
Capability-Based Access Control for Peer-to-Peer Data Sharing

Roxana Geambasu, Magdalena Balazinska, Steven D. Gribble, and Henry M. Levy
Department of Computer Science and Engineering

University of Washington, Seattle, WA
Email: {roxana,magda,gribble,levy}@cs.washington.edu

Abstract

This paper describes SharedViews, a peer-to-peer data
management system that simplifies file organization and fa-
cilitates file sharing and protection among home users on
the Internet. The key innovation of SharedViews is the in-
tegration of queries and dynamic views from database sys-
tems with a capability-based protection model from the op-
erating systems world. Users organize their files using
views and share their views by exchanging capabilities. We
show that the resulting system is easy to use and provides
clients with flexible protection, but without the account cre-
ation and centralized protection management problems in-
herent in current shared-data systems.

We have prototyped SharedViews on a small network of
Linux-based personal computers. We present the archi-
tecture of our prototype and use simple measurements to
demonstrate the practicality and performance of our ap-
proach.

1. Introduction
Today’s homes are filled with rich collections of digital

data, such as photos, videos, email, Web pages, and other
documents. Some key challenges for users are organizing,
managing, and sharing this information with family, friends,
and others connected through broadband networks. As their
personal data repositories have grown in scale and sophis-
tication, users have increasingly adopted two new kinds of
tools: peer-to-peer [3, 20] and Web-service oriented [8, 35]
file-sharing systems, and desktop search tools, which let
users locate files using queries or organize their files using
views [31, 11, 22].

This paper describes SharedViews, a system that inte-
grates these two functions and simplifies the organization,
management, and protection of distributed data. Shared-
Views allows users to: (1) create database-style views over
their file repositories; (2) selectively grant (and later revoke)
access to their views to other remote users; and (3) create
and share views that are defined over their local files, local

views, and views imported from other users. SharedViews
views are dynamic: users can share dynamically changing
data sets, rather than just static copies of their files. More-
over, they can compose these dynamic data sets easily and
independently of the location of the underlying files on the
Internet. No existing systems provide the combination of all
of these features at the same time in an ad hoc, unmanaged,
home environment such as ours.

Sharing systems require protection mechanisms to pre-
vent unauthorized access to private data. Most sharing sys-
tems rely on user accounts and access control lists to pro-
vide this protection. However, accounts and ACLs are diffi-
cult to manage in a distributed or peer environment. In con-
trast, SharedViews gives users a simple, lightweight, and
flexible mechanism for controlling access to their shared
views. Our protection mechanism is based on capabili-
ties [6, 21]. Originally developed in the context of object-
based operating systems, a capability bundles together a
view name with access rights. Users give each other ac-
cess to their data simply by exchanging capabilities to their
views, much like users enable each other to view their pri-
vate Web pages by exchanging URLs.

We show that a capability-based access control model
can be easily integrated into a query language such as SQL,
requiring only a small set of changes. The integration en-
ables seamless definitions of new views on top of previously
defined local and remote views, and the subsequent sharing
of these views without coordinated protection management.
Capabilities also enable the rewrite and optimization of the
resulting distributed queries, leading to good query execu-
tion performance.

Capabilities enable the same access rights as other
schemes. Users can grant rights to read, update, insert, or
delete data, and even modify view definitions. In this paper,
however, we focus on the implications and performance of
giving other users read-only access to views. This type of
sharing lets us demonstrate the benefits of the SharedViews
approach, while leaving the additional consistency issues
related to properly handling updates for future work.

1

Grandpa

Files

“European” “Asian”

Alice

“Alice's
recipes”

“Main
Dishes”

“Snacks” Bob

Files

View sharingcompositionview

Figure 1. A simple organizing and sharing scenario.

1.1. A Motivating Example
Alice’s Grandpa, a cooking enthusiast, maintains his

own recipe database as a simple set of files. Grandpa likes to
organize his recipes by origin: European Food, Asian Food,
American Food, etc. To do this, he creates a set of views,
which are simple lists (directories) of recipe files resulting
from keyword queries over the recipe database.

Alice loves Asian food, so Grandpa shares his Asian
recipes with her. Alice has her own set of recipes that
she would like to merge with Grandpa’s Asian recipes, but
she prefers to organize them according to dish type: Main
Dishes, Snacks, Salads, Desserts, etc. Of course, Alice and
Grandpa want the data sharing to be dynamic, so that when-
ever Grandpa adds a new recipe, Alice will see it the next
time she looks at her views.

Alice has recently made a new friend, Bob, whom
Grandpa does not know. Alice decides to share some of the
recipes with Bob. However, she only trusts Bob with her
Snacks recipes; the rest are family secrets. With this sce-
nario, Bob has access to all snack recipes, independently of
whether Alice or Grandpa created them. Figure 1 illustrates
the private and shared views composing this scenario.

1.2. Contributions
Supporting our recipe scenario with current tools is dif-

ficult at best. This paper describes how SharedViews easily
supports this style of flexible and dynamic data organiza-
tion, sharing, and protection. Overall, we make the follow-
ing contributions:

1. We extend the idea of organizing files in a file system
using dynamic views with a mechanism for seamlessly
sharing and composing these views.

2. We define a lightweight access control and sharing
mechanism based on the integration of views with a
capability protection model. Our mechanism requires
no centralized or coordinated account management.

3. We propose simple extensions to SQL that enable
capability-based access control. We show that our ex-
tensions facilitate the composition of views defined
in different administrative domains, while preserving
fine-grained access control in each domain.

4. We present the design and implementation of Shared-
Views, a peer-to-peer data sharing system based on
our lightweight sharing and access control mechanism.
SharedViews supports the organization, sharing, and
composition of dynamic views over the Internet.

5. We demonstrate that SharedViews enables powerful
sharing scenarios with good performance during query
execution, while being simple to use.

We have implemented SharedViews and evaluate its per-
formance through analysis and experiments. We show that
the capability-based protection mechanism imposes a neg-
ligible overhead even for distributed queries. The perfor-
mance of our prototype is good for medium-sized result
sets, even over broadband (e.g., the evaluation of a query re-
turning 1000 filenames takes under 2 seconds). For larger-
sized queries, optimizations such as query rewrite before
execution and streaming of results are necessary to achieve
good performance. Overall, however, the results demon-
strate that a system such as SharedViews can deliver suffi-
cient performance to be usable in practice.

The rest of the paper is organized as follows. We first de-
scribe capability-based access control and present our SQL-
based language in Section 2. We discuss the architecture of
SharedViews in Section 3, describe a prototype implemen-
tation in Section 4, and evaluate its performance in Sec-
tion 5. Section 6 presents related work and Section 7 con-
cludes our work.

