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ABSTRACT
Distributed storage systems often trade o↵ strong seman-
tics for improved scalability. This paper describes the de-
sign, implementation, and evaluation of Scatter, a scalable
and consistent distributed key-value storage system. Scatter
adopts the highly decentralized and self-organizing structure
of scalable peer-to-peer systems, while preserving lineariz-
able consistency even under adverse circumstances. Our
prototype implementation demonstrates that even with very
short node lifetimes, it is possible to build a scalable and
consistent system with practical performance.
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H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

General Terms
Design, Reliability
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1. INTRODUCTION
A long-standing and recurrent theme in distributed sys-

tems research is the design and implementation of e�cient
and fault tolerant storage systems with predictable and well-
understood consistency properties. Recent e↵orts in peer-to-
peer (P2P) storage services include Chord [36], CAN [26],
Pastry [30], OpenDHT [29], OceanStore [16], and Kadem-
lia [22]. Recent industrial e↵orts to provide a distributed
storage abstraction across data centers include Amazon’s
Dynamo [10], Yahoo!’s PNUTS [8], and Google’s Megas-
tore [1] and Spanner [9] projects. Particularly with geo-
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graphic distribution, whether due to using multiple data
centers or a P2P resource model, the tradeo↵s between ef-
ficiency and consistency are non-trivial, leading to systems
that are complex to implement, complex to use, and some-
times both.

Our interest is in building a storage layer for a very large
scale P2P system we are designing for hosting planetary
scale social networking applications. Purchasing, installing,
powering up, and maintaining a very large scale set of nodes
across many geographically distributed data centers is an
expensive proposition; it is only feasible on an ongoing basis
for those applications that can generate revenue. In much
the same way that Linux o↵ers a free alternative to commer-
cial operating systems for researchers and developers inter-
ested in tinkering, we ask: what is the Linux analogue with
respect to cloud computing?

P2P systems provide an attractive alternative, but first
generation storage layers were based on unrealistic assump-
tions about P2P client behavior in the wild. In practice, par-
ticipating nodes have widely varying capacity and network
bandwidth, connections are flaky and asymmetric rather
than well-provisioned, workload hotspots are common, and
churn rates are very high [27, 12]. This led to a choice for
application developers: weakly consistent but scalable P2P
systems like Kademlia and OpenDHT, or strongly consistent
data center storage.

Our P2P storage layer, called Scatter, attempts to bridge
this gap – to provide an open-source, free, yet robust alter-
native to data center computing, using only P2P resources.
Scatter provides scalable and consistent distributed hash ta-
ble key-value storage. Scatter is robust to P2P churn, het-
erogeneous node capacities, and flaky and irregular network
behavior. (We have left robustness to malicious behavior,
such as against DDoS attacks and Byzantine faults, to fu-
ture work.) In keeping with our goal of building an open
system, an essential requirement for Scatter is that there
be no central point of control for commercial interests to
exploit.

The base component of Scatter is a small, self-organizing
group of nodes, each managing a range of keys, akin to a
BigTable [6] tablet. A set of groups together partition the
table space to provide the distributed hash table abstraction.
Each group is responsible for providing consistent read/write
access to its key range, and for reconfiguring as necessary
to meet performance and availability goals. As nodes are
added, as nodes fail, or as the workload changes for a re-
gion of keys, individual groups must merge with neighbor-
ing groups, split into multiple groups, or shift responsibil-
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ity over parts of the key space to neighboring groups, all
while maintaining consistency. A lookup overlay topology
connects the Scatter groups in a ring, and groups execute
distributed transactions in a decentralized fashion to modify
the topology consistently and atomically.

A key insight in the design of Scatter is that the consistent
group abstraction provides a stable base on which to layer
the optimizations needed to maintain overall system perfor-
mance and availability goals. While existing popular DHTs
have di�culty maintaining consistent routing state and con-
sistent name space partitioning in the presence of high churn,
these properties are a direct consequence of Scatter’s design.
Further, Scatter can locally adjust the amount of replication,
or mask a low capacity node, or merge/split groups if a par-
ticular Scatter group has an unusual number of weak/strong
nodes, all without compromising the structural integrity of
the distributed table.

Of course, some applications may tolerate weaker consis-
tency models for application data storage [10], while other
applications have stronger consistency requirements [1]. Scat-
ter is designed to support a variety of consistency models
for application key storage. Our current implementation
provides linearizable storage within a given key; we support
cross-group transactions for consistent updates to meta-data
during group reconfiguration, but we do not attempt to lin-
earize multi-key application transactions. These steps are
left for future work; however, we believe that the Scatter
group abstraction will make them straightforward to imple-
ment.

We evaluate our system in a variety of configurations, for
both micro-benchmarks and for a Twitter-style application.
Compared to OpenDHT, a publicly accessible open-source
DHT providing distributed storage, Scatter provides equiva-
lent performance with much better availability, consistency,
and adaptability. We show that we can provide practical
distributed storage even in very challenging environments.
For example, if average node lifetimes are as short as three
minutes, therefore triggering very frequent reconfigurations
to maintain data durability, Scatter is able to maintain over-
all consistency and data availability, serving its reads in an
average of 1.3 seconds in a typical wide area setting.

2. BACKGROUND
Scatter’s design synthesizes techniques from both highly

scalable systems with weak guarantees and strictly consis-
tent systems with limited scalability, to provide the best of
both worlds. This section overviews the two families of dis-
tributed systems whose techniques we leverage in building
Scatter.

Distributed Hash Tables (DHTs): DHTs are a class
of highly distributed storage systems providing scalable, key
based lookup of objects in dynamic network environments.
As a distributed systems building primitive, DHTs have
proven remarkably versatile, with application developers hav-
ing leveraged scalable lookup to support a variety of dis-
tributed applications. They are actively used in the wild as
the infrastructure for peer-to-peer systems on the order of
millions of users.

In a traditional DHT, both application data and node
IDs are hashed to a key, and data is stored at the node
whose hash value immediately precedes (or follows) the key.
In many DHTs, the node storing the key’s value replicates
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Figure 1: Two examples demonstrating how (a)
key assignment consistency and (b) routing integrity
may be violated in a traditional DHT. Bold lines in-
dicate key assignment and are associated with nodes.
Dotted lines indicate successor pointers. Both sce-
narios arise when nodes join and leave concurrently,
as pictured in (a1) and (b1). The violation in (a2)
may result in clients observing inconsistent key val-
ues, while (b2) jeopardizes overlay connectivity.

the data to its neighbors for better reliability and availabil-
ity [30]. Even so, many DHTs su↵er inconsistencies in cer-
tain failure cases, both in how keys are assigned to nodes,
and in how requests are routed to keys, yielding inconsistent
results or reduced levels of availability. These issues are not
new [12, 4]; we recite them to provide context for our work.

