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Abstract

A semantic jile s~stem is an information storage system that

provides flexible associative access to the system’s contents

by automatically extracting attributes from files with file

type specific transducers. Associative access is provided by a
conservative extension to existing tree-structured file system
protocols, and by protocols that are designed specifically for
content based access. Compatibility with existing file sys-
tem protocols is provided by introducing the concept of a
virtual directory. Virtual directory names are interpreted as

queries, and thus provide flexible associative access to files

and directories in a manner compatible with existing soft-

ware. Rapid attribute-based access to file system contents

is implemented by automatic extraction and indexing of key

properties of file system objects. The automatic indexing of

files and directories is called “semantic” because user pro-

grammable transducers use information about the semantics

of updated file system objects to extract the properties for

indexing. Experimental results from a semantic file system

implementation support the thesis that semantic file systems

present a more effective storage abstraction than do tradi-

tional tree structured file systems for information sharing

and command level programming.

1 Introduction

We would like to develop an approach for information stor-

age that both permits users to share information more ef-

fectively, and provides reductions in programming effort and

program complexity. To be effective this new approach must

be used, and thus an approach that provides a transition

path from existing file systems is desirable.

In this paper we explore the thesis that semantic file

systems present a more effective storage abstraction than

do traditional tree structured file systems for information

sharing and command level programming. A semantic file

system is an information storage system that provides flexi-
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ble associative access to the system’e contents by automat-

ically extracting attribute from files with file type specific

transducers. Associative access is provided by a conservative

extension to existing tree-structured file system protocols,

and by protocols that are designed specifically for content

based accese. Automatic indexing is performed when files

or directories are created or updated.

The automatic indexing of files and directories is called

“semantic” because user programmable transducers use in-

formation about the semantics of updated file system ob-

jects to extract the properties for indexing. Through the

use of specialized transducers, a semantic file system “un-

derstands” the documents, programs, object code, mail, im-

ages, name service databases, bibliographies, and other files

contained by the system. For example, the transducer for a

C program could extract the names of the procedures that

the program exporte or imports, procedure types, and the

files included by the program. A semantic file system can be

extended easily by users through the addition of specialized

transducers.

Associative access is designed to make it easier for users

to share information by helping them discover and locate

programs, documents, and other relevant objects. For ex-

ample, files can be located baaed upon transducer generated

attributes such as author, exported or imported procedures,

words contained, type, and title.

A semantic file system provides both a user interface

and an application programming interface to its associw

tive access facilities. User interfaces based upon browsers

[Inf90, Ver90] have proven to be effective for query based

access to information, and we expect browsers to be offered

by most semantic file system implementations. Application

programming interfaces that permit remote access include

specialized protocols for information retrieval [NIS91], and

remote procedure call based interfaces [GCS87].

It is also possible to export the facilities of a semantic

file system without introducing any new interfaces. This

can be accomplished by extending the naming semantics of

files and directories to support associative access. A benefit

of this approach is that all existing applications, including

user interfaces, immediately inherit the benefits of associa-

tive access.

A semantic file system integrates associative accees into

a tree structured file system through the concept of a virtual
directory. Vktual directory names are interpreted as queries

and thus provide flexible associative access to files and di-

rectories in a manner compatible with existing software.

For example, in the following session with a semantic
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file system we first locate within a library all of the files
that export the procedure lookup.fault, and then further
restrict this set of files to those that have the extension c:

~ cd /s fs/exports: /lookup_ fault
X 1s -F

virtdir.query. c~ virtdir-query. OQ

% cd ext:lc

% 1s -F

virtdir.query .c~

%

Semantic file systems can provide associative access to

a group of file servers in a distributed system. This dis-

tributed search capability provides a simplified mechanism

for locating information in large nationwide file systems.

Semantic file systems should be of use to both individu-

als and groups. Individuals can use the query facility of a

semantic file system to locate files and to provide alternative

views of data. Groups of users should find semantic file sys-

tems an effective way to learn about shared files and to keep

themselves uptodate about thestatus ofgroup projects. As

workgroups increasingly use file servers as shared library re-

sources we expect that semantic file system technology will

become even more useful.

