
The Stellar Consensus Protocol:
A Federated Model for Internet-level Consensus

DAVID MAZIÈRES, Stellar Development Foundation

This paper introduces a new model for consensus called federated Byzantine agreement (FBA). FBA achieves
robustness through quorum slices—individual trust decisions made by each node that together determine
system-level quorums. Slices bind the system together much the way individual networks’ peering and tran-
sit decisions now unify the Internet.

We also present the Stellar Consensus Protocol (SCP), a construction for FBA. Like all Byzantine agree-
ment protocols, SCP makes no assumptions about the rational behavior of attackers. Unlike prior Byzantine
agreement models, which presuppose a unanimously accepted membership list, SCP enjoys open member-
ship that promotes organic network growth. Compared to decentralized proof of-work and proof-of-stake
schemes, SCP has modest computing and financial requirements, lowering the barrier to entry and poten-
tially opening up financial systems to new participants.

CCS Concepts: •Security and privacy → Distributed systems security; Security protocols;

Additional Key Words and Phrases: Byzantine fault tolerance, asynchronous systems

1. INTRODUCTION

Financial infrastructure is currently a mess of closed systems. Gaps between these
systems mean that transaction costs are high [Provost 2013] and money moves slowly
across political and geographic boundaries [Banning-Lover 2015; CGAP 2008]. This
friction has curtailed the growth of financial services, leaving billions of people under-
served financially [Demirguc-Kunt et al. 2015].

To solve these problems, we need financial infrastructure that supports the kind of
organic growth and innovation we’ve seen from the Internet, yet still ensures the in-
tegrity of financial transactions. Historically, we have relied on high barriers to entry to
ensure integrity. We trust established financial institutions and do our best to regulate
them. But this exclusivity conflicts with the goal of organic growth. Growth demands
new, innovative participants, who may possess only modest financial and computing
resources.

We need a worldwide financial network open to anyone, so that new organizations
can join and extend financial access to unserved communities. The challenge for such
a network is ensuring participants record transactions correctly. With a low barrier
to entry, users won’t trust providers to police themselves. With worldwide reach,
providers won’t all trust a single entity to operate the network. A compelling alter-
native is a decentralized system in which participants together ensure integrity by
agreeing on the validity of one another’s transactions. Such agreement hinges on a
mechanism for worldwide consensus.

This paper presents federated Byzantine agreement (FBA), a model suitable for
worldwide consensus. In FBA, each participant knows of others it considers impor-
tant. It waits for the vast majority of those others to agree on any transaction before
considering the transaction settled. In turn, those important participants do not agree
to the transaction until the participants they consider important agree as well, and so
on. Eventually, enough of the network accepts a transaction that it becomes infeasible
for an attacker to roll it back. Only then do any participants consider the transaction
settled. FBA’s consensus can ensure the integrity of a financial network. Its decentral-
ized control can spur organic growth.

This paper further presents the Stellar consensus protocol (SCP), a construction for
FBA. We prove that SCP’s safety is optimal for an asynchronous protocol, in that it
guarantees agreement under any node-failure scenario that admits such a guarantee.

Draft of November 17, 2015

Pete Keleher

Pete Keleher

2 D. Mazières

We also show that SCP is free from blocked states—in which consensus is no longer
possible—unless participant failures make it impossible to satisfy trust dependencies.
SCP is the first provably safe consensus mechanism to enjoy four key properties simul-
taneously:

— Decentralized control. Anyone is able to participate and no central authority
dictates whose approval is required for consensus.

— Low latency. In practice, nodes can reach consensus at timescales humans expect
for web or payment transactions—i.e., a few seconds at most.

— Flexible trust. Users have the freedom to trust any combination of parties they
see fit. For example, a small non-profit may play a key role in keeping much larger
institutions honest.

— Asymptotic security. Safety rests on digital signatures and hash families whose
parameters can realistically be tuned to protect against adversaries with unimag-
inably vast computing power.

SCP has applications beyond financial markets for ensuring organizations perform
important functions honestly. An example is certificate authorities (CAs), who literally
hold the keys to the web. Experience shows that CAs sign incorrect certificates that get
used in the wild [Microsoft 2013; Langley 2015]. Several proposals address this prob-
lem through certificate transparency [Kim et al. 2013; Laurie et al. 2013; Basin et al.
2014; Melara et al. 2014]. Certificate transparency allows users to examine the history
of certificates issued for any given entity and detect attempts by CAs to change an en-
tity’s public key without the endorsement of the previous key. SCP holds the potential
to strengthen the indelible certificate history at the core of certificate transparency.
Demanding global consensus on certificate history among a decentralized group of au-
ditors would make it harder to backpedal and override previously issued certificates.

The next section discusses previous approaches to consensus. Section 3 defines fed-
erated Byzantine agreement (FBA) and lays out notions of safety and liveness ap-
plicable in the FBA model. Section 4 discusses optimal failure resilience in an FBA
system, thereby establishing the security goals for SCP. Section 5 develops federated
voting, a key building block of the SCP protocol. Section 6 presents SCP itself, proving
safety and freedom from blocked states. Section 7 discusses limitations of SCP. Finally,
Section 8 summarizes results. For readers less familiar with mathematical notation,
Appendix A defines some symbols used throughout the paper.

2. RELATED WORK

Figure 1 summarizes how SCP differs from previous consensus mechanisms. The most
famous decentralized consensus mechanism is the proof-of-work scheme advanced by
Bitcoin [Nakamoto 2008]. Bitcoin takes a two-pronged approach to consensus. First, it
provides incentives for rational actors to behave well. Second, it settles transactions
through a proof-of-work [Dwork and Naor 1992] algorithm designed to protect against
ill-behaved actors who do not possess the majority of the system’s computing power.
Bitcoin has overwhelmingly demonstrated the appeal of decentralized consensus [Bon-
neau et al. 2015].

Proof of work has limitations, however. First, it wastes resources: by one estimate
from 2014, Bitcoin might consume as much electric power as the entire country of Ire-
land [O’Dwyer and Malone 2014]. Second, secure transaction settlement suffers from
expected latencies in the minutes or tens of minutes [Karame et al. 2012]. Finally,
in contrast to traditional cryptographic protocols, proof of work offers no asymptotic
security. Given non-rational attackers—or ones with extrinsic incentives to sabotage

Pete Keleher

The Stellar Consensus Protocol 3

mechanism
decentralized

control
low

latency
flexible

trust
asymptotic

security

proof of work

proof of stake maybe maybe

Byzantine agreement

Tendermint

SCP (this work)

Fig. 1. Properties of different consensus mechanisms

consensus—small computational advantages can invalidate the security assumption,
allowing history to be re-written in so-called “51% attacks.” Worse, attackers initially
controlling less than 50% of computation can game the system to provide dispropor-
tionate rewards for those who join them [Eyal and Sirer 2013], thereby potentially
gaining majority control. As the leading digital currency backed by the most computa-
tional power, Bitcoin enjoys a measure of protection against 51% attacks. Smaller sys-
tems have fallen victim [crazyearner 2013; Bradbury 2013], however, posing a problem
for any proof-of-work system not built on the Bitcoin block chain.

An alternative to proof of work is proof of stake [King and Nadal 2012], in which
consensus depends on parties that have posted collateral. Like proof of work, rewards
encourage rational participants to obey the protocol; some designs additionally penal-
ize bad behavior [Buterin 2014; Davarpanah et al. 2015]. Proof of stake opens the pos-
sibility of so-called “nothing at stake” attacks, in which parties that previously posted
collateral but later cashed it in and spent the money can go back and rewrite history
from a point where they still had stake. To mitigate such attacks, systems effectively
combine proof of stake with proof of work—scaling down the required work in pro-
portion to stake—or delay refunding collateral long enough for some other (sometimes
informal) consensus mechanism to establish an irreversible checkpoint.

Still another approach to consensus is Byzantine agreement [Pease et al. 1980; Lam-
port et al. 1982], the best known variant of which is PBFT [Castro and Liskov 1999].
Byzantine agreement ensures consensus despite arbitrary (including non-rational) be-
havior on the part of some fraction of participants. This approach has two appealing
properties. First, consensus can be fast and efficient. Second, trust is entirely decou-
pled from resource ownership, which makes it possible for a small non-profit to help
keep more powerful organizations, such as banks or CAs, honest. Complicating mat-
ters, however, all parties must agree on the the exact list of participants. Moreover,
attackers must be prevented from joining multiple times and exceeding the system’s
failure tolerance, a so-called Sybil attack [Douceur 2002]. BFT-CUP [Alchieri et al.
2008] accommodates unknown participants, but still presupposes a Sybil-proof cen-
tralized admission-control mechanism.

