
Bidl: A High-throughput, Low-latency Permissioned
Blockchain Framework for Datacenter Networks
Ji Qi†1, Xusheng Chen†1, Yunpeng Jiang†, Jianyu Jiang†, Tianxiang Shen†, Shixiong Zhao†,

Sen Wang§, Gong Zhang§, Li Chen§, Man Ho Au†, Heming Cui†*
†The University of Hong Kong §Huawei Technologies Co., Ltd.

Abstract
A permissioned blockchain framework typically runs an effi-
cient Byzantine consensus protocol and is attractive to de-
ploy fast trading applications among a large number of mutu-
ally untrusted participants (e.g., companies). Unfortunately,
all existing permissioned blockchain frameworks adopt se-
quential workflows for invoking the consensus protocol
and executing applications’ transactions, making the perfor-
mance of these applicationsmuch lower than deploying them
in traditional systems (e.g., in-datacenter stock exchange).

We propose Bidl, the first permissioned blockchain frame-
work highly optimized for datacenter networks. We leverage
the network ordering in such networks to create a shepherded
parallel workflow, which carries a sequencer to parallelize the
consensus protocol and transaction execution speculatively.
However, the presence of malicious participants (e.g., a mali-
cious sequencer) can easily perturb the parallel workflow to
greatly degrade Bidl’s performance. To achieve stable high
performance, Bidl efficiently shepherds all participants by
detecting their misbehaviors, and performs denylist-based
view changes to replace or deny malicious participants. Com-
pared with three fast permissioned blockchain frameworks,
Bidl’s parallel workflow reduces applications’ latency by up
to 72.7% and improves their throughput by up to 4.3× in the
presence of malicious participants. Bidl is suitable to be inte-
grated with traditional stock exchange systems. Bidl’s code
is released on github.com/hku-systems/bidl.

CCS Concepts: • Security and privacy→ Distributed sys-

tems security; • Software and its engineering→ Consis-
tency; • Networks→ Data center networks.

Keywords: permissioned blockchains, byzantine fault toler-
ance, high-performance blockchain workflows

* Heming Cui is the corresponding author.
1 Ji Qi and Xusheng Chen contribute equally.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483574

1 Introduction
Cross-enterprise trading applications (e.g., stock exchange [2,
4, 5, 7, 8]) facilitate instant recording and clearing of transac-
tions amongmutually untrusted participants (e.g., clients and
merchants). These trading applications are often deployed in
one datacenter or multiple datacenters connected with dedi-
cated network cables [46–48, 79, 97] to process a large num-
ber of transactions with real-time commit latency [57, 105].
For instance, the Hong Kong stock exchange [4] runs at
about 50k transactions per second (txns/s), and the commit
latency is about tens of milliseconds [38, 40, 76].
The prosperity of blockchains attracts industry and

academia to develop various permissioned blockchain frame-
works (typically, Diem [16], Hyperledger Fabric [31], and
Quorum [26]) for trading applications. Unlike permissionless
blockchains (e.g., Bitcoin [77]), a permissioned blockchain is
maintained by identified member nodes (for short, nodes)
and runs a fast Byzantine-fault-tolerant (BFT) consensus pro-
tocol (e.g., BFT-SMaRt [39]) among a subset of nodes (can
be hundreds [24, 50, 99]) to commit transactions. A permis-
sioned blockchain is especially suitable for trading applica-
tions because it can achieve much higher performance and
energy efficiency [31] than a permissionless blockchain.
More and more permissioned blockchains are deployed

within a datacenter or datacenters connected with dedicated
cables [65, 67, 73]. For instance, a Singapore company devel-
ops a stock trading system based on the most notable per-
missioned blockchain Hyperledger Fabric (HLF) [31] within
a datacenter [86]. Cloud providers such as Amazon [11],
IBM [12], and Microsoft [18] also provide permissioned
blockchains as cloud services in their datacenters.

Unfortunately, even deployed in a fast datacenter network,
existing permissioned blockchains’ performance is much
lower than traditional trading systems [4]. For instance, Quo-
rum [26, 37] and Diem [16, 104] achieve a throughput of 2k
txns/s with 200ms latency in a datacenter. We ran HLF [31]
with its mainstream BFT protocol BFT-SMaRt [39] (four con-
sensus nodes) in our cluster with 40Gbps network; HLF
achieved a throughput of 9.3k txns/s with 100ms latency (§6).
We attribute this low performance to the sequential

workflow of typical permissioned blockchains [16, 26, 31].
Blockchain workflows are divided into two categories. The
first category is the execute→consensus→validate workflow
proposed by HLF [31] to support non-deterministic trans-
actions. Nodes first concurrently execute received transac-

18

https://github.com/hku-systems/bidl
https://doi.org/10.1145/3477132.3483574
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CommitConsensusExecute Validate

Figure 1. HLF’s sequential workflow.

4. Commit

1. Sequencer

2. Consensus

3. Speculative

Execute

Shepherd

Figure 2. Bidl’s new parallel workflow.

tions; then agree on the order of execution results through
a BFT consensus protocol; after the consensus is achieved,
nodes validate the result, commit valid ones and abort in-
valid ones. This consensus-on-result mechanism enables
HLF to support non-deterministic languages (e.g., C++ with
multi-threading), but it may cause a high abort rate on con-
tending transactions (i.e., transactions modifying the same
key concurrently). Diverse real-world blockchain applica-
tions [65, 81, 85] can contain over 40% contending transac-
tions (e.g., supply chains [65]).

The second category is the consensus→execute workflow
taken by diverse blockchain systems (e.g., Diem [16] andQuo-
rum [26]). Nodes first use a BFT consensus protocol to order
transaction contents, then individually execute transactions
according to this order with zero abort rate. To make the indi-
vidually executed transactions achieve consistent output, all
transactions must be rewritten with a deterministic single-
threaded language [28], which can be tedious and inefficient.

Overall, we believe the sequential nature of existing work-
flows is the root cause of making their end-to-end perfor-
mance often a small fraction of traditional trading applica-
tions (e.g., 50k txns/s [4]).

Inspired by existing ultra-fast consensus protocols devel-
oped for a datacenter network [44, 69, 70, 79], our key obser-
vation is that the network ordering has great potential to im-
prove the performance of existing permissioned blockchains
by moving a part of the workflow (i.e., transaction ordering
and distribution) to the routing layer. Specifically, we can
run a dedicated node as the sequencer, which adds sequence
numbers to all transactions and routes all transactions to all
nodes by routing-aware multicast [15]. If the sequencer is
never faulty (i.e., always sending the same sequence of trans-
actions to all nodes), all nodes can receive almost all trans-
actions in the same order (the consensus is hardly needed)
and can commit the transactions on their own.
However, all these notable systems for datacenter net-

works [44, 69, 70, 79] target only the crash fault tolerance
(CFT) model [29, 66] and cannot fit many permissioned
blockchain applications, which require the BFTmodel. For in-
stance, a malicious sequencer can send different transactions
to different nodes [42, 92]. Consequently, different nodesmay

receive inconsistent transactions and need to invoke an extra
BFT consensus to agree on their received transactions, mak-
ing the system even slower than the sequential workflows.

In this paper, we propose Bidl1, the first high performance
permissioned blockchain framework that explores the net-
work ordering in datacenter networks and complies with
blockchains’ BFT model. We present a new shepherded par-

allel workflow as shown in Figure 2: nodes invoke a BFT
consensus protocol to agree on the order of transactions; in
parallel, nodes speculatively execute the transactions from
the sequencer. Then, nodes safely commit the execution re-
sults if they are consistent with the consensus results, and
re-execute the transactions if they are inconsistent.

A key performance challenge of Bidl’s parallel workflow
is on ensuring correct speculative executions in the pres-
ence of malicious nodes. Although there exist BFT consen-
sus protocols [30, 33, 43] for detecting malicious nodes and
recovering performance, a smart malicious node in Bidl can
still break Bidl’s parallel workflow by broadcasting care-
fully crafted transactions to other nodes, making other nodes
speculate on the crafted transactions, and causing dramatic
performance penalty due to transaction re-executions.

To tackle this challenge, Bidl’s workflow carries a denylist-
based view change protocol to shepherd participants in a per-
missioned blockchain, which replaces a malicious sequencer
and adds malicious nodes to the denylist. This protocol can
greatly reduce the performance penalty caused by the trans-
action re-executions, making Bidl’s workflow run at high
performance and comply with the BFT model.
This parallel workflow enables Bidl to address non-

determinism in transactions efficiently. After executing trans-
actions in a block, nodes commit a transaction only if they
produce consistent outputs, which ensures their local states
never diverge. Moreover, in Bidl’s execution phase, nodes
execute contending transactions in the sequence number or-
der, which can eliminate the aborts caused by concurrent ex-
ecutions of contending transactions. Overall, Bidl inherits
the best of the two categories of existing sequential work-
flows and offsets their deficiencies.

We implementedBidl onHLF’s codebase [3].Bidl’s modu-
lar architecture enables existing BFT protocols to be deployed
in Bidl with moderate engineering efforts (§4.2). We com-
pared Bidl with HLF [31] FastFabric (FF) [51] and Stream-
Chain [65] (two optimized frameworks designed for CFT de-
ployment and based on HLF) in the same network, and en-
abled network ordering (e.g., consensus-on-hash [32, 42])
for all frameworks. We ran four popular BFT consensus pro-
tocols, including BFT-SMaRt [39], SBFT [50], HotStuff [100],
and Zyzzyva [63] in Bidl, and evaluated them with typical
trading workloads. Evaluation shows that:
• In Figure 3, Bidl achieved 60.2% lower latency and 3.3×
higher throughput on average than HLF and FF.

1Bidl stands for Blockchain-powered In-Datacenter Ledger.

19

5 10 15 20 25 30 35 40 45
Throughput (kTxns/s)

20
40
60
80

100
120
140
160

L
at

en
cy

(m
s)

HLF 0% contention

FF 0% contention

Bidl 0% contention

HLF 50% contention

FF 50% contention

Bidl 50% contention

Figure 3. Performance on four consensus nodes without any ma-
licious node (which favors FF’s CFT deployment), and 50 transac-
tion execution nodes. FF ran its built-in Raft [51]; HLF and Bidl
ran BFT-SMaRt [87]. Contention ratio is the ratio of contending
transactions among all transactions.

• Bidl is robust to contended workloads. In Figure 3, when
the contention ratio increased from 0% to 50% according
to real-world blockchain applications [65] and recent eval-
uation [81, 85], Bidl’s throughput (40.1k txns/s) outper-
formed FF by 2.2× with zero abort rate, while FF’s abort
rate was 37.7% (analyzed in §6.3);
• Bidl maintained high throughput and low latency in the
presence of various malicious nodes, greatly outperform-
ing existing efficient blockchain frameworks (§6.2).
Our main contribution is Bidl, the first high-performance

permissioned blockchain framework designed for datacen-
ter networks. We exploit the network ordering to design a
new high-performance and BFT-compatible parallel work-
flow. Bidl makes the first effective attempt to tackle both
non-determinism in transactions and contending transac-
tion aborts. Bidl has the potential to be deployed in indus-
tries (e.g., Amazon [11] and Nasdaq [19]).

In the rest of the paper: §2 discusses Bidl’s related work;
§3 gives an overview of Bidl’s parallel workflow; §4 shows
Bidl’s protocol; §5 shows Bidl’s correctness and perfor-
mance analysis; §6 shows our evaluation, and §7 concludes.

2 Related Work
2.1 Permissioned Blockchains
Permissioned blockchains are often maintained by a large
number of mutually untrusted organizations [50, 89]. For
these applications, running a BFT protocol on many consen-
sus nodes in order to tolerate many malicious nodes is essen-
tial. For instance, HLF is deployed with dozens of consensus
nodes [89], and Cosmos runs 125 consensus nodes [24]. Bidl
can support many consensus nodes.

