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Abstract
With the growing commercial interest in blockchains, permis-

sioned implementations have received increasing attention.

Unfortunately, the BFT consensus algorithms that are the

backbone of most of these blockchains scale poorly and offer

limited throughput. Many state-of-the-art algorithms require

a single leader process to receive and validate votes from a

quorum of processes and then broadcast the result, which is

inherently non-scalable. Recent approaches avoid this bottle-

neck by using dissemination/aggregation trees to propagate

values and collect and validate votes. However, the use of

trees increases the round latency, which ultimately limits

the throughput for deeper trees. In this paper we propose

Kauri, a BFT communication abstraction that can sustain

high throughput as the system size grows, leveraging a novel

pipelining technique to perform scalable dissemination and

aggregation on trees. Our evaluation shows that Kauri out-

performs the throughput of state-of-the-art permissioned

blockchain protocols, such as HotStuff, by up to 28x. Inter-

estingly, in many scenarios, the parallelization provided by

Kauri can also decrease the latency.

CCSConcepts: •Computer systems organization→Re-
liability; Fault-tolerant network topologies.

Keywords: Distributed Systems, Fault Tolerance, Blockchain

1 Introduction and Related Work
The increasing popularity of blockchains in addressing an

expanding set of use cases, from enterprise to governmental

applications [9], led to a growing interest in permissioned

blockchains, such as Hyperledger Fabric [5]. In contrast to

their permissionless counterparts, permissioned blockchains

can ensure deterministic transaction finality, which is a key

requirement inmany settings [31], and can offer high through-

put in small sized systems [33].
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However, emerging use cases for permissioned blockchains

require the system to scale to hundreds of participants [16].

For instance, the Diem blockchain states that: “Our goal was

to choose a protocol that would initially support at least 100

validators and would be able to evolve over time to support

500–1,000 validators" [13]. In addition to that, a recent paper

from IBM [28] discusses the need to extend HyperLedger to

support deployments above 100 nodes in order to address

the requirements of platforms such as Corda [26]. However,

most permissioned blockchains are based on variants of clas-

sical byzantine fault-tolerant (BFT) consensus protocols that

scale poorly with the number of participants [10, 22].

Such scalability limitations stem from bottlenecks both

at the network and processing levels that result from the

large number of messages that need to be sent, received and

processed to reach consensus. For instance, the well-known

PBFT protocol [7] organizes participants in a clique and uses

an all-to-all communication pattern that incurs in a quadratic

message complexity. Although there have been many pro-

posals to extend and improve several aspects of PBFT (such

as [3, 11, 29, 30]), most preserve its communication pattern.

In HotStuff [33], only the leader sends/collects messages

directly to/from all other processes, i.e. communication is

based on a star topology centered at the leader. This approach

results in linear message complexity but the leader is still

required to receive and validate votes from at least 2𝑓 + 1
processes. At the time of this writing, the publicly available

implementation of HotStuff uses secp256k1 [32], a highly ef-

ficient elliptic curve algorithm that is also used in Bitcoin[2].

In this implementation, the leader has to relay the full set of

signatures to all processes. Alternatively, it is possible to use

multisignatures, such as bls [4], to reduce the message size

at the expense of additional computational load at the leader.

However, due to the centralized control, HotStuff is inher-

ently non-scalable: the system performance is limited by the

computing and bandwidth capacity of the leader process.

One possible way to circumvent the scalability constraints

is to select a small committee such as in Algorand [15]

or SCP [24]. However, this approach either reduces the re-

silience of the system (the maximum number of faults be-

comes a function of the committee size and not of the entire

system size) or compromises deterministic finality (a block

can only be finalized after multiple subsequent blocks have

been produced by different committees, implicitly vouch-

ing for the correctness of the result). Alternatively, systems
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such as Steward [1], Fireplug [25], ResilientDB [17] or Multi-

Layer PBFT [23] organize processes in hierarchical groups

to achieve low message complexity and balance the band-

width load. However, they sacrifice resilience by tolerating

significantly less than 𝑓 = 𝑁−1
3

failures.

Approaches such as Byzcoin [20], Motor [19], and Om-

niledger [21] address the bottleneck at the leader by orga-

nizing processes in a tree topology, with the leader placed at

the root. The tree is used to disseminate information from

the leader to the other processes, and to aggregate votes us-

ing cryptographic schemes such as multisignatures [4, 20].

The use of trees reduces the number of messages any single

process has to send, receive, and process (that becomes loga-

rithmic with the system size) by distributing the load among

all internal nodes of the tree.

The use of trees comes, however, at the cost of an in-

creased latency of each consensus round. In fact, while in

PBFT a round can be executed within a single communica-

tion step, in HotStuff it requires two communication steps

(i.e., a roundtrip), and in trees it requires 2ℎ communication

steps, where ℎ is the height of the tree. If the blockchain pro-

tocol only starts a new consensus instance after the previous

one terminates, this increase of the per-round latency has a

direct negative impact on the system throughput. In fact, the

advantages that stem from the load distribution can easily

be outweighed by the disadvantages associated with longer

consensus rounds. Strikingly, neither Motor nor Omniledger

discuss or mitigate the impact of the additional latency on

the throughput resulting from the increased number of com-

munication steps required to complete each round.

Pipelining allows tomitigate the negative impact on through-

put of additional communication steps. In HotStuff the first

round of the 𝑛𝑡ℎ consensus instance is executed in parallel

with the second round of the (𝑛−1)𝑡ℎ consensus instance, and
with the third round of the (𝑛 − 2)𝑡ℎ consensus instance, etc.

This allows to piggyback information from multiple consen-

sus instances in a single message. Unfortunately, pipelining

increases the burden on the leader further amplifying the

scalability limitations of a centralized approach.

Another disadvantage of trees is their slow recovery in the

presence of faults. In approaches that use a clique or a star

topology, such as PBFT or HotStuff, respectively, the system

is able to make progress as long as the leader is non-faulty.

Moreover, if the leader is faulty, the system is guaranteed

to recover after 𝑓 + 1 reconfigurations (also known as view

changes in the literature). When using trees, progress is

guaranteed if and only if all internal nodes of the tree are

non-faulty (this is a sufficient but not necessary condition as

discussed in §3). Furthermore, finding a configuration with-

out faulty internal nodes has combinatorial complexity [19].

Due to these challenges, Byzcoin [20] quickly falls back to

a clique when faults occur. Motor [19] and Omniledger [21]

build upon the principles of Byzcoin, but rather than falling

back immediately to a clique topology, rotate the nodes in

Table 1. Comparison of existing Algorithms

Load Deterministic Throughput
Balancing finality/ independent Quick

for 𝑁 = 3𝑓 + 1 of round recovery
Scalability resilience latency

PBFT [7] ✗ ✓ ✗ ✓
HotStuff [33] ✗ ✓ ✗ ✓
Steward [1] ✓ ✗ ✗ ✗
Fireplug [25] ✓ ✗ ✗ ✗
ResilientDB [17] ✓ ✗ ✓ ✗
Multi-Layer [23] ✓ ✗ ✗ ✓
Byzcoin [20] ✓ ✓ ✗ ✗
Omniledger [21] ✓ ✓ ✗ ✗
Algorand [15] ✓ ✗ ✗ ✗
SCP [24] ✓ ✗ ✗ ✗
Kauri (this paper) ✓ ✓ ✓ ✓

the subtrees in an attempt to let the leader, i.e. the root of

the tree, gather 𝑁 − 𝑓 signatures. If, in a given round, the

root process is unable to collect a quorum of signatures, it

contacts directly a random subset of leaf processes, which

in turn will attempt to collect votes from their siblings, un-

til a quorum is obtained. Thus, in the worst case scenario,

assuming a fanout of𝑚, after
𝑁
𝑚

steps the root will contact

every other node directly, as if the system was using a star

topology. If the root itself fails during this process, a new

tree is formed but, if more faults occur, the entire procedure

may need to be repeated. Furthermore, this strategy only

works with trees with a maximum height of ℎ = 2.