Assignment Violation: A fundamental DHT correctness prop-
erty is for each key to be managed by at most one node. We
refer to this property as assignment consistency. This prop-
erty is violated when multiple nodes claim ownership over
the same key. In the figure, a section of a DHT ring is man-
aged by three nodes, identified by their key values A, B,
and C. A new node D joins at a key between A and B and
takes over the key-range (A,D]. However, before B can let
C know of this change in the key-range assignment, B fails.
Node C detects the failure and takes over the key-range
(A,B] maintained by B. This key-range, however, includes
keys maintained by D. As a result, clients accessing keys
in (A,D] may observe inconsistent key values depending on
whether they are routed to node C or D.

Routing Violation: Another basic correctness property stip-
ulates that the system maintains consistent routing entries
at nodes so that the system can route lookup requests to
the appropriate node. In fact, the correctness of certain
links is essential for the overlay to remain connected. For
example, the Chord DHT relies on the consistency of node
successor pointers (routing table entries that reference the
next node in the key-space) to maintain DHT connectiv-
ity [35]. Figure 1b illustrates how a routing violation may
occur when node joins and leaves are not handled atomi-
cally. In the figure, node D joins at a key between B and
C, and B fails immediately after. Node D has a successor
pointer correctly set to C, however, A is not aware of D and
incorrectly believes that C is its successor (When a succes-
sor fails, a node uses its locally available information to set
its successor pointer to the failed node’s successor). In this
scenario, messages routed through A to keys maintained by
D will skip over node D and will be incorrectly forwarded
to node C. A more complex routing algorithm that allows
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for backtracking may avoid this scenario, but such tweaks
come at the risk of routing loops [35]. More generally, such
routing inconsistencies jeopardize connectivity and may lead
to system partitions.

Both violations occur for keys in DHTs, e.g., one study of
OpenDHT found that on average 5% of the keys are owned
by multiple nodes simultaneously even in settings with low
churn [31]. The two examples given above illustrate how
such a scenario may occur in the context of a Chord-like
system, but these issues are known to a↵ect all types of self-
organizing systems in deployment [12].

Needless to say, inconsistent naming and routing can make
it challenging for developers to understand and use a DHT.
Inconsistent naming and routing also complicates system
performance. For example, if a particular key becomes a
hotspot, we may wish to shift the load from nearby keys to
other nodes, and potentially to shift responsibility for man-
aging the key to a well-provisioned node. In a traditional
DHT, however, doing so would increase the likelihood of
naming and routing inconsistencies. Similarly, if a popu-
lar key happens to land on a node that is likely to exit the
system shortly (e.g., because it only recently joined), we can
improve overall system availability by changing the key’s as-
signment to a better provisioned, more stable node, but only
if we can make assignment changes reliably and consistently.

One approach to addressing these anomalies is to broad-
cast all node join and leave events to all nodes in the sys-
tem, as in Dynamo. This way, every node has an eventually
consistent view of its key-range, at some scalability cost.
Since key storage in Dynamo is only eventually consistent,
applications must already be written to tolerate temporary
inconsistency. Further, since all nodes in the DHT know the
complete set of nodes participating in the DHT, routing is
simplified.

Coordination Services: In enterprise settings, applica-
tions desiring strong consistency and high availability use
coordination services such as Chubby [2] or ZooKeeper [14].
These services use rigorous distributed algorithms with prov-
able properties to implement strong consistency semantics
even in the face of failures. For instance, ZooKeeper re-
lies on an atomic broadcast protocol, while Chubby uses the
Paxos distributed consensus algorithm [18] for fault-tolerant
replication and agreement on the order of operations.

Coordination services are, however, scale-limited as ev-
ery update to a replicated data object requires communi-
cation with some quorum of all nodes participating in the
service; therefore the performance of replication protocols
rapidly degrades as the number of participating nodes in-
creases (see Figure 9(a) and [14]). Scatter is designed with
the following insight: what if we had many instances of a
coordination service, cooperatively managing a large scale
storage system?

3. SCATTER OVERVIEW
We now describe the design of Scatter, a scalable con-

sistent storage layer designed to support very large scale
peer-to-peer systems. We discuss our goals and assump-
tions, provide an overview of the structure of Scatter, and
then discuss the technical challenges in building Scatter.

3.1 Goals and Assumptions
Scatter has three primary goals:

1. Consistency: Scatter provides linearizable consistency
semantics for operations on a single key/value pair,
despite (1) lossy and variable-latency network connec-
tions, (2) dynamic system membership including un-
controlled departures, and (3) transient, asymmetric
communication faults.

2. Scalability: Scatter is designed to scale to the largest
deployed DHT systems with more than a million het-
erogeneous nodes with diverse churn rates, computa-
tional capacities, and network bandwidths.

3. Adaptability: Scatter is designed to be self-optimizing
to a variety of dynamic operating conditions. For ex-
ample, Scatter reconfigures itself as nodes come and
go to preserve the desired balance between high avail-
ability and high performance. It can also be tuned to
optimize for both WAN and LAN environments.

Our design is limited in the kinds of failures it can handle.
Specifically, we are not robust to malicious behavior, such
as Byzantine faults and denial of service attacks, nor do we
provide a mechanism for continued operation during per-
vasive network outages or correlated and widespread node
outages. We leave adding these features to future work.

3.2 Design Overview
While existing systems partially satisfy some of our re-

quirements outlined in the preceding paragraphs, none ex-
hibit all three. Therefore, we set out to design a new system,
Scatter, that synthesizes techniques from a spectrum of dis-
tributed storage systems.

The first technique we employ to achieve our goals is to use
self-managing sets of nodes, which we term groups, rather
than individual nodes as building blocks for the system.
Groups internally use a suite of replicated state machine
(RSM) mechanisms [33] based on the Paxos consensus al-
gorithm [18] as a basis for consistency and fault-tolerance.
Scatter also implements many standard extensions and op-
timizations [5] to the basic Paxos algorithm, including: (a)
an elected leader to initiate actions on behalf of the group
as a whole, and (b) reconfiguration algorithms [19] to both
exclude failed members and include new members over time.

As groups maintain internal integrity using consensus pro-
tocols with provable properties, a simple and aggressive fail-
ure detector su�ces. Nodes that are excluded from a group
after being detected as failed can not influence any future ac-
tions of the group. On the other hand, the failure to quickly
detect a failed node will not impede the liveness of the group
because only a quorum of the current members are needed
to make progress.