In this paper, we present a permissioned instead of a per-
missionless blockchain for two reasons. Firstly, a permis-
sionless blockchain usually incentivizes nodes to follow its
protocol using cryptocurrencies, which require nodes to
contribute high computation resources (e.g., PoW [77]) or
wealth (e.g., PoS [49, 95]). However, in our target applications
(e.g., a trading system), cryptocurrency is usually unavail-
able, and high power consumption is unacceptable. Secondly,
our goal is to build a high-performance blockchain. Permis-
sioned blockchain can use consensus protocols with explicit

membership, such as PBFT [42] and HotStuff [99] (used in
Diem [16]), which generally provide higher performance
than the consensus protocols of permissionless blockchains.

The concept of parallel execution has beenwidely exploited
by existing replication systems and inherited by blockchain
systems. Eve [60] lets replicas first optimistically execute
a batch of requests in parallel, and falls back to sequential
execution if the replicas’ states diverge. HTBFT [64] lever-
ages a conflict detector to execute non-conflicting ordered
transactions in parallel. Saraph et al. [84] proposes to spec-
ulatively execute transactions in parallel within each block
of the Ethereum blockchain. These speculation techniques
require an order to refer to and can be integrated into Bidl’s
execution phase because transactions have order hints pro-
vided by the sequencer.

Many research efforts have been put on improving
blockchain’s performance by sharding [62, 74, 94, 102]. Om-
niledger [62] and RapidChain [102] partition blockchain
nodes into several shards, where each node belongs to one
shard and processes a subset of transactions. With sharding,
the blockchain nodes are dispersed into individual shards,
thus greatly lowers the attack bar on a specific shard. To
tackle attacks towards an individual shard, Ostraka [74] and
Monoxide [94] allow a blockchain node to participate in mul-
tiple shards, which makes attacking towards a single shard
as difficult as attacking the entire network. Blockchain shard-
ing techniques are orthogonal with Bidl and can be inte-
grated into Bidl to further improve Bidl’s performance.

2.2 Systems Leveraging Datacenter Networks
A datacenter network is highly predictable. As shown in [54,
79, 90], due to the structured topology of a datacenter net-
work, the latencies between nodes in a datacenter generally
follow the triangle inequality property: li→j + lj→k ≥ li→k ,
where li→j is the network latency from node ni to nj .

The triangle inequality is also available for datacenters
connected with dedicated network cables, which are being
actively deployed by major cloud providers [21, 22, 25]. For
instance, a vast majority of inter-datacenter links (e.g., intra-
continental) in AWS can satisfy this property [21, 23]. Bidl is
designed to deploy in datacenters connected with such links.

We consider triangle-inequality difficult to break for two
reasons. Firstly, for any edge of a triangle, the naturally ro-
bust redundant network paths in one datacenter or datacen-
ters connected with dedicated network cables [75, 98] can
practically prevent packet delays on some routing paths af-
fecting the fast delivery along this edge via other paths. Sec-
ondly, notable tools [80] can detect network delay anomalies
on datacenter networks precisely and efficiently.
Many influential systems [36, 44, 59, 69–71, 79] leverage

the datacenter networks to achieve fast crash-fault-tolerance
(CFT). Bidl differs from these notable systems in three as-
pects. Firstly, Bidl handles the Byzantine failures (i.e., mali-
cious sequencer and malicious nodes). In Bidl’s BFT model,

20

a malicious sequencer may send inconsistent transactions
with the same sequence numbers to different nodes, and
any node can disguise itself as the sequencer. Therefore, we
design a denylist-based view change protocol to maintain
stable high performance in the presence of malicious par-
ticipants. Secondly, existing network-ordering systems as-
sume a deterministic state machine, while Bidl handles non-
determinism and ensures consistency of execution results.
Thirdly, Bidl’s parallel workflow is tailored for

blockchains, where transactions can invoke smart con-
tracts: a piece of executable stateful code stored on the
blockchain [31, 41]. The execution time of permissioned
blockchains’ smart contracts is often several millisec-
onds [31, 91], comparable to the latency of BFT consensus
protocols. Therefore, parallelizing consensus and execution
greatly reduces the Bidl workflow’s end-to-end latency. In
contrast, these CFT systems are mainly designed for fast-
response server applications (e.g., key-value store) where the
time cost of processing a key-value request is often tens of
microseconds, much shorter than the time cost of consensus.

3 Overview
3.1 System Model
Bidl’s participants consist of member nodes (for short,
nodes) and clients. Only clients can generate and sign trans-
actions. Nodes are grouped into organizations (e.g., banks
and merchants); each organization runs a few consensus
nodes (a process conducting BFT consensus on committing
transactions) and normal nodes (a process conducting trans-
action execution). Consensus nodes and normal nodes can
run on the same server. We denote the set of all consensus
nodes as CN, all normal nodes as NN, and all clients as CL.
Bidl is permissioned: all nodes and clients are explic-

itly identified and managed using the standard membership
mechanism same as HLF. Each node or client has a unique
and explicit secret/public key pair. We use ⟨M⟩σi to denote
a message M signed with node ni ’s secret key; or ⟨T ⟩σc to
denote a transaction T signed with client c’s secret key.
Threatmodel. Bidl adopts the BFT model, where malicious
participants can behave arbitrarily. At most f = ⌊ |CN |−13 ⌋

consensus nodes can be malicious. Same as typical permis-
sioned blockchains (e.g., HLF [31]), a node trusts all nodes
in the same organization; a node does not trust any node in
another organization. All clients can be malicious. All mali-
cious nodes and clients can collude, and we call them the ad-
versary (denoted as A). We make standard assumptions on
cryptographic primitives, including collision-resistant hash-
ing, message authentication codes (MAC), and signatures.
Bidl must support non-determinism (e.g., caused by data

races): given the same state and input, correct nodes may
produce different execution results on the same transaction.
Bidl’s guarantees. Bidl’s safety guarantee ensures that
all correct nodes commit the same blocks of totally ordered

transactions and the same execution result for each transac-
tion (to tackle non-determinism). Bidl’s liveness ensures that
if a correct client submits a transaction, it will eventually be
committed [31]. Moreover, Bidl can effectively achieve high
performance by maintaining its parallel workflow.
Network requirements. For safety, Bidl needs only an
asynchronous network, where network packets can be
dropped, delayed, and reordered. For liveness, Bidl requires
a partial synchrony network [87]: there exists a global stabi-
lization time (GST), after which all messages between cor-
rect nodes are delivered within a known maximum delay.
For high performance, Bidl requires all nodes to be de-

ployed in one datacenter or datacenters connected with ded-
icated cables, and they should support IP multicast and sat-
isfy the triangle inequality property (§2.2). This property is
only for Bidl to ensure a low rate of suspecting a correct
client as malicious for Bidl’s denylist protocol (§4.6); Bidl
does not need this property for safety or liveness. Clients
can be deployed within or outside the datacenter network(s).
Bidl’s deployment setting is increasingly pervasive due

to two trends. Firstly, for high performance, many permis-
sioned blockchain-powered security-critical applications are
deployed on cloud datacenters (e.g., supply chain [65], finan-
cial trading [7, 86], and medical [17]). BFT is essential for
these applications, because some participating organizations
on clouds can be malicious (e.g., obtaining economic benefits
and creating forged transactions [31]). Secondly, major cloud
providers are deploying both blockchain services [11, 12]
and high-performance dedicated inter-datacenter networks
(e.g., AWS [21], Azure [22], and Nasdaq’s millimeter-wave
network [19]). Overall, we found the organizations (e.g., con-
sensus nodes) of permissioned blockchains are usually de-
ployed on high-performance cloud datacenters, and develop-
ing BFT systems on high-performance networks is an impor-
tant topic [8, 63, 65, 82]. Nevertheless, Bidl ensures safety
in asynchronous networks and retains good performance in
tough scenarios such as malicious participants (§6.2), high
contending transaction rate (§6.3), and packet loss (§6.4).

3.2 Bidl’s Workflow Overview
Figure 4 shows Bidl’s workflow with five phases.
• Phase 1: submit. Typically, a BFT consensus protocol has
a leader to order client transactions. Clients submit signed
transactions to the leader of consensus nodes via a TLS-
enabled link. The leader drops the connection if the client
sends malformed transactions (e.g., with invalid signatures)
to avoid the client mounting DoS attacks on the leader.
• Phase 2: multicast. We let Bidl’s BFT leader act as the
sequencer by running a sequencing thread, and we call the
sequencer and leader interchangeable. The leader assigns
received transactions with consecutive sequence numbers
and multicasts them to all consensus and normal nodes. For
performance, the leader does not sign on the multicast mes-
sages (§4.1).

21

Phase 2.Multicast

Consensus
nodes

C1
C2
C3
C4

Client 1

Client 2

Client N

Phase 1. Submit

Shepherd
Ti

N1,N2

N1

N2

N3

N4

Normal
nodes

Yes

No(rarely happens)
re-execute

Commit
block & txn

...

C1 (Leader)

Tk
N2,N3

Phase 4. Speculative Execution

libBIDL:seq()

Transactions

Ti
N1,N2

Tj
N1,N3

Tk
N2,N3

(1)(2)(3)Tj
N1,N3

Ti

N1,N3

(3) Sequence number

Transaction (txn)
Related nodes (Nrel)

In2:
results

Block

Tj

Tk
Ti

(1)
(2)
(3)

Phase 3. Consensus
Verify and

consensus on txn hash

Approve & persist
exec results

4-2
Ver & exec

by Nrel

4-1

Phase 5. CommitIn1:
txns

Consistent
txn hash?

Figure 4. Detailed workflow of Bidl.

•Phase 3: consensus. The consensus nodes run an instance
of a BFT protocol (e.g., BFT-SMaRt [39]) to agree on a se-
quence of hashes (see evaluation setup in §6) for transactions
multicasted from the leader. Same as HLF [31], Bidl treats
the BFT protocol as a blackbox (§4.2) so that Bidl can in-
herit the mature safety and performance optimizations from
existing BFT protocols.
• Phase 4: speculative execution. Phase 4 runs in paral-
lel with Phase 3. In Phase 4, normal nodes speculatively
execute client transactions according to sequence numbers
(§4.3). Different from the HLF’s execute-order workflow, in
which all contending transactions (defined as transactions
concurrently access the same key) are executed in parallel,
Bidl speculatively executes contending transactions sequen-
tially in the sequence number order. By doing so, Bidl elimi-
nates transaction aborts caused by transaction dependencies
and improves the system’s performance on contended work-
loads (§6.3). To ensure state consistency in the presence of
non-deterministic transactions, we adopt a multi-write [45]
protocol (§4.4) to make nodes follow identical execution re-
sults, and abort a transaction if nodes produce inconsistent
results for the transaction; this protocol’s latency is often
masked by the BFT consensus (Phase 3).
In the presence of an adversary, the sequence of specula-

tively executed transactions may differ from the sequence of
transactions agreed by Phase 3. Bidl’s Phase 5 falls back
to the sequential workflow by letting normal nodes follow
the agreed transactions and re-execute them, ensuring both
safety and liveness (§5.1). Moreover, Bidl’s denylist protocol
(§4.6) is designed to detect such an adversary and to retain
Bidl’s high performance of parallel workflow.
• Phase 5: commit. Bidl’s normal nodes commit a trans-
action only after receiving matching agreed transactions in
Phase 3 and persisted execution results inPhase 4, ensuring
safety, reasonable liveness, and reasonable high performance
even with non-deterministic transactions (proved in §5.1).
Overall, the highlight of Bidl’s workflow stems from

achieving safety and high performance in malicious envi-
ronments, and we illustrate in two aspects. Firstly, Bidl’s
new workflow achieves (1) safety in the presence of non-

API Role Description

Seqencing api
1 invoke(Txn) CL1 Submit a client transaction to

Bidl’s leader node (§4.1).
2 seq(Txn) CN2 Add sequence number to a trans-

action T and relay T to all Bidl
nodes (§4.1).

3 newTxn(Txn) CN,NN3 Process new transactions. Re-
turn true if the transaction is not
discarded (§4.1).

4 checkProp(Propose) CN Requests lost transactions pro-
posed by nL . Returns true if all
transactions are received (§4.2).

Shepherding api
5 shepherdInit() CN Initialize a thread to shepherd

Bidl’s parallel workflow (§4.6).