Table 1 summarizes our discussion of the systems based

on the criteria discussed above. The table highlights that

no previous system leverages load balancing techniques to

promote scalability while preserving high resilience and high

throughput. Furthermore, most systems that achieve some

form of load balancing either decrease fault tolerance or

increase the complexity of the reconfiguration leading to a

slow recovery under faults.

In this paper we propose Kauri, a BFT communication

abstraction that leverages dissemination/aggregation trees

for load balancing and scalability while avoiding the main

limitations of previous tree-based solutions, namely, poor

throughput due to additional round latency and the collapse

of the tree to a star even in runs with few faults.

Kauri introduces novel pipelining techniques suitable for

trees of arbitrary depth that sustain high throughput as the

system grows in size. As in HotStuff, Kauri starts a new

instance of consensus before the previous instance has termi-

nated. But, unlike HotStuff, Kauri starts a new round while

the previous round is still being propagated in the tree, ef-

fectively exploiting the potential parallelism created by the

different stages (one stage per height) of the tree. This al-

lows the leader to effectively use the available bandwidth

without becoming a bottleneck. One of the key challenges

behind our combination of trees and pipelining is that us-

ing arbitrary pipeline values results in poor performance:

under-pipelining fails to take advantage of the available par-

allelization opportunities, while over-pipelining congests the

system - hence, simply using HotSuff’s star-based pipelining
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in Kauri trees would not yield good results. We overcome

this challenge by introducing a performance model that ap-

proximates, for a given scenario, the ideal pipelining values

that maximize performance.

We also introduce a novel reconfiguration strategy that,

when the number of consecutive faults is small (arguably

the most common case), continues to use a tree topology

rather than falling back to a star. More precisely, for a tree

fanout of 𝑚, if 𝑓 < 𝑚, Kauri can find a robust tree-based

configuration in 𝑓 +1 reconfiguration steps (which is optimal),

and fall back to a star topology only in runs where 𝑓 ≥ 𝑚
consecutive faults occur. Thus, Kauri offers the same fault-

tolerance of traditional approaches (i.e. ensures correctness

as long as 𝑓 < 𝑁 /3), ensures deterministic finality (unlike

committee-based solutions), and distributes the load among

internal nodes allowing it to scale with the number of nodes

and achieve high throughput. We implemented Kauri and

evaluated it under different realistic scenarios with up to 400

processes. Results show that Kauri outperforms HotStuff’s

throughput by up to 28x.

In short, the paper makes the following contributions: i)

We present a set of abstractions that support the use of ag-

gregation/dissemination trees in the context of consensus

protocols; ii) We introduce a performance model that shows

how pipelining can be used to fully leverage the paralleli-

sation opportunities offered by the trees; iii) We present a

precise sufficient condition that allows efficient reconfigu-

ration of the tree without falling back immediately to a star

topology; iv) We present Kauri, the first tree-based communi-

cation abstraction for BFT consensus protocols that achieves

higher throughput than HotStuff in all considered scenarios

and better latency under certain conditions; v) We present

an extensive experimental evaluation of Kauri in realistic

scenarios with up to 400 nodes.

2 System Model
We assume the system is composed of 𝑁 server processes

{𝑝1, 𝑝2, . . . , 𝑝𝑁 } and a set of client processes {𝑐1, 𝑐2, . . . , 𝑐𝑚}.
We also assume the existence of a Public Key Infrastructure

used by processes to distribute the keys required for authen-

tication and message signing. Moreover, processes may not

change their keys during the execution of the protocol and

require a sufficiently lengthy approval process to re-enter

the system to avoid rogue key attacks [27]. We assume the

Byzantine fault model, where at most 𝑓 < 𝑁 /3 faulty pro-

cesses may produce arbitrary values, delay or omit messages,

and collude with each other, but do not possess sufficient

resources to compromise the cryptographic primitives.

Processes communicate via perfect point-to-point chan-

nels with the following properties: Validity: If a process 𝑝 𝑗
delivers a value 𝑣 on a channel over an edge 𝑒𝑖 𝑗 , 𝑣 was sent

by 𝑝𝑖 . Termination: If both 𝑝𝑖 and 𝑝 𝑗 are correct, if 𝑝𝑖 invokes

send then eventually 𝑝 𝑗 delivers 𝑣 . These are implemented

usingmechanisms for message re-transmission and detection

and suppression of duplicates [6]. To circumvent the impos-

sibility of consensus[14], we assume the partial synchrony

model [10]. In this model, there may be an unstable period,

where messages exchanged between correct processes are

arbitrarily delayed. However, there is a known bound Δ on

the worst-case network latency and an unknown Global

Stabilization Time (GST), such that after GST, all messages

between correct processes arrive within Δ. Note that safety
is always preserved and the partial synchrony assumptions

are necessary only to ensure liveness [33].

3 Using Dissemination/Aggregation Trees
Instead of designing a completely new consensus algorithm

from scratch, we developed Kauri as an extension of HotStuff.

The key idea is to replace the dissemination and aggregation

patterns used by HotStuff, which are based on a star topol-

ogy, by new patterns based on tree topologies. While for

simplicity our presentation hinges on HotStuff characteris-

tics, our principles could also be applied to other leader-based

consensus algorithms.

3.1 HotStuff Communication Pattern
For self-containment, we provide a brief high-level descrip-

tion of HotStuff. We give emphasis on the communication

pattern used in HotStuff and discuss how this pattern may be

abstracted, such that it can be replaced by different implemen-

tations. HotStuff reaches consensus in four communication

rounds. Each round consists of two phases: i) a dissemination

phase where the leader broadcasts some information to all

processes; and ii) an aggregation phase where the leader col-

lects and aggregates information from a quorum of replicas.

All rounds follow the same exact pattern, but the information

sent and received by the leader in each round differs:

First round: In the dissemination phase, the leader broadcasts

a block proposal to all processes. In the aggregation phase,

the leader collects a prepare quorum of 𝑁 − 𝑓 signatures

of the block. The signatures convey that the replicas have

validated and accepted the block proposed by the leader.

Second round: In the dissemination phase, the leader broad-

casts the prepare quorum. In the aggregation phase, the leader

collects the pre-commit quorum, including 𝑁 − 𝑓 signatures
from processes that have validated the prepare quorum. If

the leader is able to collect a pre-commit quorum, the value

proposed by the leader is locked and will not be changed,

even if the leader is subsequently suspected.

Third round: In the dissemination phase, the leader broadcasts

the pre-commit quorum. In the aggregation phase, the leader

collects a commit quorum, including 𝑁 − 𝑓 signatures of

processes that have validated the pre-commit quorum. If the

leader is able to collect the quorum, the value is decided.
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Figure 1. HotStuff communication pattern with 7 processes.

Fourth round: In the last round, the leader broadcasts the

commit quorum to all processes, which in turn verify it and

decide accordingly.

Figure 1 illustrates the communication pattern of HotStuff in

a system with 7 processes. HotStuff uses the following two

primitives:

• broadcastMsg(data). This primitive is used in the first

phase of each round to broadcast data from the leader

to all other processes.

• waitFor (N - f) votes. This primitive is used in the second

phase of each round, for the leader to collect votes from

a quorum of 𝑁 − 𝑓 processes.
The implementation of these primitives must satisfy the

following properties:

Definition 1. Reliable Dissemination: After the GST, and
in a robust configuration, all correct processes deliver the data

sent by the leader.

Definition 2. Fulfillment: After the GST, and in a robust

configuration, the aggregate collected by the leader includes at

least 𝑁 − 𝑓 votes.