Generally, membership in Byzantine agreement systems is set by a central authority
or closed negotiation. Prior attempts to decentralize admission have given up some of
the benefits. One approach, taken by Ripple, is to publish a “starter” membership list
that participants can edit for themselves, hoping people’s edits are either inconsequen-
tial or reproduced by an overwhelming fraction of participants. Unfortunately, because
divergent lists invalidate safety guarantees [Schwartz et al. 2014], users are reluctant
to edit the list in practice and a great deal of power ends up concentrated in the main-
tainer of the starter list. Another approach, taken by Tendermint [Kwon 2014], is to
base membership on proof of stake. However, doing so once again ties trust to resource

Pete Keleher

4 D. Mazières

ownership. SCP is the first Byzantine agreement protocol to give each participant max-
imum freedom in chosing which combinations of other participants to trust.

3. FEDERATED BYZANTINE AGREEMENT SYSTEMS

This section introduces the federated Byzantine agreement (FBA) model. Like non-
federated agreement, FBA addresses the problem of updating replicated state, such as
a transaction ledger or certificate tree. By agreeing on what updates to apply, nodes
avoid contradictory, irreconcilable states. We identify each update by a unique slot from
which inter-update dependencies can be inferred. For instance, slots may be consecu-
tively numbered positions in a sequentially applied log.

An FBA system runs a consensus protocol that ensures nodes agree on slot contents.
A node ! can safely apply update " in slot # when it has safely applied updates in all
slots upon which # depends and, additionally, it believes all correctly functioning nodes
will eventually agree on " for slot #. At this point, we say ! has externalized " for slot #.
The outside world may react to externalized values in irreversible ways, so a node
cannot later change its mind about them.

A challenge for FBA is that malicious parties can join many times and outnumber
honest nodes. Hence, traditional majority-based quorums do not work. Instead, FBA
determines quorums in a decentralized way, by each node selecting what we call quo-
rum slices. The next subsection defines quorums based on slices. The following subsec-
tion provides some examples and discussion. Finally, we define the key properties of
safety and liveness that a consensus protocol should hope to achieve.

3.1. Quorum slices

In a consensus protocol, nodes exchange messages asserting statements about slots.
We assume such assertions cannot be forged, which can be guaranteed if nodes are
named by public key and they digitally sign messages. When a node hears a sufficient
set of nodes assert a statement, it assumes no functioning node will ever contradict
that statement. We call such a sufficient set a quorum slice, or, more concisely, just a
slice. To permit progress in the face of node failures, a node may have multiple slices,
any one of which is sufficient to convince it of a statement. At a high level, then, an
FBA system consists of a loose confederation of nodes each of which has chosen one or
more slices. More formally:

Definition (FBAS). A federated Byzantine agreement system, or FBAS, is a pair

⟨!,"⟩ comprising a set of nodes ! and a quorum function " ∶ ! → 22
!
⧵ {∅} speci-

fying one or more quorum slices for each node, where a node belongs to all of its own
quorum slices—i.e., ∀! ∈ !,∀$ ∈ "(!), ! ∈ $. (Note 2% denotes the powerset of %.)

Definition (quorum). A set of nodes & ⊆ ! in FBAS ⟨!,"⟩ is a quorum iff & ≠ ∅ and
& contains a slice for each member—i.e., ∀! ∈ & ,∃$ ∈ "(!) such that $ ⊆ & .

A quorum is a set of nodes sufficient to reach agreement. A quorum slice is the
subset of a quorum convincing one particular node of agreement. A quorum slice may
be smaller than a quorum. Consider the four-node system in Figure 2, where each node
has a single slice and arrows point to the other members of that slice. Node !1’s slice
{!1, !2, !3} is sufficient to convince !1 of a statement. But !2’s and !3’s slices include !4,
meaning neither !2 nor !3 can assert a statement without !4’s agreement. Hence, no
agreement is possible without !4’s participation, and the only quorum including !1 is
the set of all nodes {!1, !2, !3, !4}.

Traditional non-federated consensus requires all nodes to accept the same slices,
meaning ∀!1, !2,"(!1) = "(!2). Because any slice suffices to convince all nodes of an as-
sertion, centralized systems do not distinguish between slices and quorums. The down-

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

The Stellar Consensus Protocol 5

!1

!2 !3

!4

"(!1) = {{!1, !2, !3}}

"(!2) = "(!3) = "(!4) =
{{!2, !3, !4}}

Fig. 2. !1 ’s quorum slice is not a quorum without !4.

!1 !2 !3 !4
Top tier: slice is 3 out of
{!1, !2, !3, !4}, including self

!5 !6 !7 !8
Middle tier: slice is self + any
2 top tier nodes

!9 !10
Leaf tier: slice is self + any
2 middle tier nodes

2/4

2/4

3/4

Fig. 3. Tiered quorum structure example

side is that membership and quorums must somehow be pre-ordained, precluding open
membership and decentralized control. A traditional system, such as PBFT [Castro
and Liskov 1999], typically has 3(+ 1 nodes, any 2(+ 1 of which constitute a quo-
rum. Here (is the maximum number of Byzantine failures—meaning nodes acting
arbitrarily—the system can survive.

FBA, introduced by this paper, generalizes centralized consensus to accommodate
a greater range of settings. FBA’s key difference is that each node ! choses its own
quorum slice set "(!). System-wide quorums thus arise from individual decisions made
by each node. Nodes may select slices based on arbitrary criteria such as reputation
or financial arrangements. In some settings, it may be impractical for any single node
to track the complete set ! of all nodes in the system, yet consensus should still be
possible.

3.2. Examples and discussion

Figure 3 shows an example of a tiered system in which different nodes have different
slice sets, something possible only with FBA. A top tier, comprising !1,… , !4, is struc-
tured like a PBFT system with (= 1, meaning it can tolerate one Byzantine failure so
long as the other three nodes are reachable and well-behaved. Nodes !5,… , !8 consti-
tute a middle tier and depend not on each other, but rather on the top tier. Only two
top tier nodes are required to form a slice for a middle tier node. (The top tier assumes
at most one Byzantine failure, so two top tier nodes cannot both fail unless the whole
system has failed.) Nodes !9 and !10 are in a leaf tier for which a slice consists of any

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

6 D. Mazières

!1

!2

!3

!4

!5

!6

"(!#) =
{
{!#, !(# mod 6)+1}

}

Fig. 4. Cyclic quorum structure example

two middle tier nodes. Note that !9 and !10 may pick disjoint slices such as {!5, !6} and
{!7, !8}; nonetheless, both will indirectly depend on the top tier.

In practice, the top tier could consist of anywhere from four to dozens of widely
known and trusted financial institutions. As the size of the top tier grows, there may
not be exact agreement on its membership, but there will be significant overlap be-
tween most parties’ notions of top tier. Additionally, one can imagine multiple middle
tiers, for instance one for each country or geographic region.

This tiered structure resembles inter-domain network routing. The Internet today
is held together by individual peering and transit relationships between pairs of net-
works. No central authority dictates or arbitrates these arrangements. Yet these pair-
wise relationships have sufficed to create a notion of de facto tier one ISPs [Norton
2010]. Though Internet reachability does suffer from firewalls, transitive reachability
is nearly complete—e.g., a firewall might block The New York Times, but if it allows
Google, and Google can reach The New York Times, then The New York Times is tran-
sitively reachable. Transitive reachability may be of limited utility for web sites, but it
is crucial for consensus; the equivalent example would be Google accepting statements
only if The New York Times does.

If we think of quorum slices as analogous to network reachability and quorums as
analogous to transitive reachability, then the Internet’s near complete transitive reach-
ability suggests we can likewise ensure worldwide consensus with FBA. In many ways,
consensus is an easier problem than inter-domain routing. While transit consumes re-
sources and costs money, slice inclusion merely requires checking digital signatures.
Hence, FBA nodes can err on the side of inclusiveness, constructing conservative slices
with greater interdependence and redundancy than typically seen in peering and tran-
sit arrangements.

Another example not possible with centralized consensus is cyclic dependency struc-
tures, such as the one depicted in Figure 4. Such a cycle is unlikely to arise intention-
ally, but when individual nodes choose their own slices, it is possible for the overall
system to end up embedding dependency cycles. The bigger point is that, compared to
traditional Byzantine agreement, an FBA protocol must cope with a far wider variety
of quorum structures.