2. A Capability-based Approach

In this section, we provide an overview of capability-
based access control and show how it facilitates sharing
while simplifying system administration. We then describe
SharedViews’ query language that integrates capabilities
into SQL in a natural way.

2.1. Capabilities and Protection

A capability is a token that designates an object (such
as a file or a view) and gives the holder authority to per-
form actions on that object (e.g., reading a file or querying
a view). A capability consists of two parts: the name that
uniquely identifies the object in the Internet, and the set of
access rights for that object.

A capability represents a self-authenticating permission
to access the specified object in the specified ways. The ca-
pability is like a ticket: possession of a capability is proof of
the holder’s rights to access the object. Without a capability
for an object, a user cannot “name” it or access it.

To be self-authenticating, capabilities must be unforge-
able; i.e., it must be impossible for a user to fabricate a
capability, or for the receiver of a capability to modify the
rights bits or to change the “name” field to gain access to

2

Grandpa

Files

“European”

“Grandpa's recipes”

“Asian”

Alice

“Alice's recipes”

“Main
Dishes”

“Snacks”
Bob

CG2 CG1

CA2

CG0

CX

 Capa to a view View defined on a capa
CX

CA0

CG1

Files

CA1CA1

CXCX

Capa sharing

Figure 2. Solving the scenario with capabilities.

a different object. Previous systems have guaranteed this
property in several ways: e.g., through encryption [33], by
storing capabilities in the OS kernel [34], or by using hard-
ware tag bits to identify capabilities in memory [13]. We
describe how we accomplish unforgeability in Section 3.2.

Capabilities facilitate sharing because they can be easily
passed from user to user as a way to grant access. The shar-
ing requires no user accounts, no user authentication, and no
centralized protection structures. Figure 2 illustrates the use
of capabilities in our recipe-sharing scenario. When users
create views, the get capabilities to these views. They use
these capabilities to access their views, create other views,
or share views by passing the capabilities to each other.

2.2. Capabilities vs. Access Control Lists
To illustrate the implications of capability protection in

our loosely-coupled distributed setting, we contrast capabil-
ities with the traditional alternative, the access control list
(ACL). The two schemes are at different ends of a spec-
trum: capabilities favor ease of sharing and management,
while ACLs favor tight access control and access logging.

Let’s return to our scenario in which Alice wants to share
her Snacks view with Bob. In the most general case, with
ACLs, this requires that both Alice and Grandpa (who does
not know Bob) first create accounts for Bob on their ma-
chines. Once these accounts are created, Alice and Grandpa
must grant Bob permission to access their views by adding
Bob (now that he has accounts) to the appropriate ACLs.
Once all that is done, Alice can pass Bob the name of her
view. Finally, Bob can execute his query by authenticating
himself directly to Alice’s and Grandpa’s machines. As an
alternative, Alice could serve as mediator for all of Bob’s
accesses to her Grandpa’s recipes, but this is not necessar-
ily easier to setup, and, as shown in Section 5, can degrade
query execution performance in many configurations.

In contrast, our capability-based sharing and composi-
tion mechanism is extremely lightweight. It requires no
account registration or user authentication. Any node can
independently generate a capability for an object and pass
it to a second party. The second party can use the capability
without knowing where it came from, or pass it on to others.

While capabilities greatly simplify data sharing, confine-
ment and tracking are more difficult. For example, in an
ACL scheme it is easy to log every access to an object, at-
tributing it to the responsible user. This is difficult with
capabilities, because there are no user identities. There-
fore, ACLs make sense in commercial environments where
access tracking is crucial. However, we believe that capa-
bilities are better suited to our environment of unmanaged
home users cooperating in peer-to-peer data sharing.

2.3. Query Language
We adopt a modified version of SQL as the query inter-

face for SharedViews. We show that enabling capability-
based access control requires only minor changes to SQL.
The resulting language is simple, enables seamless view
sharing and composition across different administrative do-
mains, and could be used in other applications.

SharedViews models the file system as a single relation,
called Files. Each tuple in the relation represents one
file. The schema of the relation is the set of all known file
attributes (e.g., name, author, date, music genre, picture res-
olution). File contents are also included in the relation ei-
ther under the ’text’ or ’binary’ attributes. The advantage of
using a single relation is that files of different types can be
returned as part of a single query. If a file does not support
an attribute, it has a NULL value for that attribute.

On top of this relation, views are defined in terms of
predicates on file attributes and contents. Views can also be
composed with union, set difference, and intersection oper-
ators.

In SharedViews, users must specify a capability for ev-
ery view that appears in a query. The specified capabili-
ties provide two functions. First, a capability is a handle
for a view, i.e., it names the view. Second, the capability
verifies its holder’s authority to access the view in specific
ways. Therefore, users do not need to authenticate them-
selves, since the capabilities are self-authenticating.

Note that multiple capabilities for the same view can ex-
ist for several reasons. For example, a user might create
multiple capabilities for a view to give different people dif-
ferent access rights. Or, a user could create different capa-
bilities for different recipients so that the capabilities could
be selectively revoked at a later time if necessary.

2.3.1. Specifying Capabilities With Queries

Table 1 summarizes the details of our query language.
As noted above, SharedViews users present capabilities to
execute queries on views, and this is reflected in our query
language. Because a capability identifies exactly one view,
capabilities can be used to name views in the FROM clause.
For example, with her capability CG1 to Grandpa’s Asian
recipes, Alice can select only those using ginger and created
since June 2006 as follows:

3

New/modified statement Return Type Meaning
SELECT ∗ FROM Cap [WHERE ...] Set of tuples Query
CREATE VIEW <ViewName> AS Capability Create a view and a capability to the view.
SELECT statement [UNION/... SELECT statement]
SELECT ∗ FROM CATALOG OF Cap Catalog info Look up capability in catalog
CREATE BASEVIEW Capability Create the base view
DROP VIEW Cap Void Drop view associated with capability
ALTER VIEW Cap ... Void Modify view associated with capability
RESTRICT Cap RIGHTS rights Capability Create new capability to same view
REVOKE Cap1 USING Cap2 Void Revoke capability Cap1

Table 1. SQL modifications, Cap, Cap1, Cap2 are capabilities, rights is a string encoding access rights

SELECT * FROM C_G1
WHERE date > ’2006-06-01’
AND CONTAINS(text,’ginger’)

where date is the file creation date, text is the
file content, and the query selects all attributes, includ-
ing the file content. SharedViews supports keyword
queries with a simplified form of the CONTAINS pred-
icate used by SQL Server [10]. In SharedViews, the
predicate takes the form: CONTAINS (column, ’k1,
k2, ..., kn’), where column indicates the column to
search and k1 through kn are the keywords that must be
present for the result to match the query.