It is easy to show that, when using perfect point-to-point

channels, it is possible to achieve Reliable Dissemination

and Fulfillment on a star topology. For this purpose, we first

define the notion of a robust star.

Definition 3. Robust Star: A star is said to be robust if the

leader is correct, and non-robust if the leader is faulty.

Briefly, the assumption of perfect point-to-point channels

and the fact that the leader is correct ensure that all correct

processes deliver the message sent by the leader, hence satis-

fying Reliable Dissemination. In a similar fashion, all correct

processes are able to send their vote to the leader which,

in turn, is able to collect 𝑁 − 𝑓 votes/signatures and hence

satisfy Fulfillment. For lack of space, we refer the reader to

the HotStuff paper for full details [33].

3.2 Using Trees to Implement HotStuff
We now discuss how to implement the broadcastMsg and

waitFor primitives using tree topologies, while preserving

the same properties. As noted before, processes are organized

in a tree with the leader at the root. The primitive broad-

castMsg is implemented by having the root send data to its

P1

P0

P2

P3 P4 P5 P6

(a) Topology

C
P0

P1

P2

L1

L2

2: pre-commit

L3
L4

1: prepare 3: commit 4: decide

(b) Communication pattern

Figure 2. Tree communication pattern for 7 processes.

children that in turn forward it to their own children, and so

forth. The primitive waitFor is implemented by having the

leaf nodes send their signatures to their parent. The parent

then aggregates those signatures with its own and sends the

aggregate to their own parent. This process is repeated until

the final aggregate is computed at the root of the tree. This

process is illustrated in Figure 2.

When using a tree to implement broadcastMsg andwaitFor,

the notion of robust configuration needs to be adapted, as

it is no longer enough that the leader is non-faulty to make

the configuration robust. We define a robust tree as follows.

Definition 4. Robust Tree: An edge is said to be safe if the

corresponding vertices are both correct processes. A tree is robust

iff the leader process is correct and, for every pair of correct

process 𝑝𝑖 and 𝑝 𝑗 , the path in the tree connecting these processes

is composed exclusively of safe edges.

Note that our definition of a robust tree is a sufficient but

not necessary condition to achieve consensus. In fact, con-

sensus can be reached as long as there is a path composed

exclusively of safe edges between the leader and a quorum

of correct processes. Our simpler formulation discards some

viable configurations - for instance a tree with a faulty inter-

nal node where all its children are also faulty - but provides

an important corollary: a tree is robust if and only if all inter-

nal nodes, including the leader, are correct processes. This

observation allows us to devise an efficient reconfiguration

algorithm that is optimal when the number of consecutive

faults is small (§5).

3.3 Dissemination and Aggregation
We start by describing the communication primitives used

to propagate information on the tree and the cryptographic

primitives used to perform aggregation.

3.3.1 Communicating on the Tree. Processes use the

tree to communicate. Each directed edge maps to a perfect

single-use point-to-point channel used to send and deliver

a single value. Note that, when using perfect channels, a

message is only guaranteed to be eventually delivered if

both the sender and the recipient are correct. If the sender is

faulty, no message may ever be delivered. To avoid blocking,

a process should be able to make progress if a message takes

too long to be received. Moreover, the single-use ensures

that the receiver either returns the current value sent or ⊥
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Algorithm 1 Impatient Channels: receive

1: let ic be an impatient channel built on top of perfect channel pc

2: function ic.receive( p) ⊲ receive from p

3: timer.start(Δ)
4: when pc.deliver (𝑝, 𝑣) do return 𝑣

5: when timer.timeout() do return ⊥
6: end function

and never older values. In practice, this can be achieved by

assigning a unique identifier to each instance and tagging

the corresponding messages with this identifier.

This behavior is captured by an abstraction we call impa-

tient channels. Impatient channels offer a blocking receive

primitive that always returns a value: either the value sent

by the sender, or a special value ⊥ if the sender is faulty or

the system is unstable. After the GST, if the sender and the

receiver are correct, the receiver always receives the value

sent. Impatient channels have the following properties:

• Validity: If a process 𝑝 𝑗 delivers a value 𝑣 on a channel

over an edge 𝑒𝑖 𝑗 , 𝑣 was sent by 𝑝𝑖 or 𝑣 = ⊥.
• Termination: If a correct process 𝑝 𝑗 invokes receive,

it eventually returns some value.

• Conditional Accuracy: Let 𝑝𝑖 and 𝑝 𝑗 be correct sender

and receiver processes, respectively. After GST, 𝑝 𝑗 al-

ways return the value 𝑣 sent by 𝑝𝑖 .

Algorithm 1 shows how impatient channels can be imple-

mented on top of perfect channels using the known bound

Δ on the worst-case network latency.

3.3.2 Cryptographic Collections. In each round of con-

sensus, it is necessary to collect a Byzantine quorum of votes.

The collection and validation of these votes can be an impair-

ment for scalability. Kauri mitigates these costs by using the

tree to aggregate votes as they are forwarded to the leader.

We model the process of vote aggregation with a crypto-

graphic collection abstraction that corresponds to a secure

multi-set of tuples (𝑝𝑖 , 𝑣𝑖 ). A process 𝑝𝑖 can create a new col-

lection 𝑐 with a value 𝑣𝑖 by calling 𝑐=new((𝑝𝑖 , 𝑣𝑖 )). Processes
can also merge two collections using a combine primitive de-

noted by 𝑐12 = 𝑐1⊕𝑐2. A process can also check if a collection

𝑐 includes at least a given threshold of 𝑡 distinct tuples with

the same value 𝑣 , by calling has(𝑐, 𝑣, 𝑡). Finally, it is possible
to check the total number of input tuples combined in 𝑐 by

checking its cardinality |𝑐 |. Cryptographic collections have
the following properties:

• Commutativity: 𝑐1 ⊕ 𝑐2 = 𝑐2 ⊕ 𝑐1
• Associativity: 𝑐1 ⊕ (𝑐2 ⊕ 𝑐3) = (𝑐1 ⊕ 𝑐2) ⊕ 𝑐3
• Idempotency: 𝑐1 ⊕ 𝑐1 = 𝑐1
• Integrity: Let 𝑐 = 𝑐1 ⊕ . . . 𝑐𝑖 . . . 𝑐𝑛 . If has (𝑐, 𝑣, 𝑡 ) then at

least 𝑡 distinct processes 𝑝𝑖 have executed 𝑐𝑖=new((𝑝𝑖 , 𝑣))
Note that different cryptographic techniques can be used

to implement these collections. In Kauri, we leverage a non-

interactive bls multisignature scheme that allows each in-

ternal node to aggregate the votes from its children into

one single aggregated vote [4]. The burden imposed on each

internal node (including the root) is O(𝑚), where𝑚 is the

Algorithm 2 broadcastMsg on a tree 𝑇 (process 𝑝𝑖 )

1: procedure broadcastMsg(𝑇 , data)

2: children←𝑇 .children(𝑝𝑖 ) ⊲ Get edges to children of 𝑝𝑖
3: parent←𝑇 .parent(𝑝𝑖 ) ⊲ Get parent of 𝑝𝑖 (returns ⊥ for root)

4: if parent ≠ ⊥ then
5: data← ic.receive(parent) ⊲ Receive from parent

6: end if
7: for all e ∈ children do ⊲ Send to children

8: ic.send(𝑒 , data)

9: end for
10: return data

11: end procedure

fanout of the tree and the complexity of verifying an aggre-

gated vote is O(1). Note that classical asymmetric signatures

require O(𝑁 ) verifications at each process [4].

3.3.3 Implementing broadcastMsg. The implementation

of broadcastMsg on a tree is presented in Algorithm 2. Note

that the algorithm always terminates, even if some interme-

diate nodes are faulty. This is guaranteed since impatient

channels always return a value after the known bound Δ on

the worst-case network latency, either the data sent by the

parent or the special value ⊥.