Scatter implements a simple DHT model in which a cir-
cular key-space is partitioned among groups (see Figure 2).
Each group maintains up-to-date knowledge of the two neigh-
boring groups that immediately precede and follow it in the
key-space. These consistent lookup links form a global ring
topology, on top of which Scatter layers a best-e↵ort rout-
ing policy based on cached hints. If this soft routing state
is stale or incomplete, then Scatter relies on the underlying
consistent ring topology as ground truth.
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Figure 2: Overview of Scatter architecture

Carefully engineered groups go a long way to meeting our
stated design goals for Scatter. However, a system com-
posed of some static set of groups will be inherently limited
in many ways. For example, if there is a burst of failures
or su�cient disparity between the rate of leaves and joins
for a particular group, then that group is at risk of losing a
functional quorum. Not only is a static set of groups lim-
ited in robustness, but it is also restricted in both scalability
and the ability to adapt gracefully to dynamic conditions.
For instance, the performance of consensus algorithms de-
grades significantly as the number of participants increases.
Therefore, a static set of groups will not be able to incremen-
tally scale with the online addition of resources. As another
example, if one group is responsible for a hotspot in the key-
space, it needs some way of coordinating with other groups,
which may be underutilized, to alleviate the hotspot.

Therefore, we provide mechanisms to support the follow-
ing multi-group operations:

• split: partition the state of an existing group into two
groups.

• merge: create a new group from the union of the state
of two neighboring groups.

• migrate: move members from one group to a di↵erent
group.

• repartition: change the key-space partitioning between
two adjacent groups.

Although our approach is straightforward and combines
well-known techniques from the literature, we encountered
a number of technical challenges that may not be apparent
from a cursory inspection of the high-level design.

Atomicity: Multi-group operations modify the routing
state across multiple groups, but as we discussed in Sec-

tion 2, strong consistency is di�cult or impossible to guar-
antee when modifications to the routing topology are not
atomic. Therefore, we chose to structure each multi-group
operation in Scatter as a distributed transaction. We illus-
trate this design pattern, which we call nested consensus,
in Figure 3. We believe that this general idea of structur-
ing protocols as communication between replicated partici-
pants, rather than between individual nodes, can be applied
more generally to the construction of scalable, consistent
distributed systems.

Nested consensus uses a two-tiered approach. At the top
tier, groups execute a two-phase commit protocol (2PC),
while within each group the actions that the group takes
are agreed on using consensus protocols. Multi-group oper-
ations are coordinated by whichever group decides to initiate
the transaction as a result of some local policy. As Scatter
is decentralized, multiple groups can concurrently initiate
conflicting transactions. Section 4 details the mechanisms
used to coordinate distributed transactions across groups.

Performance: Strong consistency in distributed systems
is commonly thought to come with an unacceptably high
performance or availability costs. The challenge of maximiz-
ing system performance influenced every level of Scatter’s
design and implementation — whether defined in terms of
latency, throughput, or availability — without compromis-
ing core integrity. Although many before us have shown
that strongly consistent replication techniques can be im-
plemented e�ciently at small scale, the bigger challenge for
us was the additional layer of “heavy-weight”mechanisms —
distributed transactions — on top of multiple instantiations
of independent replicated state machines.

Self Organization: Our choice of complete decentraliza-
tion makes the design of policies non-trivial. In contrast
to designs in which a system deployment is tuned through
human intervention or an omnipotent component, Scatter
is tuned by the actions of individual groups using local in-
formation for optimization. Section 6 outlines various tech-
niques for optimizing the resilience, performance, and load-
balance of Scatter groups using local or partially sampled
non-local information.

4. GROUP COORDINATION
In this section, we describe how we use nested consensus

to implement multi-group operations. Section 4.1 character-
izes our requirements for a consistent and available overlay
topology. Section 4.2 details the nested consensus technique,
and Section 4.3 walks through a concrete example of the
group split operation.

4.1 Overlay Consistency Requirements
Scatter’s overlay was designed to solve the consistency and

availability problems discussed in Section 2. As Scatter is
defined in terms of groups rather than nodes, we will slightly
rephrase the assignment consistency correctness condition as
the following system invariant: groups that are adjacent in
the overlay agree on a partitioning of the key-space between
them. For individual links in the overlay to remain highly
available, Scatter maintains an additional invariant: a group
can always reach its adjacent groups. Although these invari-
ants are locally defined they are su�cient to provide global
consistency and availability properties for Scatter’s overlay.
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Within each group, nodes 
coordinate using a Paxos-based 

replicated state machine

Groups coordinate distributed 
transactions using a two-phase 

commit protocol
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Two-phase 
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Figure 3: Overview of nested consensus. Groups co-
ordinate distributed transactions using a two-phase
commit protocol. Within each group, nodes coor-
dinate using the Paxos distributed consensus algo-
rithm.

We can derive further requirements from these conditions
for operations that modify either the set of groups, the mem-
bership of groups, or the partitioning of the key-space among
groups. For instance, in order for a group G

a

to be able to
communicate directly with an adjacent group G

b

, G
a

must
have knowledge of some subset of G

b

’s members. The fol-
lowing property is su�cient, but perhaps stronger than nec-
essary, to maintain this connectivity: every adjacent group
of G

b

has up-to-date knowledge of the membership of G
b

.
This requirement motivated our implementation of opera-
tions that modify the membership of a group G

b

to be ea-

gerly replicated across all groups adjacent to G
b

in the over-
lay.

In keeping with our goal to build on classic fault-tolerant
distributed algorithms rather than inventing ad-hoc proto-
cols, we chose to structure group membership updates as dis-
tributed transactions across groups. This approach not only
satisfied our requirement of eager replication but provided
a powerful framework for implementing the more challeng-
ing multi-group operations such as group splits and merges.
Consider, for example, the scenario in Figure 4 where two
adjacent groups, G1 and G2, propose a merge operation si-
multaneously. To maintain Scatter’s two overlay consistency
invariants, the adjacent groups G0 and G4 must be involved
as well. Note that the changes required by G1’s proposal
and G2’s proposal conflict — i.e., if both operations were
executed concurrently they would violate the structural in-
tegrity of the overlay. These anomalies are prevented by the
atomicity and concurrency control provided by our transac-
tional framework.

4.2 Nested Consensus
Scatter implements distributed transactions across groups

using a technique we call nested consensus (Figure 3). At
a high level, groups execute a two-phase commit protocol

G0
G1 G2 G3

G4
k1

k2 k3 k4

G0

G1UG2 G3
G4

k1
k3 k4

G2UG3

G0
G1

G4
k1

k2 k4

Figure 4: Scenario where two adjacent groups, G1

and G2, propose a merge operation simultaneously.
G1 proposes a merge of G1 and G2, while G2 proposes
a merge of G2 and G3. These two proposals conflict.

(2PC); before a group executes a step in the 2PC protocol it
uses the Paxos distributed consensus algorithm to internally
replicate the decision to execute the step. Thus distributed
replication plays the role of write-ahead logging to stable
storage in the classic 2PC protocol.

