverse components is typically more difficult to orchestrate, not withstanding the
adoption of standards. Moreover, experiments have shown that distinct development
groups working from a common specification will produce software that have the
same bugs [18].

Employ Pre-existing Diverse Components. Here, system developers use pre-
existing diverse components that have similar functionality and then write software
wrappers so that all implement the same interface and the same state-machine be-
havior [29, 28].

One difficulty is in procuring diverse components that do have the requisite sim-
ilar functionality. Some OSs have multiple, diverse implementations (for example,
BSD UNIX vs. Linux) but other OSs do not; application components used in build-
ing a service are unlikely to have multiple diverse realizations. A second difficulty
arises when components don’t provide access to internal non-deterministic choices
they make during execution (such as creating a “handle” that will be returned to a
client), which makes writing the wrapper quite difficult [28]. And, finally, there still
remains a chance that the diverse components will share vulnerabilities because they
are written to the same specification (exhibiting a phenomenon like that reported in
John Knight and Nancy G. Leveson’s work [18]) or because they are built using
some of the same components or tools.

Introduce Diversity Automatically during Compilation, Loading, or in the
Run-Time Environment.[12, 34] Code can typically be generated and storage al-
located in several ways for a given high-level language program; making choices in
producing different executables introduces diversity. Different executables for the
same high-level language program are still implementations of the same algorithms,

160 F.B. Schneider and L. Zhou

though, so executables obtained in this manner will continue to share any flaws in
those algorithms.

8.7 Replica Coordination

In the state-machine approach, not only must state-machine replicas exhibit inde-
pendence, but all correct replicas must reach consensus about the contents and or-
dering of client requests. Therefore, the replica-coordination protocol must include
some sort of consensus protocol [26] to ensure that

• all correct state machine replicas agree on each client’s request, and
• if the client sends the same request R to all replicas, then R is the consensus they

reach for that request.

This specification involves both a safety property and a liveness property. The safety
property prohibits different replicas from agreeing on different values or orderings
for any given request; the liveness property stipulates that an agreement is always
reached.

Consensus protocols exist only for systems satisfying certain assumptions [11].
In particular, deterministic consensus protocols don’t exist for systems with un-
boundedly slow message delivery or process execution speeds—that is, systems
satisfying the asynchronous model. This limitation arises because, to reach consen-
sus in such a system, participating state-machine replicas must distinguish between
those replicas that have halted (due to failures) and thus should be ignored, and
those replicas that, although correct, are executing very slowly and thus cannot be
ignored.

The impossibility of implementing a deterministic consensus protocol in the
asynchronous model leaves three options.

Option I: Abandon Consensus

Instead of arranging that every state-machine replica receive every request, we might
instead employ servers that are not as tightly coordinated. One well-known example
is the use of a quorum system to implement a storage service from individual stor-
age servers, each of which supports local read and write operations. Various robust
storage systems [21, 23, 33] have been structured in this way, as have richer services
such as the Cornell online certification authority (COCA; detailed in Table 1) [36],
which implements operations involving both reading and writing service state.

To constitute a quorum system, servers are associated with groups (where each
operation is executed on all servers in some group). Moreover, these groups are
defined so that pairs of groups intersect in one or more servers—one operation’s
effect can thus be seen by any subsequent operation. Various quorum schemes differ
in the size of the intersection of two quorums. For example, if faulty processors
simply halt then as many as t faulty processors can be tolerated by having 2t + 1
processors in each group and t +1 in the intersection. If faulty processors can exhibit

8 Implementing Trustworthy Services Using Replicated State Machines 161

arbitrary behavior, then a Byzantine quorum system [22], involving larger groups and
a larger intersection, is required.

A second example of abandoning consensus replication can be seen in the Asyn-
chronous Proactive Secret Sharing (APSS) protocol [37]. Here, each participating
server computes a new sharing of some secret; a consensus protocol would seem
the obvious way for all correct servers to agree on which new sharing to adopt.
But instead in APSS, each server embraces all of the new sharings; a consensus
protocol for the asynchronous model is then not needed. Clients of APSS refer to
individual shares by using names that tell a server which sharing is involved. So
here, establishing consensus turns out to be unnecessary after the problem specifi-
cation is changed slightly—APSS creates at most n new and independent sharings
of a secret and is started with n sharings, rather than creating a single new sharing
from a single sharing.

Certain service specifications cannot be implemented without solving a consen-
sus problem, so abandoning consensus is not always an option. But it sometimes
can be an option, albeit one that is too rarely considered.

Option II: Employ Randomization

Mike Fischer and colleagues’ impossibility result [11] doesn’t rule out protocols that
use randomization, and practical randomized asynchronous Byzantine agreement
protocols have been developed. One example is Cristian Cachin and colleagues’
consensus protocol [5], which builds on some new cryptographic primitives, in-
cluding a noninteractive threshold signature scheme and a threshold coin-tossing
scheme; the protocol is part of the Secure Intrusion-Tolerant Replication Archi-
tecture (Sintra) toolkit [6] developed at the IBM Zurich Research Center. Sintra
supports a variety of broadcast primitives needed for coordination in replicated sys-
tems.

Option III: Sacrifice Liveness (Temporarily)

A service cannot be very responsive when processes and message delivery have be-
come glacially slow, so a consensus protocol’s liveness property might temporarily
be relaxed in those circumstances. After all, there are no real-time guarantees in the
asynchronous model. The crux of this option, then, is to employ a consensus pro-
tocol that satisfies its safety property only while the system satisfies assumptions
somewhat stronger than found in the asynchronous model but that always satisfies
its safety property (so that different state-machine replicas still agree on requests
they process). Leslie Lamport’s Paxos protocol [20] is a well-known example of
trading liveness for the weaker assumptions of the asynchronous model. Other ex-
amples include the protocol of Gregory Chockler, Dahlia Malkhi and Mike Reiter’s
protocol [9] and BFT [8].

162 F.B. Schneider and L. Zhou

8.8 Computing with Server Confidential Data

Some services involve data that must be kept confidential. Unlike secrets used in
connection with cryptography (namely keys), such server data cannot be changed
periodically as part of proactive recovery; values now have significance beyond just
being secret and they could be part of computations that support the services’ se-
mantics.

Adversaries can gain access to information stored unencrypted on a server if that
server is compromised. Thus, confidential service data must always be stored in
some sort of encrypted form—either replicated or partitioned among the servers.
Unfortunately, few algorithms have been found that perform interesting compu-
tations on encrypted data (although some limited search operations are now sup-
ported [31]). Even temporarily decrypting the data on a server replica or storing it
on a backup in unencrypted form risks disclosing secrets to the adversary.

One promising approach is to employ secure multi-party computations [14].
Much is known about what can and cannot be done as a secure multiparty com-
putation; less is known about what is practical, and the prognosis is not good for
efficiently supporting arbitrary computations (beyond cryptographic operations like
decryption and signing).

It’s not difficult to implement a service that simply stores confidential data for
subsequent retrieval by clients. An obvious scheme has the client encrypt the con-
fidential data and forward that encrypted data to a storage service for subsequent
retrieval. Only the client and other principals with knowledge of the decryption key
would then be able to make sense of the data they retrieve. Note that the service
here has no way to control which principals are able to access unencrypted confi-
dential data.

In cases in which we desire the service—and not the client that initially stores
the confidential data—to implement access control, then simply having a client en-
crypt the confidential data no longer works. The key elements of the solution to this
problem have already been described, though:

• The confidential data (or a secret key to encrypt the data) is encrypted using a
service public key.

• The corresponding private key is shared among replicas using an (n, t + 1) secret
sharing scheme and refreshed periodically using proactive secret sharing.

• A copy of the encrypted data is stored on every replica to preserve its integrity
and availability in face of server compromises and failures.

Two schemes have been proposed for clients to retrieve the encrypted data.

• Re-encryption. A re-encryption protocol produces a ciphertext encrypted un-
der one key from a ciphertext encrypted under another and does so without
the plaintext becoming available during intermediate steps. Such protocols ex-
ist for public-key cryptosystems in which the private key is shared among a set
of servers [17]. To retrieve a piece of encrypted data, the service executes a re-
encryption protocol on data encrypted under the service public key; the result is
data encrypted under the public key of an authorized client.

8 Implementing Trustworthy Services Using Replicated State Machines 163

• Blinding. A client chooses a random blinding factor, encrypts it using the service
public key, and sends that to the service. If the service deems that client au-
thorized for access, then the service multiplies the encrypted data by this blind-
ing factor and then employs threshold decryption to compute unencrypted but
blinded data, which is sent back to the client. The client, knowing the blinding
factor, can then recover the data from that blinded data.

Blinding can be considered a special case of re-encryption, because it’s essen-
tially encryption with a one-time pad (the random blinding factor). Unlike the re-
encryption scheme in Markus Jakobsson’s work [17], which demands no involve-
ment of the client and produces a ciphertext for a different key in the same encryp-
tion scheme, our use of blinding requires client participation and yields a ciphertext
under a different encryption scheme. So, re-encryption can be used directly for cases
in which a client itself is a distributed service with a service public key, whereas the
blinding-based scheme cannot be used without further modification. In fact, a re-
encryption scheme based on blinding appears in other work [35]; in it, ciphertext
encrypted under the service public key is transformed into ciphertext encrypted un-
der the client public key (as with the re-encryption scheme in Jakobsson’s work),
thereby allowing a flexible partition of work between client and service.

Table 8.1 Systems that employ elements of distributed trust.

SYSTEM DESCRIPTION

BFS [8] An NFS file system implementation built using the BFT toolkit (see Table 2 for
a description of the toolkit).

Cornell
Online
Certificate
Authority
(COCA) [36]

COCA is a trustworthy distributed certification authority. It avoids consensus
protocols by using a Byzantine quorum system, which employs threshold cryp-
tography to produce certificates signed by the service, using proactive recovery
in conjunction with offline administrator keys for maintaining authenticated
communication links. COCA assumes the asynchronous model.

Cornell
Data
Exchange
(CODEX) [24]

CODEX is a robust and secure distribution system for confidential data. It stores
private keys using secret sharing with proactive refresh, uses threshold cryptog-
raphy, and employs a distributed blinding protocol to send confidential informa-
tion from the service to a client or another distributed service. CODEX assumes
the asynchronous model.

E-Vault[13] A secure distributed storage system, E-Vault employs threshold cryptography
to maintain private keys, uses blinding for retrieving confidential data, and im-
plements proactive secret sharing. E-Vault assumes the synchronous system
model.

8.9 Discussion

Tables 8.1 and 8.2 summarize the various systems that have been built using the
elements we’ve just outlined. Clearly, there’s much to be learned about how to en-
gineer systems based on these elements, and only a small part of the landscape has
been explored.

164 F.B. Schneider and L. Zhou

Table 8.2 Toolkits for implementing distributed trust.

SYSTEM DESCRIPTION

BFT[8] BFT is a toolkit for implementing replicated state machines in the asynchronous
model. Services tolerate Byzantine failures and use a proactive recovery mech-
anism for periodically re-establishing secure links among replicas and restor-
ing each replica’s code and state. BFT employs consensus protocols and sacri-
fices liveness to circumvent the impossibility result for consensus in the asyn-
chronous model. For proactive recovery, BFT assumes a secure cryptographic
coprocessor and a watchdog timer. BFT doesn’t provide support for storing con-
fidential information or for maintaining a service private key that is required for
scalability.

Intrusion
Tolerance via
Threshold
Cryptography
(ITTC)[32]

The ITTC toolkit includes a threshold RSA implementation with distributed
key generation and share refreshing, which is done when instructed by an ad-
ministrator. No clear system model is provided, but the protocols seem to be
suitable for use in the asynchronous model.

Phalanx [23] Phalanx is middleware for implementing scalable persistent survivable dis-
tributed object repositories. In Phalanx, a Byzantine quorum system allows
Byzantine failures to be tolerated, even in the asynchronous model. Random-
ized protocols are used to circumvent the impossibility result for consensus in
the asynchronous model. Phalanx does not provide support for storing confi-
dential information or for maintaining confidential service keys; it also does
not implement proactive recovery.

Proactive
security
toolkit
(IBM) [1]

This is a toolkit for maintaining proactively secure communication links, pri-
vate keys, and data storage in synchronous systems. The design employs the
attack-awareness approach (with ROM) for refreshing the servers’ public-
private key pairs.

Secure
INtrusion-
Tolerant
Replication
Architecture
(Sintra)[6]

Sintra is a toolkit that provides a set of group communication primitives for
implementing a replicated state machine in the asynchronous model, where
servers can exhibit Byzantine failures. Randomized protocols are used to cir-
cumvent the impossibility result for consensus in the asynchronous model. Sin-
tra does not provide support for storing confidential information or for main-
taining a service private key that is required for scalability, although the design
of an asynchronous proactive secret sharing protocol is documented elsewhere.

A system’s trustworthiness is ultimately tied to a set of assumptions about the en-
vironment in which that system must function. Systems users should prefer weaker
assumptions, because then there is less risk that these assumptions will be violated
by natural events or attacks. However, adopting this view, renders irrelevant much
prior work in fault-tolerance and distributed algorithms.

Until recently, the synchronous model of computation has generally been as-
sumed, but there are good reasons to investigate algorithms and system architectures
for asynchronous models of computation: specifically, concern about DoS attacks
and interest in distributed computations that span wide-area networks. Also, most
of the prior work on replication has ignored confidentiality, yet confidentiality is not
orthogonal to replication and poses a new set of challenges, so it cannot be ignored.
Moreover, because confidentiality is not a property of an individual component’s

8 Implementing Trustworthy Services Using Replicated State Machines 165

state or state transitions, usual approaches to specification and system refinement,
which are concerned with what actions components perform, are not germane.

The system design approach outlined in this chapter has been referred to as im-
plementing distributed trust [27], because it allows a higher level of trust to be
placed in an ensemble than could be placed in a component. There is no magic here.
Distributed trust requires that component compromise be independent. To date, only
a few sources of diversity have been investigated, and only a subset of those has en-
joyed practical deployment. Real diversity is messy and often brought about by ran-
dom and unpredictable natural processes, in contrast to how most computations are
envisaged (as a preconceived sequence of state transitions). Think about how epi-
demics spread (from random, hence diverse, contacts between individuals) to wipe
out a population (a form of “reliable broadcast”); think about how individuality per-
mits a species to survive or how diverse collections of species allow an ecosystem
to last.

Finally, if cryptographic building blocks, like secret sharing and threshold cryp-
tography, seem a bit arcane today, it is perhaps worth recalling that 20 years ago,
research in consensus protocols was considered a niche concern that most systems
builders ignored as impractical. Today, systems designers understand and regularly
use such protocols to implement systems that can tolerate various kinds of failures
even though hardware is more reliable than ever. The promising technologies for
trustworthiness, such as secret sharing and threshold cryptography, are also seen
today as a niche concern. This cannot persist for long, given our growing depen-
dence on networked computers, which, unfortunately, makes us hostage not only to
failures but also to attacks.

Acknowledgements Helpful comments on earlier drafts of this paper were provided by Martin
Abadi, Úlfar Erlingsson, Andrew Myers, Mike Schroeder, Gun Sirer, and Ted Wobber. We are also
very grateful to three anonymous reviewers for insightful suggestions and pointers to literature we
overlooked, all of which helped us to clarify the exposition.

Discussions with Robbert van Renesse were instrumental in developing our first prototype sys-
tems that embodied these ideas; Mike Marsh worked on a second system, leading to our work on
distributed blinding.

This work was supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR grant
F49620-03-1-0156, Defense Advanced Research Projects Agency (DARPA) and Air Force Re-
search Laboratory Air Force Material Command USAF under agreement number F30602-99-1-
0533, National Science Foundation Grants 9703470 and 0430161, and grants from Intel Corpo-
ration and Microsoft Corporation. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of these organizations or the U.S. Government.

References

1. Barak, B., Herzberg, A., Naor, D., Shai, E.: The proactive security toolkit and applications.
In: Proceedings of the 6th ACM Conference on Computer and Communications Security
(CCS’99), November 1999, pp. 18–27. ACM SIGSAC (1999)

2. Blakley, G.: Safeguarding cryptographic keys. In: Merwin, R., Zanca, J., Smith, M. (eds.)
Proceedings of the 1979 National Computer Conference. AFIPS Conference Proceedings,
vol. 48, pp. 313–317. AFIPS Press, New York (1979)

166 F.B. Schneider and L. Zhou

3. Boyd, C.: Digital multisignatures. In: Baker, H., Piper, F. (eds.) Cryptography and Coding,
pp. 241–246. Clarendon Press, Oxford (1989)

4. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable secret sharing
and proactive cryptosystems. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, November 2002, pp. 88–97. ACM Press, New York (2002)

5. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asyn-
chronous Byzantine agreement using cryptography. In: Proceedings of the 19th ACM Sym-
posium on Principles of Distributed Computing (PODC 2000), July 2000, pp. 123–132. ACM
Press, New York (2000)

6. Cachin, C., Poritz, J.A.: Secure intrusion-tolerant replication on the Internet. In: Proceedings
of the International Conference on Dependable Systems and Networks (DSN-2002), June
2002, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2002)

7. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer, Heidelberg
(1994)

8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems 20(4), 398–461 (2002)

9. Chockler, G., Malkhi, D., Reiter, M.K.: Backoff protocols for distributed mutual exclusion
and ordering. In: Proceedings of the International Conference on Distributed Systems, pp.
11–20. IEEE Computer Society Press, Los Alamitos (2001)

10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

12. Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: Proceedings
of the Sixth Workshop on Hot Topics in Operating Systems, Cape Cod, MA, May 1997, pp.
67–72. IEEE Computer Society Press, Los Alamitos (1997)

13. Garay, J.A., Gennaro, R., Jutla, C., Rabin, T.: Secure distributed storage and retrieval. Theo-
retical Computer Science 243(1–2), 363–389 (2000)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proceedings
of the 19th Annual Conference on Theory of Computing, STOC’87, May 25–27, 1987, pp.
218–229. ACM Press, New York (1987)

15. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: How to cope
with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–
352. Springer, Heidelberg (1995)

16. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty
computation. Journal of Cryptology 13(1), 31–60 (2000)

17. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai, H., Zheng,
Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg (1999)

18. Knight, J., Leveson, N.G.: An experimental evaluation of the assumption of independence
in multi-version programming. IEEE Transactions on Software Engineering 12(1), 96–109
(1986)

19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

20. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2), 133–
169 (1998)

21. Liskov, B., Ladin, R.: Highly available distributed services and fault-tolerant distributed
garbage collection. In: Proceedings of the Fifth Annual ACM Symposium on Principles of
Distributed Computing, Calgary, Alberta, Canada, August 1986, pp. 29–39. ACM Press, New
York (1986)

22. Malkhi, D., Reiter, M.: Byzantine quorum system. Distributed Computing 11(4), 203–213
(1998)

23. Malkhi, D., Reiter, M.: Secure and scalable replication in Phalanx. In: Proceedings of the
17th Symposium on Reliable Distributed Systems, West Lafayette, IN, USA, October 20–
22, 1998, pp. 51–58. IEEE Computer Society Press, Los Alamitos (1998)

8 Implementing Trustworthy Services Using Replicated State Machines 167

24. Marsh, M.A., Schneider, F.B.: CODEX: A robust and secure secret distribution system. IEEE
Transactions on Dependable and Secure Computing 1(1), 34–47 (2003)

25. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings of the 10th
Annual Symposium on Principles of Distributed Computing (PODC’91), Montreal, Quebec,
Canada, August 19–21, 1991, pp. 51–59. ACM, New York (1991)

26. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27(2), 228–234 (1980)

27. Reiter, M.K.: Distributing trust with the Rampart toolkit. Communications of the ACM 39(4),
71–74 (1996)

28. Rodrigues, R., Castro, M., Liskov, B.: BASE: using abstraction to improve fault tolerance. In:
Proceedings of the 18th ACM Symposium on Operating System Principles, Banff, Canada,
October 2001, pp. 15–28. ACM, New York (2001)

29. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

30. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
31. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:

Proceedings of the 2000 IEEE Symposium Security and Privacy, Oakland, CA USA, May
2000, pp. 44–45. IEEE Computer Society Press, Los Alamitos (2000)

32. Wu, T., Malkin, M., Boneh, D.: Building intrusion tolerant applications. In: Proceedings of
the 8th USENIX Security Symposium, Washington, D.C. USA, August 22–26, 1999, pp.
79–91. USENIX Association (1999)

33. Wylie, J.J., Bigrigg, M.W., Strunk, J.D., Ganger, G.R., Kiliççöte, H., Khosla, P.K.: Survivable
information storage systems. IEEE Computer 33(8), 61–68 (2000)

34. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent runtime randomization for security. Tech.
Rep. UILU-ENG-03-2207 (CRHC-03-03), Center for Reliable and High-Performance Com-
puting, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL (May 2003)

35. Zhou, L., Marsh, M.A., Schneider, F.B., Redz, A.: Distributed blinding for distributed El-
Gamal re-encryption. In: Proceedings of the 25th International Conference on Distributed
Computing Systems, Columbus, Ohio, USA, June 2005, pp. 814–824. IEEE Computer Soci-
ety, Los Alamitos (2005)

36. Zhou, L., Schneider, F.B., van Renesse, R.: COCA: A secure distributed on-line certification
authority. ACM Transactions on Computer Systems 20(4), 329–368 (2002)

37. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: Proactive secret sharing in asynchronous
systems. ACM Trans. on Information and Sytem Security 8(3) (2005)

Chapter 9
State Machine Replication with Byzantine Faults

Christian Cachin

Abstract This chapter gives an introduction to protocols for state-machine replica-
tion in groups that are connected by asynchronous networks and whose members
are subject to arbitrary or “Byzantine” faults. It explains the principles of such pro-
tocols and covers the following topics: broadcast primitives, distributed cryptosys-
tems, randomized Byzantine consensus protocols, and atomic broadcast protocols.

9.1 Introduction

Coordinating a group of replicas to deliver a service, while some of them are actively
trying to prevent the coordination effort, is a fascinating topic. It stands at the heart
of Pease, Shostak, and Lamport’s classic work [24] on reaching agreement in the
presence of faults, which ignited an impressive flow of papers elaborating on this
problem over the last 30 years.

In this chapter, we survey protocols to replicate a state machine in an asyn-
chronous network over a group of n parties or replicas, of which up to t are subject
to so-called Byzantine faults. No assumptions about the behavior of the faulty parties
are made; they may deviate arbitrarily from the protocol, as if corrupted by a mali-
cious adversary. The key mechanism for replicating a deterministic service among
the group is a protocol for the task of atomic broadcast [16, 31, 32]. It guarantees
that every correct party in the group receives the same sequence of requests from the
clients. This approach allows to build highly resilient and intrusion-tolerant services
on the Internet, as discussed in Chapter 8.

The model considered here is motivated by practice. The parties are connected
pairwise by reliable authenticated channels. Protocols may use cryptographic meth-
ods, such as public-key cryptosystems and digital signatures. A trusted entity takes
care of initially generating and distributing private keys, public keys, and certifi-
cates, such that every party can verify signatures by all other parties, for example.
The system is asynchronous: there are no bounds on the delivery time of messages
and no synchronized clocks. This is an important aspect because systems whose cor-

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 169–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

170 C. Cachin

rectness relies on timing assumptions are vulnerable to attackers that simply slow
down the correct parties or delay the messages sent between them.

The chapter is organized as follows. We first introduce some building blocks for
atomic broadcast; they consist of two broadcast primitives, distributed cryptosys-
tems, and randomized Byzantine consensus protocols. Then we present the struc-
ture of some recent asynchronous atomic broadcast protocols. Finally, we illustrate
some issues with service replication that arise specifically in the presence of Byzan-
tine faults. We focus on the asynchronous model and leave out many other protocols
that have been formulated for synchronous networks.

9.2 Building Blocks

9.2.1 Broadcast Primitives

We present two broadcast primitives, which are found in one way or other in all
consensus and atomic broadcast protocols tolerating Byzantine faults. As such pro-
tocols usually invoke multiple instances of a broadcast primitive, every message is
tagged by an identifier of the instance in practice (and where applicable, the identi-
fier is also included in every cryptographic operation).

Every broadcast instance has a designated sender, which broadcasts a request m
to the group at the start of the protocol. All parties should later deliver m, though
termination is not guaranteed with a faulty sender. To simplify matters, we assume
that the sender is a member of the group (i.e., that requests from clients to the service
are relayed through one replica) and that all requests are unique.

Consistent Broadcast

Consider a group of n parties P1, . . . ,Pn. In consistent broadcast, a designated
sender Ps first executes c-broadcast with request m and thereby starts the protocol.
All parties terminate the protocol by executing c-deliver with request m. Consis-
tent broadcast ensures only that the delivered request is the same for all receivers.
In particular, it does not guarantee that every party delivers a request with a faulty
sender.

The following definition is implicit in the work of Bracha and Toueg [37, 2] but
has been formulated more recently [3] to be in line with the corresponding notions
for systems with crash failures [12]. Recall that it models only one instance of con-
sistent broadcast.

Definition 9.1 (Consistent Broadcast). A protocol for consistent broadcast satis-
fies:

Validity: If a correct sender Ps c-broadcasts m, then all correct parties eventually
c-deliver m.

Consistency: If a correct party c-delivers m and another correct party c-delivers m′,
then m = m′.

Integrity: Every correct party c-delivers at most one request. Moreover, if the
sender Ps is correct, then the request was previously c-broadcast by Ps.

9 State Machine Replication with Byzantine Faults 171

The echo broadcast protocol below implements consistent broadcast with a linear
number of messages and uses digital signatures. Its idea is that the sender distributes
the request to all parties and expects � n+t+1

2 � parties to act as witnesses for the
request; they attest this by signing their reply to the sender. In all upon clauses of
the protocol description that involve receiving a message, only the first message
from each party is considered.

Algorithm 9.1 Echo broadcast [29] (all parties use digital signatures).
upon c-broadcast(m) do {only Ps}

send message (send,m) to all

upon receiving a message (send,m) from Ps do
compute signature σ on (echo, s,m)
send message (echo,m,σ) to Ps

upon receiving � n+t+1
2 � messages (echo,m,σi) with valid σi do {only Ps}

let Σ be the list of all received signatures σi

send message (final,m,Σ) to all

upon receiving a message (final,m,Σ) from Ps with � n+t+1
2 � valid signatures in Σ do

c-deliver(m)

Theorem 9.1. Algorithm 9.1 implements consistent broadcast for n > 3t.

Proof sketch. Validity and integrity are straightforward to verify. Consistency fol-
lows from the observation that the request m in any final message with � n+t+1

2 �
valid signatures in Σ is unique. To see this, consider the set of parties that issued
the � n+t+1

2 � signatures: because there are only n distinct parties, every two sets of
signers overlap in at least one correct party. Such sets are also called Byzantine
quorums [19]; quorum systems are the subject of Chapter 10.

The message complexity of echo broadcast is O(n) and its communication com-
plexity is O(n2(k + |m|)), where k denotes the length of a digital signature. Using
a non-interactive threshold signature scheme [34], the communication complexity
can be reduced to O(n(k + |m|)) [3].

Reliable Broadcast

Reliable Broadcast is characterized by an r-broadcast event and an r-deliver event
analogous to consistent broadcast. Reliable broadcast additionally ensures agree-
ment on the delivery of the request in the sense that either all correct parties deliver
some request or none delivers any request; this property has been called totality [3].
In the literature, consistency and totality are often combined into a single condition
called agreement. This primitive is also known as the “Byzantine generals problem.”

172 C. Cachin

Definition 9.2 (Reliable Broadcast). A protocol for reliable broadcast is a consis-
tent broadcast protocol that satisfies also:

Totality: If some correct party r-delivers a request, then all correct parties eventu-
ally r-deliver a request.

The classical implementation of reliable broadcast by Bracha [2] uses two rounds of
message exchanges among all parties. Intuitively, it works as follows. After receiv-
ing the request from the sender, a party echoes it to all. After receiving such echos
from a Byzantine quorum of parties, a party indicates to all others that it is ready to
deliver the request. When a party receives a sufficient number of those indications,
it delivers the request.

Algorithm 9.2 Bracha broadcast [2].
upon r-broadcast(m) do {only Ps}

send message (send,m) to all

upon receiving a message (send,m) from Ps do
send message (echo,m) to all

upon receiving � n+t+1
2 � messages (echo,m) and not having sent a ready-message do

send message (ready,m) to all

upon receiving t +1 messages (ready,m) and not having sent a ready-message do
send message (ready,m) to all

upon receiving 2t +1 messages (ready,m) do
r-deliver(m)

Theorem 9.2. Algorithm 9.2 implements reliable broadcast for n > 3t.

Proof sketch. Consistency follows from the same argument as in Theorem 9.1, since
the request m in any readymessage of a correct party is unique. Totality is implied
by the “amplification” of ready messages from t + 1 to 2t + 1 with the fourth
upon clause of the algorithm. Specifically, if a correct party has r-delivered m, it has
received a ready message with m from 2t + 1 distinct parties. Therefore, at least
t + 1 correct parties have sent a ready message with m, which will be received
by all correct parties and cause them to send a ready message as well. Because
n− t ≥ 2t + 1, all correct parties eventually receive enough ready messages to
terminate.

The message complexity of Bracha broadcast is O(n2) and its communication com-
plexity is O(n2|m|). Because it does not need digital signatures, which are usually
computationally expensive operations, Bracha broadcast is often preferable to echo
broadcast depending on the deployment conditions.

Several complex consensus and atomic broadcast protocols use either the consis-
tent or the reliable broadcast primitive, and one can often substitute either primitive

9 State Machine Replication with Byzantine Faults 173

for the other one in these protocols, with appropriate modifications. Selecting one
of these primitives for an implementation involves a trade-off between computation
time and message complexity. It is an interesting question to determine the exper-
imental conditions under which either primitive is more suitable; Moniz et al. [23]
present some initial answers.

9.2.2 Distributed Cryptography

Distributed cryptography spreads the operation of a cryptosystem among a group
of parties in a fault-tolerant way [10]; even if an adversary learns the secrets of all
faulty parties, the protection of the cryptosystem must remain intact. Such schemes
are also called threshold cryptosystems. They are based on secret sharing methods,
and distributed implementations are typically known only for public-key cryptosys-
tems because of their algebraic properties.

Secret Sharing

In a (t + 1)-out-of-n secret sharing scheme, a secret s, element of a finite field F

with q elements, is shared among n parties such that the cooperation of at least t +1
parties is needed to recover s. Any group of t or fewer parties should not get any
information about s.

Algorithm 9.3 Polynomial secret sharing [33].
To share s ∈ Fq, a dealer Pd �∈ {P1, . . .,Pn} chooses uniformly at random a polynomial f (X) ∈
Fq[X] of degree t subject to f (0) = s, generates shares si = f (i), and sends si to Pi for i = 1, . . . ,n.
To recover s among a group of t +1 parties with indices S , every member of the group reveals its
share and the parties together recover the secret by computing

s = f (0) = ∑
i∈S

λ S
0,i si,

where

λ S
0,i = ∏

j∈S , j �=i

j
j− i

are the (easy-to-compute) Lagrange coefficients.

Theorem 9.3. In Algorithm 9.3, every group of t or fewer parties has no information
about s, i.e., their shares are statistically independent of s.

We refer to the literature for definitions and for a proof of the theorem [36]. Se-
cret sharing schemes do not directly give fault-tolerant replicated implementations
of cryptosystems; if the secret key were reconstructed for performing a crypto-
graphic operation, all security would be lost because the key would be exposed
to the faulty parties. So-called threshold cryptosystems perform these operations se-
curely; as an example, a threshold public-key cryptosystem based on the ElGamal
cryptosystem is presented next (details can be found in books on modern cryptog-
raphy [22, 36, 13]).

174 C. Cachin

Discrete Logarithm-Based Cryptosystems

Let G be a group of prime order q such that g is a generator of G. The discrete
logarithm problem (DLP) means, for a random y ∈ G, to compute x ∈ Zq such that
y = gx. The Diffie-Hellman problem (DHP) is to compute gx1x2 from random y1 =
gx1 and y2 = gx2 .

It is conjectured that there exist groups in which solving the DLP and the DHP
is hard, for instance, the multiplicative subgroup G⊂Z

∗
p of order q, for some prime

p = mq + 1 (recall that q is prime). This choice with |p| = 2048 and |q| = 256 is
considered secure today and used widely on the Internet, for example.

A public-key cryptosystem consists of three algorithms, K, E, and D. The key-
generation algorithm K outputs a pair of keys (pk,sk). The encryption and decryp-
tion algorithms, E and D, have the property that for all (pk,sk) generated by K and
for any plaintext message m, it holds D(sk,E(pk,m)) = m.

A public-key cryptosystem is semantically secure if no efficient adversary A can
distinguish the encryptions of any two messages. Semantic security provides secu-
rity against so-called passive attacks, in which an adversary follows the protocol but
tries to infer more information than it is entitled to. An adversary mounting an active
attack may additionally fabricate ciphertext, submit it for decryption, and obtain the
results.

ElGamal Cryptosystem and Threshold ElGamal

The ElGamal cryptosystem is based on the DHP: K selects a random secret key
x ∈ Zq and computes the public key as y = gx. The encryption of m ∈ {0,1}k under
public-key y is the tuple (A,B) = (gr,m⊕H(yr)), computed using a randomly cho-
sen r ∈ Zq and a collision-resistant cryptographic hash function H : G→ {0,1}k.
The decryption of a ciphertext (A,B) is m̂ = H(Ax)⊕B. One can easily verify that
m̂ = m because Ax = grx = gxr = yr, and therefore, the argument to H is the same
in encryption and decryption. The cryptosystem is semantically secure under the
assumption that the DHP is hard.

Algorithm 9.4 Threshold ElGamal Cryptosystem.
Let the secret key x be shared among P1, . . . ,Pn using a polynomial f of degree t over Zq such that
Pi holds a share xi = f (i). The public key y = gx is known to all parties. Encryption is the same
as in standard ElGamal above. For decryption, a client sends a decryption request containing a
ciphertext (A,B) to all parties. Upon receiving a decryption request, party Pi computes a decryption
share di = Axi and sends it to the client. Upon receiving decryption shares from a set of t +1 parties
with indices S , the client recovers the plaintext as

m̂ = H
(

∏
i∈S

di
λS

0,i

)
⊕B.

Theorem 9.4. Algorithm 9.4 implements a (t + 1)-out-of-n threshold cryptosystem
that tolerates the passive corruption of t < n/2 parties.

9 State Machine Replication with Byzantine Faults 175

Proof sketch. The decryption is correct because

∏
i∈S

di
λ S

0,i = ∏
i∈S

Axiλ S
0,i = A∑i∈S xiλ S

0,i = Ax

from the properties of secret sharing. The system is as secure as the ElGamal cryp-
tosystem because ciphertexts are computed in the same way. Moreover, the decryp-
tion shares (di = Axi) do not reveal any “useful information” about the shares of the
secret key (xi).

This is a non-interactive threshold cryptosystem, as no interaction among the parties
is needed. It can also be made secure against active attacks [35]. Non-interactive
threshold cryptosystems can easily be integrated in asynchronous protocols.

9.2.3 Byzantine Consensus

One step up from the broadcast primitives is a protocol to reach consensus despite
Byzantine faults. It is a prerequisite for implementing atomic broadcast. All atomic
broadcast protocols, at least in the model with static groups considered here, either
explicitly invoke a consensus primitive or implicitly contain one.

The Byzantine consensus problem, also called Byzantine agreement1, is charac-
terized by two events propose and decide; every party executes propose(v) to start
the protocol and decide(v) to terminate it for a value v. In binary consensus, the
values are bits.

Definition 9.3 (Byzantine Consensus). A protocol for binary Byzantine consensus
satisfies:

Validity: If all correct parties propose v, then some correct party eventually de-
cides v.

Agreement: If some correct party decides v and another correct party decides v′,
then v = v′.

Termination: Every correct party eventually decides.

The result of Fischer, Lynch, and Paterson [11] implies that every asynchronous
protocol solving Byzantine consensus has executions that do not terminate. State
machine replication in asynchronous networks is also subject to this limitation.
Roughly at the same time, however, randomized protocols to circumvent this impos-
sibility were developed [26, 1, 37]. They make the probability of non-terminating
executions arbitrarily small. More precisely, given a logical time measure T , such
as the number of steps performed by all correct parties, define termination with
probability 1 as

lim
T→∞

Pr[some correct party has not decided after time T] = 0.

1 We prefer the name Byzantine consensus because Byzantine agreement is overloaded and has
been used for technically different problems.