Theorem 1. Algorithm 2 guarantees Reliable Dissemination.

Proof. We prove this by contradiction. Assume Reliable Dis-

semination is not guaranteed. This implies that at least one

correct process did not receive the data sent by the leader.

This is only possible if: i) at least one correct process is not

connected to the leader either directly or through correct

intermediary processes, ii) one of the intermediary processes

or the root process did not invoke channel.send for at least

one correct child process, or iii) the data got lost in the chan-

nel. Reliable Dissemination is defined only for a robust con-

figuration which, following the definition of a Robust Tree,

ensures that the leader is correct and there is a path of correct

processes between the leader and any other correct process.

Thus, the first case is not possible. Moreover, correct pro-

cesses follow the algorithm and, because correct processes

can only have correct parents in a robust configuration, the

second case is also impossible. Finally, the third case is also

impossible due to the use of perfect channels. Therefore,

Algorithm 2 guarantees Reliable Dissemination. □

3.3.4 Implementing waitFor. Algorithm 3 presents the

implementation of waitFor on a tree. The algorithm relies

on the cryptographic primitives to aggregate the signatures

as they are propagated toward the root. Like broadcastMsg,

waitFor always terminates, even if some nodes are faulty.

This is guaranteed because impatient channels always return

a value after the known bound Δ on the worst-case network

latency, either the data sent by the child processes or the

special value ⊥. Before GST or in non-robust configurations,

the collection returned at the leader may be empty or include

just a subset of the required signatures.

Theorem 2. Algorithm 3 guarantees Fulfillment.
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Algorithm 3 waitFor on a tree 𝑇 (process 𝑝𝑖 )

1: procedure waitFor(𝑇 , input)

2: children←𝑇 .children(𝑝𝑖 ) ⊲ Get edges to children of 𝑝𝑖
3: parent←𝑇 .parent(𝑝𝑖 ) ⊲ Get parent of 𝑝𝑖 (returns ⊥ for root)

4: collection← new( (𝑝𝑖 , input))
5: for all e ∈ children do ⊲ Empty for leaf nodes

6: partial← ic.receive(𝑒)

7: collection← collection ⊕ partial

8: end for
9: if parent ≠ ⊥ then
10: ic.send(parent, collection)

11: end if
12: return collection

13: end procedure

Proof. Weprove this by contradiction. Assume that the leader

process was unable to collect 𝑁 − 𝑓 signatures. Following Al-
gorithm 3, this means that either: i) an internal node did not

receive the signatures from all correct children (line 6), ii) or

an internal node did not aggregate and relay the signatures

it has received from its correct children (line 10). Since we

assume impatient channels, that are implemented on top of

perfect point-to-point channels, the first case is not possible

after GST. The second case may happen, if either the internal

node omits signatures in the aggregate, does not relay any

signatures, or is blocked waiting indefinitely for messages

from its children. Either option leads to a contradiction. Since

we assume a robust graph, all internal nodes between the

root and a correct process must be correct and hence follow

the algorithm. Additionally, due to the impatient channels,

eventually each channel will return a value to the internal

node making sure that eventually it will unblock and re-

lay all collected signatures from all correct child processes.

Therefore Algorithm 3 guarantees Fulfillment. □

3.3.5 Challenges of Using a Tree. The implementations

of the broadcastMsg and waitFor primitives that we intro-

duced above allow us to replace the star topology used in Hot-

Stuff with a tree topology that is more efficient and scalable

as we show in the evaluation (§7). However, two remaining

challenges need to be addressed to make the tree topology a

valid alternative in practice:

Mitigate the increased latency: While trees allow to distribute

the load among all processes, the additional round-trip of

the broadcastMsg and waitFor primitives result in additional

latency, which might negatively affect system throughput.

We discuss how to mitigate this in §4.

Reconfiguration strategy: In HotStuff, the configuration is

robust if the leader is non-faulty. Therefore, there are only 𝑓

non-robust configurations and𝑁 − 𝑓 robust configurations. It
is thus trivial to devise a reconfiguration strategy that yields a

robust configuration in an optimal number of steps (i.e. 𝑓 +1).
In a tree, a configuration is robust iff the root and all internal

nodes are correct. The total number of configurations and

the subset of non-robust configurations is extremely large. In

§5 we introduce a reconfiguration strategy that builds robust

configurations in a small number of steps.

4 Mitigating Tree Latency
In this section we introduce the mechanisms to mitigate the

additional latency inherent to tree topologieswhen compared

to HotStuff’s star topology. As described earlier, HotStuff

needs four communication rounds for each instance of con-

sensus. If HotStuff waited for each consensus instance to

terminate before starting the next one, the system through-

put would suffer significantly. Therefore, HotStuff relies on

a pipelining optimization, where the 𝑖 + 1 instance of consen-
sus is started optimistically, before instance 𝑖 is terminated.

As a result, at any given time, each process participates in

multiple consensus instances. Furthermore, to reduce the

number of messages, HotStuff combines the information of

these parallel consensus instances in a single message.

By following the same structure, Kauri is amenable to the

same optimization. However, because Kauri uses a tree, the

latency to terminate a given round (and hence a consensus

instance) is substantially larger than in HotStuff. While at

first this might look like an obstacle, it opens the door for

more advanced pipelining techniques that substantially im-

prove throughput and hide the additional latency induced by

trees. In fact, as we will show in the evaluation (§7), in certain

scenarios, Kauri can achieve not only higher throughput, but

also lower latency than HotStuff.

4.1 Pipelining in HotStuff
We start by providing an overview of HotStuff’s pipelining

using the seven node scenario previously introduced in Fig-

ure 1. Figure 3 illustrates the execution of multiple rounds

of consensus in HotStuff where each round is depicted in a

different shade of gray.

Consider the first round (light gray) that starts with the

leader sending the block to all other processes (downward

arrows). The time this step takes depends on the size of the

data being transmitted, the available bandwidth, and the to-

tal number of nodes. To conclude a round, the leader has to

collect a quorum of signatures. These signatures start flow-

ing toward the leader as soon as the first process receives

the message from the leader (upward arrows). Therefore,

in a given round, dissemination and aggregation are par-

tially executed in parallel. Soon after the dissemination of a

round finishes, the leader may already start the next round

of consensus.

To implement pipelining, HotStuff optimistically starts a

new instance of consensus by piggybacking the first round

messages of the next consensus instance with the second

round messages of the previous instance. Because HotStuff

requires four rounds of communication, this process can be

repeated multiple times, resulting in messages that carry

information of up to four pipelined consensus instances. In

HotStuff the pipelining depth (i.e. the maximum number of

consensus instances that can run in parallel) is thus equal to

the number of communication rounds.
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Figure 4. Pipelining in Kauri

4.2 Pipelining in Kauri
In Kauri, we extend pipelining to fully leverage the load bal-

ancing properties of trees as illustrated in Figure 4. In a tree,

the fanout𝑚 is much smaller than the number of nodes 𝑁 ,

and therefore in Kauri the root completes its dissemination

phase much faster than in HotStuff, and it may become idle

long before it starts collecting votes. This allows the root to

start multiple instances of consensus during the execution

of a single consensus round. This introduces a multiplicative

factor that we call the pipelining stretch that augments the

pipelining depth of HotStuff. In the example of Figure 4, the

leader is able to start 3 new instances during the execution

of the first round of a given consensus instance. Note that,

in this example, the messages from the second round of in-

stance 1 are piggybacked with messages from the first round

of instance 4, i.e. a message carries information from consen-

sus instances/rounds that are farther away in the pipeline.

This increase in the pipelining depth allows for a higher

degree of parallelism, and hence throughput.