With this approach, the semantics of SELECT statements
remain unaltered. Only the view naming scheme changes.

2.3.2. Creating Views

Users create views with a standard CREATE VIEW
statement, where capabilities again name any underlying
views. More importantly, the CREATE VIEW statement
returns a capability to the newly created view. For exam-
ple, Alice has a capability CA0 to the view containing all
her recipes and a capability CG1 to Grandpa’s Asian recipes
view. She can create the Snacks view as follows:

CREATE VIEW Snacks AS
SELECT * FROM C_A0 WHERE CONTAINS(text,’snack’)
UNION
SELECT * FROM C_G1 WHERE CONTAINS(text,’snack’)
=> C_A1

where the right arrow denotes the returned capability, CA1,
that Alice will use to access her new Snacks view. Similarly,
users specify capabilities to views rather than view names
when they want to alter or delete a view.

When a new user first accesses SharedViews, she has no
capabilities and cannot perform any operations. To boot-
strap the system, we add a new CREATE BASEVIEW state-
ment that returns a capability to a view providing access to
all the files in the file system visible to the user. The under-
lying file system access control determines this set of files.
From this initial capability, which has all rights enabled,

the user can execute queries and create additional views.
As an example, Grandpa’s base view in Figure 2 is labeled
”Grandpa’s recipes”, and his capability to it is CG0.

2.3.3. Capability Restriction and Revocation

To share access to a view, a user can directly pass the
capability returned by the CREATE VIEW statement. As
previously noted, however, users may want to create a more
restricted capability to give to their friends. They may also
later want to revoke the capabilities they gave out.

To support these operations, we introduce two new state-
ments: RESTRICT and REVOKE. Given a valid capability
X, RESTRICT X RIGHTS rights creates a new capa-
bility that refers to the same view as X. The RIGHTS clause
is an enumeration of all the rights enabled on the view; only
rights present in X can be carried forward to the restricted
capability. For example, before Alice shares her Snacks
view with Bob, she can produce a new capability, C ′

A1, from
her capability CA1 as follows:

RESTRICT C_A1 RIGHTS SELECT => C’_A1

She will then email C ′
A1 instead of CA1 to Bob, giving him

only the ability to read recipe files and not, for example,
to look up the definition of the view in the catalog. Cur-
rently, SharedViews supports the following rights: SELECT
(read right), DROP (right to delete the view), ALTER (right
to modify the view definition), REVOKE (right to revoke
capabilities defined for the view), and CATALOG LOOKUP
(right to look up the view definition in the catalog). File cre-
ation, removal, and updates are currently performed outside
of SharedViews, through the file system. Hence, only the
owner of a file can modify it1.

Given two valid capabilities CA1 and C ′
A1 to the same

underlying view, if CA1 has REVOKE right enabled, then
REVOKE C ′

A1 USING CA1 revokes capability C ′
A1. Any

subsequent use of C ′
A1 will fail. In our scenario, for exam-

ple, this statement would be used by Alice to revoke Bob’s
capability to the Snacks view.

1Similarly, because we focus on read-only sharing in this paper,
SharedViews currently ignores remote requests to alter or drop a view.

4













































Figure 3. SharedViews system architecture.

2.3.4. Catalog Information Lookup

Views and capabilities are stored in two catalog tables
(see Section 3.2). The CATALOG LOOKUP right enables
a capability holder to access only the attributes of a given
capability, X, with a statement of the form:

SELECT * FROM ViewTable V, CapTable C
WHERE V.GlobalViewID = C.GlobalViewID
AND V.GlobalViewID = GlobalViewID(X)

To simplify catalog lookups, we introduce the shorthand
notation CATALOG OF to refer to the results of the above
query. For example, Alice can look up the definition of
Grandpa’s Asian recipes view with the statement: SELECT
definition FROM CATALOG OF CG1.

In summary, the main change we propose to SQL – from
which most other changes derive – is to use capabilities to
access and name views. Although it was designed with our
application in mind, the resulting language is general. No
constructs are specific to our environment. The language
can also easily be extended: access rights can be broad-
ened to include updates, capabilities could be associated
with other types of objects, such as tables, etc. The set of
operators could also be extended to include joins.

3. The SharedViews System

We now present the architecture and implementation of
SharedViews. After describing its high-level system archi-
tecture, we present the detailed implementation of capabil-
ities, the query processing algorithms used by the system,
and some details about our prototype sharing system.

3.1. Basic system architecture

Figure 3 shows the SharedViews system architecture. At
the lowest level, the database on each node is a traditional
file system. SharedViews is a middleware layer that sits
between applications and the query engine2. Users inter-
act with applications, which present a graphic interface to

2We use the Beagle search engine [1] in our implementation, but other
engines (e.g., Mac OS Spotlight [31] or WinFS [22]) could be used instead.





Figure 4. Capability implementation in SharedViews.

views and capabilities. In response to user actions, appli-
cations issue requests to SharedViews using the query lan-
guage from the previous section.

For example, when the user asks to create a new view,
the application sends a CREATE VIEW request to Shared-
Views. SharedViews validates the request, creates a new
capability for the view, registers the new view and capabil-
ity in its internal catalog (described below), and returns the
capability to the application.

When the application submits a query on a capability,
SharedViews first checks in its catalog whether the corre-
sponding view is local. If the view is local, the capability
appears in the catalog, and the request is permitted, Shared-
Views invokes the query engine to perform the query, and
returns the result to the application. If the capability is
for a remote view, the local SharedViews instance contacts
the SharedViews instance on the remote node and forwards
it the query (which includes the capability). The remote
SharedViews instance validates the capability, performs the
query, and returns the query result to the requesting node.
We discuss more sophisticated query execution scenarios in
Section 3.3.

3.2. Capability Implementation
Figure 4 shows the structure of our view capabilities. Our

capabilities are “protected” through the use of sparse ran-
dom numbers in an astronomically large space. There are
three parts to a SharedViews capability, as shown in Fig-
ure 4. First, a 128-bit global view ID uniquely identifies an
individual view in the Internet; no two views have (or will
ever have) the same ID. Second, a 32-bit IP hint contains
the IP address of a node that, with high likelihood, either
contains or can locate the object. Third, a 128-bit random
password ensures the authenticity of the capability.

