Scaling Application Performance on a Cache-coherent Multiprocessors

Dongming Jiang and Jaswinder Pal Singh

Department of Computer Science
Princeton University
Princeton, NJ 08544

{dj, jps}@cs.princeton.edu

Abstract

Hardware-coherent, distributed shared address space sys-
tems are increasingly successful at moderate scale. However,
it is unclear whether, or with how much difficulty, the per-
formance of a load-store shared address space programming
model scales to large processor counts on real applications.
We examine this question using an aggressive case-study ma-
chine, the SGI Origin2000, up to 128 processors. We show
for the first time that scalable performance can indeed be
achieved in this programming model on a wide range of ap-
plications, including challenging kernels like FFT. However,
this docs not come easily, even for applications considered
to be already highly optimized, and is very often not sim-
ply a matter of increasing problem size. Rather, substantial
further application restructuring is often needed, which is
usually quite algorithmic in nature. We examine how the
restructurings compare with those needed for performance
portability to shared virtual memory on clusters, and we
comment on common programming guidelines for perfor-
mance portability and scalability as well as on how the pro-
gramming difficulty compares with that of explicit message
passing. We also examine where applications spend their
time on this large machine, the impact of special hardware
features that the machine provides, and the impact of map-
ping to the network topology.

1 Introduction

Scalable, coherent shared address space (SAS) multipro-
cessing has been a major goal of research and develop-
ment for many years. Over the last decade, many hard-
ware cache-coherent, nonuniform memory access architec-
tures (so-called hardware-DSM or CC-NUMA machines)
have been built and shown to perform well at the moder-
ate scale of about 32 processors [1, 13, 2, 17, 8, 14, 18, 19].
In fact, such machines are fast becoming the dominant form
of tightly-coupled multiprocessor built by commercial ven-
dors. An open question has been the scalability of applica-
tion performance to larger processor counts. While a simu-
lation study [5] has explored this question, indicating that
several applications scale well and the problem sizes needed
are surprisingly small, scalability has not yet been demon-
strated or even explored on real systems, due in part to the
lack of appropriate systems and applications. It is impor-
tant to do this, however, since simulation has well-known
problems in the ability to run large enough problems as well
as in accuracy, especially in modeling contention which is
increasingly critical on real systems at large scale.

1063-6897/99 $10.00 © 1999 IEEE

305

This paper examines the performance of a wide range
of SAS parallel applications on a 128-processor hardware
cache-coherent machine (the SGI Origin2000}, to take a
snapshot of the state and potential of the load-store SAS
programming model. While we study only onc machine, we
sclect a modern high-performance machine with an aggres-
sive communication architecture and relatively few organi-
zational artifacts that would limit our conclusions. Gener-
alizability is left to the reader.

We drive our evaluation with cleven applications, eight
from the SPLASH-2 [20] suite and three new oncs. Qur
“original” versions of the applications arc their best known
forms for hardware cache-coherence so far. They use opti-
mized partitioning techniques for load balance and interpro-
cessor communication, are blocked for data reuse where rele-
vant, use optimized data structures to increase spatial local-
ity and reduce false sharing, and perforin proper data place-
ment across physical memorics where needed. For the ap-
plications that were used in the earlier simulation study [5],
they are the best versions used in that study, not the original
ones used there.

Starting with these programs, we explore the following
guestions:

e Do the programs scale well on a 128-processor ma-
chine under problem-constrained (constant problem
size} scaling? The initial problem sizes we use are the
ones that either (a) delivered good speedups on a 256-
processor machine in the simulation study (for the four
applications that were also used there; 128-processor
executions were not examined), or (b) delivered very
good speedups on a 32-processor Origin2000 in a pre-
vious study [8]. Scaling well is defined as achieving 60%
parallel efficiency (speedup divided by number of pro-
cessors), which is a spcedup of 76.8 on 128 processors.
This number is somewhat arbitrary, but has been used
in previous studies as well [3].

o If the basic problem sizes don't scale well, does increas-
ing problem size to reasonable extents solve the scal-
ing problem, and how large are the necessary problems
for a 128-processor machine? Where do the programs
spend their time on a machine of this scale, and what
are the key bottlenecks?

e Are there application restructurings that are needed
to substantially improve the scalability? How exten-
sive, difficult or architecture-specific are these restruc-

turings, and to what extent do they approach program-
ming with explicit message passing? How do they re-
late to the restructurings that were developed earlier to
improve gpplication performance dramatically on page-
based software shared virtud memory (SVM) systems
on moderate-scale clusters [6], but which were found to
not affect performance very much on a modcrate-scale
Origin2000? Longer-term, we would like to develop a
consistent set of algorithm- and program-structuring
guiddlines to achieve both performance portability and
scalability across the range of emerging shared address
space platforms: tightly-coupled and clusters.

o Do the specid hardware festures provided by the Ori-
gin2000 to enhance performance-namely prefetch in-
structions. dynamic page migration support, and at-
memory fetch-and-op support for synchronizations-
help performance substantially?

e What is the impact of mapping processes to the net-
work topology and of the machine having two proces-
sors share a memory and communication controller per
node?

Overdl, we show for the first time that scalable perfor-
mance can indeed be achieved for a wide range of appli-
cations by using a load-store cache-coherent SAS program-
ming model on a machine like the Origin2000. This is very
positive news for the programming model, and the algo-
rithmic and especially programming complexity are still a
lot lower than needed for message passing in irregular pro-
grams. However, we find that the task is far from easy.
Supposedly “optimized” SPLASH-2 and other applications
that work very well in the 32-processor range most often do
not scale. Increasing problem size to reasonable extents very
often does not help enough either, and substantia applica-
tion restructuring is needed. (Fortunately. after restructur-
ing the scaability is good even for very reasonable problem
sizes) The restructurings needed arc agorithmic and moti-
vated by high-level issues, so they are not easy but they are
not architecture-specific either. Interestingly. they are most
often along the same directions as those needed for perfor-
mance portability to SYM on moderate-scale clusters. The
restructurings needed for scalability on Origin are sometimes
less aggressive along these directions than those needed for
performance portability to SVM, but the latter most of-
ten help scalability further as well. It therefore appears
possible to construct common programming guidelines for
performance portability and scalability. While we summa-
rize some of our findings, developing good formal guidelines
needs further research.

After Section 2 very briefly describes the Origin2000
platform and the new applications we use, one section of
the paper is devoted to addressing each of the above ques-
tions. Our conclusions, including those for the rest of the
above questions, are summarized in Section 8.

2 Platform, Applications and Metrics

The descriptions in this section are very brief. A fuller de-
scription of the architecture can be found in [12] and of the
original application versions in [5, 20].

2.1 The SGI Origin2000

We use two SGI Origin2000 machines with different topolo-

gics. For our 32- and 64-processor results, we use a 64-
processor machine with 16GB of main memory and routers

306

Figure 1: A 128-processor SGI Origin2000 connected by meta-
routers. K inside cach of the four hyper-cubes denotes a router. Each
router connects two nodes to the network, and each node has two
processors sharing a memory and coherence controller called Hub,
Thus, four processors share a router. The links between corresponding
nodes of the four hyper-cubes are not direct, as in a full hyper-cube,
but rather pass through shared “meta-routers.”

connected in a full hyper-cube topology. For the 96- and 128
processor results, we use a machine with four 32-processor
hyper-cube modules connected by eight meta routers (see
Figure 1,) and 32GB of main memory. Both machines have
two 195MHz MIPS R10000 microprocessors within each
node. The two processors in a node share a “Hub” memory
and communication controller (which sees al cache misses
and incoming transactions) and a non-coherent memory bus,
and two nodes share a router. Each processor has separate
32KB first-level instruction and data caches. and a unified,
Z-way set associative, 4AMB second-level cache with a 128-
byte block size. The page size is 16KB. To illustrate the
appropriateness of this machine as an aggressive represen-
tative of its class, Table 1 shows the latency characteristics
of some modern cache-coherent DSM machines.

