
1

Replication Strategies in
Unstructured Peer-to-Peer Networks

Paper ID:298
12 pages

Abstract—
The Peer-to-Peer (P2P) architectures that dominate on today’s Internet

are decentralized and unstructured. Search is blind in that it is indepen-
dent of the query and is thus not more effective than probing randomly
chosen peers. One technique to improve the effectiveness of blind search is
to proactively replicate data.

We evaluate and compare different replication strategies and reveal in-
teresting structure: Two very common but very different replication strate-
gies – uniform and proportional – yield the same average performance on
successful queries, and are in fact worse than any replication strategy which
lies between them. The optimal strategy lies between the two and can be
achieved by simple distributed algorithms.

These fundamental results offer a new understanding of replication and
show that currently deployed replication strategies are far from optimal
and that optimal replication is attainable by protocols that resemble exist-
ing ones in simplicity and operation.

I. INTRODUCTION

Peer-to-peer (P2P) systems, almost unheard of two years ago,
are now one of the most popular Internet applications and a very
significant source of Internet traffic. While Napster’s recent le-
gal troubles may lead to its demise, there are many other P2P
systems which are continuing their meteoric growth and which
may soon surpass Napster’s peak popularity. Despite their grow-
ing importance, the performance of P2P systems is not yet well
understood.

P2P systems were classified by [7] into three different cate-
gories. Some P2P systems, such as Napster [5], are central-
ized in that they have a central directory server to which users
can submit queries (or searches). Other P2P systems are de-
centralized and have no central server; the hosts form an ad
hoc network among themselves and send their queries to their
peers. Of these decentralized designs, some are structured in
that they have close coupling between the P2P network topology
and the location of data; see [10], [8], [9], [12], [1] for a sam-
pling of these designs. Other decentralized P2P systems, such
as Gnutella [2] and FastTrack [11]- based Morpheus [4] and
KaZaA [3], are unstructured with no coupling between topol-
ogy and data location. Each of these design styles – centralized,
decentralized structured, and decentralized unstructured – have
their advantages and disadvantages and it is not our intent to
advocate for a particular choice among them. However, the de-
centralized unstructured systems are the most commonly used in
today’s Internet. They also raise an important performance issue
– how to replicate data in such systems – and that performance
issue is the subject of this paper.

In these decentralized unstructured P2P systems, the hosts
form a P2P overlay network; each host has a set of “neigh-
bors” that are chosen when it joins the network. A host sends its
query (e.g., searching for a particular file) to other hosts in the
network; Gnutella uses a flooding algorithm to propagate the

query, but many other approaches for are possible. The funda-
mental point is that in these unstructured systems, because the
P2P network topology is unrelated to the location of data, the
set of nodes receiving a particular query is unrelated to the con-
tent of the query. A host doesn’t have any information about
which other hosts may best be able to resolve the query. Thus,
search probes can not be on average more effective than probing
random nodes. Indeed, simulations in [7] suggest that random
probing is a reasonable model for search performance in these
decentralized unstructured P2P systems.

To improve system performance, one wants to minimize the
number of hosts that have to be probed before the query is re-
solved. One way to do this is to replicate the data on several
hosts.1 That is, either when the data is originally stored or when
it is the subject of a later search, the data can be proactively
replicated on other hosts. Gnutella does not support proactive
replication, but at least part of the current success of FastTrack-
based P2P networks can be attributed to replication: FastTrack,
designates high-bandwidth nodes as search-hubs (super-nodes).
Each supernode replicates the index of several other peers. As
a result, each FastTrack search probe emulates several Gnutella
probes and thus is much more effective.

It is clear that blind search is more effective when larger index
can be viewed per probe, but even though FastTrack increased
per-probe capacity, it basically uses the same replication strat-
egy as Gnutella: The relative index capacity dedicated to each
item is proportional to the number of peers that have copies (and
essentially, to the query rate to that item).

The fundamental question we address in our paper is: given
fixed constraints on per-probe capacity, what is the optimal way
to replicate data ?

We define replication strategies that, given a query frequency
distribution, specify for each item the number of copies made.
The main metric we consider is the performance on successful
queries, which we measure by the resulting average search size.
We also consider performance on insoluble queries, which is
captured by the maximum search size allowed by the system.

Our analysis reveals several surprising fundamental results.
We first consider two natural but very different replication strate-
gies: uniform and proportional. The uniform strategy, replicat-
ing everything equally, appears naive, whereas the proportional
strategy, where more popular items are more replicated, is de-
signed to perform better. However, we show that the two repli-
cation strategies have the same average search size on successful
queries. Furthermore, we show that the uniform and propor-

�

For the basic questions we address, it does not matter if the actual data is
replicated or if only pointers to the data are replicated. The actual use depends
on the architecture and is orthogonal to the scope of this paper. Thus, in the
sequel, “copies” refers to actual copies or pointers.

2

tional strategies constitute two extreme points of a large fam-
ily of strategies which lie “between” the two and that any other
strategy in this family has better average search size. We then
show that one of the strategies in this family, Square-root repli-
cation, minimizes the average search size.

Proportional and Uniform replications, however, are not
equivalent. Proportional makes popular items easier to find and
less popular items harder to find. In particular, Proportional
replication requires a much higher limit on the maximum search
size while Uniform minimizes this limit, and thus, minimizes re-
source consumption due to insoluble queries. We show that the
maximum search size with Square-root strategy is in-between
the two, and closer to Uniform, and continue to define a range
of optimal strategies that balance resources consumed on solu-
ble and insoluble queries. Interestingly, these optimal strategies
lie “in-between” Uniform and Square-root and are “far” from
Proportional.

Last, we address how to implement these replication strate-
gies in the distributed setting of an unstructured P2P network.
It is easy to implement the uniform and proportional replica-
tion strategies; for uniform the system creates a fixed number
of copies when the item first enters the system, for proportional
the system creates a fixed number of copies every time the item
is queried. What isn’t clear is how to implement the square-
root replication policy in a distributed fashion. We present a
distributed algorithm, called path replication, which produces
the optimal replication. Surprisingly, this replication policy is
implemented, in a somewhat different form, in the Freenet P2P
system.

These results are particularly intriguing given that Propor-
tional replication is close to what is used by current P2P net-
works: With Gnutella there is no proactive replication and thus
the number of locations an item is at is the number of nodes that
requested it. Even FastTrack, that uses replication, replicates
the complete index of each node to a search hub, and thus, the
relative representation of each item remains the same. Our re-
sults suggest that Proportional, although intuitively appealing,
is far from optimal and a simple distributed algorithm which is
consistent in spirit with FastTrack replication is able to obtain
optimal replication.

In the next section we introduce our model and metrics and
present a precise statement of the problem. In Section III we
examine the Uniform and Proportional replication strategies. In
Section IV we show that Square-root replication minimizes the
average search size on soluble queries and provide some com-
parisons to Proportional and Uniform replication. Section V de-
fines the optimal policy parameterized by varying cost of insol-
uble queries. In Section VI we present the distributed algorithm
that yields square-root replication and present simulation results
of its performance.