176 C. Cachin

Algorithm 9.5 Binary randomized Byzantine consensus [37].
Suppose a trusted dealer has shared a sequence s0, s1, . . . of random bits, called coins, among the
parties, using (t + 1)-out-of-n secret sharing. A party can access the coin sr using a recover(r)
operation, which involves a protocol that exchanges some messages to reveal the shares to all
parties, and gives the same coin value to every party.
The two upon clauses in the pseudo-code below are executed concurrently.

upon propose(v) do
r← 0
decided← false
loop

send the signed message (1-vote, r,v) to all
wait for receiving properly signed (1-vote, r,v′) messages

from n− t distinct parties
Π ← set of received 1-vote messages including the signatures
v← value v′ that is contained most often in Π
r-broadcast the message (2-vote, r,v,Π)
wait for r-delivery of (2-vote, r,v′,Π) messages from n− t distinct

senders with valid signatures in Π and correctly computed v′
b← value v′ contained most often among the r-delivered 2-vote msgs.
c← number of r-delivered 2-vote messages with v′ = b
sr← recover(r)
if c = n− t then

v← b
else

v← sr

if b = sr then
send the message (decide,v) to all {note that v = sr = b}

r← r +1

upon receiving t +1 messages (decide,b) do
if decided = false then

send the message (decide,b) to all
decided← true
decide(b)

A consensus protocol that terminates with probability 1 is Algorithm 9.5. It works as
follows. Every party maintains a value v, called its vote, and the protocol proceeds
in global asynchronous rounds. Every round consists of two voting steps among
the parties with all-to-all communication. In the first voting step, the parties simply
exchange their votes, and every party determines the majority of the received votes.
In the second voting step, every party relays the majority vote to all others, this
time using reliable broadcast and accompanied by a set Π that serves as a proof for
justifying the choice of the majority. The set Π contains messages and signatures
from the first voting step. After receiving reliable broadcasts from n− t parties,
every party determines the majority of this second vote and adopts its outcome as
its vote v if the tally is unanimous; otherwise, a party sets v to the shared coin for
the round. If the coin equals the outcome of the second vote, then the party decides.

9 State Machine Replication with Byzantine Faults 177

Lemma 9.1. If all correct parties start some round r with vote v0, then all correct
parties terminate round r with vote v0.

Proof. It is impossible to create a valid Π for a 2-votemessage with a vote v �= v0

because v must be set to the majority value in n− t received 1-vote messages and
n− t > 2t.

Lemma 9.2. In round r ≥ 0, the following holds:

1. If a correct party sends a decide message for v0 at the end of round r, then all
correct parties terminate round r with vote v0.

2. With probability at least 1
2 , all correct parties terminate round r with the same

vote.

Proof. Consider the assignment of b and c in round r. If some correct party obtains
c = n− t and b = v0, then no correct party can obtain a majority of 2-vote mes-
sages for a value different from v0 (there are only n 2-vote messages and they
satisfy the consistency of reliable broadcast). Those correct parties with c = n− t
set their vote v to v0; every other correct party sets v to sr. Hence, if sr = v0, all
correct parties terminate round r with vote v0.

Claim a) now follows upon noticing that a correct party only sends a decide
message for v0 when v0 = b = sr.

Claim b) follows because the first correct party to assign b and c does so before
any information about sr is known (to the adversary). To see this note that at least
t + 1 shares are needed for recovering sr, but a correct party only reveals its share
after assigning b and c. Thus, sr and v0 are statistically independent and sr = v0

holds with probability 1
2 .

Theorem 9.5. Algorithm 9.5 implements binary Byzantine consensus for n > 3t,
where termination holds with probability 1.

The theorem follows easily from the two lemmas. The protocol achieves optimal re-
silience because reaching agreement in asynchronous networks with t ≥ n/3 Byzan-
tine faults is impossible, despite the use of digital signatures [37]. Since Algo-
rithm 9.5 terminates with probability at least 1

2 in every round, the expected number
of rounds is two, and the expected number of messages is O(n3).

Using Cryptographic Randomness

The problem with Algorithm 9.5 is that every round in the execution uses up
one shared coin in the sequence s0,s1, As coins cannot be reused, this is
a problem in practice. A solution for this is to obtain the shared coins from
a threshold-cryptographic function. Malkhi and Reiter [20] observe that a non-
interactive and deterministic threshold signature scheme yields unpredictable bits,
which is sufficient.

More generally, one may obtain the coin value sr from the output of a distributed
pseudorandom function (PRF) [13] evaluated on the round number r and the proto-
col instance identifier. A PRF is parameterized by a secret key and maps every input

178 C. Cachin

string to an output string that looks random to anyone who does not have the secret
key. A practical PRF construction is a block cipher with a secret key; distributed
implementations, however, are only known for functions based on public-key cryp-
tosystems. Cachin et al. [4] describe a suitable distributed PRF based on the Diffie-
Hellman problem. With their implementation of the shared coin, Algorithm 9.5 is
quite practical and has expected message complexity O(n3). It can further be im-
proved to a randomized asynchronous Byzantine consensus protocol with O(n2)
expected messages [4].

9.3 Atomic Broadcast Protocols

Atomic broadcast delivers multiple requests in the same order to all parties. Whereas
instances of reliable broadcast may be independent of each other, the total order of
atomic broadcast links these together and requires more complex implementations.
The details of the protocols in this section are therefore omitted.

Analogously to reliable broadcast, atomic broadcast is characterized by an a-
broadcast event, executed by the sender of a request, and an a-deliver event. Every
party may a-broadcast multiple requests; also a-deliver generally occurs multiple
times. The following definition [3] is adapted from the corresponding one in the
crash-failure model [12].

Definition 9.4 (Atomic Broadcast). A protocol for atomic broadcast consists of a
set of protocol instances for reliable broadcast that satisfy also:

Total order: If two correct parties Pi and Pj both a-deliver two requests m and m′,
then Pi a-delivers m before m′ if and only if Pj a-delivers m before m′.

Since we are not explicit about instances of reliable broadcast in this definition, we
must change the integrity property in Definition 9.2 (originating in Definition 9.1)
appropriately: We require instead that every possible request m is a-delivered at most
once, and that if all parties are correct, then m was previously a-broadcast by some
party.

Some early atomic broadcast protocols [29, 25] used dynamic groups with a
membership service that might evict faulty parties from the group, even if they only
appear to be slow. When an attacker manages to exploit network delays accordingly,
this may lead to the problematic situation where the correct parties are in a minority,
and the protocol violates safety.

The more recent protocols, on which we focus here, never violate safety because
of network instability. We distinguish between two kinds of atomic broadcast proto-
cols, which we call consensus-based and sequencer-based according to the survey
of atomic broadcast protocols of Défago et al. [9]. We next review the principles of
these protocols, starting with the historically older protocols based on consensus.
A third option, considered afterwards, is to combine leader- and consensus-based
protocols into hybrid atomic broadcast protocols.

9 State Machine Replication with Byzantine Faults 179

9.3.1 Consensus-Based Atomic Broadcast

The canonical implementation of atomic broadcast uses a consensus primitive to
determine the next request that should be a-delivered. Such a protocol proceeds in
asynchronous rounds and uses one instance of (multi-valued) Byzantine consensus
in every round to agree on a set of requests, which are then a-delivered in a fixed
order at the end of the round. The same approach has been applied in the crash-
failure model by algorithms using the mechanism of message ordering by agreement
on a message set [9] (see also Chapter 3 and [12]).

Incoming requests are buffered and proposed for delivery in the next available
round. The validity notion of Byzantine consensus, however, must be amended for
this to work: the standard validity condition only guarantees that a particular deci-
sion is reached when all parties make the same proposal. This will rarely be the case
in practice, where every party receives different requests to a-broadcast.

A suitable notion of validity for multi-valued Byzantine consensus has been in-
troduced by Cachin et al. [3]; it defines a test for determining if a proposed value is
acceptable and externalizes it. Moreover, to agree on a value from a domain of ar-
bitrary size, Algorithm 9.5 must be extended in non-trivial ways. Note that it would
be infeasible in practice to agree bit-by-bit on values from large domains such as
the set of all requests. A suitable protocol for multi-valued Byzantine consensus has
been formulated [3], and it uses a binary Byzantine consensus protocol as a subrou-
tine. This protocol incurs a communication overhead of O(n2) messages over the
primitive for binary consensus.

With multi-valued (randomized) Byzantine consensus, a protocol for asynchro-
nous atomic broadcast can be implemented easily as sketched before. In every round
of consensus, the validity test ensures that a batch of requests is only acceptable
when it has been assembled from the request buffers of at least t + 1 parties. This
implies that the requests from the buffer of at least one correct party are delivered
in that round. The resulting atomic broadcast protocol satisfies the relaxation of
Definition 9.4 to termination with probability 1 in the validity condition. Several
protocols of this kind have been prototyped in practical systems [5, 23, 28].

Note that the randomized nature of these atomic broadcast protocols does not hurt
in practice: they never violate safety (unless a cryptographic mechanism is broken)
and the worst-case probability that they take a large number of rounds to terminate
is, in fact, exponentially small and comparable to the probability that the adversary
guesses a cryptographic key.

9.3.2 Sequencer-Based Atomic Broadcast

Consensus-based protocols send all requests through a Byzantine consensus subrou-
tine to determine their order; but consensus is a rather expensive protocol. A more
efficient approach is taken by the PBFT protocol of Castro and Liskov [7], which re-
lies on a single party, called the sequencer, to determine the request order. Because
the sequencer may be faulty, its actions must be checked by the other parties in
a distributed protocol. PBFT can actually a be viewed as a Byzantine-fault-tolerant
version of the Paxos protocol [17, 18] or of viewstamped replication (see Chapter 7).

180 C. Cachin

Since it does not use randomization, it may not terminate in asynchronous networks
due to the FLP impossibility result [11]; therefore it uses a partially synchronous
model.

The PBFT protocol proceeds in epochs (also called views, where an epoch con-
sists of a normal-operation phase and a recovery phase. During every epoch, a des-
ignated party acts as the sequencer for the normal-operation phase, determines the
delivery order of requests, and commits every request through reliable broadcast
with Bracha’s protocol (Algorithm 9.2). Because the sequencer runs the reliable
broadcasts in a sequence, this guarantees that all correct parties receive and a-deliver
the requests in the same order. This approach ensures safety even when the se-
quencer is faulty, but may violate liveness when the sequencer stops r-broadcasting
requests.

When the sequencer appears faulty in the eyes of enough other parties, the pro-
tocol switches to the recovery phase. This step is based on timeouts that must occur
on at least t + 1 parties. Once sufficiently many parties have switched to the recov-
ery phase, the protocol aborts the still ongoing reliable broadcasts, and the recovery
phase eventually starts at all correct parties. The goal of the recovery phase is to
agree on a new sequencer for the next epoch and on the a-delivery of the requests
that the previous sequencer may have left in an inconclusive state.

Progress during the recovery phase and in the subsequent epoch requires the
timely cooperation of the new sequencer. In asynchronous networks, it is possible
that no requests are delivered before the epoch ends again, and the protocol loses
liveness. However, it is assumed that this occurs rarely in practice. This protocol
uses the fixed-sequencer mechanism for message ordering within every epoch [9]
and rotates the sequencer for every new epoch.

Despite its inherent complexity, the recovery phase of PBFT is still more effi-
cient than one round in the consensus-based atomic broadcast protocols. The PBFT
protocol has message complexity O(n2), ensures safety always and liveness only
during periods where the network is stable enough; it is considered practical by
many system implementors. Several atomic broadcast protocols inspired by PBFT
have appeared recently [21, 8, 14], which are even more efficient than PBFT un-
der certain conditions. Chapter 10 explores the use of Byzantine quorum systems in
PBFT and related protocols.

9.3.3 Hybrid Atomic Broadcast

Combining the efficiency of the sequencer-based approach during normal operation
with the strong guarantees of the (randomized) consensus-based approach for recov-
ery, protocols have been proposed that take the best features from both approaches.

The protocol of Kursawe and Shoup [15] is divided into epochs and uses reliable
broadcast during the normal-operation phase, like the PBFT protocol. For recov-
ery, however, it employs randomized Byzantine consensus and ensures that some
requests are a-delivered in any case. It therefore guarantees safety and liveness and
has the same efficiency as PBFT during stable periods.

9 State Machine Replication with Byzantine Faults 181

Ramasamy and Cachin [27] replace the reliable broadcast primitive in the Kursa-
we-Shoup protocol by consistent broadcast. The resulting protocol is attractive for
its low message complexity, only O(n) expected messages per request, amortized
over protocol executions with long periods of stability, compared to O(n2) for all
other atomic broadcast protocols in the Byzantine fault model. The improvement
comes at the cost of adding complexity to the recovery phase and, more importantly,
by using a digital signature scheme with public-key operations during the normal-
operation phase.

9.4 Service Replication

A fault-tolerant service implemented using replication should present the same in-
terface to its clients as when implemented using a single server. Sending requests
to the replicated deterministic service via atomic broadcast enables the replicas to
process the same sequence of requests and to maintain the same state [32]. If fail-
ures are limited to benign crashes, the client may obtain the correct service response
from any replica.

When the replicas are subject to Byzantine faults, additional concerns arise: First,
services involving cryptographic operations and secret keys must remain secure de-
spite the leakage of keys from corrupted replicas; second, clients must not rely on
the response message from any single replica because the replica may be faulty and
give a wrong answer; and third, faulty replicas may violate the causality between
requests sent to the replicated service. We review methods to address each of these
concerns next.

9.4.1 Replicating Cryptographic Services

The service may involve cryptographic operations with keys that should be pro-
tected, for example, when the service receives requests that are encrypted with a
service-specific key, or when it signs responses using digital signatures. In this case,
a break-in to single replica will leak all secrets to the adversary. To defend against
this attack, the cryptographic operations of the service should be implemented using
threshold cryptography. This leaves the service interface for clients unchanged and
hides the distributed implementation of the service, because they need to know only
one public key for the service, instead of n public keys for the group of replicas [30].

An important example of such a service is a certification authority (CA), which
binds public keys to names and asserts this with its digital signature. Since CAs
often serve as the root of trust for large systems, implementing them in an intrusion-
tolerant way is a good method to protect them. This principle has been demonstrated
in prototype systems [30, 39, 6].

9.4.2 Handling Responses Securely

As the response from any single replica may be forged, clients must generally re-
ceive at least t + 1 responses and infer the service response from them. If all t + 1

182 C. Cachin

responses are equal, then at least one of them was sent by a correct party, which
ensures that the response is correct. Collecting responses and deciding for a correct
one involves a modification of the client-side service interface. Usually this mod-
ification is simple and can be hidden in a library. But if no such modification is
possible, there is an alternative for services that rely on cryptographically protected
responses: use threshold cryptography to authenticate the response, for example,
with a digital signature. Then it is sufficient that the client verifies the authentic-
ity of the response once because it carries the approval of at least t + 1 parties that
executed the request [30]. In this context, Yin et al. [38] observed that only 2t + 1
parties need to execute requests and maintain the state of the service, instead of all
n parties.

9.4.3 Preserving Causality of Requests

When a client atomically broadcasts a request to the replicated service, the faulty
replicas may be able to create a derived request that is a-delivered and executed
before the client’s request. This violates the safety of the service, more precisely, the
causal order among requests. For example, consider a service that registers names in
a directory on a first-come, first-served basis. When a faulty party peeks inside the
atomic broadcast protocol and observes that an interesting name is being registered,
it may try to quickly register the name for one of its conspirators.

One can ensure a causal order among the requests to the service with the follow-
ing protocol [30], which combines a threshold cryptosystem (Section 9.2.2) with an
atomic broadcast protocol (Section 9.3). To a-broadcast a request, the client first en-
crypts it with a (t + 1)-out-of-n threshold public-key cryptosystem under the public
key of the service. Then, it a-broadcasts the resulting ciphertext. Upon a-delivery
of a ciphertext, a replica first computes a decryption share for the ciphertext, using
its share of the corresponding decryption key, and sends the decryption share to all
replicas. Then it waits for t + 1 decryption shares to arrive, recovers the original
request, and a-delivers it.

This protocol can be seen as an atomic broadcast protocol that respects causal
order in the Byzantine-fault model [3].

9.5 Conclusion

In the recent years, we have seen a revival of the research on protocols for Byzantine
consensus and atomic broadcast subject to Byzantine faults. This is because such
protocols appear to be much more practical nowadays and because there is demand
for realizing intrusion-tolerant services on the Internet. This chapter has presented
the building blocks for such protocols, some 25 years old, and some very recent,
and shown how they fit together for securing distributed on-line services.

9 State Machine Replication with Byzantine Faults 183

References

1. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement proto-
cols. In: Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC), pp.
27–30 (1983)

2. Bracha, G.: Asynchronous Byzantine agreement protocols. Information and Computation 75,
130–143 (1987)

3. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broad-
cast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer,
Heidelberg (2001)

4. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asyn-
chronous Byzantine agreement using cryptography. Journal of Cryptology 18(3), 219–246
(2005)

5. Cachin, C., Poritz, J.A.: Secure intrusion-tolerant replication on the Internet. In: Proc. In-
ternational Conference on Dependable Systems and Networks (DSN-DCCS), Jun. 2002, pp.
167–176 (2002)

6. Cachin, C., Samar, A.: Secure distributed DNS. In: Proc. International Conference on De-
pendable Systems and Networks (DSN-DCCS), Jun. 2004, pp. 423–432 (2004)

7. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems 20(4), 398–461 (2002)

8. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A hybrid quo-
rum protocol for Byzantine fault tolerance. In: Proc. 8th Symp. Operating Systems Design
and Implementation (OSDI) (2006)

9. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: Taxonomy
and survey. ACM Computing Surveys 36(4), 372–421 (2004)

10. Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5(4),
449–457 (1994)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

12. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mullender, S.J.
(ed.) Distributed Systems, Addison-Wesley, Reading (1993)

13. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols. Chap-
man and Hall, Boca Raton (2007)

14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine
fault tolerance. In: Proc. 21st ACM Symposium on Operating System Principles (SOSP)
(2007)

15. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
204–215. Springer, Heidelberg (2005)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

17. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2), 133–
169 (1998)

18. Lamport, L.: Paxos made simple. SIGACT News 32(4), 51–58 (2001)
19. Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Distributed Computing 11(4), 203–213

(1998)
20. Malkhi, D., Reiter, M.K.: An architecture for survivable coordination in large distributed

systems. IEEE Transactions on Knowledge and Data Engineering 12(2), 187–202 (2000)
21. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Dependable and

Secure Computing 3(3), 202–215 (2006)
22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1997)
23. Moniz, H., Neves, N.F., Correia, M., Verı́ssimo, P.: Randomized intrusion-tolerant asyn-

chronous services. In: Proc. International Conference on Dependable Systems and Networks
(DSN-DCCS), pp. 568–577 (2006)

184 C. Cachin

24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27(2), 228–234 (1980)

25. Potter Kihlstrom, K., Moser, L.E., Melliar-Smith, P.M.: The SecureRing group communica-
tion system. ACM Transactions on Information and System Security 4(4), 371–406 (2001)

26. Rabin, M.O.: Randomized Byzantine generals. In: Proc. 24th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 403–409 (1983)

27. Ramasamy, H.V., Cachin, C.: Parsimonious asynchronous byzantine-fault-tolerant atomic
broadcast. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS,
vol. 3974, pp. 88–102. Springer, Heidelberg (2006)

28. Ramasamy, H.V., Seri, M., Sanders, W.H.: Brief announcement: The CoBFIT toolkit. In:
Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), pp. 350–351
(2007)

29. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in Ram-
part. In: Proc. 2nd ACM Conference on Computer and Communications Security, pp. 68–80
(1994)

30. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Transactions on Pro-
gramming Languages and Systems 16(3), 986–1009 (1994)

31. Schneider, F.B.: Byzantine generals in action: Implementing fail-stop processors. ACM
Transactions on Computer Systems 2(2), 145–154 (1984)

32. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
34. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,

vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
35. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.

Journal of Cryptology 15(2), 75–96 (2002)
36. Smart, N.: Cryptography — An Introduction. McGraw-Hill, London (2003)
37. Toueg, S.: Randomized Byzantine agreements. In: Proc. 3rd ACM Symposium on Principles

of Distributed Computing (PODC), pp. 163–178 (1984)
38. Yin, J., Martin, J.P., Alvisi, A.V.L., Dahlin, M.: Separating agreement from execution in

Byzantine fault-tolerant services. In: Proc. 19th ACM Symposium on Operating System Prin-
ciples (SOSP), pp. 253–268 (2003)

39. Zhou, L., Schneider, F.B., van Renesse, R.: COCA: A secure distributed online certification
authority. ACM Transactions on Computer Systems 20(4), 329–368 (2002)

Chapter 10
Selected Results from the Latest Decade of
Quorum Systems Research

Michael G. Merideth and Michael K. Reiter

Abstract Over the past decade, work on quorum systems in non-traditional sce-
narios has facilitated a number of advances in the field of distributed systems. This
chapter surveys a selection of these results including: Byzantine quorum systems
that are suitable for use when parts of the system cannot be trusted; algorithms for
the deployment of quorum systems on wide area networks so as to allow for efficient
access and to retain load dispersion properties; and probabilistic quorum systems
that yield benefits for protocols and applications that can tolerate a small possibil-
ity of inconsistency. We also present a framework grounded in Byzantine quorum
systems that can be used to explain, compare, and contrast several recent Byzantine
fault-tolerant state-machine and storage protocols. The framework provides a path
to understanding the number of servers required, the number of faults that can be
tolerated, and the number of rounds of communication employed by each protocol.

10.1 Introduction

Given a universe U of servers, a quorum system over U is a collection Q =
{Q1, . . . ,Qm} such that each Qi ⊆U and

|Q∩Q′|> 0 (10.1)

for all Q,Q′ ∈ Q. Each Qi is called a quorum. The intersection property (10.1)
makes quorum systems a useful primitive for coordinating actions in a distributed
system. For example, if each write is performed at a quorum of servers, then a client
who reads from a quorum will observe the last written value. Because of their utility
in such applications, quorum systems have a long history in distributed computing.

In this paper, we survey a number of advances that have occurred in using quorum
systems to implement distributed services in the last ten years or so. These recent
advances derive primarily from the use of quorum systems in non-traditional scenar-
ios. We begin by focusing on their use in systems that suffer Byzantine faults [15],
which introduce the possibility of not being able to trust all servers in the intersec-

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 185–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

186 M.G. Merideth and M.K. Reiter

tion of two different quorums. In Section 10.2, we summarize the basic properties of
Byzantine quorum systems, including the minimum universe sizes they require and
their best-case load-dispersing properties. We also summarize weaker, probabilistic
variants of Byzantine quorum systems that can offset these costs in some cases.

The use of distributed protocols in wide-area networks (e.g., in support of edge
computing or content distribution) motivates another set of results that we summa-
rize in Section 10.3. Namely, these results focus on how to position servers and
quorums in networks so as to minimize the delays that clients suffer by accessing
them. Interestingly, there can be a tension between achieving good load dispersion
and having low delay for accessing quorums because, when seeking to balance the
load, a client might be required to bypass a nearby but heavily loaded server for
another that is further away but more lightly loaded. We briefly summarize some
results that have been developed to balance this trade-off.

We then return to Byzantine quorums in Section 10.4, but with an eye toward
their use in Byzantine-fault-tolerant state-machine-replication protocols. We present
a framework grounded in Byzantine quorum systems that can be used to explain,
compare, and contrast several recent such protocols. The Byzantine quorum systems
framework particularly helps to elucidate the commonalities among these protocols,
and we further believe that this framework should be useful in explaining future such
protocols.

10.2 Quorum Systems for Byzantine Faults

In systems that may suffer Byzantine faults, the intersection property (10.1) is typi-
cally not adequate as a mechanism to enable consistent data access. Because (10.1)
requires only that the intersection of quorums be non-empty, it could be that two
quorums intersect in only a single server, for example. In a system in which up to
b > 0 servers might suffer Byzantine faults, this single server might be faulty and,
consequently, could fail to convey the last written value to a reader, for example.

For this reason, Malkhi and Reiter [18] proposed various ways of strengthen-
ing the intersection property (10.1) so as to enable quorum systems to be used in
Byzantine environments. Our presentation here assumes that there is an (unknown)
set B of up to b servers that are faulty. Malkhi and Reiter considered three stronger
properties as alternatives. All of these alternatives require that for some Q ∈Q,

|B∩Q|= 0. (10.2)

In words, for any set of server faults B, there is a quorum Q that does not intersect
B. Without this constraint, the faulty servers could prevent progress in the system
by simply not responding, since a client typically requires a response from a full
quorum of servers to make progress.

The first and simplest alternative to (10.1) is

|Q∩Q′ \B|> 0 (10.3)

10 Selected Results from the Latest Decade of Quorum Systems Research 187

for all Q,Q′ ∈Q. That is, the intersection of any two quorums contains at least one
non-faulty server. For example, if a non-faulty client acquires a lock by accessing Q,
then any subsequent client that attempts to acquire this lock at another quorum Q′
will notice that some other client already requested the lock, regardless of the behav-
ior of the faulty servers. Quorum systems satisfying (10.3) are called dissemination
quorum systems.

The second alternative to (10.1) is

|Q∩Q′ \B|> |Q′ ∩B| (10.4)

for all Q,Q′ ∈ Q. In words, the intersection of any two quorums contains more
non-faulty servers than the faulty ones in either quorum. As such, the responses
from these non-faulty servers will outnumber those from faulty ones. These quorum
systems are called masking quorum systems.

Finally, the third alternative to (10.1) is

|Q∩Q′ \B|> |(Q′ ∩B)∪ (Q′ \Q)| (10.5)

for all Q,Q′ ∈ Q. In words, the number of non-faulty servers in the intersection
of Q and Q′ (i.e., |Q∩Q′ \ B|) exceeds the number of faulty servers in Q′ (i.e.,
|Q′ ∩B|) together with the number of servers in Q′ but not Q. The rationale for this
property can be seen by considering the servers in Q′ but not Q as “outdated”, in
the sense that if Q was used to perform a write to the system, then those servers
in Q′ \Q are unaware of the write. As such, if the faulty servers in Q′ behave as
the outdated ones do, their behavior (i.e., their responses) will dominate that from
the non-faulty servers in the intersection (Q∩Q′ \B) unless (10.5) holds. Quorum
systems satisfying (10.5) are called opaque quorum systems.

The increasingly stringent properties (10.3) – (10.5) come with costs in terms of
the smallest system sizes that can be supported while tolerating a number b of faults,
as shown in the following theorem.

Theorem 10.1 ([18]). Let n = |U |, and let Q be a quorum system over U.

• If Q is a dissemination quorum system (10.3), then b < n/3.
• If Q is a masking quorum system (10.4), then b < n/4.
• If Q is an opaque quorum system (10.5), then b < n/5.

10.2.1 Access Strategies and Load

Naor and Wool [24] introduced the notion of an access strategy by which clients
select quorums to access. An access strategy p : Q→ [0,1] is simply a probability
distribution on quorums, i.e., ∑Q∈Q p(Q) = 1. Intuitively, when a client accesses the
system, it does so at a quorum selected randomly according to the distribution p.

The formalization of an access strategy is useful as a tool for discussing the load
dispersing properties of quorum systems. Specifically, it permits us to talk about the
probability with which a server is accessed in any given quorum access, i.e.,

188 M.G. Merideth and M.K. Reiter

�p(u) = ∑
Q�u

p(Q), (10.6)

and then the maximally loaded server under a given access strategy p, i.e.,

Lp(Q) = max
u∈U

�p(u). (10.7)

Finally, this enables us to define the load [24] of a quorum system as

L (Q) = min
p

Lp(Q). (10.8)

In words, L (Q) is the probability with which the busiest server is accessed in a
client access, under the best possible access strategy p.

Theorem 10.2 ([24, 19]). Let Q be a quorum system of U, n = |U |.

• If Q is a regular quorum system (10.1), then L (Q)≥
√

1
n .

• If Q is a dissemination quorum system (10.3), then L (Q)≥
√

b
n .

• If Q is a masking quorum system (10.4), then L (Q)≥
√

2b
n .

• If Q is an opaque quorum system (10.5), then L (Q)≥ 1
2 .

All of these lower bounds are tight, in the sense that there are known quorum sys-
tems Q (of the respective types) and access strategies p that meet these lower bounds
asymptotically [24, 18, 19]. The last of the results listed in Theorem 10.2 is partic-
ularly unfortunate, since it shows that systems that utilize opaque quorum systems
cannot effectively disperse processing load across more servers (i.e., by increasing
n). We see one way to address this in Section 10.2.2.

10.2.2 Probabilistic Quorum Systems

The lower bounds on universe size presented in Theorem 10.1 present an obstacle
to the use of quorum systems in practice. Moreover, the constant lower bound on
the load of opaque quorum systems imposes a theoretical limit on the scalability of
systems that use them.

One way to circumvent these lower bounds is to relax the quorum intersection
properties themselves, and one such way is to ask them to hold only with high prob-
ability. More specifically, we can relax any of (10.3), (10.4) and (10.5) to hold only
with probability 1− ε , where probabilities are taken with respect to the selection of
quorums according to an access strategy p [20, 22]. This technique yields masking
quorum system constructions tolerating b < 2.62/n and opaque quorum system con-
structions tolerating b < 3.15/n. These bounds hold in the sense that for any ε > 0
there is an n0 such that for all n > n0, the required intersection property ((10.4) or
(10.5) for masking and opaque quorum systems, respectively) holds with probabil-
ity at least 1− ε . Unfortunately, this technique alone does not materially improve
the load of these systems [20].

10 Selected Results from the Latest Decade of Quorum Systems Research 189

An additional modification, however, can improve this situation even further.
Merideth and Reiter [23] propose the use of write markers for further improving
the resilience and load of these systems. Intuitively, in each write access to a quo-
rum of servers, a write marker is placed at the accessed servers in order to evidence
the quorum used in that access. This write marker identifies the quorum used; as
such, faulty servers not in this quorum cannot respond to subsequent quorum ac-
cesses as though they were. By using this method to constrain how faulty servers
can collaborate, the resilience of probabilistic masking quorum systems can be im-
proved to b < n/2, and the resilience of probabilistic opaque quorum systems can
be improved to b < n/2.62. In addition, probabilistic opaque quorum systems with
load O(b/n) can also be achieved via this technique, breaking the constant lower
bound on load for opaque systems.

In addition to introducing a probability ε of error, probabilistic quorum systems
require mechanisms to ensure that accesses are performed according to the required
access strategy p, if the clients cannot be trusted to do so (e.g., see [22, 23] for
such mechanisms). Moreover, the communication network must be assumed not to
bias different clients’ accesses toward different (and not adequately intersecting)
quorums, and so these approaches require a stronger system model than do strict
quorum systems.

10.3 Minimizing Delays of Quorum Accesses

Before explaining the use of quorum systems in protocols in Section 10.4, we first
consider the performance impacts of quorums generically. The performance impli-
cations for a protocol utilizing quorums primarily lie in the costs of accessing a full
quorum, in addition to the processing delays incurred at the servers in the accessed
quorum. Most early research in quorum systems assumed an abstract setting that
does not ascribe any costs or delays to quorum accesses or heterogeneous limits on
the processing capabilities of different servers. Recent research, however, has made
strides in taking these into account.

To frame this progress, suppose that the communication network can be repre-
sented by an undirected graph G = (V,E), where each edge e ∈ E has a positive
“length” l(e). This induces a distance function d : V ×V → R

+ obtained by set-
ting d(v,v′) to be the sum of lengths of the edges comprising the path from v to v′
that minimizes this sum (i.e., the shortest path). This can naturally be extended to a
distance δ : V ×2V → R

+ defined as δ (v,Q) = maxv′∈Q d(v,v′).
In this context, several authors have made progress on placing servers U at graph

nodes V and defining a quorum system Q over them so as to optimize the costs of
clients (typically the elements of V) accessing quorums.

• Fu [5] introduced the following problem: Find a quorum system Q over universe
V to minimize avgv∈V minQ∈Q δ (v,Q), i.e., the average cost for each client to
reach its closest quorum. That work presented optimal algorithms when G has
certain characteristics, e.g., G is a tree, cycle or cluster network.

190 M.G. Merideth and M.K. Reiter

• For general networks, Tsuchiya et al. [30] gave an efficient algorithm to find Q
so as to minimize maxv∈V minQ∈Q δ (v,Q), i.e., the maximum cost any client
pays to reach its closest quorum.

• Kobayashi et al. [12] presented a branch-and-bound algorithm to produce a quo-
rum system Q to minimize avgv∈V minQ∈Q δ (v,Q). Their algorithm could be
evaluated only on topologies with up to 20 nodes due to its exponential running
time, and they conjectured that the problem of finding a quorum system to mini-
mize avgv∈V minQ∈Q δ (v,Q) is NP-hard.

• Lin [16] showed that designing a quorum system Q to minimize
avgv∈V minQ∈Q δ (v,Q) is indeed NP-hard, and gave a 2-approximation for the
problem.

None of these works consider the load of the quorum system; indeed, Lin’s 2-
approximation [16] yields a quorum system with very high load: the output consists
of only a single quorum containing a single node v minimizing ∑v′∈V d(v,v′). Such
a solution is not very desirable, since it eliminates the advantages (such as load
dispersion and fault tolerance) of any distributed quorum-based algorithm. More
generally, there is a tension between achieving low load and low quorum access
delay, in that in order to reduce the load on a nearby server, it might be necessary
for a client to access quorums that incur greater network latency but that have less
heavily loaded servers.

Methods to balance this tension have been recently studied under the rubrics of
“quorum placement” [10, 7] and “quorum deployment” [6]. In these frameworks,
a quorum system Q over a universe of “logical” servers U is provided as an input
to the problem, along with the graph G = (V,E) that represents the network. The
goal in these problems is to find a placement f : U→V that minimizes some notion
of access delay. Gilbert and Malewicz [6] consider a variation of the problem in
which |Q| = |V | = |U | and each client accesses only a single, distinct quorum. In
this setting, they show

Theorem 10.3 ([6]). There is a polynomial-time algorithm to compute bijections f :
U→V and q : V →Q that minimize avgv∈V γ(v, f (q(v))), where f (Q) = { f (u)}u∈Q

and γ(v,Q) = ∑u∈Q d(v,u).

Gupta et al. [10] consider a version of the problem in which a capacity cap(v) for
each v∈V and an access strategy p are provided as inputs. They extend the problem
formulation to incorporate a placement f into the notions of load and access delay,
i.e.,

� f (v) = ∑
u: f (u)=v

�p(u),

δ f (v,Q) = max
u∈Q

d(v, f (u)).

They seek a placement f so that � f (v) ≤ cap(v) for all v ∈ V , and that minimizes
the expected quorum access delay

10 Selected Results from the Latest Decade of Quorum Systems Research 191

∆ f (v) = ∑
Q∈Q

p(Q)δ f (v,Q),

averaged over all v ∈V , i.e., that minimizes

avgv∈V ∆ f (v).

Specifically, Gupta et al. show

Theorem 10.4 ([10]). There is a polynomial-time algorithm to compute, for any
α > 1, a placement f with � f (v)≤ (α + 1)cap(v) for all v ∈V and for which

avgv∈V ∆ f (v)≤ 5α
α−1

avgv∈V ∆ f ∗(v)

for any capacity-respecting solution f ∗ (i.e., any f ∗ satisfying � f ∗(v) ≤ cap(v) for
all v ∈V).

They also provide exact polynomial-time solutions for quorum systems Q of certain
types when the access strategy p is load-optimal for those systems, but show that
solving the problem for general quorum systems and access strategies is NP-hard.
Oprea and Reiter [26, 25] experiment with the algorithm specified in Theorem 10.4
in wide-area topologies, including exploring variations in which different clients can
employ different access strategies. Golovin et al. [7] extend the quorum placement
framework to minimize network congestion arising from quorum accesses, again
while respecting capacity constraints on the processing capabilities of nodes.

10.4 Uses of Byzantine Quorums in Protocols

Byzantine variations on quorum systems have provided a basis for explaining ex-
isting agreement protocols (e.g., [29, 9]) and have contributed to the design of new
ones. In this section, we present a framework by which such protocols, and specifi-
cally their use of different types of Byzantine quorum systems, can be compared.

More specifically, we consider two types of protocols in this section. The first are
protocols for implementing a service offering read and overwrite operations on ob-
jects, where an overwrite operation overwrites the previous value of the object with
a new value; we refer to these protocols as simple read-overwrite protocols.1 The
second type of protocol we consider enables the implementation of arbitrary types of
operations on objects, provided that those operations are deterministic. These pro-
tocols are typically called state-machine-replication protocols, since the operations
provided by the service are mapped to the state transitions of a deterministic state
machine, and each service replica runs a copy of the state machine, conceptually.