2.2 Applications
In addition to eight SPLASH-2 applications [20], three new
applications are used in this study: a Shear-Warp volume
renderer [16, 11], a probabilistic inference application for
belief networks (Infer, applied to a medica diagnosis prob-
lem [9]), and an application for protein structure determi-
nation in the presence of uncertainty (Protein) [3]. Results
for the last two are available only up to 64 processors so
far. Taken together, these applications exercise a wide range
of characteristics in communication-to-computation ratio,
communication pattern. load balance, synchronization, and
spatial and temporal locality. We briefly describe only the
three new applications in their original forms here. Better
descriptions are available in the literature cited above.
Shear Warp is a faster algorithm for the volume render-
ing done by the SPLASH-2 Volrend. It has two main phases
for each frame: a compositing phase to traverse the volume
and compute a distorted intermediate image (which takes
over 90% of the sequentia time), followed by a warp phase
to read the intermediate image. and write it, undistorted,
into a final image. For the compositing phase, the origina
version partitions the intermediate image in an interleaved
assignment of chunks of scanlines with task stealing for sub-
sequent load balancing; for the warp phase, the fina image

Machines Local { Remote Clean Remote Dirty Remote/Local | Remote/Local

(ns} (ns} in 3rd node (ns) | Ratic (Clean) Ratio (Dirty)
Origin2000 338 656 802 2:1 3:1
Convex Exemplar X 450 1315 1955 3:1 5:1
Data General NUMALIINE 240 2400 3400 10:1 14:1
Hal 51 240 1065 1365 5:1 6:1
Sequent NUMAQ 240 2500 N/A 10:1 N/A

Table 1:

back to the processor.

is partitioned. This avoids writc-write data sharing [7].

Infer, in a highly simplified description, takes a proba-
bilistic belief network as input and first converts it to a tree
of large nodes or “cliques”. It then traverses the clique tree,
first upward and then downward (with substantial compu-
tation in cliques and communication across them}, to prop-
agate inference and arrive at a diagnosis. There is paral-
lelism both across and within eliques. The application ex-
ploits both by starting with a reasonable static assignment
of cliques or their subsets to processors (starting from the
leaves and keeping partitions coarse-grained and localized)
and then stealing chunks of work from other cliques [9].

Protein is a new hierarchical algorithm for protein
structure determination. The computational structure is
again a tree, with the edges expressing cross-node depen-
dences. Each node of the tree represents a substructure of
the protein with a lot of parallelizable work. Nodes are ini-
tially assigned to groups of processors based on estimates of
their relative workloads. For complex reasons, dynamic load
balancing is implemented not by task stealing but rather by
a new technique called process regrouping: having an idle
processor group either take over a free node or join a cur-
rently working processor group [3)].

2.3 Metrics

Several different problem sizes are studied for each applica-
tion and machine size. We use parallel efficiency (speedup
divided by number of processors) as our primary perfor-
mance metric, measuring speedup relative to the same se-
quential program in all cases for an application. We also
present per-processor breakdowns of execution time in as
much detail as we can measure them with the available per-
formance tools. In general, speedup or paralle]l efficiency
can be inflated by the “superlinear” effect of cache capacity
misses (or by limited local memory size on a single node).
While this is a real effect. a metric can be designed to elim-
inate it if local and remote memory stall time can be sep-
arated (e.g. if there is little exira work in the parallel pro-
gram, the sum of the busy plus local memeory stall times on
all processors can be used in place of sequential execution
time). However, the machine does not allow this separa-
tion. Fortunately, with the large caches of the Origin, the
cases where the capacity effects are dominant are few, and
we shall point them out as appropriate.

3 Speedups for Basic Problem Sizes

We first choose a “basic” problem size for each application,
as described in the introduction. Table 2 shows these prob-
lem sizes and their sequential execution times. Execution
times in this paper are measured for many fewer time-steps
or frames than the application would actually be run for,
but cnough to obtain representative behavior.

We run these basic problem sizes for several different
processor counts on a dedicated machine, and show results
for 32, 64, 96 and 128 processors. (Since using all proces-

307

Latencies and remote-to-local latency ratios on different systems. The latencies are from processor request to the response coming

Application Basic Problem Size | Sequential Time (ms) [}
Barnes 16K bodies 7556556
Infer CPC5-422 network 640000
FFT 277 points 2631816
Ocean 1026 x 1026 grids 28488206
Protein helix16 1713000
Radix 4M keys 46554729
Raytrace 128 x 128 image ({ball) 38186372
Shear-Warp 256 x 256 x 256 head BIOGGTE
Volrend 256 x 256 x 256 head 934163
Water-Naquared 4096 molecules 69031748
Water-Spatial 4096 molecules 7786852

Table 2: Applications, basic problem sizes, and scquential execu-
tion times. Four of the applications, Barncs, FFT, Ocean and Radix,
were used in an carlier simulation study [5], so we choose their basic
problem sizes ns the ones that delivered good speedups on a 256-
processor machine there (128-processor executions were not used).
For the other applications, the basic problem sizes are those that
deliver very good speedups on a 32-processor Origin2000 {8].

125 ’

- —e— Rayirace
—a— Ocean
- ~—a—= FFT
- —t— Waler-Nsquared
g - —g— Inference
g 64 . —o— Waiter-Spatial
= . —e— Protein
. —%— Volrend
’ —a— Shear-Warp
—a— Barnes
—a— Radix

32 64 96
Number of Processors

128

Figure 2: Application speedups for basic problem sizes.

sors on a machine can lead to lower speedups than leaving
a couple out, e.g. due to OS intervention, we tested the
speedups on 62, 126 and other numbers of processors to en-
sure that we were not having this problem.) Figure 2 shows
that all the applications, except Raytrace, do not scale well
at lcast beyond about 64 processors. To understand why,
we use the performance tools the machine provides to inves-
tigate where the programs spend their time. In particular,
we divide the per-processor execution time into three cate-
gories: busy time in computation (Busy), stall time waiting
for cache misses to be satisfied (Memory, which we unfor-
tunately cannot distinguish into stall time on local versus
remote memory), and time spent at synchronization events
(Synchronization). We use the best synchronization meth-
ods chosen from a recent detailed study of synchronization
on this machine {10}, though there is usually not much dif-
ference between methods for our problem sizes (see Sec-
tion 6.3). An average execution time breakdown over 128
processors for all applications (except Infer and Protein) is
shown in Figure 3. Per-processor breakdowns will be cxam-
ined soon.

Figure 3, together with uniprocessor breakdowns, shows
that memory overhead usually dominates for most of the
applications with the basic problem size. The exception is
Water-Spatial, in which synchronization time is the domi-
nant bottleneck. However, synchronization time is substan-
tial in many other applications too. We find that most of
the synchronization time is spent in barriers. Instrumenting
locks and barriers shows that it is the idle or waiting time,
especially due to imbalances in computation or data access
costs, and not the overhead of the synchronization opera-
tions themselves, that almost always dominates (see [10] for
more detail).

»
E
B == synchronization
g = memory
[
B £ busy
-
[
Applications
Figure 3: Average execution time breakdown for 128-processor

cxecutions with the basic problem sizes.

4 Effects of Increasing Problem Size

The above results raise the question of whether the basic
problem sizes arc large enough for a 128-processor machine.
In this section, we explore the impact of problem size on
application performance, increasing problem size to either
the largest sizes we are able to run on the machine or the
largest available for the application. These sizes are usually
quite large compared to real usage of the applications.