II. MODEL AND STATEMENT OF THE PROBLEM

The network consists of � nodes, each with capacity � which
is the number of copies/keys that the node can hold 2. Let ���
��� denote the total capacity of the system. There are � data
items in the system. The normalized vector of query rates takes�

Later on in this section we explain how to extend the definitions, results, and
metrics to heterogeneous capacities

the form �	��
����
�����������
�� with ��
������ . The query
rate
 � is the fraction of all queries that are issued for the � th
item.

An allocation is a mapping of items to the number of copies
of that item (where we assume there is no more than one copy
per node). We let � denote the number of copies of the � ’th
item (� counts all copies, including the original one), and let! �#"$ ��&%'� be the fraction of the total system capacity alloted to
item � : � ��)(*� ��+��� . The allocation is represented by the vec-
tor ,��.-/ '��%0��12 ���%'��1�3�3�3415 ��6%'�87 . A replication or allocation
strategy is a mapping between the query rate distribution � and
the allocation , .

We assume �9:�;:� because outside of this region the
problem is either trivial (if �=<>� the optimal allocation is to
have copies of all items on all nodes) or insoluble (if �@?��
there is no allocation with all items having at least one copy).

Our analysis is geared for large values of � (and �A�B�C�) with
our results generally stated in terms of , and � with � factored
out. Thus, we do not concern ourselves with integrality restric-
tions on the � ’s. However, we do care about the bounds on the
quantities ! � . Since D�E�� , we have ! �+GF where FH� �I . Since
there is no reason to have more than one copy of an item on a sin-
gle node, we have � <J� and so ! � <JK where KL�9MI ���ON � .
Later in this section we will discuss reasons why these bounds
may be made more strict.

We argued in the introduction that performance of blind
search is captured well by random probes. This abstraction
allows us to evaluate performance without having to consider
the specifics of the overlay structure. Simulations in [7] show
that random probes are a reasonable model for several conceiv-
able designs including Gnutella-like overlays. Specifically, the
search mechanism we consider is random search: The search
repeatedly draws a node uniformly at random and asks for a
copy of the item; the search is stopped when the item is found.
The search size is the number of nodes drawn until an answer
is found. With the random search mechanism, search sizes are
random variables drawn from a Geometric distribution with ex-
pectation ��% ! � . Thus, performance is determined by how many
nodes have copies of any particular item. For a query distribu-
tion � and an allocation , , we define the average search size
(ASS) PRQS-/,�7 to be the expected number of nodes one needs
to visit until an answer to the query is found, averaged over all
items. It is not hard to see that

PHQ�-/,�7#�T�'%��U-WV �
��&%
! �W7#3 (1)

The set of legal allocations X is a polyhedron defined by the
-/�ZY[�\7 -dimensional simplex intersected with an � -dimensional
hypercube:

�
V �)(#�
! �]� � (2)

F^< ! � <_K`3 (3)

The legal allocation that minimizes the average search size is
the solution to the optimization problem

Minimize
�
V �)(*�
��&%

! � such that ,GabXc3

3

One obvious property of the optimal solution is monotonicity

K ! �^ ! � A����� ! �T F (4)

(If , is not monotone then consider two items � 1 � with
 � ?J
��
and ! ��� ! � . The allocation with ! � and ! � swapped is legal, if
, was legal, and has a lower ASS.)

In the next section we explore the performance of two com-
mon replication strategies, uniform and proportional. However,
we first discuss refinements of our basic model.

A. Bounded search size and cost of insoluble queries

So far we have assumed that searches continue until the item
is found, and our subsequent analysis of the ASS metric will be
based on that assumption, but we now discuss applying these
results when searches are truncated when some maximal search
size � is reached. We say an item is locatable if a search for it
is successful with very high probability. When comparing per-
formance of different allocations, we assume the same set of
locatable items. We can apply our results to truncated searches
if we restrict ourselves to allocations where the lower bound F
is sufficiently large, so that all items are locatable and expres-
sion (1) is a good approximation for the average truncated search
size. The lower bound F is thus determined according to � . A
search for item � is likely to be successful only if ! � T��% -/��� 7 .
The probability of failure is � N
	 when ! �6�� % - ��R7 . Setting
�=����-������ � 7 would guarantee failure probability which is
polynomially small in � .

For truncated random searches the search sizes are random
variables drawn from a Geometric distribution with expectation
��% ! � but truncated by � . The expression (1) becomes an upper
bound on P , but the error is at most ����� � � ��� � -5�+Y � ! � 7�� � � �
���!� � -5� Y_� ! � 7�� % - � ! � 7 <#"�$ %�-2Y&�87 % - �\F'7 ��-�� %'�87(")$*%�-2Y&�87 .
In the sequel, we assume that F is such that F8?+���,� % - ��R7 and
use the untruncated approximation (1) for the average search
size (it is within an additive term of "�$ %�-5Y F4�� %-�����R7 � �).
The likelihood for an unsuccessful search for a locatable item is
at most ")$ %�-2Y F4��� 7 � ��%.� .

The parameter � is meaningful when considering the perfor-
mance on insoluble queries, that is, queries made to items that
are not locatable. In actual systems, some fraction of queries are
insoluble, and search performed on such queries would continue
until the maximum search size is exceeded. The cost of these
queries is not captured by the ASS metric, but is proportional to
� and to the fraction of queries that are insoluble.

When comparing replication strategies on the same set of lo-
catable items, we need to consider both the ASS, which captures
performance on soluble queries and � , which captures perfor-
mance on insoluble queries. In this situation we assume that the
respective �R-/,�7 is the solution of ����� � ! � �/���,� % -/��� 7 . Thus, if0'1

is the fraction of queries which are soluble and -2�#Y 01 7 is the
fraction of insoluble queries, the performance of the allocation
, is 0'1 P Q - , 732 -5�RY 0(1 74�R- , 7 3 (5)

B. Heterogeneous capacities and bandwidth

Prior definitions assumed that all copies have the same size
and that all nodes have the same storage and the same likelihood

of getting probed. In reality, hosts have different capacities and
bandwidth and in fact, the most recent wave of unstructured P2P
networks [4], [3] exploits this asymmetry. We argue that our
results still apply in these more general settings. Suppose nodes
have capacities � � and visitation weight 5\� (in the Uniform case
5 � �9� , in general 5 � is the factor in which the visitation rate
differs from the average). It is not hard to see that the average
capacity seen per probe is �`� � � 50� � � . The quantity � simply
replaces � in Equation 1 and in particular, all allocations are
affected the same way.

An issue that arises when the replication is of copies (rather
than pointers) is that items often have very different sizes. Our
subsequent analysis can be extended to this case by treating the
� th item as a group of 6�� items with the same query rate, where
6 � be the size of item � . As a result we obtain altered definition
of the basic allocations:7 Proportional has ! � �864�/
��W% � � 6 �
 � (proportion to query rate
and size).7 Uniform has ! � �86 � % � � 69� (proportion to item’s size).7 Square-root has ! � �:6 �<;
 � % � � 69� ;
�� (proportional to size
and to the square-root of the query rate).

III. ALLOCATION STRATEGIES

A. Uniform and Proportional

We now address the performance of two replication strategies.
The uniform replication strategy is where all items are equally
replicated:

Definition III.1: Uniform allocation is defined when F <��%'��< K and has ! � �T�'%�� for all � �T�\1�3�3�3415� .
This is a very primitive replication strategy, where all items are
treated identically even though some items are more popular
than others. One wouldn’t, initially, think that such a strategy
would produce good results.