3.3. Safety and liveness

We categorize nodes as either well-behaved or ill-behaved. A well-behaved node chooses
sensible quorum slices (discussed further in Section 4.1) and obeys the protocol, includ-
ing eventually responding to all requests. An ill-behaved node does not. Ill-behaved
nodes suffer Byzantine failure, meaning they behave arbitrarily. For instance, an ill-

Pete Keleher

Pete Keleher

The Stellar Consensus Protocol 7

Byzantine,
including
crashed

ill-behaved well-behaved

blocked divergent correct

failed

correct

Fig. 5. Venn diagram of node failures

behaved node may be compromised, its owner may have maliciously modified the soft-
ware, or it may have crashed.

The goal of Byzantine agreement is to ensure that well-behaved nodes externalize
the same values despite the presence of such ill-behaved nodes. There are two parts
to this goal. First, we would like to prevent nodes from diverging and externalizing
different values for the same slot. Second, we would like to ensure nodes can actually
externalize values, as opposed to getting blocked in some dead-end state from which
consensus is no longer possible. We introduce the following two terms for these prop-
erties:

Definition (safety). A set of nodes in an FBAS enjoy safety if no two of them ever
externalize different values for the same slot.

Definition (liveness). A node in an FBAS enjoys liveness if it can externalize new
values without the participation of any failed (including ill-behaved) nodes.

We call well-behaved nodes that enjoy both safety and liveness correct. Nodes that
are not correct have failed. All ill-behaved nodes have failed, but a well-behaved node
can fail, too, by waiting indefinitely for messages from ill-behaved nodes, or, worse, by
having its state poisoned by incorrect messages from ill-behaved nodes.

Figure 5 illustrates the possible kinds of node failure. To the left are Byzantine fail-
ures, the ill-behaved nodes. To the right are two kinds of well-behaved but failed nodes.
Nodes that lack liveness are termed blocked, while those that lack safety are termed
divergent. An attack violating safety is strictly more powerful than one violating only
liveness, so we classify divergent nodes as a subset of blocked ones.

Our definition of liveness is weak in that it says a node can externalize new values,
not that it will. Hence, it admits a state of perpetual preemption in which consensus
remains forever possible, yet the network continually thwarts it by delaying or re-
ordering critical messages in just the wrong way. Perpetual preemption is inevitable
in a purely asynchronous, deterministic system that survives node failure [Fischer
et al. 1985]. Fortunately, preemption is transient. It does not indicate node failure, be-
cause the system can recover at any time. Protocols can mitigate the problem through
randomness (if nodes keep choosing random candidate values until enough happen to
pick the same one [Ben-Or 1983; Bracha and Toueg 1985]) or through realistic assump-
tions about message latency [Dwork et al. 1988]. The latter is more practical when one
would like to limit execution time. Of course, only termination and not safety should
depend on message timing.

4. OPTIMAL RESILIENCE

Whether or not nodes enjoy safety and liveness depends on several factors: what quo-
rum slices they have chosen, which nodes are ill-behaved, and of course the concrete
consensus protocol and network behavior. As is common for asynchronous systems, we
assume the network eventually delivers messages between well-behaved nodes, but
can otherwise arbitrarily delay or reorder messages.

8 D. Mazières

!2

!1

!3

"(!1) =
"(!2) =
"(!3) =
{{!1, !2, !3}} !5

!4

!6

"(!4) =
"(!5) =
"(!6) =
{{!4, !5, !6}}

Fig. 6. FBAS lacking quorum intersection

!2

!1

!3

"(!1) =
"(!2) = "(!3) =
{{!1, !2, !3, !7}} !5

!4

!6

"(!4) =
"(!5) = "(!6) =
{{!4, !5, !6, !7}}

!7

"(!7) = {{!7}}

Fig. 7. Ill-behaved node !7 can undermine quorum intersection.

This section answers the following question: given a specific ⟨!,"⟩ and particular
subset of ! that is ill-behaved, what are the best safety and liveness that any feder-
ated Byzantine agreement protocol can guarantee regardless of the network? We first
discuss quorum intersection, a property without which safety is impossible to guar-
antee. We then introduce a notion of dispensable sets—sets of failed nodes in spite of
which it is possible to guarantee both safety and liveness.

4.1. Quorum intersection

A protocol can guarantee agreement only if the quorum slices represented by function
" satisfy a validity property we call quorum intersection.

Definition (quorum intersection). An FBAS enjoys quorum intersection iff any two of
its quorums share a node—i.e., for all quorums &1 and &2, &1 ∩ &2 ≠ ∅.

Figure 6 illustrates a system lacking this property, where " permits two quorums,
{!1, !2, !3} and {!4, !5, !6}, that do not intersect. Disjoint quorums can independently
agree on contradictory statements, undermining system-wide agreement. When many
quorums exist, quorum intersection fails if any two do not intersect. For example, the
set of all nodes {!1,… , !6} in Figure 6 is a quorum that intersects the other two, but
the system still lacks quorum intersection because the other two do not intersect each
other.

No protocol can guarantee safety in the absence of quorum intersection, since such
a configuration can operate as two different FBAS systems that do not know anything
about each other. However, even with quorum intersection, safety may be impossible to
guarantee in the presence of ill-behaved nodes. Compare Figure 6, in which there are
two disjoint quorums, to Figure 7, in which two quorums intersect at a single node !7,
and !7 is ill-behaved. If !7 makes inconsistent statements to the left and right quorums,
the effect is equivalent to disjoint quorums.

In fact, since ill-behaved nodes contribute nothing to safety, no protocol can guaran-
tee safety without the well-behaved nodes enjoying quorum intersection on their own.
After all, in a worst-case scenario for safety, all ill-behaved nodes can constantly make
inconsistent statements in an attempt to make quorums diverge. Two quorums over-
lapping only at ill-behaved nodes will again be able to operate like two different FBAS

The Stellar Consensus Protocol 9

systems thanks to the duplicity of the ill-behaved nodes. In short, FBAS ⟨!,"⟩ can
survive Byzantine failure by a set of nodes) ⊆ ! iff ⟨!,"⟩ enjoys quorum intersection
after deleting the nodes in) from ! and from all slices in ". More formally:

Definition (delete). If ⟨!,"⟩ is an FBAS and) ⊆ ! is a set of nodes, then to delete)
from ⟨!,"⟩, written ⟨!,"⟩), means to compute the modified FBAS ⟨! ⧵),")⟩ where
")(!) = { $ ⧵) ∣ $ ∈ "(!) }.

It is the responsibility of each node ! to ensure "(!) does not violate quorum inter-
section. One way to do so is to pick conservative slices that lead to large quorums. Of
course, a malicious ! may intentionally pick "(!) to violate quorum intersection. But
a malicious ! can also lie about the value of "(!) or ignore "(!) to make arbitrary as-
sertions. In short, "(!)’s value is not meaningful when ! is ill-behaved. This is why
the necessary property for safety—quorum intersection of well-behaved nodes after
deleting ill-behaved nodes—is unaffected by the slices of ill-behaved nodes.

Suppose Figure 6 evolved from a three-node FBAS !1, !2, !3 with quorum intersection
to a six-node FBAS without. When !4, !5, !6 join, they maliciously choose slices that
violate quorum intersection and no protocol can guarantee safety for !. Fortunately,
deleting the bad nodes to yield ⟨!,"⟩{!4,!5,!6} restores quorum intersection, meaning
at least {!1, !2, !3} can enjoy safety. Note that deletion is conceptual, for the sake of
describing optimal safety. A protocol should guarantee safety for !1, !2, !3 without their
needing to know that !4, !5, !6 are ill-behaved.

4.2. Dispensable sets (DSets)

We capture the fault tolerance of nodes’ slice selections through the notion of a dis-
pensible set or DSet. Informally, the safety and liveness of nodes outside a DSet can be
guaranteed regardless of the behavior of nodes inside the DSet. Put another way, in an
optimally resilient FBAS, if a single DSet encompasses every ill-behaved node, it also
contains every failed node, and conversely all nodes outside the DSet are correct. As
an example, in a centralized PBFT system with 3(+ 1 nodes and quorum size 2(+ 1,
any (or fewer nodes constitute a DSet. Since PBFT in fact survives up to (Byzantine
failures, its robustness is optimal.

In the less regular example of Figure 3, {!1} is a DSet, since one top tier node can
fail without affecting the rest of the system. {!9} is also a DSet because no other node
depends on !9 for correctness. {!6,… , !10} is a DSet, because neither !5 nor the top tier
depend on any of those five nodes. {!5, !6} is not a DSet, as it is a slice for !9 and !10
and hence, if entirely malicious, can lie to !9 and !10 and convince them of assertions
inconsistent with each other or the rest of the system.