We chose this structure to meet the needs of our environ-
ment. Our capabilities are simple to generate and easy to
pass from user to user. Managing capabilities requires no
special privilege. The protection is probabilistic; however,
the probability of guessing a valid capability is vanishingly
small. For security, capabilities are best sent over the net-
work using a secure communication protocol (e.g., secure
email). Overall, this scheme favors simplicity and ease of
use over absolute security, which we believe is the appropri-
ate tradeoff for our intended application domain. In general,
we expect that objects will not move in our network and the
IP hint will find an object in most cases. If the hint fails,
we fall back on a conventional distributed directory [24] or
distributed hash scheme [32] for location.

5

 global view ID

global view ID

Node­local view table (ViewTable)

Node­local capability table (CapTable)

… ……

… … …

 view definition other attributes

rightspassword

Figure 5. Capability and View Catalog Tables.

Figure 5 shows the per-node catalog tables that hold view
and capability information. For every view created on a
node, there is one entry in a local view table (ViewTable).
The ViewTable entry contains the global view ID, the view
definition, and other attributes (such as the human-readable
view name). Similarly, the node’s capability table (CapT-
able) contains one entry for each capability minted to a lo-
cally known view. The CapTable entry stores the capabil-
ity’s password, the access rights, and the global view ID of
the associated view.3 The combination of global view ID
and password forms the primary key of CapTable. Given
a capability, SharedViews checks whether an entry for the
capability exists in CapTable and whether the access rights
match the requested operation. If an entry containing the
password cannot be found, then the capability is invalid.
Revocation of a capability is straightforward and requires
removing an entry from the table or zeroing the associated
rights field.

The combination of a view capability with the unique
identifier of a file (e.g.its path) is called a file capability and
can be thought of as a handle to the file (or tuple, in the
more general case). It is used in our particular view-based
data organization application to access large attributes such
as the content of the files resulting from a view evaluation.
More precisely, file capabilities are used to enable queries
of the form:

SELECT A1[,A2,...] FROM C
WHERE fileID=X

where A1,A2 are attributes of the relation Files, C is a
view capability, and X is a file ID.

We introduce the notion of file capability because of
our special search-like application. Our application returns
query results in the same way that Web/desktop search en-
gines return search results. That is, the result of a view eval-
uation is a list of capabilities to those files that matched the
query. As will be seen in Section 4.1, the contents and other
large attributes of files are never selected by a query in our
application. Instead, the query selects an attribute in the
Files relation, FileCap, which is filled by the Shared-
Views query processing engine with the file capability.

3The IP hint field is not stored in CapTable, since the IP hint for all
capabilities on a node will be that node’s IP address.

Upon its invocation, a file capability needs to be checked
for validity. First, the comprised view capability is vali-
dated, as described above. Next, SharedViews verifies that
the file is indeed part of the view. As file capabilities are
not a constituent of SharedViews in general, but only offer
support for our particular application, they are no further
discussed in this Section, but the notion will be referred in
Section 4.

3.3. Query Processing

SharedViews can process queries in several ways. The
choice depends in part on the CATALOG LOOKUP rights
of the capabilities involved in the query. Recall that the
CATALOG LOOKUP right gives the holder of a capability
the right to look up the definition of the underlying view.

Recursive evaluation: If capabilities do not have the
CATALOG LOOKUP right, then SharedViews evaluates the
query recursively. Recursive evaluation pushes queries
from server to server down the view definition tree validat-
ing access on each node in the tree. Results are then re-
turned and aggregated hop-by-hop following the same tree.
Figure 6 shows the detailed algorithm for recursive query
evaluation. Note that SharedViews nodes do not perform
arbitrary computation on behalf of other nodes. Shared-
Views drops queries from remote nodes if these queries ac-
cess views that are not locally defined (lines 13-15 in the
algorithm).

Query rewrite and optimization: If capabilities include
the CATALOG LOOKUP right, SharedViews first fetches all
view definitions by contacting the nodes where the views
are defined. It then rewrites the query in terms of base
views and executes the simplified distributed query. In this
approach, each capability is validated during the catalog
lookup phase.

In a single query, different capabilities can have differ-
ent rights. Thus query evaluation typically combines the
above schemes. Our general model also supports a query
optimizer, although we have not yet implemented one. For
optimization, the catalog lookup could return statistics in
addition to the view definition. A standard cost-based query
optimizer could then determine an appropriate query exe-
cution plan. The distributed plan could span nodes holding
base views, but also other nodes in the system.

Implications of the CATALOG LOOKUP right: Allow-
ing others to look up view definitions enables query rewrite
and optimization, thus potentially improving query execu-
tion performance (as shown in Section 5.2.2). There are sit-
uations, however, when a user may not want to allow others
to look up the definition of a view. In our scenario, if Bob is
allowed to look up the definition of the Snacks view in Al-
ice’s catalog, he can gain direct access to Alice’s recipes and
her Grandpa’s Asian recipes, because the view definition
contains the underlying capabilities to these views. Alice

6

Input: A query - SELECT * FROM C0 WHERE Q,
where C0 is a capability to view V , and Q is a selection expression
Output: Query result
1. Translate Global View ID field of C0 into server location (e.g., use IP hint)
2. If C0 can be evaluated locally then
3. Look up C0 in local catalog and verify validity (see Section 3.2)
4. If C0 invalid then return ERROR
6. Look up view definition in local catalog, (use Global ViewID field as key)
7. If V is a base view then
8. Forward query to query engine and return results
9. Else: View V is defined on capabilities C1, C2, ..., Cn

10. Foreach capability Ci do
11. Recursively evaluate Ci, pushing selections downwards
12. Perform operators (union/...) on result sets above and return results
13. Else if the query comes from local user then
14. Recursively evaluate the query remotely and return results
15. Else return ERROR

Figure 6. Recursive Query Evaluation Algorithm.

may thus want to prevent Bob from looking up catalog in-
formation to protect her family secrets. Additionally, if Bob
gains capabilities to the underlying views, he can recreate
the Snacks view locally and Alice loses control over Bob’s
access to that view.

4. The SharedViews Prototype
To test the practicality and performance of Shared-

Views, we prototyped the system on Linux using the Bea-
gle [1] desktop search engine. We implemented view cre-
ation, view definition lookup, and recursive query evalua-
tion based on capabilities. Managing and sharing of capa-
bilities are done outside of SharedViews, as will be seen
from the GUI discussion in the subsequent section.

4.1. The Graphical User Interface
We prototyped our GUI using a Web browser commu-

nicating with an underlying Web server. In the prototype,
each node runs an Apache Web server that exports a Web
interface to SharedViews. From a Web browser, people con-
nect to the local Web server and fill in forms to create or
evaluate views. The Web server scripts then connect to the
local SharedViews engine and forward SQL statements to
it. The results of these statements (if any) are presented to
the user in the form of dynamic Web pages.