When there are restriction on the search size (and thus on F),
Uniform allocation has the property that it is defined for all �
for which some legal allocation exists: Any allocation , other
than Uniform must have � where ! �^? ��%�� and � where ! � ���%'� ; If Uniform results in allocations outside the interval = F012K?> ,
then either ��%'� ?cK (and thus ! �H?TK) or ��%'� � F (and thus! � � F).

An important appeal of Uniform allocation is that it mini-
mizes the required maximum search size, and thus, minimizes
system resources spent on insoluble queries. It follows from
Equation 5 that when a large fraction of queries are insoluble,
Uniform is (close to) optimal.

Another natural replication strategy is to have � be propor-
tional to the query rate.

Definition III.2: Proportional allocation is defined when F <

��+< K . The proportional solution has ! �#�
�� for all � .

Some of the intuitive appeal of Proportional allocation is that
it minimizes the maximum utilization rate [7]. This metric is
relevant when the replication is of copies rather than of pointers,
that is, when a successful probe is much more expensive to pro-
cess than an unsuccessful probe. The utilization rate of a copy
is the average rate of requests it serves; when there are more
copies, each individual copy has a lower utilization. To avoid
hot-spots it is desirable to have low values for the maximal uti-
lization. Under random search, all copies of the same item �

4

have the same utilization rate
D�&% ! � . The maximum utilization
rate is thus ���.$ �
 � % ! � . The average utilization over all copies,
� ��)(*� ! �
 � % ! � �c� , is independent of , .

When compared to Uniform, Proportional improves the most
common searches at the expense of the rare ones, which pre-
sumably would improve overall performance. We now analyze
some of the properties of these two strategies.

A straightforward calculation reveals the following surprising
result:

Lemma III.1: Proportional and Uniform allocations have the
same average search size PJ�B� %�� , which is independent of the
query distribution.

We note that Lemma III.1 easily generalizes to all allocations
that are a mix of Proportional and Uniform, that is, any item �
has ! � a � �'%�� 15
 ��� . We next characterize the space of alloca-
tions.

B. Characterizing allocations

As a warmup, we characterize the space of allocations for
� � � . We shall see that Proportional and Uniform con-
stitute two points on the space of allocations, with anything
“in between” them achieving better performance, and anything
else having worse performance. Consider a pair of items with

 � _
�� . The range of allocations is defined by a single parame-
ter � ��� � � , with ! � % - ! � 2 ! �07#� � and ! ��% - ! � 2 ! �'7 �T-2� Y � 7 .
Proportional corresponds to � �
D�&% -
��&2�
 � 7 , Uniform to
� ��� 3
	 . The range � ��� � � 3
	 contains non-monotone allo-
cations where the less-popular item obtains a larger allocation.
The range �_? � ?.
 � % -
 � 2T
 �07 contains allocations where
the relative allocation of the more popular item is larger than its
relative query rate. These different allocations are visualized in
Figure 1(A), which plots ! � % ! � as a function of
��&%'
 � .

The ASS for these two items is proportional to
D�W% � 2�
 � % -2�UY
� 7 . The function has the same value on � ��� 3 	 and � �

��&% -
��
2
 � 7 and is concave. The minimum is obtained at some
middle point. By taking the first derivative, equating it to zero,
and solving the resulting quadratic equation, we obtain that the
minimum is obtained at � � ;
 � % - ;
 � 2 ;
 �07 . Figure 1(B)
shows the average search size when using these allocations on
two items (� � � and �`���). In this case, the maximum gain
factor by using the optimal allocation over Uniform or Propor-
tional is � .

In the sequel we extend some of the observations made here
to �; � . In particular, we develop a notion of an allocation
being “between” Uniform and Proportional and show that these
allocations have better ASS, we also define the policy that min-
imizes the ASS, and we bound the maximum gain as a function
on � , K , and F .
C. Allocations between Uniform and Proportional

For � �:� , we noticed that all allocations that lie “between”
Uniform and Proportional have smaller ASS. For general � we
first define the notion of being between Uniform and Propor-
tional:

Definition III.3: An allocation , lies between Uniform and
Proportional if for any pair of items � � � we have
D�&%'
 � ! � % ! �L � , that is, the ratio of allocations ! � % ! � is between �

(“Uniform”) and the ratio of their query rates
D�&%'
 � (“Propor-
tional”).
Note that allocations in this family are monotone and include
Uniform and Proportional.

We now establish that all allocations in this family other than
Uniform and Proportional have a strictly better average search
size:

Theorem III.1: Consider an allocation ! between Uniform
and Proportional. Then , has an average search size of at most
� %�� . Moreover, if , is different from Uniform or Proportional
then its average search size is strictly less than � %'� .

Proof: The limits
 � %'
��Z ! � % ! � � hold if and only
if they hold for any consecutive pair of items. These allocations
are characterized by the � Y�� -dimensional polyhedron obtained
by intersecting the � Y$� -dimensional simplex (the constraints
� ! � �T� ! � ?� defining the space of all allocations) with addi-
tional constraints ! � ! � � � and ! � � �8< ! �/
�� � �D%'
�� . Recall that
the average search size function ��- ! ��1�3�3�3�1 ! �67^� � �� (*�
��W% ! �
is convex. Thus, the maximum value(s) must be obtained on
vertices of this polyhedron. Vertices are allocation where for
any �6< � � � , either ! �#� ! � or ! � � ! �
��&%'
 � .

It remains to show that the maximum of the average search
size function over all vertex allocation is obtained on the Uni-
form or Proportional allocations.

We show that if we are at a vertex other than Proportional or
Uniform, we can get to one of these allocations by a series of
moves, where each move is to a vertex with a larger ASS than
the current one. Consider a “vertex” allocation , different than
Proportional and Uniform. Let � ���8� � be the minimum
such that the ratios ! �D% ! ��1�3�3�3�1 !�� � ��% !�� are not all � or not all
equal to the respective ratio
�� � �D%'
�� . Note that we must have
that
 � � � �
 � for at least one �[� �\1�3�3�3�1 � YA� ; and
 � � � �
 � . (otherwise, if
��	� ����� �
 � then any vertex allocation
is such that ! ��1�3�3�3�1 !�� � � are consistent with Uniform or with
Proportional; if
 � �
 � N � then minimality of � is contradicted).

There are two possibilities for the form of , :
1. We have ! � � �D% ! � ��� for � � �\1�3�3�3�1 � YJ� and !�� � �D% !�� �
 � %'
 � � � .2. We have ! � � � % ! � �
 � � � %0
 � for �J� �\1�3�3�341 � Y�� and!�� � ��% !�� �T� .

Claim: at least one of the two “candidate” vertices character-
ized by7 ,�� : ! �� � � % ! �� �>� for ��� �C1�3�3�3�1 � and ! �� � � % ! �� � ! � � � % ! � for
(�+? �), or7 ,�� � : ! � �� � � % ! � �� �
�� � ��%0
�� for � � �\1�3�3�3�1 � and ! � �� � � % ! � �� �! � � ��% ! � for (�+? �).
has strictly worse ASS than , .