Because semantic file systems are compatible with exist-

ing tree structured file systems, implementations of semantic

file systems can be fully compatible with existing network

file system protocols such w NFS [SGK*85, Sun88] and AFS

[Kaz88]. NFS compatibility y permits existing client machines

to use the indexing and associative access features of a se-

mantic file system without modification. Files stored in a

semantic file system via NFS will be automatically indexed,

and query result sets will appear as virtual directories in

the NFS name space. This approach directly addresses the

“dusty data” problem of existing UNIX file systems by al-

lowing existing UNIX file servers to be converted transpar-

ently to semantic file systems.

We have built a prototype semantic file system and run

a series of experiments to test our thesis that semantic file

systems present a more effective storage abstraction than do

traditional tree structured file systems for information shar-

ing and command level programming. We tried to locate

various documents and programs in the file system using

unmodified NFS clients. The results of these experiments

suggest that semantic file systems can be used to find in-

formation more quickly than is possible using ordinary file

systems, and add expressive power to command level pro-

gramming languages.

In the remainder of the paper we discuss previous re-

search (Section 2), introduce the interface and a semantics

for a semantic file system (Section 3), review the design

and implement ation of a semantic file system (Section 4),

present our experimental results (Section 5) and conclude

with observations on other applications of virtual directo-

ries (Section 6).

2 Previous Work

Associative access to on-line information was pioneered in

early bibliographic retrieval systems where it was found to

be of great value in locating information in large databases
[Sa183]. The utility of associative access motivated its sub-

sequent application to file and document management. The

previous research we build upon includes work on personal

computer indexing systems, information retrieval syst ems,

distributed file systems, new naming models for file systems,

and wide-area naming systems:

●

●

Q

●

Personal computer indexing systems such as On Loca-

tion [Tec90], Magellan [Cor], and the Digital Librar-

ian [NC89b, NC89a] provide window-based file system

browsers that permit word-based associative access to

file system contents. Magellan and the Digital Librar-

ian permit searches based upon boolean combinations

of words, while On Location is limited to conjunctions

of words. All three systems rank matching files using a

relevance score. These systems all create indexes to re-

duce search time. On Location automatically indexes

files in the background, while Magellan and the Digi-

tal Librarian require users to explicitly create indexes.

Both On Location and the Digital Librarian permit

users to add appropriate keyword generation programs

[Cla90, NC89b] to index new types of files. However,

Magellan, On Location, and the Digital Librarian are

limited to a list of words for file description.

Information retrieval systems such as Basis [Inf90],

Verity [Ver90], and Boss DMS [Log91] extend the se-

mantics of personal computer indexing systems by

adding field specific queries. Fields that can be queried

include document category, author, type, title, identi-

fier, status, date, and text contents. Many of these

document relationships and attributes can be stored

in relational database systems that provide a general

query language and support application program ac-

cess. The WAIS system permits information at remote

sites to be queried, but relies upon the user to choose

an appropriate remote host from a directory of services

[KM91, Ste91]. Distributed information retrieval sys-

tems [GCS87, DAN091] perform query routing based

upon database content labels to ensure that all rele-

vant hosts are contacted in response to a query.

Distributed file systems [Sun89, Kaz88] provide remote

access to files with tree structured names. These sys-

tems have enabled file sharing among groups of people

and over wide geographic areas. Existing UNIX tools

such as grep and find [Gro86] are often used to per-

form associative searches in distributed file systems.