1 CL: CLient 2 CN: Consensus Node 3 NN: Normal Node

Table 1. The API provided by libBidl.

deterministic transactions as in the execute-consensus work-
flow (e.g., HLF [31]), and (2) zero abort rate in the presence
of contented workloads, a key advantage in the consensus-
execute workflow (e.g., Quorum [26]). In HLF, transaction
aborts are caused by both the contented workload and non-
determinism; in Bidl, transaction aborts are only caused by
non-determinism (§6.3). Meanwhile, Bidl parallelizes the
consensus and execution phases to greatly reduce the latency
compared to both workflows. Secondly, different from exist-
ing BFT protocols [30, 43] which tackle the misbehaviors of
consensus nodes in the consensus phase, Bidl shepherds the
entire workflow to tackle the misbehaviors of all participants.

4 Protocol Description
Bidl moves through a succession of views with consecutive
view numbers. Each view v in Bidl has one consensus node
being the leader (nL). The state of each view is cached by
Bidl clients and nodes.
libBidl API. Bidl provides a library called libBidl, which
provides basic API (Table 1) that facilitates different consen-
sus protocols to be deployed in Bidl. The sequencing API
consists of functions for clients to submit transactions and

22

for consensus nodes to order client transactions. We will dis-
cuss how to integrate a consensus protocol into Bidl frame-
work using libBidl in §4.2. The shepherdInit() API en-
ables consensus nodes to shepherd Bidl’s parallel workflow
by monitoring the performance of all phases (§4.5) and run-
ning Bidl’s denylist protocol (§4.6).

4.1 Transaction Submission
Figure 4 shows Bidl’s parallel workflow with five phases.
Phase 1: Clients submit transactions to the leader nL .
A client c issues a transaction T : ⟨Txn,T ,O,v,pk⟩σc by
the API call invoke(T), where T is the transaction payload,
O indicates the related organizations or nodes of this trans-
action, v is the view number (§3.1), pk is the client’s public
key. Specifically, related nodes of a transaction are defined
as all normal nodes in related organizations of the transac-
tion in HLF; related nodes should execute the transaction.
The client calls invoke(T) to fetch the current view number
v from Bidl nodes, and then sends T to the corresponding
nL of view v .
Phase 2: nL multicasts transactions to all Bidl nodes.
nL adds a sequence number s to each incoming transaction
and broadcasts the transaction to all nodes.

Although digital signatures on sequence numbers can par-
tially mitigate the transaction re-executions caused by the
crafted transactions from malicious nodes (§1), Bidl elimi-
nates digital signatures on sequence numbers for two rea-
sons. Firstly, signing each sequence number and verifying
them on all nodes is computationally expensive [42, 88]. Our
Intel E5 CPU can only verify less than 10k signatures for each
core, and the signature verification needs to be conducted on
every consensus and normal node. If Bidl lets the sequencer
sign on sequence numbers, Bidl needs 5×more computation
resources only for verifying the signatures on every node.
Furthermore, even with the signatures, Bidl’s sequencer
shepherding protocol is also essential for reducing the trans-
action re-executions in Bidl’s parallel workflow (§4.5).
Secondly, and more importantly, using signatures opens

the door for the adversary A to mount resource exhaustion
attacks [43] on Bidl by broadcasting malformed sequenced
transactions with invalid signatures. Since a node can know
whether a received message is correctly signed only after
verifying the signatures; if the signature is incorrect, it is
infeasible to identify which node launched the attack. If A
disguises itself as the leader, although it cannot create valid
signatures, it can easily exhaust the computing resources of
all nodes by letting them repetitively verify signatures.

One may think of using the hybrid MAC-signature mech-
anism [43] to address the exhaustion DoS attacks. Bidl does
use this mechanism for client transactions, but this mecha-
nism is not suitable for signing ordered transactions from
Bidl’s sequencer. The key reason is that the hybrid signature
must have a full vector of MAC entries for all nodes instead
of only for nodes in related organizations. Otherwise, a node

having a gap in its sequence number space will be unable to
tell if the gap results from an irrelevant or lost transaction.
More importantly, assuming that notifying a sequence num-
ber is not related to a normal node does not require a MAC
for this normal node. Then, any malicious node can notify
certain nodes that no sequence number is related (through
crafted transactions), greatly reducing Bidl’s performance.

Therefore, generating hybrid signatures for sequence num-
bers will add significant computational overhead to the criti-
cal path of Bidl workflow (Phase-2) because the time for
generating one hybrid signature grows linearly with the
number of nodes. Note that when using this hybrid signa-
ture for client signatures (in both Bidl and Aardvark [43])
spreads the computation over all clients, but signing on se-
quence numbers centralizes the computation to the one se-
quencer’s critical path. Consequently, we eliminate signa-
tures of sequence numbers and use the denylist design.

Due to the above issues and the performance reason, Bidl
eliminates the signatures on sequence numbers and develops
a denylist protocol in §4.6.
Transaction verification. When a consensus or normal
node ni receives a transactionT : ⟨⟨Txn,T ,O,v,pk⟩σc , s⟩, ni
stores T and verifies T by three steps.
1. Sequence check. If the sequence number s lies in the

current block, go to step (2); if ni has already received a
transaction with the same sequence number s , or s belongs
to a previous block, ni discards T ; if s belongs to a future
block, ni caches T for further processing.

2. Replay check. If ni never received a transaction with the
same hash, go to step (3); otherwise, ni discards T .

3. Signature check. As the signature check is computation-
ally expensive, ni only checks the client signature of T af-
ter T has passed all previous verification steps.

4.2 Consensus
Phase 3: The consensus protocol agrees on a sequence
of transactions. Bidl provides a set of generic API to sup-
port general BFT protocols, and we have integrated four in-
fluential BFT protocols, including BFT-SMaRt [39], SBFT [50],
HotStuff [99], and Zyzzyva [63], into Bidl. In this section,
we show that a developer can implement Bidl’s consensus
phase based on an existing BFT protocol (Algo 1) without
modifying the BFT protocol’s most complex phase: the agree-
ment phase.

Each consensus node collects transactions from the leader
node nL . After receiving enough valid transactions for a
block or a timeout elapsed, the nL runs a BFT consensus
to reach agreement on the SHA-256 hashes of transaction’s
payloads by sending a ⟨Propose,v,b,H ,nL⟩σL message to
all consensus nodes (Algo 1, line 9), where v is the current
view, b is the block ID,H is the list of transaction hashes.

On receiving the Propose message, a consensus node ni
checks transactions’ hashes in H and asks the leader to
retransmit missed transactions with the checkProp() API

23

Algo 1: Bidl workflow at consensus node ni .
1 Initialization
2 H ← �; shepherdInit(); ▷ Invoke API 5

// Phase 2: Sequencing

3 Upon reception of

T : ⟨Txn, T, O, v, pk ⟩σc ∧ newTxn(T) do ▷ Invoke API 3
4 if isLeader(ni) = true then
5 s ← seq(T); ▷ Invoke API 2
6 H ← H ∪ {⟨s, hash(T)⟩ };
7 else send T to nL ;
// Phase 3: Start consensus

8 Upon (|H | > blkSize ∨ timeout) ∧ isLeader(ni) do
9 start agreement of ⟨Propose, v, b, H, nL ⟩σL ;

10 Upon reception of M : ⟨Propose, v, b, H, nL ⟩σL do
11 if checkProp(M)=true then ▷ Invoke API 4
12 start agreement of M ;

// Phase 3: Finish consensus

13 Upon agreed ⟨b, H, cert⟩ do ▷ agreed(T)=true
14 B : ⟨Blk, b, txns, cert⟩ ← assemble(H, cert);
15 send B to ∀nj ∈ NN;

// Phase 4-2: Persist

16 Upon reception of R : ⟨Result, ®r ⟩σj from nj ∈ NN do
17 if approved(R) ∧ match(H, R) ∧ localStore(R) then
18 send P : ⟨Persist, s, h, ®r, i ⟩σi to ∀nj ∈ NN;

(Algo 1, line 11). After receiving all transactions in the Pro-
pose message, ni starts the agreement on the transaction’s
hashes. Once Bidl reaches agreement on the hashes, the
transactions corresponding to the hashes are agreed (Algo 1,
line 13). Each consensus node assembles transactions into a
block according toH and delivers the block to normal nodes.

4.3 Transaction Execution and Commit
Phase 4-1. Normal nodes speculatively execute trans-
actions. As nL has ordered the transactions, the normal
nodes speculatively execute related transactions according
to the sequence numbers without waiting for the consen-
sus results, then invoke the protocol in Phase 4-2 to handle
non-deterministic transactions (§4.4).

Due to the sequence numbers (a hint) given by the leader,
the normal nodes speculatively execute transactions on the
results of all contending transactions with smaller sequence
numbers in the same block, which eliminates the aborts of
execution results caused by concurrently executing contend-
ing transactions (in HLF). The generated execution results of
related transactions will be committed or aborted in Phase 5.
For now, each normal node in Bidl executes only trans-

actions related to this node’s organization sequentially in
the hinted order. This implementation is fair to our baseline
systems in our evaluation: for all evaluated systems, each
transaction was only executed on the same number of nor-
mal nodes (endorsers). As discussed in §2, Bidl can adopt
existing parallel execution techniques [64, 84] within the ex-
ecution phase to further improve Bidl’s performance.
Phase 5. Normal nodes commit valid transactions and
blocks. Upon receiving a block from Phase 3 (e.g., contains

Algo 2: Bidl workflow at normal node ni .
// Phase 4: Speculative execution

1 Upon reception of

T : ⟨⟨Txn, T, O, v, pk ⟩σc , s ⟩ ∧ newTxn(T) do ▷ Invk. API 3
2 execute(T);
3 Function execute(T) do
4 r ← verExec(tx);
5 ®r ← approve(r) ; ▷ approved(T , ®r)=true
6 persist(T , ®r);
7 Function persist(T , ®r) do
8 if valid(®r) then send ⟨Result, ®r ⟩σi to ∀n ∈ CN ;
// Phase 5: Commit

9 Upon reception of B : ⟨Blk, b, txns, cert⟩ ∧ valid(B) do
10 if checkHash(B)=true then
11 commitBlock(B);
12 else ▷ Re-execute (rarely happens)
13 commitBlock(B);
14 foreach T ∈ B do execute(T) ;
15 Upon reception of P : ⟨Persist, s, h, ®r, j ⟩σj ∧ valid(P) do
16 tmp ← tmp ∪ P ;
17 if |tmp | ≥ 2f + 1 then ▷ persisted(T , ®r)=true
18 commitTxn(®r);

2f +1 valid signatures from different consensus nodes), a nor-
mal node ni checks whether its locally executed transactions
are consistent with the transactions in the block by compar-
ing the hashes. If all transactions are consistent, ni commits
the execution results of related transactions to its local state
(Algo 2, line 18) and adds the block to the ledger (Algo 2,
line 13). Otherwise, ni re-executes all related transactions in
the block; in this situation, the parallel workflow falls back to
the sequential workflow. This happens if some participants
are malicious, handled by the denylist protocol (§4.6).

4.4 Handling Non-deterministic Transactions
Same as HLF [31], a non-deterministic transaction in
Bidl may generate inconsistent execution results on dif-
ferent nodes. A transaction’s smart contract may be multi-
threading and has data races, so Bidl treats all transactions
as potentially non-deterministic. Note that, in Bidl, data
races occur only within each transaction instead of among
transactions due to the sequential execution on nodes (§4.3).

To ensure consistency in the presence of non-deterministic
transactions, it is essential for Bidl to produce an identical

and retrievable execution result for each transaction. By iden-
tical, we mean that Bidlmust produce one identical result for
each transaction. By retrievable, we mean that once Bidl has
produced a result, the result is able to be retrieved (read) by
all correct nodes. Bidl designs a simple two-step multi-write
protocol [45] to guarantee correct normal nodes will produce
and follow one identical result for each related transaction.
Phase 4-2. Approve and persist execution results. Bidl
normal nodes first execute a related transactionT and gener-
ate a result (i.e., all modified keys and values). Since normal
nodes in an organization trust each other (§3.1), these nodes
select one delegate, and the delegate signs on one result.