Note that this claim concludes the proof: We can iteratively
apply this move, each time selecting a “worse” candidate. After
each move, the prefix of the allocation which is consistent with
either Uniform or Proportional is longer. Thus, after at most
� Y�� such moves, the algorithm reaches the Uniform or the
Proportional allocation.

The proof of the claim is fairly technical and is deferred to the
Appendix.

Simple modification in the proof show that allocations such
that � � 1 ! � � ! � � � (less popular item gets larger allocation) or

5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

p2
/p

1

q2/q1

Relative allocations for two items

worse ASS than

worse ASS than Proportional/Uniform

better ASS than
UniformSquare-Root

Proportional

Proportional/Uniform

Proportional/Uniform

1

1.2

1.4

1.6

1.8

2

2.2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
S

S

q1

Average Search Size for m=2; rho=1; q_2=1-q_1

Uniform/Proportional
Square-Root

(A) (B)
Fig. 1. (A) The space of allocations on two items (B) The average query cost for two items

� � 1 ! � % ! � � � ?
 � %'
 � � � (between any two items, the more popu-
lar item get more than its share according to query rates) perform
strictly worse than Uniform and Proportional.

Lemma III.2: All allocations in this family are such that ! �^<

D� and ! � >
�� , thus, they constitute legal allocations when-
ever the query distribution is such that Proportional is a legal
allocation.

Proof: Consider such an allocation , . We have that ! �
-
��W%0
D��7 ! � . Thus � � �� (*� ! �` - � ��)(#�
��27 ! ��%'
�� � ! ��%0
D� .
Hence, ! �6<$
�� . Similarly ! �+<�-
��&%'
��[7 ! � , and we obtain that! � _
 � .

IV. THE SQUARE-ROOT ALLOCATION

We consider an allocation where for any two items, the ratio
of allocations is the square root of the ratio of query rates. Note
that this allocation lies “between” Uniform and Proportional in
the sense of Definition III.3. We show that this allocation mini-
mizes the ASS.

Definition IV.1: Square-root allocation is defined when F <
;
 � % � � ;
 � <_K . and has ! � � ;
 � % � � ;
 � for all � .

Lemma IV.1: Square-root allocation, when defined, mini-
mizes the average search size.

Proof: The goal is to minimize � �� (*�
��W% ! � . This opti-
mization problem is likely to have arisen in different context.
One variant that had been considered is the capacity assignment
problem [6]. We include a proof for the sake of completeness.

Substituting ! ���T� YG� � N �� (*� ! � we have

��- ! � 1�3�3�341 ! � N � 7#�
� N �V �)(#�
 � %

! � 2G
 � % -2� Y
� N �V � (*�

! � 7 3

We are looking for the minimum of � when � � N ��)(#� ! � � � and! � ?� . The value of � approaches � when we get closer to the
boundary of the simplex. Thus, the minimum must be obtained
at an interior point. By solving

� �H% � ! �*� � we obtain that

! � �T-5� Y
� N �V� (*�

! � 7 �
�� %0
��A� ! � �
�� %0
���3

Recall that for all � , the average search size under both Uni-
form and Proportional allocations is � %�� . The average search
size under Square-Root allocation is

-&V
 ��� �� 7 � %'��1
and depends on the query distribution. An interesting question is
the potential gain of applying Square-Root rather than Uniform
or Proportional allocations. The gain can be bounded by � , K ,
and F (proof is in the Appendix):

Lemma IV.2: Let P min be the average search size using
Square-root allocation. Let P uniform be the average search size
using Proportional or Uniform allocation. Then

P uniform %4P min < � - K 2	F Y �`F4K 7#3
Moreover, this is tight for some distributions.

Note that if F � ��%�� or Kc� ��%'� then the only legal al-
location is ��%�� on all items, and indeed the gain ratio is � . If
F�� ��%'� , the gain ratio is roughly �`K .

A. Comparing strategies on specific query distributions

We illustrate the performance of different strategies using
query distribution obtained from Web proxy logs. We looked at
the top � Urls, with “query rates” proportional to the number of
requests, and top � hostnames, with “query rates” proportional
to the number of users that requested the hostname. The value
of � corresponds to the number of locatable items. Figure 2
shows the ratio of the ASS of Square-root allocation and Pro-
portional allocation for different values of � (the � axis). For
larger values of � , the ASS of Square-root allocation is 30%-
50% of that of Proportional or Uniform allocations. Figure 3
shows the maximum search size, which determines the cost of
insoluble queries. The figure shows that the maximum search
size under Square-root is within a factor of 2 of the smallest
possible (Uniform) whereas Proportional requires a much larger
search size.

The optimal policy which minimizes resource consumption
for a given ratio of soluble and insoluble queries is discussed in
the following Section.

6

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

A
S

S

Number of Locatable Items

ASS vs Number of Items

Uni/Prop
Square-root (hostname)

Square-root (uri)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06

A
S

S
(S

R
)/

A
S

S
(p

ro
po

rt
io

na
l)

Number of Locatable Items

ASS ratio vs Number of Items

hostname(number of users)
uri(number of requests)

Fig. 2. The ASS of different strategies, and the ratio of ASS under optimal to ASS under proportional, as a function of the number of locatable items.

0

100000

200000

300000

400000

500000

600000

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 S
ea

rc
h

S
iz

e

Number of Locatable Items

Max Search Size vs Number of Items (hostname dist.)

Proportional
Square-root

Uniform

0

2

4

6

8

10

12

14

16

18

20

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 S
ea

rc
h

S
iz

e
re

la
tiv

e
to

 U
ni

fo
rm

Number of Locatable Items

Ratio of Max Search Size to Opt vs Number of Items (hostname dist.)

Proportional/Uniform
Square-root/Uniform

Fig. 3. Maximum search size as a function of number of locatable items, and ratio of maximum search size to the minimum possible (Uniform allocation).

V. SQUARE-ROOT � AND PROPORTIONAL � ALLOCATIONS

Suppose now that we fix the set of locatable items and the
bound on the maximum search size (that is, we fix the lower
bound F on the allocation of any one item). Phrased differently,
this is like fixing the resource use due to insoluble queries.

With F (or K) fixed, Square-root and Proportional allocations
may not be defined - since as we had seen, they are defined on a
more restricted set of query distributions than Uniform.

We now ask what are the replication strategies which mini-
mize ASS under these constraints ?

We define a natural extension of Square-Root, Square-Root � ,
which always results in a legal allocation (when there is a le-
gal allocation). We show that Square-Root � minimizes ASS.
Square-root � allocation lies in-between Square-root and Uni-
form. Since it minimizes the ASS while fixing the maximum
search size, by sweeping F , we obtain a range of optimal strate-
gies for any given ratio of soluble and insoluble queries. The ex-
tremes of these range are Uniform allocation, which is optimal
if there is a large number of insoluble queries and Square-root
allocation which is optimal is there are relatively few insoluble
queries.