New naming models for file systems include the Portable

Common Tool Environment (PCTE) [GMT86], the

Property List DIRectory system (PLDIR) [Mog86],

Virtual Systems [Neu90] and Sun’s Network Software

Environment (NSE) [SC88]. PCTE provides an entity-

relationship database that models the attributes of

objects including files. PCTE has been implemented

as a compatible extension to UNIX. However, PCTE

users must use specialized tools to query the PCTE

database, and thus do not receive the benefits of asso-

ciative access via a file system interface. The Property

List DIRectory system implements a file system model

designed around file properties and offers a Unix front-

end user interface. Similarly, Virtual Systems permit

users to hand-craft customized views of services, files,

and directories. However, neither system provides au-

tomatic attribute extraction (although [M0g86] alludes

to it as a possible extension) or attribute-based access

to their contents. NSE is a network transparent soft-

ware development tool that allows different views of

17



a file system hierarchy called environments to be de-

fined. Unlike virtual directories, these views must be

explicitly created before being accessed.

● Wide-area naming systems such as X.5OO [CC188], Pro-

file [Pet88], and the Networked Resource Discovery

Project [Sch89] provide attribute-based access to a wide

variety of objects, but they are not integrated into a

file system nor do they provide automatic attribute-

based access to the contents of a file system.

Key advances offered by the present work include:

●

●

●

Virtual directories integrate associative access into ex-

isting tree structured file systems in a manner that is

compatible with existing applications.

Virtual directories permit unmodified remote hosts to

access the facilities of a semantic file system with ex-

isting network file system protocols.

Transducers can be programmed by users to perform

arbitrary interpretation of file and directory contents

in order to produce a desired set of field-value pairs for

later retrieval. The use of fields allows transducers to

describe many aspects of a file, and thus permits sub-

sequent sophisticated associative access to computed

properties. In addition, transducers can identify en-

tities within files as independent objects for retrieval.

For example, individual mail messages within a mail

file can be treated as independent entities.

Previous research supports our view that overloading file

system semantics can improve system uniformity and utility

when compared with the alternative of creating a new inter-

face that is incompatible with existing applications. Exam-

ples of this approach include:

Devices in UNIX appear as special files [RT74] in the

/dev directory, enabling them to be used as ordinary

files from UNIX applications.

UNIX System III named pipes [Roc85, p. 159fj appear

as special files, enabling programs to rendezvous using

file system operations.

File systems appear as special directories in Automount

daemon directories [CL89, Pen90, PW90], enabling the

binding of a name to a file system to be computed at

the time of reference.

Processes appear as special directories in Killian’s pro-

cess file system [Ki184], enabling process observation

and control via file operations.

Services appear as special directories in Plan 9

[PPTT90], enabling service access in a distributed sys-

tem through file system operations in the service’s

name space.

Arbitrary semantics can be associated with files and

directories using Watchdogs [B P88], Pseudo Devices

[W088], and Filters [Neu90], enabling file system ex-

tensions such as terminal drivers, network protocols, X

servers, file access control, file compression, mail no-

tification, user specific directory views, heterogeneous

file access, and service access.

The ATTIC system [CG91] uses a modified NFS server

to provide transparent access to automatically com-

pressed files.

author, smith

( -.\, a . . . . Object exports lnlt-xdr_rcv
..”! “

J I Transducer I exports move_xdr_reP
imports malloc

(-)-p+ %:,,,”,
text fine

Figure I: Sample Transducer Output

3 Semantic File System Semantics

Semantic file systems can implement a wide variety of se-

mantics. In this section we present one such semantics that

we have implemented. Section 6 describes some other pos-

sibilities.

Files stored in a semantic file system are interpreted by

file type specific transducers to produce a set of descriptive

attributes that enable later retrieval of the files. & attribute

is a field-value pair, where a field describes a property of a file

(such as its author, or the words in its text), and a value is

a string or an integer. A given file can have many attributes

that have the same field name. For examrJe. a text file would

have as many text: attributes as it h~ unique words. By

convention, field names end with a colon.

A user extensible transducer table is used to determine

the transducer that should be used to interpret a given file

type. One way of implementing a transducer table is to

permit users to store subtree specific transducers in the

subtree’s parent directory, and to look for an appropriate

transducer at indexing time by searching up the directory

hierarchy.

To accommodate files (such as mail files) that contain

multiple objects we have generalized the unit of associative

access beyond whole files. We call the unit of associative

access an entity. An entity can consist of an entire file, an

object within a file, or a directory. Directories are assigned

attributes by directory transducers.