24

For each transactionT , we call the first organization in its
related organization list as T ’s corresponding organization
oc . The delegate of oc then collects the signed results fromT ’s
related organizations to produce a vector ®r of these results.
We say ®r is approved, if ®r contains the signed results (can be
batch-signed) from all related organizations. Note that the
results in ®r may be inconsistent due to non-determinism or
malicious nodes.
After obtaining the result vector ®r , Bidl runs a simple

persist protocol to ensure ®r is both identical and retrievable.
The delegate of oc persists ®r by running a multi-write proto-
col adopted from [45], which sends ®r to all consensus nodes.
Each consensus node broadcasts a Persist message to all
normal nodes if ®r matches the transaction hashes proposed
by the leader (Algo 1, line 18), and each consensus node
only calls localStore() to persist one ®r for each transac-
tion. Upon receiving the Persist messages for ®r from 2f + 1
consensus nodes, each normal node regards ®r has been suc-
cessfully persisted (Algo 2, line 17). Then, each normal node
commits ®r to its local state only if all results in ®r are con-
sistent (Algo 2, line 18); otherwise, normal nodes abort the
transaction T and ®r .

If malicious organizations produce two different approved
result vectors (®r and ®r ′) and send ®r and ®r ′ to consensus nodes,
then at most one of the two results can be successfully per-
sisted (§5.1). Therefore, a malicious organization’s misbehav-
iors can at most affect the liveness of its own related transac-
tions: no execution results are successfully persisted for its
own transactions. The safety of Bidl is not affected (§3.1).

More importantly, suchmisbehavior can be easily detected
in a permissioned blockchain by the administrator. Note that,
different fromBidl’s denylist protocol that suspectsmalicious
participants with high probability, these signatures in ®r and
®r ′ are conclusive evidence for accusing these participating
organizations trying to break the permissioned blockchain.

4.5 Shepherding the Leader
A malicious leader can degrade Bidl’s performance by send-
ing inconsistent transactions to nodes, dropping specific
clients’ transactions, or creating gaps in sequence numbers.

Same as existing work [42], Bidl uses view changes to ad-
dress malicious leaders. Bidl’s view change protocol is the
same as PBFT’s [42] with only two differences. Firstly, differ-
ent from PBFT where the leadership is rotated among con-
sensus nodes in a round-robin way, in Bidl, the leadership
rotation is unpredictable (more details in §4.6). Secondly, the
view change messages piggyback message fields for main-
taining Bidl’s denylists.
A Bidl view change is triggered by the consensus nodes

in three cases. Firstly, to ensure high performance, consen-
sus nodes initiate a view change upon detecting a non-trivial
re-execution rate in Phase 4 (by default, > 1%) or a notable
throughput degradation in Phase 3 (by default, < 90% of the
peak throughput in previous |CN | views, same as existing

work [32, 43]). A consensus node can know that a transac-
tion has to be re-executed by detecting a mismatched ®r in
§4.4, which implies the speculated transaction on a normal
node mismatches the one agreed by the consensus nodes. In
addition to letting normal nodes speculate wrong transac-
tions, a malicious leader can also try to break Bidl’s paral-
lel workflow by consistently delaying sending transactions
to normal nodes until the consensus is achieved. Thanks to
Bidl’s persist protocol (§4.4), this attack can be easily de-
tected by consensus nodes due to the increasing delay for
receiving persist requests (Algo 1, line 16).

Under fluctuating workload or network churns, Bidl may
invoke extra view changes, but we regard it justifiable be-
cause a view change in recent BFT protocols (e.g., Hot-
Stuff [99]) is efficient, and recent work [32, 43] points out
that, compared to running at low performance, it is worth-
while to try view changes to regain good performance.

Secondly, same as PBFT [42], to ensure liveness, if a client
fails to receive a response for a transaction after a timeout,
the client sends the transaction to all consensus nodes. If
the transaction is not committed to the blockchain in the
following blocks, the consensus nodes initiate a view change.

Thirdly, a correct leader proactively invokes a view change
(§4.6) on detecting suspected misbehaviors; a malicious
leader can behave arbitrarily. The correct leader invokes a
view change to proactively elect a random leader. This is
essential for Bidl’s denylist protocol as illustrated by the
dilemma in §4.6.

4.6 Bidl’s Denylist Protocol
Since Bidl eliminates signatures on sequence numbers (§4.1),
the adversary A can pretend to be the leader, broadcast
crafted transactions (i.e., real transactionswith fake sequence
numbers), and cause conflicts in other nodes’ sequence num-
ber spaces. These conflicts may lead to transaction retrans-
missions in Phase 3 and cause the speculative execution to
fail in Phase 4, degrading Bidl’s performance.
The denylist mechanism is widely used in BFT systems

(e.g., Aardvark [43], PeerReview [53], and CATS [101]) to
detect malicious participants. However, these protocols are
not suitable for Bidl’s scenario for two reasons. Firstly, Bidl
eliminates sequence number signatures on ordered transac-
tions (§4.1) and conducts IP multicast, but these protocols
require message senders (i.e., sequencers for detecting mali-
cious sequencers) to sign every multicast message and wait
for a signed reply. Secondly, these protocols can only mon-
itor identified participants in the system, but in Bidl, any
non-member node in the datacenter can broadcast forged
messages to Bidl nodes.

Definition 4.1 (Conflicting transactions). If the sth trans-
action that node ni received in Phase 2 is different from the
sth transaction proposed in Phase 3, ni regards these two
transactions as conflicting.

25

Since Bidl cannot forbid an adversary A (defined in §3.1)
to broadcast messages, Bidl carries a new denylist proto-
col to detect malicious clients who sign and provide crafted
transactions forA to cause conflicts. Detecting the malicious
clients is already effective for Bidl to maintain high perfor-
mance due to two reasons. Firstly, A cannot create a large
number of clients in a permissioned blockchain. Secondly,
in a Bidl view with a correct leader,A can only use transac-
tions signed by malicious clients to cause conflicts; if a ma-
licious leader is causing conflicts, it will be replaced (§4.5).
Specifically, since correct clients submit transactions to the
correct leader in a TLS-enabled link (§4.1), ifA wants to use
a correct client’s transactionT to cause conflicts,A must re-
broadcast T with a different sequence number after receiv-
ing T from the correct leader. However, in Bidl’s triangle-
inequal network model (§3.1), most nodes should have al-
ready received T from the leader first, and just ignore the
re-broadcasted T from A. Therefore, if A uses a client cm ’s
signed transactions to cause conflicts, cm must be within A.
However, Bidl faces a dilemma between a low false-

negative rate (high probability for detecting malicious
clients) and a low false-positive rate (low probability for ac-
cusing correct clients). Specifically, it is hard to distinguish
whether one conflict is caused by the leader assigning two
different transactions with the same sequence number, or by
A broadcasting the crafted transactions.

Bidl tackles this dilemma by monitoring conflicting trans-
actions across views with different leaders. Our idea is that, if
we can ensure a low false-positive rate for views with cor-
rect leaders, and transactions signed by a client cm conflict
with other transactions across f + 1 views with different
leaders (at least one of them must be a correct leader in BFT),
then there is a high probability that cm is malicious.
A subtle scenario is that a smart A can escape from this

mechanism by using transactions crafted by a specific group
of clients in only views of the same leader. For instance, A
use transactions from a malicious client cm only in views
led by consensus node n1, so cm will not present in f + 1
views with different leaders. To address this scenario, Bidl
prevents A precisely controlling to cause conflicts in which
views, via two mechanisms.

Firstly, Bidl lets a correct leader proactively invoke a view
change on detecting conflicts. For a given sequence number,
any node accepts only the first received transaction and
will discard subsequent ones (§4.1). To successfully cause
conflicts, A must broadcast transactions of any sequence
numbers faster than the leader does. Therefore, once the
correct leader proactively changes its view, A inevitably
causes conflicts in the next view.

The first mechanism is necessary but insufficient. If Bidl
rotates leadership in a round-robin way as in typical BFT
protocols, the next leader after n1 is deterministic (name it
as n2), so A can always cause conflicts in only n1 and n2’s
views. If f > 2, A can still escape.

Secondly, Bidl rotates leaders in an unpredictable and ran-
dom way. Bidl divides views into epochs, each containing
3f + 1 views, and each consensus node is the leader of one
view in each epoch. The second mechanism is to prevent a
malicious leader from always passing its leadership to an-
other malicious node. When a view change is invoked, the
new leader is randomly selected from those consensus nodes
not having been leaders in this epoch, using the hash of
the last committed block as the random seed. Using the two
mechanisms, even ifA tries to cause conflicts using transac-
tions signed cm in only views led by n1 (the previous subtle
example),A will inevitably cause conflicts in views with dif-
ferent leaders succeeding n1’s views, which will accumula-
tively make cm cause detectable conflicts within f + 1 views
of different leaders. Because cm must be within A, if A re-
peatedly uses cm ’s signed transactions, Bidl will deny cm .
Based on the two mechanisms, Bidl’s detailed denylist

protocol consists of three steps. Step (1): if node ni detects
two conflicting transactions, ni suspects its locally received
transaction in Phase 2 as malicious and adds the client cm
of this transaction into a local suspect list S. Step (2): ni con-
tinuously monitors the misbehaviors of clients in S. If ni
suspects cm (in S) as malicious across f + 1 views with dif-
ferent leaders, ni regards cm as malicious. Step (3), during
the next view change, cm is carried in ni ’ view change mes-
sage. If cm is regarded as malicious by f +1 consensus nodes,
all non-faulty consensus nodes add cm into the denylist D.
For a client cm in the denylist D, normal nodes will not

speculate transactions signed by cm in Phase 4. However, if
these transactions are agreed by the consensus nodes, nor-
mal nodes will still re-execute them. This design ensures that,
although Bidl may have a non-zero false-positive rate (usu-
ally low, see §5.1), Bidlwill not break the liveness or fairness
for these clients. Overall, Bidl’s denylist-based view-change
protocol is only for ensuring Bidl’s high performance with-
out affecting liveness or safety. Even if sometimes the trian-
gle inequality does not hold in Bidl’s network (e.g., some
switches misbehave), it will at most affect Bidl’s perfor-
mance, false-positive rate, and false-negative rate.
With more consensus nodes, Bidl must monitor more

views (i.e., with a longer time window) to detect malicious
clients. A longer time window may slow down the reaction
of Bidl’s denylist, but it does not affect Bidl’s performance
in the long run for three reasons. Firstly, in a permissioned
blockchain, the list of authenticated clients is explicit and
usually changes infrequently, so the adversary has only a
limited number of malicious clients and cannot affect Bidl’s
parallel workflow once these malicious clients get denied.
Secondly, Bidl makes the rejoining time of all denied clients
much longer than the detection time window, greatly reduc-
ing the frequency of malicious behaviors. Thirdly, within
the time window (during which the adversary is conducting
attacks), Bidl can still achieve decent performance because
such attacks merely make Bidl’s speculative execution fail

26

and fall back to the slower sequential workflow (same as
some evaluated baseline systems).

5 Correctness and Performance Analysis
5.1 Proof Sketch of Safety
Lemma 5.1 (consistency of agreed transactions). For two
transactions T and T ′ agreed (defined in §4.2) with the same
sequence number s at correct normal nodes, T = T ′.
Proof. This lemma directly inherits from the safety guarantee
of the BFT protocol [39, 42, 50, 63, 99] running in Phase 3 of
Bidl. The BFT protocol ensures that there is only one unique
hash value h committed with sequence number s . Therefore,
we have hash(T) = h = hash(T ′) and thus T = T ′.
Lemma 5.2 (consistency of persisted execution results). For
two execution results ®r and ®r ′ persisted (defined in §4.4) with
the same sequence number s at correct normal nodes, ®r = ®r ′.
Proof. We prove this by contradiction. Suppose ®r , ®r ′. There
is a set of consensus nodes S1 ⊆ CN having persisted ®r and
another S2 ⊆ CN having persisted ®r ′. According to Bidl’s
persist protocol (§4.4), each set has at least 2f + 1 consensus
nodes, with at least f + 1 intersections. This cannot happen
in Bidl because a correct consensus node only persists one
execution result for each sequence number (§4.4), and there
are at most f faulty consensus nodes.
Proof of Bidl’s safety. By Lemmas 5.1 and 5.2, all non-
faulty nodes see the same sequences of agreed transactions
and persisted execution results. Therefore, all non-faulty
normal nodes consistently determine whether to commit
each transaction and its execution result, which ensures
safety. Note that Bidl’s denylist protocol does not affect
safety because adding a client cm to the denylist will only
make normal nodes not speculate cm ’s transactions (§4.6); if
these transactions are agreed by the consensus nodes, normal
nodes will re-execute the transactions (§4.6).