The results are shown in Figure 4 for three different pro-
cessor counts each (we ignore 96 processors to keep the
graphs readable; the results are where expected between
64 and 128 processors). Increasing problem size keeps im-
proving performance for many applications such as Ocean,
Water-Spatial, Protein, Volrend. Shear-Warp, and Barnes,
and on larger processor counts for FFT and Radix as well,
but it starts hurting that of others at some point, such as
Raytrace and Water-Nsquared. The surprising result is that
increasing problem size to reasonable extents, even to the
largest size we are able to run, does not by itself deliver the
desired parallel efficiency beyond 64 processors for most of
the supposedly highly-optimized applications we examined.
Even larger problem sizes would likely cross the 60% mark in
some cases, but these would be large problems for these ap-
plications. They would also exaggerate measurement prob-
lems for speedup due to capacity effects (which are already
significant contributors to speedup for some applications at
our problem sizes). Most importantly. we would like the ma-
chine to obtain good speedups on more reasonable problem
sizes, which also do not rely on this capacity-related speedup
exaggeration to reach the threshold.

Increasing problem size tends to improve many inher-
ent program characteristics, such as load balance, inherent
communication to computation ratio and spatial locality,
but can increase working set size. By examining execution
time breakdown on a per-processor basis. we gain insight
into why increasing problem size helps some applications
and hurts others. Where breakdowns show similar effects
for multiple applications, we will show only one for space
reasons..

308

4.1 Where Time is Spent on 128 Processors: Positive

Impact of Problem Sire

|E Busy @ Memory B Synchronization

100% 1005

0%

Percentage Time
Percentage Time

e

0%

Frocessors(1-128)

Frocessorsil

(a) 4096 molecules (b} 32768 molecules

Figure 5: Execution time breakdown for Water-Spatial with both
the basic and a large problem size for all 128 processors. The X axis
represents the individual processors and the Y axis is the percentage
of execution time. What would otherwise be 128 bars are merged
together into a continuum to make the figure more easily readable. To
the right of each breakdown figure, the breakdown for a uniprocessor
execution is also shown for that problem size, to help indicate whether
capacity effects are significant contributors to parallel speedup.

Water-Spatial finally achieves more than 60% parallel ef-
ficiency on 128 processors with 32K molecules (see Fig-
ure 4). The impact of problem size is smaller on fewer pro-
cessors, as we expected. Figure 5 shows per-processor break-
downs of execution time for all 128 processors, arranged as
a continuum rather than as separated bars. Analysis shows
that larger problems improve performance in Water-Spatial
mainly in two ways. First, the communication to computa-
tion ratio is improved due to the nearest-neighbor commu-
nication pattern among the cells in the three-dimensional
space. Local memory behavior doesn’t change much, as the
important working sets are small (see [20] and the unipro-
cessor breakdowns in Figure 5). so the overall memory stall
time is reduced. Second, and much more important, the
reduction in communication also reduces the load imbal-
ance in communication cast among processors, which is quite
dramatic at the smaller problem size; synchronization time.
most of which is waiting time, is therefore reduced dramat-
ically as well. Computational load balance is improved too,
but this is a much smaller effect. For large problems, Water-
Spatial spends most of its time busy computing.

|D Busy B Memory B Synchmnimti(m]

100 0% -

0%
0% &%

0%

Percentuge Time
Fercentage Time

%

Pracessors{1-128) Processarsi1-118)

(h) 16M poins

{a) 1M points

Figure 6: Execution time breakdown for FFT with both the basic
and a large problem size for all 128 processors.

FFT almost reaches 60% efficiency at 128 processors by
increasing problem size. However, large problems hurt par-
allel efficiency at smaller processor counts. The reason is
as follows. Increasing problem size reduces communication
to computation ratio, albeit slowly, and improves spatial lo-
cality on remote data (in particular, it reduces the transfer
of unnecessary data [5]). However, for smaller machines, a
large problem size also generates a lot of local cache capac-

y
100% 1 / r ¢
=
r L]
2 e] / E : 1
= 3 3
E 0% 4 . r — u
7]
408 { —e—Fxi2 1 .1///—‘] ““H\H
B aon | B—Peed E] | L
[—h— P28
o
cmszms=gx © % £ =
SRECTEES z &8 £ 3%
One Dimenson uf Image One Damenuon of (nds Mumnber of Pounts (M) Number of Malevgles Number of Nodes Humber of Molecules
{a) Ruytrace B Ocenns) EFT (d) Wadnr-Nsquared {e) Inker N Water-5 putial
L 100 \
T
E st o | SR
= ./.__‘_I V‘/J b
T OA0% -
= 3 .
[
£ 204 /"""1] ./a"""
P
%
@z = ~
SESECT L 8RR OR R OR BoraifEiic
Helix Size One Drmenmon of Volume Une Dimenson of Yolume Number of Patickes (K} Number of Keys (M}
{%) Protein) Volrend (1) Shwist-Warp (i) Barmes (k) Radix

Figure 4: Impact of problem size on parallel efficiency of applications. The Y axis of each graph {one per application) is the paralle] efficiency
{speedup over best sequential execution time divided by number of processors) and the X axis is the problem size in units relevant to that
application (scc Table 2). A horizontal line is drawn at the “desirable” 60% level of parallel efficiency. Due to superlinear effect, Dcean and
FFT achieve parallcl cfficiencies higher than 100% for some cases. There are threc curves for cach application, for three different numbers of
processors. The 128-processor curve is generally the lowest one. For Infer, we have only one real input data set from medical diagnosis.

ity misses (see uniprocessor breakdowns in Figure 6), which
apparently contend for the Hub and memory system with
communication accesses and thus sow the machine down.
Larger machines have fewer capacity misses, so only the im-
provements are seen. It may have been better for local ca
pacity misses not to have to go through the Hub controller,
unless memory or bus contention dominates (which we can-
not determine). FFT speedup also benefits from superlin-
earity effects due to diminishing local capacity misses with
more processors. It is not clear how much this contributes to
the good speedup wc observe since we cannot separate local
from remote memory stal time, hut we verify via cdcula
tions on problem and cache size that it is not a dominant
effect. Ocean speedup. which aso just achieves 60% paral-
lel efficiency, benefits generally from superlinearity effects.
In fact, the required problem size (2050-by-2050 grids) does
not even fit in the local memory of a single node. Therefore,
the sequential execution accesses remote memory for logi-
cally “local” capacity misses, which the parallel execution
doesn’'t. Problem sizes small enough to avoid this superlin-
earity effect do not achieve 60% efficiency for Ocean.

[@ Busy @ Memory B Synchnmiz:ltion|

Fercentage Time
Percentuge Time

Pracessors(l-128) !

Processors(1-128}
(a) 256 x 256 x 256 head {b) 1024 x 1024 x 1024 head

Figure 7: Execution time breakdown for Shear-Warp with both the
basic and a large problem sizes for all 128 processors.

Barnes and Shear-Warp behave similarly to Water-

Spatial, discussed earlier, except they don't achieve GO%
efficiency for 128 processors. Both memory and synchro-

309

nization overhead decrease relative to useful work as prob-
lem size increases. However, Figure 7 shows that memory
time remains a bottleneck for the largest problem size we
have, using SheaWarp as an example (see Figure 10 later
for Barnes-Hut). The working sets of these programs are
known to ill fit in the 4MB caches, as revedled by unipro-
cessor breakdowns too, and there is little false sharing; it is
communication misses that don't decrease quickly and that
stand in the way. Both programs exhibit a small amount
of computational load imbalance, which is exaggerated by
corresponding imbalances in their memory and communica
tion accesses. Much of the time is spent stalled on remote
misses, even for large problems.

Radii has been observed to be hurt by larger problem
sizes in a simulation study [5]: due to memory and con-
troller contention between local accesses, remote accesses
and especially protocol transactions like writehacks. How-
ever, with the large caches and efficient Hub controller on
Origin we do not observe this behavior on 64 processors
and beyond. At 64 processors, Radix (quite surprisingly)
delivers greater than 60% efficiency for the largest problem
size. a showcase for the machine's aggressive communication
architecture. (Most other machines have behaved poorly
for Radix, even at smaller processor counts, even though
capacity-related superlinearity tends to help Radix as well.)
However, at 128 processors even this problem size cannot
overcome the contention caused by communication and pro-
tocol transactions, and parallel performance is poor.