A transducer is a filter that takes as input the contents of

a file, and outputs the file’s entities and their corresponding

at tribut es. A simple transducer could treat an input file as

a single entity, and use the file’s unique words as attributes.

A complex transducer might perform type reconstruction

on an input file, identify each procedure as an independent

entity and use attributes to record their reconstructed types.

Figure 1 shows examples of an object file transducer, a mail

file transducer, and a ~ file transducer.

The semantics of a semantic file system can be readily
extended because users can write new transducers. Trans-

ducers are free to use new field names to describe special

attributes. For example, a CAD file transducer could intro-

duce a drawing: field to describe a drawing identifier.

The associative access interface to a semantic file sYs-

tem is based upon queries that describe desired attributes

of entities. A query is a description of desired attributes

that permits a high degree of selectivity in locating entities

of interest. The result of a query is a set of files and/or

directories that contain the entities described. Queries are



boolean combinations of attributes, where each attribute de-

scribes the desired value of a field. It is also possible to ask

for all of the values of a given field in a query result set.

The values of a field can be useful when narrowing a query

to eliminate entities that are not of interest.

A semantic file system is query consistent when it guar-

antees query results that correspond to its current contents.

If updates cease to the contents of a semantic file system it

will event u ally be query consistent. This property is known

as convergent consistency. The rate at which a given imple-

mentation converges is administratively determined by bal-

ancing the user benefits of fast convergence when compared

with the higher processing cost of indexing rapidly changing

entities multiple times. It is of course possible to guarantee

that a semantic file system is always query consistent with

appropriate use of atomic actions.

In the remainder of this section we will explore how con-

junctive queries can be mapped into tree-structured path

names. As we mentioned earlier, this is only one of the pos-

sible interfaces to the query capabilities of a semantic file

system. It is also possible to map disjunction and negation

into tree-structured names, but they have not been imple-

mented in our prototype and we will not discuss them.

Queries are performed in a semantic file system through

use of virtual directories to describe a desired view of file

system contents. A virtual directory is computed on de-

mand by a semantic file system. From the point of view of a

client program, a virtual directory is indistinguishable from

an ordinary directory. However, unlike ordinary directories,

virtual directories do not have to be explicitly created to be

accessed.

The query facilities of a semantic file system appear as

virtual directories at each level of the directory tree. A

field virtual directory is named by a field, and has one entry

for each possible value of its corresponding field. Thus in

/sfs, the virtual directory /sf s/owner: corresponds to the

owner: field. The field virtual directory /sf s/owner: would

have one entry for each owner that has written a file in /sfs.

For example:

X 1s -F /s fs/owner:

j ones/ root/ smith/

z

The entries in a field virtual directory are value virtual

directories. A value virtual directory has one entry for each

entity described by a field-value pair. Thus the value vir-

tual directory /sf s/owner: /smith contains entries for files

in /sfs that are owned by Smith. Each entry is a symbolic

link to the file. For example:

% 1S -F /sf s/owner: /smith
bio. txt@ paper. tex@ prop. t ex@

x

When an entity is smaller than an entire file, a view of

the file can be presented by extending file naming semantics

to include view specifications. To permit the conjunction of

attributes in a query, value virtual directories contain field

virtual directories. For example:

X 1s -F /sf s/owner: /smith/text: /resume

bio. txt@

%

A pleasant property of virtual directories is their syn-

ergistic interaction with existing file system facilities. For

example, when a symbolic link names a virtual directory

the link describes a computed view of a file system. It is

also possible to use file save programs, such as tar, on vir-

tual directories to save a computed subset of a file system.

It would be possible also to generalize virtual directories to

present views of file systems with respect to a certain time

in the past.

A semantic file system can be overlaid on top of an or-

dinary file system, allowing all file system operations to go

through the SFS server. The overlaid approach has the ad-

vantage that it provides the power of a semantic file system

to a user at all times without the need to refer to a distin-

guished directory for query processing. It also allows the

server to do indexing in response to file system mutation

operations. Alternatively, a semantic file system may cre-

ate virtual directories that contain links to the files in the

underlying file system. This means that subsequent client

operations bypass the semantic file system server.