One can think of many other GUI choices for our sys-
tem, including a file system interface, one standalone appli-
cation, etc. Several factors encouraged us to use the above-
described approach, among which: the simplicity of cre-
ating graphical user interfaces using Web forms, the Web
browsers’ embedded content display functionality, and to-
day’s users’ familiarity with Web form interfaces and Web
link sharing. Nonetheless, SharedViews is independent of
this choice.

The Web forms that users fill in to create/evaluate views
imitate a limited subset of our query language (presented in
Section 2.3). Namely, we admit one or more single-level
SELECT statements combined by the operators: UNION,
INTERSECT, EXCEPT. We support SELECT statements of
the form:

SELECT Name,FileCap FROM <C>
WHERE <Q>

where C is a capability, Q is a selection expression, Name
refers to the file name attribute, and FileCap is the file
capability fictive attribute. Placed between angled brackets
are the text fields that the user needs to fill in.

The selection expression is the SQL variant of the Bea-
gle search syntax [2]. There are only two exceptions from
SQL, in which we favored the syntax of Beagle (or of
any other search engine) as more appropriate for our ap-
plication: the possibility to omit the AND operator be-
tween two terms and to include keywords directly in the
SQL statement, avoiding the use of the CONTAINS pred-
icate. These defaults were used to simplify the user inter-
face and to make it more uniform with that of Web/desktop
search engines, which people are already used to. For
example, for Alice to look for all Snacks made from
ginger and eggs, her selection expression (Q) would be:
ginger egg, instead of CONTAINS(text,ginger)
AND CONTAINS(text,egg).

An important aspect of the SELECT statements sup-
ported by our GUI is that we only admit the selection of
file names and file capabilities. The motivation for this is
our particular search-like application, which separates the
view evaluation and the retrieval of file content (or other at-
tributes) in two sequential steps that the user needs to take
(see Section 3.2).

Our GUI hides capabilities and their structure behind
Web links. When a view is created, the dynamic page re-
turned to the user contains the capability to the view in the
form of a link that people can bookmark, email to friends,
and use to evaluate the view or create new views on top of it.
Similarly, when a view is evaluated, the returned dynamic
page contains links that hide the file capabilities and allow
the user to fetch the content of those files. Each Web link
embeds the fields of a capability: the globally unique view
ID and password for a view capability, and an additional file
ID for a file capability.

Given that these links contain sensitive information, con-
cerns arise regarding their storage and transmission. We use
secure connections (HTTPS, SSL, and secure email) as pro-
tection from eavesdropping over communication lines and
rely on the file system protection to ensure that the storage
on the local machine is kept safe and private.

As mentioned above, we rely on existing tools for the
management of our capabilities to views: bookmarks are
used to save and organize capabilities (or, rather, links) and
secure email is used to share them with other people. Such
tools have the advantage of being familiar to people, which
should render the system easier to use. One possible disad-
vantage of using bookmarks to store capabilities is that peo-
ple may forget to bookmark the capabilities they received
from the system. We address this issue by automatically
saving the capabilities returned by the view creation into

7

special files under the user’s home directory. These files
are protected by the file system and are themselves indexed
by the search engine. Consequently, the user can search
for them if she forgets to bookmark her precious link to a
view. For example, if Alice cannot find her capability to the
Snacks view, she can find the file storing that capability by
evaluating the query:

SELECT Name FROM C0
WHERE type=cap snack

where C0 is the capability to the base view, type represents
the extension of the file, and snack is the keyword4.

4.2. The SharedViews Engine Implementation

The implementation of the SharedViews engine follows
the specifications and algorithms presented throughout Sec-
tion 3. There are, however, several issues that became vis-
ible only at implementation time, and which we discuss in
this section.

4.2.1. Recursive Evaluation: Handling Errors

When executing a distributed recursive view evaluation,
many things can go wrong: intermediate machines can go
down, connections can be interrupted, etc. No matter the
situation, SharedViews must keep the following two invari-
ants of view evaluation:

(i) faulty view evaluation must not reveal results that
would not be returned under normal (i.e.working) con-
ditions, and

(ii) SharedViews must do the best effort to return as many
results as possible.

Let us take an example to clarify the above two invari-
ants. Suppose that Alice and Bob shared views A and B
respectively with Chuck. Next, Chuck wants to share with
Donna all the files from Alice, except the files from Bob.
For this purpose, Chuck creates a new view, C, which is the
set difference of the two views A and B, and then shares
a restricted capability (with CATALOG LOOKUP right dis-
abled) with Donna:

CREATE VIEW C AS
SELECT * FROM C_A
EXCEPT
SELECT * FROM C_B
=> C_C

RESTRICT C_C RIGHTS SELECT
=> C’_C

4Note the simplified, Beagle-like query syntax.

Input: C = A op B,
where A,B,C are three views, and op is an operator
Output: (ResultCode, ResultSet of C)
1. (CodeA, RA) = recursive evaluation (A)
2. (CodeB , RB) = recursive evaluation (B)
3. Switch (op) of
4. case UNION: return (CodeA ∨ CodeB , RA ∪ RB)
5. case INTERSECT:
6. if (CodeA ∨ CodeB is ERROR) then return (CodeA ∨ CodeB , ∅)
7. else return (0, RA ∩ RB)
8. case SET DIFFERENCE:
9. if (CodeB is ERROR) then return (CodeA ∨ CodeB , ∅)
10. else return (CodeA, RA − RB)

Figure 7. Algorithm to Treat Errors in Recursive
Query Evaluation.

where CA and CB are Chuck’s capabilities to views A and
B respectively, CC is Chuck’s capability to view C, and C ′

C

is Donna’s new capability to view C.
With this example, whenever Donna evaluates C ′

C , she
must only be allowed to see those files in A that are not
in B. This invariant (which is an example of (i)) needs to
hold even in the case of an error, such as Bob’s machine is
down. On the other hand, if the operator were a UNION (in
short denoted C = A ∪B), it would make sense for Donna
to see at least the files offered by A, even though B is not
available (which is an example when invariant (ii) needs to
hold). Still, even in this latter case, suppose that Donna
now wants to share with Emma a view E, defined as the set
difference of one of Donna’s own views, D, and view C (in
short, E = D−C = D− (A∪B)). In this case, whenever
Bob’s machine is down, Emma should not be able to view
more files from D than when Bob is up.