5.2 Effectiveness of Bidl’s Denylist Protocol
Low false-negative rate. Bidl can effectively detect any
malicious client cm used by A to constantly cause con-
flicts and add cm to the denylist. If A uses cm to cause non-
negligible conflicts in some views, cm will be suspected in
this view. However, to add cm to the denylist, cm must be
suspected by f + 1 views with different leaders (§4.6). To es-
cape from the denylist, the best strategy for A is to cause
conflicts only in views with specific leader(s). However, A
cannot ensure this because it will inevitably cause conflicts
in subsequent views with unpredictably selected leaders due
to Bidl’s proactive view change and randomized leader rota-
tion mechanisms (§4.6). Therefore,A had better use another
c ′m ; since A cannot arbitrarily increase its colluded client
list in a permissioned blockchain, Bidl often has a low false-
negative rate.
Low false-positive rate. The probability that A manages

to add a correct client c to Bidl’s denylist D is low in Bidl’s
deployment model (§3). Recall that A can add c to Bidl’s
suspect list S only when the triangle inequality property
is violated, then entries in S will be merged by nodes into
D (§4.6). The triangle inequality property is violated when
l△ : li→j + lj→k − li→k ≤ 0 (§2.2). If the triangle inequality
is violated, A can re-broadcast c’s transactions received in
Phase 2 from the leader to cause conflicts on c’s transactions,
then Bidl nodes will add conflicting transactions’ clients to
D. If the triangle inequality is not violated, nodes should
receive c’s transaction from the leader before the transactions
are re-broadcasted by A, so A’s re-broadcasted transaction
will be ignored (§4.1). We then illustrate Bidl’s low false-
positive rate in two steps.
Firstly, the success rate that A manages to add a correct

client c into the suspect list S in a view with a correct leader
is negligible (the success rate is 1 if the leader is with A).
Bidl adds only conflicting transactions’ clients toS (§4.6). As
illustrated in §2.2, the triangle inequality is difficult to break
due to the redundant paths in dedicated datacenter networks.
Therefore, the probability that A exploits an arbitrary de-
layed path and makes l△ : li→j + lj→k − li→k ≤ 0 is over-
whelmingly small (analyzed in existing work [54, 68, 80, 90]),
making the probability that A causes conflicts on c’s trans-
actions overwhelmingly small.
Secondly, to add the correct c to the denylist, c must be

suspected in at least f +1 views with different leaders, where
at least one of the leaders is correct. With the two steps, Bidl
can achieve a low false-positive rate in practice.

5.3 Liveness and High Performance
Liveness. In Bidl, committing a transaction T requires: (1)
the consensus nodes agree on T , and (2) T ’s related organi-
zations approve and persist T ’s execution result (§4.4). T ’s
related organizations have the ability to withhold the persis-
tence of T , but they have no motivation to block their own
transactions. Therefore, it is sufficient to prove Bidl’s live-
ness for achieving BFT consensus on a client transaction.
Note that Bidl’s denylist protocol does not affect Bidl’s live-
ness, because the punishment for transactions whose clients
are in the denylist is only not to speculate these transactions
(§4.6). These transactions will be executed only if they are or-
dered by the consensus nodes. After all, the denylist is only
designed for maintaining the parallel workflow for high per-
formance, but will not affect Bidl’s liveness or safety.
Bidl’s liveness guarantee inherits from typical BFT pro-

tocols (e.g., PBFT [42]). Consider the synchronous period in
the partial synchrony model (§3.1); if a correct client c can-
not see its transaction get committed after a timeout, c sends
this transaction to all consensus nodes, which will relay the
transaction to the leader (§4.1). If the transaction can still not
be committed, consensus nodes will initiate a view change
(§4.5). Since there exists at least 2f + 1 non-faulty consensus
nodes, the transaction will eventually (after at most f view

27

changes) be committed when a non-faulty consensus node
becomes the leader (§4.5).
High performance. Bidl’s high performance (i.e., main-
taining the parallel workflow) is illustrated from two aspects.
Firstly, for views with a malicious leader, consensus nodes
will invoke view changes on detecting a non-negligible re-
execution rate or throughput degradation (§4.5) to replace
the leader. Secondly, the malicious clients used by the adver-
sary A (e.g., a malicious node) to constantly cause conflicts
in normal nodes’ sequence number spaces will be added to
Bidl’s denylist thanks to Bidl’s low false-negative rate (§5.3).
Since A cannot create arbitrary clients in a permissioned
blockchain, Bidl can effectively ensure high performance in
Bidl’s network model (§3.1).

6 Evaluation
We implemented a software-based sequencer on a conven-
tional server using Intel’s Data Plane Development Kit [6].
Prior work [70] shows that such a software-based sequencer
already achieves almost line rate in adding sequence num-
bers to transactions and multicasting them. For 1KB transac-
tions, our sequencer adds about 20µs to the transfer delay.

We ran all experiments (including all clients and nodes) in
a cluster with 20 Dell R430 servers, each equipped with an
Intel 2.60GHz E5-2690 V3 CPU, 64GB memory, and 40Gbps
NIC. The RTT among any two servers was about 0.2ms.
Baseline. We compared Bidl with three state-of-the-
art blockchain frameworks: HLF [31], StreamChain [65],
and FastFabric [51]. HLF is the most popular permis-
sioned blockchain framework widely used by various cloud
providers [11, 12], companies [17], and governments [8].
FastFabric [51] and StreamChain [65] are high-

performance permissioned blockchain frameworks based
on HLF. FastFabric re-architects the codebase of HLF and
provides highly efficient optimizations (e.g., designating a
single node as the orderer for sending transaction hashes
to consensus nodes and assembling blocks) in a CFT sce-
nario. FastFabric and StreamChain have a built-in Raft [78].
FastFabric’s performance subsumed HLF in fault-free (i.e.,
no malicious participant) scenarios, so we focus on com-
paring Bidl with FastFabric instead of HLF except for the
experiments with malicious participants (§6.2). StreamChain
eliminates batching transactions into blocks and processes
transactions in a stream fashion.
To achieve high performance in Bidl’s consensus phase

(Phase 3), Bidl performs consensus on only transaction
hashes (i.e., 32 bytes for SHA-256) rather than the entire
transaction payloads (typically, 1k bytes). This optimization
is also adopted by existing BFT protocols [32, 42, 63] and
permissioned blockchains [51]. For a fair comparison, we
enabled this optimization for all Bidl, HLF, FF, and Stream-
Chain frameworks in our evaluation (§6).
We integrated Bidl with four BFT protocols: BFT-

SMaRt [39], Zyzzyva [63], HotStuff [100], and SBFT [50]. We
implemented the batch optimization [63] of Zyzzyva and
selected a non-leader node to collect consensus nodes’ re-
sponses to the clients and to send the commit messages for
each block. SBFT contains c + 1 collectors to create thresh-
old signatures, and by default c = 1. The default transaction
size was 1 KB (compressed with gzip) and the default block
size was 500 transactions, typical settings in HLF [31, 88].
Workloads and metrics. We evaluated all blockchain
frameworks with the popular SmallBank [13, 20] workload
used in various studies [13, 85]. SmallBank has diverse types
of transactions for bank operations. At the beginning of an
experiment, SmallBank creates a random number of accounts
for each organization and initializes each account with the
same balance, and then random transactions are generated
to transfer money among accounts of different organizations.
The create transaction is related to one organization, and the
transfer transaction is related to two organizations (§4.3).
We built a distributed benchmark based on Tape, an effi-

cient benchmark tool for HLF [27]. Our benchmark spawned
100 clients on multiple servers, and collects the average la-
tency and total throughput across all clients. For latency, we
measured the client-perceived latency (also called end-to-
end latency) from when a client submits a transaction to
when the client is notified its transaction is committed.
Settings.We have two evaluation settings. In evaluation set-
ting A, we ran four consensus nodes (f=1) and 50 normal
nodes to favor FF and StreamChain’s deployment. In eval-
uation setting B, we ran four to 97 organizations, and each
organization has one consensus node and one normal node.
Setting B is only used for evaluating Bidl’s scalability (§6.1).
We ran each node in a single docker container with a dedi-
cated core. We focus on these questions:
§6.1: How efficient is Bidl’s parallel workflow?
§6.2: How robust is Bidl to malicious participants?
§6.3: How robust is Bidl’s performance to non-deterministic
and high-contention workloads?
§6.4: How is Bidl’s performance over multiple datacenters?

6.1 End-to-end Performance
We first evaluated the workflow performance of Bidl, Fast-
Faric, and StreamChain in the fault-free case. As shown in
Figure 5, StreamChain achieved the lowest latency by trad-
ing off its peak throughput because StreamChain processes
transactions in a streaming fashion.

Bidl outperformed FastFabric in both throughput and la-
tency. Bidl’s throughput was higher than FastFabric because
in Bidl, normal nodes execute related transactions according
to their sequence numbers (Phase 4). Therefore, Bidl does
not need to conduct the heavy sequential MVCC contention
check in FastFabric’s consensus-execute workflow. Specifi-
cally, in FastFabric’s validate phase (P3 in Table 2), theMVCC
check took about 48.7% of the latency. We also found the
MVCC check processed only 32.3K transactions per second,

28

5 10 15 20 25 30 35 40 45
Throughput (kTxns/s)

0

10

20

30

40

50

60

L
at

en
cy

(m
s)

StreamChain
FastFabric
Bidl-SMaRt

Figure 5. Throughput vs. latency on four consensus nodes without
any malicious node (which favors FastFabric and StreamChain).

0 20 40 60 80 100
Number of Organizations

10

20

30

40

50

60

L
at

en
cy

(m
s)

Bidl-HotStuff

Bidl-SMaRt

Bidl-SBFT

Bidl-Zyzzyva

Figure 6. Performance of Bidl on different BFT protocols.

due to unmarshalling the read-write keys from the trans-
actions and sequentially checking the keys with database
queries. Moreover, Bidl avoids transaction aborts caused by
executing contending transactions in different orders among
nodes in baseline systems (Figure 8). In sum, Bidl achieves
better throughput than FastFabric. Bidl’s lower latency was
primarily due to Bidl’s parallelization of the execution and
consensus phases.
Scalability. We collected the latency of Bidl with different
numbers of organizations, as shown in Figure 6. Each orga-
nization has one consensus node and one normal node in
order to evaluate Bidl scalability. With the number of orga-
nizations increased, Bidl’s latency on four BFT decreased
quickly and increased gently. To understand Bidl’s low la-
tency, we recorded the time taken for each step of the work-
flows in FastFabric and Bidl, as shown in Table 2 and Ta-
ble 3. To ease comparison, we modified FastFabric to make
it run BFT-SMaRt without spawning any malicious node. In
these two tables, the number of consensus nodes and nor-
mal nodes setting (each consensus node ran with only three
normal nodes due to our limited number of servers) is the
same as in Figure 6. Note that this setting and the latency
results are different from those in Figure 3 and Figure 5.
In Bidl, the consensus and execution phases are parallel,

while in FastFabric, the endorse (same as execution) phase
and consensus are sequential. When the number of organiza-
tions increased, Bidl’s latency first decreased then increased.
This is because when the number of organizations was small,
Bidl workflow’s performance was dominated by the latency
of transaction execution: normal nodes of each organization
need to verify and execute more transactions with fewer or-
ganizations. When the number of organizations increased to-
wards 30, the number of transactions processed by each orga-
nization decreased, leading to lower latency. When the num-
ber of organizations continued to increase, the consensus be-
came the major performance bottleneck of Bidl’s workflow.