To prevent a misbehaving DSet from affecting the correctness of other nodes, two
properties must hold. For safety, deleting the DSet cannot undermine quorum inter-
section. For liveness, the DSet cannot deny other nodes a functioning quorum. This
leads to the following definition:

Definition (DSet). Let ⟨!,"⟩ be an FBAS and) ⊆ ! be a set of nodes. We say) is a
dispensible set, or DSet, iff:

(1) (quorum intersection despite)) ⟨!,"⟩) enjoys quorum intersection, and

(2) (quorum availability despite)) Either ! ⧵) is a quorum in ⟨!,"⟩ or) = !.

Quorum availability despite) protects against nodes in) refusing to answer re-
quests and blocking other nodes’ progress. Quorum intersection despite) protects
against the opposite—nodes in) making contradictory assertions that enable other
nodes to externalize inconsistent values for the same slot. Nodes must balance the
two threats in slice selection. All else equal, bigger slices lead to bigger quorums with

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

10 D. Mazières

well-behaved /
ill-behaved

Local property of nodes, independent of other nodes (except for
the validity of slice selection).

intact /
befouled

Property of nodes given their quorum slices and a particular set
of ill-behaved nodes. Befouled nodes are ill-behaved or depend,
possibly indirectly, on too many ill-behaved nodes.

correct /
failed

Property of nodes given their quorum slices, a concrete protocol,
and actual network behavior. The goal of a consensus protocol is
to guarantee node correctness whenever possible.

Fig. 8. Key properties of FBAS nodes

greater overlap, meaning fewer failed node sets) will undermine quorum intersection
when deleted. On the other hand, bigger slices are more likely to contain failed nodes,
endangering quorum availability.

The smallest DSet containing all ill-behaved nodes may encompass well-behaved
nodes as well; this reflects the fact that a sufficiently large set of ill-behaved nodes
can cause well-behaved nodes to fail. For instance, in Figure 3, the smallest DSet con-
taining !5 and !6 is {!5, !6, !9, !10}. As a special case, the set of all nodes, !, is a DSet.
The motivation for this special case is that, if all nodes fail, the remaining (zero) nodes
are vacuously correct. Given sufficiently many ill-behaved nodes, the set ! of all nodes
may be the smallest DSet to contain all ill-behaved ones, which means no protocol can
guarantee anything better than complete system failure.

The set of DSets in an FBAS is determined a priori by the quorum function ". Which
nodes are well- and ill-behaved depends on runtime behavior, such as machines getting
compromised. The DSets we care about are those that encompass all ill-behaved nodes,
as they help us distinguish nodes that should be guaranteed correct from ones for
which such a guarantee is impossible. To this end, we introduce the following terms:

Definition (intact). A node ! in an FBAS is intact iff there exists a DSet) containing
all ill-behaved nodes and such that ! ∉).

Definition (befouled). A node ! in an FBAS is befouled iff it is not intact.

A befouled node ! is surrounded by enough failed nodes to block its progress or poi-
son its state, even if ! itself is well-behaved. No FBAS can guarantee the correctness of
a befouled node. However, an optimal FBAS guarantees that every intact node remains
correct. Figure 8 summarizes the key properties of nodes. The following theorems fa-
cilitate analysis by showing that the set of befouled nodes is always a DSet in an FBAS
with quorum intersection.

THEOREM 1. Let & be a quorum in FBAS ⟨!,"⟩, let) ⊆ ! be a set of nodes, and let
& ′ = & ⧵). If & ′ ≠ ∅ then & ′ is a quorum in ⟨!,"⟩).

PROOF. Because & is a quorum, every node ! ∈ & has a $ ∈ "(!) such that $ ⊆ & .
Since & ′ ⊆ & , it follows that every ! ∈ & ′ has a $ ∈ "(!) such that $ ⧵) ⊆ & ′. Rewriting
with deletion notation yields ∀! ∈ & ′,∃$ ∈ ")(!) such that $ ⊆ & ′, which, because
& ′ ⊆ ! ⧵), means that & ′ is a quorum in ⟨!,"⟩).

THEOREM 2. If)1 and)2 are DSets in an FBAS ⟨!,"⟩ enjoying quorum intersec-
tion, then) =)1 ∩)2 is a DSet, too.

PROOF. Let &1 = ! ⧵)1 and &2 = ! ⧵)2. If &1 = ∅, then)1 = ! and) =)2 (a DSet),
so we are done. Similarly, if &2 = ∅, then) =)1, and we are done. Otherwise, note
that by quorum availability despite DSets)1 and)2, &1 and &2 are quorums in ⟨!,"⟩.

Pete Keleher

Pete Keleher

The Stellar Consensus Protocol 11

It follows from the definition that the union of two quorums is also a quorum. Hence
! ⧵) = &1 ∪ &2 is a quorum and we have quorum availability despite).

We must now show quorum intersection despite). Let &* and &+ be any two
quorums in ⟨!,"⟩). Let & = &1 ∩ &2 = &2 ⧵)1. By quorum intersection of ⟨!,"⟩,
& = &1 ∩ &2 ≠ ∅. But then by Theorem 1, & = &2 ⧵)1 must be a quorum in ⟨!,"⟩)1 .
Now consider that &* ⧵)1 and &* ⧵)2 cannot both be empty, or else &* ⧵) = &* would

be. Hence, by Theorem 1, either &* ⧵)1 is a quorum in
(
⟨!,"⟩)

))1 = ⟨!,"⟩)1 , or &* ⧵)2

is a quorum in
(
⟨!,"⟩)

))2 = ⟨!,"⟩)2 , or both. In the former case, note that if &* ⧵)1 is

a quorum in ⟨!,"⟩)1 , then by quorum intersection of ⟨!,"⟩)1 , (&* ⧵)1) ∩ & ≠ ∅; since
(&* ⧵)1) ∩ & = (&* ⧵)1) ⧵)2, it follows that &* ⧵)2 ≠ ∅, making &* ⧵)2 a quorum in
⟨!,"⟩)2 . By a similar argument, &+ ⧵)2 must be a quorum in ⟨!,"⟩)2 . But then quo-
rum intersection despite)2 tells us that (&* ⧵)2)∩ (&+ ⧵)2) ≠ ∅, which is only possible
if &* ∩ &+ ≠ ∅.

THEOREM 3. In an FBAS with quorum intersection, the set of befouled nodes is a
DSet.

PROOF. Let)min be the intersection of every DSet that contains all ill-behaved
nodes. It follows from the definition of intact that a node ! is intact iff ! ∉)min. Thus,
)min is precisely the set of befouled nodes. By Theorem 2, DSets are closed under inter-
section, so)min is also a DSet.

5. FEDERATED VOTING

This section develops a federated voting technique that FBAS nodes can use to agree
on a statement. At a high level, the process for agreeing on some statement * involves
nodes exchanging two sets of messages. First, nodes vote for *. Then, if the vote was
successful, nodes confirm *, effectively holding a second vote on the fact that the first
vote succeeded.

From each node’s perspective, the two rounds of messages divide agreement on a
statement * into three phases: unknown, accepted, and confirmed. (This pattern dates
back to three-phase commit [Skeen and Stonebraker 1983].) Initially, *’s status is com-
pletely unknown to a node !—* could end up true, false, or even stuck in a permanently
indeterminate state. If the first vote succeeds, ! may come to accept *. No two intact
nodes ever accept contradictory statements, so if ! is intact and accepts *, then * cannot
be false.

For two reasons, however, ! accepting * does not make * true. First, the fact that
! accepted * does not mean all intact nodes can; * could be stuck for other nodes.
Second, if ! is befouled, then accepting * means nothing—* may be false at intact
nodes. Yet even if ! is befouled—which ! does not know—the system may still enjoy
quorum intersection of well-behaved nodes, in which case for optimal safety ! needs
greater assurance of *. Holding a second vote addresses both problems. If the second
vote succeeds, ! moves to the confirmed phase in which it can finally deem * true and
act on it.

The next few subsections detail the federated voting process. Because voting does
not rule out the possibility of stuck statements, Section 5.6 discusses how to cope with
them. Section 6 will turn federated voting into a consensus protocol that avoids the
possibility of stuck slots for intact nodes.

5.1. Voting with open membership

A correct node in a Byzantine agreement system accepts a statement * only when it
knows that other correct nodes will never agree to statements contradicting *. Most

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

12 D. Mazières

protocols employ voting for this purpose. Well-behaved nodes vote for a statement *
only if it is valid. Well-behaved nodes also never change their votes. Hence, in central-
ized Byzantine agreement, it is safe to accept * if a majority of well-behaved nodes—a
quorum—has voted for it. We say a statement is ratified once it has received the nec-
essary votes.