To guarantee invariant (i), we propagate errors bottom-
up on the recursion path and treat them by returning the
empty set whenever a restrictive operator (INTERSECT or
EXCEPT) occurs. To allow best effort delivery (invariant
(ii)), the non-restrictive operator UNION is treated differ-
ently: we do not treat the error at once, but we still propa-
gate it up on the recursive path. The algorithm in figure 7
shows the details of how error treating is done with recur-
sive evaluation.

4.2.2. The View Materialization Cache

As discussed in Section 3.2, the content of a file is re-
trieved when the user selects the corresponding Web link
from the list of links of a materialized view. Upon selection
of one of these links, SharedViews validates the file capa-
bility embedded in the link. For this, it needs to validate
the view capability and then to check that the file indeed
belongs to the result set. The latter check may take a lot of
time, because it requires at least a Beagle query, which is
very expensive, as will be seen in Section 5.

To speed up file fetching after view evaluation, our pro-
totype caches the results from view evaluations. The re-

8

 global view ID

Local ViewMatTable

… ……
 file ID file path

Figure 8. The View Materialization Table.

sults are saved in the ViewMatTable, whose format is given
in Figure 8. When a file needs to be verified as part of a
view, SharedViews checks whether a materialization5 for
that view exists in ViewMatTable, and uses the (global view
ID, file ID) pair as index in this table to verify that the file
can indeed be accessed via the view capability.

4.2.3. Open Issues

Several issues are still left as future work:

• Caching and replication are known to improve impor-
tant properties of a distributed system, among which
availability and scalability. Except for the local view
materialization table, we do not maintain any other
caches, either of files or of remote view materializa-
tion tables.

• The browser bookmark interface can sustain only a
very limited number of views. Beyond that limit, the
organization and management of views is likely to be-
come a burden on the user. To this end, mechanisms to
create, maintain, and display a hierarchy of views are
required.

• A powerful selective capability revocation mechanism
is supported by SharedViews. However, to help users
find the capability they want to revoke, a mechanism
to map between capabilities and the identities of those
with whom each capability is shared is needed. We
envision such a mechanism as being offered by a sep-
arate application, which will keep track of the sharing
of capabilities, but the implementation of it remains as
future work.

4.3. A Web of Personal Files

The prototype described in this section allows the inte-
gration of users’ file systems into a Web of personal files.
Views are created using links to other views and are shared
as Web links. Using SharedViews, people can integrate oth-
ers’ dynamic collections of personal files into the local col-
lection, much like people integrate others’ Web pages into
their own, by adding reference links to them.

To further inspect the power of our system, let us re-
fer to publishing, which has been growing in popularity

5Note that there should exist a notion of freshness of a view material-
ization, but is not yet defined in our implementation.

(YouTube [36] is only one example of service that became
famous for this functionality). Our prototype enables such
publishing of personal files ’for free’. By posting the Web
link to a view onto a public page, a user will have indexing
crawlers (e.g.from Google) crawl his view and files, making
them available to the world. Of course, important concerns
regarding the scalability of the system now rise, and our pa-
per does not claim to answer them.

5. Evaluation

In this section we analyze the overhead of our capability-
based access control scheme and measure the query execu-
tion performance of our prototype.

Our experiments were run on a heterogeneous collection
of Dell PCs running Fedora Core 5 and Beagle 0.2.6. At
the high end were 3.2GHz Pentium-4s with 2GB of mem-
ory. From our measurements, we believe that the hardware
differences in our environment had no significant impact on
our results.

For our tests we synthetically generated a file database of
38,000 music files. We chose music files because their ID3
tag attributes enable rich queries. We controlled the query
result size by appropriately setting the ID3 tags of different
files. For example, to experiment with a query of size 100,
we created 100 files with the album tag “Album100” and a
view that selects them.

5.1. Overhead of Capability-Based Access Control

We first analyze the overhead of capability-based protec-
tion and compare it to that of ACLs.

Space Overhead: In our system, all protection-related
information is stored in the capability table (CapTable),
which grows with the number of views created on the node
and the number of capabilities created for each view. With
ACLs, the overhead depends on the ACL data structures.
For a sparse matrix, the overhead grows linearly with the
number of views and the number of users with access to
each view. Assuming the latter is equal to the number of
capabilities per view, the only difference between the two
schemes is the extra Passwd field we store with each ca-
pability. Even with 5000 views and 10 capabilities per
view, the difference translates into only 781 KB, which is
small with today’s storage systems. With a capability-based
scheme, users also need to store their capabilities (either
created or received). Since our capabilities are 288 bits,
the overhead of even 10,000 capabilities is only a negligi-
ble 351 KB. Overall, the space overhead of capabilities is
relatively inconsequential in our environment and is com-
parable to the space required for ACLs.

Time Overhead: At runtime, capability-based protec-
tion requires a catalog lookup to verify the capability. Since

9

 0

 200

 400

 600

 800

 1000

Size 2 10 100 500 2 10 100 500 2 10 100500

E
va

lu
at

io
n

tim
e

(m
s)

Local LAN Broadband

Beagle query time
Communication

Capability validation
GUI

Other

Figure 9. Query execution-time breakdown for simple
queries on local and remote views and for different re-
sult sizes. The local query processing time (Beagle) forms
the bulk of total query execution even for remote views.

the CapTable is small, we expect it to remain in mem-
ory leading to a negligible overhead even with many capa-
bilities per query. An ACL-based scheme incurs a similar
overhead, as it also needs to look up access rights for each
object involved in the query. Once again, the overhead of
the two techniques is thus comparable.

5.2. Performance of SharedViews

We now evaluate the performance of our prototype’s
query execution. Our goal is to determine (a) the impact of
different system components on overall performance, and
(b) whether SharedViews is sufficiently fast to be usable in
practice to organize and share data.

Our results examine two kinds of queries that we call
simple and complex. The simple queries are one level only;
that is, they involve a single view itself defined directly over
a base view. The complex queries involve views whose def-
initions include multiple other views composed in various
ways.

5.2.1. Evaluation of Simple Queries

We first present the performance of evaluating simple
queries. We measure the performance of both local and re-
mote evaluations for different query result sizes. The re-
mote access uses a capability on one machine to access a
view defined on another. We experiment with a 100 Mbps
local-area network (LAN) and a slower 5 Mbps, 20 ms-
delay network (characteristic of home-like broadband con-
nections in the near future). As previously noted, our
queries return file names, i.e., we evaluate queries of the
form SELECT filename FROM cap.

Figure 9 shows the breakdown of query evaluation time
into components for small query result sizes. Each value is

Result size Time (ms)
(# filenames) Beagle Local eval LAN Broadband

1000 1297 1341 1349 1779
3000 3897 4009 4025 5876
5000 6465 6641 6661 11876

Table 2. Local and remote evaluation of simple queries
with large-size results. Times are averages of 50 trials and
exclude the GUI overhead. As the result size increases, the
result transmission over broadband becomes the bottleneck.

