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Abstract

This paper presents Basil, the first transactional, leaderless
Byzantine Fault Tolerant key-value store. Basil leverages
ACID transactions to scalably implement the abstraction of a
trusted shared log in the presence of Byzantine actors. Unlike
traditional BFT approaches, Basil executes non-conflicting
operations in parallel and commits transactions in a sin-
gle round-trip during fault-free executions. Basil improves
throughput over traditional BFT systems by four to five times,
and is only four times slower than TAPIR, a non-Byzantine
replicated system. Basil’s novel recovery mechanism further
minimizes the impact of failures: with 30% Byzantine clients,
throughput drops by less than 25% in the worst-case.

CCS Concepts: • Computer systems organization→ De-
pendable and fault-tolerant systems and networks; • Secu-
rity and privacy→ Distributed systems security; Database
and storage security.

Keywords: database systems, Byzantine fault tolerance,
blockchains, distributed systems

1 Introduction
This paper presents Basil1 a leaderless transactional key-

value store that scales the abstraction of a Byzantine-fault
tolerant shared log.

Byzantine fault-tolerance (BFT) systems enable safe on-
line data sharing among mutually distrustful parties, as they
guarantee correctness in the presence of malicious (Byzan-
tine) actors. These platforms offer exciting opportunities
for a variety of applications, including healthcare [102],

1Despite (or because of) his deeply Fawlty character, Basil managed to rise
first from paesant to Byzantine emperor (867-886) and then to hotel owner
(1975-1979).
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financial services [4, 36, 51], and supply chain manage-
ment [5, 35]. One could for instance design a fully decentral-
ized payment infrastructure between a consortium of banks
that omits the need for current centralized automated clear-
ing houses [36]. None of the participating banks may fully
trust one another, yet they must be willing to coordinate
and share resources to provide the joint service. BFT repli-
cated state machines [25, 29, 47, 56, 110] and permissioned
blockchains [6, 9, 13, 23, 45, 55, 101] are at the core of these
new services: they ensure that mutually distrustful parties
produce the same totally ordered log of operations.

The abstraction of a totally ordered log is appealingly simple.
A scalable totally ordered log, however, is not only hard to
implement (processing all requests sequentially can become
a bottleneck), but also often unnecessary. Most distributed
applications primarily consist of logically concurrent oper-
ations; supply chains for instance, despite their name, are
actually complex networks of independent transactions.

Some BFT systems use sharding to try to tap into this par-
allelism. Transactions that access disjoint shards can ex-
ecute concurrently, but operations within each shard are
still totally ordered. Transactions involving multiple shards
are instead executed by running cross-shard atomic com-
mit protocols, which are layered above these totally ordered
shards [9, 55, 86, 87, 111]. The drawbacks of systems that
adopt this archtitecture are known: (i) they pay the per-
formance penalty of redundant coordination—both across
shards (to commit distributed transactions) and among the
replicas within each shard (to totally order in-shard opera-
tions) [83, 112, 113]; (ii) within each shard, they give a leader
replica undue control over the total order ultimately agreed
upon, raising fairness concerns [50, 110, 114]; (iii) and of-
ten they restrict the expressiveness of the transactions they
support [86, 87] by requiring that their read and write set be
known in advance.

In this paper, we advocate a more principled, performant,
and expressive approach to supporting the abstraction of a
totally ordered log at the core of all permissioned blockchain
systems. We make our own the lesson of distributed databases,
which successfully leverage generic, interactive transactions
to implement the abstraction of a sequential, general-purpose
log. These systems specifically design highly concurrent pro-
tocols that are equivalent to a serial schedule [18, 88]. Byzan-
tine data processing systems need be no different: rather than
aiming to sequence all operations, they should decouple the
abstraction of a totally ordered sequence of transactions from
its implementation. Thus, we flip the conventional approach:
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instead of building database-like transactions on top of a
sharded, totally ordered BFT log, we directly build out this
log abstraction above a partially-ordered distributed database,
where total order is demanded only for conflicting operations.

To this effect, we design Basil, a serializable BFT key-value
store that implements the abstraction of a trusted shared log,
whose novel design addresses each of the drawbacks of tra-
ditional BFT systems: (i) it borrows databases’ ability to
leverage concurrency control to support highly concurrent
but serializable transactions, thereby adding parallelism to
the log; (ii) it sidesteps concerns about the fairness of leader-
based systems by giving clients the responsibility of driving
the execution of their own transactions; (iii) it eliminates re-
dundant coordination by integrating distributed commit with
replication [83, 113], so that, in the absence of faults and
contention, transactions can return to clients in a single round
trip; and (iv) it improves the programming API, offering sup-
port for general interactive transactions that do not require
a-priori knowledge of reads and writes.

We lay the foundations for Basil by introducing two comple-
mentary notions of correctness. Byzantine isolation focuses
on safety: it ensures that correct clients observe a state of the
database that could have been produced by correct clients
alone. Byzantine independence instead safeguards liveness:
it limits the influence of Byzantine actors in determining
whether a transaction commits or aborts. To help enforce
these two notions, and disentangle correct clients from the
maneuvering of Byzantine actors, Basil’s design follows the
principle of independent operability: it enforces safety and
liveness through mechanisms that operate on a per-client and
per-transaction basis. Thus, Basil avoids mechanisms that
enforce isolation through pessimistic locks (which would al-
low a Byzantine lock holder to prevent the progress of other
transactions), adopting instead an optimistic approach to con-
currency control.

Embracing optimism in a Byzantine setting comes with
its own risks. Optimistic concurrency control (OCC) pro-
tocols [16, 59, 94, 106, 113] are intrinsically vulnerable to
aborting transactions if they interleave unfavorably during val-
idation, and Byzantine faults can compound this vulnerability.
Byzantine actors may, for instance, intentionally return stale
data, or collude to sabotage the commit chances of correct
clients’ transactions. Consider multiversioned timestamp or-
dering (MVTSO) [16, 94], which allows writes to become vis-
ible to other operations before a transaction commits. While
this choice helps reduce abort rates for contended workloads,
it can cause transactions to stall on uncommitted operations.

Basil’s ethos of independent operability is key to mitigat-
ing this issue. The system implements a variant of MVTSO
that prevents Byzantine participants from unilaterally abort-
ing correct clients’ transactions and ncludes a novel fallback

mechanism that empowers clients to finish pending trans-
actions issued by others, while preventing Byzantine actors
from dictating their outcome. Importantly, this fallback is a
per-transaction recovery mechanism: thus, unlike traditional
BFT view-changes, which completely suspend the normal
processing of all operations, it can take place without blocking
non-conflicting transactions.

Our results are promising: on TPC-C [103], Retwis [3] and
Smallbank [37]), Basil’s throughput is 3.5-5 times higher than
layering distributed commit over totally ordered shards run-
ning BFT-SMaRt, a state-of-art PBFT implementation [19]
and HotStuff [110] (Facebook Diem’s core consensus pro-
tocol [13]). BFT’s cryptographic demands, however, still
cause Basil to be 2-4 times slower than TAPIR, a recent
non-Byzantine distributed database [113]. In the presence of
Byzantine clients, Basil’s performance degrades gracefully:
with 30% Byzantine clients, the throughput of Basil’s correct
clients drops by less than 25% in the worst-case. In summary,
this paper makes the following three contributions:

• It introduces the complementary correctness notions of
Byzantine isolation and Byzantine independence.

• It presents novel concurrency control, agreement, and fall-
back protocols that balance the desire for high-throughput
in the common case with resilience to Byzantine attacks.

• It describes Basil, a BFT database that guarantees Byz-
serializability while preserving Byzantine independence.
Basil supports interactive transactions, is leaderless, and
achieves linear communication complexity.

2 Model and Definitions
We introduce the complementary and system-independent

notions of Byzantine isolation and Byzantine independence,
which, jointly formalize the degree to which a Byzantine actor
can affect transaction progress and safety.

2.1 System Model
Basil inherits the standard assumptions of prior BFT work.

A participant is considered correct if it adheres to the pro-
tocol specification, and faulty otherwise. Faulty clients and
replicas may deviate arbitrarily from their specification; a
strong but static adversary can coordinate their actions but
cannot break standard cryptographic primitives. A shard con-
tains a partition of the data in the system. We assume that the
number of faulty replicas within a shard does not exceed a
threshold f and that an arbitrary number of clients may be
faulty; we make no further assumption about the pattern of
failures across shards. We assume that applications authenti-
cate clients and can subsequently audit their actions. Similar
to other BFT systems [23, 25, 29, 41, 56], Basil makes no
synchrony assumption for safety but for liveness [40] depends
on partial synchrony [39]. Basil also inherits some of the lim-
itations of prior BFT systems: it cannot prevent authenticated
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Byzantine clients, who otherwise follow the protocol, from
overwriting correct clients’ data. It additionally assumes that,
collectively, Byzantine and correct clients have similar pro-
cessing capabilities, and thus Byzantine clients cannot cause
a denial of service attack by flooding the system.