When an overlaid approach is used field virtual directo-

ries must be invisible to preserve the proper operation of

tree traversal applications. A directory is inwisible when it

is not returned by directory enumeration requests, but can

be accessed via explicit lookup. If field virtual directories

were visible, the set of trees under /sfs in our above ex-

ample would be infinite. Unfortunately making directories

invisible causes the UNIX command pwd to fail when the

current pat h includes an invisible directory. It is possible to

fix this through inclusion of unusual . . entries in invisible

directories.

The distinguished field: virtual directory makes field

virtual directories visible. This permits users to enumerate

possible search fields. The field: directory is itself invisi-

ble. For example:

% 1s -F /sfs/field:

author: / exports: / owner: / text:/

category: / ext: / priority:/ title:/

date:/ imports: / subject: / type: /

dir:/ name: /

% 1s -F /s fs/field:/text: /semantic/owner: /jones
raail. txt~ paper. tex~ prop.tex@

x

Thesyntax ofsemantic file system path names is:

<sfs-path> ::= /<pn> I <pn>

<pn> ..=. . <name> I <attribute>

<field-name> I <name>/<pn>

<attribute>/<pn>

<attribute> ::= field: I <field-name>/<value>

<field-name> : := <string>:

<value> ::= <stri,ng>

<name> ::= <string>

Thesemantics ofsemantic file system path names is:

● The universe of entities is defined by the path name

prefix before the first virtual directory name.

● The contents of a field virtual directory is a set of

value virtual directories, one for each value that the

field describes in the universe.

19



Pathnarne

lntwlace

,

I I.-----------------1---------------,1,Notlftcatlom

—,

------ -4J Faults

Vlrlual

Directory

i
File Ouery

Server
Processing

P1 Ocess

----- ----- - ,

I

PShared

1 Index and FE
Transducer h

Indexer +——

1

-1 ------ .-----

--l

Indexing

Process

----- -.

w
Figure 2: SFS Block Diagram

● The contents of a value virtual directory is a set of

entries, one for each entity in the the universe that

has the attribute described by the name of the value

virtual directory and its parent field virtual directory.

The contents of a value virtual directory defines the

universe of entities for its subdirectories. In the ab-

sence of name conflicts, the name of an entry in a

value virtual directory isitsoriginal entry name. Entry

name conflicts are resolved by assigning uonce names

to entries.

c The contents of a field: virtual directory is the set

of fields in use.

4 Semantic File System Irrplementation

We have built a semantic file system that implements the

NFS [SGK*85, Sun89] protocol as its external interface. To

use the search facilities of our semantic file system, an Inter-

net client can simply mount our file system at a desired point

and begin using virtual directory names. Our NFS server

computes the contents of virtual directories as necessary in

response to NFS lookup and readdir requests.

A block diagram of our implementation is shown in Fig-

ure 2. The dashed lines in the figure describe process bound-

aries. The major processes are:

The c2ierat process is responsible for generating file sys-

tem requests using normal NFS style path names.

The file server process is responsible for creating vir-

tual directories in response to path name based queries.

The SFS Server module implements a user level NFS

server and is responsible for implementing the NFS in-

terface to the system. The SFS Server uses director-g

~auh to request computation of needed entries by the

Virtual Directory module. A faulting mechanism is

used because the SFS Server caches virtual directory

results, and will only fault when needed information

is requested the first time or is no longer cached. The

Virtual Directory module in turn calls the Query Pro-

cessing module to actually compute the contents of a

virtual directory.

The file server process records file system modifica-

tion events in a write-behind log. The modification

log eliminates duplicate modMication events.