A. Square-Root � allocation

Lemma V.1: Consider a query distribution � where
0� �����6
 � and F < �'%�� < K . There is a unique monotone
allocation ,Ga X for which the following conditions apply. Fur-
thermore, this allocation minimizes the ASS.
1. if K ? ! � 1 ! �6?GF then ! � % ! �R� � -
 � %'
��'7 .
2. if ! �^� F^< ! � or if ! � < K � ! � , then ! � % ! � < � -
 � %'
 �07 .
The proof is deferred to the Appendix, and provides a simple
iterative procedure to compute the Square-Root � allocation for
arbitrary
�� ’s.

The Square-Root � allocation as a function of F varies between
FA� ;
��6%+� � ;
�� (where Square-Root � coincides with the
Square-Root allocation) and ��%'� (where Square-Root � coin-
cides with the Uniform allocation). On intermediate values of
F , a suffix of the items is assigned the minimum allcation value
F , but the remaining items still have allocations proportional to
the square-root of their query rate.

The ASS as a function of F is a piecewise hyperbolic function
that is minimized for F6� ;
�� % � � ;
�� and is increasing with
F . The breakpoints correspond to a suffix of the items that have
minimum allocation. Basic algebraic manipulations show that
the breakpoints are F M � ! M % -2� Y �

�� (M ! � 2 ! M -/��YZ� 2 �\727 ,where ! � � ;
��W% � � ;
 � is the allocation of the � th item under

7

Square-Root allocation. Note that the extremes of this range
are indeed F � � ! � (Square-Root allocation) and F � � �'%��
(Uniform allocation).

The ASS for F a = F M 1 F M N ��7 is

�
V� (M

��W%�F 2B- M N

�
V � (*�
��W%

! �&7 � M N �� (*� ! �
� Y � -/��Y � 2 �\7

and is increasing with F . The maximum search size needed to
support the allocation is approximately �'%DF and is decreasing
with F . The overall search size (as defined in Equation 5) is a
convex combination of the ASS and the MSS and is minimized
inside the interval = ! � 1��'%�� > . Figure 4 illustrates the ASS, the
MSS, and various combinations that correspond to different mix
of soluble and insoluble queries. When most queries are soluble
(
0 1

is close to 1), the minimum point is closer to ! � , where the
ASS is minimized. When most queries are insoluble (

0�1
is close

to 0), the minimum is obtained closer to �'%�� , where the MSS is
minimized.

600

800

1000

1200

1400

1600

1800

2000

2200

0.0005 0.0006 0.0007 0.0008 0.0009 0.001

O
ve

ra
ll

A
S

S

ell (min allocation)

ASS, MSS, and minimum overall search size (hostnames, m=1000)

MSS (fs=0\%)
0.25*ASS+0.75*MSS (fs= 25\%)

0.5*ASS+0.5*MSS (fs= 50\%)
0.75*ASS+0.25*MSS (fs= 75\%)

ASS (fs=100\%)

Fig. 4. Maximum search size, Average Search Size of Square-Root � , and Over-
all Search size as a function of � ; Using hostname frequency distributions
and m=1000.

B. Proportional � allocation

We similarly can ask what is the strategy which minimizes
the maximum utilization under these constraints; and similarly
define Proportional � allocation which is defined for all query
distributions and minimizes the maximum utilization rate.

Similarly, we extend Proportional allocation so it is applicable
when F�<���%'� <JK . We define Proportional � allocation as the
unique allocation defined by the following conditions:7 if KL? ! � 1 ! � ? F then ! � % ! �H�B
 � %0
 � .7 if ! � � F^< ! � or if ! � <_K`� ! � , then ! � % ! � <
��&%'
 � .

When we have F <
�� < K for all � then Proportional � is
the same as Proportional. It follows from Theorem III.1 that
Proportional � allocation has ASS no higher than Uniform al-
location and when Proportional � is different than Proportional
(that is, there are
�� � F or
�� ?9K) then Proportional � has
a lower ASS than Uniform. Proportional � allocations lies “in-
between” Proportional and Uniform (in the sense of III.3).

VI. DISTRIBUTED ALGORITHMS FOR SQUARE-ROOT
ALLOCATION

Up till now, we gained understanding of what is the best repli-
cation strategy. In this section we show that it can be achieved,
via a simple distributed protocol, in a decentralized unstructured
P2P network.

The Uniform allocation can be obtained via a simple scheme
which replicates each item in a fixed number of locations when it
first enters the system. We had seen that the optimal allocation
is a hybrid of Square-Root and Uniform allocations. We first
show how to obtain a Square-Root allocation, and then discuss
how these algorithms can be twicked to obtain optimal balance
of the cost of soluble and insoluble queries. In order to explo-
ration replication algorithms3 aimed at Proportional and Square-
Root allocations, we need to first model a dynamic setting where
copies are created and deleted:7 Creation: New copies can be created after each query. After
a successful random search, the requesting node creates some
number of copies, call it � , at randomly-selected nodes. This
number � can only depend on quantities locally observable to
the requesting node.7 Deletion: Copies do not remain in the system forever; they
can be deleted through many different mechanisms. All we as-
sume here of copies is that item lifetimes are independent of the
identity of the item and the survival probability is non-increasing
with age: if two copies were generated at times � � and � � ?�� �
then the second copy is more likely to still exist at time ��� ?�� � .4

The creation and deletion processes are consistent with our
model and operation of unstructured networks. We assume
the same communication patterns for copy creation and for the
search process. Since search performance is modeled well by
contacting random peers, we used the same model for evaluat-
ing copy creation. In actuality, the network would perform copy
creation by visiting nodes in a similar fashion to how it performs
search.5 Our copy deletion process is consistent with the expec-
tation that in deployed networks, copy deletion occurs either by
a node going offline or by some replacement procedure inter-
nal to a node. We expect node crashes to be unrelated to the
content (part of the index) they posses. The replacement pro-
cedure within each node should not discriminate copies based
on access patterns. Two common policies, Least Recently Used
(LRU) or Least Frequently Used (LFU) are inconsistent with our
assumption, but other natural policies such as First In First Out
(FIFO) or random deletions (when a new copy is created remove
a cached copy selected at random), are consistent with it.

Let �4���
	 be the average value of � that is used for creating
copies of item � (�4� � 	 may change over time). We say that the
system is in steady state when the lifetime distribution of copies
�
A note on terminology: a replication strategy is a mapping between � and whereas a replication algorithm is a distributed algorithm that realizes the

desired replication strategy.�
Examples of deletion processes consistent with these assumptions are fixed

life durations, random deletions where the deletion rate may vary over time,
and FIFO replacement implemented at each location. Replacement policies not
consistent with these assumptions are LRU and LFU, which both depend on the
identities of the items.�

This process automatically adjust to designs where search is focused in a
fraction of nodes, or when nodes are not evenly utilized, such as with FastTrack,
since hosts recieve copies in the same rate that they receive search probes.

8

does not change over time. The property of this deletion process
that is exploited by our algorithms is

Claim VI.1: If the ratio ��� � 	 % �4� � 	 remains fixed over time
and �4� � 	41 ��� � 	 are bounded from below by some constant, then! � % ! � �
 � �4� � 	 % -
�� ��� � 	 7
Thus, Proportional allocation is obtained if we use the same
value of � for all items.