Both types of protocols coordinate the treatment of client requests across multiple
servers while guaranteeing consistency—the illusion of a single centralized service.

1 In other contexts, such protocols are often called read-write protocols. Here, we use the term
overwrite to distinguish from writes that occur in quorum systems.

192 M.G. Merideth and M.K. Reiter

Phase 1a:
Get State

Phase 1b:
Propose

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3
Learn

Replica 1

Replica2

Replica4

Replica3

Client

{1) Propose {2) Accept {3) Learn

Fig. 10.1 The phases for an overwrite in a read-overwrite protocol.

To do so, these protocols order requests so that non-faulty clients perceive them to
be executed in the same order. These protocols are powerful because of their ability
to work even if up to b of the n total replicas and any number of the clients are faulty
such that they behave arbitrarily or maliciously (i.e., Byzantine faults).

These protocols maintain consistency by using Byzantine quorum systems (see
Section 10.1), which require only any quorum (subset) of the replicas to be involved
in any operation. Inherently, the use of Byzantine quorum systems allows the proto-
cols to maintain consistency while making progress even if some replicas never re-
ceive or process requests. As we show in the rest of this section, the common use of
Byzantine quorum systems in these protocols also provides a basis for their compar-
ison. We present frameworks for both read-overwrite and state-machine-replication
protocols in which we identify the roles that Byzantine quorum systems play in the
protocols, and the implications that result.

10.4.1 Read-Overwrite Protocols

Figure 10.1 shows the phases for an overwrite operation in a typical read-overwrite
protocol. The first phase, which we call propose, is where the client submits the op-
eration. In some protocols, such as the PASIS-RW protocol [8] described below, the
client must first determine the current state of the system, e.g., in order to determine
what the next sequence number should be. If necessary, this is done in phase 1a. In
phase 1b, the client sends the operation to at least a quorum of servers. In phase 2,
servers perform any necessary verification, and accept the operation. In phase 3, the
client knows that the operation is complete once it has been accepted by a quorum
of servers.

Figure 10.2 shows the phases for a read operation in a typical read-overwrite
protocol. To perform an operation, a client contacts at least a quorum of servers
in phase 1. For the service to provide linearizable semantics [11], the client must
be certain that the value it reads is the result of a complete overwrite. If not, then

10 Selected Results from the Latest Decade of Quorum Systems Research 193

Phase 1:
Query

Replica 1

Replica2

Replica4

Replica3

Client

Phase 2a:
Repair

Phase 2b:
Answer

{1) Query {2) Answer

Fig. 10.2 The phases for a read in a read-overwrite protocol.

Phase 1a:
Get State

Phase 1b:
Propose

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3
Learn

Replica 1

Replica2

Replica4

Replica3

Client

Replica5

Write

Write

Write

Write

Fig. 10.3 The phases for an overwrite in the PASIS-RW protocol.

another client performing a later read might read an earlier or different value. There-
fore, if the client is uncertain whether the overwrite is complete, the client repairs
it, e.g., by completing it at a quorum of servers in phase 2a. Finally, if the client
receives the same value from at least a quorum of servers in phase 2b, then it knows
the overwrite is complete. Therefore, the client uses this value as the result of the
read operation.

Use of Masking Quorum Systems

To make this more concrete, consider the PASIS-RW protocol [8]. Figures 10.3
and 10.4 show a simplified view of the protocol that omits details such as erasure
coding that are discussed in [8].

The PASIS-RW protocol uses a masking quorum system that satisfies (10.4).
In an overwrite operation, the client first determines the most recent timestamp by
querying at least a quorum in phase 1a. Let us assume that the system does not need
repair. Then, based on the retrieved state and details such as the client identifier and
the request description, the client generates a unique timestamp that is greater than

194 M.G. Merideth and M.K. Reiter

Phase 1:
Query

Replica 1

Replica2

Replica4

Replica3

Client

Phase 2a:
Repair

Phase 2b:
Answer

Replica5p

Fig. 10.4 The phases for a read in the PASIS-RW protocol.

those returned by the quorum. In PASIS-RW, timestamps must be strictly increasing
so as to identify the most recent overwrite, but need not be consecutive. This fact
allows timestamps to be ordered partially by the identifier of the client, and therefore
to be generated without involvement of the replicas.

Using this new timestamp, the client submits the overwrite in phase 1b. A non-
faulty server accepts the overwrite if it has not yet accepted one that is more recent,
storing it in phase 2b. In phase 3, the client considers the operation complete upon
learning that it has been accepted by at least a quorum of servers. The protocol
includes mechanisms not discussed here for handling the case where the client does
not receive such notification in phase 3.

In a read operation, the client submits the read request to at least a quorum of
servers. If the most recent overwrite is complete, then, barring a more recent over-
write, the reading client will observe it from more than b servers. Consider the ex-
ample in the figures, and assume that replica number 4 is faulty. The first client used
the quorum containing replicas numbered 1 through 4 for the overwrite. The reading
client queries replicas 2 through 5. Replica 5 returns a previous value, and replica
4 might forge a newer value in an attempt to hide the overwrite. However, replicas
2 and 3 each return the correct value. Since the value is returned by two replicas,
which is more than b but fewer than a quorum, the client repairs the overwrite using
a quorum in phase 2a. Upon learning that the value has been accepted by a quorum,
the client uses the value as the result of the read in phase 2b.

Creating Self-Verifying Data

The PASIS-RW protocol just discussed uses a masking quorum system to ensure
that any values generated by faulty replicas are not observed in other quorums. If
the data were self-verifying, a dissemination quorum system could be used instead
because replicas would be unable to generate verifiable values at all. One way to
make data self-verifying is to have each client use a digital signature scheme to
sign each overwrite. Unfortunately, clients may suffer Byzantine faults in our fault
model, and therefore they cannot be trusted.

10 Selected Results from the Latest Decade of Quorum Systems Research 195

Phase 1a:
Get State

Phase 1b:
Propose

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3
Learn

Replica 1

Replica2

Replica4

Replica3

Client

Log/Write

Log/Write

Log/Write

Fig. 10.5 Making data self-verifying.

One way to make an operation self-verifying without trusting clients involves using
signatures from a quorum of replicas. Liskov and Rodrigues [17] show how to make
operations self-verifying in a read-overwrite protocol with Byzantine clients. There
are two steps: an echo protocol like that of Rampart [27] so that non-faulty servers
know that other non-faulty servers are not accepting conflicting operations; and a
way for clients to verify this as well during reads. For the echo protocol, the first
step is to have a quorum of servers provide their signatures stating that they have
tentatively accepted the operation. If a replica is willing to accept the operation
upon the condition that other non-faulty replicas accept no conflicting operation,
the replica sends a tentative accept (echo) response. Non-faulty servers only accept
operations that have been tentatively accepted by a quorum of servers. Therefore,
clients must send a quorum of signed echos in a second phase; in Figure 10.5, this
occurs in phase 2a. Servers log the quorum of signatures along with the operation
in phase 2b.

The second part of making the operation self-verifying is that the servers return
the quorum of signatures to the clients during read operations. A quorum of echo
responses proves that no quorum will accept a conflicting operation. This is because
every two quorums overlap in some positive number of non-faulty replicas, and no
non-faulty replica sends echo messages for conflicting operations. By themselves,
faulty servers are too few to generate a quorum of signatures that can be verified.
During a read, a client verifies the signatures before using the value, and therefore,
each overwrite is self-verifying.

10.4.2 State-Machine-Replication Protocols

State-machine-replication protocols must assign a total order to requests. To min-
imize the amount of communication between servers, protocols like Q/U [1] and
FaB Paxos [21] use opaque quorum systems [18] to order requests optimistically.
That is, servers independently choose an ordering, without steps that would be re-
quired to reach agreement with other servers; the steps are performed only if servers
choose different orderings. Under the assumption that servers independently typi-

196 M.G. Merideth and M.K. Reiter

cally choose the same ordering, the optimistic approach can provide lower overhead
in the common case than protocols like BFT [4], which require that servers perform
steps to agree upon an ordering before choosing it [1]. However, optimistic proto-
cols have the disadvantage of requiring at least 5b + 1 servers to tolerate b server
faults, instead of as few as 3b+1 servers, and so they cannot tolerate as many faults
for a given number of servers.

State-machine-replication protocols assign a total order to requests as follows.
Each request is assigned a permanent sequence number that exists from the time of
assignment through the life of the system and is never changed.2 We use the term
sequence number to indicate that there is a totally-ordered chain of requests; how-
ever, the sequence number might be implemented as a logical timestamp [1] or other
suitable device. Each permanent sequence number is assigned to a single request.
Therefore, due to the Byzantine fault model, permanent sequence numbers cannot
be assigned by a single replica or client, which might assign the same permanent
sequence number to multiple requests.

In order to get a permanent sequence number, a request is first assigned a pro-
posed sequence number. Unlike permanent sequence numbers, the same proposed
sequence number may be assigned to multiple requests. Therefore, a proposed se-
quence number can be selected by a single client or replica in isolation.

A quorum system is used for the assignment of permanent sequence numbers.
A proposed sequence number for the request is written to the quorum system made
up of the replicas. Each non-faulty replica accepts the proposed sequence number
only if it has not already assigned the sequence number to a different request. A
sequence number is permanent if and only if it has been accepted by a quorum of
replicas. This ensures that each permanent sequence number is assigned only to a
single request.

The type of quorum system used for accepting proposed sequence numbers to
make them permanent implies a lower bound on n in terms of b as discussed earlier.
For example, an opaque quorum system requires at least 5b + 1 replicas, but can
accept a proposed sequence number in a single round of communication. On the
other hand, dissemination and masking quorum systems need only 3b+1 and 4b+1
replicas but require more rounds.

A non-faulty replica executes a request only after all lower sequence numbers are
assigned permanently and it has executed their corresponding requests. Individual
replicas send responses to the client upon executing the request. If a non-faulty
replica is waiting to execute a request because it is unaware of the assignment of
an earlier sequence number, action is taken so that the replica obtains the missing
assignment.

The client determines the correct result from the set of responses it receives by
determining that the result is due to a permanent sequence number assignment and
from at least one non-faulty replica. This works because each non-faulty replica that
executes a request with a permanent sequence number returns the same, correct re-
sult to the client because the service is deterministic. However, faulty replicas, as

2 We choose the passive voice in this description because details such as which clients/replicas are
involved in assigning the sequence number are protocol-specific.

10 Selected Results from the Latest Decade of Quorum Systems Research 197

Phase 1a:
Get State

Phase 1b:
Propose

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn

Replica 1

Replica2

Replica4

Replica3

Phase 3b:
Update
(Execute)

Phase 4:
Verify

Client

Replica5

Replica6

{1) Propose {2) Accept {3) Update {4) Verify

Fig. 10.6 The stages of Byzantine-quorum state-machine-replication protocols.

well as non-faulty replicas that execute requests without permanent sequence num-
bers (an optimization employed by some protocols), may return incorrect results.

Because of the use of the quorum system for sequence number assignments, none
of the protocols surveyed become inconsistent in the face of a Byzantine-faulty pro-
poser. However, the protocols each require a repair phase in order to continue to be
able to make progress. The processes performing repair read from the quorum sys-
tem to ensure that no permanent sequence number assignments are lost or changed.
Repair is discussed further in Section 10.4.2.

The Framework

The framework depicted in Figure 10.6 is an extension of that in Figure 10.1. It
consists of four high-level phases totaling seven sub-phases. In phase 1, a proposed
sequence number is chosen for the client’s request and sent to (at least) a quorum
of replicas. In phase 2, a quorum of replicas accepts the proposed sequence number.
If no quorum accepts the proposed sequence number assignment, a new proposal
must be tried and the system may require repair (see Section 10.4.2). In phase 3,
the request is executed according to the sequence number, and in phase 4 the client
chooses the correct result. Phases 1a, 2a and 3a can be viewed as optional, as they are
omitted by some protocols; however, omitting them has implications as discussed
below. The remainder of this section explores each of the phases of the framework
in greater detail.

Phase 1: Propose. Phase 1 is where a proposed sequence number is selected for a
client request; this is done by a proposer, which, dependent on the protocol, is either
a replica or a client. In some protocols, it is possible that the state of the system has
been updated without the knowledge of the proposer (for example due to contention
by multiple proposers). In this case the proposer may first need to retrieve the up-to-
date state of the system, including earlier permanent sequence number assignments.

198 M.G. Merideth and M.K. Reiter

This is the purpose of phase 1a. Phase 1b is where the proposed sequence number
and request are sent to (at least) a quorum of replicas.

Phase 2: Accept. Phase 2 is where the proposed sequence number is either ac-
cepted or rejected. Depending on the type of quorum system, this may require
a round of communication (corresponding to an echo phase as discussed in Sec-
tion 10.4.1) for the purpose of ensuring that non-faulty replicas do not accept dif-
ferent conflicting proposals for the same sequence-number. If it requires this round
of communication (phase 2a), the protocol is said to employ a pessimistic accept
phase, otherwise, it is said to employ an optimistic accept phase. In phase 2b, the
sequence number assignment becomes permanent.

The primary benefit of an optimistic accept phase is that one round of communi-
cation (phase 2a) involving at least a quorum of replicas is avoided. The disadvan-
tage is the need for an opaque quorum system, which requires n > 5b. The Zyzzyva
protocol [13] discussed below avoids phase 2a in some executions (e.g., when the
servers are all non-faulty and messages are delivered in a timely fashion), a case
referred to as speculative accept, without requiring an opaque quorum system.

Phase 3: Update. Phase 3 is where the update is applied, typically resulting in
the execution of the requested operation. Like phase 2, this phase can be either pes-
simistic (requiring phase 3a), or optimistic (omitting phase 3a). Comparing phase 3a
to the third phase of an overwrite operation in a read-overwrite protocol described
in Section 10.4.1, we see that phase 3a allows the execution replicas to learn that the
sequence number assignment has become permanent before performing the update.
If phase 3a is omitted, the sequence number assignment may change and the request
may need to be executed again with the permanent sequence number.

Since an optimistic update phase requires no additional round of communication
before execution, it can lead to better performance. The disadvantages are that, as
described below, clients must wait for a quorum of responses instead of just b + 1
to ensure that the sequence number assignment is permanent, and that computation
may be wasted in the case that the proposed sequence number does not become
permanent.

Phase 4: Verify. Phase 4 is where the client receives a set of responses. The client
must verify that the update was based on a permanent sequence number assignment
and performed by at least one non-faulty replica (in order to ensure that the result
is correct). In general, this requires waiting for a quorum of identical responses in-
dicating the sequence number, where the size of the quorum is dependent on the
quorum system construction. However, if phase 3 is pessimistic, then no non-faulty
replica will execute an operation unless the assignment is permanent. In this case,
the client can rely on non-faulty replicas to verify that the sequence number is per-
manent, and so clients need wait for only b + 1 identical responses.

10 Selected Results from the Latest Decade of Quorum Systems Research 199

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request/
Pre-prepare

Phase 2a:
Verify
(n+b+1)/2
Prepares

Phase 2b:
Accept

Phase 3a:
Learn
(n+b+1)/2
Commits

Replica 1
Primary

Replica2

Replica4

Replica3

Log

Log

Log

Log

Phase 3b:
Execute

Phase 4:
Verify
b+1
Responses

Exec

Exec

Exec

Exec

Client

Fig. 10.7 BFT.

Use of Dissemination Quorum Systems

Pessimistic Accept and Update—BFT (without Optimizations). BFT [4] is an
example of a Byzantine-fault-tolerant state-machine-replication protocol that em-
ploys a pessimistic accept phase (with a dissemination quorum system) and a pes-
simistic update phase. As such, it involves communication in all four phases of our
framework. Figure 10.7 shows the phases of an update request of the BFT protocol
in the fault-free case. The operation is very similar to a protocol presented by Bracha
and Toueg [2] also used by other protocols, e.g., [28, 3, 31, 14].

In the common case, there is a single proposer (called the primary) that itself is
a replica; therefore, phase 1a is unnecessary—the proposer already knows the next
unused sequence number. In phase 1b, the proposer unilaterally chooses a proposed
sequence number for the request (a non-faulty proposer should choose the next unas-
signed sequence number) and writes (in the sense of a quorum system write, not an
overwrite) the request along with the proposal to the other replicas in a message
called PRE-PREPARE.

The verification done in phase 2a is equivalent to an echo protocol (though the re-
sponses are sent directly to all other replicas instead of through the proposer). This
guarantees that non-faulty replicas do not accept different updates with the same
proposed sequence numbers. Each replica other than the proposer sends a PRE-
PARE (i.e., echo) message including the proposal to all other replicas. If a replica
obtains a quorum of matching PREPARE and PRE-PREPARE messages (including
its own), it is guaranteed that no non-faulty replica will accept a proposal for the
same sequence number but with a different request. Such a replica is called pre-
pared. A prepared replica accepts the request in phase 2b, and logs the quorum of
PREPARE and PRE-PREPARE messages as a form of proof. The sequence number
assignment is permanent if and only if a quorum of replicas accepts the proposed
sequence number in phase 2b.

In phase 3a, prepared replicas send COMMIT messages to all other replicas. A
COMMIT message includes the quorum of PREPARE and PRE-PREPARE mes-
sages (i.e., echos) so that the sequence number assignment is self-verifying as dis-
cussed in Section 10.4.1. Because the update phase is pessimistic, in phase 3a, repli-
cas wait to receive a quorum of COMMIT messages to make certain that the se-
quence number assignment is permanent. Having received a quorum of matching

200 M.G. Merideth and M.K. Reiter

COMMIT messages for sequence number i, a replica executes the request only after
executing all requests corresponding to permanent sequence number assignments
1 .. i−1.

Since BFT employs a pessimistic update phase, the client waits for only b + 1
identical results in phase 4.

Pessimistic Accept, Optimistic Update—BFT w/ Tentative Execution. One
way to avoid a round of communication is to employ an optimistic update phase
(i.e., to skip phase 3a). Castro and Liskov [4] detail an optimistic update optimiza-
tion for BFT called tentative execution (TE). In tentative execution, phase 3a is
omitted; however, the dissemination quorum system used to accept sequence num-
bers in phase 2 remains the same. Compared with unoptimized BFT, tentative execu-
tion saves a round of communication. However, since a response from a non-faulty
replica no longer necessarily corresponds to a permanent sequence number assign-
ment, the client must wait for a quorum of identical responses in phase 4 in order
to ensure that the sequence number assignment is indeed permanent. In addition,
replicas that execute a request corresponding to a non-permanent sequence number
assignment that later changes (e.g., due to repair) may need to re-execute the request
later.

Figure 10.8 shows the stages of the BFT protocol with the tentative-execution
optimization, compared with the FaB Paxos protocol [21] that is discussed below.
Note the smaller quorum size of BFT due to the use of a dissemination quorum
system rather than the opaque quorum system required by FaB Paxos.

Speculative Accept, Optimistic Update—Zyzzyva. Zyzzyva [13], shown in Fig-
ure 10.9, also uses tentative execution but can save an additional round of commu-
nication in “gracious” executions by additionally omitting phase 2a in such execu-
tions. Instead of waiting for a quorum of identical responses in phase 4, the client
attempts to retrieve identical responses from all replicas. If successful, the client
knows that, in any quorum, all of the non-faulty replicas in that quorum (i.e., at least
b + 1 non-faulty replicas) will vouch for the sequence number assignment. Since
these replicas are guaranteed to outnumber the faulty replicas, the sequence number
assignment does not need to be self-verifying.

If the client does not receive identical responses from all servers, the execution is
not gracious. In this case, phase 2a is necessary for the reasons described previously.
If the client has received identical responses from at least a quorum of servers, the
client executes phase 2a by sending the quorum of identical responses to the servers
that each log this quorum of responses. If the client receives confirmation that at
least a quorum of servers has logged this proof, then it knows that the sequence
number assignment is self-verifying. Given this knowledge, the client accepts the
result in phase 4.

10 Selected Results from the Latest Decade of Quorum Systems Research 201

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request/
Pre-prepare

Phase 2a:
Verify
(n+b+1)/2
Prepares

Phase 2b:
Accept

Replica 1
Primary

Replica2

Replica4

Replica3

Log

Log

Log

Log

Phase 3b:
Execute

Phase 4:
Verify
(n+b+1)/2
Responses

T-Exec

T-Exec

T-Exec

T-Exec

Client

Phase 3a:

(BFT w/ Tentative Execution)

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn
(n+3b+1)/2

Replica 1
Primary

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify
(n+3b+1)/2
Responses

Exec

Exec

Exec

Exec

Client

Replica5 Exec

Replica6 Exec

(FaB Paxos)

Fig. 10.8 Optimistic update (BFT w/ tentative-execution optimization), compared to optimistic
accept (FaB Paxos).

Use of Opaque Quorum Systems

Another way to avoid a round of communication is to employ an optimistic accept
phase (i.e., to skip phase 2a). Two of the protocols that we survey use both opti-
mistic accept and optimistic update phases. Q/U [1] is a Byzantine-fault-tolerant
state-machine-replication protocol based on opaque quorum systems. FaB Paxos,
which normally employs only an optimistic accept phase, can, like the BFT variant
described above, also employ an optimistic update optimization known as tenta-
tive execution. Since both Q/U and FaB Paxos with tentative execution always skip
phase 2a (i.e., regardless of whether the execution is gracious), neither protocol can
use fewer than 5b+1 replicas. In addition, since they also skip phase 3a, both proto-
cols require the client to wait for a quorum of identical responses in phase 4 to make
certain that the result is based on a permanent sequence number assignment; this
quorum is larger than quorums in systems that employ dissemination or masking
quorum systems.

Optimistic Accept, Pessimistic Update—FaB Paxos. In relation to our frame-
work, FaB Paxos [21], can be viewed as BFT with an optimistic accept phase (pro-

202 M.G. Merideth and M.K. Reiter

Phase 1a:
Retrieve
State

Phase 1b:
Propose

Phase 2a:
Verify

Phase 2b:
Accept

Replica 1
Primary

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify
n
Responses

T-Exec

T-Exec

T-Exec

T-Exec

Client

Phase 3a:

(Zyzzyva in Gracious Execution)

Phase 1a:
Retrieve
State

Phase 1b:
Propose

Phase 2b:
Accept

Replica 1
Primary

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify
(n+b+1)/2
Responses

T-Exec

T-Exec

T-Exec

Client

Phase 3a: Phase 2a:
Verify
(n+b+1)/2
Responses

Log

Log

Log

(Zyzzyva in Non-Gracious Execution)

Fig. 10.9 Zyzzyva.

vided by the use of an opaque quorum system). It is seen in the lower half of Fig-
ure 10.8. Compared with BFT, FaB Paxos must use larger quorums, and therefore re-
quires more replicas, in order to save this round of communication. While BFT with
tentative execution and FaB Paxos (without tentative execution) require the same
number of message delays, they have different properties. In BFT, the execution
may need to be rolled back and redone if a different sequence number assignment
becomes permanent. In FaB Paxos, the execution is not tentative. However, because
accept is optimistic, individual servers have no proof that the sequence number as-
signment is permanent, and so an opaque quorum system is necessary to ensure that
permanent sequence numbers are observed later, e.g., in repair.

Optimistic Accept, Optimistic Update—Q/U Protocol. Figures 10.10 and 10.11
show the Q/U protocol. In phase 1, clients act as proposers and directly issue re-
quests to the replicas. Since there are multiple proposers, a proposer may not know
the next sequence number (implemented as a logical timestamp). Therefore, the
client first retrieves the update history (called a replica history set) from a quorum
of replicas (phase 1a). A quorum of replica history sets is called an object history
set. It identifies the latest completed update, and, therefore, the sequence number
at which the next update should be applied. The client sends the object history set
along with the request to a quorum of replicas (phase 1b). In phase 2b, each replica

10 Selected Results from the Latest Decade of Quorum Systems Research 203

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn

Replica 1

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify result
(n+3b+1)/2
Responses

T-Exec

T-Exec

T-Exec

T-Exec

Client

Replica5 T-Exec

Replica6

Fig. 10.10 The Q/U protocol (optimistic accept and update).

verifies that it has not executed any operation more recent than that which is re-
flected in the object history set, and then accepts the update. Having accepted the
update, the acceptor executes the request (phase 3b). Because Q/U is an optimistic
execution protocol (it skips phase 3a), the client must wait for a quorum of responses
in phase 4.

In a pipelined optimization of Q/U (shown in Figure 10.11), clients cache object
history sets after each operation. As such, clients can avoid phase 1a if no other
clients have since updated the object.

FaB Paxos w/ Tentative Execution. The tentative-execution optimization for FaB
Paxos works as it does in BFT—a replica executes the request upon accepting the
sequence number assignment for it in phase 2b (assuming it has also executed the
requests corresponding to all earlier permanent sequence numbers). Because this
sequence number assignment may never become permanent, it may need to be rolled
back. Therefore, clients must wait for a quorum of identical responses in phase 4.
Figure 10.11 highlights the similarities between Q/U with the pipelined optimization
described above and FaB Paxos with the tentative-execution optimization.

Other Trade-offs

BFT, Zyzzyva, and FaB Paxos use a single proposer (the primary), and so can omit
phase 1a. On the other hand, Q/U allows clients to act as proposers, and therefore
requires phase 1a (though it can be avoided in some cases with the pipelined op-
timization). The use of a single proposer has potential advantages. First, a client
sends only a single request to the system (in the common case) as opposed to send-
ing the request to an entire quorum. Therefore, if the single proposer is physically
closer than the clients to the replicas, then the use of a primary might be more ef-
ficient, e.g., on a WAN with relatively large message delays. Another advantage is
that request-batching optimizations can be employed because the primary is aware
of requests from multiple clients. Furthermore, use of a primary can mitigate the
impact of client contention. However, the use of a primary: (i) involves an extra

204 M.G. Merideth and M.K. Reiter

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn

Replica 1

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify result
(n+3b+1)/2
Responses

T-Exec

T-Exec

T-Exec

T-Exec

Client

Replica5 T-Exec

Replica6

(Q/U w/ Pipelined Optimization)

Phase 1a:
Retrieve
State

Phase 1b:
Propose
Request

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn

Replica 1
Primary

Replica2

Replica4

Replica3

Phase 3b:
Execute

Phase 4:
Verify
(n+3b+1)/2
Responses

T-Exec

T-Exec

T-Exec

T-Exec

Client

Replica5 T-Exec

Replica6 T-Exec

(FaB Paxos w/ Tentative Execution)

Fig. 10.11 Optimistic accept and update in Q/U and FaB Paxos (both optimized).

message delay (for the request to be forwarded from the client to the primary); and
(ii) may allow a faulty primary to slow progress without being detected.

Because a proposer may be Byzantine-faulty, a repair phase may be necessary in
order for the service to make progress in the presence of faults.3 In systems such as
BFT and FaB Paxos that use a dedicated proposer, the repair phase is used in part
to choose a new proposer. In Q/U, this phase may also result from concurrent client
updates, and is used to make sure that non-faulty replicas no longer have conflicting
sequence number assignments. In BFT and FaB Paxos, repair is initiated by non-
faulty replicas that have learned of some request but not have executed it after a
specified length of time (proactive repair). In Q/U, repair is initiated by a client that
has learned that the system is in a state from which no update can be completed due
to conflicting proposed sequence number assignments (need-based repair). Because
it is based on timeouts, proactive repair might sometimes be executed when it is not
actually of help, e.g., when the network is being slow but the primary is not faulty.

3 We do not classify protocols based on their repair phases. Therefore, we do not distinguish
between BFT and SINTRA [3], for example.

10 Selected Results from the Latest Decade of Quorum Systems Research 205

10.5 Conclusion

In this paper we have highlighted a number of advances in both the theory and prac-
tice of distributed systems that were facilitated by, or an outgrowth of, work on quo-
rum systems, particularly of a Byzantine-fault-tolerant variety. We have provided a
summary of Byzantine quorum systems and several results about the universe sizes
they require and their load-dispersing capabilities. We have also discussed proba-
bilistic variations of them. We have presented techniques that have been recently
developed to place quorums in networks for efficient access, in some cases while
attempting to retain their load-dispersing properties.

We have also presented a framework consisting of logical phases for the compar-
ison of Byzantine-fault-tolerant read-overwrite and state-machine-replication proto-
cols. Our framework centers on the use of Byzantine quorum systems in each proto-
col, highlighting trade-offs made by the protocols in terms of the number of replicas
required, the number of faults that can be tolerated, and the number of rounds of
communication required.

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
byzantine fault-tolerant services. In: Proceedings of the 20th ACM Symposium on Operating
Systems Principles, pp. 59–74 (2005)

2. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. Journal of the
ACM 32(4), 824–840 (1985)

3. Cachin, C., Poritz, J.A.: Secure intrusion-tolerant replication on the Internet. In: International
Conference on Dependable Systems and Networks, pp. 167–176 (2002)

4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans-
actions on Computer Systems 20(4), 398–461 (2002)

5. Fu, A.W.: Delay-optimal quorum consensus for distributed systems. IEEE Transactions on
Parallel and Distributed Systems 8(1), 59–69 (1997)

6. Gilbert, S., Malewicz, G.: The quorum deployment problem. In: Proceedings of the 8th Inter-
national Conference on Principles of Distributed Systems (2004)

7. Golovin, D., Gupta, A., Maggs, B.M., Oprea, F., Reiter, M.K.: Quorum placement in networks:
Minimizing network congestion. In: Proceedings of the 25th ACM Symposium on Principles
of Distributed Computing, pp. 16–25 (2006)

8. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient Byzantine-tolerant erasure-
coded storage. In: International Conference on Dependable Systems and Networks (2004)

9. Guerraoui, R., Vukolic, M.: Refined quorum systems. In: Symposium on Principles of Dis-
tributed Computing, pp. 119–128 (2007)

10. Gupta, A., Maggs, B.M., Oprea, F., Reiter, M.K.: Quorum placement in networks to minimize
access delays. In: Proceedings of the 24th ACM Symposium on Principles of Distributed
Computing, pp. 87–96 (2005)

11. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

12. Kobayashi, N., Tsuchiya, T., Kikuno, T.: Minimizing the mean delay of quorum-based mutual
exclusion schemes. Journal of Systems and Software 58(1), 1–9 (2001)

13. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine fault
tolerance. In: Symposium on Operating Systems Principles, pp. 45–58. ACM Press, New York
(2007), http://doi.acm.org/10.1145/1294261.1294267

14. Kotla, R., Dahlin, M.: High throughput Byzantine fault tolerance. In: International Conference
on Dependable Systems and Networks, p. 575 (2004)

http://doi.acm.org/10.1145/1294261.1294267

206 M.G. Merideth and M.K. Reiter

15. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4(3), 382–401 (1982)

16. Lin, X.: Delay optimizations in quorum consensus. In: Eades, P., Takaoka, T. (eds.) ISAAC
2001. LNCS, vol. 2223, pp. 575–586. Springer, Heidelberg (2001)

17. Liskov, B., Rodrigues, R.: Tolerating Byzantine faulty clients in a quorum system. In: Inter-
national Conference on Distributed Computing Systems (2006)

18. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4), 203–213
(1998)

19. Malkhi, D., Reiter, M.K., Wool, A.: The load and availability of Byzantine quorum systems.
SIAM Journal of Computing 29(6), 1889–1906 (2000)

20. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems. Information
and Computation 170(2), 184–206 (2001)

21. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Dependable and Se-
cure Computing 3(3), 202–215 (2006)

22. Merideth, M.G., Reiter, M.K.: Probabilistic opaque quorum systems. In: Pelc, A. (ed.) DISC
2007. LNCS, vol. 4731, pp. 403–419. Springer, Heidelberg (2007)

23. Merideth, M.G., Reiter, M.K.: Write markers for probabilistic quorum systems. In: Baker, T.P.,
Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 5–21. Springer, Heidelberg
(2008)

24. Naor, M., Wool, A.: The load, capacity and availability of quorum systems. SIAM Journal of
Computing 27(2), 423–447 (1998)

25. Oprea, F.: Quorum placement on wide-area networks. Ph.D. thesis, Electrical & Computer
Engineering Department, Carnegie Mellon University (2008)

26. Oprea, F., Reiter, M.K.: Minimizing response time for quorum-system protocols over wide-
area networks. In: Proceedings of the 37th International Conference on Dependable Systems
and Networks, pp. 409–418 (2007)

27. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in Rampart.
In: Conference on Computer and Communication Security, pp. 68–80 (1994)

28. Rodrigues, R., Castro, M., Liskov, B.: BASE: Using abstraction to improve fault tolerance. In:
Symposium on Operating Systems Principles (2001)

29. Song, Y.J., van Renesse, R., Schneider, F.B., Dolev, D.: The building blocks of consensus. In:
Proceedings of the 9th International Conference on Distributed Computing and Networking
(2008)

30. Tsuchiya, M., Yamaguchi, M., Kikuno, T.: Minimizing the maximum delay for reaching con-
sensus in quorum-based mutual exclusion schemes. IEEE Transactions on Parallel and Dis-
tributed Systems 10(4), 337–345 (1999)

31. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agreement from ex-
ecution for Byzantine fault tolerant services. In: Symposium on Operating Systems Principles,
pp. 253–267 (2003)

Chapter 11
From Object Replication to Database
Replication

Fernando Pedone and André Schiper

Abstract This chapter reviews past research on database replication based on
group communication. It initially recalls consistency criteria for object replication,
compares them to serializability, a typical consistency criterion for databases, and
presents a functional model to reason about replication protocols in general. Within
this framework, deferred update replication is explained. We consider two instances
of deferred update replication, one relying on atomic commit and the other relying
on atomic broadcast. In this context, we show how group communication can sim-
plify the design of database replication protocols and improve their availability and
performance by reducing the abort rate.

11.1 Introduction

Database replication has been extensively studied in the past years. Early work in
the database community dates back to the late 1970s and early 1980s, addressing
both theoretical and practical concerns (e.g., one-copy serializability [2], primary
copy replication [12]). Although database replication was much later considered in
the distributed systems community at large, foundational work on object replication
(i.e., non-transactional behavior) dates back to the late 1970s (e.g., state machine
replication [6]).

In the context of distributed systems, replication has been mostly related to
group communication. To understand how group communication came into play
in database replication, we should recall two observations made in the mid-1990s.

First, Gray et al. showed in a seminal paper [4] that mechanisms typically used
to provide strong consistency (i.e., serializability) in distributed databases were in-
appropriate for replication. Distributed two-phase locking, for example, has an ex-
pected deadlock rate that grows with the third power of the number of replicas. The
underlying argument for this result comes from the fact that unordered lock requests
may get entangled, increasing the chances of distributed deadlocks. Replication in-
creases the number of requests, and therefore the probability of deadlocks.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 207–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

208 F. Pedone and A. Schiper

Second, Schiper and Raynal pointed out that transactions in replicated databases
share common properties with group communication primitives [10]. For example,
ordering requirements are present both in transactional systems (e.g., in relation
to the isolation property) and in group communication primitives (e.g., total order
delivery). Likewise, transaction atomicity or the “all-or-nothing” property is related
to agreement in group communication systems.

Consequently, not only group communication and database replication were
shown to have intersecting requirements, but some of the shortcomings of the mech-
anisms traditionally used to implement database replication could be addressed by
group communication. Therefore, it is not surprising that researchers in the two
communities — databases and distributed systems — set up to further investigate the
pros and cons of group communication-based database replication.

In the following, we review some of the work done in the distributed systems
community on database replication, focusing on group communication-based proto-
cols. To place database and object replication protocols into perspective, we start by
discussing the relationship between some of their most accepted consistency mod-
els. Different consistency models require different algorithms for database replica-
tion and object replication. It turns out, however, that despite their differences, most
protocols fit a common functional model [13], which allows them to be understood
and compared.

After presenting the generic functional model and recalling consistency criteria
for replication (Section 11.2), we discuss how existing object replication protocols
fit the model and introduce a novel object replication protocol (Section 11.3). This
replication protocol naturally evolves into the deferred update technique, one of the
most promising replication techniques capable to provide strong consistency.

Designing database replication systems and algorithms based on group commu-
nication leads to modular approaches, in which synchronization among servers, for
example, is encapsulated in the group communication primitives. As a result, group
communication (or more specifically atomic broadcast) can simplify the design of
database replication protocols and improve their availability and performance by
reducing the abort rate (Section 11.4).

We conclude with a discussion of why we believe both the database commu-
nity and the distributed systems community have gained from this joint approach to
group communication-based database replication (Section 11.5).