We will refer to the group initiating a transaction as the
coordinator group and to the other groups involved as the
participant groups. The following sequence of steps loosely
captures the overall structure of nested consensus:

1. The coordinator group replicates the decision to initi-
ate the transaction.

2. The coordinator group broadcasts a transaction pre-

pare message to the nodes of the participant groups.
3. Upon receiving the prepare message, a participant group

decides whether or not to commit the proposed trans-
action and replicates its vote.

4. A participant group broadcasts a commit or abort mes-
sage to the nodes of the coordinator group.

5. When the votes of all participant groups is known,
the coordinator group replicates whether or not the
transaction was committed.

6. The coordinator group broadcasts the outcome of the
transaction to all participant groups.

7. Participant groups replicate the transaction outcome.
8. When a group learns that a transaction has been com-

mitted then it executes the steps of the proposed trans-
action, the particulars of which depend on the multi-
group operation.

Note that nested consensus is a non-blocking protocol.
Provided a majority of nodes in each group remain alive
and connected, the two phase commit protocol will termi-
nate. Even if the previous leader of the coordinating group
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Figure 5: Group G2 splits into two groups, G2a and
G2b. Groups G1, G2, and G3 participate in the dis-
tributed transaction. Causal time advances verti-
cally, and messages between groups are represented
by arrows. The cells beneath each group name rep-
resent the totally-ordered replicated log of transac-
tion steps for that group.

fails, another node can take its place and resume the trans-
action. This is not the case for applying two phase commit
to managing routing state in a traditional DHT.

In our implementation the leader of a group initiates ev-
ery action of the group, but we note that a judicious use
of broadcasts and message batching lowers the apparently
high number of message rounds implied by the above steps.
We also think that the large body of work on optimizing
distributed transactions could be applied to further opti-
mize performance of nested consensus, but our experimental
evaluations in Section 7 show that performance is reasonable
even with a relatively conservative implementation.

Our implementation encourages concurrency while respect-
ing safety. For example, the storage service (Section 5)
continues to process client requests during the execution of
group transactions except for a brief period of unavailability
during any reconfiguration required by a committed transac-
tion. Also, groups continue to serve lookup requests during
transactions that modify the partitioning of the key-space
provided that the lookups are serialized with respect to the
transaction commit.

To illustrate the mechanics of nested consensus, the re-
mainder of the section walks through an example group split
operation and then considers the behavior of this mechanism
in the presence of faults and concurrent transactions.

4.3 Example: Group Split
Figure 5 illustrates three groups executing a split trans-

action. For clarity, this example demonstrates the necessary
steps in nested consensus in the simplest case — a non-faulty
leader and no concurrent transactions. At t0, G2 has repli-
cated its intent to split into the two groups G2a and G2b

and then sends a 2PC prepare message to G1 and G3. In
parallel, G1 and G3 internally replicate their vote to commit
the proposed split before replying to G0. After each group

has learned and replicated the outcome (committed) of the
split operation at time t3, then the following updates are ex-
ecuted by the respective group: (1) G1 updates its successor
pointer to G2a, (2) G3 updates its predecessor pointer to
G2b, and (3) G2 executes a replicated state machine recon-

figuration to instantiate the two new groups which partition
between them G2’s original key-range and set of member
nodes.

To introduce some of the engineering considerations needed
for nested consensus, we consider the behavior of this ex-
ample in more challenging conditions. First, suppose that
the leader of G1 fails after replicating intent to begin the
transaction but before sending the prepare messages to the
participant groups. The other nodes of G1 will eventually
detect the leader failure and elect a new leader. When the
new leader is elected, it behaves just like a restarted classical
transaction manager: it queries the replicated write-ahead
log and continues executing the transaction. We also im-
plemented standard mechanisms for message timeouts and
re-deliveries, with the caveat that individual steps should be
implemented so that they are idempotent or have no e↵ect
when re-executed.

We return to the question of concurrency control. Say that
G1 proposed a merge operation with G2 simultaneously with
G2’s split proposal. The simplest response is to enforce mu-
tual exclusion between transactions by participant groups
voting to abort liberally. We implemented a slightly less re-
strictive definition of conflicting multi-group operations by
defining a lock for each link in the overlay. Finer-grained
locks reduce the incidence of deadlock; for example, two
groups, G1 and G3, that are separated by two hops in the
overlay would be able to update their membership concur-
rently; whereas with complete mutual exclusion these two
operations would conflict at the group in the middle (G2).

5. STORAGE SERVICE
A consistent and scalable lookup service provides a useful

abstraction onto which richer functionality can be layered.
This section describes the storage service that each Scatter
group provides for its range of the global key-space. To eval-
uate Scatter, we implemented a peer-to-peer Twitter-like ap-
plication layered on a standard DHT-interface. This allowed
us to do a relatively direct comparison with OpenDHT in
Section 7.

As explained in Section 4, each group uses Paxos to repli-
cate the intermediate state needed for multi-group opera-
tions. Since multi-group operations are triggered by environ-
mental changes such as churn or shifts in load, our design
assumes these occur with low frequency in comparison to
normal client operations. Therefore Scatter optimizes each
group to provide low latency and high throughput client
storage.

To improve throughput, we partition each group’s storage
state among its member nodes (see Figure 6). Storage oper-
ations in Scatter take the form of a simple read or write on
an individual key. Each operation is forwarded to the node
of the group assigned to a particular key – referred to as the
primary for that key.

The group leader replicates information regarding the as-
signment of keys to primaries using Paxos, as it does with
the state for multi-group operations. The key assignment is
cached as soft state by the routing service in the other Scat-
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Figure 6: Example Scatter group composed of three
nodes (a, b, c) and assigned to the key-range [k

a

, k
d

).
The group’s key-range is partitioned such that each
node of the group is the primary for some subset of
the group’s key-space. The primary of a key-range
owns those keys and both orders and replicates all
operations on the keys to the other nodes in the
group; e.g., a is assigned [k

a

, k
b

] and replicates all
updates to these keys to b and c using Paxos.

ter groups. All messages are implemented on top of UDP,
and Scatter makes no guarantees about reliable delivery or
ordering of client messages. Once an operation is routed to
the correct group for a given key, then any node in the group
will forward the operation to the appropriate primary. Each
primary uses Paxos to replicate operations on its key-range
to all the other nodes in the group – this provides lineariz-
ability. Our use of the Paxos algorithm in this case behaves
very much like other primary-backup replication protocols –
a single message round usually su�ces for replication, and
operations on di↵erent keys and di↵erent primaries are not
synchronized with respect to each other.