A more challenging task is designing algorithms that result in
Square-Root allocation. The challenge in achieving this is that
no individual node issues enough queries to estimate the query
rate
 � , and we would like to determine � without using addi-
tional inter-host communication on top of what is required for
the search and replication. Algorithms that use additional com-
munication conflict the nature of current P2P implementations.
We can use the above claim to obtain the following condition
for Square-Root allocation

Corollary VI.1: If ��� � 	�����% ;
 � then ! � % ! � � �
 � %'
�� (the
proportion factor may vary with time but should be the same for
all items).

We propose three algorithms that achieve the above property
but do not require additional communication or infrastructure.
The algorithms require different amounts of bookkeeping, and
so which algorithm is more desirable in practice will depend on
the details of the deployment setting. The first algorithm, path
replication, uses no additional bookkeeping; the second, repli-
cation with sibling-number memory, records with each copy the
value � (number of sibling copies) used in its creation; the third
probe memory has every node record information about every
probe. We show that under some reasonable conditions, sibling-
number and probe memory have ��� � 	 close to its desired value
and path replication has �4� � 	 converge over time to its desired
value.

A. Path replication

Recall that the search size for item � is a Geometric random
variable. At any given time, the average search size for item
� , P^� is inversely proportional to the allocation ! � . If ��� �
	 is
steady then ! ���
�� �4� �
	 and thus P^��� �'% -
�� �4���
	 7 . The Path
replication algorithm sets the number of new copies � to be
the size of the search (the number of nodes probed). At the
fixed point, when P^� and ��� �
	 are steady and equal, they are
proportional to ��%�;
�� ; and ! � is proportional to ;
�� .

We show that in steady state, under reasonable conditions, P �
and ��� � 	 converge to this fixed point. Let P � be the value of P �
at the fixed point. At a given point in time, the rate of generating
new copies is P^�&% PH� times the optimal. This means that the rate
is higher (respectively, lower) than at the fixed point when the
number of copies is lower (respectively, higher) than at the fixed
point. If the time between queries is at least of the order of the
time between a search and subsequent copy generation then path
replication will converge to its fixed points.

A possible disadvantage of path replication is that the current
� � “overshoots” or “undershoots” the fixed point by a large fac-
tor (P � % P �). Thus, if queries arrive in large bursts or if the time
between search and subsequent copy generation is large com-
pared to the query rate then the number of copies can fluctuate
from too-few to too-many and never reach the fixed point. Note
that this convergence issue may occur even for a large number of

nodes. We next consider different algorithms that circumvents
this issue by using ��� � 	 that is close to this fixed-point value.

B. Replication with sibling-number memory

Observe that the search size is not sufficient for estimating the
query rate
 � at any point in time (path replication only reached
the appropriate estimates at the fixed point). In order to have
��� �
	�� �'% ;
�� we must use some additional bookkeeping. We
assume that with each copy we record the number of “sibling
copies” that were generated when it was generated and its gen-
eration time. The algorithm assumes that each node known the
lifetime distribution as a function of the age of the copy (thus,
according to our assumptions, the “age” of the copy provides the
sibling survival rate).

Consider some past query for the item, � � , let
� � ? � be the

number of sibling copies generated after �� and let
� � be the

expected fraction of surviving copies at the current time.
Suppose that every copy stores - � 1 � 7 as above. Let 	 be such

that copies generated 	 time units ago have a positive probabil-
ity of survival. Let X�
 be the set of copies with age at most 	 .
Then, �������� �'% - � � � � 7 is an unbiased estimator for the num-
ber of requests for the item in the past 	 time units. Denote by
� �'% - � � � � 7 	 the expectation of �'% - ��� 7 over copies.

We thus obtain that

���� �2��% - � � � � 7
	 ! ��� � ��% - � � � � 7
	4-2�'% PH�27
Hence, it suffices to choose � � with expected value ��� � 	��
-2�'% �2��% - � � � � 7 	 7���� �DP���� �� 3
C. Replication with probe memory

The rate in which a host in the network receives probes for
item � is
 � % - � ! � 7 , and the expected size of the search is ��% - � ! � 7 ,
Evidently,
 � can be estimated from estimates on these two quan-
tities. Consider a time duration in which ! � does not signif-
icantly change and consider a host 5 that receives probes for
item � . Let � � 1�3�3�3�1�� �� be the number of nodes probed before
5 on each search, and let !#"�� � � � (*� � � % � " be their average 6.
Suppose that each node stores - ��" 1�! " 7 for each item. We obtain
that ��" %$! " is a (biased) estimator for a quantity proportional to

�� (the bias decreases with � "). Better estimates be obtained by
aggregation, for example, if the querying node collects this in-
formation from all nodes on the search path. If 5 � 1�3�3�3�1 5 � are the
path nodes then - � ��"&% 7 � % � ��"�% ! "�% constitute an estimator for
(a value proportional to)
D� . We thus use - � � " % !'" % 7���� �'% � � " %
as a (biased) estimator for �'%�;
�� .
D. Obtaining the optimal allocation

The algorithms presented above converge to Square-root al-
location, but can be adjusted so that they result in the optimal
allocation. One way to obtain an optimal allocation is to tune
the maximum search size allowed. Adjustment of the maxi-
mum search size alone, however, would result in changing the
set of locatable items. In order to arrive at optimal allocation
(
Note that)�* in fact estimates half of the ASS. If + is the search-size so

far then ,-+ is an unbiased estimator for the size of the full search. Since this
calculation affects all items equally (same constant) the allocation would still
converge to the same one.

9

while fixing the set of locatable items we need to use a hybrid
of Uniform and Square-root algorithms: basically, we use “per-
manent copies” generated by the Uniform-allocation algorithm
and “transient copies” generated by the Square-root-allocation
algorithm. The Uniform algorithms allocates permanent copies,
where each item is guaranteed some minimum allocation (e.g.,
by nominating nodes that never delete it and are replaced when
they go offline). The square-root algorithm can then be applied
on top of this uniform allocation of permanent copies. The max-
imum search size is determined according to the minimum al-
location, so that items with minimum allocation are locatable;
The optimal allocation is achieved by tuning the value of the
minimum allocation according to the fraction of queries that are
insoluble.

E. Simulations

We simulated two of the proposed “Square-Root” replica-
tion algorithms: path replication, and replication with sibling-
number memory. The simulations track the fraction of nodes
containing copies of a single item in a network with 10K nodes.
In our simulations, copies had a fixed lifetime duration. Queries
are issued in fixed intervals. Every search is repeated until �
copies are found (� a � �\1 	 �). For path replication we take the
average search size � and for replication with sibling-number
memory we used the estimators discussed above. We simulated
various delay durations between the time a search is performed
and the time the copies are generated.

Some of these simulations are shown in Figures 5 and 6.
The figures illustrate the convergence of “Sibling-Memory” and
“path replication” algorithms by showing how the fraction of
nodes with copies evolves over time. The figures illustrate the
convergence issued discussed above. The sibling-memory algo-
rithm arrives more quickly to the desired allocation. It also also
not sensitive to delay in the creation of copies.