4.3 Pipelining Stretch and Expected Speedup
Kauri’s pipelining stretch, i.e. the number of instances that

can be initiated during a single round, is affected by the

following parameters:

Sending time: the time a node takes to send a block to all its

children. This value is a function of the fanout𝑚, the block

size 𝐵, and the link bandwidth 𝑏, and is approximated by
𝑚𝐵
𝑏
.

Processing time: the time a node takes to validate and/or

aggregate the votes it receives from its children. This heavily

depends on the type of signatures used by the algorithm. We

measured these values experimentally, for different signature

schemes (see §7).

Remaining time: the time that elapses from point the root

finishes sending the block to its children until it receives and

processes the last reply. This value is a sum of the network

latency and the processing time as defined above. It is roughly

given by:

remaining time = ℎ · (RTT + processing time)

where ℎ is the height of the tree and RTT is the network

roundtrip time. In a star topology the remaining time is small

and mainly used to collect and process replies. However, in

a tree, the root is often idle for most of the remaining time.

Kauri leverages this larger remaining time to start addi-

tional consensus instances. The challenge is therefore to

estimate how many additional instances can be started, i.e.

to estimate the pipelining stretch. For presentation simplicity,

we assume that sending and processing can be performed

concurrently. In a system where the bottleneck is the band-

width, i.e. where the sending time is much larger than the

processing time, the number of additional consensus instance

that can be started during the remaining time is given by:

remaining time

sending time
. Similarly, in a systemwhere the bottleneck is the

CPU, i.e. where the processing time is much larger than the

sending time, the number of additional consensus instances

that can be started during the remaining time is given by:

remaining time

processing time
.

Kauri’s pipelining stretch allows us to make the best use

of the time the leader saves by having to interact with just𝑚

nodes instead of 𝑁 − 1 nodes. Therefore, the ratio between

𝑁 − 1 and𝑚 defines the maximum speedup we can achieve

by using a tree instead of a star. For instance, in a system of

400 nodes, organized in a tree with fanout 20, the maximum

speedup we can expect Kauri to offer is 19.95.

5 Reconfiguration
We now discuss Kauri’s reconfiguration strategy. Recall that,

in Kauri, processes use a tree to communicate. Due to faults or

an asynchronous period, the tree may be deemed not robust

and therefore a reconfiguration procedure is necessary to

build a new tree. Naturally, not all possible trees are robust

and several reconfigurations might be necessary before a

robust tree is found.

Note that any leader-based protocol may require 𝑓 + 1
reconfigurations to find a robust topology, given that 𝑓 con-

secutive leaders may be faulty. Our challenge is to avoid

making the reconfiguration of Kauri superlinear with the

number of processes, while also avoiding to fall back imme-

diately to a star topology as soon as a single fault occurs.
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We conjecture that building a general reconfiguration

strategy that yields a robust tree in a linear number of steps

without falling back to a star topology is impossible, due

to the large number of non-robust configurations that may

occur in a tree. Consider, for instance, the case of binary trees

where the number of possible binary trees is given by the

Catalan number 𝐶𝑁 =
(2𝑁 )!
(𝑁+1)!𝑁 !

. From all these trees, only a

small fraction is robust, namely those where faulty processes

are not internal nodes (Definition 4). Thus, a reconfiguration

strategy that considers all possible configurations may re-

quire a factorial number of steps to find a robust tree. We

discuss our reconfiguration strategy next.

5.1 Modeling Reconfiguration as an Evolving Graph
We model the sequence of trees as an evolving graph, i.e.

a sequence of static graphs (that are trees). To ensure that

eventually a robust tree is used, the evolving graph must

observe the following property:

Definition 5. Recurringly Robust Evolving Graph: An
evolving graph G is said to be recurringly robust iff robust

static graphs appear infinitely often in its sequence.

A recurringly robust evolving graph is sufficient to ensure

that a robust graph will eventually be used by processes

to communicate. However, this is undesirable in practice

because the number of reconfigurations until a robust graph

is found is unbounded. Because the system is essentially

halted during reconfiguration, we would like to find a robust

graph after a small number 𝑡 of reconfigurations. We call this

property of an evolving graph 𝑡-Bounded conformity.

Definition 6. 𝑡-Bounded Conformity: a recurringly robust
evolving graph G exhibits 𝑡-Bounded conformity if a robust

static graph appears in G at least once every 𝑡 consecutive

static graphs.

5.2 Achieving t-Bounded Conformity
We now introduce an algorithm that achieves 𝑡-Bounded

Conformity. We split all processes into 𝑡 disjoint bins, each

of size greater or equal to 𝐼 , where 𝐼 is the number of in-

ternal nodes in a tree. Then we build an evolving graph by

creating trees whose internal nodes are drawn exclusively

from a given bin, i.e., each tree 𝑇𝑘
is built by picking a bin

𝐵𝑖 , following a round robin strategy, and by assigning nodes

from bin 𝐵𝑖 to all internal nodes of the tree (including the

root) as depicted in Algorithm 4.

Theorem 3. Algorithm 4 constructs an evolving graph that

satisfies t-Bounded Conformity as long as 𝑓 < 𝑡 .

Proof. Because the 𝑡 bins are disjoint and there are at most

𝑓 < 𝑡 faults, at least one of the bins is composed exclusively

of correct nodes. In each 𝑡 consecutive steps, the algorithm

picks a tree whose internal nodes are drawn from distinct

bins, hence guaranteeing that a robust tree is found. □

Algorithm 4 Construction of an Evolving Tree with t-

Bounded Conformity

1: Initially, split the set of processes N into 𝑡 + 1 disjoint bins
2: N ← 𝐵0 ∪ 𝐵1 ∪ . . . ∪ 𝐵

𝑁
𝐼 ; s.t. |𝐵𝑖 | ≥ 𝑓 + 1 ∧ 𝐵𝑖 ∩ 𝐵 𝑗 = ∅.

3: function build(𝑘)

4: 𝑖 ← 𝑘 mod (𝑡 + 1)
5: G𝑖 ← all possible trees whose internal nodes are drawn exclusively from 𝐵𝑖

.

6: 𝑇𝑘 ← pick any tree from G𝑖
7: return𝑇𝑘

8: end function

A limitation of the approach is that each bin must be large

enough to contain at least as many processes as the number

of internal nodes of a tree. This limits the number of bins

that can be generated and, therefore, the maximum value

for 𝑡 . In a balanced tree of fanout𝑚 we can, at most, obtain

𝑚 disjoint bins with enough capacity to fill all the internal

positions, such that this algorithm allows us to achieve at

most (𝑚 − 1)-Bounded Conformity.

5.3 Gracefully Degraded Reconfiguration
Given that Algorithm 4 can only achieve (𝑚 − 1)-Bounded
Conformity, if 𝑓 ≥ 𝑚 we will not be able to reconfigure

the system in an optimal number of steps. Therefore, we

adopt the following pragmatic approach to reconfiguration:

we execute Algorithm 4 and if after𝑚 steps a robust tree is

not found, Kauri falls back to a star. Thus, in the worst case

scenario, Kauri performs𝑚 + 𝑓 + 1 reconfigurations until a
star with a non-faulty leader is found.

When the number of actual faults is small, i.e. if 𝑓 <

𝑚, Kauri recovers quickly without losing its scalability and

throughput properties. If the number of faults is large, i.e. if

𝑚 ≤ 𝑓 < 𝑁 /3, the system still recovers in a linear number of

steps, but falls back to the performance of the original (star

based) HotStuff protocol.

6 Implementation
We have implemented Kauri by extending the publicly avail-

able HotStuff implementation
1
. The core of the effort was

extending the code to include the implementation of the

broadcastMsg and waitFor primitives, as specified in Algo-

rithm 2 and Algorithm 3, respectively. We also added support

for the bls cryptographic scheme by including the publicly

available implementation used in the Chia Blockchain [4, 8].