In a federated setting, we must adapt voting to accommodate open membership. One
difference is that a quorum no longer corresponds to a majority of well-behaved nodes.
However, the majority requirement primarily serves to ensure quorum intersection of
well-behaved nodes, which Section 4.1 already adapted to FBA. Another implication
of open membership is that nodes must discover what constitutes a quorum as part of
the voting process. To implement quorum discovery, a protocol can include "(!) in all
messages from ! or provide some other means of querying ! for "(!).

Definition (vote). A node ! votes for an (abstract) statement * iff

(1) ! asserts * is valid and consistent with all statements ! has accepted, and

(2) ! asserts it has never voted against *—i.e., voted for a statement that contra-
dicts *—and ! promises never to vote against * in the future.

Definition (ratify). A quorum &* ratifies a statement * iff every member of &* votes
for *. A node ! ratifies * iff ! is a member of a quorum &* that ratifies *.

THEOREM 4. Two contradictory statements * and *̄ cannot both be ratified in an
FBAS that enjoys quorum intersection and contains no ill-behaved nodes.

PROOF. By contradiction. Suppose quorum &1 ratifies * and quorum &2 ratifies *̄.
By quorum intersection, ∃! ∈ &1 ∩&2. Such a ! must have illegally voted for both * and
*̄, violating the assumption of no ill-behaved nodes.

THEOREM 5. Let ⟨!,"⟩ be an FBAS enjoying quorum intersection despite), and
suppose) contains all ill-behaved nodes. Let !1 and !2 be two nodes not in). Let * and
*̄ be contradictory statements. If !1 ratifies * then !2 cannot ratify *̄.

PROOF. By contradiction. Suppose !1 ratifies * and !2 ratifies *̄. By definition, there
must exist a quorum &1 containing !1 that ratified * and quorum &2 containing !2 that
ratified *̄. By Theorem 1, since &1 ⧵) ≠ ∅ and &2 ⧵) ≠ ∅, both must be quorums
in ⟨!,"⟩), meaning they ratified * and *̄ respectively in ⟨!,"⟩). But ⟨!,"⟩) enjoys
quorum intersection and has no ill-behaved nodes, so Theorem 4 tell us * and *̄ cannot
both be ratified.

THEOREM 6. Two intact nodes in an FBAS with quorum intersection cannot ratify
contradictory statements.

PROOF. Let) be the set of befouled nodes. By Theorem 3,) is a DSet. By the defi-
nition of DSet, ⟨!,"⟩ enjoys quorum intersection despite). By Theorem 5, two nodes
not in) cannot ratify contradictory statements.

5.2. Blocking sets

In centralized consensus, liveness is an all-or-nothing property of the system. Either
a unanimously well-behaved quorum exists, or else ill-behaved nodes can prevent the
rest of the system from accepting new statements. In FBA, by contrast, liveness may
differ across nodes. For instance, in the tiered quorum example of Figure 3, if middle
tier nodes !6, !7, !8 crash, the leaf tier will be blocked while the top tier and node !5
will continue to enjoy liveness.

An FBA protocol can guarantee liveness to a node ! only if "(!) contains at least
one quorum slice comprising only correct nodes. A set) of failed nodes can violate this

Pete Keleher

Pete Keleher

Pete Keleher

Pete Keleher

The Stellar Consensus Protocol 13

!1
vote *
accept

!2
vote *
accept

!3
vote *
accept

!4
vote *̄

3/4 Slice is 3 nodes,
including self

Fig. 9. !4 voted for *̄, which contradicts ratified statement *.

property if) contains at least one member of each of !’s slices. We term such a set)
!-blocking, because it has the power to block progress by !.

Definition (!-blocking). Let ! ∈ ! be a node in FBAS ⟨!,"⟩. A set) ⊆ ! is !-blocking
iff it overlaps every one of !’s slices—i.e., ∀$ ∈ "(!), $ ∩) ≠ ∅.

THEOREM 7. Let) ⊆ ! be a set of nodes in FBAS ⟨!,"⟩. ⟨!,"⟩ enjoys quorum
availability despite) iff) is not !-blocking for any ! ∈ ! ⧵).

PROOF. “∀! ∈ ! ⧵),) is not !-blocking” is equivalent to “∀! ∈ ! ⧵),∃$ ∈ "(!) such
that $ ⊆ ! ⧵).” By the definition of quorum, the latter holds iff ! ⧵) is a quorum or
) = !, the exact definition of quorum availability despite).

As a corollary, the DSet of befouled nodes is not !-blocking for any intact !.

5.3. Accepting statements

When an intact node ! learns that it has ratified a statement, Theorem 6 tells ! that
other intact nodes will not ratify contradictory statements. This condition is sufficient
for ! to accept *, but we cannot make it necessary. Ratifying a statement requires vot-
ing for it, and some nodes may have voted for contradictory statements. In Figure 9, for
example, !4 votes for *̄ before learning that the other three nodes ratified the contra-
dictory statement *. Though !4 cannot now vote for *, we would still like it to accept *
to be consistent with the other nodes.

A key insight is that if a node ! is intact, then no !-blocking set) can consist entirely
of befouled nodes. Now suppose) is a !-blocking set and every member of) claims to
accept statement *. If ! is intact, at least one member of) must be, too. The intact
member will not lie about accepting *; hence, * is true and ! can accept it. Of course,
if ! is befouled, then * might not be true. But a befouled node can accept anything and
vacuously not affect the correctness of intact nodes.

Definition (accept). An FBAS node ! accepts a statement * iff it has never accepted
a statement contradicting * and it determines that either

(1) There exists a quorum & such that ! ∈ & and each member of & either voted for
* or claims to accept *, or

(2) Each member of a !-blocking set claims to accept *.

Though a well-behaved node cannot vote for contradictory statements, condition 2
above allows a node to vote for one statement and later accept a contradictory one.

THEOREM 8. Two intact nodes in an FBAS that enjoys quorum intersection cannot
accept contradictory statements.

PROOF. Let ⟨!,"⟩ be an FBAS with quorum intersection and let) be its DSet of be-
fouled nodes (which exists by Theorem 3). Suppose an intact node accepts statement *.

14 D. Mazières

!1
vote *
accept

!2
vote *

!4
vote *̄

!3
vote !

3/4 Slice is 3 nodes,
including self

a)

!2
vote *

!3
vote !̄

accept

!4
vote *̄

!1
vote *
vote !̄

3/4

b)

Fig. 10. Scenarios indistinguishable to !2 when !2 does not see bold messages

Let ! be the first intact node to accept *. At the point ! accepts *, only befouled nodes
in) can claim to accept it. Since by the corollary to Theorem 7,) cannot be !-blocking,
it must be that ! accepted * through condition 1. Thus, ! identified a quorum & such
that every node claimed to vote for or accept *, and since ! is the first intact node to ac-
cept *, it must mean all nodes in & ⧵) voted for *. In other words, ! ratified * in ⟨!,"⟩).
Generalizing, any statement accepted by an intact node in ⟨!,"⟩ must be ratified in
⟨!,"⟩). Because) is a DSet, ⟨!,"⟩) enjoys quorum intersection. Because addition-
ally) contains all ill-behaved nodes, Theorem 4 rules out ratification of contradictory
statements.

5.4. Accepting is not enough

Unfortunately, for nodes to assume the truth of accepted statements would yield sub-
optimal safety and liveness guarantees in a federated consensus protocol. We discuss
the issues with safety and liveness in turn. To provide some context, we then explain
why these issues are thornier in FBA than in centralized Byzantine agreement.

5.4.1. Safety. Consider an FBAS ⟨!,"⟩ in which the only quorum is unanimous
consent—i.e., ∀!,"(!) = {!}. This ought to be a conservative choice for safety—don’t
do anything unless everyone agrees. Yet since every node is !-blocking for every !, any
node can single-handedly convince any other node to accept arbitrary statements.

The problem is that accepted statements are only safe among intact nodes. But as
discussed in Section 4.1, the only condition necessary to guarantee safety is quorum
intersection of well-behaved nodes, which might hold even in the case that some well-
behaved nodes are befouled. In particular, when "(!) = {!}, the only DSets are ∅ and !,
meaning any node failure befouls the whole system. By contrast, quorum intersection
holds despite every) ⊆ !.

5.4.2. Liveness. Another limitation of accepted statements is that other intact nodes
may be unable to accept them. This possibility makes reliance on accepted statements
problematic for liveness. If a node proceeds to act on a statement because it accepted
the statement, other nodes could be unable to proceed in a similar fashion.