11.2 Replication Model and Consistency

In this section, we present a generic functional model that can be used as a com-
mon framework to reason about replication protocols for objects and databases, and
briefly review linearizability and sequential consistency, two correctness criteria for
object replication explained in Chapter 1.

11 From Object Replication to Database Replication 209

11.2.1 Generic Functional Model

The generic functional model (see Figure 11.1) has five phases, although some repli-
cation techniques may omit some phases or iterate over the phases:

Server 1

Server 2

Server 3

Client

Phase 1:
Client
Request

Phase 2:
Server
Coordination

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
Response

. . .

. . .

. . .

Fig. 11.1 Functional model [13] (messages are illustrative, actual message patterns depend on the
particular protocol).

• Client Request Phase. During this phase the client submits an operation to one or
more servers. If the protocol requires several servers to be contacted, the client
can address them all directly or contact a single server, which will relay the re-
quest to the others in Phase 2.

• Server Coordination Phase. Before executing the operation submitted by the
client, servers may have to synchronize to ensure that operations are performed
in the right way. For example, some protocols may require a broadcast primitive
with total order delivery to synchronize operations. Moreover, as just mentioned,
some protocols use this phase to propagate the operations to the other servers.

• Execution Phase. The actual processing of the operation takes place in this phase.
Although this phase does not introduce many differences among protocols, one
aspect in which some protocols diverge is whether operations should be executed
deterministically or not. Typically, if there is no further interaction among servers
(i.e., no Phase 4), then the execution should be deterministic.

• Agreement Coordination Phase. In some replication techniques, servers need to
undergo a coordination phase to ensure that each executed operation takes effect
in the same manner at all servers. In the context of databases, agreement coordi-
nation is known as atomic commitment, during which all servers decide to either
commit a transaction or abort it. Some database replication protocols use this
phase to propagate update requests to the other servers.

• Client Response Phase. After the operation has been executed and the states of
the servers are guaranteed to converge, reflecting the effects of the executed op-
eration, the client is notified.

210 F. Pedone and A. Schiper

11.2.2 Object and Database Consistency

Linearizability and sequential consistency refer to processes and single operations.
In the context of databases, correctness refers neither to processes nor to single
operations: correctness refers to transactions. A transaction is a sequence of read
and write operations followed by a commit or an abort operation. These operations
should satisfy the following properties: (i) atomicity, either all the operations of a
transaction take effect or none do; (ii) isolation, also known as serializability, and
described next; and (iii) durability, which states that the transaction modifications
to the database should survive system crashes. Serializability states that the (concur-
rent) execution of transactions should be equivalent to a serial execution involving
the same transactions.

Note the consequence of serializability not referring to processes. Consider the
following two cases with two clients c1 and c2: (i) c1 submits some transaction t1
and c2 submits some transaction t2; (ii) c1 submits first transaction t1 and then t2.
These two cases are indistinguishable from the point of view of serializability. The
situation is different with linearizability/sequential consistency, where the following
two cases are distinct: (i) client c1 submits operation op1 and c2 submits operation
op2, (ii) client c1 submits first operation op1 and then op2. Indeed, in case (ii) op1

must take place before op2, while in case (i) op1 can take place before or after op2.
In replicated settings, the typical isolation property is one-copy serializability

(1SR): the (concurrent) execution of transactions in a replicated database should be
equivalent to a serial execution of the same transactions in a single replica. 1SR
allows read operations to see arbitrarily old versions of the database (e.g., read-
only transactions could use the initial state of the database). Although more strict
definitions exist (e.g., external consistency, defined in Chapter 1, and strong serial-
izability [3], which forces reads to see up-to-date values), most database replication
protocols guaranteeing strong consistency have considered either plain one-copy
serializability, as we do in the rest of this chapter, or snapshot isolation (see Chap-
ter 12).

11.3 From Object Replication to Database Replication:
Multi-primary Passive Replication

The two prominent object replication techniques are active replication and passive
replication (see Chapter 2). In the context of our framework, active replication does
not have Phase 4 and every server replies to the client in Phase 5; the client considers
the first reply and discards the others. With passive replication, there is no Phase 2:
clients submit their requests to the primary server, which executes the requests and
sends the state changes to the other servers in Phase 4.

While one could implement database replication using active and passive repli-
cation, it turns out that neither is appropriate. The main reason is that database repli-
cation is not only for high availability, but also for high performance. Neither active
replication nor passive replication allow us to achieve the latter. Moreover, active

11 From Object Replication to Database Replication 211

replication requires the execution to be deterministic, which is difficult to achieve in
multi-threaded database systems.

One interesting alternative is multi-primary passive replication. Multi-primary
passive replication is similar to passive replication in the sense that each operation
is executed by only one replica (i.e., no Phase 2 in our functional model), which
then sends a message with the resulting state updates to the other replicas (in Phase
4). Upon receiving such a message, each replica unilaterally and deterministically
checks whether the update can be accepted, and if so, it updates its local state. The
check is needed to account for the concurrency among multi-primaries, which may
lead to mutually inconsistent updates. If the update is not accepted, its corresponding
operation should be re-executed.

Multi-primary replication differs from passive replication in the sense that mul-
tiple processes act as primary, which allows increased transaction throughput. It
differs from active replication in that only one replica executes the operations. In
the context of databases, this technique has been called “deferred update”; in the
classification of [4] (see Chapter 12), it is an eager, update everywhere approach.
With the deferred update technique, a client initially chooses one database server
and submits its transaction operations to this server, which will be the primary for
the transaction. The technique distinguishes two parts in the lifetime of a transac-
tion: transaction processing, from the beginning of the execution until before the
client requests the transaction commit, and transaction termination, from the com-
mit request until the transaction is completed (i.e., committed or aborted). During
transaction processing, the protocol iterates through Phases 1, 3 and 5: The client
submits each operation to the transaction primary (Phase 1), which computes the
result (Phase 3) and sends it back to the client (Phase 5). There are no Phases 2 and
4 during transaction processing.

Upon transaction termination, there are two cases to consider: read-only transac-
tions (also called queries) and update transactions. Read-only transactions terminate
without any interaction among replicas: they are simply committed by the transac-
tion’s primary. This is not the case of update transactions. When a client requests
the commit of an update transaction t (Phase 1), t must be certified. As part of the
certification process, t’s readset, writeset and actual updates are propagated to all
replicas (Phase 2): t’s readset and writeset identify the data items read and written
by t, while the updates are the actual values written during t’s execution. Servers
must then agree whether t is one-copy serializable and commit t if so. The certifi-
cation test can be executed by each server independently, thanks to a deterministic
procedure, or by means of an atomic commit protocol, as explained in the next sec-
tion. If the transaction passes the certification test, each server locally commits it
(Phase 4); whatever the result of the certification test, the transaction outcome is
then sent to the client (Phase 5).

11.4 Deferred Update Database Replication

In the following we introduce some additional definitions and present four mech-
anisms for terminating transactions in the deferred update approach (or multi-

212 F. Pedone and A. Schiper

primary). Termination guarantees both transaction atomicity, in the sense that ei-
ther all servers commit the transactions or none do it, and isolation (here one-copy
serializability).

11.4.1 Additional Definitions

As described in the previous section, a transaction must be certified. The transac-
tion is only committed if it passes certification. This suggests that transactions pass
through well-defined states in the system. A transaction starts in the executing state,
when its read and write operations are locally executed by its primary server. When
the transaction requests the commit, it is propagated to all servers for certification.
Upon reception at a server, the transaction enters the committing state and should be
certified. As a result of certification, the transaction can be committed or aborted.

Given a transaction t, its various states at server s are expressed by the following
mutually exclusive predicates: Executing(t,s), Committing(t,s), Committed(t,s),
and Aborted(t,s). States executing and committing are transitory; states committed
and aborted are final, that is, if either one of them holds at a time, then it holds at
all later times.

In order for a server to certify transaction t, it must know which transactions
precede t and which transactions have conflicting operations with t:

• Let s be a server that executes transaction t. A transaction t ′ precedes a transac-
tion t, denoted t ′ → t, if t ′ committed at server s before t started executing at s. If
neither t→ t ′ nor t ′ → t then t and t ′ are concurrent.

• A transaction t ′ has conflicting operations with t (or t ′ conflicts with t) if t ′ and t
access the same data item, and at least one of them modifies the data item.

11.4.2 Atomic Commit-Based Termination

To better place into perspective the advantages of implementing deferred update
with group communication, we show in this section how it can be implemented
using atomic commit. Atomic commit guarantees that all transaction participants
vote and agree on committing or aborting the transactions. If a participant votes to
commit the transaction, it locally precommits it. The transaction is committed iff all
participants precommit it. As we show in the next paragraph, atomic commit-based
termination may abort transactions unnecessarily. This happens because (a) all the
transaction participants should vote to precommit the transaction in order for it to be
committed and (b) atomic commit does not impose an order on the certification of
transactions. This drawback is addressed by an atomic broadcast-based termination,
discussed in Section 11.4.3.

With atomic commit-based termination, transactions (i.e., their readsets, write-
sets, and updates) are propagated to all servers as part of Phase 4 (e.g., [5]). When
a server s receives a transaction t, Committing(t,s) holds. Server s votes either to
commit t, referred to as t’s precommit, or to abort t. Transaction t is committed if
all servers precommit t. The precommit introduces a further transitory state in the
transaction’s lifetime, PreCommit(t,s). Server s votes for transactions t and t ′ in the

11 From Object Replication to Database Replication 213

order it receives them, that is, if t is received by s before t ′, then s votes for t before
it votes for t ′.

A server precommits t if each transaction it knows about in the committed or pre-
committed states either precedes t or does not conflict with t. Let RS(t) and W S(t)
stand for the readset and writeset of t, and let A� B denote the enabling condition
of the transition from state A to state B. We define the conditions for the transitions
from the committing state to the precommit state, and from the precommit state to
the committed state more formally as follows1:

∀t ∀s : Committing(t,s)� PreCommit(t,s)≡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀t ′ s.t. Committed(t ′,s)∨PreCommit(t ′,s) :

t ′ → t ∨

⎛
⎜⎜⎜⎜⎝

WS(t ′)∩RS(t) = /0
∧

RS(t ′)∩WS(t) = /0
∧

WS(t ′)∩WS(t) = /0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.1)

∀t ∀s : PreCommit(t,s)�Committed(t,s)≡
∀s′ : PreCommit(t,s′)∨Committed(t,s′) (11.2)

Conditions 11.1 and 11.2 guarantee that the execution is serializable. To see why,
let t and t ′ be two transactions with conflicting operations. If by the time t starts
its execution at some server s, s has already committed t ′ (i.e., t ′ → t), then any
modifications made by t ′ will be seen by t, and t is obviously serialized after t ′.
Thus, assume that neither t ′ → t nor t → t ′ hold. We show next that in such a case,
conditions 11.1 and 11.2 allow at most one transaction to commit. The argument is
by contradiction: Assume that both t and t ′ commit. Therefore, from condition 11.2
transactions t and t ′ have been precommitted by all servers. Without loss of gener-
ality, let t ′ enter the committing state at s before t. When s received t, transaction
t ′ could be in the committed state or in the precommit state. In either case, by 11.1,
server s will consider t ′ in t’s certification. Since t ′ does not precede t, the only way
for s to precommit t is if t and t ′ do not have intersecting readsets and writesets, a
contradiction since t and t ′ have conflicting operations.

Although conditions 11.1 and 11.2 produce serializable executions, they may
lead to unnecessary aborts. For example, consider a scenario where server s (resp.
s′) receives t (resp. t ′) for certification after it has precommitted t ′ (resp. t), but
before committing it. Thus, t will not satisfy the precommit condition at s and t ′
will not satisfy the precommit condition at s′, leading both transactions to abort
(i.e., they both do not satisfy condition 11.2). This example shows that the outcome
of certification using atomic commit depends on the interleaving of the messages

1 Notice that the transition from the precommit state to the abort state is given by the complement
(i.e., negation) of the transition from the precommit state to the commit state.

214 F. Pedone and A. Schiper

exchanged between servers during termination. If the interleaving is not favorable,
then unnecessary aborts may happen.

Also notice that condition 11.2 quantifies over all servers. Therefore, if one server
is down, certification will only be completed after the server recovers. In the next
section we revisit transaction termination using an atomic broadcast primitive, a
technique that avoids unnecessary aborts and does not require all servers to be up to
commit transactions.

11.4.3 Atomic Broadcast-Based Termination

When transaction termination is based on the atomic broadcast primitive (see Chap-
ter 3), transactions (or more precisely, their readsets, writesets, and updates) are
atomically broadcast to all servers during Phase 4. Atomic broadcast guarantees
that (a) if a server delivers a transaction, all other servers will also deliver it (agree-
ment property) and (b) any two servers deliver transactions in the same order (total
order property). Since all transactions are delivered by all replicas in the same order,
the certification test can be deterministic, and therefore, all servers reach the same
outcome, committed or aborted, without further communication [1, 8].

When a server s delivers t, Committing(t,s) holds. Server s certifies transactions
in the order they are delivered. To certify t, server s checks whether each transaction
it knows about in the committed state either precedes t or does not have a writeset
that intersects t’s readset. If one of these conditions holds, s locally commits t. We
define the condition for the transition from the committing state to the committed
state more formally as follows:

∀t ∀s : Committing(t,s)�Committed(t,s)≡⎡
⎣
∀t ′ s.t. Committed(t ′,s) :

t ′ → t ∨WS(t ′)∩RS(t) = /0

⎤
⎦ (11.3)

If transaction t passes to the committed state at s, its updates should be applied to
the database following the order imposed by the atomic broadcast primitive, that is,
if t is delivered before t ′ and both pass the certification test, then t’s updates should
be applied to the database before those of t ′.

Intuitively, condition 11.3 checks whether transactions can be serialized follow-
ing their delivery order. Let t and t ′ be two transactions such that t ′ is delivered
and committed before t. There are two cases in which t will pass certification: (i) t ′
committed before t started its execution, in which case any modifications made by
t ′ would be seen by t during its execution, or (ii) t ′ does not update any data item
read by t, in which case it does not matter if t ′ committed before t started.

Differently from condition 11.1 (see Section 11.4.2), condition 11.3 does not
require checking write-write conflicts. Termination based on an atomic broadcast
primitive requires the writes of transactions that passed certification to be processed
by all replicas according to the delivery order. Therefore, all servers will process
the writes of successfully certified transactions in the same order and end up in the

11 From Object Replication to Database Replication 215

same state after committing each transaction, even though two or more committing
transactions update the same data item.

Notice that many other database replication protocols based on atomic broadcast
have been proposed. The reader is referred to Chapters 12 and 13 for a detailed
description of some of these protocols.

11.4.4 Reordering-Based Termination

Reordering-based termination is an extension of atomic broadcast-based termina-
tion. The idea is to dynamically build a serial order of transactions that does not
necessarily follow the order in which these transactions are delivered and, in do-
ing so, reduce the number of transactions that fail certification [8]. We illustrate the
idea with an example. Assume two concurrent transactions, t and t ′ such that t reads
data item x and updates y, and t ′ reads y and updates z. There are two cases to con-
sider: (a) If t is delivered before t ′, then t will pass certification but t ′ will fail since
WS(t)∩RS(t ′) = {y}; (b) If t ′ is delivered before t, then both transactions will pass
the certification test. The reordering technique reconsiders the order in which trans-
actions are certified to avoid aborts. In the example, even if t is delivered before t ′,
the certification process will reverse their order so that both can commit.

In order to implement the reordering technique, certification must distinguish
between committed transactions already applied to the database and committed
transactions in the Reorder List. The Reorder List contains committed transactions
that have not been seen by transactions in execution since their relative order may
change. The number of transactions in the Reorder List is limited by a predeter-
mined threshold, the Reorder Factor. Whenever the Reorder Factor is reached, one
transaction in the Reorder List is removed and its updates are applied to the database.

Let RLs = t0;t1; . . . ;tcount−1 be the Reorder List at server s containing count trans-
actions and pos(x) be a function that returns the position of transaction x in RLs. We
represent the condition for the state transition of transaction t from the committing
state to the committed state more formally as follows:

∀t∀s : Committing(t,s)�Committed(t,s)≡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃i, 0≤ i < count, s.t. ∀t ′ ∈ RLs :

pos(t ′) < i⇒ t ′ → t ∨WS(t ′)∩RS(t) = /0 ∧
∧

pos(t ′)≥ i⇒
⎛
⎝

(t ′ �→ t ∨WS(t ′)∩RS(t) = /0)
∧

WS(t)∩RS(t ′) = /0

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.4)

If t passes the certification test, it is included in RLs at position i, which means that
transactions in positions in [i ..count−1] are rightshifted. If more than one position
satisfies the condition in equation 11.4, then to ensure that all servers apply transac-
tions to the database in the same order, a deterministic procedure has to be used to
choose the insertion position (e.g., the rightmost position in RLs). If after including

216 F. Pedone and A. Schiper

t in RLs the list overflows, the leftmost transaction in the list, t0, is applied to the
database and the remaining transactions are leftshifted.

11.4.5 Generic Broadcast-Based Termination

We show now that the ordering imposed by atomic broadcast is not always needed.
Consider the termination of two transactions t and t ′ with non-intersecting readsets
and writesets. In such a case, both t and t ′ will pass the certification test and be
committed, regardless of the order in which they are delivered. This shows that
atomic broadcast is sometimes too strong, and can be favorably replaced by generic
broadcast (see Chapter 3). Generic broadcast is similar to atomic broadcast, with the
exception that applications can define order constraints on the delivery of messages:
two messages are ordered only if they conflict, where the conflict relation is defined
by the application semantics.

Based on the example above, one could define the following conflict relation ∼
among messages, where m : t means that message m relays transaction t:

m :t ∼ m′ : t ′ ≡

⎡
⎢⎢⎢⎢⎣

RS(t)∩WS(t ′) �= /0
∨

WS(t)∩RS(t ′) �= /0
∨

WS(t)∩WS(t ′) �= /0

⎤
⎥⎥⎥⎥⎦

(11.5)

Notice that the conflict relation ∼ should account for write-write conflicts to make
sure that transactions that update common data items are ordered, preventing the
case in which two servers end up in different states after applying such transactions
in different orders.

Surprisingly, although ∼ provides an adequate ordering for the termination of
update transactions in the deferred update technique, read-only transactions may
violate serializability, due to the fact that their execution is local to a server. We
illustrate the problem with an execution with two update transactions, tx and ty, and
two read-only transactions, qi and q j. Transaction tx modifies data item x and ty
modifies data item y; transactions qi and q j both read x and y. Since tx and ty do
not execute conflicting operations, assume they are delivered in different orders by
different servers, as follows:

• Server si delivers and commits tx, then executes qi, and finally delivers and com-
mits ty;

• Server s j delivers and commits ty, then executes q j, and finally delivers and com-
mits tx.

The execution is non-serializable since for qi, tx precedes ty, and for q j, ty precedes
tx. Therefore, termination based on generic broadcast with conflict relation ∼ pre-
vents local execution of read-only transactions. We briefly describe two solutions,
one optimistic and one pessimistic, to allow partial order delivery of transactions
using the conflict relation∼ together with the execution of read-only transactions.

11 From Object Replication to Database Replication 217

The optimistic solution consists in treating read-only transactions like update
transactions, that is, after the execution the transaction is broadcast (using generic
broadcast) and certified. As a result, a read-only transaction may be aborted if it
does not pass certification.

The pessimistic solution requires read-only transactions to pre-declare their read-
sets before executing. Before reading the first data item, a read-only transaction is
broadcast to all servers. Upon delivery, one server executes the transaction. In this
case, no certification is needed since the generic broadcast primitive guarantees that
the read-only transaction is properly ordered with respect to conflicting update trans-
actions.

11.5 Final Remarks

Group communication-based database replication is at the intersection between
database replication and distributed systems. In addition to the results accomplished
combining the two areas, some of which are reviewed in this chapter, one can also
point out that this research effort had a positive effect on each area alone as well.

On the one hand, group communication solved some of the problems identi-
fied by the database community in the context of replication (see discussion in
Section 11.1). On the other hand, taking application semantics into account when
agreeing on a sequence of messages (e.g., as implemented by Generic Broadcast [9]
and Generalized Paxos [7]) was originally inspired by the semantics of transactions
and the minimum guarantees needed to ensure database isolation. Since transactions
have a well-defined semantics, characterizing this ordering is a relatively straight-
forward task for replicated databases. Defining the problem in a concrete setting was
one important step toward group communication protocols that account for message
semantics.

Despite the large amount of work done in database replication based on group
communication, some problems are still open. One example is partial replica-
tion. Protocols for fully replicated databases have limited scalability under update-
intensive workloads. The reasons for the limitations are intrinsic to the full repli-
cation approach: Each new server added to a fully replicated system allows more
clients to connect and submit transactions. If most clients submit update transac-
tions, they will add load to every individual server. Partial replication does not suf-
fer from the same problem since the degree of replication of each data item can be
controlled. Defining and efficiently implementing group communication primitives
for partial replication is a new challenge for distributed system researchers [11].

Acknowledgements We would like to thank Leslie Lamport for his useful comments and sugges-
tions.

218 F. Pedone and A. Schiper

References

1. Agrawal, D., Alonso, G., Abbadi, A.E., Stanoi, I.: Exploiting atomic broadcast in replicated
databases. In: Proceedings of EuroPar (EuroPar’97) (Sep. 1997)

2. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading (1987)

3. Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of multidatabase transaction man-
agement. The VLDB Journal 1(2), 181–239 (1992)

4. Gray, J.N., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data (Jun. 1996)

5. Holliday, J., Steinke, R., Agrawal, D., El Abbadi, A.: Epidemic algorithms for replicated
databases. IEEE Trans. on Knowl. and Data Eng. 15(5), 1218–1238 (2003)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Comm. of the
ACM 21(7), 558–565 (1978)

7. Lamport, L.: Generalized consensus and Paxos. Tech. Rep. MSR-TR-2005-33, Microsoft Re-
search (MSR) (Mar. 2005)

8. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Distributed and
Parallel Databases 14(1), 71–98 (2003)

9. Pedone, F., Schiper, A.: Generic broadcast. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693,
pp. 94–106. Springer, Heidelberg (1999)

10. Schiper, A., Raynal, M.: From group communication to transaction in distributed systems.
Comm. of the ACM 39(4), 84–87 (1996)

11. Schiper, N., Sutra, P., Pedone, F.: Genuine versus non-genuine atomic multicast protocols
for wide area networks: An empirical study. In: Proc. of the 28th IEEE Symp. on Reliable
Distributed Systems, SRDS (2009)

12. Stonebraker, M.: Concurrency control and consistency of multiple copies of data in distributed
Ingres. IEEE Transactions on Software Engineering 5, 188–194 (1979)

13. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding replication in
databases and distributed systems. In: Proc. of 20th IEEE Int. Conf. on Distributed Computing
Systems (ICDCS) (April 2000)

Chapter 12
Database Replication: A Tutorial

Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and
Gustavo Alonso

Abstract This chapter provides an in-depth introduction to database replication, in
particular how transactions are executed in a replicated environment. We describe
a suite of replication protocols and illustrate the design alternatives using a two-
step approach. We first categorize replication protocols by only two parameters and
present a simple example protocol for each of the resulting categories. Further pa-
rameters are then introduced, and we illustrate them by the given replication proto-
cols and some variants.

12.1 Introduction

12.1.1 Why Replication

Database replication has been studied for more than three decades. It is concerned
with the management of data copies residing on different nodes and with each copy
controlled by an independent database engine. A main challenge of database repli-
cation is replica control: when data can be updated, replica control is in charge
of keeping the copies consistent and providing a globally correct execution. Consis-
tency needs to be enforced through some protocol running across the different nodes
so that the independent database engines can make local decisions that still provide
some form of global consistency when the system is considered as a whole.

Some particular characteristics differentiate database replication from replication
approaches in other domains of distributed computing. While database replication
can be used for fault-tolerance and high-availability in a similar spirit as replication
is used in distributed computing in general, there are many other purposes of repli-
cation. Foremost, often the primary purpose of database replication is to increase the
performance and improve the scalability of database engines. Having more database
replicas distributed across geographic regions provides fast access to local copies,
having a cluster of database replicas provides high throughput. Finally, for some
applications replication is a natural choice, e.g., in the context of mobile users that
are frequently disconnected from the corporate data server, or for data warehouses,

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 219–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 B. Kemme et al.

which have to reformat data in order to speed up query processing. These various
use cases bring to the fore a tradeoff between consistency and performance, which
attracts less attention when replication is targeted at high availability, as studied in
previous chapters of this book.

A further difference is that databases, by their name, are data centric, usually
consisting of a large set of individual data items, and access to this data is enclosed
in transactions. This means that the database supports operations which are grouped
together in transactions, rather than being processed independently of one another.
A transaction reflects a logical unit of execution and is defined as a sequence of
read and write operations. Transactions come with a set of properties. Atomicity
requires a transaction to either execute entirely and commit, or abort and not leave
any changes in the database. Isolation provides a transaction with the impression
that no other transaction is currently executing in the system. Durability guarantees
that once the initiator of the transaction has received the confirmation of commit,
the changes of the transaction are, indeed, reflected in the database (they can, of
course, later be overwritten by other transactions). Transactions are a particularity
of database systems and provide additional challenges compared to object or process
replication, as the latter usually only consider individual read and write operations.

12.1.2 Organization of the Chapter

In this chapter we provide a systematic introduction to the principles of replica con-
trol algorithms. In the following, the term replica mostly refers to a site running
the database system software and storing a copy of the entire database. But depend-
ing on the context, a replica can also refer to the physical copy of an individual
data item. Replica control has to translate the operations that transactions submit
on logical data items into operations on the physical data copies. Most algorithms
are based on a specific form of read-one-write-all-(available) (ROWAA) approach
where a transaction is assigned to one site (replica), where it is local, and all its
read and write operations are executed at this local site. The write operations are
also executed at all other replicas in the form of a remote transaction. This chapter
only considers ROWAA protocols. We refer readers interested in quorum systems
for database replication to [24]. Replica control also has to make sure that the copies
are consistent. Ideally, all copies of a data item have the same value at all times. In
reality, many different levels of consistency exist.

We first introduce two main parameters that were presented by Gray et al. [20]
to provide a coarse categorization of replication algorithms. The transaction lo-
cation determines where update transactions are executed, namely either at a pri-
mary replica or at any replica. The synchronization strategy determines when up-
date propagation takes place, either before or after commit of a transaction. We use
these parameters as a basis to develop a suite of replication algorithms that serve as
examples and illustrate the principles behind the tasks of replica control. We keep
the description at an abstract level and provide very simple algorithms in order to
better illustrate the principles. Many issues are only discussed informally.

12 Database Replication: A Tutorial 221

As a second step, we discuss a wide range of other parameters. In particular, we
have a closer look at the level of correctness provided by different replica control
solutions in regard to atomicity, isolation and durability. We also have a closer look
at the choice of concurrency control mechanism (e.g., optimistic vs. pessimistic), the
degree of replication (full vs. partial replication), and other design choices that can
have a significant influence on the performance and practicality of the replication
solution.

At the end of this chapter we present some of the research and commercial repli-
cation solutions, and how they fit into our categorization. We also discuss the rela-
tionship between replication and related areas of data management, such as materi-
alized views, caching, and parallel database systems. They all maintain data copies,
and data maintenance can, to some degree, be categorized with the parameters pre-
sented in this chapter. However, they have some fundamental differences that we
would like to point out.

In a replicated database, the replica control needs to interact closely with the gen-
eral transaction management. Transaction management includes concurrency con-
trol (which delivers isolation) and logging to allow an aborting transaction to roll
back any changes previously made (this is part of ensuring atomicity). In most of
this chapter, we assume that each site uses strict two-phase locking (2PL) for con-
currency control; that is, an exclusive lock is acquired on an item before that item is
written, a shared lock is acquired before reading the item, and each lock is held until
the commit or abort of the transaction holding the lock. Other concurrency control
techniques are possible, as we discuss briefly in Section 12.4.3. More details can be
found in [7].

Another essential feature of all replica control protocols is the inter-site commu-
nication. Since we discuss ROWAA approaches, write operations must be sent to
all available sites. We assume that a primitive, called multicast, is used to propagate
information to all replicas. In most of the chapter, we require FIFO multicast, which
means that all recipients get the messages from the same sender in the order they
were sent. We will introduce more powerful multicast primitives later in the chapter
when we discuss protocols that take advantage of them.

12.2 Basic Taxonomy for Replica Control Approaches

Gray et. al [20] categorize replica control solutions by only two parameters. The pa-
rameter transaction location indicates where transactions can be executed. In gen-
eral, a transaction containing only read operations can be executed at any replica.
Such a read-only transaction is then called a local transaction at this replica. For
update transactions, i.e., transactions that have at least one write operation, there
exist two possibilities. In a primary copy approach, all update transactions are exe-
cuted at a given replica (the primary). The primary propagates the write operations
these transactions perform to the other replicas (secondaries) (see Chapter 2 for
primary-backup object replication). This model is also called passive replication (as
in Chapters 11 and 13). In contrast, in an update anywhere approach, update trans-
actions can be executed at any site, just as the read-only transactions which then

222 B. Kemme et al.

transaction location: WHERE?

synchronization
point: WHEN?

+ simple cc

primary copy update anywhere

eager

lazy

+ strong consistency

- inflexible - complex cc

+ flexible

+ simple cc
+ often fast

- inflexible
- stale data

+ flexible

- inconsistency
- conflict resolution

+potentially long response times

+ always fast

Fig. 12.1 Categories.

takes care of update propagation. This model is also called multi-primary (as in
Chapter 11). Using a primary copy approach, conflicts between concurrent update
transactions can all be detected at the primary while an update anywhere approach
requires a more complex distributed concurrency control mechanism. However, a
primary copy approach is less flexible as all update transactions have to be executed
at a specific replica.

The synchronization strategy determines when replicas coordinate in order to
achieve consistency. In eager replication, coordination for the updates of a transac-
tion takes place before the transaction commits. With lazy replication, updates are
asynchronously propagated after the transaction commits. Eager replication often
results in longer client response times since communication takes place before a
commit confirmation can be returned, but it can provide strong consistency more
easily than lazy replication (see Chapter 1 for a definition of strong consistency).

Using these two parameters, there are four categories as shown in Figure 12.1,
and each replica control algorithm belongs to one of these categories. The defini-
tions so far contain some ambiguity and we will refine them later. Each category has
its own implications in regard to performance, flexibility and the degree of consis-
tency that can be achieved. We illustrate these differences by providing an example
algorithm for each of the categories. At the same time, these algorithms provide an
intuition for the main building blocks needed for replica control, and also reflect
some other design choices that we will discuss in detail later.

In the following algorithms, a transaction Ti submits a sequence of read and write
operations. A read operation ri(x) accesses data item x, a write operation wi(x,vi)
sets data item x to value vi. At the end of execution, a transaction either submits a
commit request to successfully terminate a transaction or an abort request to undo all
the updates it has performed so far. We ignore the possibility that operations might
fail due to application semantics (e.g., updating a non-existing record). The algo-
rithms, as we describe them, do not consider failures, e.g., failure of replicas or the
network. Our discussions, however, mention, how the protocols could be extended
in this respect.

12 Database Replication: A Tutorial 223

12.2.1 Eager Primary Copy

Eager primary copy protocols are probably the simplest protocol type to understand.
We present a protocol that is a straightforward extension of non-replicated transac-
tion execution.

Example Protocol

Figure 12.2 shows an example protocol using strict 2-phase-locking (2PL) for con-
currency control at each replica. When a client submits a transaction Ti it sends all
the operations of this transaction to one replica R. Ti is then a local transaction at
R and R is responsible for returning the corresponding responses for the requests
associated with Ti. Update transactions may only be submitted to the primary. Read
operations are executed completely locally (lines 1-5). They acquire a shared lock
before accessing the local copy of the data item. For a write operation (lines 6-12),
the primary replica first acquires an exclusive lock locally and performs the update.
Then it multicasts the request to the other replicas in FIFO order. Aborts can occur
due to deadlock (lines 13-16). If an update transaction aborts the primary informs
the secondary replicas if they had already received some write requests for this trans-
action. Similar actions are needed if the client decides to abort the transaction (line
17). When the client submits the commit request after completion of the transaction
(lines 18-24), an update transaction needs to run a 2-phase-commit protocol (2PC)
to guarantee the atomicity of the transaction (we discuss this later in detail). The
primary becomes the coordinator of the 2PC. The 2PC guarantees that all decide
on the same commit/abort outcome of the transaction and that all secondaries have
successfully executed the transaction before it commits at the primary. Read-only
transactions can simply be committed locally. After successful commit (lines 22-
24), the transaction releases its lock and the local replica returns the confirmation
to the client. When a secondary replica receives a write request for a transaction
from the primary (lines 25-26), it acquires an exclusive lock (in the order in which
messages are received), and executes the operation. Although an update transaction
might be involved in a deadlock at the secondary, it is not aborted at the secondary.
If it is a deadlock among update transactions only, the primary will detect such a
deadlock and act appropriately. If the deadlock involves local read-only transac-
tions, those read-only transactions need to be aborted. When a secondary receives
an abort request for an update transaction it has to abort it locally.

Example Execution

Figure 12.3 shows a simple example execution under this protocol. In this and all
following examples, time passes from top to bottom. Furthermore, T1 acquiring a
shared lock on data item x is denoted as S1(x), and T1 acquiring an exclusive lock
on x is denoted as X1(x). T1 = r1(x),w1(x,v1) is an update transaction local at pri-
mary R1. T2 = r2(y),r2(x) is a read-only transaction local at secondary R2. Read
operations are executed locally. The write operation of T1 is multicast to all replicas
and executed everywhere. When T1 wants to commit it requires a 2-phase-commit

224 B. Kemme et al.

Upon: ri(x) for local transaction Ti

1: acquire shared lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: return x

Upon: wi(x,vi) for local transaction Ti {only at
primary replica}

6: acquire exclusive lock on x
7: if deadlock then
8: call abortHandling(Ti)
9: else

10: x := vi

11: multicast wi(x,vi) to secondaries in FIFO
order

12: return ok

Upon: abortHandling(Ti)
13: if Ti update transaction and at least one

wi(x,vi) was multicast then
14: multicast abort(Ti) to all replicas
15: abort Ti, release locks of Ti

16: return aborted
Upon: abort request for local transaction Ti

17: call abortHandling(Ti)
Upon: commit request for local transaction Ti

18: if Ti update transaction then
19: run 2PC among all replicas to commit Ti

20: else
21: commit Ti

Upon: successful commit of transaction Ti

22: release locks of Ti

23: if Ti local transaction then
24: return committed

Upon: receiving w j(x,v j) of remote
transaction Tj from primary replica

25: acquire exclusive lock on x
26: x := v j

Upon: receiving abort(Tj) for remote
transaction Tj from primary replica

27: abort Tj, release locks of Tj

Fig. 12.2 Eager Primary Copy Algorithm.

S1(x)
r1(x)

S2(y)
r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,v1)

w1(x,v1)

S2(x)

r2(x)

commit

w1(x,v1)

X1(x)
w1(x.v1)

commit

2PC for T1
committed

Replica R1
(Primary)

Replica R2
(Secondary)

r2(x) x

committed

Fig. 12.3 Eager Primary Copy Example.

12 Database Replication: A Tutorial 225

protocol. When T2 requests the shared lock on x it has to wait because T1 holds
the lock. Only after T1 commits can T2 get the lock and complete. If there were a
deadlock between T1 and T2, the secondary would abort read-only transaction T2.

Discussion

Advantages In most primary copy approaches concurrency control is nearly the
same as in a non-replicated system. For our protocol, the only difference is that
secondaries have request locks for update operations in the order they receive them
from the primary. And in case of deadlock they have to abort local read-only trans-
actions. Since secondaries execute conflicting updates in the same order as they are
executed at the primary and strict 2PL is used, execution is globally serializable.
This means that the concurrent execution of transactions over the physical copies is
equivalent to a serial execution of the transactions over a single logical copy of the
database.

As execution is eager and a 2PC is run, all copies are virtually consistent (have
the same value at commit time of transactions). This means that read operations at
the secondaries never read stale data. This also provides strong guarantees in case
of failures. If the primary fails, active transactions are aborted. For all committed
transactions it is guaranteed that the secondaries have the updates. Therefore, if
one of the secondaries takes over and becomes the new primary, no updates are
lost. However, if the primary has failed during a 2PC some transactions might be
blocked. This could be resolved by the system administrator. Clients connected to
the primary can reconnect to the new primary. Some systems provide automatic
reconnection.