In parliamentary terms [18], the structure within a group
can be explained as follows. The group nodes form the group
parliament which elects a parliamentary leader and then di-
vides the law into disjoint areas, forming a separate commit-

tee to manage each resulting area of the law independently.
All members of parliament are also a member of every com-
mittee, but each committee appoints a di↵erent committee
chair (i.e., the primary) such that no individual member of
parliament is unfairly burdened in comparison to his peers.
Because the chair is a distinguished proposer in his area, in
the common case only a single round of messages is required
to pass a committee decree. Further, since committees are
assigned to disjoint areas of the law, decrees in di↵erent com-
mittees can be processed concurrently without requiring a
total ordering of decrees among committees.

In addition to the basic mechanics described in this sec-
tion and the previous section, Scatter implements additional
optimizations including:

• Leases: Our mechanisms for delegating keys to pri-
maries does not require time-based leases; however,
they can be turned on for a given deployment. Leases
allow primaries to satisfy reads without communicat-
ing to the rest of the group; however, the use of leases
can also delay the execution of certain group opera-

Load
Balance Latency Resilience

Low churn
Uniform latency X

Low churn
Non-uniform latency X X

High churn
Non-uniform latency X X X

Table 1: Deployment settings and system properties
that a Scatter policy may target. A X indicates that
we have developed a policy for the combination of
setting and property.

tions when a primary fails.
• Diskless Paxos: Our implementation of Paxos does

not require writing to disk. Nodes that restart just
rejoin the system as new nodes.

• Relaxed Reads: All replicas for a given key can an-
swer read requests from local – possibly stale – state.
Relaxed reads violate linearizability, but are provided
as an option for clients.

6. SAMPLE POLICIES
An important property of Scatter’s design is the separa-

tion of policy from mechanism. For example, the mechanism
by which a node joins a group does not prescribe how the
target group is selected. Policies enable Scatter to adapt
to a wide range of operating conditions and are a powerful
means of altering system behavior with no change to any of
the underlying mechanisms.

In this section we describe the policies that we have found
to be e↵ective in the three experimental settings where we
have deployed and evaluated Scatter (see Section 7). These
are: (1) low churn and uniform network latency, (2) low
churn and non-uniform network latency, and (3) high churn
and non-uniform network latency. Table 1 lists each of these
settings, and three system properties that a potential policy
might optimize. A X in the table indicates that we have
developed a policy for the corresponding combination of de-
ployment setting and system property. We now describe the
policies for each of the three system properties.

6.1 Resilience
Scatter must be resilient to node churn as nodes join and

depart the system unexpectedly. A Scatter group with 2k+1
nodes guarantees data availability with up to k node fail-
ures. With more than k failures, a group cannot process
client operations safely. To improve resilience, Scatter em-
ploys a policy that prompts a group to merge with an adja-
cent group if its node count is below a predefined threshold.
This maintains high data availability and helps prevent data
loss. This policy trades-o↵ availability for performance since
smaller groups are more e�cient.

To determine the appropriate group size threshold we car-
ried out a simulation, parameterized with the base recon-
figuration latency plotted in Figure 12(b). Figure 7 plots
the probability of group failure for di↵erent group sizes for
two node churn rates with node lifetimes drawn from heavy-
tailed Pareto distributions observed in typical peer-to-peer
systems [3, 32]. The plot indicates that a modest group size
of 8-12 prevents group failure with high probability.
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Figure 7: Impact of group size on group failure prob-
ability for two Pareto distributed node churn rates,
with average lifetimes µ = 100s and µ = 500s.

The resilience policy also directs how nodes join the sys-
tem. A new node samples k random groups and joins the
group that is most likely to fail. The group failure probabil-
ity is computed using node lifetime distribution information,
if available. In the absence of this data, the policy defaults
to having a new node join the sampled group with the fewest
nodes. The default policy also takes into account the physi-
cal diversity of nodes in a group, e.g., the number of distinct
BGP prefixes spanned by the group. It then assigns a joining
node to a group that has the smallest number of nodes and
spans a limited number of BGP prefixes in order to optimize
for both uncorrelated and correlated failures. We performed
a large-scale simulation to determine the impact of the num-
ber of groups sampled and found that checking four groups
is su�cient to significantly reduce the number of reconfigu-
ration operations performed later. If multiple groups have
the expected failure probability below the desired threshold,
then the new node picks the target group based on the policy
for optimizing latency as described below.

6.2 Latency
Client latency depends on its time to reach the primary,

and the time for the primary to reach consensus with the
other replicas. A join policy can optimize client latency by
placing new nodes into groups where their latencies to the
other nodes in the group will be low. The latency-optimized

join policy accomplishes this by having the joining node ran-
domly select k groups and pass a no-op operation in each of
them as a pseudo primary. This allows the node to estimate
the performance of operating within each group. While per-
forming these operations, nodes do not explicitly join and
leave each group. The node then joins the group with the
smallest command execution latency. Note that latency-
optimized join is used only as a secondary metric when there
are multiple candidate groups with the desired resiliency
properties. As a consequence, these performance optimiza-
tions are not at the cost of reduced levels of physical diversity
or group robustness. Experiments in Section 7.1.1 compare
the latency-optimized join policy with k = 3 against the
random join policy.

The latency-optimized leader selection policy optimizes
the RSM command latency in a di↵erent way – the group
elects the node that has the lowest Paxos agreement latency
as the leader. We evaluate the impact of this policy on re-
configuration, merge, and split costs in Section 7.1.3.

EC2-West EC2-East

Emulab

82ms

38ms 79ms

Figure 8: Inter-site latencies in the multi-cluster set-
ting used in experiments.

6.3 Load Balance
Scatter also balances load across groups in order to achieve

scalable and predictable performance. A simple and direct
method for balancing load is to direct a new node to join the
group that is heavily loaded. The load-balanced join policy
does exactly this – a joining node samples k groups, selects
groups that have low failure probability, and then joins the
group that has processed the most client operations in the
recent past. The load-balance policy also repartitions the
keyspace among adjacent groups when the request load to
their respective keyspaces is skewed. In our implementation,
groups repartition their keyspaces proportionally to their re-
spective loads whenever a group’s load is a factor of 1.6 or
above that of its neighboring group. As this check is per-
formed locally between adjacent groups, it does not require
global load monitoring, but it might require multiple itera-
tions of the load-balancing operation to disperse hotspots.
We note that the overall, cumulative e↵ect of many concur-
rent locally optimal modifications is non-trivial to under-
stand. A thorough analysis of the e↵ect of local decisions on
global state is an intriguing direction for future work.

7. EVALUATION
We evaluated Scatter across three deployment environ-

ments, corresponding to the churn/latency settings listed
in Table 1: (1) single cluster: a homogeneous and ded-
icated Emulab cluster to evaluate the low churn/uniform
latency setting; (2) multi-cluster: multiple dedicated clus-
ters (Emulab and Amazon’s EC2) at LAN sites connected
over the wide-area to evaluate the low churn/non-uniform
latency setting; (3) peer-to-peer: machines from Planet-
Lab in the wide-area to evaluate the high churn/non-uniform
latency setting.