FastFabric-Smart results (in milliseconds)

Number of Orgs 4 7 13 25 49 97
P1: Endorse 9.15 8.55 7.89 7.47 7.19 6.47
P2: Consensus 10.39 11.61 9.6 12.97 15.38 16.21
P3: Validate 51.49 29.63 15.78 10.12 8.19 6.92
End-to-end (P1+P2+P3) 71.03 49.79 33.27 30.56 30.76 29.6

Table 2. End-to-end latency breakdown of FastFabric-SMaRt.

Bidl-Smart results (in milliseconds)

Number of Orgs 4 7 13 25 49 97
P1: Consensus 10.31 12.07 10.02 12.83 14.88 16.37
P2: Ver & Exec 59.26 35.47 17.91 10.24 7.64 7.56
P3: Persist 0.54 1.07 1.3 1.83 1.97 2.09
P4: Execution (P2+P3) 59.8 36.54 19.21 12.07 9.61 9.65
P5: Commit 2.65 2.84 3.13 2.88 2.61 2.89
End-to-end (Max(P1, P4) + P5) 62.45 39.38 22.34 15.71 17.49 19.26

Table 3. End-to-end latency breakdown of BIDL-SMaRt.

6.2 Robustness on Malicious Nodes
Table 4 shows the performance of Bidl and baseline systems
in the presence of malicious participant cases. N/A means a
framework is not designed to support a case. For each exper-
iment, we tested the cases that we believe to be the worst
case for Bidl and relevant frameworks. All blockchain frame-
works ran four BFT or CFT consensus nodes and 50 normal
nodes to eliminate the bottleneck of transaction execution.
We reported each system’s effective throughput (i.e., num-
ber of valid client transactions committed per second) when
the system stabilized after each attack was conducted.
Malicious leader. We first explored the impact of the mali-
cious leader on Bidl and HLF. For HLF, the leader refers to
the consensus leader. We made the malicious leader propose
a series of invalid transactions (random characters) during
consensus and observed their peak effective throughput.
As shown in Table 4, HLF and BIDL maintained stable

throughput on malicious cases. In these two frameworks, the
BFT consensus leader disseminates all transaction payloads
to other consensus nodes. Therefore, all consensus nodes
can verify transaction payloads, and initiate a view change
upon detecting invalid transactions.
FastFabric is not designed to support this case because

it targets the deployment scenarios with a few mutually
trusted or accountable companies (explicitly stated in its pa-
per [51]), so for high performance, FastFabric leverages a
single trusted orderer to send transaction hashes to the con-
sensus protocols and to dissimilates transaction payloads to
Blockchain
Frameworks

Effective Throughput (kTxns/s)

S1 Fault Free S2Malicious Leader S3Malicious Broadcaster

StreamChain [65] 2.73 N/A N/A
HLF [31] 9.25 9.25 9.25
FastFabric [51] 29.32 N/A N/A
BIDL w/o denylist 41.67 41.67 10.75
BIDL 41.67 41.67 41.67

Table 4. Observed effective throughput of blockchain frameworks
in three scenarios. S1: fault-free case. S2: the malicious leader pro-
poses a series of invalid transactions. S3: a malicious broadcaster
broadcasts a carefully crafted series of transactions to all nodes.

29

0 200
0

20

40

60 1 2

View: 0
Leader: n1

2200 2400 2600

3

1 → 2 → 3
n3 → n4 → n2

4
 n1

4100 4200 4300

5 → 6 → 7
n2 → n4 → n3

8
 n1

Time (ms)

Th
ro

ug
hp

ut
 (k

Tx
ns

/s
)

Figure 7. Robustness of Bidl under a malicious node.

normal nodes. In FastFabric, since the orderer never dissemi-
nates transaction payloads to consensus nodes, if the orderer
is malicious and sends invalid hashes to consensus nodes,
the consensus nodes cannot handle this case.

Overall, although consensus-on-hash can greatly improve
the performance of BFT protocols in fault-free cases, the
leader must be shepherded (§4.5) to achieve robust perfor-
mance in malicious scenarios.
Malicious broadcaster.We implemented amalicious broad-
caster that keeps broadcasting crafted transactions (at the
same time with the Bidl sequencer) to randomly selected
nodes. HLF’s performance was stable because HLF only ac-
cepts transactions from the consensus leader in TCP con-
nections. This experiment also evaluated the effectiveness of
Bidl’s denylist protocol (§4.6): if the denylist protocol is dis-
abled, Bidl’s performance dropped dramatically (Table 4).

To further understand the effectiveness of Bidl’s denylist
protocol, we recorded the real-time throughput of Bidl
(denylist enabled) after the attack was injected, as shown
in Figure 7. We made a smart adversary broadcast crafted
transactions signed by a malicious client cm in only a cor-
rect consensus node n1’s views, trying to escape from Bidl’s
denylist protocol (§4.6).
When the adversary started to broadcast crafted transac-

tions (Point 1), these crafted transactions caused conflicts in
some nodes’ sequence number spaces. These nodes requested
retransmissions of conflicting transactions, causing Bidl’s
throughput to decrease, and the consensus nodes initiated a
view change (Point 2). The view change took approximately
30ms to finish. The adversary detected that n1 was no longer
the leader and stopped broadcasting crafted transactions.

After n1 became the leader again (Point 3), the adversary
restarted to broadcast crafted transactions, which triggered
Bidl’s proactive view change protocol (§4.5), so the adver-
sary’s crafted transactions caused conflicts in the next view
(n2 being the leader). Since cm ’s transactions caused conflicts
in f + 1 = 2 views with different leaders, cm was added to
the denylist (§4.6), and normal nodes do not speculate on the
transactions from cm . In subsequent views with n1 being the
leader (e.g., view 8), Bidl maintained the peak throughput
even if the adversary continued to broadcast crafted transac-
tions signed by cm .

Overall, Bidl is complementary to existing permissioned
blockchain frameworks. StreamChain is most suitable for
being deployed with a small number of organizations with
extremely low latency requirements; FastFabric can achieve

0 10 20 30 40 50
Contention Ratio (%)

0

20

40

E
ff

ec
ti

ve
T

pu
t

(k
T

xn
s/

s) 0 10 20 30 40 50
Non-deterministic Txn Ratio (%)

FF contention

Bidl contention

FF non-determinism

Bidl non-determinism

Figure 8. Robustness of Bidl and FF with different workloads.

safety and very high performance in the presence of mild ad-
versaries (e.g., company insiders) that do not target the sys-
tem’s performance; HLF is general for different deployment
scenarios, within or outside datacenters. Bidl achieves high
performance among many organizations in a datacenter or
datacenters connected with dedicated cables (§2), and Bidl
retains stable high performance even some participants try
to corrupt its performance. Bidl is the most suitable for di-
verse applications that desire high performance and security
requirements, such as cross-enterprise trading [72, 83], stock
exchange [4, 8], supply chains [65], and voting [34, 55, 58].

6.3 Non-deterministic and Contended Workloads
Non-deterministic workload.We tested the performance
of Bidl and FastFabric (FF) under non-deterministic work-
loads. We developed a non-deterministic smart contract that
creates an account with a random balance. When execut-
ing a non-deterministic transaction invoking this smart con-
tract, different nodes may generate inconsistent balances.
Note that such transactions should generally be avoided in
blockchain systems and are usually regarded as bugs [96].
We varied the ratio of non-deterministic transactions

among all transactions. Since in FastFabric and Bidl, non-
deterministic transactions do not affect the commit latency
of other transactions, so we focus on the throughput results.
As can be seen from Figure 8, the effective throughput of
both Bidl and FastFabric decreased with increasing non-
deterministic ratios, but the drop of Bidl was faster. This
is because, in FastFabric, non-deterministic transactions are
early-aborted after endorsement without going through the
entire workflow; while in Bidl, non-deterministic transac-
tions with inconsistent execution results are regarded as
aborted in the commit phase (§4.4). Note that Bidl’s non-
determinism handling protocol (§4.4) makes normal nodes
commit transactions only when the account balances are the
same; this prevents non-determinism making the local state
of Bidl’s normal nodes diverge, and we observed only var-
ied performance effects.
High-contention workload. We then evaluated Bidl and
FastFabric on workloads with different contention rates (i.e.,
skewness). We set 1% accounts as hot accounts, and each
money transfer transaction has a certain probability of ac-
cessing the hot accounts, controlled by the Contention Ratio

parameter. We varied the contention ratio from 0% to 50%
according to real-world blockchain applications [65, 81, 85].
As shown in Figure 8, Bidl showed better throughput with

30

2004006008001000
Bandwidth (Mbps)

0
1
2
3
4
5
6
7

T
hr

ou
gh

pu
t

(k
T

xn
s/

s)

Bidl

Bidl-opt-disabled

(a) End-to-end throughput.

2004006008001000
Bandwidth (Mbps)

0.2
0.4
0.6
0.8
1.0
1.2
1.4

L
at

en
cy

(s
) Bidl

Bidl-opt-disabled

(b) End-to-end Latency.

Figure 9. Performance in the cross-datacenter deployment.

increasing contention ratios. This is because FastFabric en-
dorses transactions in parallel before ordering them, and
most contending transactions accessing the same account
end up being aborted in the validation phase. In contrast,
Bidl eliminates the aborts caused by contention because
Bidl speculatively executes transactions according to their
sequence numbers (§4.3), and normal nodes in each organi-
zation execute transactions that access the same accounts in
the same order. This may lead to a bit longer execution la-
tency compared to non-contending transactions in Phase 4,
which was often masked by the BFT consensus phase with
more consensus nodes (Table 3).

6.4 Performance over Multiple Datacenters
One limitation of Bidl is that Bidl requires the triangle
inequality property (§2) for a low false-positive rate of its
denylist protocol (but Bidl does not need such a require-
ment for liveness or safety). However, as mainstream cloud
providers [21, 22, 25] are actively deploying dedicated net-
work cables among their datacenters, Bidl can also be de-
ployed across datacenters among which triangle inequality
holds. In addition, some modern Internet-scale high-speed
networks can also satisfy the property (e.g., Nasdaq’smillime-
ter wave network [9] and InfiniBand long-reach system [14]).
To evaluate Bidl’s performance across many datacen-

ters when the cross-datacenter network bandwidth becomes
the bottleneck. We ran a four-datacenter setting in our 20-
server cluster using Linux traffic control by limiting the band-
width and latency among servers. Each datacenter has five
servers. Servers within the same datacenter are connected
with 40Gbps network with 0.2ms RTT. We set the RTT be-
tween any two servers from different datacenters as 20ms,
a typical value for inter-datacenter networks [35]. We de-
ployed four consensus nodes and 50 normal nodes and chose
BFT-SMaRt as the consensus protocol.

As shown in Figure 9, Bidl’s performance dropped slowly
when the bandwidth became more stringent. We also col-
lected Bidl’s performance when two optimizations, IP-
multicast and consensus-on-hash, were disabled (i.e., Bidl-
opt-disabled). Bidl achieved much higher performance for
all bandwidth setups than Bidl-opt-disabled. The perfor-
mance gain of Bidl over Bidl-opt-disabled became more ob-
vious when the bandwidth was more stringent. This is be-
cause when Bidl’s shepherded leader was disseminating a
transaction using IP multicast to nodes in another datacen-
ter, the transactions were transferred only once on the inter-

0 2 4 6 8 10
Packet loss rate (%)

0
10
20
30
40
50
60
70

T
hr

ou
gh

pu
t

(k
T

xn
s/

s)

FastFabric

Bidl

(a) End-to-end throughput.

0 2 4 6 8 10
Packet loss rate (%)

102

103

L
at

en
cy

(m
s) y axis is log-scaled

FastFabric

Bidl

(b) End-to-end latency.