The indexing process is responsible for keeping the in-

dex of file system contents up-to-date. The Index Maa-

ter module examines the modification log generated by

the file server process every two minutes. The index-

ing process responds to a file system modification event

by choosing an appropriate transducer for the modi-

fied object. An appropriate transducer is selected by

determination of the type of the object (e.g. C source

file, object file, directory). If no special transducer is

found a default transducer is used. The output of the

transducer is fed to the Indexer module that inserts the

computed attributes into the index. Indexing and re-

trieval are based upon Peter Weinberger’s BTree pack-

age [Wei] and an adapted version of the refer [Les]

software to maintain the mappings between attributes

and objects.

The mount daernorz is contacted to determine the root

file handle of the underlying UNIX file system. The

file server process exports its NFS service using the

same root file handle on a distinct port number.

● The kernel implements a standard file system that is

used to store the shared index. The file server process

could be integrated into the kernel by a VFS based

implementation [Kle86] of an semantic file system. We

chose to implement our prototype using a user level

NFS server to simplify development.

Instead of computing all of the virtual directories that are

present in a path name, our implementation only computes

a virtual directory if it is enumerated by a client readdir

request or a lookup is performed on one of its entries. This

optimization allows the SFS Server to postpone query pro-

cessing in the hope that further attribute specifications will

reduce the amount of work necessary for computation of the

result set. This optimization is implemented as follows:

● The SFS Server responds to a lookup request on a

virtual directory with a lookupnotfiound fault to the

Virtual Directory module. The Virtual Directory mod-

ule checks to make sure that the virtual directory name

is syntactically well formed according to the grammar

in Section 3. If the name is well formed, the directory

fault is immediately satisfied by calling the create.dir

procedure in the SFS Server. This procedure creates a

placeholder directory that is used to satisfy the client’s

original lookup request,

● The SFS Server responds to a readdir request on a

virtual directory or a lookup on one of its entries with

a fill-directory fault to the Virtual Directory mod-

ule. The Virtual Directory module collects all of the

attribute specifications in the virtual directory path
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name and passes them to the Query Processing mod-

ule. The Query Processing module uses simple heuris-

tics to reorder the processing of attributes to optimize

query performance. The matching entries are then mw

serialized in the placeholder directory by the Virtual

Directory module that calls the crest e-link proce-

dure in the SFS Server for each matching file or direc-

tory.

The transducers that are presently supported by our se-

mantic file system implementation include:

●

●

●

●

a

A transducer that describes New York Times articles

with type:, priority:, date:, category:, subject:,

title:, author:, and text: attributes.

A transducer that describes object files with exports:

and imports: attributes for procedures and global

variables.

A transducer that describes C, Pascal, and Scheme

source files with exports: and imports: attributes

for procedures.

A transducer that describes mail files with from:, to:,

subject:, and text: attributes.

A transducer that describes text files with text: at-

tributes. The text file transducers the default trans-

ducer for ASCII files.

In addition to the specialized attributes listed above, all

files and directories are further described by owner, group,

dir, name, and ext attributes.

Atpresent, weonlyindex publicly readable files. We are

investigating indexing protected files as well, and limiting

query results to entities that can be read by the requester.

We arein theprocess ofmaking anumber of improvements

to our prototype implementation. These enhancements in-

clude 1) full support for multi-host queries using query rout-

ing, 2) an enhanced query language, 3) better support for

file deletion and renaming, and 4) integration of views for

entities smaller than files. Ourpresent implementation deals

with deletions by keeping a table of deleted entities and re-

moving them from the results of query processing. Enti-

ties are permanently removed from the database when a full

reindexingof the system is performed. We are investigating

performing file and directory renames without reindexing

the underlying files.

5 Results

We ran a series of experiments using our semantic file system

implementation to test our thesis that semantic file systems

present a more effective storage abstraction than do tradi-

tional tree structured file systems for information sharing

and command level programming. All of the experimental

data we report are from our research group’s file server using

a semantic file system. The server is a Microvax-3 running

UNIX version 4.3bsd. Theserver indexes allof its publicly

readable files and directories.

To compact the indexes our prototype system recon-

structs a full index of the file system contents every week.