Consider Figure 10a, in which node !3 crashes after helping !1 ratify and accept
statement *. Though !1 accepts *, !2 and !4 cannot. In particular, from !2’s perspective,
the situation depicted is indistinguishable from Figure 10b, in which !3 voted for *̄ and

The Stellar Consensus Protocol 15

is well-behaved but slow to respond, while !1 is ill-behaved and sent !3 a vote for *̄
(thereby causing !3 to accept *̄) while illegally also sending !2 a vote for *.

To support a protocol-level notion of liveness in cases like Figure 10a, !1 needs a way
to ensure every other intact node can eventually accept * before !1 acts on *. Once this
is the case, it makes sense to say the system agrees on *.

Definition (agree). An FBAS ⟨!,"⟩ agrees on a statement * iff, regardless of what
subsequently transpires, once sufficient messages are delivered and processed, every
intact node will accept *.

5.4.3. Comparison to centralized voting. To understand why the above issues arise in fed-
erated voting, consider a centralized Byzantine agreement system of - nodes with
quorum size . . Such a system enjoys quorum availability with (/ = - − . or fewer
node failures. Since any two quorums share at least 2. −- nodes, quorum intersection
of well-behaved nodes holds up to (0 = 2. −- − 1 Byzantine failures.

Centralized Byzantine agreement systems typically set - = 3(+ 1 and . = 2(+ 1
to yield (/ = (0 = (, the equilibrium point at which safety and liveness have the same
fault tolerance. If safety is more important than liveness, some protocols increase .
so that (0 > (/ [Li and Mazières 2007]. In FBA, because quorums arise organically,
systems are unlikely to find themselves at equilibrium, making it far more important
to protect safety in the absence of liveness.

Now consider a node ! that votes against a ratified statement * in a centralized
system. If ! hears (0 + 1 nodes claim * was ratified, ! knows that either one of them
is well-behaved or all safety guarantees have collapsed. Either way, ! can immediately
act on * with no loss of safety. The FBA equivalent would be to hear from a set) where
), if deleted, undermines quorum intersection of well-behaved nodes. Identifying such
a) is a tricky proposition for three reasons: one, quorums are discovered dynamically;
two, ill-behaved nodes may lie about slices; and three, ! does not know which nodes
are well-behaved. Instead, we defined federated voting to accept * when a !-blocking
set does. The !-blocking property has the advantage of being easily checkable, but is
equivalent to hearing from (/ + 1 nodes in a centralized system when we really want
(0 + 1.

To guarantee agreement among all well-behaved nodes in a centralized system, one
merely needs (/ + (0 + 1 nodes to acknowledge that a statement was ratified. If more
than (/ of them fail, we do not expect liveness anyway. If (/ or fewer fail, then we
know (0 + 1 nodes remain willing to attest to ratification, which will in turn convince
all other well-behaved nodes. Again, the reliance on (0 has no easy analogue in the
FBA model.

Put another way, at some point nodes need to believe a statement strongly enough
to depend on its truth for safety. A centralized system offers two ways to reach this
point for a statement *: ratify * first-hand, or reason backwards from (0 + 1 nodes
claiming * was ratified, figuring safety is hopeless if they have all lied. FBA lacks the
latter approach; the only tool it has for safety among well-behaved nodes is first-hand
ratification. Since nodes still need a way to overcome votes against ratified statements,
we introduced a notion of accepting, but it provides a weaker consistency guarantee
limited to intact nodes.

5.5. Statement confirmation

Both limitations of accepted statements stem from the fact that an intact node ! may
end up voting against a statement * that is nonetheless ratified. After voting against *,
! cannot vote for it, preventing ! from ever ratifying *. To provide ! a means of accept-
ing * after voting against it, the definition of accept has a second criterion based on

16 D. Mazières

!-blocking sets. But the second criterion is weaker than ratification, offering no guar-
antees to befouled nodes that enjoy quorum intersection.

Now if a statement * has the property that no intact node ever votes against it, then
we have no need to accept it. Intact nodes can all simply ratify *, and we can require
them to do so before acting on *. We call such statements irrefutable.

Definition (irrefutable). A statement * is irrefutable in an FBAS if no intact node can
ever vote against it.

Theorem 8 tells us that two intact nodes cannot accept contradictory statements.
Thus, while some nodes may vote against a statement * that was accepted by an intact
node, the statement “an intact node accepted *” is irrefutable. This suggests holding a
second vote to ratify the fact that an intact node accepted *.

Definition (confirm). A quorum &* in an FBAS confirms a statement * iff ∀! ∈ &*, !
claims to accept *. A node confirms * iff it is in such a quorum.

Nodes express that they have accepted statement * by stating “accept(*),” an ab-
breviation of the statement, “An intact node accepted *.” To confirm * means to ratify
accept(*). A well-behaved node ! can vote for accept(*) only after accepting *, as !
cannot assume any particular other nodes are intact. If ! itself is befouled, accept(*)
might be false, in which case voting for it may cost ! liveness, but a befouled node has
no guarantee of liveness anyway.

The next theorem shows that nodes can rely on confirmed statements without losing
optimal safety. Theorem 11 then shows that confirmed statements meet the defini-
tion of agreement from Section 5.4.2, meaning nodes can rely on confirmed statements
without endangering the liveness of intact nodes.

THEOREM 9. Let ⟨!,"⟩ be an FBAS enjoying quorum intersection despite), and
suppose) contains all ill-behaved nodes. Let !1 and !2 be two nodes not in). Let * and
*̄ be contradictory statements. If !1 confirms *, then !2 cannot confirm *̄.

PROOF. First note that accept(*) contradicts accept(*̄)—no well-behaved node can
vote for both. Note further that !1 must ratify accept(*) to confirm *. By Theorem 5, !2
cannot ratify accept(*̄) and hence cannot confirm *̄.

THEOREM 10. Let) be the set of befouled nodes in an FBAS ⟨!,"⟩ with quorum
intersection. Let & be a quorum containing an intact node (& ⊈)), and let 0 be any set
such that & ⊆ 0 ⊆ !. Let 0+ = 0⧵) be the set of intact nodes in 0, and let 0− = (!⧵0)⧵)
be the set of intact nodes not in 0. Either 0− = ∅, or ∃! ∈ 0− such that 0+ is !-blocking.

PROOF. If 0+ is !-blocking for some ! ∈ 0−, then we are done. Otherwise, we must
show 0− = ∅. If 0+ is not !-blocking for any ! ∈ 0−, then, by Theorem 7, either 0− = ∅
or 0− is a quorum in ⟨!,"⟩). In the former case we are done, while in the latter we
get a contradiction: By Theorem 1, & ⧵) is a quorum in ⟨!,"⟩). Since) is a DSet (by
Theorem 3), ⟨!,"⟩) must enjoy quorum intersection, meaning 0− ∩ (& ⧵)) ≠ ∅. This is
impossible, since (& ⧵)) ⊆ 0 and 0− ∩ 0 = ∅.

THEOREM 11. If an intact node in an FBAS ⟨!,"⟩ with quorum intersection con-
firms a statement *, then, whatever subsequently transpires, once sufficient messages
are delivered and processed, every intact node will accept and confirm *.

PROOF. Let) be the DSet of befouled nodes and let & ⊈) be the quorum through
which an intact node confirmed *. Let nodes in & ⧵) broadcast accept(*). By definition,
any node !, regardless of how it has voted, accepts * after receiving accept(*) from a
!-blocking set. Hence, these messages may convince additional nodes to accept *. Let
these additional nodes in turn broadcast accept(*) until a point is reached at which,

The Stellar Consensus Protocol 17

quorum votes
for/accepts *

quorum
confirms *

* is valid

!-blocking set
accepts *

uncommitted

voted * accepted * confirmed *

voted *̄

Fig. 11. Possible states of an accepted statement * at a single node !

bivalent

*-valent

*̄-valent

stuck

* agreed

*̄ agreed

Fig. 12. Possible system-wide status of a statement *

regardless of future communication, no further intact nodes can ever accept *. At this
point let 0 be the set of nodes that claim to accept * (where & ⊆ 0), let 0+ be the set of
intact nodes in 0, and let 0− be the set of intact nodes not in 0. 0+ cannot be !-blocking
for any node in 0−, or else more nodes could come to accept *. By Theorem 10, then,
0− = ∅, meaning every intact node has accepted *.

Figure 11 summarizes the paths an intact node ! can take to confirm *. Given no
knowledge, ! might vote for either * or the contradictory *̄. If ! votes for *̄, it cannot
later vote for *, but can nonetheless accept * if a !-blocking set accepts it. A subsequent
quorum of confirmation messages allows ! to confirm *, which by Theorem 11 means
the system agrees on *.