2.2 System Properties
To express Basil’s correctness guarantees, we introduce the

notion of Byzantine isolation. Database isolation (serializabil-
ity, snapshot isolation, etc.) traditionally regulates the interac-
tion between concurrently executing transactions; Byzantine
isolation ensures that, even though Byzantine actors may
choose to violate ACID semantics, the state observed by cor-
rect clients will always be ACID compliant.

We start from the standard notions of transactions and histo-
ries introduced by Bernstein et al. [17]. We summarize them
here and defer a more formal treatment to our technical re-
port.2 A transaction T contains a sequence of read and write
operations terminating with a commit or an abort. A history H
is a partial order of operations representing the interleaving of
concurrently executing transactions, such that all conflicting
operations are ordered with respect to one another. Addition-
ally, let C be the set of all clients in the system; Crct ⊆ 𝐶 be
the set of all correct clients; and 𝐵𝑦𝑧 ⊆ 𝐶 be the set of all
Byzantine clients. A projection 𝐻 |C is the subset of the partial
order of operations in 𝐻 that were issued by the set of clients
C . We further adopt standard definitions of database isolation:
a history satisfies an isolation level I if the set of operation
interleavings in H is allowed by I. Drawing from the notions
of BFT linearizability [72] and view serializability [17], we
then define the following properties:

Legitimate History History 𝐻 is legitimate if it was gener-
ated by correct participants, i.e., 𝐻 = 𝐻Crct .

Correct-View Equivalent History 𝐻 is correct-view equiva-
lent to a history 𝐻 ′ if all operation results, commit decisions,
and final database values in 𝐻 |𝐶𝑟𝑐𝑡 match those in 𝐻 ′.

Byz-I Given an isolation level 𝐼 , a history 𝐻 is Byz-I if there
exists a legitimate history 𝐻 ′ such that 𝐻 is correct-view
equivalent to 𝐻 ′ and 𝐻 ′ satisfies 𝐼 .

This definition is not Basil-specific, but captures what it
means, for any Byzantine-tolerant database, to enforce the
guarantees offered by a given isolation level 𝐼 . Informally,
it requires that the states observed by correct clients be ex-
plainable by a history that satisfies I and involves only correct
participants. It intentionally makes no assumptions on the
states that Byzantine clients choose to observe.

Basil specifically guarantees Byz-serializability: correct
clients will observe a sequence of states that is consistent
with a sequential execution of concurrent transactions. This is
a strong safety guarantee, but it does not enforce application

2Detailed proofs can be found at https://arxiv.org/abs/2109.12443.

progress; a Byz-serializable system could still allow Byzan-
tine actors to systematically abort all transactions. We thus
define the notion of Byzantine independence, a general system
property that bounds the influence of Byzantine participants
on the outcomes of correct clients’ operations.

Byzantine Independence For every operation 𝑜 issued by
a correct client 𝑐, no group of participants containing solely
Byzantine actors can unilaterally dictate the result of 𝑜 .

In a context where clients issue transaction operations,
Byzantine independence implies, for instance, that Byzan-
tine actors cannot collude to single-handedly abort a correct
client’s transaction. This is a challenging property to enforce.
It cannot be attained in a leader-based system: if the leader
and a client are both Byzantine, they can collude to prevent
a transaction from committing by strategically generating
conflicting requests. In contrast, Basil can enforce Byzan-
tine independence as long as Byzantine actors do not have
full control of the network, a requirement that is in any case
a precondition for any BFT protocol that relies on partial
synchrony [41, 80]. We prove in our technical report2 that:

Theorem 1. Basil maintains Byz-serializability.

Theorem 2. Basil maintains Byzantine independence in the
absence of network adversary.

Basil is designed for settings where Byzantine attacks can
occur, but are infrequent, consistent with the prevalent as-
sumption for permissioned blockchains today; namely, that
to maintain standing in a permissioned system, clients are
unlikely to engage in actively detectable Byzantine behav-
ior [48] and, if they cannot break safety undetected, it is
preferable for them to be live [74]. We design Basil to be
particularly efficient during gracious executions [29] (i.e.,
synchronous and fault-free) while bounding overheads when
misbehavior does occur. In particular, we design aggressive
concurrency control mechanisms that maximize common case
performance by optimistically exposing uncommitted oper-
ations, but ensure that these protocols preserve independent
operability, so that Basil can guarantee continued progress
under Byzantine attacks [29]. We confirm this experimentally
in Section 6.

3 System Overview

Execution Phase

2 Phase Commit

Begin Read Write
Try 

Commit 

Prepare Phase Writeback Phase

Stage 1 Stage 2
(Optional)

Writeback
(Async)

Transaction Processing

Client Latency Start Client Latency End

Return to Client

Figure 1. Basil Transaction Processing Overview

Basil is a transactional key-value store designed to be scal-
able and leaderless. Our architecture reflects this ethos.
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Transaction Processing Transaction processing is driven by
clients (avoiding costly all-to-all communications amongst
replicas) and consists of three phases (Figure 1). First, in
an Execution phase, clients execute individual transactional
operations. As is standard in optimistic databases, reads are
submitted to remote replicas while writes are buffered locally.
Basil supports interactive and cross-shard transactions: clients
can issue new operations based on the results of past opera-
tions to any shard in the system. In a second Prepare phase,
individual shards are asked to vote on whether committing
the transaction would violate serializability. For performance,
Basil allows individual replicas within a shard to process such
requests out of order. Finally, the client aggregates each shard
vote to determine the outcome of the transaction, notifies the
application of the final decision, and forwards the decision
to the participating replicas in an asynchronous Writeback
phase. Importantly, the decision of whether each transaction
commits or aborts must be preserved across both benign and
Byzantine failures. We describe the protocol in Section 4.

Transaction Recovery A Byzantine actor could begin exe-
cuting a transaction, run the prepare phase, but intentionally
never reveal its decision. Such behavior could prevent other
transactions from making progress. Basil thus implements a
fallback recovery mechanism (§5) that can terminate stalled
transactions while preserving Byz-serializability. This proto-
col, in the common case, allows clients to terminate stalled
transactions in a single additional round-trip.

Replication Basil uses 𝑛 = 5𝑓 + 1 replicas for each shard.
This choice allows Basil to (i) preserve Byzantine indepen-
dence (ii) commit transactions in a single round-trip in the
absence of contention, and (iii) reduces the message com-
plexity of transaction recovery by a factor of 𝑛, all features
which would not be possible with a lower replication factor.
We expand on this further in Sections 4.5 and 5.

4 Transaction Processing
Basil takes as its starting point MVTSO [16], an aggres-

sive multiversioned concurrency control, and modifies it in
three ways: (i) in the spirit of independent operability, it has
clients drive the protocol execution; (ii) it merges concurrency
control with replication; and finally (iii) it hardens the proto-
col against Byzantine attacks to guarantee Byz-serializability
while preserving Byzantine independence.

Traditional MVTSO works as follows. A transaction 𝑇 is
assigned (usually by a transaction manager or scheduler) a
unique timestamp ts𝑇 that determines its serialization order.
As MVTSO is multiversioned, writes in 𝑇 create new ver-
sions of the objects they touch, tagged with ts𝑇 . Reads instead
return the version of the read object with the largest times-
tamp smaller than ts𝑇 and update that object’s read timestamp
(RTS) to ts𝑇 . Read timestamps are key to preserving serial-
izability: to guarantee that no read will miss a write from a

transaction that precedes it in the serialization order, MVTSO
aborts all writes to an object from transactions whose times-
tamp is lower than the object’s RTS.

MVTSO is an optimistic protocol, and, as such, much of its
performance depends on whether its optimistic assumptions
are met. For example, it uses timestamps to assign transac-
tions a serialization order a-priori, under the assumption that
those timestamps will not be manipulated; further, it allows
read operations to become dependent on values written by
ongoing transactions under the expectation that they will com-
mit. This sunny disposition can make MVTSO particularly
susceptible to Byzantine attacks. Byzantine clients could use
artificially high timestamps to make lower-timestamped trans-
actions less likely to commit; or they could simply start trans-
actions that write to large numbers of keys and never commit
them: any transaction dependent on those writes would be
blocked too. At the same time, by blocking on dependencies
(rather than summarily aborting, as OCC would do) MVTSO
leaves open the possibility that blocked transactions may be
rescued and brought to commit. In the remainder of this sec-
tion, we describe how Basil, capitalizing on this possibility,
modifies MVTSO to harden it against Byzantine faults.