Disadvantages Requiring all update transactions to execute at the primary leads
to a loss of replication transparency and flexibility. Clients need to know that only
the primary replica can execute update transactions. Some primary copy systems
automatically redirect update transactions to the primary. However, in this case, the
system needs to know at the start of a transaction whether it is an update transaction
or not even if the first operation submitted is a read operation, as is the case in the
example of Figure 12.3.

The price to pay for an eager protocol that uses 2PC are long execution times for
update transactions as they only commit at the primary once they have completely
executed at all secondaries. We discuss in Section 12.2.5 some eager protocols that
do not have this behavior.

12.2.2 Eager Update Anywhere

Eager update anywhere replica control algorithms were the first replica control al-
gorithms to be proposed in the literature. The early algorithms extended traditional
concurrency control mechanisms to provide globally serializable execution with a
large emphasis on correctly handling failures and recoveries.

226 B. Kemme et al.

Example Protocol

Figure 12.4 shows the changes to the eager primary copy algorithm of Figure 12.2
to allow for update anywhere. Both read-only and update transactions can now be
local at any replica which coordinates their execution. Read operations are executed
as before at the local replica. A write operation has to execute at all replicas (lines 1-
11). The local replica multicasts the request to the other replicas and then acquires an
exclusive lock locally and performs the update. Then, it waits for acknowledgements
from all other replicas before returning the ok to the client. The acknowledgements
are needed as conflicting requests might now occur in different order at the different
replicas and it is not guaranteed that the remote replicas can execute the request
in the same order. In fact, distributed deadlocks can occur, as we discuss below.
Aborts for local transactions are handled as in the primary copy protocol. Commits
are handled as before with the only difference that the 2PC can now be initiated by
any replica that wants to commit a local update transaction. When a replica receives
a write request from a transaction that is local at another replica (lines 12-17), it
acquires an exclusive lock, executes the operations and sends an acknowledgement
back to the local replica. When a deadlock is detected, it might involve remote
transactions. The system can choose to abort a remote transaction; if that is the
case, the replica where the transaction is local is informed accordingly. Similarly,
any replica has to abort a remote transaction when it is informed by the transaction’s
local replica (line 18).

Example Execution

Figure 12.5 shows an example execution under this protocol indicating the spe-
cial case of a distributed deadlock. This time, T1 = r1(x),w1(x,v1) is local at R1.
T2 = r2(y),w2(x,v2) also updates x and is local at R2. As the lock requests in this
execution were processed in different orders at the two replicas, there is a deadlock.
This cannot be detected with information from a single site, but the system must
have a distributed deadlock mechanism or timeout. In this execution, T2 is chosen
to abort.

Discussion

Advantages Being an update anywhere approach it is more flexible than the pri-
mary copy approach and provides transparency as it allows update transactions to
be submitted to any replica. As it is again eager, using a 2PC, all data copies are vir-
tually consistent. Failures are tolerated without loss of correctness. Given that the
protocol extends strict 2PL, it provides global serializability.

Disadvantages Although the concurrency control mechanism appears very simi-
lar to the one of the eager primary copy approach, the complexity is higher as dis-
tributed deadlocks may occur. As distributed algorithms to detect distributed dead-
locks are expensive, many systems use timeouts, but these are hard to set sensibly. If

12 Database Replication: A Tutorial 227

Upon: wi(x,vi) for local transaction Ti

1: multicast wi(x,vi) to all other replicas
2: acquire exclusive lock on x
3: if deadlock then
4: call abortHandling(Ti)
5: else
6: x = vi

7: wait for all to return answer
8: if all return ok then
9: return ok

10: else
11: call abortHandling(Ti)

Upon: receiving w j(x,v j) of
remote transaction Tj from replica R′

12: acquire exclusive lock on x
13: if deadlock then
14: send abort(Tj) to R′
15: else
16: x := v j

17: send ok back to R′

Upon: commit request for local transaction Ti

18: if Ti update transaction then
19: run 2PC among all replicas to commit Ti

20: else
21: commit Ti

Upon: successful commit of transaction Ti

22: release locks of Ti

23: if Ti local transaction then
24: return committed

Upon: receiving abort(Tj) for
remote transaction Tj from replica R′

25: abort Tj, release locks of Tj

Fig. 12.4 Eager Update Anywhere Algorithm.

S1(x)
r1(x) S2(y)

r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,v1)

w1(x,v1)

X2(x)
w2(x,v2)

w2(x,v2)

deadlock aborted T2

w1(x,x1)

w2(x,x2)

ok

ok

X1(x)

X2(x)

w1(x,v1)
abort T2

commit

2PC for T1
committed

Replica R1 Replica R2

Fig. 12.5 Eager Update Anywhere Exam-
ple.

too short, many transactions are aborted unnecessarily. If set too long, a few dead-
locks can block large parts of the database leading quickly to deterioration. This
was one of the reasons, why Gray et. al [20] indicated that traditional replication
solutions do not scale.

Comparing the two protocols presented so far, the update anywhere protocol is likely
to have longer response times than the primary copy protocol as each write opera-
tion has to be executed at all replicas before the next operation can start. However,
this is a consequence of the protocol detail, rather than being intrinsic to the up-
date anywhere and primary copy styles. The primary copy protocol could also wait
for each write to be executed at the secondaries before proceeding, or the update
anywhere protocol could simply multicast the writes as the primary copy protocol
without waiting. Conflicts would then be resolved at commit time. One could even

228 B. Kemme et al.

change the protocols and send all changes in a single message only at the end of
transaction. We will discuss the issue of message overhead and number of messages
per transaction in Section 12.4.1. At this point, we only want to point out that we
have consciously chosen to present different flavors of protocols to already give an
indication that there are many design alternatives.

12.2.3 Lazy Primary Copy

Compared to eager approaches, lazy approaches do not have any communication
among replicas during transaction execution. A transaction can completely execute
and commit at one replica and updates are only propagated to the other replicas
after commit. Combining lazy with primary copy leads to a quite simple replication
approach.

Example Protocol

Figure 12.6 presents a simple lock-based lazy primary copy protocol. Read-only
transactions are executed as in the eager approach (lines 1-5). Update transactions
may only be submitted to the primary which executes both read and write operations
locally (lines 1-5 and 6-11). Therefore, when the transaction aborts during execution
or when the client requests it (line 14), the abort remains local (lines 12-13). When
the client submits a commit (lines 15-18), the transaction commits first locally and
only after commit are all write operations multicast within a single message, often
referred to as write set. These writesets are multicast in FIFO order. The multicast
can be directly after the commit or some time after, e.g., in certain time-intervals.
The secondaries, upon receiving such a writeset (lines 19-23) acquire locks in re-
ceiving order to make sure that they serialize conflicting transactions in the same
way as the primary.

Example Execution

Figure 12.7 shows an example where T1 = r1(x),w1(x,v1),w1(y,w1) executes at the
primary updating x and y. Only after commit the updates are sent to the secondary.
At the secondary, the locks for the updates are requested. As there is a deadlock
with a local transaction T2 = r2(y),r2(x), the local transaction has to abort in order
to apply the updates of T1.

Discussion

Advantages Being a primary copy approach, concurrency control remains simple
while serializability is provided. It is similar to the eager primary copy approach
as secondaries apply updates in receiving order. In contrast to eager approaches the
response times of update transactions are not delayed by communication and coor-
dination overhead among the replicas which can potentially lead to shorter response
times.

12 Database Replication: A Tutorial 229

Upon: ri(x) for local transaction Ti

1: acquire read lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: return x

Upon: wi(x,vi) for local transaction Ti {only at
primary replica}

6: acquire exclusive lock on x
7: if deadlock then
8: call abortHandling(Ti)
9: else

10: x := vi

11: return ok

Upon: abortHandling(Ti)
12: abort Ti, release locks of Ti

13: return aborted

Upon: abort request for local transaction Ti

14: call abortHandling(Ti)

Upon: commit request for local transaction Ti

15: commit Ti, release locks
16: return committed
17: if Ti update transaction then
18: send all wi of Ti in single write set

sometime after commit
in FIFO order

Upon: receiving write set message of
remote transaction Tj from primary replica
in FIFO order

19: for all w j(x,v j) in write set do
20: acquire exclusive lock on x
21: for all w j(x,v j) in write set do
22: x := v j

23: commit Tj , release locks

Fig. 12.6 Lazy Primary Copy Algorithm.

S1(x)
r1(x)

S2(y)
r2(y)

r1(x)

r2(y)

y

x

X1(x)
w1(x,v1)

w1(x,v1)

ok

commit

committed

X1(y)
w1(y,w1)

w1(y,w1)

ok

w1(x,v1), w1(y,w1)

X1(x)
w1(x,v1)

X1(y)

S2(x)

r2(x)

aborted T2

w1(y,w1)

Replica R1
(Primary)

Replica R2
(Secondary)

Fig. 12.7 Lazy Primary Copy Example.

Disadvantages While a lazy primary copy approach easily provides serializability
or other strong isolation levels, lazy replication provides an inherent weaker consis-
tency than eager replication. Lazy replication does not provide the virtual consis-
tency shown in eager approaches. At the time a transaction commits at the primary,
the data at the secondary becomes stale. Thus, read operations that access the secon-
daries before the writeset is processed read outdated data. Note that serializability is
still provided, with read-only transactions that read stale data being serialized before
the update transactions although those happened earlier in time.

More severe, if the site executing and committing an update transaction fails
before propagating the writeset, the other replicas are not aware of the transaction.
If another site takes over as primary, this transaction is lost. When the failed replica

230 B. Kemme et al.

recovers it might try to reintegrate the changes into the existing system, but the
database might have changed considerably since then. We can consider this a loss
of the durability guarantee. We will discuss this later in more detail.

Although there is no communication among replicas during transaction execution,
transactions are not necessarily faster than in an eager approach. If the clients and
replicas are geographically distributed in a WAN, then clients that are not close to
the primary copy experience long response times as they have to interact with a
remote primary copy. That is, there can still be considerable communication delay
between client and primary copy. To address this issue, many commercial systems
partition the database, with each partition having the primary copy on a different
replica. In geographically distributed applications, a database can often be parti-
tioned by regions. Clients that are local to one region typically access mostly the
partition of the database that is relevant for this region. Thus, the replica of a region
becomes the primary for the corresponding partition. Therefore, for most clients the
primary of the data they access will be close and client/replica interaction will be
fast. A challenge with this approach is to find appropriate partitions. Also, the pro-
grammer has to be aware to write code so that each transaction only accesses data
for a single partition.

12.2.4 Lazy Update Anywhere

Allowing update transactions to execute at any replica and at the same time propa-
gate changes only after commit combines flexibility with fast execution. No remote
communication, neither between replicas nor between client and replica, is neces-
sary.

Example Protocol

Figure 12.8 shows the differences to the lazy primary copy approach. Write opera-
tions can now be processed at all replicas and each replica is responsible to multicast
the writesets of its local transactions to the other replicas (lines 1-6). When a replica
receives such a remote writeset, it applies the changes (lines 7-14). However, as lazy
update anywhere allows conflicting transactions to execute and commit concurrently
at different replica without detecting conflicts during the life-time of transactions,
conflict resolution might be needed. The system has to detect for a write operation
on a data item x whether there was a concurrent conflicting operation on the same
data item. If such a conflict is detected, conflict resolution has to ensure that the
different replicas agree on the same final value for their data copies of x. There are
many ways to resolve the conflict; a common choice is the Thomas Write Rule,
which discards any update with earlier timestamp than a previously applied update.

Example Execution

Figure 12.9 shows an example execution under this protocol indicating the special
case of a conflict. Both T1 = r1(x),w1(x,v1), local at R1 and T2 = r2(y),w2(x,v2),

12 Database Replication: A Tutorial 231

Upon: wi(x,vi) for local transaction Ti

1: acquire exclusive lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: x := vi

6: return ok

Upon: receiving write set message of
remote transaction Tj from replica R′

7: for all w j(x,v j) in write set do
8: acquire exclusive lock on x
9: for all w j(x,v j) in write set do

10: if Conflict detected then
11: resolve conflict for eventual consistency
12: else
13: x := v j

14: commit Tj , release locks

Fig. 12.8 Lazy Update Anywhere Algorithm.

S1(x)
r1(x) S2(y)

r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,x1)

w1(x1)

ok X2(x)
w2(x,x2)

w2(x2)

ok
commit

comitted commit

comittedw1(x,x1)
w2(x,x2)

conflict
detection

conflict
detection

discard w2(x,x2) X1(x)
w1(x,x1)

Replica R1 Replica R2

Fig. 12.9 Lazy Update Anywhere Example.

local at R2 update x and commit. After commit, the writesets are propagated. If both
R1 and R2 simply applied the update they receive from the other replica, R1 would
eventually have the value written by T2, and R2 would have the value written by
T1. Upon receiving the writeset of T2, R1 has to detect that T1 was concurrent to
T2, conflicts with T2, and already committed. R2 has to detect this conflict when
receiving the writeset of T1. A resolution mechanism, e.g., via timestamps, has led
both replicas to decide that T1’s update wins out, and so R1 discards the write of x
from T2, while R2 overwrites x using T1’s update. In this way, it is guaranteed that
the data copies converge towards a common value.

Discussion

Advantages Lazy update anywhere provides flexibility and fast execution for all
transactions. These are two very strong properties. In some situations the approach
is possible and necessary, e.g., if WANs have frequent connection loss, forbidding
updates would lead to large revenue loss, and either conflicts are rare or easy to
resolve.

Disadvantages One has to be aware that the fundamental properties of transac-
tions are violated. Durability is not guaranteed as a transaction might commit from
the user perspective but the updates are finally lost during conflict resolution. Atom-
icity might be lost, if conflict resolution is done on an per-object basis. If a transac-
tion Ti updates data items x and y, and a conflict with Tj exists only on x, then it could
be possible that Ti’s update on x is not considered while its update on y succeeds.

232 B. Kemme et al.

The traditional concept of serializability or other isolation levels is also not longer
guaranteed. Finally, conflict resolution is potentially very complex; depending on
the semantics of data objects and the application architecture, different resolution
mechanisms might be needed for different parts of the database. Therefore, such an
approach is appropriate in very controlled environments with exact knowledge of
the application. It is likely not suitable for a general replication solution.

12.2.5 Eager vs. Lazy

Since Gray et. al. [20] categorized protocols into eager and lazy many new replica
protocols have been developed, and it is not always clear whether they are eager
or lazy. In eager algorithms using a 2PC, the transaction at the local replica only
commits once the transaction has been executed at all replicas. With this, all data
copies are virtually consistent. This results in the disadvantage that the response
time perceived by a client is determined by the slowest machine in the system.

Many recent protocols that also define themselves as eager do not run a 2PC.
Instead, they allow a transaction to be committed at the local replica once the lo-
cal replica knows that all remote replicas will “eventually” commit it (unless the
remote replica fails). This typically requires that all replicas have received the write
operations or the writeset, and that it is guaranteed that each replica will decide on
the same global serialization order. It is not necessary that remote replicas have ac-
tually already executed the write operations at the time the local replica commits.
This means, some “agreement” protocol is executed among the replicas but it does
not necessarily include processing the transaction or writing logs to disk. We use
this weaker form of “eagerness” in order to accommodate many of the more recent
replication solutions.

Many of these approaches use the delivery guarantees of group communication
systems [13] to simplify the agreement protocol. Group communication systems
provide multicast primitives with ordering guarantees (e.g., FIFO order or total or-
der of all messages) and delivery guarantees (see Chapter 3). In particular, a multi-
cast with uniform reliable delivery guarantees that whenever a message is delivered
to any replica, it is guaranteed that it will be delivered to all replicas that are avail-
able. Now assume that transactions multicast their writesets using uniform reliable
delivery. In case a replica receives a writeset of a local transaction and commits the
transaction, uniform reliable delivery guarantees the writeset will be received by all
other replicas, even if the local replica crashes immediately after the commit. There-
fore, assuming an appropriate concurrency control method, the transaction will also
commit at all other replicas. This provides the “eager” character of these protocols
offering atomicity and durability without the need of a 2PC. Uniform reliable deliv-
ery itself performs some coordination among the group members before delivering
a message to guarantee atomicity in the message delivery, though this is not visible
to the replication algorithm. There are some subtle differences in the properties pro-
vided by uniform reliable delivery multicast compared to 2PC as the first assumes a
crash-stop failure model where nodes never recover, while 2PC has a crash-recovery
model that assumes sites to rejoin.

12 Database Replication: A Tutorial 233

In contrast, we use the term lazy for protocols where write operations are not sent
at all before commit time, or where the sending multicast occurs earlier but is not
reliable. Thus, if a local replica fails after committing a transaction but before prop-
agating its write operations successfully, then the remote replicas have no means to
commit the transaction. If the others don’t want to block until the local replica has
recovered and sent the write operations, the transaction can be considered lost.

12.3 Correctness Criteria

So far, we have only informally reasoned about the differences in correctness that
the protocols provide. In fact, the research literature does not have a single, generally
agreed on understanding of what “correctness” and data consistency mean. Terms
such as strong consistency, weak consistency, 1-copy-equivalence, serializability,
and snapshot isolation are used but definitions vary and it is not always clear which
failure assumptions are needed for a protocol to provide its properties (see Chapter
1 for consistency models for replicated data). In this section, we discuss different
aspects of correctness, and how they relate to one another.

In our discussion above, the eager protocols provided a stronger level of consis-
tency than the lazy ones. This is, however, only true in regard to atomicity. But there
does not simply exist a stack of consistency levels, from a very low level to a very
high level. Instead, correctness is composed of different orthogonal issues, and a
replica control protocol might provide a high level of consistency in one dimension
and a low level for another dimension. In regard to lazy vs. eager, all lazy protocols
are weaker than eager protocols in regard to atomicity. But given two particular pro-
tocols, one lazy and one eager, the lazy protocol could provide stronger consistency
than the eager protocol in regard to a different correctness dimension.

In the following, we look at several correctness dimensions individually, extract
what are the possible levels of consistency for this dimension and discuss to what
degree replication protocols can fulfill the criteria depending on their category.

12.3.1 Atomicity and Consistency

Atomicity in a replicated environment means that if an update transaction commits
at one replica it has to commit at all other replicas and its updates are executed at all
replicas. If a transaction aborts, none of the replicas may have the updates reflected
in its database copy. Considering a failure-free environment only, this means that the
replica and concurrency control system has to ensure that each replica takes the same
decision on commit/abort for each transaction. For instance, in the primary copy
protocols described in the previous section, this was achieved via a FIFO multicast
of write operations or writesets and strict 2PL.

Considering a system that is able to tolerate failures, atomicity means that if a
transaction commits at a replica that fails after the commit, the remaining available
replicas also need to commit the transaction in order for the transaction to not be
“lost”. Note that available replicas can continue committing transactions while some
replicas are down and thus, don’t commit these transactions. Recovery has to ensure

234 B. Kemme et al.

that a restarted replica receives the missing updates. In summary, available replicas
commit the same set of transactions and failed replicas have committed a subset of
these transactions.

Atomicity in the presence of failures can only be achieved by eager protocols as
all replicas are guaranteed to receive the writeset information and all other informa-
tion needed to decide on the fate of a transaction before the local replica commits
the transaction. Thus, the available replicas will eventually commit the transaction.
In a lazy protocol, available replicas might not know about the existence of a trans-
action that executed at a replica that fails shortly afterwards. In a lazy primary copy
protocol, atomicity can be guaranteed if no new primary is chosen when the cur-
rent primary fails. Then, upon recovery of the primary, the missing writesets can
eventually be propagated. However, this would severely reduce the availability of
the system. If a failover takes place to a new primary, or in a lazy update anywhere
approach, one can still attempt to send the writesets after recovery. However, the
transaction might conflict with other transactions that committed in the meantime,
and therefore, no smooth integration of the “lost” transaction into the transaction
history is possible.

In summary, while eager protocols can provide atomicity, lazy approaches can
be considered non-atomic.

In the research literature, one often finds the term strong consistency associated
with eager protocols and weak consistency associated with lazy protocols. The use
of these terms usually remains vague. One way to define strong consistency is by
what we have called virtual consistency, requiring all data copies to have the same
value at transaction commit time. Only eager protocols with a 2PC or similar agree-
ment provide virtual consistency; the weaker forms of eagerness described in Sec-
tion 12.2.5 allow a transaction to commit before all replicas have executed the write
operations. Nevertheless, protocols based on this weaker eager definition are usually
also associated with providing strong consistency. Strong consistency is different
than atomicity as it refers to the values of data items and not the outcome of trans-
actions. It typically implies that all replicas apply conflicting updates in the same
order. In theory, one might have a replica control protocol that provides atomicity
(guaranteeing that all replicas commit the same set of transactions) but the execu-
tion order of conflicting transactions is different at the different replicas. However,
we are not aware of such a protocol.

Weak consistency generally means that data copies can be stale or even tem-
porarily inconsistent. Staleness arises in lazy primary copy approaches. As long as
the primary has not propagated the writeset to the secondaries, the data copies at the
secondaries are outdated. If the secondaries apply updates in the same serialization
order as they primary, the data copies at secondaries do not contain any incorrect
data but simply data from the past. A system can be designed to limit the staleness
experienced by a read operation on a secondary site. For instance, for numeric val-
ues the difference between the value read and the value at the primary might be kept
below a threshold like 100. Other systems use different forms of limiting the diver-
gence, for example, the secondary copy might be required to have missed no more
than a fixed number of writes which were already applied at the primary, or the limit

12 Database Replication: A Tutorial 235

might be on the time between when a write is done at the primary and when it gets
to the secondary. These staleness levels, also referred to as freshness levels allow
one to bound the discrepancy between replicas visible to the outside world. These
intermediate consistency levels can be achieved by refreshing secondary copies at
appropriate time points.

Lazy update anywhere protocols allow the copies to be inconsistent. As our ex-
ample in Figure 12.9 has shown, each replica might have changes of a local com-
mitted transaction while missing conflicting changes from a concurrent transaction
committed at a different replica. In such a scenario, the most important property to
provide is eventual consistency [42]. It indicates that, assuming the system reaches a
quiescent state without any further write operations, all copies of a data item eventu-
ally converge to the same value. Note that eventual consistency is normally defined
outside the scope of transactions. As such, it is possible that if two conflicting trans-
actions Ti and Tj update both x and y, all copies of x will eventually contain Ti’s
update while all copies of y will have Tj’s update. One way to define eventual con-
sistency in the context of transactions is as follows: there must exist a subset of the
committed transactions and an order on this subset, such that data copies converge
to the same values as if the write operations of these transactions had been executed
in the given serial order.

12.3.2 Isolation

Isolation in a Non-replicated System

In non-replicated database systems, the level of isolation indicates the degree to
which concurrently executing transactions are allowed to be seen by another one.
The most well-known correctness criteria is serializability: the interleaved execu-
tion of transactions is equivalent to a serial execution of these transactions. Typi-
cally, two executions are considered equivalent if the order of any two conflicting
operations is the same in both executions. Two operations conflict if they access
the same data item and at least one is an update operation. The most well-known
concurrency control mechanisms providing serializability are strict 2-phase-locking
and optimistic concurrency control. Weaker levels of isolation are often defined by
specifying a set of anomalies that are allowed to occur during the execution. For
instance, snapshot isolation allows an anomaly that may not occur in a serializable
execution1. Snapshot isolation can be implemented very efficiently and provides
much better concurrency in applications with a large read proportion. Transactions
read from a snapshot of the database that represents the committed version of the
database as of start of transaction. Conflicts only exist between write operations. If
two concurrent transactions want to update the same data item only one of them may

1 Note that strictly speaking snapshot isolation and serializability are incomparable since snapshot
isolation disallows some executions allowed by serializability (concurrent blind writes, e.g. con-
sider two transactions, r1(x); r2(y);w1(y);w2(x);c1;c2, being the subscripts the transaction identi-
fier) and vice versa (write skew: r1(x); r2(x);w1(y);w2(y);c1;c2).

236 B. Kemme et al.

succeed, the other has to abort. Snapshot isolation typically uses multiple versions
to provide snapshots.

Global Isolation Levels

Ideally, a replicated system should provide exactly the same level of isolation as a
non-replicated system. For that, definitions for isolation in a replicated system have
to reduce the execution over data copies onto an execution over a single logical
copy. For instance, serializability in a replicated system is provided if the execution
is equivalent to a serial execution over a single logical copy of the database.

Apart from serializability, snapshot isolation has also been well studied in repli-
cated systems. All transactions must read from snapshots that can also exist in a
non-replicated system and writes by concurrent committed transactions must not
conflict, even if they are executed at different replicas. In a replicated environment,
snapshot isolation is very attractive due to its handling of read operations.

Atomicity vs. Isolation

In principle, isolation is orthogonal to atomicity. Both eager and lazy protocols can
provide serializability or snapshot isolation across the entire system. However, this
only holds if there are no failures. If there are failures, then the problem of lost
transactions occurs in lazy protocols, as we have discussed before. It is not clear
how these lost transactions and transactions that have read values written by these
lost transactions, can be placed in the execution history to show that it is equivalent
to a serial history or fulfills the snapshot isolation properties.

1-Copy-Equivalence

1-copy-equivalence requires the many physical copies to appear as one logical copy.
It was introduced with failures in mind, that is, the equivalence must exist even
when copies are temporarily not available; in this view, lazy protocols do not pro-
vide 1-copy-equivalence. 1-copy-equivalence can then be combined with an isola-
tion level to consider isolation in a failure-prone environment. For example, 1-copy-
serializability requires the execution over a set of physical copies, some of them
possibly unavailable, to be equivalent to a serial execution over a single logical
copy.

Linearizability and Sequential Consistency

Linearizability and sequential consistency are two correctness criteria defined for
the concurrent execution on replicated objects. They include the notion of the exe-
cution over the replicated data to be equivalent to an execution on a single image of
the object. However, none of the two has the concept of transactions which requires
to take operations on different objects into account (although sequential consistency
takes the order within a client program into account). Different to serializability and
snapshot isolation, linearizability requires an order that is consistent with real time.

12 Database Replication: A Tutorial 237

12.3.3 Session Consistency

Session consistency is yet another dimension of correctness that is orthogonal to
atomicity, data consistency or isolation. It defines correctness from the perspective
of a user. Users typically interact with the system in form of sessions. For instance, a
database application opens a connection to the database and then submits a sequence
of transactions. These transactions build a logical order from the user’s perspective.
Therefore, if a client first submits transaction Ti and then Tj, and Ti has written
some data item x that Tj reads, then Tj should observe Ti’s write (unless another
transaction has overwritten x since Ti’s commit). This means, informally, session
consistency guarantees that a client observes its own writes.

Definitions like serializability and 1-copy-serializability do not include session
consistency, since they require the execution to be equivalent to a serial order, but
that may not match the order of submission within a session. In the usual non-
replicated platforms, built with locking or SI, session consistency is observed. Thus
a truly transparent replicated system should provide session consistency, too.

In a replicated system, without special mechanisms, replica control may not en-
sure session consistency For instance, in a lazy primary copy approach, the client
could submit an update transaction to the primary, and then submit a read-only trans-
action to a secondary before the writeset of its update transaction has been propa-
gated to the secondary. In this case, it does not observe its own writes. In order
to provide session consistency, such a protocol needs to be extended. For instance,
transactions can receive global transaction identifiers which are monotonically in-
creasing within a session. The driver software at the client then keeps track of the
transaction identifiers. Whenever it submits a new transaction to a replica it pig-
gybacks the identifier of the last transaction that was committed on behalf of this
client. Then, the replica to which the new transaction was submitted will make sure
that the new transaction will see any state changed performed by this last or older
transactions.

Other protocols provide session consistency automatically, e.g., an eager proto-
col with 2PL and 2PC. Assume again a primary copy approach and a client submits
first update transaction Ti to the primary and then read-only transaction Tj to a sec-
ondary. Although Ti might not yet be committed at the secondary when the first
operation of Tj is submitted, Ti is guaranteed to be in the prepared state or a later
state holding all necessary locks. Thus, Tj will be blocked until Ti commits and
will see its writes. Eager protocols that only guarantee “eventual commit” typically
need a special extension, e.g., a special driver as described above, to provide session
consistency.

12.4 Other Parameters

We have already seen that eager protocols do not necessarily always provide higher
guarantees than lazy protocols. In the same way, lazy protocols do not always per-
form better than eager protocols. In fact, performance depends on many issues.
Some fundamental techniques can be applied to most replica control algorithms

238 B. Kemme et al.

to speed-up processing. In this section, we discuss some of them. We also discuss
some other fundamental design choices for a replicated database architecture that
have a great influence on the performance, feasibility, and flexibility of the replica-
tion solution.

12.4.1 Message Management

The number of message rounds within a transaction are an important parameter for a
replica control protocol. Looking at our examples of Section 12.2, the eager update
anywhere protocol has a message round per write operation of a transaction (write-
set and acknowledgement) plus the 2PC. With this, the number of messages within
a transaction is linear with the number of write operations of the transaction. In con-
trast, the presented lazy protocols send one message per transaction, independently
of the number of operations.

The number of messages per transaction depends on protocol details rather than
simply on the category. For example, eager protocols can have a constant number of
messages and lazy protocols can send a message per write operation. As an example,
let’s have a look at two further eager update anywhere protocols. The first alternative
(Alternative 1) to the protocol presented in Figure 12.4 (Original protocol) executes
first all operations only on the local database copy. Only when the client submits
the commit request, the local replica sends the writeset with all write operations
to all other replicas. The other replicas acquire the locks, execute the operations
and return when they have completed. Finally the 2PC is performed. This model
has one message round for the writeset and acknowledgements plus the overhead
for the 2PC. The second alternative (Alternative 2) also executes the transaction
first locally and sends the writeset at commit time. The remote replicas acquire the
locks and send the acknowledgement once they have all locks. The local replica
commits the transaction once it has received all acknowledgements. No 2PC takes
place. The remote replicas execute the write operations in the writeset and commit
the transaction in the meantime. That is, transaction execution contains only a single
message round.

It is often assumed that transaction response time increases with the number of
message rounds which occur during the transaction. In WANs, where messages take
a long time, this means it is usually unacceptable to include more than one message
round. In LANs, however, message latency might not play such a big role, and
message throughput is often high. In such an environment, response time may be
influenced more by other aspects rather than rounds of message exchange.

We illustrate this along the eager update anywhere protocol of Figure 12.4 and
the two alternatives presented above. Figure 12.10 shows an example execution of
a transaction T1 = w1(x,v1),w1(y,w1) updating x and y under these three variant
protocols. In this diagram, we show time by the vertical distance, and we pay spe-
cial attention to the possible concurrency between activities. The original protocol
of Figure 12.4 multicasts each write operation and then executes it locally. That is,
in the ideal case, the write operations on the different physical copies occur con-
currently, and the local replica receives all acknowledgements shortly after it has

12 Database Replication: A Tutorial 239

X1(x)
w1(x,v1)

w1(x,v1)
w1(x,v1)

ok
ok

X1(x)
w1(x,v1)

commit

2PC for T1
committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)
w1(y,w1)

ok
ok

X1(y)
w1(y,w1)

X1(x)
w1(x,v1)

w1(x,v1)

w1(x,v1), w1(y,w1)

ok

ok

X1(x)
w1(x,v1)

X1(y)
w1(y,w1)

commit

2PC for T1
committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)

ok

X1(x)
w1(x,v1)

w1(x,v1)

w1(x.v1), w1(y,w1)

ok

ok

X1(x)
X1(y)

commit

committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)

ok

w1(x,v1)
w1(y,w1)

Original protocol Alternative 1 Alternative 2

Fig. 12.10 Example execution with three different eager update anywhere protocols.

completed the operation itself. As such, execution is concurrent (this execution is
also called conservative in Chapter 13). What is added is the latency of n messages
rounds if there are n write operations and the latency of the 2PC. In the first al-
ternative described above, the local replica first executes locally, then sends one
message, then the remote replicas execute the write operations and then the 2PC
occurs. Thus, while the number of message rounds is lower, the pure execution time
is actually longer than in the original protocol as execution at the local replica and
remote replicas is not performed in parallel. Finally, the last algorithm has the local
execution, then one writeset message, then the time to acquire the locks successfully
and finally the acknowledgement phase within the response time of the transaction.
This approach has the lowest number of messages rounds and the actual execution
time at the remote replicas is not included in the response time. These two alterna-
tives are executed optimistically at the local replica (called optimistic execution in
Chapter 13).

12.4.2 Executing Writes

Write operations have to be executed at all replicas. This can be done in two ways.
In statement replication, also called symmetric replication, each replica executes the
complete write operation, e.g., the SQL statement (update, delete, insert). In con-
trast, in object replication, also called asymmetric replication, only the local replica
executes the operation and keeps track of the tuples changed by the operation. Then,
the changed tuples are sent to the remote replicas which only apply the changes.

Applying the changes has usually much less overhead than executing the state-
ment itself. For instance, experiments with PostgreSQL have shown that even for

240 B. Kemme et al.

simple statements (update on primary key), applying the change takes only 30% of
the resources compared to executing the entire statement. The reasons are the cost
in parsing the SQL statement, building the execution tree, etc. However, if a state-
ment changes many data records, then sending and processing them might be costly
because of message size. In this case, statement replication is likely to be preferable.

A challenge of statement replication is determinism. One has to make sure that
executing the statement has the same results at all replicas. If statements include
setting the current time, generating a random number, etc. determinism is no more
given.

An extreme case of statement replication would actually not only execute the
write operations of an update transaction at all replicas, but the entire update trans-
action. This might be appropriate in WANs in order to keep the message overhead
low.

12.4.3 Concurrency Control Mechanisms

Our example protocols so far all used standard strict 2PL as concurrency control
mechanism. Clearly, replica control can be combined with various concurrency con-
trol mechanisms, not only 2PL. In this section, we look at optimistic and multi-
version concurrency control.

Concurrency Control in a Non-replicated System With optimistic concurrency
control, a transaction’s writes are done in a private workspace, and then, at the end
of the transaction, a validation phase checks for conflicts, and if none are found,
then the private workspace is written into the shared database. One mechanism is
backward validation, where the validation of transaction T checks whether there
was any concurrent transaction that already performed validation and wrote a data
item that was read by T . If this is the case, T has to abort.

Multi-version concurrency control is used in connection with snapshot isolation.
Each write operation generates a new version of a data item. We say a data version
commits when the transaction that created the version commits. Versions can be
used to provide read operations with a snapshot. The read operation of a transaction
Ti reads the version of a data item that was the last to commit before Ti started.
With this, a transaction reads from a snapshot as of transaction start time. Snapshot
isolation has to abort one of two concurrent transactions that want to update the
same data item. Commercial systems set write locks to detect conflicts when they
occur and abort immediately. However, conflicts can also be detected at commit
time similar to the mechanisms for optimistic concurrency control.

Concurrency Control in a Replicated System The challenge of distributed con-
currency control is to ensure that all replicas decide on the same serialization order.
Primary copy approaches can simply rely on the (non-replicated) concurrency con-
trol mechanism at the primary and then forward write operations or writesets in
FIFO order. The concurrency control tasks at secondaries are then quite straightfor-
ward. The extensions for an update anywhere approach are often more complicated.

12 Database Replication: A Tutorial 241

In the particular case of strict 2PL, no extensions to the protocol itself are needed.
However, distributed deadlock can occur. For optimistic and snapshot isolation con-
currency control the question arises how to perform validation. Validation of all
transactions could be performed at one central site. Alternatively, each replica could
perform validation. However, in the latter case, the validation process needs to be
deterministic to make sure that all replicas validate transactions in the same order
and decide on the same outcome. For that purpose, many replication approaches use
a total order multicast to send the relevant validation information to all replicas. To-
tal order multicast is provided by group communication systems [13]. It guarantees
that all members of a group receive all messages sent to the group in the same total
order.

Optimistic Concurrency Control Figure 12.11 sketches a replica control proto-
col based on optimistic concurrency control and a central scheduler that performs
validation for all transactions. A transaction is submitted to any replica and exe-
cuted locally according to standard optimistic techniques. A read operation (lines
1-2) accesses the last committed version of the data item. Data items are tagged
with the transaction that was the last to write them. A transaction keeps track of
all data versions read in the read set RS. A write (lines 3-5) creates a local copy
which is added to the transaction’s writeset WS. An abort (lines 6-7) simply means
to discard both read and writeset. Upon a commit request, the read and writesets
are sent to the scheduler (line 8) which performs validation (lines 9-12). It checks
whether the readset of the currently validated transaction overlaps with the writesets
of any concurrent transaction that validated before. If yes, it tells the local replica to
abort the transaction. Otherwise it forwards the writeset to all replicas using a FIFO
multicast. The replicas apply them (lines 13-20). A write w(x) of this transaction
becomes now the last committed version of x (line 17). Validation and applying the
writeset is performed in the same serial order. The protocol description hides sev-
eral technical challenges when such an approach should really be implemented in
a database system. Firstly, one has to determine whether two transactions are con-
current. For that some timestamp mechanism must to be used, which can compare
transactions that are local at different replicas.