On 23 July 1991, full indexing of our user file system pro-

cessed 68 MBytes in 7,771 files (Table 5).1 Indexing the

lThe 162 MBytes in publicly readable files that were not pr~

cessed were in files for which transducers have not yet been written:

executable files, PostScript files, DVI files, tar files, image data, etc

Total fil e system size 326 MB ytes

Amount pubhcly readable 230 MB ytes

Amount with k nown transducer 68 MB ytes

Number of distinct attributes 173,075

Number of attributes indexed 1,042,832

IT ype IN umber of Fd I KB I

=
Ot 7:771 68;319

Table 1: User File System Statistics for 23 July

Part of index Size m KB ytes

Index T ables 6,621

Index T rees 3,398

IT Otal 10.019

I Ph ase IT lme (hh :mm) I

1991

.
Transduce Source I 0:23

Transduce Text 0:23

tT ransduce Other I 0:24 I

Build Index TablesJ 1:22

Budd Index T rees 0:06

Tot al 1:36

Table 2: User FS Indexing Statistics on 23 July 1991

resulting 1 million attributes took 1 hour and 36 minutes

(Table 2). This works out to an indexing rate of 712

KBvtes/minute.

File ‘system mutation operations trigger incremental in-
dexing. In update tests simulating typical user editing and
compiling, incremental indexing is normally completed in
less than 5 minutes. In these tests, only 2 megabytes of

modified file data were reindexed. Incremental indexing is

slower than full indexing in the prototype system because

the incremental indexer does not make good use of real mem-

ory for caching. The full indexer uses 10 megabytes of real

memory for caching; the incremental indexer uses less than

1 megabyte.

The indexing operations of our prototype are 1/0 bound.

The CPU is 60% idle during indexing. Our measurements

show that transducers generate approximately 30 disk t rans-

fers per second, thereby saturating the disk. Indexing the

resulting attributes also saturates the disk. Although the

transducers and the indexer use different disk drives, the

transducer-indexer pipeline does not allow 1/0 operations

to proceed in parallel on the two disks. Thus, we feel that

we could double the throughput by improving the pipeline’s

2in parallel with Transduce
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structure.

We expect our indexing strategy to scale to larger file sys-

tems because indexing is limited by the update rate to a file

system rather than its total storage capacity. Incremental

processing of updates will require additional read bandwidth

approximately equal to the write traffic that act u ally occurs.
Past studies of Unix file system activity [OCH*85] indicate

that update rates are low, and that most new data is deleted

or overwritten quickly; thus, delaying slightly the processing

of updates might reduce the additional bandwidth required

by indexing.

To determine the increased latency of overlaid NFS op-

erations introduced by interposing our SFS server between

the client and the native file system, we used the nhfsst one

benchmark [Leg89] at low loads. The delays observed from

an unmodified client machine were smaller than the varia-

tion in latencies of the native NFS operations. Preliminary

measurements show that lookup operations are delayed by

2 ms on average, and operations that generate update noti-

fications incur a larger delay.

The following anecdotal evidence supports our thesis that

a semantic file system is more effective than traditional file

systems for information sharing:

● The typical response time for the first 1s command on

a virtual directory is approximately 2 seconds. This

response time reflects a substantial time savings over

linear search through our entire file system with ex-

isting tools. In addition, subsequent 1s commands re-

spond immediately with cached results.

We ran a series of experiments to test how the number

of attributes in a virtual directory name altered the

observed performance of the 1s command on a virtual

directory. Attributes were added one at a time to ar-

rive at the final path name:

/sf s/text: /virtual/
text: /directory/

text: /sereantic/
ext: /tex/
owner: /giff ord

The two properties of a query that affect its response

time are the number of attributes in the query and

the number of objects in the result set. The effect of

an increase in either of these factors is additional disk

accesses. Figure 3 illustrates the interplay of these

factors. Each point on the response time graph is the

average of three experiments. In a separate experiment

we measured an average response time of 5.4 seconds

when the result set grew to 545 entities.

● We began to use the semantic file system aa soon as

it was operable to help coordinate the production of
this paper and for a variety of other everyday tasks.