4.1 Execution Phase
Begin() A client begins a transaction 𝑇 by optimistically

choosing a timestamp 𝑡𝑠 B (Time, ClientID) that defines a
total serialization order across all clients. Allowing clients to
choose their own timestamps removes the need for a central-
ized scheduler, but makes it possible for Byzantine clients to
create transactions with arbitrarily high timestamps: objects
read by those transactions would cause conflicting transac-
tions with lower timestamps to abort. To defend against this
attack, replicas accept transaction operations if and only if
their timestamp is no greater than 𝑅Time +𝛿 , where 𝑅Time is the
replica’s own local clock. Neither Basil’s safety nor its live-
ness depend on the specific value of 𝛿 , though a well-chosen
value will improve the system’s throughput. In practice we
choose 𝛿 based on the skew of NTP’s clock.

Write(key,value) Writes from uncommitted transactions
raise a dilemma. Making them readable empowers Byzantine
clients to stall all transactions that come to depend on them.
Waiting to disclose them only when the transaction commits,
however, increases the likelihood that concurrent transactions
will abort. We adopt a middle ground: we buffer writes locally
until the transaction has finished execution, and make them
visible during the protocol’s Prepare phase (we call such
writes prepared). This approach allows us to preserve much
of the performance benefits of early write disclosure while
enforcing independent operability (§4.2).

Read(key) In traditional MVTSO, a read for transaction 𝑇
returns the version of the read object with the highest times-
tamp smaller than ts𝑇 . When replicas process requests inde-
pendently, this guarantee no longer holds, as the write with
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the largest timestamp smaller than ts𝑇 may have been made
visible at replica 𝑅, but not yet at 𝑅′: reading from the latter
may result in a stale value. Hence, to ensure serializability,
transactions in Basil go through a concurrency control check
at each replica as part of their Prepare phase (§ 4.2). Further
care is required, as Byzantine replicas could intentionally
return stale (or imaginary!) values that would cause trans-
actions to abort, violating Byzantine independence. These
considerations lead us to the following read logic:

1: C→ R: Client C sends read request to replicas.

C sends an authenticated read request𝑚 B ⟨READ, 𝑘𝑒𝑦, t𝑠𝑇 ⟩
to at least 2𝑓 + 1 replicas for shard 𝑆 .

2: R→ C: Replica processes client read and replies.

Each replica 𝑅 verifies that the request’s timestamp is smaller
than 𝑅T𝑖𝑚𝑒 + 𝛿 . If not, it ignores the request; otherwise, it
updates key’s RTS to ts𝑇 . Basil may evict clients with a his-
tory of reading keys, but never committing the transaction.
Then 𝑅 returns a signed message ⟨Committed, Prepared⟩𝜎𝑅

that contains, respectively, the latest committed and prepared
versions of key at 𝑅 with timestamps smaller than ts𝑇 . Commit-
ted ≡ (version, C-CERT) includes a commit certificate C-CERT
(§ 4.3) proving that version has committed, while Prepared ≡
(version, 𝑖𝑑𝑇 ′ , Dep𝑇 ′) includes a digest identifier for 𝑇 ′ (§ 4.2)
and the write-read dependencies Dep𝑇 ′ of the transaction 𝑇 ′

that created version. 𝑇 ′ cannot commit unless all the transac-
tions in Dep𝑇 ′ commit first.

3: C← R: Client receives read replies.

A client waits for at least 𝑓 + 1 replies (to ensure that at least
one comes from a correct replica) and chooses the highest-
timestamped version that is valid. For committed versions, the
criterion for validity is straightforward: a committed version
must contain a valid C-CERT. For prepared versions instead,
we require that the same version be returned by at least 𝑓 + 1
replicas. Both the validity and timestamp requirement are
important for Byzantine independence. Message validity pro-
tects the client’s transaction from becoming dependent on a
version fabricated by Byzantine replicas; and, by choosing the
valid reply with the highest-timestamp, the client is certain
to never read a version staler than what it could have read by
accessing a single correct replica.

The client then adds the selected (key, version) to ReadSet𝑇 .
If version was prepared but not committed, it adds a new write-
read dependency to the dependency set Dep𝑇 . Specifically,
the client adds to Dep𝑇 a tuple (version, id𝑇 ′), which will be
used during 𝑇 ’s Prepare phase to validate that 𝑇 is claiming a
legitimate dependency.

After 𝑇 has completed execution, the application tells the
client whether it should abort 𝑇 or instead try to commit it:

Abort() The client asks replicas to remove its read times-
tamps from all keys in ReadSet𝑇 . No actions need to be taken
for writes, as Basil buffers writes during execution.

Commit() The client initiates the Prepare phase, discussed
next, which performs the first phase of the multi-shard two-
phase commit (2PC) protocol that Basil uses to commit 𝑇 .

4.2 Prepare Phase
To preserve independent operability, Basil delegates the re-

sponsibility for coordinating the 2PC protocol to clients. For
a given transaction 𝑇 , the protocols begins with a Prepare
phase, which consists of two stages (Figure 1).

In stage ST1, the client collects commit or abort votes from
each shard that 𝑇 accesses. Determining the vote of a shard
in turn requires collecting votes from all the shard’s replicas.
To avoid the overhead of coordinating replicas within a shard,
Basil lets each replica determine its vote independently, by
running a local concurrency control check. The flip side of
this design is that, since transactions may reach replicas in
different orders, even correct replicas within the same shard
may not necessarily reach the same conclusion about𝑇 . Client
𝐶 tallies replica votes to learn the vote of each shard and,
based on how shards voted, decides whether 𝑇 will commit
or abort.

Stage ST2 ensures that 𝐶’s decision is made durable (or
logged) across failures.𝐶 logs the evidence on only one shard.
In the absence of contention or failures, Basil’s fast path
guarantees that 𝑇 ’s decision is already durable and this ex-
plicit logging step can be omitted, allowing clients to return a
commit or abort decision in just a single round trip.

Stage 1: Aggregating votes

1: C→ R: Client sends an authenticated ST1 request to
all replicas in 𝑆 .

The message format is ST1 := ⟨PREPARE,𝑇 ⟩, where𝑇 consists
of the transaction’s metadata B ts𝑇 , ReadSet𝑇 , WriteSet𝑇 ,
Dep𝑇 , and of its identifier id𝑇 . To ensure Byzantine clients
neither spoof the list of involved shards nor equivocate 𝑇 ’s
contents, id𝑇 is a cryptographic hash of 𝑇 ’s metadata.

2: R← C: Replica R receives a ST1 request and exe-
cutes the concurrency control check.

Traditional, non-replicated, MVTSO does not require any
additional validation at commit time, as transactions are guar-
anteed to observe all the writes that precede them in the
serialization order (any "late" write is detected by read times-
tamps and the corresponding transaction is aborted). This is
no longer true in a replicated system: reads could have failed
to observe a write performed on a different replica. Basil
thus runs an additional concurrency control check to deter-
mine whether a transaction 𝑇 should commit and preserve
serializability (Algorithm 1). It consists of seven steps:
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Algorithm 1 MVTSO-Check(𝑇 )

1: if 𝑡𝑠𝑇 > 𝑙𝑜𝑐𝑎𝑙𝐶𝑙𝑜𝑐𝑘 + 𝛿 then
2: return Vote-Abort
3: if ∃ invalid 𝑑 ∈ 𝐷𝑒𝑝𝑇 then
4: return Vote-Abort
5: for ∀𝑘𝑒𝑦, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∈ ReadSet𝑇 do
6: if 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > 𝑡𝑠𝑇 then return MisbehaviorProof
7: if ∃𝑇 ′ ∈ 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ∪ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 : 𝑘𝑒𝑦 ∈ WriteSet𝑇 ′

∧ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 < 𝑡𝑠𝑇 ′ < 𝑡𝑠𝑇 then
8: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
9: for ∀𝑘𝑒𝑦 ∈ WriteSet𝑇 do

10: if ∃𝑇 ′ ∈ 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ∪ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 :
ReadSet𝑇 ′[key].version < 𝑡𝑠𝑇 < 𝑡𝑠𝑇 ′ then

11: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
12: if ∃𝑅𝑇𝑆 ∈ 𝑘𝑒𝑦.𝑅𝑇𝑆 : 𝑅𝑇𝑆 > 𝑡𝑠𝑇 then
13: return Vote-Abort
14: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑎𝑑𝑑 (𝑇 )
15: wait for all pending dependencies
16: if ∃ 𝑑 ∈ 𝐷𝑒𝑝𝑇 : 𝑑.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐴𝑏𝑜𝑟𝑡 then
17: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑇 )
18: return Vote-Abort
19: return Vote-Commit

1 𝑇 ’s timestamp is within the 𝑅’s time bound (Lines 1-2).
2 𝑇 ’s dependencies are valid: 𝑅 has either prepared or com-

mitted every transaction identified by 𝑇 ’s dependencies, and
the versions that caused the dependencies were produced by
said transactions (Lines 3-4).
3 Reads in 𝑇 did not miss any writes. Specifically, the al-

gorithm (Lines 7-8) checks that there does not exist a write
from a committed or prepared transaction 𝑇 ′ that (i) is more
recent than the version that 𝑇 ’s read and (ii) has a timestamp
smaller than ts𝑇 (implying that 𝑇 should have observed it).
4 Writes in 𝑇 do not cause reads in other prepared or com-

mitted transactions to miss a write (Lines 9-11).
5 Writes in 𝑇 do not cause reads in ongoing transactions to

miss a write: 𝑇 is aborted if there exists an RTS greater than
ts𝑇 (Lines 12-13).
6 𝑇 is prepared and made visible to future reads (Line 14).
7 All transactions responsible for 𝑇 ’s dependencies have

reached a decision. 𝑅 votes to commit 𝑇 only if all of its de-
pendencies commit; otherwise it votes to abort (Lines 15-19).