VII. APPENDIX

Proof: [remaining proof of Theorem III.1] We now prove
the claim. We start with the first case (, has the form 1). We
use the shorthand 	B� � ��)(� � � ! � for the total allocation to the
“tail” items and �c� � �� (� � �
��&% ! � for the contribution of the
tail items to the ASS. Similarly, we use 	 � � � ��)(� � � ! �� and
similarly define 	 � � , � � , and � � � . Since the relative allocation to
items in the “tail” is the same for the allocations , , , � , and ,�� � ,
we have � �U����	R% 	 � and � � �U����	R% 	 � � .

We now express the respective average search sizes � , � � , and
� � � , as a function of ! � and � . For the allocation , we obtain:

�^�c��% ! �
�
V � (*�
�� 2��

For � � we obtain

� � ��-5��% ! � � 7
�
V �)(#�
��?2�� � �c-2�'%

! � � 7
�
V � (*�
��?2���	R% 	 � (6)

The sum of allocations must be � , thus

� ! � 2 	 � � ! � � 2 	 � �c� (7)

Since the relative allocations on the tail are the same for , , , �
and ,�� � we obtain

	R% 	 � � ! � � � % ! � � � � � ! � -
 � � � %'
 � 7&% ! � � 3 (8)

From Equations 7 and 8 we obtain that

��% ! � � � � 2
 � % -
 � � � ! �D7*Y �
 � %'
 ��� 3 (9)

and

	R% 	 � ��-
 � � � %'
 � 7 ! � % ! � � ��-5�RY ! � � -5� Y
 � � � %'
 � 727 (10)

By substituting Equations 9 and 10 in 6 we obtain

� � �c- � 2
 � % - ! �
 � � �'75Y �
 � %'
 � � �D7
�
V � (*�
���2��^-2�CY

! � � -5�\YR
 � � ��%0
 � 757

thus

� � Y � �T-
 � %0
 � � �OY`�07 -2��% ! � Y � 7
�
V �)(#�
���Y��H-

! � � -2�SY8
 � � �D%'
 � 727

If � � Y � � � (, � is strictly better than ,) we obtain that

� ? -
 � %0
 � � � Y �\75-5��% ! ��Y � 7 �
�
� (*�
��! � � -5� Y
 � � �D%'
 � 7

�
 � -2�'% ! ��Y � 7 �
��� ! �
 � � � (11)
We now express � � � in terms of ! � and � .

� � � �
�
V �)(*�
 � %

! � �� 2�� � � � �
 � % ! � �� 2���	R% 	 � � (12)

We have

� ! � 2 	B�
�
V � (*�
! � �� 2 	 � � � ! � ��

�
V � (*�
��W%'
�� 2 	 � � �c� (13)

and

	R% 	 � � � ! � � � % ! � �� � � � ! � -
 � � � %0
 � 7 % - ! � ��
 � � � %'
 � 7#�T-
 � %'
 � 7 ! � % ! � �� 3(14)
From Equations 13 and 14 we obtain

��% ! � �� �
�
V � (*�
 � %0
 � Y �

� %'
 � 2
 � % -
 � ! � 7 (15)

and

	 % 	 � � �T� Y � ! � 2 ! �
�
V �)(#�
�� %0

� 3 (16)

Substituting 15 and 16 in 12 we obtain

� � � � �
�
V � (*�
���Y �

�
 � 2 �
 � % ! � 2��H-5� Y � ! � 2 ! �
�
V � (*�
��&%'

� 7#3

Thus,

� � � Y � �T-
�
V �)(#�
���Y �

� 7 - � Y_��% ! ��7
2�� ! ��-
�
V �)(#�
��W%0

� Y � 7#3

10

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

100 150 200 250 300 350 400 450 500 550 600

fr
ac

tio
n

w
ith

 c
op

y

time

Delay=0; Inter-request time=2; Rep=1

Sibling-Mem
Path-replication

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

100 150 200 250 300 350 400 450 500 550 600

fr
ac

tio
n

w
ith

 c
op

y

time

Delay=0; Inter-request time=2; Rep=5

Sibling-Mem
Path-replication

1 sample 5 samples
Fig. 5. Simulating performance of Path Replication and Sibling-Memory algorithms. In these simulations there is no delay in copy creation; the copy lifetime is

100 time units; and the inter-request-time is 2 time units

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 150 200 250 300 350 400 450 500 550 600

fr
ac

tio
n

w
ith

 c
op

y

time

Delay=25; Inter-request time=2; Rep=1

Sibling-Mem
Path-replication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 150 200 250 300 350 400 450 500 550 600

fr
ac

tio
n

w
ith

 c
op

y

time

Delay=25; Inter-request time=2; Rep=5

Sibling-Mem
Path-replication

1 sample 5 samples
Fig. 6. Performance of Path Replication and Sibling-Memory replication algorithms. In these simulation there is delay of 25 time units in copy creation; the copy

lifetime is 100 time units; and the inter-request time is 2.

The second term is always nonnegative. The first term is non-
negative if � ?���% ! � . If � � � Y � � � (, � � has a shorter ASS than
,) we obtain

� �
 � -2�'% ! � Y � 7 % ! � 3 (17)

If both � � � � � and � � � � we obtain from 11 and 17 that

 � -5��% ! � Y � 7 �
 �
� ! �
 � � �

� � �
 � -5��% ! � Y � 7&% ! � 3

Thus,
 � � � � �
�
� (*�
 � % � , which is a contradiction (recall that

 � � � <$
 � when � � � 2B�).
Note that strict equality occurs only when � � � �O� � � � and is

only possible when
 � � ����� �J
 � � � , which contradicts our as-
sumption that
 � � �D%'
 � was inconsistent with previous relations.

We now apply similar arguments to handle the second case
(where , has the form 2). In this case we have

� �
�
V � (*�
��&%

! � 2�� � �
D��% ! � 2��_3 (18)

The sum of allocations in , and , � must satisfy

! ��%'
D�
�
V �)(#�
�� 2 	 � � ! � � 2 	 � �c�H3 (19)

We have
	 % 	 � � !�� � �D% ! � � � � �J
 � ! ��% -
D� ! � � 7 (20)

From Equations 19 and 20 we obtain

- ! � � 7 N � �B
D�D% - ! �
 � 7 YZ
 N ��
�
V � (*�
�� 2 � (21)

and

	R% 	 � �T� Y_- ! � %'
 � 7
�
V �)(*�
 � 2 �

! �
 � %'
 � (22)

Substituting 21 and 22 in 6 we obtain

+���� � �� � ��� �
V �
	 �

� ��� ��� � �
V ��	 �

� ��� ������� � � � ���� �

� ��� �� �
V ��	 �

� ���������

11

Thus,

+ � � + � � � � �� �
V �
	 �

� � � � � � � � �
� � ��� �

V �
	 �

� ��� � � � � ��� � � � ���

If � � Y�� � � we obtain that (note that since
 � are monotone non-
increasing and they are not all equal we have
 N �� � ��)(#�
��E? �)

� ?
 �! �
 � -

 �! � Y

�
V �)(#�
��&7E3 (23)

Repeating the same steps for , � � we have

	 2 ! �
D�
�
V � (*�
��27#� 	 � � 2 ! � ��
��

�
V � (*�
��&7E��� (24)

and 	
	 � � �

!�� � �! � �� � �
� ! �
 � %'
��! � ��
 � � � %'
 �

� ! �4
 �! � ��
 � � �
(25)

From Equations 24 and 25 we obtain

- ! � �� 7 N � �

� Y
 � � �
 �
 �

�
V �)(#�
�� 2

 � � �! �
 � (26)

and
	
	 � � �c� 2

! ��-
 � Y
 � � �'7
 �
 � � �
�
V � (*�
 � (27)

Substituting Equations 21 and 27 in 12 we get

+�� � � � � ��� � ����� � �� � �
V ��	 �

� � � � � � ����� �� � � � � ��� � � �
� ��� � ����� � �� � � ��� �

�
V ��	 �

� ���
thus,

� � � Y��^�T-5�\Y
 � � �
 � 7 - �
�
V � (*�
��5Y

�
 �! � 7<2��
! �
 �

 �
 � � �

�
V �)(*�
��2-5�\Y

 � � �
 � 7S3

Hence, if � � � Y � � � we obtain (recall that
 � � � �
 � and thus-2� Y��
	��
�

�
	 7+? � .)