Figure 10. Performance of Bidl and HLF with packet losses.

datacenter network. This reduces the bandwidth consump-
tion compared to Bidl-opt-disabled, where the consensus
leader invokes N TCP transmissions to disseminate the large
Propose message to N consensus nodes in another datacen-
ter. The transactions are transferred N times on the inter-
datacenter network, which incurs significant bandwidth con-
sumption and degrades the performance.
In summary, Bidl is suitable for deploying in multiple

datacenters due to the two optimizations of IP-multicast and
consensus-on-hash. Although these two optimizations were
exploited by existing systems, Bidl is the first permissioned
blockchain framework that can ensure stable high end-to-end
performance in the presence of malicious participants (§6.2).
Performance on packet losses.We also evaluated the per-
formance of Bidl and FastFabric on packet losses. As shown
in Figure 10, Bidl’s performance gain over FastFabric was
substantial when the packet loss rate was low (< 2%) and be-
came less obvious when the packet loss rate kept increasing.
Overall, Bidl is robust to real-world packet losses because
the packet loss rate is about 10−5 [52, 103] within a datacen-
ter and no more than 10−3 [1, 10, 56, 61, 93] for datacenters
connected with dedicated cables.

7 Conclusion
We present Bidl, the first blockchain-powered distributed
ledger optimized for datacenter networks. Bidl leverages
the network ordering in a datacenter network to enable a
new shepherded parallel workflow that performs the consen-
sus in parallel with the transaction execution. Evaluation on
three notable permissioned blockchains and four BFT proto-
cols shows that Bidl is highly efficient and is robust to mali-
cious participants. This study demonstrates the benefits of
co-design permissioned blockchain with the underlying net-
work, providing a new approach for building in-datacenter
Byzantine blockchain systems. Bidl is open source. Bidl’s
code is released on github.com/hku-systems/bidl.

Acknowledgments
We thank our shepherd, Ittay Eyal, and all anonymous re-
viewers for their helpful comments. This work is funded
by the research grants from two Huawei Flagship Research
Grants 2018 and 2021, HKU-SCF FinTech Academy R&D
Funding Scheme, HK RGC GRF (17202318, 17207117), HK
RGC ECS (27200916), NSFC Grant 61972332, and a Croucher
Innovation Award.

31

https://github.com/hku-systems/bidl

References
[1] Huawei network planning. https://support.huawei.com/view/

contentview!getFileStream.action?mid=SUPE_DOC&viewNid=
EDOC1000092270&nid=EDOC1000092270&partNo=j005&type=
htm.

[2] HKEx Data Centre and Hosting Services. https://www.hkex.com.hk/-
/media/HKEX-Market/Services/Connectivity/Hosting-Services/
Subscriber-Notices-and-Guidance-Note/Samuel-Wong_Hosting-
Ecosystem-2013.pdf, 2013.

[3] Hyperledger Fabric 1.3. https://github.com/hyperledger/fabric/
releases/tag/v1.3.0, 2018.

[4] With turnover close to HK$200b, new HKEX platform can handle
60,000 trades per second. https://www.scmp.com/business/investor-
relations/ipo-quote-profile/article/2130344/new-hkex-securities-
trading-platform, 2018.

[5] ASX is replacing CHESS with distributed ledger technology (DLT)
developed by Digital Asset. https://www.asx.com.au/services/chess-
replacement.htm, July 2019.

[6] DPDK: Home. https://www.dpdk.org, 2019.
[7] Exchange Trading & Matching Technology System – Nas-

daq. https://www.nasdaq.com/solutions/trading-and-matching-
technology, 2019.

[8] Singapore Exchange. https://www2.sgx.com, 2019.
[9] Wireless Express Connect - Nasdaq. https://www.nasdaqtrader.com/

content/Productsservices/trading/CoLo/ExpressConnectFS.pdf,
2019.

[10] Alibaba cloud network faq. https://partners-intl.aliyun.com/help/doc-
detail/40637.htm#section-t34-uni-zg6, 2020.

[11] Amazon Managed Blockchain. https://aws.amazon.com/managed-
blockchain/, 2020.

[12] Blockchain Platform. https://cloud.ibm.com/catalog/services/
blockchain-platform, 2020.

[13] Hyperledger Caliper Benchmarks. https://github.com/hyperledger/
caliper-benchmarks/tree/master/benchmarks/scenario/smallbank,
2020.

[14] InfiniBand Long-Reach and Long-Haul Systems. https://www.
mellanox.com/products/long-reach?mtag=long_haul_systems_ov,
2020.

[15] Ip multicast. https://en.wikipedia.org/wiki/IP_multicast, 2020.
[16] Libra. https://libra.org, 2020.
[17] MedicalChain. https://medicalchain.com/en/home/hyperledger/,

2020.
[18] Microsoft Azure Blockchain. https://azure.microsoft.com/en-us/

solutions/blockchain/, 2020.
[19] Nasdaq Co-Location. https://www.nasdaq.com/solutions/nasdaq-co-

location, 2020.
[20] SmallBank Benchmark. https://hstore.cs.brown.edu/documentation/

deployment/benchmarks/smallbank/, 2020.
[21] Amazon Global Network. https://aws.amazon.com/about-aws/

global-infrastructure/global_network/?nc1=h_ls, 2021.
[22] Azure Global Network. https://azure.microsoft.com/en-us/global-

infrastructure/global-network/#documentation, 2021.
[23] Cloud Ping. https://www.cloudping.co/grid, 2021.
[24] Cosmos Validators Overview. https://hub.cosmos.network/main/

validators/overview.html, 2021.
[25] Google Cloud Infrastructure. https://cloud.google.com/infrastructure,

2021.
[26] Quorum. https://consensys.net/quorum, 2021.
[27] Tape. https://github.com/Hyperledger-TWGC/tape, 2021.
[28] The Solidity Contract-Oriented Programming Language. https://

github.com/ethereum/solidity, 2021.
[29] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure de-

tection and consensus in the crash-recovery model. In International

Symposium on Distributed Computing, pages 231–245. Springer, 1998.

[30] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Byzantine
replication under attack. In 2008 IEEE International Conference on

Dependable Systems and Networks With FTCS and DCC (DSN), pages
197–206. IEEE, 2008.

[31] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger
fabric: a distributed operating system for permissioned blockchains.
In Proceedings of the Thirteenth EuroSys Conference, page 30. ACM,
2018.

[32] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM Trans-

actions on Computer Systems (TOCS), 32(4):1–45, 2015.
[33] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft:

Redundant byzantine fault tolerance. In 2013 IEEE 33rd International

Conference on Distributed Computing Systems, pages 297–306. IEEE,
2013.

[34] Ahmed Ben Ayed. A conceptual secure blockchain-based electronic
voting system. International Journal of Network Security & Its Appli-

cations, 9(3):01–09, 2017.
[35] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M

Hellerstein, and Ion Stoica. Highly available transactions: Virtues and
limitations. Proceedings of the VLDB Endowment, 7(3):181–192, 2013.

[36] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, TedWob-
bler, Michael Wei, and John D Davis. {CORFU}: A shared log design
for flash clusters. In 9th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 12), pages 1–14, 2012.
[37] Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee.

Performance evaluation of the quorum blockchain platform. arXiv
preprint arXiv:1809.03421, 2018.

[38] Robert P Bartlett III and Justin McCrary. How rigged are stock
markets? evidence frommicrosecond timestamps. Journal of Financial
Markets, 45:37–60, 2019.

[39] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State ma-
chine replication for the masses with bft-smart. In 2014 44th Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works, pages 355–362. IEEE, 2014.
[40] Andrew Brook. Evolution and practice: Low-latency distributed

applications in finance: The finance industry has unique demands
for low-latency distributed systems. Queue, 13(4):40–53, 2015.

[41] Vitalik Buterin et al. A next-generation smart contract and decen-
tralized application platform. white paper, 3(37), 2014.

[42] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault toler-
ance. In OSDI, volume 99, pages 173–186, 1999.

[43] Allen Clement, Edmund LWong, Lorenzo Alvisi, Michael Dahlin, and
Mirco Marchetti. Making byzantine fault tolerant systems tolerate
byzantine faults. In NSDI, volume 9, pages 153–168, 2009.

[44] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. Netpaxos: Consensus at network speed. In Pro-

ceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research, page 5. ACM, 2015.
[45] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS operating systems re-

view, 41(6):205–220, 2007.
[46] Ankush Desai, Sanjit A Seshia, Shaz Qadeer, David Broman, and

John C Eidson. Approximate synchrony: An abstraction for dis-
tributed almost-synchronous systems. In International Conference on

Computer Aided Verification, pages 429–448. Springer, 2015.
[47] Minghong Fang and Jia Liu. Toward low-cost and stable blockchain

networks. arXiv preprint arXiv:2002.08027, 2020.
[48] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-

Balter, and Esa Hyytia. Reducing latency via redundant requests:

32

https://support.huawei.com/view/contentview!getFileStream.action?mid=SUPE_DOC&viewNid=EDOC1000092270&nid=EDOC1000092270&partNo=j005&type=htm
https://support.huawei.com/view/contentview!getFileStream.action?mid=SUPE_DOC&viewNid=EDOC1000092270&nid=EDOC1000092270&partNo=j005&type=htm
https://support.huawei.com/view/contentview!getFileStream.action?mid=SUPE_DOC&viewNid=EDOC1000092270&nid=EDOC1000092270&partNo=j005&type=htm
https://support.huawei.com/view/contentview!getFileStream.action?mid=SUPE_DOC&viewNid=EDOC1000092270&nid=EDOC1000092270&partNo=j005&type=htm
https://www.hkex.com.hk/-/media/HKEX-Market/Services/Connectivity/Hosting-Services/Subscriber-Notices-and-Guidance-Note/Samuel-Wong_Hosting-Ecosystem-2013.pdf
https://www.hkex.com.hk/-/media/HKEX-Market/Services/Connectivity/Hosting-Services/Subscriber-Notices-and-Guidance-Note/Samuel-Wong_Hosting-Ecosystem-2013.pdf
https://www.hkex.com.hk/-/media/HKEX-Market/Services/Connectivity/Hosting-Services/Subscriber-Notices-and-Guidance-Note/Samuel-Wong_Hosting-Ecosystem-2013.pdf
https://www.hkex.com.hk/-/media/HKEX-Market/Services/Connectivity/Hosting-Services/Subscriber-Notices-and-Guidance-Note/Samuel-Wong_Hosting-Ecosystem-2013.pdf
https://github.com/hyperledger/fabric/releases/tag/v1.3.0
https://github.com/hyperledger/fabric/releases/tag/v1.3.0
https://www.scmp.com/business/investor-relations/ipo-quote-profile/article/2130344/new-hkex-securities-trading-platform
https://www.scmp.com/business/investor-relations/ipo-quote-profile/article/2130344/new-hkex-securities-trading-platform
https://www.scmp.com/business/investor-relations/ipo-quote-profile/article/2130344/new-hkex-securities-trading-platform
https://www.asx.com.au/services/chess-replacement.htm
https://www.asx.com.au/services/chess-replacement.htm
https://www.dpdk.org
https://www.nasdaq.com/solutions/trading-and-matching-technology
https://www.nasdaq.com/solutions/trading-and-matching-technology
https://www2.sgx.com
https://www.nasdaqtrader.com/content/Productsservices/trading/CoLo/ExpressConnectFS.pdf
https://www.nasdaqtrader.com/content/Productsservices/trading/CoLo/ExpressConnectFS.pdf
https://partners-intl.aliyun.com/help/doc-detail/40637.htm#section-t34-uni-zg6
https://partners-intl.aliyun.com/help/doc-detail/40637.htm#section-t34-uni-zg6
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/managed-blockchain/
https://cloud.ibm.com/catalog/services/blockchain-platform
https://cloud.ibm.com/catalog/services/blockchain-platform
https://github.com/hyperledger/caliper-benchmarks/tree/master/benchmarks/scenario/smallbank
https://github.com/hyperledger/caliper-benchmarks/tree/master/benchmarks/scenario/smallbank
https://www.mellanox.com/products/long-reach?mtag=long_haul_systems_ov
https://www.mellanox.com/products/long-reach?mtag=long_haul_systems_ov
https://en.wikipedia.org/wiki/IP_multicast
https://libra.org
https://medicalchain.com/en/home/hyperledger/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.nasdaq.com/solutions/nasdaq-co-location
https://www.nasdaq.com/solutions/nasdaq-co-location
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://aws.amazon.com/about-aws/global-infrastructure/global_network/?nc1=h_ls
https://aws.amazon.com/about-aws/global-infrastructure/global_network/?nc1=h_ls
https://azure.microsoft.com/en-us/global-infrastructure/global-network/#documentation
https://azure.microsoft.com/en-us/global-infrastructure/global-network/#documentation
https://www.cloudping.co/grid
https://hub.cosmos.network/main/validators/overview.html
https://hub.cosmos.network/main/validators/overview.html
https://cloud.google.com/infrastructure
https://consensys.net/quorum
https://github.com/Hyperledger-TWGC/tape
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity

Exact analysis. ACM SIGMETRICS Performance Evaluation Review,
43(1):347–360, 2015.