3: R→ C: Replica returns its vote in a ST1R message.

After executing the concurrency control check, each replica
returns to 𝐶 a Stage1 Reply ST1R:= ⟨𝑇, 𝑣𝑜𝑡𝑒⟩𝜎𝑅 . A correct
replica executes this check at most once per transaction and
stores its vote to answer future duplicate requests (§5).

4: C← R: The client receives replicas’ votes.

𝐶 waits for ST1R messages from the replicas of each shard 𝑆

touched by𝑇 . Based on these replies,𝐶 determines (i) whether
𝑆 voted to commit or abort; and (ii) whether the received

ST1R messages constitute a vote certificate (V-CERT B
⟨i𝑑𝑇 , 𝑆,𝑉𝑜𝑡𝑒, {ST1R}⟩) that proves 𝑆’s vote to be durable. A
shard’s vote is durable if its original outcome can be indepen-
dently retrieved and verified at any time by any correct client,
independent of Byzantine failures or attempts at equivocation.
If so, we dub shard 𝑆 fast; otherwise, we call it slow. Votes
from a slow shard do not amount to a vote certificate, but sim-
ply to a vote tally. Though vote tallies have the same structure
as a V-CERT, the information they contain is insufficient to
make 𝑆’s vote durable. An additional stage (ST2) is necessary
to explicitly make S’s vote persistent.

Specifically, 𝐶 proceeds as follows, depending on the set of
ST1R messages it receives:

(1) Commit Slow Path (3𝑓 + 1 ≤ Commit votes < 5𝑓 + 1):
The client has received at least a 𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑜𝑟𝑢𝑚 (𝐶𝑄) of
votes, where |𝐶𝑄 | = 𝑛+𝑓 +1

2 = 3𝑓 + 1, in favor of committing
𝑇 . Intuitively, the size of CQ guarantees that two conflicting
transactions cannot both commit, since the correct replica that
is guaranteed to exist in the overlap of their CQs will enforce
isolation. However, 𝐶 receiving a CQ of Commit votes is not
enough to guarantee that another client 𝐶 ′, verifying 𝑆’s vote,
would see the same number of Commit votes: after all, 𝑓
of the replicas in the CQ could be Byzantine, and provide a
different vote if later queried by𝐶 ′.𝐶 thus adds 𝑆 to the set of
slow shards, and records the votes it received in the following
vote tally: ⟨i𝑑𝑇 , 𝑆,𝐶𝑜𝑚𝑚𝑖𝑡, {ST1R}⟩where {ST1R} is the set
of matching (Commit) ST1R replies,

(2) Abort Slow Path (𝑓 +1 ≤ Abort votes < 3𝑓 +1): A collec-
tion of 𝑓 + 1 Abort votes constitutes the minimum AbortQuo-
rum (AQ), i.e., the minimal evidence sufficient for the client to
count 𝑆’s vote as Abort in the absence of a conflicting C-CERT.
Requiring an AbortQuorum of at least 𝑓 + 1 preserves Byzan-
tine independence: Byzantine replicas alone cannot cause a
transaction to abort, as at least one correct replica must have
found 𝑇 to be conflicting with a prepared transaction. How-
ever, such AQ’s are not durable; a client other than 𝐶 might
observe fewer than 𝑓 abort votes and receive a CQ instead. 𝐶
therefore records the votes collected from 𝑆 in the following
vote tally: (i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, {ST1R} and adds 𝑆 to the slow set
for 𝑇 .

(3) Commit Fast Path (5𝑓 + 1 Commit votes): No replica
reports a conflict. Furthermore, a unanimous vote ensures
that, since correct replicas never change their vote, any client
𝐶 ′ that were to step in for 𝐶 would be guaranteed to ob-
serve at least a CQ of 3𝑓 + 1 Commit votes. 𝐶 ′ may miss at
most 𝑓 votes because of asynchrony, and at most 𝑓 more
may come from equivocating Byzantine replicas. 𝐶 thus
records the votes collected from 𝑆 in the following V-CERT:
⟨i𝑑𝑇 , 𝑆,𝐶𝑜𝑚𝑚𝑖𝑡, {ST1R}⟩ and dubs 𝑆 fast.

(4) Abort Fast Path (3𝑓 + 1 ≤ Abort votes): 𝑇 conflicts
with a prepared, but potentially not yet committed transac-
tion. 𝑆’s Abort vote is already durable: since a shard votes to
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commit only when at least 3𝑓 + 1 of its replicas are in favor
of it, once 𝐶 observes 3𝑓 + 1 replica votes for Abort from
𝑆 , it is certain that 𝑆 will never be able to produce 3𝑓 + 1
Commit votes, since that would require a correct replica to
change its ST1R vote or equivocate. 𝐶 therefore creates V-
CERT ⟨i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, {ST1R}⟩, and adds 𝑆 to the set of fast
shards.

(5) Abort Fast Path (One Abort with a C-CERT for a
conflicting transaction 𝑇 ′): 𝐶 validates the integrity of
the C-CERT and creates the following V-CERT for 𝑆:
⟨i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, i𝑑𝑇 ′, C-CERT⟩. It indicates that 𝑆 voted to abort
𝑇 because 𝑇 conflicts with 𝑇 ′, which, as C-CERT proves, is
a committed transaction. Since C-CERT is durable, 𝐶 knows
that the conflict can never be overlooked and that 𝑆’s vote
cannot change; thus, it adds 𝑆 to the set of fast shards.

After all shards have cast their vote, 𝐶 decides whether to
commit (if all shards voted to commit) or abort (otherwise).
Either way, it must make durable the evidence on which its
decision is based. As we discussed above, the votes of fast
shards already are; if (i) there are no slow shards, or (ii) a
single fast shard voted abort, then, 𝐶 can move directly to the
Writeback Phase (§4.3): this is Basil’s fast path, which allows
𝐶 to return a decision for 𝑇 after a single message round trip.
If some shards are in the slow set, however,𝐶 needs to take an
additional step to make its tentative 2PC decision durable in a
second phase (ST2). Notably though, Basil does not need each
slow shard to log its corresponding vote tally in order to make
it durable. Instead, Basil first decides whether to commit or
abort𝑇 based on the shard votes it has received, and then logs
its decision to only a single shard before proceeding to the
Writeback phase.

Stage 2: Making the decision durable

5: C→ R: The client attempts to make its tentative 2PC
decision durable.

𝐶 makes its decision durable by storing an (authenticated)
message ST2 B ⟨𝑖𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {SHARDVOTES}, 𝑣𝑖𝑒𝑤 = 0⟩
on one of the shards that voted in Stage 1 of the Prepare phase;
we henceforth refer to this shard, chosen deterministically de-
pending on 𝑇 ’s id, as 𝑆l𝑜𝑔. The set {SHARDVOTES} includes
the vote tallies of all shards to prove the decision’s validity.
Like many consensus protocols (e.g. [25, 56, 84]), Basil re-
lies on the notion of view for recovery: the value of view
indicates whether this ST2 message was issued by the client
that initated 𝑇 (view= 0) or it is part of a fallback protocol.
We discuss view’s role in detail in §5.

6: R→ C: Replicas in 𝑆𝑙𝑜𝑔 receive the ST2 message and
return ST2R responses.

Each replica validates that 𝐶’s 2PC decision is jus-
tified by the corresponding vote tallies; if so, the

replica logs the decision and acknowledges its suc-
cess. Specifically, it replies to 𝐶 with a message of
the form ST2R := ⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 ;
𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 capture additional replica state
used during recovery. We once again defer an in-depth dis-
cussion of views to §5.

7: C← R: The client receives a sufficient number of
matching replies to confirm a decision was logged.