� � �
D��
 � � �! �
 � � ��)(*�
 �
�
D�! � Y

�
V �)(#�
��

� (28)

and, since � is nonnegative, we have

-
��! � Y
�
V � (*�
��27+ � 3 (29)

Assume to the contrary that � � � � � and � � � � . We obtain a
contradiction from Equations 23,28,29.

Proof: [Lemma IV.2] The average search size with Uni-
form allocation is � %'� for any choice of � . The search size with
optimal allocation is at most

� �'$Q� ����� ��� � � � ��� ���
��%��U-

�
V �)(*� ;
�� 7

� 3

We are now interested in the minimum of � ;
�� over the
(�.Y��)-simplex intersected with the cube FZ<
 � < K . The
function is concave and maximized at an interior point. Min-
ima are obtained at vertices, which are defined by intersection
of �:YG� dimensional faces of the cube with the simplex. Alge-
braically, the function is minimized when allocations are either
at K or at F . 7 Solving � F 2:-/� Y � 7 K��=� we obtain that
� � -/KU� Y$�07 % -/K Y F'7 items have allocation F and the remain-
ing ��Y � �T-5� Y �`F'7&% -/K�Y F'7 items have allocations K . Let
��
(respectively,
��) be the popularity of items obtaining allocationF (respectively, K). We have �
 � 2B-/� Y � 7
 � �c� and

;
 � % - � ;
 � 2 - � Y � 7 ;
 � 7 �_FH3
Substituting � and solving the above we obtain

 � � F �
K�2	F Y �`F4K

 � � K �
K 2ZF Y �`F4K

Thus, at the minimum point,

V ;
 � � � ;
 � 2B-/��Y � 7 ;
 � �c��% ; K 2ZF Y �`F4Kb3

Proof: [Lemma V.1] Consider a monotone allocation ,
for which one of these conditions does not apply. A simple case
analysis establishes that a legal allocation with smaller ASS can
be obtained by “locally” reallocating ! � 2 ! � among ! � and ! �
(increasing one and decreasing the other by the same amount).
Thus, these conditions are necessary for an optimal allocation.

We now focus on the set of legal allocations for which con-
dition 1 hold. These allocations have a (possibly empty) prefix
of K ’s and (possibly empty) suffix of F ’s and the middle part is
square-root allocated and has values between K and F . As argued
above, the optimal allocation must be of this form.

We first argue that there must be at least one allocation in this
set by explicitly defining it: Let � ���&-5�[Y F'7 � % -/KLY F'7�� be
the number of K ’s and �.Y � Y�� be the number of F ’s in the
suffix. There is at most one item in the middle part, and it has
allocation between K and F .

We next show that any allocation of this form for which con-
dition 2 does not hold, has a neighbor allocation of that form
with a lower ASS. By neighbor allocation we refer to one where
the suffix or prefix lengths differ by at most one. To prove this,
consider the case where ! � ��F < ! � and ! �W%�F ? �
��W%0
 � (the
other case is similar). If this is true for any such � and � then it
is true for � being the minimal for which ! � �BF and � � � Y$� .
If we add � to the “middle part” and recalculate square-root al-
location then it is not hard to see that we get a better allocation
with values between K and F . If ! � N �H�JK (there was no middle
part) we place both ! � N � and ! � in a newly-created middle part.

It remains to show that there is only one local minima to this
process of moving to a better neighbor. Consider an allocation.
Let � be the last index for which ! � �TK . Let � 2B� be the first
�
There can be one item which lies in between these two limits (when � is not

integral), but this adds a small term which we ignore.

12

index for which !�� � �R�$F . The optimality conditions imply thatK �
�� � � %0
 �8< ! � � � � K and F �
 � %'
 � � � ! � ?BF . We show
that if there are two different solutions that fulfill the optimality
conditions then we get a contradiction. Let � 1 � and � � 1 � � be the
corresponding indexes and ! 1 ! � the corresponding allocations.
We first consider the case where � � � � and � � � � . We have! � � � � 1�3�3�341 ! � ��� ?GFH� ! � � � 1�3�3�341 ! ��� . As allocations sum to � we
have ! �� � ! � . We must have ! �� % ! � � � � �

�
���%'
 � � � . On the
other hand, we also must have ! � % !�� � � <

�
 � %'
 � � � . Thus,! �� % ! � � � � ! ��% ! � � � , which is a contradiction. The claims for
other cases are similar: If � � � � � � � � � we consider the
items � � and � � . We have ! �� � � K and ! � ��� ? F thus we must have! �� � % ! � ��� � �
 � � %'
 � � � K�%�F . On the other hand, the assumed
optimality of the other allocation implies that

�
�� � %0
 � � ? K�%�F .
Another case is � � � � ��� � ��� . We consider the total alloca-
tion to items � 1�3�3�3�1 � � . If it is larger in ! � we get a contradiction
with the allocation of ! �� (� � �). If it is larger we get a contra-
diction by looking at ! � (�+ � ��2B�).

REFERENCES
[1] Open Source Community. The free network project - rewiring the internet.

In http://freenet.sourceforge.net/, 2001.
[2] Open Source Community. Gnutella. In http://gnutella.wego.com/, 2001.
[3] KaZaA file sharing network. KaZaA. In http://www.kazaa.com/, 2002.
[4] Morpheus file sharing system. Morpheus. In http://www.musiccity.com/,

2002.
[5] Napster Inc. The napster homepage. In http://www.napster.com/, 2001.
[6] L. Kleinrock. Queueing Systems, Volume II: Computer Applications.

Wiley-Interscience, New York, 1976.
[7] C. Lv, P. Cao, E. Cohen, E. Felten, and S. Shenker. Search and replication

in unstructured peer-to-peer networks. 2001. Submitted for publication.
[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, RichardKarp, and Scott

Shenker. A scalable content-addressable network. In Proceedings of SIG-
COMM’2001, August 2001.

[9] A. Rowstron and P. Druschel. Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility. In Proceedings of
SOSP’01, 2001.

[10] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In Proceedings of SIGCOMM’2001, August 2001.

[11] FastTrack Peer-to-Peer technology company. FastTrack. In
http://www.fasttrack.nu/, 2001.

[12] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, University of California at Berkeley, Computer Sci-
ence Department, 2001.