[49] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-
lai Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In Proceedings of the 26th Symposium on Operating Systems

Principles, pages 51–68, 2017.
[50] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,

Benny Pinkas, Michael K Reiter, Dragos-Adrian Seredinschi, Orr
Tamir, and Alin Tomescu. Sbft: a scalable decentralized trust infras-
tructure for blockchains. arXiv preprint arXiv:1804.01626, 2018.

[51] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Ke-
shav. Fastfabric: Scaling hyperledger fabric to 20,000 transactions
per second. arXiv preprint arXiv:1901.00910, 2019.

[52] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
et al. Pingmesh: A large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, pages 139–152,
2015.

[53] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerre-
view: Practical accountability for distributed systems. ACM SIGOPS

operating systems review, 41(6):175–188, 2007.
[54] Biao Han, Xiangrui Yang, and Xiaoyan Wang. Dynamic controller-

switch mapping assignment with genetic algorithm for multi-
controller sdn. In 2019 IEEE Intl Conf on Dependable, Autonomic and

Secure Computing, Intl Conf on Pervasive Intelligence and Computing,

Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Sci-

ence and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
pages 980–986. IEEE, 2019.

[55] Rifa Hanifatunnisa and Budi Rahardjo. Blockchain based e-voting
recording system design. In 2017 11th International Conference on

Telecommunication Systems Services and Applications (TSSA), pages
1–6. IEEE, 2017.

[56] Osama Haq, Mamoon Raja, and Fahad R Dogar. Measuring and
improving the reliability of wide-area cloud paths. In Proceedings of

the 26th International Conference on World Wide Web, pages 253–262,
2017.

[57] Joel Hasbrouck and Gideon Saar. Low-latency trading. Journal of
Financial Markets, 16(4):646–679, 2013.

[58] Friðrik Þ Hjálmarsson, Gunnlaugur K Hreiðarsson, Mohammad Ham-
daqa, and Gísli Hjálmtỳsson. Blockchain-based e-voting system. In
2018 IEEE 11th International Conference on Cloud Computing (CLOUD),
pages 983–986. IEEE, 2018.

[59] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soule, Changhoon Kim, and Ion Stoica. Netchain: Scale-free
sub-rtt coordination. In 15th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 18), pages 35–49, 2018.
[60] Manos Kapritsos, YangWang, Vivien Quema, Allen Clement, Lorenzo

Alvisi, and Mike Dahlin. All about eve: Execute-verify replication
for multi-core servers. In 10th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 12), pages 237–250, 2012.
[61] Archana Kesavan. Comparing the network performance of aws, azure

and gcp, 2019.
[62] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas

Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 583–598. IEEE, 2018.
[63] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and

Edmund Wong. Zyzzyva: speculative byzantine fault tolerance. ACM
SIGOPS Operating Systems Review, 41(6):45–58, 2007.

[64] Ramakrishna Kotla and Michael Dahlin. High throughput byzantine
fault tolerance. In International Conference on Dependable Systems

and Networks, 2004, pages 575–584. IEEE, 2004.
[65] Lucas Kuhring, Zsolt István, Alessandro Sorniotti, and Marko Vukolić.

Streamchain: Rethinking blockchain for datacenters. arXiv, pages
arXiv–1808, 2018.

[66] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–
25, 2001.

[67] Haochen Li, Keke Gai, Zhengkang Fang, Liehuang Zhu, Lei Xu, and
Peng Jiang. Blockchain-enabled data provenance in cloud datacenter
reengineering. In Proceedings of the 2019 ACM International Sympo-

sium on Blockchain and Secure Critical Infrastructure, pages 47–55,
2019.

[68] He Li, Peng Li, Song Guo, and Amiya Nayak. Byzantine-resilient
secure software-defined networks with multiple controllers in cloud.
IEEE Transactions on Cloud Computing, 2(4):436–447, 2014.

[69] Jialin Li, Ellis Michael, and Dan RK Ports. Eris: Coordination-free
consistent transactions using in-network concurrency control. In
Proceedings of the 26th Symposium on Operating Systems Principles,
pages 104–120. ACM, 2017.

[70] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and
Dan RK Ports. Just say no to paxos overhead: Replacing consensus
with network ordering. In OSDI, pages 467–483, 2016.

[71] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports.
Pegasus: Tolerating skewed workloads in distributed storage with
in-network coherence directories. In 14th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 20), pages
387–406, 2020.

[72] Zhetao Li, Jiawen Kang, Rong Yu, Dongdong Ye, Qingyong Deng, and
Yan Zhang. Consortium blockchain for secure energy trading in in-
dustrial internet of things. IEEE transactions on industrial informatics,
14(8):3690–3700, 2017.

[73] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin
Kwiat, and Laurent Njilla. Provchain: A blockchain-based data prove-
nance architecture in cloud environment with enhanced privacy and
availability. In 2017 17th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Computing (CCGRID), pages 468–477. IEEE, 2017.
[74] Alex Manuskin, Michael Mirkin, and Ittay Eyal. Ostraka: Secure

blockchain scaling by node sharding. In 2020 IEEE European Sympo-

sium on Security and Privacy Workshops (EuroS&PW), pages 397–406.
IEEE, 2020.

[75] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu.
A large scale study of data center network reliability. In Proceedings

of the Internet Measurement Conference 2018, pages 393–407, 2018.
[76] Ciamac C Moallemi and Mehmet Saglam. The cost of latency. SSRN

eLibrary, 2010.
[77] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash

system. 2008.
[78] Diego Ongaro and John Ousterhout. In search of an understandable

consensus algorithm. In 2014 {USENIX} Annual Technical Conference

({USENIX}{ATC} 14), pages 305–319, 2014.
[79] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind

Krishnamurthy. Designing distributed systems using approximate
synchrony in data center networks. In NSDI, pages 43–57, 2015.

[80] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. Passive
realtime datacenter fault detection and localization. In 14th {USENIX}
Symposium onNetworked Systems Design and Implementation ({NSDI}

17), pages 595–612, 2017.
[81] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang,

Gang Chen, and Beng Chin Ooi. A transactional perspective on
execute-order-validate blockchains. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, pages 543–
557, 2020.

[82] Signe Rüsch, Ines Messadi, and Rüdiger Kapitza. Towards low-latency
byzantine agreement protocols using rdma. In 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works Workshops (DSN-W), pages 146–151. IEEE, 2018.
[83] Moein Sabounchi and Jin Wei. Towards resilient networked micro-

33

grids: Blockchain-enabled peer-to-peer electricity trading mecha-
nism. In 2017 IEEE Conference on Energy Internet and Energy System

Integration (EI2), pages 1–5. IEEE, 2017.
[84] Vikram Saraph and Maurice Herlihy. An empirical study of spec-

ulative concurrency in ethereum smart contracts. arXiv preprint

arXiv:1901.01376, 2019.
[85] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens

Dittrich. Blurring the lines between blockchains and database sys-
tems: the case of hyperledger fabric. In Proceedings of the 2019 Inter-

national Conference on Management of Data, pages 105–122, 2019.
[86] Peter Shen. Investing In A Blockchain Future At Singapore Exchange,

July 2019.
[87] Joao Sousa and Alysson Bessani. From byzantine consensus to bft

state machine replication: A latency-optimal transformation. In 2012

Ninth European Dependable Computing Conference, pages 37–48. IEEE,
2012.

[88] Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-
tolerant ordering service for the hyperledger fabric blockchain plat-
form. In 2018 48th annual IEEE/IFIP international conference on de-

pendable systems and networks (DSN), pages 51–58. IEEE, 2018.
[89] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko

Vukolić. Mir-bft: High-throughput robust bft for decentralized net-
works. arXiv preprint arXiv:1906.05552, 2019.

[90] Hadar Sufiev, Yoram Haddad, Leonid Barenboim, and José Soler. Dy-
namic sdn controller load balancing. Future Internet, 11(3):75, 2019.

[91] Harish Sukhwani, NanWang, Kishor S Trivedi, and Andy Rindos. Per-
formance modeling of hyperledger fabric (permissioned blockchain
network). In 2018 IEEE 17th International Symposium on Network

Computing and Applications (NCA), pages 1–8. IEEE, 2018.
[92] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

and Lau Cheuk Lung. Spin one’s wheels? byzantine fault tolerance
with a spinning primary. In 2009 28th IEEE International Symposium

on Reliable Distributed Systems, pages 135–144. IEEE, 2009.
[93] Guohui Wang and TS Eugene Ng. The impact of virtualization on

network performance of amazon ec2 data center. In 2010 Proceedings

IEEE INFOCOM, pages 1–9. IEEE, 2010.
[94] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with

asynchronous consensus zones. In 16th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI} 19), pages
95–112, 2019.

[95] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[96] Kazuhiro Yamashita, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and
Sun Jun. Potential risks of hyperledger fabric smart contracts. In
2019 IEEE International Workshop on Blockchain Oriented Software

Engineering (IWBOSE), pages 1–10. IEEE, 2019.
[97] Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan

Phan. The synchronous data center. In Proceedings of the Workshop

on Hot Topics in Operating Systems, pages 142–148, 2019.
[98] Jingjing Yao, Ping Lu, Long Gong, and Zuqing Zhu. On fast and

coordinated data backup in geo-distributed optical inter-datacenter
networks. Journal of Lightwave Technology, 33(14):3005–3015, 2015.

[99] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus in the lens of blockchain.
arXiv preprint arXiv:1803.05069, 2018.

[100] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and respon-
siveness. In Proceedings of the 2019 ACM Symposium on Principles of

Distributed Computing, pages 347–356, 2019.
[101] Aydan R Yumerefendi and Jeffrey S Chase. Strong accountability for

network storage. ACM Transactions on Storage (TOS), 3(3):11–es, 2007.
[102] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-

chain: Scaling blockchain via full sharding. In Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security,
pages 931–948, 2018.

[103] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu,
and Lei Cui. Congestion control for cross-datacenter networks. In
2019 IEEE 27th International Conference on Network Protocols (ICNP),
pages 1–12. IEEE, 2019.

[104] Jiashuo Zhang, Jianbo Gao, Zhenhao Wu, Wentian Yan, Qize Wo,
Qingshan Li, and Zhong Chen. Performance analysis of the libra
blockchain: An experimental study. In 2019 2nd International Confer-

ence on Hot Information-Centric Networking (HotICN), pages 77–83.
IEEE, 2019.

[105] Jia Zou, Gong Su, Arun Iyengar, Yu Yuan, and Yi Ge. Design and
analysis of a distributed multi-leg stock trading system. In 2011 31st

International Conference on Distributed Computing Systems, pages 13–
24. IEEE, 2011.

34

	Abstract
	1 Introduction
	2 Related Work
	2.1 Permissioned Blockchains
	2.2 Systems Leveraging Datacenter Networks

	3 Overview
	3.1 System Model
	3.2 Bidl's Workflow Overview

	4 Protocol Description
	4.1 Transaction Submission
	4.2 Consensus
	4.3 Transaction Execution and Commit
	4.4 Handling Non-deterministic Transactions
	4.5 Shepherding the Leader
	4.6 Bidl's Denylist Protocol

	5 Correctness and Performance Analysis
	5.1 Proof Sketch of Safety
	5.2 Effectiveness of Bidl's Denylist Protocol
	5.3 Liveness and High Performance

	6 Evaluation
	6.1 End-to-end Performance
	6.2 Robustness on Malicious Nodes
	6.3 Non-deterministic and Contended Workloads
	6.4 Performance over Multiple Datacenters

	7 Conclusion
	Acknowledgments
	References