𝐶 waits for 𝑛 − 𝑓 ST2R messages whose decision and
𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 match, and creates a single shard certificate
V-CERT𝑆l𝑜𝑔 := ⟨i𝑑𝑇 , 𝑆, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {ST2R}⟩ for the logging shard.

4.3 Writeback Phase
𝐶 notifies its local application of whether 𝑇 will commit

or abort, and asynchronously broadcasts to all shards that
participated in the Prepare phase a corresponding decision
certificate (C-CERT for commit; A-CERT for abort).

1: C→ R: The client asynchronously forwards decision
certificates to all participating shards.

𝐶 sends to all involved shards a decision certificate (C-
CERT:⟨i𝑑𝑇 , C𝑜𝑚𝑚𝑖𝑡, {V-CERT𝑆 }⟩ for a Commit decision, A-
CERT: ⟨i𝑑𝑇 , A𝑏𝑜𝑟𝑡, {V-CERT𝑆 }⟩ otherwise). We distinguish
between the fast, and slow path: On the fast path, C-CERT con-
sists of the full set of Commit V-CERT votes from all involved
shards, while an A-CERT need only contain one V-CERT vote
for Abort. On the slow path, both C-CERT and A-CERT simply
include V-CERT𝑆l𝑜𝑔 .

2: R ← C: Replica validates C-CERT or A-CERT and
updates store accordingly.

Replicas update all local data structures, including applying
writes to the datastore on commit and notifying pending de-
pendencies.

4.4 An Optimization: Reply Batching
To amortize the cost of signature generation and verifica-

tion, Basil batches messages (Figure 2). Unlike leader-based
systems, Basil has no central sequencer through which to
batch requests; instead, it implements batching at the replica
after processing messages. To amortize signature generation
for replies, Basil replicas create batches of 𝑏 request replies,
generate a Merkle tree [77] for each batch, and sign the root
hash. They then send to each client𝐶 that issued a request: (𝑖)
the root hash r𝑜𝑜𝑡 , (𝑖𝑖) a signed version 𝜎 of the same r𝑜𝑜𝑡 ,
(𝑖𝑖𝑖) the appropriate request reply 𝑅𝐶 , and (𝑖𝑣) all intermedi-
ate nodes (denoted 𝜋𝐶 in Figure 2) necessary to reconstruct,
given 𝑅𝐶 , the root hash r𝑜𝑜𝑡 . Through this batching, the cost
of signature generation is reduced by a factor of 𝑏, at the cost
of 𝑙𝑜𝑔(𝑏) additional messages. To amortize signature verifica-
tion, Basil uses caching. When a replica successfully verifies
the root hash signature in a client message𝑚, it caches a map
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Replica

Verification

Replica

Signing

RA: ReplyClient-A

Client-A

HA HB

root = HAB

If(reply + π != root) 
return False

If cache[root] = σ
return true

Else:
return Verify(root, σ)

Hash(RA)

RB: ReplyClient-B

Hash(RB)

Verify(RA, πA, root)

If not chached:
Verify(root, sig) & 

cache

Example of batch signatures for two clients. Sig and root (green) are the the same for 
all replies in a batch. Reply and auxillary path π are unique to each client (red for client-
A) and are used to re-construct and validate root.

Client-B

σ = sig(root)

Signature Cache

root σ
Verify & Insert

root, σ

Hash(HA || HB)

RB, root, σ, πB = [HA]

Send Reply Send Proof

RA, root, σ, πA = [HB]

Verify(RB, πB, root)

Lookup
root, σ

Figure 2. Basil batching for two clients. Signature 𝜎 and batch 𝑟𝑜𝑜𝑡

(green) are the same across batched replies. Reply 𝑅𝐶 and proof 𝜋𝐶
are unique to each client C and can validate 𝑟𝑜𝑜𝑡 .

between the corresponding root hash value and the signature.
If the replica later receives a message 𝑚′ carrying the same
root hash and signature as𝑚 (indicating that𝑚 and𝑚′ refer to
the same batch of replies), it can, upon verifying the correct-
ness of the root hash, immediately declare the corresponding
signature valid.

4.5 Discussion
Stripping layers When 2PC is layered above shards that al-
ready order transactions internally using state machine replica-
tion, then within every shard every correct replica has logged
the vote of every other correct replica. Basil’s design avoids
this indiscriminate cost: if all shards are fast, then their votes
are already durable without requiring replicas to run any
coordination protocol; and if some shards are slow, as we
mentioned above, only the replicas of a single shard need to
durably log the decision. As a result, the overhead of Basil’s
logging phase remains constant in the number of involved
shards.

Signature Aggregation. Basil, like recent related work
[47, 110], can make use of signature aggregation schemes
[20–22, 24, 44, 52, 79, 97] to reduce total communication
complexity. The client could aggregate the (matching) signed
ST1R or ST2R replies into a single signature, thus ensuring
that all messages sent by the client remain constant-sized, and
hence Basil total communication complexity can be made
linear. The current Basil prototype does not implement this
optimization.

Why 𝑛 = 5𝑓 + 1 replicas per shard? Using fewer replicas
has two main drawbacks. First, it eliminates the possibility
of a commit fast path. With a smaller replication factor, CQs
of size 𝑛 − 2𝑓 (𝑓 can differ because of asynchrony, another 𝑓
can differ because of equivocation) would no longer be guar-
anteed to overlap in a correct replica, making it possible for
conflicting transactions to commit, in violation of Byzantine
serializability. Second, it precludes Byzantine independence.
For progress, clients must always be able to observe either a
CQ or an AQ, but, for Byzantine independence, the size of
neither quorum must fall below 𝑓 +1: with 𝑛 ≤ 5𝑓 , it becomes
impossible to simultaneously satisfy both requirements.

5 Transaction Recovery
For performance, Basil optimistically allows transactions to

acquire dependencies on uncommitted operations. Without
care, Byzantine clients could leverage this optimism to cause
transactions issued by correct clients to stall indefinitely. To
preserve Byzantine independence, transactions must be able
to eventually commit even if they conflict with, or acquire
dependencies on, stalled Byzantine transactions. To this ef-
fect, Basil enforces the following invariant: if a transaction
acquires a dependency on some other transaction 𝑇 , or is
aborted because of a conflict with T, then a correct partici-
pant (client or replica) has enough information to successfully
complete 𝑇 .

Specifically, Basil clients whose transactions are blocked or
aborted by a stalled transaction 𝑇 try to finish 𝑇 by triggering
a fallback protocol. To this end, Basil modifies MVTSO to
make visible the operations of transactions that have prepared
only. As 𝑇 ’s ST1 messages contain all of 𝑇 ’s planned writes,
any client or replica can use this information to take it upon
itself to finish 𝑇 . A correct client is guaranteed to be able
to retrieve the ST1 for any of its dependencies, since 𝑓 + 1
replicas (i.e., at least one correct) must have vouched for
that ST1 during 𝑇 ’s read phase. Likewise, a correct client’s
transaction only aborts if at least 𝑓 +1 replicas report a conflict.

Basil’s fallback protocol starts with clients: any client
blocked by a stalled transaction 𝑇 can try to finish it. In
the common case, it will succeed by simply re-executing the
previously described Prepare phase; success is guaranteed
as long as replicas within the shard 𝑆𝑙𝑜𝑔 that logged shard
votes in Stage 2 of 𝑇 ’s Prepare phase store the same decision
for 𝑇 . The divergent case, in which they do not, can occur
in one of two ways: (i) a Byzantine client issued 𝑇 and sent
deliberately conflicting ST2 messages to 𝑆𝑙𝑜𝑔; or (ii) multiple
correct clients tried to finish 𝑇 concurrently, and collected
Prepare phase votes (set of ST1R messages) that led them to
reach (and try to store at 𝑆𝑙𝑜𝑔) different decisions. Fortunately,
in Basil a Byzantine client cannot generate conflicting ST2
messages at will: its ability to do so depends on the odds
(which §6 suggests are low) of receiving, from the replicas
of at least one shard, votes that constitute both a CQ and an
AQ (i.e., 3f+1 Commit votes and f+1 Abort votes). Whatever
the cause, if a client trying to finish 𝑇 observes that replicas
in 𝑆l𝑜𝑔 store different decisions, it proceeds to elect a fallback
leader, chosen deterministically among the replicas in 𝑆l𝑜𝑔.
Through this process, Basil guarantees that clients are always
able to finish dependent transactions after at most 𝑓 + 1 leader
elections (since one of them must elect a correct leader).