Snapshot Isolation Figure 12.12 sketches a replica control protocol based on
snapshot isolation and using total order multicast. A transaction executes locally
(lines 1-4) reading the last committed snapshot as of start time and creating new
versions upon write operations. Abort simply means to discard the writes (lines 5-
6). At the end of transaction only the writeset is multicast in total order (line 7).
Validation now checks whether this writeset overlaps with the writesets of any con-
current transaction that validated before (line 8). No information about reads needs
to be sent, since in SI conflict, leading to abort (lines 9-11), is only considered be-
tween write operations. If validation succeeds, remote transactions have to create
the new versions (lines 13-16). Transactions are committed serially to guarantee
that all replicas go through the same sequence of snapshots. The advantage over the
optimistic concurrency control protocol is that read operations remain completely

242 B. Kemme et al.

Upon: ri(x) for local transaction Ti {let Tj be
the last to update x and commit}

1: add x j to read set RSi

2: return x j

Upon: wi(x,vi) for local transaction Ti

3: create local copy xi of x and add to write set
W Si

4: xi := vi

5: return ok

Upon: abort request for local transaction Ti

6: discard RSi and W Si

7: return abort

Upon: commit request for local transaction Ti

8: send (RSi,W Si) to central scheduler

Upon: receiving (RSi,WSi) from replica R
{validation at central scheduler}

9: if ∃Tj , Tj||Ti∧W S j ∩RSi then
10: send abort(Ti) back to R
11: else
12: multicast W Si to all replicas in FIFO or-

der

Upon: receiving W Si for any transaction Ti

from central scheduler in FIFO order
13: for all wi(x,vi) in W S j do
14: if Ti remote transaction then
15: create local copy xi of x
16: xi := vi

17: write xi to database
18: commit Ti

19: if Ti local transaction then
20: return ok

Upon: receiving abort(Ti) for local transaction
from central scheduler

21: discard RSi and W Si

22: return abort

Fig. 12.11 Update Anywhere Protocol based
on Optimistic Concurrency Control and Central
Scheduler.

Upon: ri(x) for local transaction Ti

1: return committed version x j of x as of start
time of Ti

Upon: wi(x,vi) for local transaction Ti

2: create version xi of x and add to write set
WSi

3: xi := vi

4: return ok

Upon: abort request for local transaction Ti

5: discard W Si

6: return abort

Upon: commit request for local transaction Ti

7: multicast W Si to all replicas in total order

Upon: receiving W Si for any transaction Ti in
total order

8: if ∃Tj , Tj||Ti∧WS j ∩W Si then
9: discard W Si

10: if Ti local transaction then
11: return abort
12: else
13: if Ti remote transaction then
14: for all wi(x,vi) in W Si do
15: create version xi of x
16: xi := vi

17: commit Ti

18: if Ti local transaction then
19: return ok

Fig. 12.12 Update Anywhere Protocol based on
Snapshot Isolation and Total Order Multicast.

local. The local replica makes sure that all reads are from a committed snapshot. For
validation they don’t play any role.

Fault-Tolerance Both the optimistic and the pessimistic protocol above use mul-
ticast primitives. If the multicast primitive provides uniform reliable delivery, then
we can consider these protocols as eager: a transaction only commits locally when
it is guaranteed that the writeset will be delivered at all replicas and when the global
serialization order of the transaction is determined. Therefore, when a transaction

12 Database Replication: A Tutorial 243

R R R

C C C C C

replica control

Fig. 12.13 Kernel-based Architecture.

R R R

C C C C C

Replication Middleware

Fig. 12.14 Central Middleware.

R R R

C C C C C

Replication
Middleware

Replication
Backup

Fig. 12.15 Central Middleware with Backup.

Middleware
Replica

C C C C C

R R R

Middleware
Replica

Middleware
Replica

Fig. 12.16 Middleware Replica for each
Database Replica.

commits locally it will commit in the same order at all other available replicas. If
the above protocols use a multicast without uniform reliable delivery, they have the
characteristics of a lazy protocol: a transaction might be committed at a replica that
fails and the other replicas do not receive the writeset.

12.4.4 Architectural Alternatives

There exist two major architectural design alternatives to implement a replication
tool. Our description of protocols so far followed a kernel-based or white box ap-
proach, where the replica control module is part of the database kernel and tightly
coupled with the existing concurrency control module. A client connects to any
database replica which then coordinates with the other replicas. The database sys-
tem is replication-aware. Figure 12.13 depicts this architecture type.

Alternatively, replica control can be implemented outside the database as a mid-
dleware layer. Clients connect to the middleware that appears as a database system.
The middleware then controls the execution and directs the read and write opera-
tions to the individual database replicas. Some solutions work with a purely black-
box approach where the underlying database systems that store the database repli-
cas do not have any extra functionality. Others use a gray-box approach where the
database system is expected to export some minimal functionality that can be used
by the middleware for a more efficient implementation of replica control. For in-
stance, the database system could collect the writeset of a transaction in form of the
set of records the transaction changed and provide it to the middleware on request. A

244 B. Kemme et al.

S1(x)
r1(x)

S2(x)
r2(x)

r1(x)

r2(x)

x

x

X1(x)
w1(x,v1)

w1(x.v1)

ok

commit T1

committed

w1(x,v1)

commit T1

extract WS1

X1(x)

Middleware Primary Secondary

(x,v1)

w1(x,v1)

r1(x)

r2(x)

commit T2

commit T2

committed
w1(x,v1)

ok

commit T1

committed

Fig. 12.17 Execution of a lazy primary-copy protocol with a central middleware.

middleware-based approach has typically its own concurrency control mechanism
which might partially depend on the concurrency control of the underlying database
systems. There might be a single middleware component (centralized approach)
as in Figure 12.14, or the middleware might be replicated itself. For example, the
middleware could have a backup replica for fault-tolerance (Figure 12.15). Other
approaches have one middleware instance per database replica, and both together
build a replication unit (Figure 12.16). A transaction can then connect to any mid-
dleware replica.

Figure 12.17 depicts an example execution of a lazy, primary copy protocol based
on a central middleware. There is an update transaction T1 and a read-only transac-
tion T2. All requests are sent to the middleware. T1 (solid lines) is executed and
committed at the primary. T2 (dashed lines) is executed at any replica (in the ex-
ample the secondary). After T1 commits, the middleware extracts the writeset, and
executes the write operations at the secondaries. The proper order of execution of
these write operations and the local concurrency control mechanisms at the database
replicas (here strict 2PL) guarantees the same serialization order at all replicas.

Discussion Kernel-based approaches have the advantage that they have full ac-
cess to the internals of the database. Thus, replica control can be tightly coupled
with concurrency control and it is easy to provide concurrency control at the record

12 Database Replication: A Tutorial 245

level across the entire replicated system. Writeset extraction and application can be
made highly efficient. In contrast, middleware-based protocols often have to par-
tially re-implement concurrency control. Before execution of a particular statement,
they often only have partial information of which records are exactly accessed (as
SQL statements can contain predicates). This results often in a coarser concurrency
level (e.g, table-based). If the database system does not export writeset functionality,
writesets need to be extracted via triggers or similar procedures, which often is much
less efficient than a kernel-based extraction. Fault-tolerance of the middleware is a
further major issue. Depending on how much state the middleware manages, it can
be complicated. Finally, the middleware represents a level of indirection, increasing
the total number of messages.

However, middleware-based systems have many advantages. They can be used
with 3rd-party database systems that do not provide replication functionality and
whose source-code is not available. Furthermore, they can potentially be used in
heterogeneous environments with different database systems. They also present a
nicer separation of concerns. In a kernel-based approach, any changes to the con-
currency control implementation might directly affect the replica control module.
For middleware-based approaches this is likely only the case with major changes in
the functionality of the underlying system.

12.4.5 Cluster vs. WAN Replication

We have already mentioned in the introduction that replication is done for different
purposes, and in different settings. When replication is used for scalability, then
the replicas are typically located in a single cluster. Read access to data items can
then be distributed across the existing replicas while write operations have to be
performed on all replicas. If the read ratio is high, then an increasing load can be
handled by adding more replicas to the system. In a LAN, message latency is low
and bandwidth high. Thus, the number of messages does not play a major role.
Hence, a transaction can likely have several message rounds and a middleware can
be interposed without affecting performance too much. Furthermore, there is no
need for lazy update anywhere replication as the gain in efficiency is not worth the
low degree of consistency that it provides. Finally, the write overhead should be
kept as low as possible as it determines how much the system can be scaled. Thus,
asymmetric replication will be better than symmetric replication.

Often, replication serves the purpose of fast local access when the application
is geographically distributed. In this case, replicas are connected via a WAN. Thus,
message latency plays an important role. In this context, lazy update anywhere might
be preferable as it does not have any message exchange within the response time of
the transaction. The price for that, namely conflict resolution and temporary incon-
sistency, might be acceptable. It might also be possible to split the application into
partitions and put a primary copy of each partition close to the clients that are most
likely to access it. This would provide short response times for most transactions
without inconsistencies. One has to make sure that clients don’t have to send sev-
eral rounds of messages to a remote replica or a remote middleware. They always

246 B. Kemme et al.

should be able to interact with their local site or send transaction requests in a single
message to remote sites. The influence of symmetric vs. asymmetric replication will
likely play a minor role in a WAN setting. The larger message sizes of asymmetric
replication might be of disadvantage.

Replication for fault-tolerance can deploy replicas both in a LAN and a WAN. In
LANs, typically eager protocols are used to keep replicas consistent. When a replica
fails, another replica can take over the tasks assigned to the failed replicas in a trans-
parent manner. Replicas can also be distributed across a WAN, typically with lazy
propagation. When a catastrophic failure occurs that shuts down an entire location,
a replica in a different location can take over. As catastrophic failures seldom occur,
weaker consistency is acceptable for the advantage of having better performance
during normal processing.

12.4.6 Degree of Replication

So far, we have assumed that all replicas have a full copy of the database, referred
to as full replication. In partial replication, each data item of the database has a
physical copy only on a subset of sites. The replication degree of a data item is the
number of physical copies it has (see Chapter 5 for partial replication).

Partial replication serves different purposes. We mentioned above that for cluster
replication, the ratio of write operation presents a scalability limit. Ideally, if a single
system can handle C transactions per time unit, than a n-node system should be
able to handle nC transactions. However, write operations have to be executed at
all replicas. Thus, if write operations constitute a fixed fraction of the submitted
workload, increasing the workload means increasing the absolute number of write
operations each replica has to perform. This decreases the capacity that is available
to execute local read operations. At some level of load, adding new sites will not
increase the capacity available for further operations, and thus, throughput cannot
be increased beyond this point. In the extreme case with 100% write operations and
symmetric replication a replicated system does not provide any scalability as it can
handle C transactions just as the non-replicated system.

When using partial replication in a cluster environment, read operations are exe-
cuted at a single replica, as in full replication. Write operations now only need to be
executed at replicas that have a copy of the data item accessed. For instance, if each
data item has only two copies, then only two write operations need to be performed.
Assuming again 100% write operations and symmetric replication, n replicas can
handle nC/2 transactions (assuming data copies are distributed and accessed uni-
formly). With less write operations, it scales appropriately better. The important
point is that when the replication degree is fixed to a constant (e.g., 2 or 4), then the
system can scale without facing a limit from contention for writing. In contrast, if
the replication degree increases with the number of sites in the system (e.g., n, n/2),
then there is a scalability limit.

In a WAN environment, having a data item replicated at a specific geographic
location decreases communication costs for read operations but increases commu-

12 Database Replication: A Tutorial 247

nication and processing costs for update transactions. In this context, the challenge
is to place data copies in such a way to find a trade-off between the different factors.

Partial replication has several challenges. Finding an appropriate replication de-
gree and the optimal location for the replicas is difficult. Concurrency control has to
be adjusted. When a client accesses a data item, a replica needs to be located. This
is not necessarily the local replica. Also, partial replication might lead to distributed
queries if no site has data copies of all data items accessed by the query.

12.4.7 Recovery

Recovering failed replicas and letting new replicas join the system is an important
task. A joining replica has to get the up-to-date state of the database. This can be
done by transferring a copy of the entire database to the joining replica. For a replica
that had failed and now rejoins, it is also possible to only receive fresh copies of the
data items that were actually changed during the downtime. Alternatively, it could
receive and apply the writesets of the transactions it has missed during its downtime.
This state transfer can take place offline or online. With offline transfer, transac-
tion processing is interrupted until the transfer is completed. Using online recovery,
transaction execution continues during state transfer. In this case, one has to make
sure that the recovering replica does not miss any transactions. For a given trans-
action, either its changes are contained in the state transfer, or the joining replica
receives its updates after the transfer is complete.

12.5 Existing Systems

12.5.1 Early Work

Database replication had its first boom in the early 80s. The book “Concurrency
Control and Recovery in Database Systems” [7] provides a formalism to reason
about correctness in replicated database systems. The term 1-copy-serializability
was created and is still used today. Early work on replication took as baseline con-
currency control mechanisms of non-replicated systems, extended them and com-
bined them with replica control [7, 9]. Failure handling – both site and network
failures – were a major research issue [6, 1]. Basically all these approaches used
eager replication and provided strong correctness properties in terms of atomicity
and isolation. In 1996, Gray et al. [20] indicated that these traditional approaches
provide poor performance and do not scale as they commit transactions only if they
have executed all their operations on all (available) physical data copies. Also, exe-
cution is often serially, leading to extremely long response times.

12.5.2 Commercial Systems

Since then, many new replication solutions have been developed. Commercial sys-
tems often provide a choice of replication solutions. High-availability solutions of-
ten implement a simplified version of primary-copy. In these approaches, all trans-

248 B. Kemme et al.

actions (update and read-only) are submitted to the primary. The secondary only
serves as a backup. Writeset propagation to the backups can be eager or lazy. In case
the primary fails, clients are automatically redirected to the backup which becomes
the new primary. Typically, any active transaction is aborted. Otherwise, clients can
continue their requests as if no failure had occurred.

Lazy replication solutions, which allow looser consistency when reading at a
replica, are often provided for WAN replication. Sophisticated reconciliation tech-
niques are offered for update anywhere, based on timestamps, site priority, values
or arithmetic functions. Both distributed and centralized reconciliation mechanisms
exist. Eager update anywhere protocols are rarely found in commercial systems.

12.5.3 Lazy Replication Made Serializable

Some research efforts analyzed the correctness of lazy primary copy protocols
where different data items have their primary copies on different sites [14]. In such
a scenario, global serializability can be violated even if each site implements strict
2PL. In order to avoid incorrect executions some solutions restrict the placement
of primary and secondary copies to avoid irregularities [8, 34]. The main idea is
to define the set of allowed configurations using graphs where nodes are the sites
and there are edges between sites if one site has a primary copy and the other a
secondary copy of a given data item. Serializability can be provided if the graph
has certain properties (e.g., it is acyclic). Others require to propagate updates along
certain paths in the graph.

12.5.4 Cluster Replication

Group Communication Work in this direction started with approaches that ex-
plore the use of group communication and was based on kernel-replication (such
as Postgres-R [25, 47] or the state machine approach [37]). Different tasks, such as
transaction execution and data storage, can further be distributed [16]. Many other
followed, e.g., [2, 22, 23, 26, 47, 27]. They provide different concurrency control
mechanisms, differ in the interface they provide to the clients of the database sys-
tem (JDBC interface vs. procedural interface), the way they interact with the group
communication system, etc. They also consider recovery and failover mechanisms.

Middleware-Based Systems A lot of work has designed replication protocols
that are especially targeted for middleware-based replication. There exist several
approaches based on group communication [35, 10, 29, 36]. They often assume one
middleware replica for each database replica and middleware replicas communicate
with each other via multicast. They are typically all eager protocols.

Other solutions have a single middleware, possibly with a backup [3, 39]. Both
eager and lazy approaches have been proposed. There is also considerable work
that focuses less on the replica control itself but on issues such as load distribu-
tion and query routing [41, 32, 18, 4, 17, 48]. In lazy approaches one has a wide
range of options when to actually propagate updates to other replicas, e.g., only

12 Database Replication: A Tutorial 249

when the freshness level goes below a threshold acceptable for queries. Load can
be distributed according to many different strategies. Dynamically deciding on the
number of replicas needed to handle a certain load has also been considered [19].

In [11], the authors provide an interesting discussion of the gap between the
replica control protocols proposed by the research community, and the technical
challenges to make them work in an industrial setting.

12.5.5 Other Issues

Approaches such as [40, 46, 28, 30, 44] take the specifics of WAN replication into
account. They attempt to keep the number of message rounds low or accept weaker
levels of consistency. Many approaches touch on partial replication, such as [17, 46,
45, 43, 44]. The particular issue of session consistency is discussed in [15].

12.5.6 Related Areas of Research

Many other techniques widely used in database systems can actually be considered
some form of replication although they are not identified as such by research. In
regard to scalability, materialized views are internal replicas of data that have been
reorganized and processed in such a way so as to speed up certain queries that no
longer need to be processed but can be answered directly from the materialized view.
Materialized views can be seen as a special form of lazy primary copy replication
(in some cases even update anywhere replication), where a materialized view is not
a copy of a specific data item but an aggregation over many data items (i.e, table
records) of the database. Thus, this makes change propagation considerably more
complex [21] .

Parallel databases use both partitioning and redundant data allocation across
disks and memory. Replica control algorithms look somewhat different as there is
not an independent database engine at each node but the system is treated as a sin-
gle logical unit (regardless of whether the hardware is intrinsically parallel such as
a multi core processor or it is an actual cluster of machines).

In regard to fault-tolerance, the log of a database is a form of replication [33]. All
changes to the database are replicated onto stable storage in form of redo and undo
logs. When a server fails, a new server instance is started, reading the log in order to
recreate the state of the database. Fault tolerance is also achieved through redundant
hardware and RAID disks [12] which provide replication at a lower level.

Database caching has been explored extensively for performance improvements
[31, 5, 38]. The database cache usually resides outside the database system and
caches the most frequently used data items. It is used for fast query execution while
updates typically go directly to the database backend. Consistency mechanisms are
in place but often involve discarding outdated copies.

250 B. Kemme et al.

12.6 Conclusions

This chapter provides a systematic overview of replica control mechanisms as they
occur in replicated databases. We started with a two-parameter characterization pro-
viding example protocols based on 2-phase-locking for each of the categories that
help to understand the trade-offs between the different categories. Furthermore, we
provided an overview of correctness criteria that are important in the context of
database replication. Finally, we discuss several other parameters of the replica con-
trol design space such as the number of message rounds, writeset processing, con-
currency control mechanism, the replication architecture and the degree of replica-
tion assumed. We provide a comparative analysis how these parameters influence
the performance, design and applicability of a given replica control protocol for
certain application and execution environments.

Acknowledgements This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Spanish National Science Foundation (MICINN) un-
der grant TIN2007-67353-C02, the Madrid Regional Research Council (CAM) under the AU-
TONOMIC project (S-0505/TIC/000285), and the European Commission under the NEXOF-RA
project (FP7-216446).

References

1. Abbadi, A.E., Toueg, S.: Availability in partitioned replicated databases. In: ACM Int. Symp.
on Principles of Database Systems (PODS), pp. 240–251 (1986)

2. Amir, Y., Tutu, C.: From Total Order to Database Replication. In: IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS), pp. 494–506 (2002)

3. Amza, C., Cox, A.L., Zwaenepoel, W.: Distributed Versioning: Consistent Replication for
Scaling Back-End DBs of Dynamic Content Web Sites. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, pp. 282–302. Springer, Heidelberg (2003)

4. Amza, C., Cox, A.L., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: IEEE Int. Conf. on Data Engineering (ICDE), pp.
230–241 (2005)

5. Bernstein, P.A., Fekete, A., Guo, H., Ramakrishnan, R., Tamma, P.: Relaxed-currency serial-
izability for middle-tier caching and replication. In: ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 599–610 (2006)

6. Bernstein, P.A., Goodman, N.: An algorithm for concurrency control and recovery in repli-
cated distributed databases. ACM Transactions on Database Systems (TODS) 9(4), 596–615
(1984)

7. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading (1987)

8. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Silberschatz, A.: Update propagation
protocols for replicated databases. In: ACM SIGMOD Int. Conf. on Management of Data,
pp. 97–108 (1999)

9. Carey, M.J., Livny, M.: Conflict detection tradeoffs for replicated data. ACM Transactions
on Database Systems (TODS) 16(4), 703–746 (1991)

10. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-jdbc: Flexible database clustering middle-
ware. In: USENIX Annual Technical Conference, FREENIX Track, pp. 9–18 (2004)

11. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the gaps be-
tween theory and practice. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 739–
752 (2008)

12 Database Replication: A Tutorial 251

12. Chen, P.M., Lee, E.L., Gibson, G.A., Katz, R.H., Patterson, D.A.: Raid: High-performance,
reliable secondary storage. ACM Comput. Surv. 26(2), 145–185 (1994)

13. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehen-
sive study. ACM Computer Surveys 33(4), 427–469 (2001)

14. Chundi, P., Rosenkrantz, D.J., Ravi, S.S.: Deferred updates and data placement in distributed
databases. In: IEEE Int. Conf. on Data Engineering (ICDE), pp. 469–476 (1996)

15. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In: Int. Conf. on
Very Large Data Bases (VLDB), pp. 715–726 (2006)

16. Elnikety, S., Dropsho, S.G., Pedone, F.: Tashkent: uniting durability with transaction ordering
for high-performance scalable database replication. In: EuroSys Conference, pp. 117–130
(2006)

17. Elnikety, S., Dropsho, S.G., Zwaenepoel, W.: Tashkent+: memory-aware load balancing and
update filtering in replicated databases. In: EuroSys Conference, pp. 399–412 (2007)

18. Gançarski, S., Naacke, H., Pacitti, E., Valduriez, P.: The leganet system: Freshness-aware
transaction routing in a database cluster. Information Systems 32(2), 320–343 (2007)

19. Ghanbari, S., Soundararajan, G., Chen, J., Amza, C.: Adaptive learning of metric correlations
for temperature-aware database provisioning. In: Int. Conf. on Autonomic Computing, ICAC
(2007)

20. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a solution. In:
ACM SIGMOD Int. Conf. on Management of Data, pp. 173–182 (1996)

21. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques, and ap-
plications. IEEE Data Engineering Bulletin 18(2), 3–18 (1995)

22. Holliday, J., Agrawal, D., Abbadi, A.E.: The performance of database replication with group
multicast. In: IEEE Int. Conf. on Fault-Tolerant Computing Systems (FTCS), pp. 158–165
(1999)

23. Jiménez-Peris, R., Patiño-Martı́nez, M., Kemme, B., Alonso, G.: Improving the scalability
of fault-tolerant database clusters. In: IEEE Int. Conf. on Distributed Computing Systems
(ICDCS), pp. 447–484 (2002)

24. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G., Kemme, B.: Are quorums an alternative
for data replication? ACM Transactions on Database Systems (TODS) 28(3), 257–294 (2003)

25. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 134–143 (2000)

26. Kemme, B., Alonso, G.: A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems (TODS) 25(3), 333–379
(2000)

27. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic atomic
broadcast in transaction processing systems. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 15(4), 1018–1032 (2003)

28. Leff, A., Rayfield, J.T.: Alternative edge-server architectures for enterprise javaBeans appli-
cations. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 195–211. Springer,
Heidelberg (2004)

29. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Middleware based data repli-
cation providing snapshot isolation. In: ACM SIGMOD Int. Conf. on Management of Data,
pp. 419–430 (2005)

30. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Enhancing edge computing
with database replication. In: Int. Symp. on Reliable Distributed Systems (SRDS), pp. 45–54
(2007)

31. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton, J.F.:
Middle-tier database caching for e-business. In: ACM SIGMOD Int. Conf. on Management
of Data, pp. 600–611 (2002)

32. Milan-Franco, J.M., Jiménez-Peris, R., Patiño-Martı́nez, M., Kemme, B.: Adaptive middle-
ware for data replication. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp.
175–194. Springer, Heidelberg (2004)

252 B. Kemme et al.

33. Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: Aries: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Transactions on Database Systems (TODS) 17(1), 94–162 (1992)

34. Pacitti, E., Minet, P., Simon, E.: Fast Algorithm for Maintaining Replica Consistency in Lazy
Master Replicated Databases. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 126–137
(1999)

35. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: MIDDLE-R: Consistent
database replication at the middleware level. ACM Transactions on Computer Systems
(TOCS) 23(4), 375–423 (2005)

36. Pedone, F., Frølund, S.: Pronto: A fast failover protocol for off-the-shelfcommercial
databases. In: Symposium on Reliable Distributed Systems (SRDS), pp. 176–185 (2000)

37. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach. Distributed
and Parallel Databases 14(1), 71–98 (2003)

38. Perez-Sorrosal, F., Patiño-Martinez, M., Jimenez-Peris, R., Kemme, B.: Consistent and scal-
able cache replication for multi-tier J2EE applications. In: Cerqueira, R., Campbell, R.H.
(eds.) Middleware 2007. LNCS, vol. 4834, pp. 328–347. Springer, Heidelberg (2007)

39. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 155–174. Springer, Hei-
delberg (2004)

40. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: Strong Replication in the
GlobData Middleware. In: Proceedings Workshop on Dependable Middleware-Based Sys-
tems (part of DSN02), pp. 503–510. IEEE Computer Society Press, Los Alamitos (2002)

41. Röhm, U., Böhm, K., Schek, H.J., Schuldt, H.: FAS - a freshness-sensitive coordination
middleware for a cluster of OLAP components. In: Int. Conf. on Very Large Data Bases
(VLDB), pp. 754–765 (2002)

42. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81 (2005)
43. Schiper, N., Schmidt, R., Pedone, F.: Optimistic algorithms for partial database replication.

In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 81–93. Springer, Hei-
delberg (2006)

44. Serrano, D., Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B.: An autonomic approach
for replication of internet-based services. In: Int. Symp. on Reliable Distributed Systems
(SRDS), pp. 127–136 (2008)

45. Serrano, D., Patiño-Martı́nez, M., Jiménez, R., Kemme, B.: Boosting database replication
scalability through partial replication and 1-copy-SI. In: IEEE Pacific-Rim Conf. on Dis-
tributed Computing (PRDC), pp. 290–297 (2007)

46. Sivasubramanian, S., Alonso, G., Pierre, G., van Steen, M.: Globedb: autonomic data repli-
cation for web applications. In: Int. World Wide Web Conf (WWW), pp. 33–42 (2005)

47. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control
based on snapshot isolation. In: IEEE Int. Conf. on Data Engineering (ICDE), pp. 422–433
(2005)

48. Zuikeviciute, V., Pedone, F.: Conflict-aware load-balancing techniques for database replica-
tion. In: ACM Symp. on Applied Computing (SAC), pp. 2169–2173 (2008)

Chapter 13
Practical Database Replication

Alfrânio Correia Jr., José Pereira, Luı́s Rodrigues, Nuno Carvalho, and Rui Oliveira

Abstract This chapter illustrates how the concepts and algorithms described ear-
lier in this book can be used to build practical database replication systems. This
is achieved first by addressing architectural challenges on how required functional-
ity is provided by generally available software componentes and then how different
components can be efficiently integrated. A second set of practical challenges arises
from experience on how performance assumptions map to actual environments and
real workloads. The result is a generic architecture for replicated database manage-
ment systems, focusing on the interfaces between key components, and then on how
different algorithmic and practical optimization options map to real world gains.
This shows how consistent database replication is achievable in the current state of
the art.

13.1 Introduction

This chapter illustrates how the concepts and algorithms described earlier in this
book can be used to build practical database replication systems. Hereafter a practi-
cal database replication system is a system that has the following qualities:

• It can be configured to tune the performance of multiple database engines and
execution environments (including different hardware configurations of the node
replicas and different network configurations).

• It is modular: the system provides well defined interfaces among the replication
protocols, the database engines, and the underlying communication and coordi-
nation protocols. Thus, it can be configured to use the best technologies that fit a
given target application scenario.

• Its modularity is not an impairment to performance. In particular it provides the
hooks required to benefit from optimizations that are specific to concrete database
or network configurations.

• It combines multiple replica consistency protocols in order to optimize its perfor-
mance under different workloads, hardware configurations, and load conditions.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 253–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 A. Correia Jr.

To achieve these goals we have defined an architecture based on three main blocks:

• replication-friendly database,
• group communication support, and
• pluggable replica consistency protocols.

First of all, to achieve modularity without losing performance, the system needs to
have replication support from the database engine. As we will see later in this chap-
ter, the client interfaces provided by a Database Management System (DBMS) do
not provide enough information for replication protocols. The replication protocols
need to know more about the intermediate steps of a transaction in order to achieve
good performance. Secondly, we will focus on group communication-based replica-
tion protocols. A Group Communication Service (GCS) eases the implementation
of replication protocols by providing abstractions for message reliability, ordering
and failure detection. In this chapter, we will discuss some details that need to be
addressed when applying GCS to practical database replication systems. Finally,
we will describe the replication protocols, how they interact with the other build-
ing blocks and show how they can be instantiated using different technologies. The
achievements described here are the result of our experience in architecting, build-
ing and evaluating multiple instantiations of our generic architecture [9, 13].

The rest of the chapter is structured as follows. An architecture for practical
database replication is presented in Section 13.2. Then, we devote a separate sec-
tion to each main component of the architecture. In detail: Section 13.3 describes
how to offer replication-friendly database support; Section 13.4 presents the neces-
sary communication and coordination support to the pluggable replication protocols,
which are described in Section 13.5. Section 13.6 presents an evaluation of several
consistent database replication protocols on top of the described architecture. Sec-
tion 13.7 concludes the chapter.

13.2 An Architecture for Practical Database
Replication

In the following paragraphs we will briefly describe a generic architecture for prac-
tical database replication. The architecture, illustrated in Figure 13.1, is composed
of the following building blocks:

• The Application, which might be the end-user or a tier in a multi-tiered applica-
tion.

• The Driver provides a standard interface for the application. The Driver provides
remote accesses to the (replicated) database using a communication mechanism
that is hidden from the application, and can be proprietary.

• The Load Balancer dispatches client requests to database replicas using a suit-
able load-balancer algorithm.

• The DBMS, or Database Management System, which holds the database content
and handles remote requests to query and modify data expressed in standard
SQL.

13 Practical Database Replication 255

Application

Driver

Driver

DBMS

DBMS

Reflector

Reflector

(Distributed)
Replicator

Group
Communication

Load B
alancer

Management

Application

Fig. 13.1 Generic architecture for replication.

• Management tools, which are able to control the Driver and DBMS components
independently from the Application using a mixture of standard and proprietary
interfaces.

• The Reflector is attached to each DBMS and allows inspection and modification
of on-going transaction processing.

• The Replicator mediates the coordination among multiple reflectors in order to
enforce the desired consistency criteria on the replicated database. This is a dis-
tributed component that communicates using the group communication compo-
nent.

• The Group Communication supports the communication and coordination of lo-
cal replicators.

An important component of the architecture is the interface among the building
blocks, which allows them to be reused in different contexts. The interfaces exposed
by the reflector and group communication service are detailed in Sections 13.3
and 13.4 respectively. To support as much as possible off-the-shelf and third party
tools, the call-level and SQL interfaces, and the remote database access protocol
adhere to existing standards. For instance, the architecture can be easily mapped to
a Java system, using JDBC as the call-level interface and driver specification, any
remote database access protocol encapsulated by the driver and a DBMS, and an
external configuration tool for the JDBC driver.

The generic architecture can be instantiated in several ways, for example, multi-
ple logical components can be provided by multiple or by a single physical compo-
nent. Figure 13.2 illustrates three relevant instantiations of the architecture.

The first instantiation, illustrated in Figure 2(a), is denoted as the in-core variant.
In this case, the reflector is provided within the same physical component as the
DBMS, where replication and communication components can be installed to con-
trol replication. Typically, such a variant is possible when the DBMS is augmented
with replication support. Examples of protocols that need this support are [24, 31].

The second instantiation, illustrated in Figure 2(b), is denoted as middleware
variant. In this scenario, clients connect to a virtual DBMS which implements the

256 A. Correia Jr.

Application

Driver

Driver

DBMS

DBMS

Reflector

Reflector

(Distributed)
Replicator

Group
Communication

Load B
alancer

Management

Application

(a) In-core architecture for replication.

Application

Driver

Driver

Virtual
DBMS

Virtual
DBMS

Reflector

Reflector

(Distributed)
Replicator

Group
Communication

Load B
alancer

Management

Application

DBMS

DBMS

(b) Middleware architecture for replication.

Application

Driver

Driver

DBMS

DBMS

Reflector

Reflector

(Distributed)
Replicator

Group
Communication

Load B
alancer

Management

Application

Reflector
Plugin

Reflector
Plugin

(c) Hybrid architecture for replication.

Fig. 13.2 Different instantiations of the generic architecture.

13 Practical Database Replication 257

reflector interface. The virtual DBMS itself is implemented using the client inter-
faces provided by the real DBMS. The work presented in [26] exploits this approach.
A commercial product that also implements this approach is Sequoia [11].

A hybrid approach can also be achieved by adding to the database the necessary
hooks to export information about ongoing transactions by means of a reflector plu-
gin. This plug-in interacts with the distributed replication protocol which runs on a
different process. This solution is depicted in Figure 2(c).

13.3 Reflector: Replication-Friendly Database Support

A key component in the architecture is the reflector. The purpose of this component
is to export a replication-friendly database interface to the replicator (described later
in Section 13.5). In this way, the database replication protocols can be implemented
independently of the specific DBMS system being used at deployment time, thus
promoting the design and implementation of database replication protocols that can
be used in a wide range of configurations.

The independence between a specific DBMS system and the replication protocols
is achieved by augmenting the standard database interfaces with additional primi-
tives that provide abstractions that reflect the usual processing stages of transactions
(e.g. transaction parsing, optimization and execution) inside the DBMS engine. Nat-
urally, the implementation details of the replicator vary depending on the specific
DBMS instance and the architecture chosen. In this section we outline the replicator
interface and the rationale for its design.

13.3.1 Reflection for Replication

A well known software engineering approach to building systems with complex re-
quirements is reflection [27, 25]. By exposing an abstract representation of the sys-
tems’ inner functionality, the later can be inspected and manipulated, thus changing
its behavior without loss of encapsulation. DBMS have long taken advantage of this,
namely, on the database schema, on triggers, and when exposing the log.

Logging, debugging and tracing facilities are some examples of important add-
ons to DBMS that are today widely available. The computation performed by such
plug-ins is known as a computational reflection, and the systems that provide them
are known as reflective systems. Specifically, a reflective system can be defined as
a system that can reason about its computation and change it. Reflective architec-
tures ease and smooth the development of systems by encapsulating functionality
that is not directly related to the application domains. This can be done to a certain
extent in an ad-hoc manner, by defining hooks in specific points of a system, or with
support from a programming language. In both cases, there is a need for providing
a reflective architecture where the interaction between a system (i.e. base-level ob-
jects) and its reflective counterpart is done by a meta-level object protocol and the
reflective computation is performed by meta-level objects. These objects exhibit a
meta-level programming interface.

258 A. Correia Jr.

Previous reflective interfaces for database management systems were mainly tar-
geted at application programmers using the relational model. Their domain is there-
fore the relational model itself. Using this model, one can intercept operations that
modify relations by inserting, updating, or deleting tuples, observe the tuples being
changed and then enforce referential integrity by vetoing the operation (all at the
meta-level) or by issuing additional relational operations (base-level).

A reflection mechanism for database replication was also recently proposed
in [42]. In contrast to the approach described in this section, it assumes that reflec-
tion is achieved by wrapping the DBMS server and intercepting requests as they are
issued by clients. By implementing reflection this way, one can only reflect com-
putation at the first stage (statements), i.e. with coarse granularity. Exposing fur-
ther details requires rewriting large portions of DBMS functionality at the wrapper
level. As an example, Sequoia [11] does additional parsing and scheduling stages at
the middleware level. In theory, this approach could be more generic and suitable
to reflect black-box DBMSs. In practice, this is not the case, since DBMS do not
offer the exact same interface. Therefore, the wrapper must be customized for each
DBMS. Moreover, this approach can introduce significant latency by requiring extra
communication steps and/or extra processing of requests.