We have found the virtual directory interface to be

easy to use. (We were immediately able to use the

GNU Emacs directory editor DIRED [Sta87] to submit

queries and browse the results. No code modification

was required.) At least two users in our group reex-

amined their file protections in view of the ease with

which other users could locate interesting files in the

system.

Response Trms
~ Result Count

o 12345

Number of Attributes

Figure 3: Plot of Number of Attributes vs. Response Time

and Number of Results

● Users outside our research group have successfully used

the query interface to locate information, including

newspaper articles, in our file system.

c Users outside our research group have failed to find

files for which no transducer had yet been installed.

We are developing new transducers in response to these

failed queries.

The following anecdotal evidence supports our thesis that

a semantic file system is more effective than traditional file

systems for command level programming:

● The UNIX shell pathname expansion facilities inte-

grate well with virtual directories. For example, it is

possible to query the file system for all dvi files owned

by a particular user, and to print those whose names

begin with a certain sequence of characters.

● Symbolic links have proven to be an effective way to

describe file system views. The result of using such a

symbolic link as a directory is a dynamically computed

set of files.

6 Conclusions

We have described how a semantic file system can provide

associative attribute-baaed access to the contents of an in-

formation storage system with the help of file type specific

transducers. We have also discussed how this access can be

integrated into the file system itself with virtual directories.

Virtual directories are directories that are computed upon

demand.

The results to date are consistent with our thesis that

semantic file systems present a more effective storage ab-

st raction than do traditional tree structured file systems for

information sharing and command level programming. We

plan to conduct further experiments to explore this thesis

in further detail. We plan also to examine how virtual di-

rectories can directly benefit application programmers.
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Our experimental system has tested one semantics for

virtual directories, but there are many other possibilities.

For example:

The virtual directory syntax can be extended to sup-

port a richer query language. Disjunctive queries would

permit users to use ‘or” in their queries, and would

also offer the ability to search on multiple network se-

mantic file systems concurrently.

Users could assign attributes to file system entities in

addition to the attributes that are automatically as-

signed by transducers.

Transducers could be created for audio and video files.

In principle this would permit access by time, frame

number, or content [Nee9 I].

The data model underlying a semantic file system could

be enhanced. For example, an entity-relationship model

[Cat83] would provide more expressive power than sim-

ple attribute based retrieval.

The entities indexed by a semantic file system could

include a wide variety of object types, including 1/0

devices and file servers. Wide-area naming systems

such as X.500 [CC188] could be presented in terms of

virtual directories.

A confederation of semantic file systems, possibly num-

bering in the thousands, can be organized into an se-

mantic library system. A semantic library system ex-

ports the same interface as an individual semantic file

system, and thus a semantic library system permits

associative access to the contents of its constituent

servers with existimr file svstem tmotocols as well as

with protocols that are de~igned specifically for con-

tent based access. A semantic library system is im-

plemented by servers that use content based routing

[GLB85] to direct a single user request to one or more

relevant semantic file systems.

We have already completed the implementation of an

NFS compatible query processing system that forwards

requests to multiple hosts and combines the results.

● Virtual directories can be used as an interface to other

systems, such as information retrieval systems and pro-

gramming environment support systems, such as PCTE.

We are exploring also how existing applications could

access object repositories via a virtual directory inter-

face. It is possible to extend the semantics of a seman-

tic file system to include access to individual entities

in a manner suitable for an object repository [G091].

● Relevance feedback and query results could be added

by introducing new virtual directories.

The implementation of real-time indexing may require a

substantial amount of computing power at a semantic file

server. We are investigating how to optimize the task of

real-time indexing in order to minimize this load. Another

area of research is exploring how massive parallelism [SK86]

might replace indexing.

An interesting limiting case of our design is a system that

makes an underlying tree structured naming system super-

fluous. In such a system all directories would be computed

upon demand, including directories that correspond to trw

ditional tree structured file names. Such a system might help

us share information more effectively by encouraging query

based access that would lead to the discovery of unexpected

but useful information.
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