Though Basil’s fallback protocol is reminiscent of the tradi-
tional view-change protocols used to evict faulty leaders, it
differs in three significant ways. First, it requires no leader
in the common case; further, if electing a fallback leader be-
comes necessary, communication costs can be made linear in
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the number of replicas using signature aggregation schemes
(§ 4.4). Second, the fallback election is local, and affects only
transactions that access the same operations as the stalled
transaction: when a fallback leader is elected for 𝑇 , the scope
of its leadership is limited to finishing 𝑇 . In contrast, a stan-
dard view-change prevents the system from processing any
operation and the leader, once elected, lords over all con-
sensus operations during its tenure. Finally, Basil’ fallback
leaders have no say on the ordering of transactions or on what
they decide [114].

As in traditional view-change protocols, each leader operates
in a view. For independent operability, views are defined
on a per-transaction basis. Transactions start in 𝑣𝑖𝑒𝑤 = 0;
transactions in that view can be brought to a decision by any
client. A replica increases its view number for 𝑇 each time it
votes to elect a new fallback leader.

We now describe the steps of the fallback protocol triggered
by a client 𝐶 wishing to finish a transaction 𝑇 , distinguishing
between the aforementioned common and divergent cases.

Common case In the common case, the client simply re-
sends a ST1 message (renamed for clarity Recovery Prepare
(RP)) in this context) to all the replicas in shards accessed by
𝑇 . Replicas reply with an RPR message which, depending the
progress of previous attempts (if any) at completing 𝑇 corre-
sponds to either (i) a ST1R message; (ii) a ST2R message; or
(iii) a C-CERT or A-CERT certificate. Based on these replies,
the client can fast-forward to the corresponding next step
in the Prepare or Writeback protocol. In the common case,
stalled dependencies thus cause correct clients to experience
only a single additional round-trip on the fast path, and at
most two if logging the decision is necessary (slow path).

Divergent case If, however, the client only receives non-
matching ST2R replies, more complex remedial steps are
needed. ST2R can differ (i) in their decision value and (ii) in
their view number 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . The former, as we saw, is the
result of either explicit Byzantine equivocation or of multiple
clients attempting to concurrently terminate𝑇 . The latter indi-
cates the existence of prior fallback invocations: a Byzantine
fallback leader, for instance, could have intentionally left the
fallback process hanging. In both scenarios, the client elects

a fallback leader. The steps outlined below ensure that, once
a correct fallback leader is elected, replicas can be reconciled
without introducing live-lock.

(1: C → R): Upon receiving non-matching ST2R re-
sponses, a client starts the fallback process.

The client sends 𝐼𝑛𝑣𝑜𝑘𝑒𝐹𝐵 B ⟨i𝑑𝑇 , 𝑣𝑖𝑒𝑤𝑠⟩, where views is
the set of signed current views associated with the RPR re-
sponses received by the client.

(2: R → RFL): Replicas receive fallback invocation
𝐼𝑛𝑣𝑜𝑘𝑒𝐹𝐵 and start election of a fallback leader RFL
for the current view.

𝑅 takes two steps. First, it determines the most up-to-date
view 𝑣 ′’ held by correct replicas in 𝑆𝑙𝑜𝑔 and adopts it
as its current view 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Second, 𝑅 sends message
ELECTFB B ⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 to the replica with
id 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + (i𝑑𝑇 mod 𝑛) to inform it that 𝑅 now considers
it to be 𝑇 ’s fallback leader.

𝑅 determines its current view as follows: If a view 𝑣 appears
at least 3𝑓 +1 times in the current views received in InvokeFB,
then 𝑅 updates its 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to𝑚𝑎𝑥 (𝑣 + 1, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ); oth-
erwise, it sets its 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the largest view 𝑣 greater than
its own that appears at least 𝑓 +1 times in current views. When
counting how frequently a view is present in the received cur-
rent views, 𝑅 uses vote subsumption: the presence of view 𝑣

counts as a vote also for all 𝑣 ′ ≤ 𝑣 .

The thresholds Basil adopts to update a replica’s current view
are chosen to ensure that all 4𝑓 + 1 correct replicas in 𝑆𝑙𝑜𝑔
quickly catch up (in case they differ) to the same view, and
thus agree on the identity of the fallback leader. Specifically,
by requiring 3𝑓 + 1 matching views to advance to a new
view 𝑣 , Basil ensures that at least 2𝑓 + 1 correct replicas are
at most one view behind 𝑣 at any given time. In turn, this
threshold guarantees that (i) a correct client will receive at
least 𝑓 + 1 matching views for 𝑣 ′ ≥ 𝑣 − 1 in response to its RP
message and (ii) will include them in its InvokeFB. These 𝑓 +1
matching views are sufficient for all 4𝑓 + 1 correct replicas to
catch-up to view 𝑣 ′, then (if necessary) jointly move to view 𝑣 ,
and send election messages to the fallback leader of 𝑣 . Refer
to our technical report2 for additional details and proofs.
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(3: RFL→ R): Fallback leader RFL aggregates election
messages and sends decisions to replicas.

RFL considers itself elected upon receiving 4𝑓 + 1 ELECTFB
messages with matching views 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 . It proposes a new de-
cision 𝑑𝑒𝑐𝑛𝑒𝑤 = majority({decision}) and broadcasts message
DECFB B ⟨(i𝑑𝑇 , 𝑑𝑒𝑐𝑛𝑒𝑤, 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 )𝜎𝑅FL , {ELECTFB}⟩, which
includes the ELECTFB messages as proof of its leadership.

Importantly, an elected leader can only propose safe deci-
sions: if a decision has previously been returned to the appli-
cation or completed the Writeback phase, it must have been
logged successfully, i.e. signed by 𝑛 − 𝑓 = 4𝑓 + 1 replicas.
Thus, in any set of 4𝑓 + 1 ELECTFB messages the decision
must appear at least 2𝑓 + 1 times, i.e., a majority. Note that
this condition no longer holds when using fewer that 5𝑓 + 1
replicas per shard: using a smaller replication factor would
require (i) an additional (third) round of communication, and
(ii) including proof of this communication in all replica votes
(an𝑂 (𝑛) increase in complexity), to guarantee that conflicting
decision values may not be logged for the same transaction.

(4: R→ C): Replicas sends a ST2R message to inter-
ested clients.

Replicas receive a DECFB message and adopt the message’s
decision (and 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) as their own if their current view
is smaller or equal to 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 and the proof is valid. If
so, replicas update their current view to 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 and for-
ward the decision to all interested clients in a ST2R message:
⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 .

(5: C: A client creates a V-CERT or restarts fallback.

If the client receives 𝑛 − 𝑓 ST2R with matching decision and
decision views, she creates a V-CERT𝑆l𝑜𝑔 and proceeds to the
Commit phase. Otherwise, it restarts the fallback using the
newly received 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 messages to propose a new view.

We illustrate the entire divergent case algorithm in Figure 3,
which for simplicity considers a transaction 𝑇 involving a
single shard. With multiple shards, only the common case RP
messages (and replies) would involve all shards; the divergent
case would always touch only a single shard, 𝑆𝑙𝑜𝑔.

To begin the process of committing 𝑇 , a Byzantine client
sends message ST1 and waits for all ST1R messages. Since
the replies it receives allow it to generate both a Commit and
Abort quorum, the client chooses to equivocate, sending ST2
messages for both Commit and Abort. It then stalls. A second
correct client who acquired a dependency on 𝑇 attempts to
finish it. It sends RP messages (1) and receives non-matching
RPR messages (three Commit and two Abort decisions, all
from view 0) (2). To redress this inconsistency, the correct
client invokes a Fallback with view 0 (3b). Upon receiving
this message, replicas transition to view 1 and send their own
decision to view 1’s leader in an ELECTFB message (4). In

our example, having received a majority of Commit decisions,
the leader chooses to commit and broadcasts its decision to
all other replicas in an DECFB message (5). Finally, replicas
send the transaction’s outcome to the interested client (6),
who then proceeds to the Writeback phase (7).

6 Evaluation
Our evaluation seeks to answer the following questions:

• How does Basil perform on realistic applications? (§6.1)

• Where do Basil’s overheads come from? (§6.2)

• What are the impacts of our optimizations in Basil? (§6.3)

• How does Basil perform under failures? (§6.4)

Baselines We compare against three baselines:
(i) TAPIR [113], a recent distributed database that
combines replication and cross-shard coordination for
greater performance but does not support Byzantine faults;
(ii) TxHotstuff, a distributed transaction layer built on top of
the standard C++ implementation [109] of HotStuff, a recent
consensus protocol that forms the basis of several commercial
systems [11, 13, 26, 34, 78], most notably Facebook Diem’s
Libra Blockchain; and (iii) TxBFT-SMaRt, a distributed
transaction layer built on top of BFT-SMaRt [1, 19], a
state-of-the-art PBFT-based implementation of Byzantine
state machine replication (SMR). HotStuff and BFT-SMaRt
support general-purpose SMR, and are not fully-fledged trans-
actional systems; we thus supplement their core consensus
logic with a coordination layer for sharding (running 2PC)
and an execution layer that implements a standard optimistic
concurrency control serializability check [59] and maintains
the underlying key-value store. This architecture follows
the standard approach to designing distributed databases
(e.g. Google Spanner [31], Hyperledger Fabric [101] or
Callinicos [86, 87]) where concurrency control and 2PC
are layered on top of the consensus mechanism. Spanner
and Hyperledger (built on Paxos and Raft, respectively) are
not Byzantine-tolerant, while Callinicos does not support
interactive transactions. To the best of our knowledge, ours
is the first academic evaluation of HotStuff as a component
of a large system.3 We use ed25519 elliptic-curve digital
signatures [15, 42] for both Basil and the transaction layer of
TxHotstuff and TxBFT-SMaRt. Additionally, we augmented
both BFT baselines to also profit from Basil’ reply batching
scheme.