This allows internal nodes to aggregate and verify the signa-

tures of their children, and thus balance the computational

load. Both the verification cost of the signature aggregates,

and the size of aggregates have a small O(1) complexity,

contributing to the overall efficiency of the implementation.

Because HotStuff and Kauri share the same codebase, we

also implemented a variant of HotStuff that uses the bls

signature scheme. As we discuss in more detail in the next

section, this allows us to assess the effects of our contribu-

tions versus simply adopting another cryptographic scheme

1
Available at https://github.com/hot-stuff/libhotstuff
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in HotStuff. We denote the original HotStuff implementation

as HotStuff-secp and the bls variant as HotStuff-bls.

Pipelining: To implement pipelining, we use an estimation of

the parameters discussed in §4 to compute the ideal time to

start the dissemination phase for the next consensus instance.

In the current implementation, we use a static pre-configured

value but this could be automatically adapted at runtime,

which we leave for future work.

Reconfiguration: To trigger reconfigurations we leverage the

existing HotStuff mechanisms. In detail, if no consensus is

reached after a timeout, each process compiles a new-view

message that includes the last successful quorum it observed

and sends it to the next leader [33]. In turn, the candidate

leader waits for 2𝑓 +1 new-view messages and, depending on

the collected information, either continues the work of the

previous leader (if a block was previously locked) or proposes

its own block (if no block had been locked yet). Similarly,

in Kauri and upon timeout, each process invokes the build

function of Algorithm 4 to construct the next tree and sends

the same new-view message to the root of the new tree. The

root then also awaits 2𝑓 + 1 new-view messages before re-

initiating the protocol. Note that the new-view messages do

not use the tree and are instead sent directly to the candidate

leader as in HotStuff. This is the only time in Kauri where

all processes communicate directly with the leader.

Code Availability: Overall, the implementation of the func-

tionalities described above required the addition/adaptation

of ≈ 1300 loc to the HotStuff codebase
2
.

7 Evaluation
In this section we evaluate Kauri across several scenarios.

7.1 Experimental Setup
All experimentswere performed on theGrid’5000 testbed [12].

We used 20 physical machines, each with two Intel Xeon E5-

2620 v4 8-core CPUs and 64 GB RAM. We deploy a variable

number of processes (from 100 to 400) in these machines. As

we will discuss later, in some configurations Kauri is able to

saturate the hardware resources of our testbed.

We evaluate Kauri on a wide range of deployments, that

capture the different scenarios where we believe that per-

missioned blockchains with a large number of participants

are likely to be used. More precisely, we consider the follow-

ing deployment scenarios: global, regional, and national. The

global deployment models a globally distributed blockchain

as used in other works [15, 19, 20] with 200𝑚𝑠 roundtrip

time (RTT) and 25𝑀𝑏/𝑠 bandwidth. The two other scenar-

ios model reported industry use cases [9] in more limited

geographical deployments such as local supply-chain man-

agement. The regional deployment captures a deployment in

a large country or unions of countries, such as the US or the

2
Available at https://github.com/Raycoms/Kauri-Public

EU, with 100𝑚𝑠 RTT and 100𝑀𝑏/𝑠 bandwidth. The national
deployment models a setting where nodes are closer to each

other with 10𝑚𝑠 RTT and 1000𝑀𝑏/𝑠 bandwidth. Finally, we
also consider a heterogeneous deployment with a mix of dif-

ferent bandwidth and RTT characteristics, as used in other

recent works[17]. We model the network characteristics of

each scenario using NetEm[18].

For most experiments, we use three system sizes with

𝑁 = 100, 200, 400 processes. As expected in most realistic

deployments, these values of 𝑁 do not yield perfect𝑚-ary

trees. Therefore, we simply assign processes to tree nodes

such that it approximates a balanced tree. Unless otherwise

stated, this results in the following trees: for 𝑁 = 100,𝑚 = 10

for the root and𝑚 = [8, 9] for the other internal nodes; for
𝑁 = 200 the root’s fanout is𝑚 = 14, and for the other internal

nodes𝑚 = [13, 14], and for 𝑁 = 400,𝑚 = 20 for the root and

𝑚 = [18, 19] for the remaining internal nodes. This results in

trees with height 2 that are used throughout the experiments,

unless otherwise stated.

7.2 Configuring Kauri
We now describe the values that are used to configure Kauri.

Table 2 shows the values of the different parameters re-

quired to compute the Kauri pipelining stretch, following

the rationale introduced in §4.3. We consider different band-

width/RTT scenarios and blocks of 250𝐾𝑏 (plus signatures).

For each configuration we present the processing time, which

we have measured experimentally, the sending time, and the

remaining time (§4.3). These values are used to compute

both the target pipelining stretch and the expected maxi-

mum speedup for each configuration. Note that, due to space

constraints, Table 2 does not include the parameter values

for all configurations we evaluate in the following sections.

For instance, we have also experimented with block sizes

different than 250𝐾𝑏. The purpose of the table is not to be

exhaustive but to offer a conceptual framework that makes

it easier to reason about the experimental results presented

in the next sections.

7.3 Effect of Pipelining Stretch on Throughput
We start by showing the effects of the pipelining stretch on

Kauri’s throughput.

Figure 5 depicts the throughput achievedwhen using Kauri

in a setting with 𝑁 = 100 in the global scenario (200𝑚𝑠

RTT and 25𝑀𝑏/𝑠 bandwidth) for different block sizes and

increasing pipelining stretch values.

For a blocksize of 250𝐾𝑏, the experimental numbers are

close to the numbers predicted by our model and presented

in Table 2 (3rd line for Kauri), i.e. the best results are achieved

with a pipelining stretch close to 5. This shows that our per-

formance model, albeit simple, can offer a good estimate of

the performance of the real system. The figure also shows

that, with smaller block sizes, higher pipelining stretch val-

ues are needed to make full use of the resources. This is also
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HotStuff-secp

National 400 1 399 15 157 25 4 1 4 -

Regional 400 1 399 15 1569 115 4 1 4 -

Global 100 1 99 4 1153 204 4 1 4 -

Global 200 1 199 7 2591 207 4 1 4 -

Global 400 1 399 15 6277 215 4 1 4 -

Kauri

National 400 2 20 27 5 54 4 3 12 ≈ 6x

Regional 400 2 20 27 52 234 4 5 20 ≈ 30x

Global 100 2 10 17 103 417 4 5 20 ≈ 10x

Global 200 2 14 23 144 423 4 4 16 ≈ 20x

Global 400 2 20 27 206 434 4 3 12 ≈ 30x

Table 2. Pipelining stretch and estimated speedup vs

HotStuff-secp for a block size of 250𝐾𝑏 and different 𝑁 .
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Figure 5. Effect of pipelining stretch on Kauri’s throughput

for 𝑁 = 100,𝑚 = 10 and different block sizes.

expected given our model: with smaller block sizes the send-

ing time is smaller and the idle portion of the remaining time

is much larger. The ratio between these two values is also

larger, thus allowing Kauri to start more instances while it

waits for the responses from a previous instance. Naturally,

it is more efficient to run fewer instances with more trans-

actions each than many instances with a small number of

transactions. For the rest of the evaluation, we use a blocksize

of 250𝐾𝑏 for Kauri. For HotStuff, we empirically observed

that a blocksize of 250𝐾𝑏 also yielded the best results across

the different experiments.

7.4 Throughput Across Different Scenarios
We now compare the throughput of Kauri with HotStuff-secp,

the standard implementation, and our variant HotStuff-bls,

in the national, regional and global scenarios. To assess the

impact of our pipelining scheme we also include results for

Kauri without pipelining (denoted as Kauri-np). By using

trees with BLS signatures but without pipelining, Kauri-np

captures the performance characteristics of existing non-

pipelining tree based systems such as Motor [19] and Om-

niledger [21]. The results are depicted in Figure 6.