4.2 Where Time is Spent on 128 Processors: Negative
Impact of Problem Size
Increasing problem size can increase capacity misses, which
can help speedup if they are mostly local (due to the
capacity-induced superlinearity effect) and hurt speedup if
they arc mostly to remote data. Raytrace and Water-
Nsquared are examples of the latter case. Raytrace has a
large and somewhat diffuse working set of mostly remote
data (see Figure 8). However; its speedup remains high
enough. For Water-Nsquared (not shown); we find that al-

B Busy @ Memory M Sy

100%

Percentage Time
Percentage Time

1

Processorsii-128)

{b) 1024 x 1024 image

(a) 256 x 256 image

Figure &: Execution time breakdown for Raytrace with both a
small and a large problem size for all 128 processors.

though it performs O{n?) computation on O(n) data (that
are distributed properly), the memory stall time percent-
age increases with problem size once a threshold is crossed.
Although the fraction of time spent in synchronization de-
creases dramatically, speedup diminishes. We will examine
this problem and its time breakdown in more detail in Sec-
tion 5.

To summarize, while increasing problem size improves
parallel speedups for several applications, doing this to rea-
sonable extents (as discussed earlier) enables us to achieve
60% parallel efficiency for only two of them (Ocean and
Water-Spatial). This is despite the fact that cache capacity
can yield a superlinearity effect for some applications with
large local working sets (a significant factor in Ocean). For
most of the applications, to achieve good scalability our only
recourse is to restructure them even though they all deliver
very good speedups at the 32-processor scale (well over 60%
parallel efficiency) and they are supposed to be already op-
timized in all areas (like partitioning, data structure design,
and data placement).

5 Impact of Application Restructuring
Execution time breakdowns, augmented with knowledge of
the applications, allow us to understand the causes of poor
scaling as well. For example, for Barnes-Hut, Shear-Warp
and Water-Nsquared the problem is mostly data access time
(in these cases, communication). Using the processor hard-
ware counters together with microbenchmark latency results
allows us to determine whether the problem is due to the
frequency of misses or due to contention. And profiling the
programs further (using pixie and prof) helps us determine
in which routines the memory problem lies. Based on this
information we try to restructure the applications that did
not achieve 60% efficiency so far.

Figure 9 superimposes parallel efficiency versus problem
size curves for the restructured applications on those for the
original version. The improvements are large at the large
processor counts. We describe the restructurings briefly to
understand their effects here.

5.1 Restructuring Applications on the 5GI Origin2000

Consider Barnes-Hut. Profiling shows that the memory
bottleneck is largely in the phase of building the shared
tree. In the original parallel tree-building algorithm, pro-
cessors load their assigned particles one by one into a globally
shared tree, locking tree cells when they need to be modi-
fied. Since the tree is partitioned in quite contiguous pieces
among processors, the communication and contention for
the locks is expected to be small. However, even for large
problem sizes, the tree-building phase takes a very large
fraction of the execution time on 128 processors (31% for

310

512K particles) compared to only about 2% of the time on
a uniprocessnr. To improve performance, it is necessary to
change the way trees are built in parallel, particularly to
reduce communication. An alternative tree-building algo-
rithm, called Merge Tree, operates by having each processor
construct a local tree out of only its own particles without
any communication (the same particles that were assigned
to it for force calculation).

and finally merging the trees. The recursive merging al-
gorithm is complicated, and we shall not describe it here.
The merging is imbalanced; for example, the first processor
to merge into the empty global root just redirects the root
pointer, while later processors to reach the merge phase have
do successively more work, including more communication
and locking. This leads to greater imbalance at the bar-
rier than in the original algorithm, though there is less time
spent in locks. There is also significant extra computation.
Nonetheless; the reduction in communication outweighs the
loss of load balance consistently for all problem sizes and
processor counts, and the restructured version achieves 58%
parallel efficiency on 128 processors with 512K particles.
compared to the original 50% (see Figure 10(a) and (b)).
Somewhat larger problem sizes would cross the 60% mark.

In Shear-Warp volume rendering, the algorithmic re-
structuring is more difficult to describe in a short space.
The problem in the original version is the loss of locality in
the interface between the campositing and the warp phases.
Fixing this loss of locality without causing load imbalance
requires developing a fundamentally new parallel algorithm
based on profiling for load balancing [7]. The new algo-
rithm, originally developed for a hardware DSM machine. is
organized so that the process that writes a (now contiguous
rather than interleaved) partition of the intermediate im-
age in the compositing phase is in fact the one that reads
that same partition in the warp phase [7], and it writes a
warped piece of the final image accordingly. Memory stall
time diminishes greatly and, since there is little compromise
of load balance, speedup increases substantially for all prob-
lem sizes and processor counts. Large problems achieve over
60% parallel efficiency.

In the more familiar Water-Nsquared, the water
molecules arc allocated contiguously in an array of n
molecules, and partitioned among processors into contigu-
ous pieces of n/p molecules each. In the force calculation
phase, a processor accesses its own n/p molecules and the
following & —-:- molecules in the array that are assigned to
other processors (and hence are remote). The natural way
to structure the loop nest is to have the outermost loop for a
process iterate over the particles assigned to it. For each lo-
cal particle, an inner loop iterates over the next 2 particles
that it interacts with. This is what the SPLASH-2 program
does. Unfortunately, if n is large, the § remote molecules
may not fit in the cache. so when a remote molecule is ac-
cessed again to interact with the next local molecule it will
no longer be in the cache. Capacity misses are incurred on
remote data, and a lot of artifactual communication is gener-
ated. The solution is essentially to interchange the loops. A
remote molecule is accessed once, interactions are computed
between it and all local molecules (reusing it (n/p} times
in the cache), and only then is the next remote molecule ac-
cessed. Temporal locality is high on remote molecules and
is low on local molecules, which are fewer and also cheaper
to miss on (see Figure 10(d) and (e)). The loop is very com-
plex and has many subroutine calls within it, so this is not

---# -~ Pe3l(onginal) -~ &+ Pet4{original) & P=128(crginal)

—#— Pa32(restructuring} —O0— P=fid{restructuring) —#r—= P=128(restructuring)

e -
ot 3
o "
csxtisfta C F § £ 3° 8 % % 3§
Humiver of Molscules e Dimenmen af Voluse Nuraber of Particles (X) Numnber of Keys (M) One Dunenmns of Gride Number of Nodes
{w) Ocean () Infer

{2) Wantsr-Naquared (b} Shaar-Warp

Figure 9:

and the bold lines represent tho restructured versions.

(c) Barmes.

(d) Radix

Impoct of application restructuring on parallel efficiency. The dotted lines represent the original versions (copied from Figure 4),

100%

BOS

205

%

Percentage Time

Precessors(]

Processarsi1-128)
512K particles 512K particles

(a) Barnes Original (b) Barnes MergeTree

Procesarsi | 124}
512K panicles

(c) Barnes Spatial

Provessers()-123)

Processors(l-123)

32768 molecules 32768 molccules

(d) Water-Nsquared
Onginal

{e) Water-Nsguared
Restructured

Fig‘llre 10: Execution time breakdowns for original and restructured application versions of Barnes-Hut and Water-Nsquared on 128 processors.
The total execution time (height of the bars) of the restructured versions is normalized to that of the original version. This shows how much the
restructuring improves performance, and where most of the performance benefits come from.

the kind of loop restructuring that a compiler could readily
do. Also, it is motivated by the knowledge of which capacity
misses are remote and hence more expensive, which a com-
piler may not have. This restructuring is very important for
large problems. Increasing problem size hurts performance
for the origina version, and it is not even close to 60% paral-
lel efficiency for any problem size on 128 processors. The re-
structured version, however, starts achieving 60% efficiency
for the relatively small problem size of 8K molecules on 128
processors, and continues to ascend for even larger problem
sizes.