Experimental Setup We use CloudLab [2] m510 machines
(8-core 2.0 GHz CPU, 64 GB RAM, 10 GB NIC, 0.15ms
ping latency) and run experiments for 90 seconds (30s warm-
up/cool-down). Clients execute in a closed-loop, reissuing
aborted transactions using a standard exponential backoff

3We discussed extensively our setup and implementation with the authors of
TAPIR and HotStuff. We corresponded with the authors of Callinicos who
were unfortunately unable to locate a fully functional version of their system.
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Figure 4. Application High-level Performance

scheme. We measure the latency of a transaction as the differ-
ence between the time the client first invokes a transaction to
the time the client is notified that the transaction committed.
Each system tolerates 𝑓 = 1 faults (𝑛 = 2𝑓 + 1 for TAPIR,
3𝑓 + 1 for HotStuff and BFT-SMaRt).

6.1 High-level Performance
We first evaluate Basil against three popular benchmark

OLTP applications: TPC-C [103], Smallbank [37], and
the Retwis-based transactional workload used to evaluate
TAPIR [113]. TPC-C simulates the business logic of an e-
commerce framework. We configure it to run with 20 ware-
houses. As we do not support secondary indices, we create
a separate table to (i) locate a customer’s latest order in the
order status transaction and (ii) lookup customers by
last name in the order status and payment transac-
tions [33, 99]. We configure Smallbank, a simple banking
application benchmark, with one million accounts. Access is
skewed, with 1,000 accounts being accessed 90% of the time.
Users in Retwis, which emulates a simple social network, sim-
ilarly follow a moderately skewed Zipfian distribution (0.75).
Figures 4a and 4b reports results for the three applications.

TPC-C Basil’s TPC-C throughput is 5.2x higher than Tx-
Hotstuff’s and 3.8x higher than TxBFT-SMaRt’s – but
4.1x lower than TAPIR’s. All these systems are contention-
bottlenecked on the read-write conflict between payment
and new-order. Basil has 4.2x higher latency than TAPIR:
this increases the conflict window of contending transactions,
and thus the probability of aborts. Basil’s higher latency stems
from (i) its replicas need for signing and verifying signatures;
(ii) its larger quorum sizes for both read and prepare phases;
and (iii) its need to validate read/prepare replies at clients.

Throughput in Basil is higher than in TxHotStuff and TxBFT-
SMaRt. Basil’s superior performance is directly linked to its
lower latency (2.4x lower than TxHotstuff, 1.2x lower than
TxBFT-SMaRt). By merging 2PC with agreement, Basil al-
lows transactions to decide whether to commit or abort in

a single round-trip 96% of the time (through its fast path) .
TxHotstuff and TxBFT-SMaRt, which layer a 2PC protocol
over a black-box consensus instance, must instead process
and order two requests for each decision (one to Prepare, and
one to Commit/Abort), each requiring multiple roundtrips. In
particular, Hotstuff and BFT-SMaRT incur respectively nine
and five message delays before returning the Prepare result
to clients. In a contention-heavy application like TPC-C, this
higher latency translates directly into lower throughput, since
it significantly increases the chances that transactions will
conflict. Indeed, for these applications layering transaction
processing on top of state machine replication actually turns
a classic performance booster for state machine replication—
running agreement on large batches—into a liability, as large
batches increase latency and encourage clients to operate in
lock-step, increasing contention artificially. In practice, we
find that TxHotstuff and TxBFT-SMaRt perform best with
comparatively small batches (four transactions for TxHot-
Stuff, 16 for TxBFT-SMaRT).

Smallbank and Retwis Basil is only 1.8/2.6x slower than
TAPIR for these workloads, which are resource bottlenecked
for both systems. The lower contention in Smallbank and
Retwis (due to the relatively small transactions) allows Basil
to use a batch size of 16 for signature generation (up from
4 in TPC-C), thus lowering the cryptographic overhead
that Basil pays over TAPIR. With this larger batch, both
TAPIR and Basil are bottlenecked on message serializa-
tion/deserialization and networking overheads. Because of
their higher latency, however, TxHotStuff and TxBFT-SMaRt
continue to be contention bottlenecked: Basil’s commit rates
for Smallbank and Retwis are respectively 93% and 98%, but
for TxHotStuff they drop to 75% and 85% and for TxBFT-
SMaRt to 85% for both benchmarks. Even on their best con-
figuration (batch size of 16 for TxHotStuff and 64 for TxBFT-
SMaRt), Basil outperforms them, respectively, by 3.7x and
2.7x on Smallbank, and by 4.8x and 3.9x on Retwis.
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6.2 BFT Overheads
Besides additional replicas (from 2𝑓 + 1 to 5𝑓 + 1), tolerance

to Byzantine faults requires both additional cryptography to
preserve Byz-serializability and more expensive reads to pre-
serve Byzantine independence. To evaluate these overheads,
we configure the YCSB-T microbenchmark suite [30] to im-
plement a simple workload of identical transactions over ten
million keys. We distinguish between a uniform workload
(RW-U) and a Zipfian workload (RW-Z) with coefficient 0.9.

We first quantify the cost of cryptography. To do so, we
measure the relative throughput of Basil with and without
signatures. Transactions consist of two reads and two writes.
Figure 5a describes our results. We find that Basil without
cryptography performs 3.7x better than Basil with cryptog-
raphy on the uniform workload, and up to 4.6x better on the
skewed workload. Without cryptography, Basil can use cores
that would have been dedicated for signing/ signature verifica-
tion for regular operation processing. This effect is more pro-
nounced on the skewed workload as reducing latency (through
increased operation parallelism, lack of batching, and absence
of signing/verification latency) reduces contention, and thus
further increases throughput.

In all sharded BFT systems, the number of signatures nec-
essary per transaction grows linearly with the number of
shards: each replica must verify that other shards also voted
to commit/abort a transaction before finalizing the transac-
tion decision locally. This requires a signature per shard. In
Figure 5c, we quantify this cost by increasing the number
of shards from one to three on the CPU-bottlenecked RW-U
workload (three reads/writes). Basil without cryptography in-
creases by a factor of 1.9 (on average, transactions with three
read operations will touch two distinct shards). In contrast,
Basil’s throughput increases by only 1.3x.

To guarantee Byzantine independence, individual clients
must receive responses from 𝑓 + 1 replicas instead of a sin-
gle replica. Reading from 2𝑓 + 1 replicas (thus sending to
3f+1) increases the chances of a transaction acquiring a valid
dependency over reading outdated data. We measure the rel-
ative cost of these different read quorum sizes in Figure 5b.
We use a simple read-only workload of 24 operations per

transaction, and a batch size of 16. Unsurprisingly, increasing
the number of read operations increases the load on each
replica due to the (i) additional signature generations that
must be performed, and (ii) the additional messages that must
be processed. Throughput decreases by 20% when reading
from 𝑓 + 1 replicas (instead of one), and a further 16% when
reading from 2𝑓 + 1.
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6.3 Basil Optimizations
We measure how Basil’s performance benefits from batching

and from its fast path option. We report results for YCBS-
T with and without fast path (NoFP) on a workload of two
reads and two writes (Figure 6a). For the uniform workload,
enabling fast paths leads to a 19% performance increase; the
ST2R messages that fast paths save contain a signature that
must be verified, but require little additional processing. For
a contended Zipfian workload, however, the additional phase
incurred by the slow path increases contention (as it increases
latency): adding the fast path increases throughput by 49%.
Note that Byzantine replicas, by refusing to vote or voting
abort, can effectively disable the fast path option; Basil can
prevent this by removing consistently uncooperative replicas.