...
2
1

n

...

...
n

Depth Breadth
1 2

Figure 10. Depth and breadth of views. Dashed lines
are machine boundaries; solid lines denote view composi-
tion.

the average over 50 trials. For the local and LAN configu-
rations, most of the query execution time is due to Beagle
and the GUI. The capability validation time and other over-
head of SharedViews (view definition lookup and caching
of query results) are negligible, although the latter over-
head increases slowly with the size of the results. The result
transmission time becomes noticeable for slow connections,
but for small result sizes it remains fairly short in compari-
son to the overall query execution time.

Table 2 shows the query execution times for larger-size
query results. Query execution is fast for medium-size re-
sults, both for local and remote views (under 2 seconds for
1000 filenames). Although transmission delays cause the
evaluation times to be high on slow networks when the re-
sult size is large, techniques such as result streaming can
be employed to reduce the user-perceived latency of the re-
sponse.

5.2.2. Evaluation of Complex Queries

We now analyze the performance of evaluating complex
queries. These are queries on views with more complex
definitions. Views can be composed and distributed in two
ways: (1) either by applying a selection on top of another
(remote) view (in which case the depth of the view is said
to grow), or (2) by applying union, set difference, or inter-
section on top of other (remote) views (in which case, the
breadth may also grow). Figure 10 depicts deep and broad
views, as used in our experimental setup. To create a view
of a given depth, a view defined on the base view is initially
created on a node (depth 1). A capability to that view is then
given to another node that creates a new view defined on the
remote one (the resulting view has depth 2), and so on un-

10

Result size View depth
(# filenames) 1 2 3 4 5
100 175 182 198 208 225
1000 1341 1353 1376 1400 1429
5000 6641 6669 6785 6788 6849

Result size View breadth
(# filenames) 1 2 3 4
100 179 218 221 261
1000 1355 1566 1594 1616
5000 6665 7663 7749 7848

Table 3. Recursive evaluation of complex queries on a
LAN. Reported times are in ms, exclude the GUI, and are
averages over 50 trials. View composition affects recursive
evaluation little over fast networks.

til we reach the desired depth. Similarly, to create views of
increasing breadth, a node creates views defined as unions
over increasingly many remote views.

Table 3 shows the results of recursive query evaluation
over deep or broad views on a LAN, where the transmis-
sion costs are small and thus the increases in execution time
show mainly SharedViews’ overhead.

As shown in the table, increasing the depth from 1 node
to 5 nodes leads to an increase in query execution time of
28% on average for the recursive evaluation and a 100-file
result, while for a 5000-file result the same increase is only
3%. Similarly, a 4-level increase in view breadth results in
a 45% increase in evaluation time when each query returns
100 file names. When each query returns 5000 file names
(and 20,000 file names are gathered at the root), the penalty
of the 4-level increase in breadth is only 17%. Thus, as the
query result size increases, the overhead due to the large
depth or breadth becomes insignificant in comparison to the
total cost (which is dominated by Beagle). The increase for
broad views is larger than the increase for deep views, be-
cause increasingly many file names are gathered at the root
node in the former case. For small query results, the in-
crease is proportionally higher primarily because all query
execution times are already so short.

Hence, SharedViews scales well with the depth and
breadth of views distributed across a fast network.

Figure 11 shows the increase in query evaluation time as
the depth of a view increases over a network with limited
bandwidth (5Mbps, 20ms delay). The results show both
the recursive and query rewrite techniques. The recursive
evaluation of large-size queries is now greatly affected by
depth, due to the large network transfers that occur from
hop to hop, back on the recursive path (e.g., when the depth
increases from 1 node to 5 nodes, query execution time in-
creases by 80% for a query returning 3000 file names).

In contrast, the performance of the query rewrite tech-
nique is approximately constant for views deeper than two.
Indeed, the bulk of the transfers (the results) occur only over

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 1 2 3 4 5

E
va

lu
at

io
n

tim
e

(m
s)

View depth

Query rewrite, size 5000
Recursive, size 5000

Query rewrite, size 3000
Recursive, size 3000

Query rewrite, size 1000
Recursive, size 1000

Query rewrite, size 100
Recursive, size 100

Figure 11. Query rewrite versus recursive query
evaluation for deep views distributed over broadband.
While for small results recursive evaluation has very good
performance, for deep views and large results the query
rewrite technique outperforms recursive evaluation.

one hop (from the base node to the ’root’ node). Hence,
for queries with large-size results on deep views, rewrite is
much more efficient than recursive evaluation. For a 5000-
filename query result and a depth of 5, the benefit of ap-
plying the query rewrite technique is 24%. For small-size
results (500 filenames), on the other hand, recursive evalu-
ation is faster than query rewrite, even for deep views, as
results are small and comparable in transmission time with
view definitions.

Hence, on slow networks, recursive evaluation works
well for small results and view depths, while query rewrite
improves the performance for large results and deep views.

5.3. Summary

Our results show that our prototype is sufficiently fast
to be practical in medium-scale environments. The runtime
overhead of our capability-based protection scheme is small
and comparable to using ACLs. Query execution times are
dominated by the query engine, Beagle, and by the network
transmission times. On fast networks, the depth and breadth
of views have little influence on recursive query evalua-
tion times. On slow networks, a simple rewrite of views
in terms of base views yields good query execution perfor-
mance even when result sizes are large.

6. Related Work

In recent years, several tools such as WinFS [22],
Mac OS X Spotlight [31], and Google Desktop [11] have
emerged, enabling users to create database-style views
over their data. Personal Information Management sys-
tems (e.g., [7, 19]) explore new techniques for organiz-
ing and searching personal information. In particular, the

11

Haystack [19] project enables users to define “view pre-
scriptions” that determine the objects and relationships that
an application displays on the screen. Our work builds on
the same idea of using views to organize personal data, but
our goal is to facilitate the sharing and composition of these
views across different administrative domains.

Peer-to-peer systems have become popular for sharing
digital information [3, 20]. The main goal of these systems
is for all participants to share all their public data with all
others. These systems thus focus on powerful and efficient
search and retrieval techniques (e.g., [14, 16, 25]). In con-
trast, SharedViews focuses on selective sharing of different
data items with different users. SharedViews is also geared
toward a medium-scale system rather than the millions of
users common in peer-to-peer file-sharing systems.