In the Infer application. the restructuring needed is to
move away from the dynamic partitioning approach that was
very successful at 32-processor scale, and to a completely
different, static partitioning algorithm that exploits paral-
lelism only within each clique (tree node). The algorithm
uses knowledge of the dependences between elements in par-
ent and children nodes to maximize locdity in crossing over
from one node to the other [9]. The coarser level of par-
alelism across nodes is sacrificed, but communication and
locality are much more important for realistic belief net-
works a larger scale and the restructured version achieves
an efficiency much higher than 60% on 64 processors.

For Radix sorting, which does surprisingly well at mod-
erate scae, the key problem at large scale is the permutation
phase. In this phase, the pattern of writes from a process to
the dedtination array is temporaly scattered, but ultimately
ends up in small contiguous chunks. One possible solution,
therefore, is to first write the keys to a set of small contigu-
ous local buffers and then transfer them (contiguoudly) to

311

the corresponding chunks of the shared output array. How-
ever, while this reduces the scattering of remote writes, it
does not reduce burstiness of write-based communication
and al the resulting protocol traffic. The local copying out-
weighs any savings in contention, and in fact performs quite
a bit worse. To overcome the problem, we use a different
pardlel sorting agorithm as our restructured version. Sam-
ple sort uses two loca sorting phases, separated by a short
phase to compute splitter keys and a communication phase
to copy a contiguous set of remote keys to a loca array (to
prepare for the next local sort). The local sorts can use any
sequential sorting method; here, Radix sort is used. Unlike
paralld Radix sort, the al-to-al communication is based on
stride-one remote reads rather than scattered remote writes,
and is therefore better behaved. The disadvantage is that
the local sorting is done twice, so (ignoring memory data ac-
cess) the parald efficiency is limited to 50%. Here, Sample
sort achieves an efficiency of 50% with 128M keys, some of
which is due to capacity effects as in Radix sort.

Findly, we aso tried to improve the scaling of FFT and
Ocean. to rely less on capacity effects for achieving 60% par-
ald efficiency. For FFT, we tried performing the transpose
implicitly while computing rowwise FFTS, to reduce bursti-
ness of communication compared to an explicit transpose
phase, hut this did not help. For Ocean, we tried using row-
wise rather than tiled partitioning to reduce fragmentation
when fetching remote words [G]. This changes performance
only dightly, with the direction depending on problem and
machine size. Overall, while we arc still unable to reach
60% efficiency on 128 processors for two applications (Vol-

rend and Radix) with our problem sizes, we are finally able
to do so for the rest.

5.2 Restructurings for Performance Portability and Scal-
ability

So far, we have examined application restructurings to the
extent needed to obtain 60% parallel efficiency on a 128-
processor machine. A set of restructurings was also devel-
oped for several applications, starting from the same orig-
inal “optimized” versions as here, to achieve performance
portability to shared virtual memory {SVM) systems on
small- to moderate-scale {16-processor) clusters of worksta-
tions or SMPs [6]. SVM systems on clusters have very dif-
ferent protocols and performance characteristics for commu-
nication and synchronization than hardware-coherent sys-
tems, as well as very different granularities of coherence and
communication (a page). In that study, those restructur-
ings were found to neither help nor hurt performance very
much on a 16-32 processor Origin2000, and were therefore
performance-portable.

In almost all cases, we find that those restructurings are
either similar to or more substantial than the ones used here
for hardware DSM scalability. Where they are more sub-
stantial, we examine here whether those restructurings sig-
nificantly further enhance scalability on a hardware-coherent
machine like the Origin2000 than what we have seen so far,
or whether they degrade it or are neutral. We also examine
whether the restructurings that suffice here perform well on
moderate-scale SVM clusters, and hence whether similar re-
structurings lend themselves both to performance portabil-
ity and to scalability on hardware DSM. (It is worth noting
that while the restructurings for performance portability im-
prove SVM performance dramatically, the resulting parallel
performance is not nearly so good as that of an Origin2000 at
similar scale, and that scalability on 5VM clusters has not
been demonstrated. However, performance portability to
deliver even acceptable performance on clusters is nonethe-
less important, since users want to write programs once and
run them on both high-end machines and clusters.)

Consider Barnes-Hut. The tree-building phase was
the major bottleneck on the SVM system as well. Using
the merging-based tree-building algorithm improves SVM
speedup substantially, but from 2.76 to only 5.65 on 16 pro-
cessors. This is because there is still significant communi-
cation, because the higher cost of communication than on
Origin increases the load imbalance in the execution, and
especially because a significant amount of locking remains
when merging trees recursively. Unlike on Origin, locks are
expensive and cause substantial serialization on SVM sys-
tems, since they are where software protocol activity is in-
curred and (often large) software messages are exchanged.
Lock time, rather than communication time as on Origin,
was the major bottleneck for SVM. Therefore, the success-
ful restructuring for SVM was to develop a new tree building
algorithm that eliminates locking.

In the new tree-building algorithm, called Spatial, bodies
are assigned differently to processes than in the force calcu-
lation and other phases. The space is divided up into many
pieces {which match subtrees), and the pieces are assigned
to processors. The shared “supertree” of these subspaces
(ie. the very small tree that has these subspaces as its
leaves) is built by one processor. Processors individually
build the subtrees corresponding to their assigned subsets
of spaces (without locking), and then simply attached their
subtrees to the unique corresponding leaves of the supertree

312

(again without locking due to the uniqueness of the place
of attachment). The elimination of locking dramatically im-
proves performance, even though load balance in the tree
building is compromised and some locality is lost between
the tree building and other phases. This restructured ver-
sion ended up achieving a speedup of 10.5 on SVM with 16K
particles on 16 processors in [6]. Since it greatly reduces
communication as well in the tree building, it addresses the
main problem on the Origin too, for the same reason as
it eliminates locking: separating out partitions cleanly into
large, structured subtrees and eliminating write-sharing of
data. Interestingly, the loss of load balance outweighs the
reduction in communication on smaller Origin systems, so
this restructured version is actually a little worse than the
original version on 32 processors. But for larger systems,
the communication reduction wins and this more greatly re-
structured version outperforms even the merging-based ver-
sion to achieve 69% parallel efficiency on the 128-processor
Origin (compare Figures 10(a), (b) and (c)).

Shear-Warp is another example where the same re-
structuring dramatically improves both performance porta-
bility and hardware scalability. Like on the Origin, com-
munication due to loss of locality between the composit-
ing and warp phases causes performance problems on SVM.
Moreover, contention caused by the expensive communica-
tion and synchronization increases load imbalance as well,
which is not easily alleviated by task stealing in SVM (see
Volrend later). By attacking thesc problems, the same re-
structuring improves performance on SVM from the original
speedup of 3.41 to 9.21 on 16 processors.

There are applications for which further restrueturing is
critical for performance portability to SVM, but these re-
structurings do not help Origin scalability much. These in-
clude Ocean and Raytrace, where the performance is already
very good on the large-scale Origin, and Volrend, where the
problemn size is not large enough but restructuring doesn’t
help much. In Ocean, the large communication granular-
ity of a page requires that rowwise partitioning be used to
minimize the unnecessary communication (fragmentation}
that cccurs at column-oriented boundaries, even though this
compromises inherent communication to computation ratio.
This increases SVM speedup from 8.5 to 13.2 for a 1026-by-
1026 Ocean simulation. However, as we have seen, its effect
on Origin is very small and depends on problem and ma-
chine size. In Raytrace, removing an unnecessary statistics
lock used for each ray improves speedup from .5 to 11.7,
whereas it improves parallel performance by only about 4%
on Origin where synchronization is much more efficient. In
Volrend, the SVM restructuring is to substantially change
the initial partitioning of tasks to processors so that task
stealing (which is very expensive and much less effective in
SVM due to high locking cost) is greatly reduced. This im-
proves parallel performance by about 68% on SVM. Task
stealing is very effective on Origin, so the better balanced
initial assignment doesn’t buy more than a few percent in
performance. The real problem for Volrend scaling on Ori-
gin is that we do not have large enough problem sizes .