5.6. Liveness and neutralization

The main challenge of distributed consensus, whether centralized or not, is that a
statement can get stuck in a permanently indeterminate state before the system
reaches agreement on it. Hence, a protocol must not attempt to ratify externalized
values directly. Should the statement “The value of slot # is "” get stuck, the system
will be forever unable to agree on slot #, losing liveness. The solution is to craft the
statements in votes carefully. It must be possible to break a stuck statement’s hold on
the question we really care about, namely slot contents. We call the process of obsolet-
ing a stuck statement neutralization.

More concretely, Figure 12 depicts the potential status a statement * can have
system-wide. Initially, the system is bivalent, by which we mean there is one sequence
of possible events through which all intact nodes will accept *, and another sequence
through which all intact nodes will reject * (i.e., accept a statement *̄ contradicting *).
At some point, one of these two outcomes may cease to be possible. If no intact node

Pete Keleher

18 D. Mazières

Local state System-wide status of *

uncommitted unknown (any)

voted * unknown (any)

voted *̄ unknown (any)

accepted * stuck, *-valent, or * agreed

confirmed * * agreed

Fig. 13. What an intact node knows about the status of statement *

can ever reject *, we say the system is *-valent; conversely, if no intact node can ever
accept *, we say the system is *̄-valent.

At the time an FBAS transitions from bivalent to *-valent, there is a possible out-
come in which all intact nodes accept *. However, this might not remain the case.
Consider a PBFT-like four-node system {!1,… , !4} in which any three nodes constitute
a quorum. If !1 and !2 vote for *, the system becomes *-valent; no three nodes can
ratify a contradictory statement. However, if !3 and !4 subsequently vote for *̄ contra-
dicting *, it also becomes impossible to ratify *. In this case, *’s state is permanently
indeterminate, or stuck.

As seen in Figure 10a, even once an intact node accepts *, the system may still fail
to reach system-wide agreement on *. However, by Theorem 11, once an intact node
confirms *, all intact nodes can eventually come to accept it; hence the system has
agreed upon *. Figure 13 summarizes what intact nodes know about the global state
of a statement from their own local state.

To preserve the possibility of consensus, a protocol must ensure that every statement
is either irrefutable, and hence cannot get stuck, or neutralizable, and hence cannot
block progress if stuck. There are two popular approaches to crafting neutralizable
statements: the view-based approach, pioneered by viewstamped replication [Oki and
Liskov 1988] and favored by PBFT [Castro and Liskov 1999]; and the ballot-based ap-
proach, invented by Paxos [Lamport 1998]. The ballot-based approach may be harder
to understand [Ongaro and Ousterhout 2014]. Compounding confusion, people often
call viewstamped replication “Paxos” or assert that the two algorithms are the same
when they are not [van Renesse et al. 2014].

View-based protocols associate the slots in votes with monotonically increasing view
numbers. Should consensus get stuck on the #th slot in view 2, nodes recover by agree-
ing that view 2 had fewer than # meaningful slots and moving to a higher view number.
Ballot-based protocols associate the values in votes with monotonically increasing bal-
lot numbers. Should a ballot get stuck, nodes retry the same slot with a higher ballot,
taking care never to select values that would contradict prior stuck ballots.

This work takes a ballot-based approach, as doing so makes it easier to do away with
the notion of a distinguished primary node or leader. For example, leader behavior can
be emulated [Lamport 2011b].

6. SCP: A FEDERATED BYZANTINE AGREEMENT PROTOCOL

This section presents the Stellar Consensus Protocol, SCP. At a high level, SCP con-
sists of two sub-protocols: a nomination protocol and a ballot protocol. The nomination
protocol produces candidate values for a slot. If run long enough, it eventually pro-
duces the same set of candidate values at every intact node, which means nodes can
combine the candidate values in a deterministic way to produce a single composite
value for the slot. There are two huge caveats, however. First, nodes have no way of
knowing when the nomination protocol has reached the point of convergence. Second,

Pete Keleher

Pete Keleher

Pete Keleher

The Stellar Consensus Protocol 19

even after convergence, ill-behaved nodes may be able to reset the nomination process
a finite number of times.

When nodes guess that the nomination protocol has converged, they execute the
ballot protocol, which employs federated voting to commit and abort ballots associated
with composite values. When intact nodes agree to commit a ballot, the value associ-
ated with the ballot will be externalized for the slot in question. When they agree to
abort a ballot, the ballot’s value becomes irrelevant. If a ballot gets stuck in a state
where one or more intact nodes cannot commit or abort it, then nodes try again with
a higher ballot; they associate the new ballot with the same value as the stuck one in
case any node believes the stuck ballot was committed. Intuitively, safety results from
ensuring that all stuck and committed ballots are associated with the same value.
Liveness follows from the fact that a stuck ballot can be neutralized by moving to a
higher ballot.

The remainder of this section presents the nomination and ballot protocols. Each
is described first in terms of conceptual statements, then as a concrete protocol with
messages representing sets of conceptual statements. Finally, Section 6.3 shows the
correctness of the protocol. SCP treats each slot completely independently and can
be viewed as many separate instances of a single-slot consensus protocol (akin to the
“single-decree synod” in Paxos [Lamport 1998]). Concepts such as candidate values
and ballots must always be interpreted in the context of a particular slot even if much
of the discussion leaves the slot implicit.

6.1. Nomination protocol

Because slots need only be partially ordered, some applications of SCP will have only
one plausible ballot per slot. For example, in certificate transparency, each CA may
have its own series of slots and sign exactly one certificate tree per slot. However,
other applications admit many plausible values per slot, in which case it is helpful to
narrow down the possible input values. Our strategy is to begin with a synchronous
nomination protocol that achieves consensus under certain timing assumptions, and
feed the output of the nomination protocol into an asynchronous ballot protocol whose
safety does not depend on timing [Lamport 2011a]. Such an initial synchronous phase
is sometimes called a conciliator [Aspnes 2010].

The nomination protocol works by converging on a set of candidate values for a slot.
Nodes then deterministically combine these candidates into a single composite value
for the slot. Exactly how to combine values depends on the application. By way of
example, the Stellar network uses SCP to choose a set of transactions and a ledger
timestamp for each slot. To combine candidate values, Stellar takes the union of their
transaction sets and the maximum of their timestamps. (Values with invalid times-
tamps will not receive enough nominations to become candidates.) Other possible ap-
proaches include combining sets by intersection or simply picking the candidate value
with the highest hash.

Nodes produce a candidate value " through federated voting on the statement
nominate ".

Definition (candidate). A node ! considers a value " to be a candidate when ! has
confirmed the statement nominate "—i.e., ! has ratified accept(nominate ").

So long as node ! has no candidate values, ! may vote in favor of nominate " for any
value " that passes application-level validity checks (such as timestamps not being
in the future). In fact, ! should generally re-nominate any values that it sees other
nodes nominate, with some rate-limiting discussed below to avoid an explosion of can-
didates. As soon as ! has a candidate value, however, it must cease voting to nominate "
for any new values ". It should still continue to accept nominate statements for new

Pete Keleher

Pete Keleher

Pete Keleher

20 D. Mazières

values (when accepted by a !-blocking set) and confirm new nominate statements as
prescribed by the federated voting procedure.

The nomination protocol enjoys several properties when a system has intact nodes
(meaning it has avoided complete failure). Specifically, for each slot:

(1) Intact nodes can produce at least one candidate value.

(2) At some point, the set of possible candidate values stops growing.

(3) If any intact node considers " to be a candidate value, then eventually every
intact node will consider " to be a candidate value.

Now consider how the nomination protocol achieves its three properties. Property 1
is achieved because nominate statements are irrefutable. Nodes never vote against
nominating a particular value, and until the first candidate value is confirmed, intact
nodes can vote to nominate any value. So long as any value " passes application-level
validity checks, intact nodes can vote for and confirm nominate ". Property 2 is en-
sured because once each intact node confirms at least one candidate value—which will
happen in a finite amount of time—no intact nodes will vote to nominate any new val-
ues. Hence, the only values that can become candidates are those that already have
votes from intact nodes. Property 3 is a direct consequence of Theorem 11.

The nomination process will be more efficient if fewer combinations of values are
in play. Hence, we assign nodes a temporary priority and have each node, when pos-
sible, nominate the same values as a higher-priority node. More concretely, let 3 be
a cryptographic hash function whose range can be interpreted as a set of integers
{0,… ,ℎmax − 1}. (3 might be SHA-256 [National Institute of Standards and Technol-
ogy 2012], in which case ℎmax = 2256.) Let 5#(6) = 3(#, "#−1,6) be a slot-specific hash
function for slot #, where "#−1 is the value chosen for the slot preceding # (or the sorted
set of values of all immediate dependencies of slot # when slots are governed by a par-
tial order). Given a slot # and a round number 2, each node ! computes a set of neighbors
and a priority for each neighbor as follows:

weight(!, !′) =

|||{ $ ∣ $ ∈ "(!) ∧ !′ ∈ $ }|||
|||"(!)|||

neighbors(!, 2) =
{
!′ ∣ 5#(N, 2, !