In all experiments Scatter ran on a single core on a given
node. On Emulab we used 150 nodes with 2.4GHz 64-bit
Xeon processor cores. On PlanetLab we used 840 nodes,
essentially all nodes on which we could install both Scatter
and OpenDHT.

For multi-cluster experiments we used 50 nodes each from
Emulab (Utah), EC2-West (California) and EC2-East (Vir-
ginia). The processors on the EC2 nodes were also 64-bit
processor cores clocked at 2.4GHz. Figure 8 details the inter-
site latencies for the multi-cluster experiments. We per-
formed our multi-cluster experiments using nodes at physi-
cally distinct locations in order to study the performance of
our system under realistic wide-area network conditions.

We used Berkeley-DB for persistent disk-based storage,
and a memory cache to pipeline operations to BDB in the
background.

Section 7.1 quantifies specific Scatter overheads with de-
ployments on dedicated testbeds (single-cluster, multi-cluster).
We then evaluate Scatter at large scales on PlanetLab with
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Figure 10: The impact of join policy on write la-
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varying churn rates in the context of a Twitter-like publish-
subscribe application called Chirp in Section 7.2, and also
compare it to a Chirp implementation on top of OpenDHT.

7.1 Microbenchmarks
In this section we show that a Scatter group imposes a

minor latency overhead and that primaries dramatically in-
crease group operation processing throughput. Then, we
evaluate the latency of group reconfiguration, split and merge.
The results indicate that group operations are more expen-
sive than client operations, but the overheads are tolerable
since these operations are infrequent.

7.1.1 Latency
Figure 9 plots a group’s client operation processing la-

tency for single cluster and multi-cluster settings. The plot-
ted latencies do not include the network delay between the
client and the group. The client perceived latency will have
an additional delay component that is simply the latency
from the client to the target group. We present the end-to-
end application-level latencies in Section 7.2.

Figure 9(a) plots client operation latency for di↵erent op-
erations in groups of di↵erent sizes. The latency of leased
reads did not vary with group size – it is processed locally by
the primary. Non-leased reads were slightly faster than pri-

mary writes as they di↵er only in the storage layer overhead.
Non-primary writes were significantly slower than primary-
based operations because the primary uses the faster leader-
Paxos for consensus.

In the multi-cluster setting no site had a node majority.
Figure 9(b) plots the latency for operations that require a
primary to coordinate with nodes from at least one other
site. As a result, inter-cluster WAN latency dominates client
operation latency. As expected, operations initiated by pri-
maries at EC2-East had significantly higher latency, while
operations by primaries at EC2-West and Emulab had com-
parable latency.

To illustrate how policy may impact client operation la-
tency, Figure 10 compares the impact of latency-optimized
join policy with k = 3 (described in Section 6.2) to the
random join policy on the primary’s write latency in a Plan-
etLab setting. In both PlanetLab deployments, nodes joined
Scatter using the respective policy, and after all nodes joined,
millions of writes were performed to random locations. The
e↵ect of the latency-optimized policy is a clustering of nodes
that are close in latency into the same group. Figure 10
shows that this policy greatly improves write performance
over the random join policy – median latency decreased by
45%, from 124ms to 68ms.

Latencies in the PlanetLab deployment also demonstrate
the benefit of majority consensus in mitigating the impact
of slow-performing outlier nodes on group operation latency.
Though PlanetLab nodes are globally distributed, the 124ms
median latency of a primary write (with random join pol-
icy) is not much higher than that of the multi-cluster set-
ting. Slow nodes impose a latency cost but they also benefit
the system overall as they improve fault tolerance by con-
sistently replicating state, albeit slowly.

7.1.2 Throughput
Figure 11 plots write throughput of a single group in single

cluster and multi-cluster settings. Writes were performed on
randomly selected segments. Throughput was determined
by varying both the number of clients (up to 20) and the
number of outstanding operations per client (up to 100).

The figure demonstrates the performance benefit of us-
ing primaries. In both settings, a single leader becomes a
scalability bottleneck and throughput quickly degrades for
groups with more nodes. This happens because the message
overhead associated with executing a group command is lin-
ear in group size. Each additional primary, however, adds
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Figure 11: Scatter group throughput in single cluster and multi-cluster settings.
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Figure 12: CDFs of group reconfiguration latencies for a P2P setting with two sets of policies: (a) random
join and random leader, and (b) latency-optimized join and latency-optimized leader.

extra capacity to the group since primaries process client op-
erations in parallel and also pipeline client operations. The
result is that in return for higher reliability (a↵orded by hav-
ing more nodes) a group’s throughput decreases only slightly
when using primaries.

Though the latency of a typical operation in the multi-
cluster deployment is significantly higher than the corre-
sponding operation in the single cluster setting, group through-
put in the multi-cluster setting (Figure 11(a)) is within 30%
of the group throughput in a single cluster setting (Fig-
ure 11(b)). And for large groups this disparity is marginal.
The reason for this is the pipelining of client requests by
group primaries, which allows the system to mask the cost
of wide-area network communication.

7.1.3 Reconfiguration, Split, and Merge
We evaluated the latency cost of group reconfiguration,

split, and merge operations. In the case of failure, this la-
tency is the duration between a failure detector sensing a
failure and the completion of the resulting reconfiguration.
Table 2 lists the average latencies and standard deviations
for single and multi- cluster settings across thousands of runs
and across group sizes 2-13. These measurements do not ac-
count for data transfer latency.

Basic single cluster latency. In the single cluster set-
ting all operations take less than 10ms. Splitting and merg-
ing are the most expensive operations as they require co-

Single cluster Multi-cluster Multi-cluster
(Unopt.) (Opt. leader)

Failure 2.04 ± 0.44 90.9 ± 31.8 55.6 ± 7.6
Join 3.32 ± 0.54 208.8 ± 48.8 135.8 ± 15.2
Split 4.01 ± 0.73 246.5 ± 45.4 178.5 ± 15.1

Merge 4.79 ± 1.01 307.6 ± 69.8 200.7 ± 24.4

Table 2: Group reconfiguration, split, and merge
latencies in milliseconds and standard deviations for
di↵erent deployment settings.

ordination between groups, and merging is more expensive
because it involves more groups than splitting.

Impact of policy on multi-cluster latency. The single-
cluster setting provides little opportunity for optimization
due to latency homogeneity. However, in the multi-cluster
settings, we can decrease the latency cost with a leader elec-
tion policy. Table 2 lists latencies for two multi-cluster de-
ployments, one with a random leader election policy, and
one that used a latency-optimized leader policy described in
Section 6.2. From the table, the latency optimizing policy
significantly reduced the latency cost of all operations.