Finally, sometimes we find restructurings that are nec-
essary on the Qrigin2000 but are not relevant to SVM clus-
ters. These have to do with the fact that remote data are
replicated only in the hardware cache on a machine like the
Origin, while they are replicated in main memory in SVM.
Water-Nsquared is the example here. The original loop or-
der is not a problem on SVM systems. since once a remote
molecule is accessed for the first time it is replicated in lo-

cal main memory, and subsequent cache misses to it are no
more expensive than misses on locally assigned molecules.

In summary, the restructurings needed for scalability on
hardware coherent systems and for performance portability
to SVM on clusters are often similar, despite the great dif-
ference in the performance and granularity characteristics as
well as in the protocols and consistency models. They are
not very architecture-specific, but address high-level bottle-
necks and are algorithmic. Sometimes the manifestations
of the problem are different (e.g. comrmunication time on
Origin versus synchronization time on SVM in the original
tree-building algorithm in Barnes-Hut), but the fundamen-
tal reason and hence the approach to restructuring needed
is the same. Where the restructurings needed are different,
we find that most often they take the form of needing to
push harder along similar guidelines for performance porta-
bility than for scaling, rather than requiring very different
approaches or goals. Thus, while some restructurings are
often critical to SVM but do not matter much for hardware-
coherent scaling (e.g. dramatically reducing fine-grained
synchronization as in Volrend and Raytrace and being much
more sensitive to system granularities as in Ocean), even
these are indeed performance portable back to moderate- or
large-scale hardware-coherent systems. This is a positive ob-
servation, since it indicates that generalizable programming
guidelines may (and should) be developed for both scalabil-
ity and performance portability across a range of platforms
that support the coherent shared address space program-
ming model.

5.3 Programming Guidelines

‘While much more work is needed to develop programming
guidelines for scalability and/or performance portability
that can be formalized and presented to programmers, let us
summarize some of the early guidelines we have observed in
the course of this research. The guidelines often have to be
pursued further for performance portability to even small-
to moderate-scale SVM than what suffices for scaling on an
Origin-like hardware-DSM system.

e Partition as statically or with as much control over lo-
cality as possible (while preserving load balance), even
if higher levels of available parallelism must be sacri-
ficed. Very dynamic approaches used for load balancing
often don’t scale. Examples are Infer and Shear-Warp.

e Related to the above, while it is difficult to gener-
alize, on small- to moderate-scale hardware-coherent
systems load balance is often the biggest problem and
should not be compromised. However, at larger scale or
on commedity clusters, communication frequently be-
comes a greater bottleneck, often due to the contention
it causes. A good example is tree building in Barnes-
Hut: The original strategy with better load balance is
better at moderate scale on Origin, but the new strate-
gies are much better at large scale or on SVM.

¢ Separate out partitions as much as possible. Fine-
grained read-write sharing of data is okay at moderate
scale (32 or so processors), but at larger scale it seems
necessary to move to parallel algorithms that separate
out the computation and data accessed by different pro-
cessors within a phase of computation into large, well-
structured partitions. An example is the tree-building
in Barnes-Hut, where instead of loading particles in-
dividually into a global tree or even merging irregular

313

subtrees, the processors build spatially cleanly divided
subtrees independently without interaction or shared
access, and then simply place them into the global tree.
This approach is conceptually closer to what one is usu-
ally forced to do in message passing programming, so
the algorithmic gap in partitioning and parallel algo-
rithm design appears to shrink with scale or commod-
ity approaches. However, we find that the program-
ming and orchestration is still much easier in SAS for
all the familiar reasons [15], and that for many very ir-
regular applications (like our graphics ones) substantial
algorithmic advantages also remain for chtaining good
performance.

s Structure parallel algorithms and partitioning schemes
so that they are single-writer, i.e. s0 that only one pro-
cessor writes a given data item (or cache block or page,
depending on the granularity of coherence}. Multiple
writers lead to both communication, which is expensive
on both types of systems, and synchronization which is
very expensive in SVM.

Beware loss of locality across computational phases, as
in Shear-Warp. Compromising some load balance or
even communication within a phase to preserve this is
often useful.

Other guidelines that are better known include (i) ex-
ploiting temporal locality on remote data rather than local
in hardware-coherent CC-NUMA systems if there is a choice,
as in Water-Nsquared, (ii} perhaps violating or compromis-
ing inherent properties to achieve better interactions with
large system granularities as in Ocean under SVM, (iii) re-
ducing the need for task stealing when synchronization is
very expensive as in SVM, (iv) structuring and distributing
data properly, etc.

6 Effectiveness of Special Hardware Fea-
tures

Let us now return to the Origin2000 itself, In this section, we
discuss the effectiveness of three specific hardware support
features provided by the machine to enhance performance:
software controlled prefetch instructions, hardware/software
support for dynamic page migration, and an cfficient at-
memory fetch&op primitive.

6.1 Prefetching Remote Data

We examined prefetching only for remote data by insert-
ing prefetch directives to the compiler in the communica-
tion loops. We find it to help FFT a little (less than 5%
in execution time at most) on 32 processors, but substan-
tially on larger machines especially for larger problem sizes:
up to 20% on 64 processors and up to 35% on 128 pro-
cessors. Prefetching helps Sample Sort tco, by about 20%
in execution time on 128 processors for the larger prob-
lem sizes. There is more communication with more pro-
cessors, so more latency to be hidden. As for larger problem
sizes, they don’t reduce communication to computation ra-
tio much in these applications, and they are less dominated
by other overheads like synchronization wait time, so the im-
pact of the prefetching benefits are larger. Prefetching does
increase network traffic, but communication bandwidth is
adequate even for all-to-all matrix transpose communica-
tion on the 128-processor machine . If data are not placed
properly, so traffic is greatly increased in FFT, it was shown

Problem 5Size

Application

Manual Eound Robin

Round Robin +
Page Migration

FFT 227 points 55 26 25
Radix 128 A7 keys 38 24 25
QOcean 2050 x 20860 grids 64 34 33

Table 3: Comparison of performance (speedup) with different data distribution strategies on 64 processors.

at smaller scale in {8] that the sharing of the Hub coher-
ence/communication controllers by two processors and of
routers by two Hubs can become a bottleneck to prefetching
improvement.

Prefetching remote data does not help much in our other
applications. In our irregular applications, this is because
of the difficulty of predicting cache misses and thus schedul-
ing prefetches early enough. In Qcean, which is regular and
predictable, it is not efficient due to the difficulty of schedul-
ing prefetches early enough for remote data. In Radix, it is
successful only in the less important phase of accumulating
histograms using a prefix tree. Prefetching local data as
well may be more generally helpful. but we do not examine
it here.

6.2 Dynamic Page Migration

Proper data distribution can be very important for applica-
tions that have large capacity miss rates, especially for reg-
ular applications like FFT, Radix and Ocean. Origin2000
incorporates hardware support in its protocol that supports
dynamic page migration, which together with appropriate
S migration policies can help make capacity misses local
without placing the burden on the programmer [12]. We
compared the performance of three page placement strate-
gies for FFT, Radix and Occan with large problem sizes:
manual, round robin across nodes, and initially round robin
with page migration enabled. From Table 3, we see that the
gap between appropriate manual placement and the others
is large for these problem sizes, while turning on dynamic
page migration does not seem to improve performance. We
have tried different thresholds for the migration pelicy, and
it is unclear whether this is due to migration costs or poor
policy. We do not presently have the tools to examine this.