The first observation is that, as expected, HotStuff is ex-

tremely sensitive to the available bandwidth and to the total

number of nodes in the system. The larger the number of

nodes, the longer it takes for the leader to finish a given
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Figure 6. Throughput for different configurations.

round. Also, for a fixed value of 𝑁 , the sending time increases

sharply as the network bandwidth decreases. As a result,

the performance of HotStuff is highly penalized in systems

with large numbers of participants and limited bandwidth.

Also, since the use of bls signatures reduces bandwidth us-

age, HotStuff-bls performs better than HotStuff-secp in all

scenarios, except when using the 1𝐺𝑏/𝑠 network.
A second observation is that, without our pipelining tech-

niques, the performance of tree-based algorithms is mainly

limited by the RTT. This is illustrated by Kauri-np where

the throughput drops significantly when the RTT increases

but only drops slightly with the number of processes. It is

also interesting to observe that, as the network bandwidth

decreases, even without our pipelining, the use of a tree al-

ready pays off. In fact, in the regional scenario, Kauri-np

offers better throughput than HotStuff for a system with 200

or more processes.

Kauri, by leveraging the full capacity of the system via our

pipelining mechanism, outperforms both HotStuff variants

and Kauri-np in all scenarios. Interestingly, despite the sim-

plifications adopted in our model (which, for instance, con-

siders that computation and dissemination do not interfere

with each other) the predicted speedup over HotStuff-secp is

very close to the observed value. For instance, from Table 2
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we expected a speedup over HotStuff-secp of approximately

≈ 30𝑥 for the system of 400 nodes in the global scenario and

the value obtained experimentally is 28.2𝑥 . This difference is

quite reasonable given the number of simplifications adopted

in the model. Overall, while the use of trees (Kauri-np) results

in better performance than stars in certain scenarios, only

the combination of trees and pipelining permits to achieve a

substantial performance increase.

Note that the results of Kauri for the national scenario do

not match the predictions of our model, which predicts a

speedup of ≈ 6𝑥 with 400 processes. This is due to the limi-

tations of our testbed that does not have capacity to support

this experiment without incurring in a CPU bottleneck (note

that due to the limited number of physical servers we are

forced to collocate several process per server). In the plot

and the rest of the evaluation we highlight the data points

obtained in a saturated testbed with a red circle.

Finally, note that due to the use of a tree with a fixed height

of ℎ = 2, Kauri’s throughput drops with the number of pro-

cesses. In §7.8 we show how throughput can be preserved by

increasing the height of the tree (and the pipelining stretch).

7.5 Effect of the RTT in Throughput
Pipelining not only allows Kauri to better exploit the avail-

able computing and network resources, but also contributes

to mitigating the negative effects of additional RTT inherent

in tree-based approaches. To further assess this, we con-

ducted an experiment where we observe the throughput

evolution as the RTT increases.

Figure 7 shows the results for N=100 in the regional sce-

nario (100𝑀𝑏/𝑠 bandwidth) but where we varied the RTT

from 50𝑚𝑠 to 400𝑚𝑠 . As it can be observed, while the through-

put of HotStuff-secp decreases as the RTT increases, the

throughput of Kauri can be kept almost constant by increas-

ing the pipelining stretch to avoid the leader from being

idle while waiting for the replies. Following our model, the

pipelining stretch varied from 7, for an RTT of 50𝑚𝑠 , to 33

for an RTT of 400𝑚𝑠 . Results for the other scenarios (not

shown due to space constraints) follow a similar trend.

7.6 Latency
The previous experiments showed that Kauri, despite using

longer rounds, can achieve better throughput than HotStuff
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due to the use of the pipelining stretch. We now conduct a

similar study on latency.

Given that the use of a tree increases the latency required

to exchange messages among the leader and the remain-

ing processes, one could expect that Kauri would exhibit

higher system latency than HotStuff. In fact, in a system

with unlimited bandwidth and processing power, the latency

of consensus is bound by the RTT. However, in realistic

settings, bandwidth is not infinite and in practice, the sys-

tem latency is limited by the sending time. The dissemina-

tion/aggregation parallelism enabled by a tree substantially

reduces the sending time. This is particularly important in

bandwidth constrained scenarios where the sending time has

a much larger impact on latency than the additional number

of communication hops required by a tree.

To confirm this we set up a scenario with a fixed RTT of

100𝑚𝑠 and vary the bandwidth from 25𝑀𝑏/𝑠 to 1000𝑀𝑏/𝑠 .
Figure 8 shows the results for 𝑁 = 100. As shown, the avail-

able bandwidth has a much larger impact on HotStuff-secp

than in Kauri. In fact, for bandwidths smaller than 100𝑀𝑏/𝑠
Kauri offers better latency than Hotstuff-secp, and only at

high bandwidths HotStuff-secp starts to have substantially

better latency. The pictures also shows (analytical) values for

an idealized scenario of infinite bandwidth, where HotStuff-

secp’s latency would be at best half of Kauri’s. As in §7.5,

results for the other system sizes (not shown due to space

constraints) follow a similar trend.

7.7 Throughput vs Latency
We now study the impact of load in the performance of the

system. To this end we fix the system size, network band-

width and latency, and vary the load in the system by ma-

nipulating the block size, i.e. the number of transactions

offered by the client. Results are depicted in Figure 9 for the

global scenario with 𝑁 = 100 and the following block sizes:

32𝐾𝑏 64𝐾𝑏, 125𝐾𝑏, 250𝐾𝑏, 500𝐾𝑏, and 1𝑀𝑏. For Kauri we

adjust the pipelining stretch for each scenario following our

performance model.

Following the observations of the previous experiments,

the throughput of Kauri is substantially higher than that of

both variants of HotStuff in all scenarios. As the block size

increases, the latency of all systems increases as expected

due to an increase in the sending time. This increase is how-

ever much faster in both variants of HotStuff, and for block
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sizes larger than 125𝐾𝑏 HotStuff’s latency surpasses that

of Kauri. This highlights the importance of using a tree to

spread the load and hence avoid a bottleneck at the leader

process. HotStuff-bls outperforms HotStuff-secp in both la-

tency and throughput for all scenarios, which also confirms

the previous experiments when varying the available band-

width (Figure 8). Finally, the decrease in latency in Kauri

when going from a block sizes of 32Kb to 64Kb (the two

first data points in the Kauri line) is due to pipelining effects

on CPU usage. Blocks of 32Kb allows for a higher level of

pipelining, which saturates the CPU. As the block size in-

creases, the pipeline decreases, following our performance

model (hence, gradually shifting the bottleneck away from

the CPU and to the network).

7.8 Impact of Tree Height in Throughput/ Latency
The experiments of the previous sections have shown that

the sending time is a key factor for both throughput and

latency. By reducing the sending time, Kauri provides better

throughput in all considered scenarios and better latency in

bandwidth constrained scenarios.

We now study the impact of tree height on throughput

and latency by setting an experiment with 𝑁 = 100, an RTT

of 100𝑚𝑠 , and variable bandwidth. We deployed HotSuff-

secp, HotStuff-bls (with ℎ = 1 and𝑚 = 99), and two Kauri

configurations: one with ℎ = 2 and𝑚 = 10, as in the previous

experiments, and another with ℎ = 3 and𝑚 = 5.