Impact of policy on PlanetLab latency. Figure 12
plots CDFs of latencies for the PlanetLab deployment. It
compares the random join with random leader policies (Fig-
ure 12(a)) against latency-optimized join and latency-optimized
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leader policies described in Section 6.2 (Figure 12(b)). In
combination, the two latency optimizing policies shift the
CDF curves to the left, decreasing the latency of all opera-
tions – reconfiguration, split and merge.

7.2 Application-level Benchmarks
To study the macro-level behavior of Scatter, we built

and deployed Chirp, a Twitter-like application. In this sec-
tion we compare PlanetLab deployments of Chirp on top
of Scatter and OpenDHT. We compare our implementation
with OpenDHT, which is an open-source DHT implemen-
tation that is currently deployed on PlanetLab. OpenDHT
uses lightweight techniques for DHT maintenance, and its
access latencies are comparable to that of other DHTs [28].
It therefore allows us to evaluate the impact of the more
heavy-weight techniques used in Scatter.

For a fair comparison, both Scatter and OpenDHT send
node heartbeat messages every 0.5s. After four consecu-
tive heartbeat failures OpenDHT re-replicates failed node’s
keys, and Scatter reconfigures to exclude the failed node and
re-partitions the group’s keyspace among primaries. Addi-
tionally, Scatter used the same base-16 recursive routing al-
gorithm as is used by OpenDHT. Only forward and reverse
group pointers were maintained consistently in Scatter, but
it relied on these only when the soft routing state turned
out to be inconsistent. In both systems the replication fac-
tor was set to provide at least seven 9s of reliability, i.e.,
with an average lifetime of 100 seconds, we use 9 replicas
(see Figure 7).

To induce churn we use two di↵erent lifetime distributions,
Poisson and Pareto. Pareto is a typical way of modeling
churn in P2P systems [3, 32], and Poisson is a common ref-
erence distribution. For both churn distributions a node’s
join policy joined the group with the lowest expected resid-
ual lifetime — for Poisson this is equivalent to joining the
group with the fewest nodes.

7.2.1 Chirp overview
Chirp works much like Twitter; to participate in the sys-

tem a user u creates a user-name, which is associated with
two user-specific keys, Ku

updates

and Ku

follows

, that are com-
puted by hashing u’s user-name. A user may write and post
an update, which is at most 140 characters in length; follow
another user; or fetch updates posted by the users being fol-
lowed. An update by a user u is appended to the value of
Ku

updates

. When u follows u0, the key Ku

0
updates

is appended
to Ku

follows

, which maintains the list of all users u is follow-
ing.
Appending to a key value is implemented as a non-atomic

read-modify-write, requiring two storage operations. This
was done to more fairly compare Scatter and OpenDHT.
A key’s maximum value was 8K in both systems. When a
key’s value capacity is exceeded (e.g., a user posts over 57
maximum-sized updates), a new key is written and the new
key is appended to the end of the value of the old key, as a
pointer to the continuation of the list. The Chirp client ap-
plication caches previously known tails of each list accessed
by the user in order to avoid repeatedly scanning through
the list to fetch the most recent updates. In addition, the
pointer to the tail of the list is stored at its header so that a
user’s followers can e�ciently access the most recent updates
of the user.
We evaluated the performance of Chirp on Scatter and

OpenDHT by varying churn, the distribution of node life-
times, and the popularity distribution of keys. For the ex-
periments below, we used workloads obtained from Twitter
measurement studies [17, 15]. The measurements include
both the updates posted by the users and the structure of
the social network over which the updates are propagated.

7.2.2 Impact of Churn
We first evaluate the performance by using node lifetime

distributions that are Poisson distributed and by varying the
mean lifetime value from 100 seconds to 1000 seconds. We
based our lifetime distributions on measurements of real-
world P2P systems such as Gnutella, Kazaa, FastTrack,
and Overnet [32, 13, 7, 34]. For this experiment, the up-
date/fetch Chirp workload was synthesized as follows: we
played a trace of status updates derived from the Twitter
measurement studies, and for each user u posting an up-
date, we randomly selected one of u’s followers and issued
a request from this user to the newly posted update. Fig-
ure 13 plots performance, availability, and consistency of the
fetches in this workload as we vary churn. Each data point
represents the mean value for a million fetch operations.

Figure 13(a) indicates that the performance of both sys-
tems degrades with increasing churn as routing state be-
comes increasingly stale, and the probability of the value
residing on a failed node increases. OpenDHT slightly out-
performs Scatter in fetch latency because a fetch in Scatter
incurs a round of group communication.

Figure 13(b) shows that Scatter has better availability
than OpenDHT. The availability loss in OpenDHT was of-
ten due to the lack of structural integrity, with inconsistent
successor pointer information or because a key being fetched
has not been assigned to any of the nodes (see Figure 1). To
compute the fetch failure for Scatter in Figure 13(b) an op-
eration was considered to have failed if a response has not
been received within three seconds. The loss of availability
for Scatter was because an operation may be delayed for
over three seconds when the destination key belonged to a
group undergoing reconfiguration in response to churn.

Figure 13(c) compares the consistency of the values stored
in the two systems. OpenDHT’s inconsistency results con-
firmed prior studies, e.g., [31] — even at low churn rates over
5% of the fetches were inconsistent. These inconsistencies
stem from a failure to keep replicas consistent, either because
an update to a replica failed or because di↵erent nodes have
di↵erent views regarding how the keyspace is partitioned.
In contrast, Scatter had no inconsistencies across all exper-
iments.

7.2.3 Heavy tailed node lifetimes
Next, we considered a node lifetime distribution in which

nodes are drawn from a heavy-tailed Pareto distribution that
is typical of many P2P workloads. Heavy-tailed distribu-
tions exhibit “memory”, i.e., nodes who have been part of
the system for some period of time are more likely to persist
than newly arriving nodes. Scatter provides for a greater
ability to optimize for skewed node lifetime distribution due
to its group abstraction. Note that all of the keys associ-
ated with a group are replicated on the same set of nodes,
whereas in OpenDHT each node participates in multiple dif-
ferent replica sets. In this setting, Scatter takes into account
the measured residual lifetime distribution in the various re-
configuration operations, e.g., which group an arriving node
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Figure 13: Impact of varying churn rates for Poisson distributed lifetimes. The graphs plot measurements
for P2P deployments of Chirp for both Scatter (dashed line), and OpenDHT (solid line).
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Figure 14: Impact of varying churn rates for Pareto distributed lifetimes (↵ = 1.1).

should join, when should groups merge or split, and in de-
termining the optimal size of the group to meet the desired
(seven 9s) availability guarantee. For these experiments the
workload was generated in the same way as the workload
used in Section 7.2.2.

OpenDHT slightly outperformed Scatter with respect to
access latency (see Figure 14(a)). However, Scatter’s avail-
ability fared better under the heavy-tailed churn rate than
that of OpenDHT (Figure 14(b)). As before, Scatter had
no inconsistencies, while OpenDHT was more inconsistent
with the heavy tailed churn rate (Figure 14(c)).