Next, we quantify the effects of batching. We report the
throughput for both workloads (transactions consist of two
reads and two writes) while changing the batch size from 1 to
32 ((Figure 6b). As expected, on the resource-bottlenecked
uniform workload, throughput increases linearly with in-
creased batch size until peaking at 16 (a 4x throughput in-
crease) – at which point additional hashing costs of the batch-
ing Merkle tree nullify any further reduction in signature costs.
On the Zipfian workload instead, throughput only increases
by up 1.4x, peaking at a small batch size of 4, and degrading
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Figure 7. Basil performance under Client Failures

afterwards as higher wait times and batch-induced client lock
step increase contention (thus reducing throughput).

6.4 Basil Under Failures
Basil can experience Byzantine failures from both replicas

and clients. We have already quantified the effect of Byzantine
replicas preventing fast paths (Figure 6a) and, by being unre-
sponsive, forcing (2𝑓 +1)-sized read quorums (Figure 5b). We
then focus here on quantifying the effects of clients failing.

Basil clients are in charge of their own transactions. Byzan-
tine clients can thus only disrupt honest participants when
their own transactions conflict with those of correct clients.
Otherwise, they hurt only themselves. A Byzantine client’s
best strategy for successfully disrupting execution is (i) to
follow the (estimated/observed) workload access distribution
(only contending transactions cause conflicts), (ii) choose
conservative timestamps (only committing transactions cause
conflicts) and (iii) delay committing a prepared transaction
(forcing dependencies to block, and conflicts to abort).

Byzantine clients can stall after sending ST1 messages (stall-
early), or before sending vote certificates V-CERT𝑆 (stall-late).
To equivocate, they must instead receive votes that allow them
to generate, and send to replicas, conflicting V-CERT certifi-
cates. We remark that equivocating, and hence triggering the
divergent case recovery path, is not a strategy that can be
pursued deterministically or even just reliably, since its effec-
tiveness depends on the luck of the draw in the composition of
ST1R’s quorum. We evaluate two scenarios: a worst-case, in
which we artificially allow clients to always equivocate (equiv-
forced), and a realistic setup where clients only equivocate
when the set of messages received allows them to (equiv-real).
For both scenarios, we report the throughput of correct clients
(measured in 𝑡𝑥/𝑠/𝑐𝑙𝑖𝑒𝑛𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ). We keep a constant number
of clients, a fraction of which exhibits Byzantine behavior
in some percentage of their newly admitted transactions; we
refer to those transactions as faulty). Faulty transactions that

abort because of contention are not retried, while correct trans-
actions that abort for the same reason may need to re-execute
(and hence prepare) multiple times until they commit. When
measuring throughput, we report the percentage of faulty
transactions as a fraction of all processed (not admitted) trans-
actions. Figures 7a and 7b illustrate our results.

For the RW-U workload, the additional CPU cost of fallback
invocations on the CPU-bottlenecked servers causes correct
clients’ throughput to decrease slowly and linearly. Clients in-
voke fallbacks only rarely, as there is no contention. Moreover,
stalled transactions can be finished in a single round-trip (a
pair of RP, RPR) messages thanks to the fallback’s common
case and fast path. The small throughput drop over stall-late
is an artefact of Byzantine clients directly starting a new trans-
action before finishing the old one, increasing the throughput
of malicious clients over correct ones. The cost of forced
equivocation is higher as it requires three rounds of message
processing (fallback invocation, election, and decision adop-
tion). In reality, equiv-real sees no throughput drop, as the
lack of contention makes equivocation impossible: Byzantine
clients cannot build the necessary conflicting V-CERT’s.

The RW-Z workload is instead contention-bottlenecked:
higher latency implies more conflicts, and thus lower through-
put. The impact of stall-late stalls remains small, as all af-
fected clients still recover the transaction on the common
case fast path (incurring only one extra roundtrip). The perfor-
mance degradation is slightly higher in stall-early, as stalled-
early transactions do not finish the transactions on which
they depend before stalling. Instead, affected correct clients
must themselves invoke the fallback for stalled dependent
transactions, which increases latency. In practice, dependency
chains remain small: because of the Zipfian nature of the
workload, correct clients quickly notice stalled transactions
and aggressively finish them. We note that stalled transactions
do not themselves increase contention: Basil allows the stalled
writes of prepared but uncommitted transactions to become
visible to other clients as dependencies. A stalled transaction
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thus causes dependency chains to grow, but does not increase
the conflict window. The throughput drop that results from
forcing equivocation failures is, in contrast, significant: equiv-
ocation requires three round-trip to resolve and may lead to
transactions aborting and to cascading aborts in dependency
chains. In practice, Byzantine clients in equiv-real are once
again rarely successful in obtaining the conflicting ST1R mes-
sages necessary to equivocate, even in a contended workload
(0.048% of the time for 40 % faulty transactions) as 99% of
transactions commit or abort on the fast path.

Basil expects some level of cooperation from its participants
and can remove, without prejudice, clients that frequently
stall or timeout (in addition to explicitly misbehaving clients).
To avoid spurious accusations towards correct clients, such
exclusion policies can be lenient, since Basil’s throughput
remains robust even with high failure rates.

7 Related Work
State machine replication (SMR) [96] maintains a total order

of requests across replicas, both in the crash failure model
[27, 53, 61–64, 66, 69, 71, 84, 85, 104]) and in the Byzantine
setting [12, 19, 23, 25, 28, 29, 38, 46, 47, 56, 57, 65, 70, 74,
76, 92, 108, 110], where they have been used as a main build-
ing block of Blockchain systems [6, 9, 10, 13, 23, 45, 55, 101].
To maintain a total order abstraction, existing systems process
all operations sequentially (for both agreement and execu-
tion), thus limiting scalability for commutative workloads.
They are, in addition, primarily leader-based which introduces
additional scalability bottlenecks [81, 98, 113] as well as fair-
ness concerns. Rotating leaders [23, 29, 110] reduce fairness
concerns, and multiple-leader based systems [12, 67, 81, 98]
increase throughput. Recent work [50, 54, 60, 114] discusses
how to improve fairness in BFT leader-based systems with
supplementary ordering layers and censorship resilience.
Basil sidesteps these concerns by adopting a leaderless ap-
proach and addresses the effects of Byzantine actors beyond
ordering through the stronger notion of Byzantine Indepen-
dence.

Fine-grained ordering Existing replicated systems in the
crash-failure model leverage operation semantics to allow
commutative operations to execute concurrently [58, 63, 68,
81–83, 89, 100, 107, 113]. This work is much rarer in the BFT
context, with Byblos [14] and Zzyzyx [49] being the only
BFT protocol that seek to leverage commutativity. However,
unlike Basil, Byblos is limited to a static transaction model
and introduces blocking between transactions that are poten-
tially concurrent with other conflicting transactions; while
Zzyzyx resorts to a SMR substrate protocol under contention.
Other existing Quorum-based systems naturally allow for
non-conflicting operations to execute concurrently, but do not
provide transactions [7, 32, 72, 75].

Sharding Some Blockchains rely on sharding to parallelize
independent transactions, but continue to rely on a total-order
primitive within shards [9, 55, 111]. As others in the crash-
failure model have highlighted [83, 112, 113], this approach
incurs redundant coordination and fails to fully leverage the
available parallelism within a workload.

DAGs Other permissionless Blockchains use directed acyclic
graphs rather than chains [91, 93, 95], but require dependen-
cies and conflicts to be known prior to execution.

Byzantine Databases Basil argues that BFT systems and
Blockchains are in fact simply databases and draws on prior
work in BFT databases. HRDB [105] offers interactive trans-
actions for a replicated database, but relies on a trusted coor-
dination layer. Byzantium [43] designs a middleware system
that utilizes PBFT as atomic broadcast (AB) and provides
Snapshot Isolation using a primary backup validation scheme.
Augustus [87] leverages sharding for scalability in the mini-
transaction model [8] and relies on AB to implement an opti-
mistic locking based execution model. Callinicos [86] extends
Augustus to support armored-transactions in a multi-round
AB protocol that re-orders conflicts for robustness against
contention. BFT-DUR [90] builds interactive transactions
atop AB, but does not allow for sharding. Basil instead sup-
ports general transactions and sharding without a leader or
the redundant coordination introduced by atomic broadcast.

Byzantine Clients Basil, being client-driven, must defend
against Byzantine clients. It draws from prior work targeted at
reducing the severity and frequency of client misbehavior [43,
72, 73, 86, 87, 90] and extends Liskov and Rodrigues’ [72]
definition of Byz-Linearizability to formalize the first safety
and liveness properties for transactional BFT systems.

8 Conclusion
This paper presents Basil, the first leaderless BFT transac-

tional key-value store supporting ACID transactions. Basil
offers the abstraction of a totally-ordered ledger while sup-
porting highly concurrent transaction processing and ensuring
Byz-serializability. Basil clients make progress independently,
while Byzantine Independence limits the influence of Byzan-
tine participants. During fault and contention-free executions
Basil commits transactions in a single round-trip.
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