6.3 Fetch&op for Synchronization

The at-memory, uncached fetch&op primitive is designed
to improve synchronization performance [12]. We use it
to implement different well-known barrier and lock algo-
rithms, and compare it with using the processor-provided
load-linked and store-conditional (LL-SC) instructions. We
find that neither sophisticated barrier {or lock) algorithms
nor the fetchdop primitive help performance significantly,
compared to a simple ticket lock and tournament barrier
implemented with LL-SC, which are what we have used in
the resuits above. As mentioned earlier, for the problem
sizes used in this study the load imbalance and wait time at
synchronization dominates the cost of the synchronization
operation itself. A more detailed study of synchronization
methods using microbenchmarks and real applications on
this machine (10] finds similar results for smaller problem
sizes as well, and more generally finds using the fetch&op
support for implementing locks and barriers not to be espe-
cially valuable compared to well-known algorithms that use
LL-SC.

7 Effects of Interconnect Topology

Finally, in this section, we examine the last of the questions
asked in the introduction: the impact of mapping processes

314

appropriately to the neiwork topology and the impact of
the machine having two processors sharing a memory and
communication controller per node. A full set of results ig
available, but we only mention some examples due to space
limitations. Recall that the topologies described in Section 2
for our machines connect routers, not nodes or processors
directly.

7.1 Mapping to Network Topology

Mapping to a network topology has largely been intention-
ally ignored in modern performance guidelines for parallel
programming {for example {4}}. However, its impact has not
been evaluated on scalable cache-coherent systems, in which
messages are finer-grained and more frequent than in explicit
message passing. We focus the discussion on three repre-
sentative applications with different communication char-
acteristics, namely an irregular application (Barnes-Hut),
a regular application with nearest-neighbor communication
(Ocean), and a regular application with all-to-all communi-
cation (FFT).

Barnes-Hut: It is usually difficult to map optimally for
an irregular application. We compare a random mapping of
processes to the network topology and a linear mapping—
process i goes to processor i Linear mapping performs con-
sistently better than random mapping for all problem sizes
and processor counts {increasing speedup from 8.5 to 14.7
for 16K particles and from 59 to 63 for 512K particles on
128 processors). If we ensure that a node is always assigned
a pair of neighbor processes in the linear process ordering
and then map thesc pairs to nodes in the topology, the dif-
ferences between linear and random mapping of nodes are
similar. The other irregular applications support these re-
sults. Linear mapping also tends to help more for smaller
problems on larger machines, when inherent communication
is larger.

Ocean: For applications with nearest-neighbor commu-
nication such as Ocean, the most important aspect is to en-
sure that the two processes mapped to a node are assigned
neighboring partitions of a grid. Mapping to the network
topology beyond this is not very beneficial up to 64 proces-
sor systems that have a full hypercube topology. On larger
systems that use metarouters, mapping matters more: Even
for a large 2050-by-2050 grid, an appropriate near-neighbor
mapping of process-pairs to nodes in the network topology
is about 20% better than a random mapping and 10% better
than a linear mapping on 128 processors. It is not clear
how much of this is due to the use of metarouters and how
much simply to the larger scale. Interestingly, if data are not
distributed appropriately across main memories, generating
a lot of artificial communication, mapping seems to matter
a lot even with full hypercubes and at smaller scale: Some
randomly generated mappings of process pairs to nodes per-
form substantially worse than an appropriate near-neighbor
mapping (50% worse for a 2050-by-2050 grid in Ocean on 64
processors, and 80% worse on 128 processors), while others
are almost as good. Similar eflects are seen for a simple SOR
solver, indicating that mapping matters for near-neighbor
programs, especially at larger scale.

FFT: Applications with all-to-all communication telt a
different story. We use the version that prefetches remote
data in these cases. The matrix transpose in FFT is stag-
gered so that process i starts to transpose data from pro-
cess i+1, to avoid generating a hot-spot. Surprisingly, we
found that a random mapping of processes to processors
performs better than a linear mapping (about 10% better
even for 16M points on 128 processors). Experiments with
several types of mappings show that what’s most important
is that we not start with a situation in which one proces-
sor in a node starts transposing from the other processor
in the same node while the other starts transposing from a
processor on a remote node. Thus, if the program is left
as it is, it is important that neighboring partitions of the
matrix not be mapped to the same node; and if they are
mapped this way (e.g. linearly), then the transpose loop in
the program should be changed so that both processes on
a node start transposing from off-node or randomly chosen
processes. The two solutions perform equivalently well, and
beyond this the mapping or transpose ordering doesn’t seem
to matter. In fact, profiling shows that it is the first of the
P—1 (P is number of processors used) outer most loop itera-
tion of transpose communication {i.e. the first other process
that a process communicates with) in which the difference
between the good and bad cases differ the most by far (the
good or “random” cases take half the time of the bad cases
in this portion). The difference is much smaller in later iter-
ations. Of course, at some point the “bad” communication
situation (onc on-node, one off-node} will be encountered
alporithmically, but by this time the two processors are out
of synch enough that the impact is much smaller (if it is the
first iteration then the full impact is felt since they start at
the same time).

Overall, the most important aspect of mapping on this
machine seems to be related to which processes are mapped
to the same node. Once this is taken care of, mapping to
the topology beyond that does not appear to matter much
if data distribution is done properly. The {important) ex-
ception is near-neighbor grid computations at large scale,
though it is unclear whether this has to do with metarouters
or scale. Interestingly, 64-processor experiments with and
without metarouters show that metarouters help the per-
formance of FFT on large systems, by reducing the impact
of contention due to the increase in latency they cause.

7.2 Impact of Two Processors Per Node

Finally, we assume a good mapping across nodes and exam-
ine the impact of the Origin's decision to have two processors
share a memory and communication system per node. We
do this by comparing a regular execution with one that uses
only one processor per node {leaving the other idle), which
reduces contention at the hub and on the memory bus but,
of course, uses more nodes and hence potentially more net-
work hops. Note that the bus is not coherent, so processors
on the same node do not benefit from cache-to-cache shar-
ing, only from more of the main memory being local. The
loss in cache-to-cache sharing is offset by the latency and
bandwidth gains of not having to cross a coherent bus at
both ends of a remote transaction.

We examine applications with high communication and
high capacity misses, such as FFT, Ocean, Sample Sort,
Radix, and Raytrace. When problem sizes are relatively
small and communication dominates, we found that the per-
formance difference between using one processor per node
and using two is small. Using two processors per node does

315

not even matter for near-neighbor communrication such as
in Ocean. However, when problem sizes are large and ca-
pacity related contention at the Hub and memory emerges,
the applications consistently perform better using only one
processor per node. This impact is especially significant for
smaller processor counts. For Sample Sort on 32 proces-
sors, for instance, using one processor per node (on 32 nodes)
performs 40% better than using two processor per node (on
16 nodes) for large problem size—128M keys. In general,
contention with local capacity misses seems to be a more
substantial issue than communication-related contention at
the Hub and memory system on this machine. It may have
been alleviated by not having the Hub have to process lo-
cal capacity misscs. Qverall, having two processors per node
does not seem to be very beneficial from purely performance
and programming ease viewpoints (witness the FFT trans-
pose for the latter).

8 Discussion and Conclusions

‘We have investigated the scaling of application performance
in a load-store cache-coherent shared address space, using
a 128-processor SGI Origin2000 machine as an aggressive
representative of hardware DSM systems. We find that the
problem sizes predicted by an earlier simulation study [5] of
a similar type of architecture, or even larger problem sizes
that perform well on many 32-processor real systems, do
not scale. Making problem sizes larger, at least to reason-
able extents for these machines, achieves scalability for some
applications {and then at very large problem sizes), but sur-
prisingly not so for several. Rather, substantial further al-
gorithm or application restructuring has to be used than
is already present in these supposedly highly optimized ap-
plications. With this restructuring, we have demonstrated
scalable performance to 128 processors on a wide range of
applications in this programming model for the first time.