7.2.4 Non-uniform load
In the next experiment, we studied the impact of high load

on Scatter. For this experiment, we batched and issued one
million updates from the Twitter trace, and after all of the
updates have been posted, the followers of the selected users
fetched the updates. The fetches were issued in a random
order and throttled to a rate of 10,000 fetches per second
for the entire system. Note that in this experiment the keys
corresponding to popular users received more requests, as
the load is based on social network properties. The load is
further skewed by the fact that users with a large number
of followers are more likely to post updates [17].

Figure 15(a) shows that Scatter had a slightly better fetch
latency than OpenDHT due to its better load balance prop-
erties. However, latency in Scatter tracked OpenDHT’s la-
tency as in prior experiments (Figures 13(a) and 14(a)).

Figure 15(b) plots the normalized node load for Scat-
ter and OpenDHT. This was computed in both systems by
tracking the total number of fetch requests processed by a

node, and then dividing this number by the mean. The fig-
ure shows that Scatter’s load-balance policy (Section 6.3)
is e↵ective at distributing load across nodes in the system.
OpenDHT’s load distribution was more skewed.

7.2.5 Scalability
For our final set of experiments, we evaluated the scalabil-

ity of Scatter and its ability to adapt to variations in system
load. We also compared Scatter with ZooKeeper, a system
that provides strongly consistent storage. As ZooKeeper
is a centralized and scale-limited system, we built a decen-
tralized system comprising of multiple ZooKeeper instances,
where the global keyspace is statically partitioned across
the di↵erent instances. We also optimized the performance
of this ZooKeeper-based alternative by basing the keyspace
partitioning on the historical load estimates of the various
key values; we split our workload into two halves, used the
first half to derive the keyspace partitioning, and then per-
formed the evaluations using the second half of the trace.
Each ZooKeeper instance comprised of five nodes. We per-
formed these experiments without node churn, as the system
based on ZooKeeper did not have a management layer for
dealing with churn.

Figure 16 plots the average throughput results with stan-
dard deviations as we vary the number of nodes in the sys-
tem. The throughput of Scatter is comparable to that of the
ZooKeeper-based system for small number of nodes, indicat-
ing that Scatter stacks up well against a highly optimized
implementation of distributed consensus. As we increase the
number of nodes, the performance of ZooKeeper-based alter-
native scales sub-linearly. This indicates that, even though
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Figure 16: Comparison of Scatter with a system that
composes multiple ZooKeeper instances. The figure
provides the throughput of the two systems as we
vary the number of nodes.

the keyspace partitioning was derived based on historical
workload characteristics, the inability to adapt to dynamic
hotspots in the access pattern limits the scalability of the
ZooKeeper-based system. Further, the variability in the
throughput also increases with the number of ZooKeeper
instances used in the experiment. In contrast, Scatter’s
throughput scales linearly with the number of nodes, with
only a small amount of variability due to uneven group sizes
and temporary load skews.

8. RELATED WORK
Our work is made possible by foundational techniques

for fault tolerant distributed computing such as Paxos [18],
replicated state machines [33], and transactions [20]. In par-
ticular, our design draws inspiration from the implementa-
tion of distributed transactions across multiple replication
groups in Viewstamped Replication [25].

A number of recent distributed systems in industry also
rely on distributed consensus algorithms to provide strongly
consistent semantics — such systems provide a low-level con-
trol service for an ecosystem of higher-level infrastructure
applications. Well-known examples of such systems include
Google’s Chubby lock service [2] and Yahoo’s ZooKeeper

coordination service [14]. Scatter extends the techniques in
such systems to a larger scale.

At another extreme, peer-to-peer systems such as dis-
tributed hash tables (DHTs) [26, 30, 22, 29] provide only
best-e↵ort probabilistic guarantees, and although targeted
at planetary scale have been found to be brittle and slow in
the wild [27, 28]. Still, the large body of work on peer-to-
peer system has numerous valuable contributions. Scatter
benefits from many decentralized self-organizing techniques
such as sophisticated overlay routing, and the extensive mea-
surements on workload and other environmental character-
istics in this body of work (e.g. [11]) are invaluable to the
design and evaluation of e↵ective policies [23].

One recent system showing that DHTs are a valuable
abstraction even in an industrial setting is Amazon’s Dy-
namo [10], a highly available distributed key-value store
supporting one of the largest e-commerce operations in the
world. Unlike Scatter, Dynamo chooses availability over
consistency, and this trade-o↵ motivates a di↵erent set of
design choices.

Lynch et al. [21] propose the idea of using state machine
replication for atomic data access in DHTs. An important
insight of this theoretical work is that a node in a DHT can
be made more robust if it is implemented as a group of nodes
that execute operations atomically using a consensus proto-
col. An unsolved question in the paper is how to atomically
modify the ring topology under churn, a question which we
answer in Scatter with our principled design of multi-group
operations.

Motivated by the same problems with large scale DHTs
(as discussed in Section 2), Castro et al. developed MSPas-
try [4]. MSPastry makes the Pastry [30] design more de-
pendable, without sacrificing performance. It does this with
robust routing, active probes, and per-hop acknowledgments.
A fundamental di↵erence between MSPastry and Scatter
is that Scatter provides provable consistency guarantees.
Moreover, Scatter’s group abstraction can be reused to sup-
port more advanced features in the future, such as consis-
tency of multi-key operations.

Although we approached the problem of scalable consis-
tency by starting with a clean slate, other approaches in
the literature propose mechanisms for consistent operations
layered on top of a weakly-consistent DHT. Etna [24] is a
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representative system of this approach. Unfortunately such
systems inherit the structural problems of the underlying
data system, resulting in lower object availability and sys-
tem e�ciency. For example, inconsistencies in the under-
lying routing protocol will manifest as unavailability at the
higher layers (see Figures 13(b) and 14(b)).

9. CONCLUSION
This paper presented the design, implementation and eval-

uation of Scatter — a scalable distributed key-value storage
system that provides clients with linearalizable semantics.
Scatter organizes computing resources into fault-tolerant groups,
each of which independently serve client requests to seg-
ments of the keyspace. Groups employ self-organizing tech-
niques to manage membership and to coordinate with other
groups for improved performance and reliability. Principled
and robust group coordination is the primary contribution
of our work.

We presented detailed evaluation results for various de-
ployments. Our results demonstrate that Scatter is e�-
cient in practice, scales linearly with the number of nodes,
and provides high availability even at significant node churn
rates. Additionally, we illustrate how Scatter provides tun-
able knobs to e↵ectively adapt to the di↵erent deployment
settings for significant improvements in load balance, la-
tency, and resilience.
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