Furthermore, some protocols are concerned with details that are not visible in the
relational model, such as modifying query text to remove non-deterministic state-
ments, for instance, those involving NOW() and RANDOM(). Also, one may be
interested in intercepting a statement as it is submitted, whose text can be inspected,
modified (meta-level) and then re-executed, locally or remotely, within some trans-
actional context (base-level).

Therefore, a target domain more expressive than the relational model is required.
We propose to expose a transaction object that reflects a series of activities (e.g.
parsing) that is taking place on behalf of a transaction. This object can be used
to inspect the transaction (e.g. wait for it to commit) or to act on it (e.g. force a
rollback). Using the transaction object the meta-level code can register to be notified
when specific events occur. For instance, when a transaction commits, a notification
is issued and contains a reference to the corresponding transaction object (meta-
object). Actually, handling notifications is the way that meta-level code dynamically
acquires references to meta-objects describing the on-going computation.

13.3.2 Processing Stages

The reflector interface abstracts transaction processing as a pipeline [17]. This is
illustrated in Figure 13.3. The replicator acts as a plug-in that registers itself to
receive notifications of each stage of the pipeline. The notifications are issued by the
reflector as meta-objects, where each meta-object represents one processing stage.
The processing stages are briefly described below. The replicator is notified of these
processing stages in the order they are listed bellow:

• The Parsing stage parses the received raw statements and produces a parse tree;
• The Optimization stage transforms the parse tree according to various optimiza-

tion criteria, heuristics and statistics to an execution plan;

13 Practical Database Replication 259

Storage

DBMS Context

Database Context

Connection Context

Transaction Context

Request Context

P
hy

si
ca

lS
to

ra
ge

S
ta

ge

Lo
gi

ca
lS

to
ra

ge
 S

ta
ge

E
xe

cu
tio

n
S

ta
ge

O
pt

im
iz

at
io

n
S

ta
ge

P
ar

si
ng

S
ta

ge
Application

Fig. 13.3 Major meta-level interfaces: processing stages and contexts.

• The Execution stage executes the plan and produces object-sets (data read and
written);

• The Logical Storage stage deals with mapping from logical objects to physical
storage;

• The Physical Storage stage deals with block input/output and synchronization.

In general, the reflector will issue notifications at the meta-level (to the registered
replicator) whenever computation proceeds from one stage to the next. For instance,
if a replication protocol needs to ensure that all the requests are deterministic, it
needs to be notified on the Parsing stage to modify the initial statement and remove
non determinism; when the computation reaches the Execution stage, it will produce
a set of read and written data that is reflected, issuing a notification. The interface
thus exposes meta-objects for each stage and for data that moves through them.

13.3.3 Processing Contexts

The meta-interface exposed by the processing pipeline is complemented by nested
context meta-objects, also shown in Figure 13.3. These context meta-objects show
on behalf of whom some operation is being performed. In detail, the DBMS and
Database context interfaces expose meta-data and allow notification of life-cycle
events. Connection contexts reflect existing client connections to databases. They
can be used to retrieve connection specific information, such as user authentication
or the character set encoding used. The Transaction context is used to notify events
related to a transaction such as its startup, commit or rollback. Synchronous event
handlers available here are key to consistent replication protocols. Finally, to ease
the manipulation of the requests within a connection to a database and the corre-
sponding transactions one may use the Request context interface.

Events fired by processing stages refer to the directly enclosing context. Each
context has then a reference to the next enclosing context and can enumerate all en-

260 A. Correia Jr.

closed contexts. This allows, for instance, to determine all connections to a database
or the current active transaction in a specific connection. Some contexts are not valid
at the lowest abstraction levels. Namely, it is not possible to determine on behalf of
which transaction a specific disk block is being flushed by the physical stage.

Furthermore, replication protocols can attach an arbitrary object to each context.
This allows context information to be extended as required by each replication pro-
tocol. As an example, when handling an event fired by the first stage of the pipeline
signaling the arrival of a statement in textual format the replication protocol gets
a reference to the enclosing transaction context. It can then attach additional infor-
mation to that context. Later, when handling an event signaling the availability of
the transaction outcome, the replication protocol follows the reference to the same
transaction context to retrieve the information previously attached.

13.3.4 Base-Level and Meta-level Calls

An advantage of reflection is that base- and meta-level code can be freely mixed, as
there is no inherent difference between base- and meta-objects. For instance, a direct
call to meta-level code can be forced by the application programmer by registering it
as a native procedure and then using the CALL SQL statement. This causes a call to
the meta-level code to be issued from the base-level code within the Execute stage.
The target procedure can then retrieve a pointer to the enclosing Request context
and thus to all relevant meta-interfaces. Meta-level code can callback into base level
in two different situations. The first is within a direct call from base-level to issue
statements in an existing enclosing request context. The second option is to use the
enclosing Database context to open a new base-level connection to the database.

A second issue when considering base-level calls is whether these also get re-
flected. The proposed interface allows to disable reflection on a case-by-case basis
by invoking an operation on context meta-objects. Therefore, meta-level code can
disable reflection for a given request, a transaction, a specific connection or even
an entire database. Actually this can be used on any context meta-object and thus
for performance optimization. For example, consider a replication protocol, which
is notified that a connection will only issue read-only operations, and thus ceases
monitoring them.

A third issue is how base-level calls issued by meta-level code interact with reg-
ular transaction processing regarding concurrency control. Namely, how conflicts
that require rollback are resolved in multi-version concurrency control where the
first committer wins or, more generally, when resolving deadlocks. The proposed
interface solves this by ensuring that transactions issued by the meta-level do not
abort in face of conflicts with regular base-level transactions. Given that replication
code running at the meta-level has a precise control on which base-level transac-
tions are scheduled, and thus can prevent conflicts among those, has been sufficient
to solve all considered use cases. The implementation of this simple solution re-
sulted in a small set of localized changes within the DBMS.

13 Practical Database Replication 261

13.3.5 Exception Handling

The DBMS handles most of the base-level exceptions by aborting the affected trans-
action and generating an error to the application. The proposed architecture does not
change this behavior. Furthermore, the meta-level is notified by an event issued by
the transaction context object; this allows meta-level to cleanup after an exception
has occurred.

Most exceptions within a transaction context that are not handled at the meta-
level can be resolved by aborting the transaction. However, some event handlers
should not raise exceptions to avoid inconsistent information on databases or recur-
sive exceptions, namely, while starting up or shutting down a database, while rolling
back or after committing a transaction. In these cases, any exception will leave the
database in a panic mode requiring manual intervention to repair the system. Fur-
thermore, interactions between the meta-level and base-level are forbidden and any
attempt of doing so, puts the database in panic mode.

Exceptions from meta-level to base-level calls need additional management. For
instance, while a transaction is committing, meta-level code might need to execute
additional statements to keep track of custom meta-information on the transaction
before proceeding, and this action might cause errors due to deadlock problems
or low amount of resources. Such cases are handled as meta-level errors to avoid
disseminating errors inside the database while executing the base-level code.

13.3.6 Existing Reflector Bindings

In this section we discuss how the reflector interface was implemented in three dif-
ferent systems, namely, Apache Derby, PostgreSQL, and Sequoia. These systems
represent different tradeoffs and implementation decisions and are thus representa-
tive of what one should expect when implementing the architecture proposed in this
chapter.

Apache Derby Binding Apache Derby [3] is a fully-featured database manage-
ment system with a small footprint developed by the Apache Foundation and dis-
tributed under an open source license. It is also distributed as IBM Cloudscape and
in Sun JDK 1.6 as JavaDB. It can either be embedded in applications or run as a stan-
dalone server. It uses locking to provide serializability. The initial implementation
of the Reflection interface takes advantage of Derby being natively implemented
in Java to load meta-level components within the same JVM and thus closely cou-
pled with the base-level components. Furthermore, Derby uses a different thread
to service each client connection, thus making it possible for notifications to the
meta-level to be done by the same thread and thus reduced to a method invocation,
which has negligible overhead. This is therefore the preferred implementation sce-
nario. The current implementation exposes all context objects and the parsing and
execution stages, as well as calling between base-level and meta-level as described
in Section 13.3.4.

262 A. Correia Jr.

PostgreSQL Binding PostgreSQL [39] is also a fully-featured database manage-
ment system distributed under an open source license. It has been ported to multiple
operating systems, and is included in most Linux distributions as well as in re-
cent versions of Solaris. Commercial support and numerous third party add-ons are
available from multiple vendors. It currently provides a multi-version concurrency
control mechanism supporting snapshot isolation. The major issue in implement-
ing the interface is the mismatch between its concurrency model and the multi-
threaded meta-level runtime. PostgreSQL uses multiple single-threaded operating
system processes for concurrency. This is masked by using the existing PL/J bind-
ing to Java, which uses a single standalone Java virtual machine and inter-process
communication. This imposes an inter-process remote procedure call overhead on
all communication between base and meta-level. Furthermore, the implementation
of the reflector interface in PostgreSQL uses a hybrid approach. Instead of directly
coding the reflector interface on the server, key functionality is added to existing
client interfaces and as loadable modules. The meta-level interface is then built on
these. The two-layer approach avoids introducing a large number of additional de-
pendencies in the PostgreSQL code, most notably in the Java virtual machine. As
an example, transaction events are obtained by implementing triggers on transac-
tion begin and end statements. A loadable module is then provided to route such
events to meta-objects in the external PL/J server. The current implementation ex-
poses all context objects and the parsing and execution objects, as well as calling
between base-level and meta-level as described in Section 13.3.4. It avoids base-
level operations blocking meta-level operations simply by modifying the choice of
the transactions to be terminated upon deadlock detection and write conflicts.

Sequoia Binding Sequoia [11] is a middleware system for database clustering
built as a server wrapper. It is primarily targeted at obtaining replication or parti-
tioning by configuring the controller with multiple backends, as well as improving
availability by using several interconnected controllers. Nevertheless, when config-
ured with a single controller and a single backend, Sequoia provides a state-of-the-
art JDBC interceptor. It works by creating a virtual database at the middleware level,
which reimplements part of the abstract transaction processing pipeline and dele-
gates the rest to the backend database. The current implementation exposes all con-
text, parsing and execution objects, as well as calling from meta-level to base-level
with a separate connection. It does not allow calling from base-level to meta-level,
as execution runs in a separate process. It can however be implemented by directly
intercepting such statements at the parsing stage. It neither avoids base-level op-
erations interfering with meta-level operations, and this cannot be implemented as
described in the previous sections as one does not modify the backend DBMS. It
is however possible to the clustering scheduler already present in Sequoia to avoid
concurrently scheduling base-level and meta-level operations to the backend, thus
precluding conflicts. This implementation is of great interest when with a closed
source DBMS that does not natively implement reflector interfaces.

13 Practical Database Replication 263

13.4 GCS: Communication and Coordination Support

All database replica consistency protocols require communication and coordination
support. Among the most relevant abstractions to support database replication we
may identify: reliable multicast (to disseminate updates among the replicas), total
order (to define a global serial order for transactions) and group membership (to
manage the set of currently active replicas in the system).

A software package that offers this sort of communication and coordination sup-
port is typically bundled in a package called a Group Communication Toolkit. After
the pioneer work initiated two decades ago with Isis [8], many other toolkits have
been developed. Appia [28], Spread [2], and JGroups [5] are, among others, some
of the group communication toolkits in use today. Therefore, group communica-
tion is a mature technology that greatly eases the development of practical database
replication systems.

At the same time, group communication is still a hot research topic, as perfor-
mance improvements and wider applicability are sought [47, 43, 33, 35, 34]. Fur-
thermore, group communication is clearly an area where there is no one solution that
fits all application scenarios. For instance, just to offer total order multicast, dozens
of different algorithms have been proposed [15], each outperforming the others for
a specific setting: there are protocols that perform better for heavily loaded replicas
in switched local area networks [18], others for burst traffic in LANs [22], others
for heterogeneous wide-area networks [40], etc. More details about the primitives
offered by a group communication toolkit can be found in Chapter 3 and Chapter 6.

Therefore, having a clear interface between the replication protocols and the GCS
has multiple practical advantages. To start with, it allows to tune the communication
support (for instance, by selecting the most appropriate total order protocol) without
affecting the replication protocol. Furthermore, given that different group commu-
nication toolkits implement different protocols, it should be possible to re-use the
same replication protocols with different group communication toolkits.

To address these problems we have defined a generic interface to group commu-
nication services that may be used to wrap multiple toolkits. The interface, called
Group Communication Service for Java, or simply jGCS, has been designed for the
Java programming language and leverages several design patterns that have recently
become common ground of Java-based middleware. The interface specifies not only
the API but also the (minimum) semantics that allow application portability. jGCS
owns a number of novel features that makes it quite distinct from previous attempts
to define standard group communication interfaces, namely:

• jGCS aggregates the service in several complementary interfaces, as depicted in
Figure 13.4, namely a set of configuration interfaces (namely, GroupConfigura-
tion, ProtocolFactory and Service), a message passing interface (Data), and a set
of membership interfaces (Control). The configuration interface specifies several
opaque configuration objects that encapsulate specifications of message delivery
guarantees. These are to be constructed in an implementation dependent man-
ner to match application requirements and then supplied using some dependency
injection technique. The message passing interface exposes a straightforward in-

264 A. Correia Jr.

Injection of Control

Communication Service

Protocol

Replicator

Network

Control
(Membership, Block,

BlockOk)

Data
(Send,Receive,Services)

Toolkit
(Appia/JGroups/Spread)

GroupConfiguration
ProtocolFactory

Service

Fig. 13.4 Components of the GCS.

terface to sending and receiving byte sequences, although concerned with high
throughput, low latency and sustainable concurrency models in large scale ap-
plications. Finally, a set of membership interfaces expose different membership
management concepts as different interfaces, that the application might support
or need.

• jGCS provides support for recent research results that improve the performance
of group communication systems, namely, semantic annotations [34, 35, 33] and
early delivery [32, 45, 43, 41].

• the interface introduces negligible overhead, even when jGCS is implemented as
wrapper layer and is not supported natively by the underlying toolkit.

13.4.1 Architectural and Algorithmic Issues

In this section we discuss the main features that must be provided by the group
communication toolkit to cope with the requirements needed by database replication
protocols. As proof-of-concept, we implemented the presented features in the Appia
group communication toolkit.

Optimistic Uniform Total Order The notion of optimistic total order was first
proposed in the context of local-area broadcast networks [32]. In many of such net-
works, the spontaneous order of message reception is the same in all processes.
Moreover, in sequencer-based total order protocols the total order is usually de-
termined by the spontaneous order of message reception in the sequencer process.
Based on these two observations a process may estimate the final total order of
messages based on its local receiving order and, therefore, provide an optimistic
delivery as soon as a message is received from the network. With this optimistic
delivery, the application can make some progress. For example, a database replica-
tion protocol can apply the changes in the local database without committing it. The

13 Practical Database Replication 265

commit procedure can only be made when the final order is known and if it matches
the optimistic order. If the probability of the optimistic order matching the final or-
der is very high, the latency window of the protocol is reduced and the system gains
in performance.

Unfortunately, spontaneous total order does not occur in wide-area networks.
The long latency in wide-area links causes different processes to receive the same
message at different points in time. Consider a simple network configuration with
three nodes a, b, and s such that network delay between nodes a and b is 2ms, and
network delays to and from node s are 12ms. Assume that process a multicasts a
message m1 and that, at the same time, the sequencer process s multicasts a message
m2. Clearly, the sequencer will receive m2 before m1, given that m1 would require
12ms to reach the sequencer. On the other hand, process b will receive m1 before m2,
as m1 will take only 2ms to reach b while m2 will require 12ms. From this example,
it should be obvious that the spontaneous total order provided by the network at b is
not a good estimate of the observed order at the sequencer.

To address the problem above, a system can be configured to use a total order
protocol such as SETO [29]. SETO is a generalization of the optimistic total order
protocol proposed in [43] and operates by introducing artificial delays in the mes-
sage reception to compensate for the differences in the network delays. It is easier to
describe the intuition of the protocol by using a concrete example. Still considering
the above simple network configuration, assume also that we are able to provide
to each process an estimate of the network topology and of the delays associated
with each link. In this case, b could infer that message m1 would take 10ms more to
reach s than to reach b. By adding a delay of 10ms to all messages received from a,
it would mimic the reception order of a’s messages at s. A similar reasoning could
be applied to messages from other processes.

When configured to use this protocol, the group communication toolkit delivers
the original message as soon as it is received (network order). Notifications about
optimistic total order and final uniform total order are later delivered, indicating that
progress can be done regarding a particular message.

Primary Partition Support Partitions in the replica group may happen due
to failures in the cluster (network, switching hardware, among others). In asyn-
chronous systems, virtual partitions (indistinguishable from physical partitions) may
happen due to unexpected delays. A partitionable group membership service allows
multiple concurrent views of the group, each corresponding to a different partition,
to co-exist and evolve in parallel [4, 16]. In the context of database replication, this
is often undesirable as it may lead to different replicas processing and committing
conflicting updates in a uncoordinated form. A partition in the group membership
can then easily lead to the split-brain phenomenon: the state in different replicas
diverges and is no longer consistent. In contrast, a primary-partition group member-
ship service maintains a single agreed view of the group at any given time, delivering
a totally ordered sequence of views (processes that become disconnected from the
primary partition block or are forced to crash and later rejoin the system).

266 A. Correia Jr.

In our implementation, primary partitions are defined by majority quorums. The
initial composition of the primary partition is defined at configuration time, using
standard management interfaces. The system remains alive as long as a majority
of the previous primary partition remains reachable [23, 6]. The dynamic update
of the primary partition is coordinated and has to be committed by a majority of
members of the previous primary. This is deterministic and ensures that only one
partition exists at a time. Using this mechanism, a replica that belongs to a primary
partition can move to a non-primary partition when a view changes. In this case,
the replication protocol only gets notified that the group has blocked and does not
receive any view while it is not reintegrated in a primary partition.

13.4.2 Existing GCS Bindings

Open source implementations of jGCS for several major group communication sys-
tems have been already developed, namely, Appia [28], Spread [2] (including the
FlushSpread variant), and JGroups [5]. All these bindings are open source and avail-
able on SourceForge.net.1 Besides making jGCS outright useful in practice, these
validate that the interface is indeed generic. These implementations are described in
the following paragraphs.

Appia Binding Appia [28] is a layered communication support framework that
was implemented in the University of Lisbon. It is implemented in Java and aims at
high flexibility to build communication channels that fit exactly in the user needs.
More details about Appia are described in Section 13.4.1.

The implementation of GCS is built directly on Appia’s protocol composition
interfaces as an additional layer. GCS configuration objects thus define the micro-
protocols that will be used in the communication channels. Each service identifies
an Appia channel and messages are sent through the channel that fits the requested
service. As Appia supports early delivery in totally ordered multicast, this is ex-
posed in the GCS binding using the ServiceListener interface. Appia implements all
extensions of the ControlSession, depending on the channel configuration.

JGroups Binding JGroups [5] is a group communication toolkit modeled on En-
semble [19] and implemented in Java. It provides a stack architecture that allows
users to put together custom stacks for different view synchronous multicast guar-
antees as well as supporting peer groups. It provides an extensive library of ordering
and reliability protocols, as well as support for encryption and multiple transport op-
tions. It is currently used by several large middleware platforms such as JBoss and
JOnAS.

The JGroups implementation of GCS also uses the configuration interface to
define the micro-protocols that will be used in the communication channel. JGroups
can provide only one service by the applications, since configurations only support

1 GCS and its bindings are available in http://jgcs.sf.net

http://jgcs.sf.net

13 Practical Database Replication 267

one JGroups channel per group communication instance. JGroups implements all
extensions of the ControlSession.

Spread Binding Spread/FlushSpread [2] is a toolkit implemented by researchers
of the Johns Hopkins University. It is based on an overlay network that provides
a messaging service resilient to faults across local- and wide-area networks. It pro-
vides services ranging from reliable message passing to fully ordered messages with
delivery guarantees. The Spread system is based on a daemon-client model where
generally long-running daemons establish the basic message dissemination network
and provide basic membership and ordering services, while user applications linked
with a small client library can reside anywhere on the network and will connect to
the closest daemon to gain access to the group communication services. Although
there are interfaces for Spread in multiple languages, these do not support the Flush-
Spread extension, which provides additional guarantees with a different interface.

The Spread and FlushSpread implementations of GCS use the configuration in-
terface to define the location of the daemon and the group name. The implemen-
tation to use (FlushSpread or just Spread) is also defined at configuration time. In
Spread, the quality of service is explicitly requested for each message, being thus
encapsulated in Service configuration objects.

13.5 Replicator: Pluggable Replication Protocols

The replicator is a distributed component responsible for coordinating the interac-
tion among all DBMS replicas in order to enforce the consistency of the replicated
database. It directly interfaces with the reflector and relies on the GCS module for
all communication and replica membership control, as shown in the Figure 13.5.

It is within the replicator that the replica consistency protocols are implemented.
The module is built around four process abstractions that are able to express most,

Replicator

Reflector

Capture
Process

jGCS

Kernel
Process

Apply
Process

Recovery
Process

Fig. 13.5 Replicator architecture.

268 A. Correia Jr.

if not all, database replication protocols. These are the Capture, Kernel, Apply and
Recovery processes and are described next.

Capture Process The capture process is the main consumer of the reflector events.
It receives events from the DBMS, converts them to appropriate events within the
replicator and notifies the other processes. In particular, it receives a transaction be-
gin request and registers the current transaction context. For instance, for update
transactions, the capture process may instruct the reflector to receive the write and
read sets of the transaction when the commit request is performed. Using this in-
formation, it may construct an internal transaction event that carries the transaction
identification along with the corresponding read and write sets. It then notifies the
kernel process which, in turn, is responsible for distributing the transaction data and
enforcing the consistency criterion.

Kernel Process This process implements the core of the replica consistency proto-
col. In general, it handles the replication of local transactions by distributing relevant
data and determining their global commit order. Additionally, it handles incoming
data from remotely executed transactions. The local outcome of every transaction is
ultimately decided by the kernel process, in order to ensure a target global consis-
tency criterion. To execute its task, the kernel process exchanges notifications with
the capture and apply processes, and interfaces directly the GCS component.

Apply Process The apply process is responsible for efficiently injecting incom-
ing transaction updates into the local database through the reflector component. To
achieve optimum performance, this implies executing multiple apply transactions
concurrently and, when possible, batching updates to reduce the number of transac-
tions. This needs however to ensure that the agreed serialization order is maintained.

Recovery Process The recovery process intervenes whenever a replica joins or
rejoins the group. It is responsible for exporting the database state when acting as a
donor or to bring the local replica up-to-date if recovering.

Both the recovery and the kernel modules cooperate closely with the GCS mod-
ule. To allow the integration of the new replica into the group, the kernel module is
required to temporarily block any outgoing messages until the complete recovery of
the new replica is notified by the recovery process.

13.6 Consistent Database Replication

In this section we consider a representative set of database replication protocols
providing strong replica consistency and elaborate on their suitability to handle de-
manding workloads (see Chapter 1 for more details about consistency models for
replication). We start by analyzing each protocol with respect to its contention path
and concurrency restrictions. Then we compare their performance using a common

13 Practical Database Replication 269

test-bed, implemented as plug-ins for the replicator component of our architecture,
using the industry standard TPC-C benchmark and workload.

Database replication protocols differ greatly in whether transactions are executed
optimistically [31, 24] or conservatively [37]. In the former, a transaction is executed
by any replica without a priori coordination with other replicas. It is just before com-
mitting that replicas coordinate and check for conflicts between concurrently exe-
cuted transactions. Transactions that would locally commit may end up aborting due
to conflicts with remote concurrent transactions. On the contrary, in the conservative
approach, all replicas first agree on the execution order for potentially conflicting
transactions ensuring that when a transaction executes there is no conflicting trans-
action being executed remotely and therefore its success depends entirely on the
local database engine. Generally, two transactions conflict if both access the same
conflict class (e.g. table) and one of them updates it.

As expected, both approaches have their virtues and problems [21]. The opti-
mistic execution presents very low contention and offers high concurrency levels.
However, it may yield concurrency-induced aborts which, occasionally, may impair
the protocol’s fairness since long-running transactions may experiment unaccept-
able abort rates. On the contrary, the conservative approach does not lead to aborts
and offers the same committing opportunities to all transaction types. The result-
ing degree of concurrency heavily depends on the granularity of the defined conflict
classes. Fine conflict classes usually require application-specific knowledge and any
labeling mistake can lead to inconsistencies.

Another crucial aspect of database replication protocols is whether replication
is active or passive. With active replication each transaction executes at all repli-
cas while with passive protocols only a designated replica actually executes the
transaction and the state updates are then propagated to the other replicas. Active
replication is required for structural or system wide requests, such as the creation of
tables and users, and desired for update intensive transactions. The passive approach
is otherwise preferable, as it confines the processing to a single replica, is insensible
to non-deterministic requests, and allows for more concurrency.

In the following sections we discuss and compare five consistent database repli-
cation protocols: a conservative and two optimistic passive replication approaches,
an active replication protocol (inherently conservative regarding transactions exe-
cution), and a hybrid solution that combines both conservative and optimistic ex-
ecution as well as active and passive replication. In all cases we consider a com-
mon practice that only update transactions are handled by the replication protocols.
Queries are simply executed locally at the database to which they are submitted and
do not require any distributed coordination. The discussion on the impact of this
configuration in the overall consistency criterion has been discussed elsewhere [30].

Our analysis is focused on dynamic aspects, namely on the queuing that hap-
pens in different parts of the system and on the amount of concurrency that can
be achieved. Then, we contrast the original assumptions underlying the design of
the protocols with our experience with the actual implementations using the TPC-C
workload [21].

270 A. Correia Jr.

Fig. 13.6 Notation.

Figure 13.6 introduces the notation used to represent the state maintained by the
protocol state-machines. Given the emphasis on dynamic aspects, we use different
symbols for states that represent queuing and for states in which at most a single
non-conflicting transaction can be at any given time. We show also which queues
are likely to grow when the system is congested. When alternative paths exist, due
to optimistic execution, we show which is the more likely to be executed. We make
a distinction between local and replicated queues and identify relevant actions: exe-
cute, apply, certify, and wait.

At the core of all these protocols is an atomic (or total ordered) multicast. For all
of them we use a consistent naming for queues according to the use of the atomic
mcast primitive. Queue Q0 is before the atomic mcast, Q1 is between the atomic
mcast and its delivery, and Q2 is after the delivery.

Some of the discussed algorithms [36, 31] have been originaly proposed using
atomic primitives with optimistic delivery. The goal is to compensate the inher-
ent ordering latency by allowing tentative processing in parallel with the ordering
protocol. If the final order of the messages matches the predicted order then the
replication protocol can proceed, otherwise the results obtained tentatively are dis-
carded. Protocols with this optimistic assumption use messages in Q1. Queue Q1
has messages with tentative order. In contrast, messages in Q2 have a final order.

13.6.1 Replication with Conservative Execution

We consider the Non-disjoint Conflict Classes and Optimistic Multicast (NODO)
protocol [36] as an example of the conservative execution. In NODO data is a pri-
ori partitioned in conflict classes, not necessarily disjoint. Each transaction has an
associated set of conflict classes (the data partitions it accesses) which are assumed
to be known in advance. In practice, this requires the entire transaction to be known
before it is executed, precluding the processing of interactive transactions.

NODO’s execution is depicted in Figures 13.7 and 13.8. The former shows ex-
changed messages and synchronization points whereas the second focuses on its

13 Practical Database Replication 271

t

T reply

r1

r2

r3

Execution

Update

Classification

atomic mcast reliable mcast

Fig. 13.7 Conservative execution: NODO.

dynamic aspects. When a transaction is submitted, its identifier (id) and conflict
classes are atomically multicast to all replicas obtaining a total order position. Each
replica has a queue associated with each conflict class and, once delivered, a transac-
tion is classified according to its conflict classes and enqueued in all corresponding
queues. As soon as a transaction reaches the head of all of its conflict class queues it
is executed. In this approach, a transaction is only executed by the replica to which
it was originally submitted.

Clearly, the definition of the conflict classes has a direct impact on performance.
The fewer the number of transactions with overlapping conflict classes, the better
the interleave among transactions. Conflict classes are usually defined at the table
level but can have a finer grain at the expense of a non-trivial validation process to
guarantee that a transaction does not access conflict classes that were not previously
specified.

When the commit request is received, the outcome of the transaction is reliably
multicast to all replicas along with the replica’s updates (write-set) and a reply is
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

The protocol ensures 1-copy serializability [7] as long as transactions are clas-
sified taking into account read/write conflicts. To achieve 1-copy snapshot isola-
tion [26] transactions must be classified taking into account just write/write con-
flicts.

A transaction is scheduled optimistically if there is no conflicting transaction
already ordered (Q2). This tentative execution may be done at the expense of an
abort if a concurrent transaction is later on ordered before it.

Figure 8(a) shows the states that a transaction goes through upon being submitted
by a client. Assuming that group communication is the bottleneck, the time spent
in the queue waiting for total order (Q1) is significant enough compared to the time
taken to actually execute such that it is worthwhile to optimistically execute trans-
actions (transition 2 instead of transition 1). This makes it possible that when a
transaction is finally ordered, it is immediately committed (transition 4). Assuming
that the tentative optimistic ordering is correct, a rollback (transition 3) is unlikely.

272 A. Correia Jr.

1 - F inal Delivery (op t imistic execution not started (unlikely) or remote)
2 - Submit transaction to op t imistic execution
3 - F inal Delivery (missed order and then rollback (unlikely))
4 - F inal Delivery (correct order)
5 - Submit transaction to execution in order
6 - Execution f inished in order

submit
commi t

Q 0

(1)

Q 1

Q 2

(3)

(2) (4)

(5)

(6)

E

E/A

(a) Assuming that atomic mcast is the bottleneck.

1 - F inal Delivery (op t imistic execution not started or remote)
2 - Submit transaction to op t imistic execution (unlikely)
3 - F inal Delivery (missed order and rollback (unlikely, but i t doesn ’ t matter))
4 - F inal Delivery (correct order)
5 - Submit transaction in order
6 - Execution f inished in order

submit
commi t

Q 0

(1)

Q 1

Q 2

(3)

(2) (4)

(5)

(6)

E

E/A
(1)

(b) Assuming that transaction execution is the bottleneck.

Fig. 13.8 States, transitions, and queues in NODO.

On the other hand, if the transaction execution is the bottleneck, then queuing will
happen in queue Q2 and not in queue Q1. Thus if Q2 is never empty, then no trans-
action in queue Q1 is eligible for optimistic execution. This scenario is depicted in
Figure 8(b): The optimistic path is seldom used and the protocol boils down to a
coarse-grained distributed locking approach, which has a very large impact on scal-
ability. Notice that if there are k (disjoint) conflict classes, there can be at most k
transactions executing in the whole system.

Experiments using the TPC-C workload show that in a local area network, group
communication is not the bottleneck. Figure 13.13 shows the NODO protocol satu-
rating when there are still plenty of system resources available.

13.6.2 Replication with Optimistic Execution

To illustrate the optimistic execution approach we consider two protocols: Postgres-
R (PGR) [24] and Database State Machine (DBSM) [31]. In both protocols, transac-
tions are immediately executed by the replicas to which they are submitted without

13 Practical Database Replication 273

t

T reply

r1

r2

r3

Execution Certification

Update

atomic mcast reliable mcast

(a) Optimistic Execution:PGR.

T

t

reply

r1

r2

r3

Execution Certification

Update

atomic mcast

(b) Optimistic Execution:DBSM.

Fig. 13.9 Optimistic executions: PGR and DBSM.

any prior global coordination. Locally, transactions are synchronized according to
the specific concurrency control mechanism of the database engine.

The messages exchanged and the synchronization points of the execution of these
protocols are depicted in Figure 13.9. The dynamic aspects are depicted in Fig-
ures 13.10 (PGR) and 13.11 (DBSM). Upon receiving a commit request, a success-
ful transaction is not readily committed. Instead, its changes (write-set) and read
data (read-set) are gathered and a termination protocol initiated. The goal of the
termination protocol is to decide the order and the outcome of the transaction such
that a global correctness criterion is satisfied (e.g. 1-copy serializability [7] or 1-
copy snapshot isolation [26]). This is achieved by establishing a total order position
for the transaction and certifying it against concurrently executed transactions. The
certification of a transaction is done by evaluating the intersection of its read- and
write-set (or just write-set in case of the snapshot isolation) with the write-set of
concurrent, previously ordered transactions. The fate of a transaction is therefore
determined by the termination protocol and a transaction that would locally commit
may end up aborted.

These protocols differ on the termination procedure. Considering 1-copy serial-
izability, both protocols use the transaction’s read-set in the certification procedure.
In PGR, the transaction’s read-set is not propagated and thus only the replica exe-

274 A. Correia Jr.

Fig. 13.10 States, transitions, and queues in PGR.

cuting the transaction is able to certify it. In DBSM, the transaction’s read-set is also
propagated allowing each replica to autonomously certify the transaction.

In detail, upon the reception of the commit request for a transaction t, in PGR the
executing replica atomically multicasts t’s id and t’s write-set. As soon as all trans-
actions ordered before t are processed, the executing replica certifies t and reliably
multicasts the outcome to all replicas. The certification procedure consists in check-
ing t’s read-set and write-set against the write-sets of all transactions ordered before
t. The executing replica then commits or aborts t locally and replies to the client.
Upon the reception of t’s commit outcome each replica applies t’s changes through
the execution of a high priority transaction consisting of updates, inserts and deletes
according to t’s previously multicast write-set. The high priority of the transaction
means that it must be assured of acquiring all required write locks, possibly aborting
any locally executing transactions.

The termination protocol in the DBSM is significantly different and works as
follows. Upon the reception of the commit request for a transaction t, the executing
replica atomically multicasts t’s id, the version of the database on which t was ex-
ecuted, and t’s read-set and write-set. As soon as t is ordered, each replica is able
to certify t on its own. For the certification procedure, t’s read-set and write-set
are checked against the write-sets of all transactions committed since t’s database
version. If they do not intersect, t commits, otherwise t aborts. If t commits then
its changes are applied through the execution of a high priority transaction consist-
ing of updates, inserts and deletes according to t’s previously multicast write-set.
Again, the high priority of the transaction means that it must be assured of acquir-
ing all required write locks, possibly aborting any locally executing transactions.
The executing replica replies to the client at the end of t.

In both protocols, transactions are queued while executing, as would happen in a
non-replicated database, using whatever native mechanism is used to enforce ACID
properties. This is queue Q0 in Figures 13.11 and 13.10.

The most noteworthy feature of both protocols is that since a transaction starts
until it is certified, it is vulnerable to being aborted by a concurrent conflicting trans-
action that commits. On the other hand, from the instant that a transaction is certified

13 Practical Database Replication 275

until it finally commits on every node, it is a menace to other transactions which will
be aborted if they touch a conflicting item. Latency in any processing stage is thus
bound to increase the abort rate. A side-effect of this is that the resulting system,
when loaded, is extremely unfair to long running transactions.

In the DBSM, the additional latency introduced by replication is in the atomic
multicast step, similarly to NODO (Q1) in Figure 8(a). This is an issue in WANs [20]
and can be addressed with optimistic delivery. PGR [24] does not use optimistic
delivery. In clusters, latency comes from exhausting resources within each replica as
queues build up in Q0 and Q2. It is thus no surprise that any contention whatsoever
makes the abort rate increase significantly.

Fig. 13.11 States, transitions, and queues in DBSM.

13.6.3 Active Replication

Active replication is a technique to build fault-tolerant systems in which transac-
tions are deterministically processed at all replicas. Specifically, it requires that each
transaction’s statement be processed in the same order by all replicas. This might be
ensured by means of a centralized or a distributed scheduler.

Sequoia [12], which was built after C-JDBC [10], for instance, uses a centralized
scheduler at the expense of introducing a single point of failure. Usually, any dis-
tributed scheduler would circumvent this resilience problem but would require a dis-
tributed deadlock detection mechanism. To avoid distributed deadlocks, one might
annotate transactions with conflict-classes and request distributed locks through an
atomic multicast before starting executing a transaction. In contrast with NODO,
however, a reliable message to propagate changes would not be needed as transac-
tions would be actively executed. In both approaches, the consistency criteria would
be similar to those provided by NODO.

The case against active replication is shown in NODO [36]: unbearable con-
tention with high write ratio. This technique additionally has the drawback of re-

276 A. Correia Jr.

quiring a parser to remove non-deterministic information (e.g. random() or date()),
thereby leading to re-implementing several features already provided by a database
management system.

The active replication pays off when the overhead between transferring raw up-
dates in a passive replication is higher than re-executing the statements. And of
course, it makes it easy to execute DDL statements.