Results are shown in Figure 10. The first observation is that

by increasing the tree height it is possible to substantially in-

crease Kauri’s throughput, which almost doubles, with only

a modest impact on latency. The results for Kauri with ℎ = 2

at 1𝐺𝑏/𝑠 bandwidth and ℎ = 3 at 100𝑀𝑏 and above saturate

our testbed, which is denoted by the red circle. According

to our model, for ℎ = 2 we expect the throughput to double

whenmoving from a 100𝑀𝑏/𝑠 bandwidth to 1𝐺𝑏/𝑠 . Similarly,

for ℎ = 3, we expect the throughput obtained with a band-

width of 50𝑀𝑏/𝑠 to double and quadruple with a bandwidth

of 100𝑀𝑏/𝑠 and 1𝐺𝑏/𝑠 , respectively.
The second observation corroborates the experiments of

§7.6 by showing that the latency of both variants of HotStuff

vary substantially with the available bandwidth whereas

Kauri’s are much less affected. Finally, we can also see that

HotStuff-bls can outperform HotStuff-secp in certain scenar-

ios but only for a small margin as both systems share the

same sending time characteristics. To achieve a substantial

improvement one needs to drastically reduce the sending

time through the use of trees, and maximize resource usage

through the use of pipelining.

7.9 Heterogeneous Networks
So far we have only considered homogeneous networks,

where all links have the same characteristics. We now con-

sider an heterogeneous setup, where participants are de-

ployed in local clusters (with very low RTT and high band-

width within each cluster) connected over the Internet (with

varying bandwidth and RTT between clusters). For this pur-

pose, we adopted the scenario used in the evaluation of Re-

silientDB [17] in a systemwith𝑁 = 60. This allows us to com-

pare the performance of Kauri with the results published for

ResilientDB (we did not run ResilientDB ourselves because,

at the time of this submission, the public implementation of

ResilientDB’s GeoBFT protocol was not yet available). When

deploying Kauri, we used a tree where the leader is placed

in the cluster with the highest bandwidth and lowest RTT to

every other cluster (i.e. Oregon) and the internal nodes are

located closely to their leaf nodes. Similarly, for the HotStuff

variants, the leader is located in Oregon.

Results are depicted in Figure 11. As can be observed,

Kauri’s throughput substantially outperforms all other sys-

tems. This is due to the high RTT, which allows Kauri to

pipeline several consensus instances in parallel and hence

achieve high throughput. In terms of latency, both HotStuff

variants outperform Kauri because the system size is small

and hence bandwidth does not become a bottleneck. How-

ever, HotStuff latency would quickly grow with the system -

as bandwidth becomes the bottleneck, while Kauri’s latency

would remain largely unaffected. Nonetheless, we stress that

Kauri achieves ≈ 10𝑥 higher throughput than HotStuff vari-

ants with only a ≈ 2𝑥 increase in latency. Interestingly, the

performance of Kauri-np is the worse of all systems. This is

because without pipelining the high RTT negatively affects

the remaining time, which ultimately limits throughput.

Note that the Hotstuff-secp throughput results we ob-

tained are substantially lower than those reported in Re-

silientDB. This is because ResilientDB’s authors [17] run
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Figure 11. Throughput in the network of [17] with 𝑁 = 60.

𝑁 independent HotStuff instances in parallel (where each

process is the leader of one such instance) and account for

the overall throughput across all instances, which in practice

equates to running 𝑁 independent blockchains. We opted

instead to consider the throughput of a single instance de-

ployed in the best possible scenario. In this scenario, Kauri’s

throughput is on par with the reported throughput of Re-

silientDB, which is ≈ 55𝑘𝑡𝑥/𝑠 [17]. However, ResilientDB
performance is dictated by the number of clusters while Kauri

is independent of this factor. Moreover, ResilientDB tolerates

only 𝑓 ≤
⌊
𝐶−1
3

⌋
, where 𝐶 is the size of the smallest cluster

(§1), while Kauri tolerates 𝑓 ≤
⌊
𝑁−1
3

⌋
faults as classical BFT.

It is worth noting that, in heterogeneous networks, all

these protocols require some amount of manual configura-

tion for optimal performance (for instance, selecting the best

place for the leader and for internal nodes). Designing meth-

ods to automatically find the best deployment configuration

for Kauri is left for future work.

7.10 Reconfiguration
Finally, we evaluate the reconfiguration time in the following

faulty scenarios: i) one faulty leader, ii) three consecutive

faulty leaders, and iii) 𝑓 faulty interior or leader nodes. In the

first two cases, 𝑓 < 𝑚, thus Kauri keeps the tree topology,

while in the third case, 𝑓 is large and hence Kauri needs to

fall back to a star. We empirically calibrate the fault detection

timeout, by starting with a large value and gradually decreas-

ing it until we found that further decreases would lead to

spurious reconfigurations in a stable system. This resulted

in a timeout of 0.35𝑠 for Kauri and 1.7𝑠 for HotStuff-secp.

This difference is explained by the fact that Kauri message

dissemination is more regular than HotStuff, due to pipelin-

ing, and hence the fault detection timeout can be set more

aggressively. Figure 12 presents the results for a system with

𝑁 = 100 in the global scenario. We execute each system for

100 seconds (warm-up not shown), inject the fault at 40 sec-

onds and measure the impact on the throughput. As we can

observe, for a small number of faults both systems recover to

the throughput levels before the fault in ≈ 5 seconds for one

faulty leader (Figure 12a) and ≈ 12 seconds for three consec-

utive faulty leaders (Figure 12b). As shown, Kauri recovers

in the same time-frame as HotStuff.

To assess the behavior of Kauri with a large number of

faulty nodes (i.e. 𝑓 ) we set up two different scenarios depicted

in Figure 12c. In the first scenario (plot line labeled “Kauri

leaders") 𝑓 leaders fail in succession. As expected after 𝑓

reconfigurations Kauri has fallen back to a star and stabilizes

at around the same throughput of HotStuff. In the second

scenario (plot line labeled “Kauri internal+leaders"), we start

by failing internal nodes of𝑚 consecutive trees such that no

consensus can be reached for any of these trees. This forces

Kauri to degrade to a star after 𝑚 reconfigurations. Then,

we selected faulty processes to serve as leaders for the first

𝑓 star networks. This is possible because a faulty process

can prevent consensus from being reached in two different

configurations: if it is an internal node in a tree and if it is

subsequently picked as root node for a star. This scenario

constitutes the worst-case scenario for Kauri, causing 𝑓 +𝑚+1
reconfigurations, as stated in Section 5.3. In this scenario, the

total recovery time is long because all configurations (except

the last) timeout. In detail, the timeout is initially set to 1.7𝑠 ,

doubled after each of the first two reconfigurations, and

subsequently capped at 10𝑠 . Since 𝑓 = 33 and𝑚 = 10, with

HotStuff we need a total of 1.7 + 3.4 + 6.8 + 10 · 30 = 311.9𝑠

to recover and with Kauri we need 10 · 10 = 100𝑠 more.

Nonetheless, after the system stabilizes the performance of

Kauri is at the same level as HotStuff.

8 Conclusions and Future Work
State-of-the-art permissioned blockchains suffer from im-

portant limitations: bottlenecks resulting from work con-

centration on the leader, throughput decrease when imple-

menting load distribution, or degraded resilience. Kauri over-

comes these limitations by introducing a novel pipelining

scheme that makes full use of the parallelization opportuni-

ties provided by dissemination/ aggregation trees. Further-

more, Kauri uses a reconfiguration strategy that preserves

the tree when the number of faults is smaller than the fanout,

while still ensuring that a robust configuration is found in

a linear number of steps for any number of faults 𝑓 < 𝑁 /3.
In contrast with solutions based on committees, Kauri does

not compromise the resilience nor the finality of consensus.

Kauri’s throughput substantially outperforms HotStuff’s in

all considered scenarios, reaching up to 28x with only a mod-

est increase in latency. In bandwidth-constrained scenarios

Kauri outperforms HotStuff in both throughput and latency.

The current implementation of Kauri requires the topology of

the tree and the value of the pipelining stretch to be manually

configured, using the performance model provided in this

paper. We are currently working on algorithms to automate

and optimize these configurations.
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