Operating systems and databases enable access control
(and thus selective sharing) by providing mechanisms that
associate privileges with users [9, 12, 15, 17, 27]. Signif-
icant work focuses on the flexibility, correctness, and effi-
ciency of these mechanisms (e.g., [29, 30]) making them
well-suited for many application domains. From the per-
spective of sharing personal information, however, these
techniques suffer from the same administrative burden:
someone must create and manage user accounts. Shared-
Views avoids this overhead by decoupling access rights
from user identities.

Another selective sharing technique is to encrypt data
with multiple keys and distribute different keys to different
users [23]. This approach is only suitable for static data sets
that can be encrypted once and published. More dynamic
sharing is possible [4] if users run secure operating environ-
ments. SharedViews enables dynamic sharing without this
restriction.

The capability protection model, first introduced by Den-
nis and Van Horn [6], has been previously applied to op-
erating systems [33, 34], languages [18], and architec-
tures [13, 26]. A survey of such systems can be found in
[21]. Our sparse capabilities are related to previous pass-
word capability systems [5, 28, 33]. SharedViews integrates
the concepts and mechanisms from capability systems into
database views in a distributed peer-to-peer system.

7. Conclusion

This paper described SharedViews, a new system that
facilitates ad hoc, peer-to-peer sharing of data between
unmanaged home computers. SharedViews integrates
capability-based protection with a dynamic view-based
query system. The result is an Internet data-sharing sys-
tem that greatly simplifies the organization and protected
sharing of personal digital data. With SharedViews, users
can easily create views, compose views, and share views
using capabilities. They can also mint new capabilities with

restricted rights or can revoke previously transferred capa-
bilities. Sharing and protection are accomplished without
centralized management, global accounts, user authentica-
tion, or coordination of any kind.

We prototyped SharedViews in a Linux environment us-
ing the Beagle search engine for keyword queries. Our im-
plementation and design show that capabilities are readily
integrated into a query language such as SQL, which en-
ables seamless view definition and sharing. Finally, our
measurements demonstrate the negligible cost of our pro-
tection mechanism and the practicality of our approach.

References

[1] Beagle: Quickly find the stuff you care about. http://
beagle-project.org/Main_Page, 2006.

[2] Beagle: Searching data. http://beagle-project.
org/Searching_Data, 2006.

[3] BitTorrent. BitTorrent Home Page. http:
//bittorrent.com/, 2006.

[4] L. Bouganim, F. D. Ngoc, and P. Pucheral. Client-based ac-
cess control management for XML documents. In Proc. of
the 30th VLDB Conf., Sept. 2004.

[5] J. Chase, H. Levy, M. Feeley, and E. Lazowska. Sharing and
protection in a single-address-space operating system. ACM
Trans. on Computer Systems, 12(4), 1994.

[6] J. Dennis and E. Van Horn. Programming semantics for
multiprogrammed computations. Comm. of the ACM, 9(3),
March 1966.

[7] X. Dong and A. Halevy. A platform for personal information
management and integration. In Proc. of the CIDR Conf.,
Jan. 2005.

[8] Flickr. Flickr Home Page. http://flickr.com/, 2006.
[9] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database

Systems: The Complete Book. Prentice Hall, 2002.
[10] P. Gathani, S. Fashokun, and R. Jean-Baptiste. Mi-

crosoft SQL Server version 2000: Full-text search deploy-
ment. White Paper. http://support.microsoft.
com/, May 2002.

[11] Google. Google Desktop: Info when you want it, right on
your desktop. http://desktop.google.com/, 2006.

[12] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection
in operating systems. Comm. of the ACM, 19(8), 1976.

[13] M. Houdek, F. Soltis, and R. Hoffman. IBM System/38 sup-
port for capability-based addressing. In Proc. of the 8th Int.
Symposium on Computer Architecture, May 1981.

[14] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In Proc. of the 29th VLDB Conf., Sept. 2003.

[15] iFolder. Howto: Enabling sharing with Gaim.
http://www.ifolder.com/index.php/HowTo:
Enabling_Sharing_with_Gaim, 2006.

[16] H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang.
Speeding up search in peer-to-peer networks with a multi-
way tree structure. In Proc. of the 2006 SIGMOD Conf.,
June 2006.

[17] V. Jhaveri. WinFS team blog: Synchronize your WinFS
data with Microsoft Rave. http://blogs.msdn.com/
winfs/archive/2005/09/08/462698.aspx,
2005.

12

[18] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. ACM Trans. on Computer
Systems, 6(1), Feb. 1988.

[19] D. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A customizable general-purpose information
management tool for end users of semistructured data. In
Proc. of the CIDR Conf., Jan. 2005.

[20] Kazaa. Kazaa Home Page. http://kazaa.com/, 2006.
[21] H. M. Levy. Capability-Based Computer Systems. Digital

Press, 1984.
[22] S. Mehrotra. WinFS team blog: What a week.

http://blogs.msdn.com/winfs/archive/
2005/09/01/459421.aspx, 2001.

[23] G. Miklau and D. Suciu. Controlling access to published data
using cryptography. In Proc. of the 29th VLDB Conf., Sept.
2003.

[24] P. Mockapetris and K. J. Dunlap. Development of the domain
name system. In Proc. of the ACM SIGCOMM’88 Symp.,
1988.

[25] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A
P2P-based system for distributed data sharing. In Proc. of
the 19th ICDE Conf., Mar. 2003.

[26] E. Organick. A Programmer’s View of the Intel 432 System.
McGraw-Hill, 1983.

[27] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, second edition, 1999.

[28] R. Pose. Password-capabilities: Their evolution from the
Password-Capability System into Walnut and beyond. IEEE
Computer Society, 2001.

[29] S. Rizvi, A. Mendelzon, S. Suharshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
Proc. of the 2004 SIGMOD Conf., June 2004.

[30] A. Rosenthal and E. Sciore. Administering permissions for
distributed data: Factoring and automated inference. In Proc.
of IFIP WG11.3 Conf., 2001.

[31] Spotlight: Find anything on your Mac instantly. Tech-
nology Brief http://www.apple.com/macosx/
features/spotlight/, 2006.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proc. of the ACM SIGCOMM’01
Conference, Aug. 2001.

[33] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse. Us-
ing sparse capabilities in a distributed operating system. In
Proc. of the 6th ICDCS Conf., 1986.

[34] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pier-
son, and F. Pollack. HYDRA: The kernel of a multiprocessor
operating system. Comm. of the ACM, 17(6), June 1974.

[35] Yahoo! Yahoo! photos home page. http://photos.
yahoo.com/, 2006.

[36] Youtube: Broadcast yourself. http://youtube.com/,
2006.

13