13.6.4 Hybrid Replication

Akara [20] pursues a hybrid approach: it ultimately enforces conservative execution
to ensure fairness while leveraging the optimistic execution of transactions to attain
an efficient usage of resources, and still provides the ability to actively replicate
transactions when required.

1 - Pre-classification and multicast
2 - Final Delivery
3 - Scheduler: scheduled to run optimistically or wait i f remote or active
4 - Optmistic execution f inished or simply next in l ine
5 - Next in l ine

submit commi t

Q0

Q1 Q2a

(5)

(2)
(1)

A

(vunerable to abort) (menace to others)

(2)

E/W E/W

C/W C/W

(4)
Q2b

Q2c

(3)

Fig. 13.12 States, transitions, and queues in Akara.

Figure 13.12 depicts the major states, transitions, and queues of the protocol. For
the sake of simplicity, as in Section 13.6.1, we assume conflict classes correspond
to tables (typical case) and that all transactions access at least a common table (in-
teresting cases).

Upon submission, transactions are classified according to a set of conflict classes
and totally ordered by means of an atomic multicast. Once ordered, a transaction is
queued into Q2a waiting to be scheduled. Progression in Q2a depends on an admis-
sion control policy. When a transaction reaches the top of Q2a it is transferred to
Q2b and then executed. Transactions run while in Q2b are said to be executed opti-
mistically as they may end up aborting due to conflicts with concurrent transactions
in Q2b or Q2c. After execution, and having reached the top of Q2b, a transaction
is transferred to Q2c. When a transaction reaches the top of Q2c it may be ready
to commit (it may also need to abort due to conflicts). If it is ready to commit, its
changes are propagated to all other replicas and the transaction commits. Otherwise,

13 Practical Database Replication 277

the transaction is forced to re-execute conservatively by imposing its priority on any
locally running transaction.

The Akara protocol maximizes resource usage through the concurrent execution
of potentially conflicting transactions by means of an admission control mechanism.
It is worth noticing however that an admission policy that only allows to execute
non-conflicting transactions according to their conflict classes makes Akara a sim-
pler conservative protocol like NODO. The key is therefore to judiciously schedule
the execution of each transaction in order to exploit resource availability thus re-
ducing contention introduced by a conservative execution while at the same time
avoiding re-execution. In [20] a simple policy that fixes the number of concurrent
optimistically executed transactions is adopted. More sophisticated policies taking
into account the actual resource usage or even dynamic knowledge of the workload
could be used.

The mix of conservative and optimistic executions may lead to local deadlocks.
Consider two conflicting transactions t and t′ that are ordered < t, t′> and scheduled
to run concurrently (both are in Q2b). If t′ grabs a lock first on a conflicting data
item, it prevents t from running. However t′ cannot leave Q2b before t without
infringing the global commit order.

If both transactions have the same conflict classes and, of course, are locally
executed at the same replica, the proposed solution is to allow t ′ to overtake t in the
global commit order. Notice that when a transaction t is totally ordered this ensures
that no conflicting transaction will be executed concurrently at any other replica.
Therefore, if t’s order is swapped with that of t′ with the very same conflict classes
then it is still guaranteed that both t and t′ are executed without the interference
of any remote conflicting transaction. In the experiments conducted with the TPC-
C (Section 13.6.5), for example, the likelihood of having two transactions with the
very same conflict classes is more than 85% of the occurrences.

Finally, the protocol also allows transactions to be actively executed, thus provid-
ing a mechanism to easily replicate DDL statements and to reduce network usage
for transactions with very large write-sets. A transaction t marked as active is ex-
ecuted at all replicas without distinction between an initiating or a remote replica,
and its execution is straightforward. When t can be removed from Q2a, it is im-
mediately moved to Q2b, and so forth, until it gets to Q2c. When t can proceed
from Q2c, it is executed with high priority, committed, and then removed from Q2c.
Active transactions are not executed optimistically to avoid different interleaves at
different replicas.

13.6.5 Evaluation

To evaluate the protocols we use a hybrid simulation environment that combines
simulated and real components [44]. The key components, the replication and the
group communication protocols, are real implementations while both the database
engine and the network are simulated.

In detail, we use a centralized simulation runtime based on the standard Scalable
Simulation Framework (SSF) [1], which provides a simple yet effective infrastruc-

278 A. Correia Jr.

ture for discrete-event simulation. Simulation models are built as libraries that can
be reused. This is the case of the SSFNet [14] framework, which models network
components (e.g. network interface cards and links), operating system components
(e.g. protocol stacks), and applications (e.g. traffic analyzers). Complex network
models can be configured using these components, mimicking existing networks or
exploring particularly large or interesting topologies.

To combine the simulated components with the real implementations the exe-
cution of the real software components is timed with a profiling timer [38] and the
result is used to mark the simulated CPU busy during the corresponding period, thus
preventing other jobs, real or simulated, from being attributed simultaneously to the
same CPU. The simulated components are configured according to the equipment
and scenarios chosen for testing as described in this section.

The database server handles multiple clients and is modeled as a scheduler and a
collection of resources, such as storage and CPUs, and a concurrency control mod-
ule. The database offers the reflector interface (Section 13.3) and implements multi-
version concurrency control.

Each transaction is modeled as a sequence of operations: i) fetch a data item;
ii) do some processing; iii) write back a data item. Upon receiving a transaction
request each operation is scheduled to execute on the corresponding resource. The
processing time of each operation is previously obtained by profiling a real database
server.

A database client is attached to a database server and produces a stream of trans-
action requests. After each request is issued, the client blocks until the server replies,
thus modeling a single threaded client process. After receiving a reply, the client is
then paused for some amount of time (thinking time) before issuing the next trans-
action request.

To determine the read-set and write-set of a transaction’s execution, the database
is modeled as a set of histograms. The transactions’ statements are executed against
this model and the read-set, write-set and write-values are extracted to build the
transaction model that is injected into the database server. In our case, this modeling
is rather straightforward as the database is very well defined by the TPC-C [46]
workload that we use for all tests. Moreover, as all the transactions specified by
TPC-C can be reduced to SPJ queries, the read-set extraction is quite simple.

Clients run an implementation that mimics the industry standard on-line trans-
action processing benchmark TPC-C. TPC-C specifies five transactions: NewOrder
with 44% of the occurrences; Payment with 44%; OrderStatus with 4%; Delivery
with 4%; and StockLevel with 4%. The NewOrder, Payment and Delivery are update
transactions while the others are read-only.

For the experiments below we added to the benchmark three more transactions
that mimic maintenance activities such as adding users, changing indexes in tables
or updating taxes over items. Specifically, the first transaction Light-Tran creates a
constraint on a table if it does not exist or drops it otherwise. The second transaction
Active-Tran increases the price of products and is actively executed. Conversely,
Passive-Tran does the same maintenance activity but its changes are passively prop-

13 Practical Database Replication 279

agated. These transactions are never executed in the same run, have a probability of
1% and when are executing the probability of the NewOrder is reduced to 43%.

The database model has been configured using the transactions’ processing time
of a profiled version of PostgreSQL 7.4.6 under the TPC-C workload. From the
TPC-C benchmark we only use the specified workload, the constraints on through-
put, performance, screen load and background execution of transactions are not
taken into account.

We consider a LAN with 9 replicas. In the LAN configuration the replicas are
connected by a network with a bandwidth of 1Gbps and a latency of 120µs. Each
replica corresponds to a dual processor AMD Opteron at 2.4GHz with 4GB of mem-
ory, running the Linux Fedora Core 3 Distribution with kernel version 2.6.10. For
storage we used a fiber-channel attached box with 4, 36GB SCSI disks in a RAID-5
configuration and the Ext3 file system.

We varied the total number of clients from 270 to 3960 and distributed them
evenly among the replicas and each run has 150000 transactions.

Experimental Results In what follows, we discuss the queues for each protocol
described in previous sections. For the NODO approach, we use the simple defini-
tion of a conflict class for each table, which can be easily extracted from the SQL
code. We do not consider finer granularity due to the possibility of inconsistencies
when labeling mistakes are made. Figures 13.13 and 13.14 compare the DBSM,
PGR and NODO.

The DBSM and PGR show a throughput higher than 20000 t pm (Figure 13(a)).
In fact, both present similar results and the higher the throughput the higher the
number of requests per second inside the database (Figure 13(b)). These requests
represent access to the storage, CPU, lock manager and to the replication protocol.
Clearly, the database is not a bottleneck. In contrast, the throughput presented by
NODO is extremely low, around 4000 t pm, and its latency is extremely high (Fig-
ure 13(c)). This drawback can be easily explained by the contention observed in Q2
(Figure 13(d)).

Unfortunately, with the conservative and optimistic approaches presented above,
one may have to choose between latency and fairness. In the NODO, for 3240
clients, 2481 transactions wait in Q2 around 40 s to start executing (Figure 14(a)).
In contrast, an optimistic transaction waits 1000 times less and the number of trans-
actions waiting to be applied is very low.

The abort rate is below 1% in both optimistic approaches as there is no contention
and the likelihood of conflicts is low in such situations (Figure 14(b)). However, to
show that the optimistic protocols may not guarantee fairness, we conducted a set
of experiments in which one requests an explicit table level locking on behalf of the
Delivery transaction thus mimicking a hotspot. This is a pretty common situation in
practice, as application developers may explicitly request locks to improve perfor-
mance or avoid concurrency anomalies. In this case, the abort rate is around 5% and
this fact does not have an observable impact on latency and throughput but almost
all Delivery Transactions abort, around 99% (Figure 14(c)).

280 A. Correia Jr.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 500 1000 1500 2000 2500 3000 3500

tp
m

clients

Throughput

 DBSM
 PGR

 NODO

(a) Throughput

 0

 2000

 4000

 6000

 8000

 10000

 12000

 500 1000 1500 2000 2500 3000 3500

re
qu

es
t/s

ec

clients

Requests

 DBSM
 PGR

 NODO

(b) Q0

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500 3000 3500

la
te

nc
y

(m
s)

clients

Latency

 DBSM
 PGR

 NODO

(c) Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000 2500 3000 3500

si
ze

 (
tx

n)

clients

Size

 DBSM
 PGR

 NODO

(d) Q2

Fig. 13.13 Performance of DBSM, PGR and NODO.

In [21], a table level locking is acquired on behalf of the Delivery transaction to
avoid flooding the network and improve the certification procedure. Although the
reason to do so is different, the issue is the same.

In all the experiments, the time between an optimistic delivery and a final delivery
were always below 1 ms, thus excluding Q1 from being an issue.

To improve the performance of the conservative approach while at the same time
guaranteeing fairness, we used the Akara protocol. We ran the Akara protocol vary-
ing the number of optimistic transactions that might be concurrently submitted to
the database in order to figure out which would be the best value for our environ-
ment. This degree of optimistic execution is indicated by a number after the name
of the protocol. For instance, Akara-25 means that 25 optimistic transactions might
be concurrently submitted and Akara-n means that there is no restriction on this
number.

Table 13.1 shows that indefinitely increasing the number of optimistic transac-
tions that might be concurrently submitted is not worth. Basically for Akara-n, la-
tency drastically increases and as a consequence throughput decreases. This occurs
because the number of transactions that fails the certification procedure increases.
For 3240 clients, more than 89% of the transactions fail the certification procedure
(i.e. in-core certification procedure like in PGR, see Section 13.6.2). Furthermore,
after failing such transactions are conservatively executed and compete for resources

13 Practical Database Replication 281

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500 3000 3500

tim
e

(m
s)

clients

Time

 DBSM
 PGR

 NODO

(a) Time in Q2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500 1000 1500 2000 2500 3000 3500

%
 a

bo
rt

s

clients

Aborts

 DBSM
 PGR
 NODO

(b) Abort

 40

 50

 60

 70

 80

 90

 100

 500 1000 1500 2000 2500 3000 3500

%
 a

bo
rt

s

clients

Aborts

(c) Delivery’s Abort in DBSM

Fig. 13.14 Latency vs. abort rate (DBSM, PGR and NODO).

Table 13.1 Analysis of Akara.

Lat (ms) Tput (tpm) Unsuccess(%)
Akara-25 178 16780 2
Akara-45 480 16474 5
Akara-n 37255 3954 89
Akara-25 with Light-Tran 8151 9950 21
Akara-25 with Active-Tran 109420 1597 21
Akara-25 with Passive-Tran 295884 625 22

with optimistic transactions that may be executing. Keeping the number of opti-
mistic transactions low however reduces the number of transactions allowed in the
database and neither is worth. After varying this number from 5 to 50 in steps of 1,
we figured out that the best value for the TPC-C in our environment is 25.

In what follows, we used the DBSM as the representative of the family of op-
timistic protocols thus omitting the PGR. Although both protocols present similar
performance in a LAN, the PGR is not worth in a WAN due to its extra communi-
cation step.

Figure 13.15 depicts the benefits provided by the Akara-25. In Figure 15(a), we
notice that latency in the NODO is extremely high. In contrast, the Akara-25 starts
degenerating after 3240 clients. For 3240 clients the latency in the DBSM is about
9 ms, and in the Akara-25, it is about 178 ms. This increase in latency directly af-

282 A. Correia Jr.

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500 3000 3500

la
te

nc
y

(m
s)

clients

Latency

DBSM
NODO

Akara-25

(a) Latency

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 500 1000 1500 2000 2500 3000 3500

tp
m

clients

Throughput

DBSM
NODO

Akara-25

(b) Throughput

Fig. 13.15 DBSM, NODO and Akara-25.

fects throughput as shown in Figure 15(b). The NODO presents a steady throughput
of 4000 t pm; the Akara-25, a steady throughput of 18605 t pm after 3960 clients;
while the DBSM increases its throughput almost linearly. The DBSM starts degen-
erating when the database becomes a bottleneck what was not our goal with these
experiments.

Table 13.1 shows the impact on performance when the maintenance activities are
handled by our protocol. These maintenance activities represented by the transac-
tions Active-Tran and Light-Tran are actively executed and integrated in runs with
the Akara-25: Akara with Active-Tran and Akara with Light-Tran, respectively. In
order to show the benefits of an active execution in such scenario, we provide a run
named Akara with Passive-Tran in which the updates performed by the Active-Tran
are atomically multicast. The run with the Passive-Tran presents a latency higher
than that with the Active-Tran as the former needs to transfer the updates through
the network. However, both approaches have a reduced throughput and high latency
when compared to the normal Akara-25 due to contention caused by a large number
of updates.

The run with the Light-Tran does not have a large number of updates but its
throughput decreases when compared to the Akara-25 due to failures in the certifi-
cation procedure. This is caused by the fact that the transaction Light-Tran mimics
a change on the structure of a table and thus requires an exclusive lock on it.

In a real environment, we expect that maintenance operations occur with a rate
lower than 1% and so they should not be a problem as the optimistic execution of
other transactions might compensate the temporary decrease in performance.

13.7 Conclusions

This chapter addresses the existing trade-offs when implementing database repli-
cation in different environments. It shows that database replication in practice is
constrained by a variety of architectural, algorithmic, and dynamic issues.

To address these issues, a generic architecture that supports legacy database man-
agement systems without compromising the performance that can be achieved in na-

13 Practical Database Replication 283

tive implementations is described. Then, a communication abstraction that encapsu-
lates distributed agreement and supports a range of implementations and advanced
optimizations is presented. Finally, a modular approach to implementing replication
protocols is put together and evaluated, showing how different algorithmic choices
match assumptions on system dynamics and performance.

The experimental results reported here point out that a successful practical ap-
plication of database replication, in particular, when strong consistency is sought,
depends on a combination of factors. Namely, that the architectural approach to in-
terfacing the database server dictates which replication algorithms are feasible; and
that the availability of different communication primitives directly impacts the ef-
ficiency of different algorithms in a particular setting. By taking these factors into
account, it is possible to achieve good performance in face of variable workloads
and environments.

Acknowledgements This work was partially supported by the GORDA (FP6-IST2-004758) and
the Pastramy (PTDC/EIA/72405/2006) projects.

References

1. http://www.ssfnet.org/
2. Amir, Y., Danilov, C., Stanton, J.: A low latency, loss tolerant architecture and protocol for

wide area group communication. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (2000)

3. Apache DB Project. Apache Derby version 10.2 (2006),
http://db.apache.org/derby/

4. Babaoglu, O., Davoli, R., Montresor, A.: Group membership and view synchrony in parti-
tionable asynchronous distributed systems: Specifications. Operating Systems Review 31(2)
(1997)

5. Ban, B.: Design and implementation of a reliable group communication toolkit for Java
(1998), http://www.cs.cornell.edu/home/bba/Coots.ps.gz

6. Bartoli, A., Babaoglu, O.: Selecting a “primary partition” in partitionable asynchronous dis-
tributed systems. In: IEEE International Symposium on Reliable Distributed Systems (1997)

7. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Dis-
tributed Database Systems. Addison-Wesley, Reading (1987)

8. Birman, K.P., van Renesse, R.: Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, Los Alamitos (1993)

9. Carvalho, N., Correia Jr., A., Pereira, J., Rodrigues, L., Oliveira, R., Guedes, S.: On the use
of a reflective architecture to augment database management systems. Journal of Universal
Computer Science 13(8) (2007)

10. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: Flexible database clustering middle-
ware. In: USENIX Annual Technical Conference (2004)

11. Continuent. Sequoia v2.10 (2007), http://sequoia.continuent.org
12. Continuent. Sequoia 4.x (2008), http://sequoia.continuent.org
13. Correia Jr., A., Pereira, J., Rodrigues, L., Carvalho, N., Vilaça, R., Oliveira, R., Guedes, S.:

GORDA: An open architecture for database replication. In: IEEE International Symposium
on Network Computing and Applications (2007)

14. Cowie, J., Liu, H., Liu, J., Nicol, D., Ogielski, A.: Towards realistic million-node Internet
simulation. In: International Conference on Parallel and Distributed Processing Techniques
and Applications (1999)

http://www.ssfnet.org/
http://db.apache.org/derby/
http://www.cs.cornell.edu/home/bba/Coots.ps.gz
http://sequoia.continuent.org
http://sequoia.continuent.org

284 A. Correia Jr.

15. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: Taxonomy
and survey. ACM Computing Surveys 36(4) (2004)

16. Dolev, D., Malki, D., Strong, R.: A framework for partitionable membership service. In:
ACM Symposium on Principles of Distributed Computing (1996)

17. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems The Complete Book. Prentice-
Hall, Englewood Cliffs (2002)

18. Guerraoui, R., Kostic, D., Levy, R., Quema, V.: A high throughput atomic storage algorithm.
In: IEEE International Conference on Distributed Computing Systems (2007)

19. Hayden, M.: The Ensemble System. PhD thesis, Cornell University, Computer Science De-
partment (1998)

20. Correia Jr, A., Pereira, J., Oliveira, R.: AKARA: A flexible clustering protocol for demanding
transactional workloads. In: International Symposium on Distributed Objects and Applica-
tions (2008)

21. Correia Jr., A., Sousa, A., Soares, L., Pereira, J., Moura, F., Oliveira, R.: Group-based replica-
tion of on-line transaction processing servers. In: Maziero, C.A., Gabriel Silva, J., Andrade,
A.M.S., de Assis Silva, F.M. (eds.) LADC 2005. LNCS, vol. 3747, pp. 245–260. Springer,
Heidelberg (2005)

22. Kaashoek, M., Tanenbaum, A.: Group communication in the Amoeba distributed operating
system. In: IEEE International Conference on Distributed Computing Systems (1991)

23. Keidar, I., Dolev, D.: Totally ordered broadcast in the face of network partitions. In: Depend-
able Network Computing, Kluwer Academic Publishers, Dordrecht (2000)

24. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication. In: VLDB Conference (2000)

25. Kiczales, G.: Towards a new model of abstraction in software engineering. In: IMSA Work-
shop on Reflection and Meta-level Architectures (1992)

26. Lin, Y., Kemme, B., Jiménez Peris, R., Patiño Martı́nez, M.: Middleware based data replica-
tion providing snapshot isolation. In: ACM SIGMOD (2005)

27. Maes, P.: Concepts and experiments in computational reflection. In: ACM International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (1987)

28. Miranda, H., Pinto, A., Rodrigues, L.: Appia: a flexible protocol kernel supporting multiple
coordinated channels. In: IEEE International Conference on Distributed Computing Systems
(2001)

29. Mocito, J., Respicio, A., Rodrigues, L.: On statistically estimated optimistic delivery in large-
scale total order protocols. In: IEEE International Symposium on Pacific Rim Dependable
Computing (2006)

30. Oliveira, R., Pereira, J., Correia Jr, A., Archibald, E.: Revisiting 1-copy equivalence in clus-
tered databases. In: ACM Symposium on Applied Computing (2006)

31. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Journal of
Distributed and Parallel Databases and Technology (2002)

32. Pedone, F., Schiper, A.: Optimistic atomic broadcast. In: Kutten, S. (ed.) DISC 1998. LNCS,
vol. 1499, pp. 318–332. Springer, Heidelberg (1998)

33. Pedone, F., Schiper, A.: Handling message semantics with generic broadcast protocols. Dis-
tributed Computing 15(2) (2002)

34. Pereira, J., Rodrigues, L., Monteiro, M.J., Oliveira, R., Kermarrec, A.-M.: NeEM: Network-
friendly epidemic multicast. In: IEEE International Symposium on Reliable Distributed Sys-
tems (2003)

35. Pereira, J., Rodrigues, L., Oliveira, R.: Semantically reliable multicast: Definition, imple-
mentation and performance evaluation. IEEE Transactions on Computers, Special Issue on
Reliable Distributed Systems 52(2) (2003)

36. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Scalable replication in
database clusters. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, p. 315. Springer,
Heidelberg (2000)

37. Jiménez Peris, R., Patiño Martı́nez, M., Kemme, B., Alonso, G.: Improving the scalability of
fault-tolerant database clusters. In: IEEE International Conference on Distributed Computing
Systems (2002)

13 Practical Database Replication 285

38. Pettersson, M.: Linux performance counters, http://user.it.uu.se/˜mikpe/
linux/perfctr/

39. PostgreSQL Global Development Group. Postgresql version 8.1 (2006),
http://www.postgresql.org/

40. Rodrigues, L., Fonseca, H., Verı́ssimo, P.: Totally ordered multicast in large-scale systems.
In: IEEE International Conference on Distributed Computing Systems (1996)

41. Rodrigues, L., Mocito, J., Carvalho, N.: From spontaneous total order to uniform total order:
different degrees of optimistic delivery. In: ACM Symposium on Applied Computing (2006)

42. Salas, J., Jimenez-Peris, R., Patino-Martinez, M., Kemme, B.: Lightweight reflection for
middleware-based database replication. In: IEEE International Symposium on Reliable Dis-
tributed Systems (2006)

43. Sousa, A., Pereira, J., Moura, F., Oliveira, R.: Optimistic total order in wide area networks.
In: IEEE International Symposium on Reliable Distributed Systems (2002)

44. Sousa, A., Pereira, J., Soares, L., Correia Jr., A., Rocha, L., Oliveira, R., Moura, F.: Test-
ing the dependability and performance of GCS-based database replication protocols. In:
IEEE/IFIP International Conference on Dependable Systems and Networks (2005)

45. Sussman, J., Keidar, I., Marzullo, K.: Optimistic virtual synchrony. In: Symposium on Reli-
ability in Distributed Software (2000)

46. Transaction Processing Performance Council (TPC). TPC benchmark C Standard Specifica-
tion Revision 5.0 (2001)

47. Vicente, P., Rodrigues, L.: An indulgent uniform total order algorithm with optimistic deliv-
ery. In: IEEE International Symposium on Reliable Distributed Systems (2002)

http://user.it.uu.se/~mikpe/linux/perfctr/
http://user.it.uu.se/~mikpe/linux/perfctr/
http://www.postgresql.org/

Index

Symbols

♦P consensus algorithm 52

A

abcast see atomic broadcast
access strategy 187
active replication see replication, active
agreed past 13
asynchronous system see system,

asynchronous
atomic

broadcast/multicast see broad-
cast/multicast, atomic

object 4
transaction 14

atomic commit 212
atomicity see transaction, atomicity
availability 19, 41, 219

B

back-up 23
binding

Apache Derby – 261
Appia – 266
JGroups – 266
PostgreSQL– 262
Sequoia – 262
Spread – 267

bivalent state 63
blinding 163
broadcast/multicast

atomic – 42, 43, 56, 69, 95, 178, 214
algorithm 44, 45, 179

causal – 108

consistent – 170
FIFO – 221
FIFO atomic – 42
generic – 53, 216
reliable – 171
total order – 42, 241

optimistic – 264
Byzantine

agreement 175
consensus 175
fault 151, 169, 186

C

caching
content-aware 81
content-blind 82

causal order 182
Lamport – 13

CDN see content delivery network
channel

quasi-reliable – 44
client-side caching 76
compatible partial order 6
compositional property 9
concurrency control 240

multi-version – 240
optimistic – 240, 241

conflict
relation 53
resolution 12

consensus 43, 59, 160
impossibility 47, 63
solving – 48, 51

consistency
causal – 13
client-centric model 83

288 Index

continuous – 85
dimensions 84
entry – 85
eventual – 12, 74, 235
external – 15
model 1
release – 11
sequential – 7, 210, 236
session – 237
strong – 4, 234
weak – 10, 234

content delivery network 79
correlated failures 66
crash-recovery 52
crash-stop 42, 52
cryptosystem

public-key – 174
threshold – 174

D

deferred update see replication, deferred
update

delivery
same view – 56
sending view – 56

delta shipping 77
dissemination strategy 77
distributed

cryptography 173
deadlock 226, 241

durability see transaction, durability

E

edge server 79, 81
eventual

leader election 61
eventually-forever assumption 61
extended transaction model 15

F

FaB Paxos algorithm 201
fail-stop 21, 22, 99
failure detection mechanism 30, 98
failure detector

eventual perfect – 51
model 50
perfect – 30

fast update 106
FLP impossibility 47, 63, 175, 180
freshness of replicas 13
function shipping 77

G

Global Stabilization Time 47
group

communication 39, 41, 55, 232, 248, 263
dynamic – 54, 55
membership 54, 93
process – 92, 96
static – 42
view see view, of a group

H

heisenbug 66, 152
history 4, 20

I

ideal system model 6
Isis system 98, 102
isolation see transaction, isolation

J

justification 11

K

key refresh 156

L

LastVoting algorithm 49
lazy propagation 15
leader election

weak – 36
lease 77
linearizability 4, 19, 210, 236
local read 106

M

membership
dynamic – 106
group – 54

mobile adversary 156
model

crash-recovery – 52
crash-stop – 42, 52
fail-stop – 21, 22, 99
failure detector – 50
Heard-Of (HO) – 53
round – 48
Round-by-Round Failure Detector – 53

Monotonic Reads property 13

Index 289

O

one-copy
equivalence 236
semantics 19
serializability 14, 210, 236, 271
snapshot isolation 14, 271

OneThirdRule algorithm 48
operation shipping 77
optimistic

accept 198, 201, 202
update 198, 200, 202

P

partitioning 74
passive replication see replication, passive
Paxos algorithm 45, 49
PBFT algorithm 140, 179, 199
pessimistic

accept 198–200
update 198, 199, 201

primary 20, 23, 125, 140
primary partition 104, 265
proactive secret sharing 156
process

correct – 42
faulty – 42

publish-subscribe 113
pull protocol 77
push protocol 77

Q

Q/U algorithm 202
query 28
quorum 185

availability 31
consistency 31
placement 190
system 160, 185

Byzantine – 171, 191
dissemination – 187, 199
masking – 187, 193
opaque – 187, 201
probabilistic – 188

R

randomization 161, 176
re-encryption 162
Read Your Writes property 13
read-one-write-all-(available) 220
read-overwrite protocol 192

reconfiguration 38
recovery 38

database – 247
proactive – 153

reduction 45
register 3
replica

coordination 160
placement 76, 86

replication
active – 20, 77, 269, 275
architecture 243, 254
asymmetric – 239
black-box – 243
chain – 23, 26
client-initiated – 76
conservative – 269, 270
coordinator-cohort – 113
database – 208, 219, 253
deferred update – 211
eager – 222–225, 227, 232
for fault-tolerance 246
for performance/scalability 73, 75, 84,

245
gray-box – 243
hybrid – 276
in-core – 255
kernel-based – 243
lazy – 222, 228–232, 248
leader – 36
management 86
middleware-based – 248, 255
modular – 41
multi-primary passive – 210
object – 210, 239
optimistic – 269, 272
partial – 217, 246
passive – 20, 77, 210, 269
primary copy – 221, 223, 224, 228, 229
primary-backup – 20, 23
quorum – 31
server-initiated – 76
state machine – 20, 42, 65, 67, 95, 123,

152, 169, 195
statement – 239
strategy 75, 78
symmetric – 239
techniques 20
update anywhere – 221, 225, 227, 230,

231
using reflection 257
white box – 243

resilient objects 98, 101
round model 47, 48

290 Index

S

secret sharing 173
secure multi-party computation 162
self-verifying data 194
sequential consistency see consistency,

sequential
sequential data type 3
serializability 14, 235
session property 13, 237
snapshot

isolation 14, 235, 241
memory 3

space-time diagram 5
speculative

accept 200
state machine replication see replication,

state machine
state shipping 77
state transfer 93, 102, 105
synchronous system see system, syn-

chronous
system

asynchronous – 47, 60
partially synchronous – 47
synchronous – 47, 60

T

threshold
adversary structure 158
cryptography 173
cryptosystem 174
digital signature 155, 177

TPC-C benchmark 269, 278
transaction 14, 210, 220

atomicity 210, 220, 233, 236
certification 211, 273
durability 210, 220
isolation 14, 210, 220, 235, 236
location 221
synchronization strategy 222
termination

atomic broadcast-based – 214, 273, 274
atomic commit-based – 212
generic broadcast-based – 216
reliable broadcast-based – 273, 274
reordering-based – 215

trusted hardware 156
two-phase-commit (2PC) algorithm 223,

226
two-phase-locking (2PL) algorithm 240

V

view
in PBFT algorithm 142, 180
in Viewstamped Replication algorithm

126, 128
of a group 55, 99
synchrony 56, 102

Viewstamped Replication algorithm 45, 121,
123, 126

virtual synchrony 56, 91, 93, 102

Z

Zyzzyva algorithm 200

	3642112935
	Title Page
	Replication //Theory and Practice
	Preface
	Contents
	List of Authors
	Consistency Models for Replicated Data
	Introduction
	Contributions

	Defining the Sequential Data Type
	Strong Consistency
	Relaxing Inter-Client Operation Ordering

	Weak Consistency
	Transactions
	Discussion
	Conclusion
	References

	Replication Techniques for Availability
	Introduction
	Model
	Environment
	Specification

	Fail-Stop Failure Model
	Primary-Backup
	Chain Replication
	Queries

	Crash Failure Model
	Quorums
	Stake Replication
	Broker Replication

	Recovery and Reconfiguration
	Conclusion
	References

	Modular Approach to Replication for Availability
	Introduction
	Atomic Broadcast for State Machine Replication
	The Consensus Problem, or How to Implement Atomic Broadcast in a Modular Way
	Consensus
	Implementation of Atomic Broadcast

	Solving Consensus
	About System Models
	Partially Synchronous Systems
	Asynchronous System Augmented with Failure Detectors
	Discussion

	Generic Broadcast
	Dynamic Groups
	Group Membership Service
	Group Communication in Dynamic Groups

	Conclusion
	References

	Stumbling over Consensus Research: Misunderstandings and Issues
	Introduction
	Misunderstandings
	Asynchronous Systems
	Eventually-Forever Assumptions
	Eventual Guarantees
	The Consensus Impossibility Result
	Uses of Replication
	Correlated Failures

	Issues
	The Application Interface
	Violation of Abstraction Boundaries
	Ambiguities and Errors
	Unfriendly Formalisms
	Lack of Feedback from Practitioners
	Hidden Limitations in Algorithms

	Conclusion
	References

	Replicating for Performance: Case Studies
	Introduction
	Replication Strategies
	Replica Placement
	Content Distribution
	Strategy Evaluation

	Replication Granularity
	Example 1: Content Delivery Networks
	Example 2: Edge-Server Computing
	Example 3: Decentralized Wikipedia

	Replicating for Performance versus Consistency
	Replication Management
	Conclusions
	References

	A History of the Virtual Synchrony Replication Model
	Introduction
	Distributed Consistency: Who Needs It?
	Goals in This Chapter
	Historical Context
	Resilient Objects in Isis V1.0
	Beyond Resilient Objects
	The Isis Toolkit and the Virtual Synchrony Model
	A Design Feature Motivated by Performance Considerations

	Dynamic Membership
	Local Reads and Fast Updates
	Partitionable Views

	Causally Ordered Multicast: cbcast
	Time-Critical Applications
	A Series of Commercial Successes, but Ultimately, a Market Failure
	How Replication Was Used
	Causal and Other Controversies
	What Next? Live Objects and Quicksilver Scalable Multicast!

	Closing Thoughts
	References

	From Viewstamped Replication to Byzantine Fault Tolerance
	Introduction
	Prehistory
	Viewstamped Replication
	Replica Groups
	Architecture
	Approach

	The VR Protocol
	Normal Operation
	View Changes
	Recovery

	Discussion of VR
	Differences from the Original
	Two-Phase Commit
	Optimizations
	Performance in the Normal Case
	Performance of View Changes
	State Management
	Non-deterministic Operations

	Byzantine Fault Tolerance
	Approach

	The PBFT Protocol
	View Changes

	Discussion of PBFT
	Cryptography
	 Optimizations
	Selecting the Primary
	Recovery
	Non-determinism

	Conclusions
	References

	Implementing Trustworthy Services Using Replicated State Machines
	Introduction
	The State-Machine Approach
	Compromise and Proactive Recovery
	Service Key Refresh and Scalability
	Service Private Keys
	Proactive Secret Sharing

	Server Key Refresh
	Trusted Hardware
	Offline Keys
	Attack Awareness

	Processor Independence
	Replica Coordination
	Computing with Server Confidential Data
	Discussion
	References

	State Machine Replication with Byzantine Faults
	Introduction
	Building Blocks
	Broadcast Primitives
	Distributed Cryptography
	Byzantine Consensus

	Atomic Broadcast Protocols
	Consensus-Based Atomic Broadcast
	Sequencer-Based Atomic Broadcast
	Hybrid Atomic Broadcast

	Service Replication
	Replicating Cryptographic Services
	Handling Responses Securely
	Preserving Causality of Requests

	Conclusion
	References

	Selected Results from the Latest Decade of Quorum Systems Research
	Introduction
	Quorum Systems for Byzantine Faults
	Access Strategies and Load
	Probabilistic Quorum Systems

	Minimizing Delays of Quorum Accesses
	Uses of Byzantine Quorums in Protocols
	Read-Overwrite Protocols
	State-Machine-Replication Protocols

	Conclusion
	References

	From Object Replication to Database Replication
	Introduction
	Replication Model and Consistency
	Generic Functional Model
	Object and Database Consistency

	From Object Replication to Database Replication: Multi-primary Passive Replication
	Deferred Update Database Replication
	Additional Definitions
	Atomic Commit-Based Termination
	Atomic Broadcast-Based Termination
	Reordering-Based Termination
	Generic Broadcast-Based Termination

	Final Remarks
	References

	Database Replication: A Tutorial
	Introduction
	Why Replication
	Organization of the Chapter

	Basic Taxonomy for Replica Control Approaches
	Eager Primary Copy
	Eager Update Anywhere
	Lazy Primary Copy
	Lazy Update Anywhere
	Eager vs. Lazy

	Correctness Criteria
	Atomicity and Consistency
	Isolation
	Session Consistency

	Other Parameters
	Message Management
	Executing Writes
	Concurrency Control Mechanisms
	Architectural Alternatives
	Cluster vs. WAN Replication
	Degree of Replication
	Recovery

	Existing Systems
	Early Work
	Commercial Systems
	Lazy Replication Made Serializable
	Cluster Replication
	Other Issues
	Related Areas of Research

	Conclusions
	References

	Practical Database Replication
	Introduction
	An Architecture for Practical Database Replication
	Reflector: Replication-Friendly Database Support
	Reflection for Replication
	Processing Stages
	Processing Contexts
	Base-Level and Meta-level Calls
	Exception Handling
	Existing Reflector Bindings

	GCS: Communication and Coordination Support
	Architectural and Algorithmic Issues
	Existing GCS Bindings

	Replicator: Pluggable Replication Protocols
	Consistent Database Replication
	Replication with Conservative Execution
	Replication with Optimistic Execution
	Active Replication
	Hybrid Replication
	Evaluation

	Conclusions
	References

	Index