With the restructured applications, the problem sizes
needed to achieve good performance are reasonable (and
are much smaller than with the original versions, even in
the cases where problem size alone can solve the scaling
problem). However, they are still a lot larger than found
in the simulation study. In fact, comparing the results of
these studies for the four common applications strengthens
the view that system-level simulation is valuable for qual-
itative estimation (and perhaps quantitative evaluation of
specific tradeoffs) but less s0 for quantitative results about
overall performance of machines.

While our study has focused on the Origin2000, the
restructurings are algorithmic and target high-level trade-
offs, so we cxpect them to be generally valuable on most
hardware-coherent machines as well. In fact, we find that
the restructuring needed is most often along the same lines
to that used earlier to improve performance on moderate-
scale shared virtual memory systems on clusters [6], even if it
sometimes ends up addressing different specific bottlenecks.
The restructuring needed for scaling on hardware DSM is of-
ten less extreme, but the more extreme restructuring needed
for SVM often improves the scaling further. This is interest-
ing because it increases both the potential and the need for
developing generalizable programming guidelines for the co-
herent shared-address-space programming model, to obtain
both scalable and performance-portable execution across the
range of key emerging platforms for parallel computing. We
have summarized some of our early observations about such
guidelines, but much more research is needed in this area

for both tightly coupled systems and clusters.

As for the Origin itself, it’s communication architecture
does surprisingly well even on challenging applications like
FFT and sorting. When it fails, it is usually due to an
overload of contention, or due to imbalances in communi-
cation cost across processes. The contention includes that
between communication operations themselves or especially
between local misses within a node and incoming remote
operations, at either main memory or the controller. When
traffic is high in these cases, the decision to share a Hub
between two processors and a router between two Hubs can
hinder performance. In general, having two processors share
a node without a coherent bus does not seem to help appli-
cation performance much. Prefetching remote data is found
to help in FFT and Sample Sort at large scale but not much
in other cases; using the at-memory fetch&op support for
synchronization does not help application performance no-
ticeably {10]; and we could not make dynamic page migra-
tion work successfully. Beyond node sharing issues, mapping
processes to the network topology appears to have relatively
small impact, despite the low-overhead communication and
fine-grained messages, except for near-neighbor communica-
tion on large systems.

For our study, perhaps the greatest missing feature of
the machine is the lack of tools to lock more deeply into the
machine’s execution and memory system, e.g. to distinguish
different types of cache misses (including simply local ver-
sus remote), to find out where pages of data are allocated,
and to obtain information about the time taken by cache
misses or about contention which is often the cause of poor
memory system performance. This still limits our analysis
in many cases—for example to distinguish whether speedup
is due to beneficial aggregate capacity effects or goodness of
the communication architecture in handling communication
misses—and also makes it difficult to know whether efforts
to place pages properly have in fact succeeded (we were de-
ceived in this in our experiments for FFT in an earlier study
of a smaller-scale machine [8]). The performance counters
that count simple event frequencies were not nearly so valu-
able for our purposes as these features would have been.

Overall, we conclude that performance scalable to over
100 processors can indeed be achieved using load-store
cache-ccherent shared memory on a machine like the Ori-
£in2000 on a wide range of applications, and that the al-
gorithmic and programming complexity are still a lot lower
than needed for message passing. This demonstrated suc-
cessful performance validates the architectural style and is
very promising for the programming model. However, the
programming process for achieving scalable performance is
often far from easy even on this aggressive machine. A
better understanding of programming issues and guidelines
for scalability and for performance portability across tightly
coupled machines and clusters in both major programming
models is an important area for future work.

Acknowledgements

We thank SGI/Cray and NCSA. especially Larry Smarr and
his colleagues, for access to Origin2000 systems. We thank
Dan Lenoski, Jim Laudon, Rohit Chandra, Marco Zagha,
and John MecCalpin for valuable discussions. Cheng Chen,
Alexander Kozlov, and Sanjeev Kumar provided us with
some application and synchronization codes.

References
[1] G. A. Abandah and E. 8. Davidson. Effects of architectural

316

2l

[3]

4

[3]

f6l

(7

8

[
(20]

{11}

(12]

(23]

(14]

f15]
[16]

(17]

18]

[19]

[20)

and technological advances on the HP/Convex Exemplar’s
memory and communication performance. In Proceedings of
the 25th International Symposium on Computer Architec-

ture, June 1998.
A. Agarwal and et al. The MIT Alewife machine: Architec-

ture and performance. In Proceedings of the 22th Interna-
tional Symposium on Computer Architecuture, pages 213,

June 1995,
C. Chen, J. P. Singh, and R. Altman. Parallel hierarchical

protein structure determination in the presence of uncer-

tainty. In SIAM Conference on Parallel Processing, 1999.
b. C{lller, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of 2nd ACM SIGPLAN Symposium on Principles and
Praciice of Parallel Programming, May 1993.

C. Holt, J. P. Singh, anrgg.]. Hennessy. Kpplication and archi-
tectural bottlenecks in large scale distributed shared memory
machines. In Proceedings of the 23th Annual International
Symposium on Computer Architecture, pages 134-145, May

1996.

D. Jiang, H. Shan, and J. Singh. Application restructuring
and performance portability on shared virtual memory and
hardware-coherent multiprocessors. In Proceedings of the
1997 ACM SIGPLAN Sympostum on Principles and Prac-
tice of Parallel Programming, June 1997.

D. Jiang and J. P. %ingh. F‘Zxralle] Shear-Warp velume ren-
dering on shared address space multiprocessors. In Proceed-
ings of the 1997 ACM SIGPLAN Symposium en Principles

and Practice of Parallel Programming, June 1997,
D. Jiang and J. P. Singh. methodology and an evalua-

tion of the SGI Origin2000. In Proceedings of ACM Sigmet-

rics98/Performance 98, June 1998,
A, Kozlov and J. P. Singh. Parallel probabilistic infercnce

on cache-coherent multiprocessors. JEEE Computer, 1996,
S. Kumar, D. Jiang, R. Chandra, and J. P. Singh. Evaluat-

ing synchronization on shared address space multiprocessors:
Methodology and performance. In Proceedings of ACM Sig-

metrics’99, May 1999.
P. G. Lacroute. Fast Volume Rendering Using a Shear- Warp

Factorization of the Viewing Transformation. PhD thesis,

Stanford University, 1995. .
J. Laudon and D. Lenoski. The SGI Origin: A ceNUMA
highly scalable server. In Proceedings of the 24/th Annual

International Symposium on Computer Architecture, June

1997.

D. Lenoski, J. Lauden, J. Truman, D. Nakahira, L. Stevens,
A. Gupta, and J. Hennessy. The DASH prototype: Logic
overhead and performance. IEEE Transactions on Parallel

and Distributed Systems, 4:41-61, 1993.
S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest

and Typhoon: User-level shared memory. In Proceedings
of the 21st Annual International Symposium oen Computer

Architecture, pages 325-337, April 1994,
J. P. Bingh, ‘A. Gupta, and J. L. Hennessy. Implications of

hierarchical N-body technigques for multiprocessor architec-

ture. ACM Trangactions on Computer Systems, May 1995,
J. P. Singh, A. Gupta, and M. Levoy. Parallel visualiza-

tion algorithms: Performance and architectural implications.

Computer, 27:45-55, 1994.
J. P. Singh, T. Joe, J. L. Hennessy, and A. Gupta. An em-

pirical comparison of the KSR-1 ALLCACHE and Stanford
DASH multiprocessors. In Supercomputing ‘93, November

1993,
R. Thekkath, A. P. Singh, J. P. Singh, J. L. Hennessy, and
S. John. An evaluation of the Convex Exemplar SP-1200. In

Proc. Intl. Parallel Processing Symposium, April 1997,
H. J. Wasserman, Q. M. Lubeck, Y. Luo, and F. Bassetti.

Performance evaluation of the SGI Origin2000: A memory-
centric characterization of LANL ASCI applications. In Su-

ercomputing ’97, Nov 1957,
g. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22th Annual Interna-
tional Symposiumn on Computer Architecture, June 1995.