′) < ℎmax ⋅ weight(!, !
′)
}

priority(2, !′) = 5#(P, 2, !
′)

N and P are constants to produce two different hash functions. The function weight(!, !′)
returns the fraction of slices in "(!) containing !′. By using weight as the probability
over 2 that !′ appears in neighbors(!, 2), we also reduce the chance that nodes without
a lot of trust will dominate a round.

Each node ! should initially find a node !0 ∈ neighbors(!, 0) that maximizes
priority(0, !0) among nodes it can communicate with, then vote to nominate the same
values as !0. Only if ! = !0 should ! introduce a new value to nominate. ! should use
timeouts to decide on new nominate statements to vote for. After 2 timeouts, ! should
find a node !2 ∈ neighbors(!, 2) maximizing priority(2, !2) and vote to nominate every-
thing !2 has voted to nominate.

THEOREM 12. Eventually, all intact nodes will have the same composite value.

PROOF. The theorem follows from the three properties of the nomination protocol.
Each intact node will only ever vote to nominate a finite number of ballots. In the
absence of action by ill-behaved nodes, intact nodes will converge on the same set

The Stellar Consensus Protocol 21

Variable Meaning

% The set of values node ! has voted to nominate

7 The set of values node ! has accepted as nominated

8 The set of values that node ! considers candidate values

- The set of the latest NOMINATE message received from each node

Fig. 14. Nomination state maintained by node ! for each slot

NOMINATE ! # % 7 9
This is a message from node ! nominating values for slot #. 9 is !’s quorum
slice "(!) or a collision-resistant hash of "(!). % and 7 are from !’s state. The
concrete message encodes the following conceptual messages:

— {nominate " ∣ " ∈ % } (votes to nominate each value in %)

— {accept(nominate ") ∣ " ∈ 7 } (votes to confirm nominations in 7)

Fig. 15. Message in nomination protocol

of candidate values, call it 8. To forestall this convergence, ill-behaved nodes may
introduce new candidate values, which for a period may be candidates at some but not
all intact nodes. Such values will need to have garnered votes from well-behaved nodes,
however, which limits them to a finite set. Eventually, ill-behaved nodes will either stop
perturbing the system or run out of new candidate values to inject, in which case intact
nodes will converge on 8.

6.1.1. Concrete nomination protocol. Figure 14 lists the nomination protocol state a
node ! must maintain for each slot. % is the set of values " for which ! has voted
nominate ", 7 is the set of values for which ! has accepted nominate ", and 8 is the
set of candidate values—i.e., all values for which a quorum including ! has stated
accept(nominate "). Finally, ! maintains - , the latest concrete message from each
node. (Technically, %, 7 , and 8 can all be recomputed from - , but it is convenient to
be able to reference them directly.) All four fields are initialized to the empty set. Note
that all three of %, 7 , and 8 are growing over time—nodes never remove a value from
these sets.

Figure 15 shows the concrete message that constitutes the nomination protocol. Be-
cause % and 7 grow monotonically over time, it is possible to determine which of mul-
tiple NOMINATE messages from the same nodes is the latest, independent of network
delivery order, so long as 9 does not change mid-nomination (or 9 has to be versioned).
Only one remote procedure call (RPC) is needed for nomination—the argument is the
sender’s latest NOMINATE message and the return value is the receiver’s. If 9 or the
nominated values are cryptographic hashes, a second RPC should permit retrieval of
uncached hash preimages as needed.

Because nodes cannot tell when the nomination protocol is complete anyway, SCP
must cope with different composite values at different nodes. As an optimization, then,
nodes can attempt to predict the final composite value before they even have a candi-
date value. To do this, the composite value can be taken as combine(8) when 8 ≠ ∅,
otherwise combine(7) when 7 ≠ ∅, otherwise combine(%) when % ≠ ∅. This means the
highest-priority node can optimistically initiate balloting at the same time as nom-
ination, piggybacking its first ballot message PREPARE (described below) on its first
NOMINATE message.

22 D. Mazières

6.2. Ballot protocol

Once nodes have a composite value, they engage in the ballot protocol, though nomi-
nation may continue to update the composite value in parallel. A ballot + is a pair of
the form + = ⟨2, "⟩, where " ≠ ⊥ is a value and + is a referendum on externalizing " for
the slot in question. The value 2 ≥ 1 is a counter to ensure higher ballot numbers are
always available. We use C-like notation +.2 and +." to denote the counter and value
fields of ballot +, so that + = ⟨+.2, +."⟩. Ballots are totally ordered, with +.2 more signif-
icant than +.". For convenience, a special invalid null ballot # = ⟨0,⊥⟩ is less than all
other ballots, and a special counter value ∞ is greater than all other counters.

We speak of committing and aborting a ballot + as a shorthand for using federated
voting to agree on the statements commit + and abort +, respectively. For a given ballot,
commit and abort are contradictory, so a well-behaved node may vote for at most one

of them. In the notation of Section 5, the opposite of commit + would be “ commit +,”
but abort + is a more intuitive notation.

Because at most one value can be chosen for a given slot, all committed and stuck
ballots must contain the same value. Roughly speaking, this means commit statements
are invalid if they conflict with lower-numbered unaborted ballots.

Definition (compatible). Two ballots +1 and +2 are compatible, written +1 ∼ +2, iff
+1." = +2." and incompatible, written +1 ≁ +2, iff +1." ≠ +2.". We also write +1 ≲ +2 or
+2 ≳ +1 iff +1 ≤ +2 (or equivalently +2 ≥ +1) and +1 ∼ +2. Similarly, +1 ⋦ +2 or +2 ⋧ +1
means +1 ≤ +2 (or equivalently +2 ≥ +1) and +1 ≁ +2.

Definition (prepared). A ballot + is prepared iff every statement in the following set
is true: {abort +old ∣ +old ⋦ + }.

More precisely, then, commit + is valid to vote for only if + is confirmed prepared,
which nodes ensure through federated voting on the corresponding abort statements.
It is convenient to vote on these statements en masse, so wherever we write “+ is
prepared,” the surrounding context applies to the whole set of abort statements. In
particular, a node votes, accepts, or confirms that + is prepared iff it votes for, accepts,
or confirms, respectively, all of these aborts.

To commit a ballot + and externalize its value +.", SCP nodes first accept and confirm
+ is prepared, then accept and confirm commit +. Before the first intact node votes for
commit +, the prepare step, through federated voting, ensures all intact nodes can
eventually confirm + is prepared. When an intact node ! accepts commit +, it means
+." will eventually be chosen. However, as discussed in Section 5.4.1, ! must confirm
commit before acting on it in case ! is befouled.

6.2.1. Concrete ballot protocol. Figure 16 illustrates the per-slot state maintained by
each node. A node ! stores: its current phase =; its current ballot +; the two most recent
incompatible ballots it has prepared (>, >′); the lowest (?) and highest (ℎ) ballot, if any,
it has voted to commit and for which it has not subsequently accepted an abort (or for
which it has accepted or confirmed a commit in later phases); a next value @ to try if
the current ballot fails; and the latest message received from each node (A). Ballots +,
>, >′, and ℎ are non-decreasing within a phase. In addition, if ? ≠ #—meaning ! may
have participated in ratifying commit ?—code must ensure ? ≲ ℎ ≲ +. This invariant
guarantees a node can always legally vote to prepare its current ballot +.

Figure 17 shows the three ballot protocol messages, with = determining which one
of the three a node can send. Ballot messages may overlap with nomination messages,
so that, when ℎ = #, a node may update @ in response to a NOMINATE message. Note
that “* ∨ accept(*)” is what each node must assert for a quorum to accept * under
condition 1 of the definition of accept.

The Stellar Consensus Protocol 23

Variable Meaning

= Current phase: one of PREPARE, CONFIRM, or EXTERNALIZE

+ Current ballot that node ! is attempting to prepare and commit (+ ≠ #)

>′, > The two highest ballots accepted as prepared such that >′ ⋦ >, where
>′ = # or > = >′ = # if there are no such ballots

?,ℎ In PREPARE: ℎ is the highest ballot confirmed as prepared, or # if none;
if ? ≠ #, then ? is lowest and ℎ the highest ballot for which
! has voted commit and not accepted abort.

In CONFIRM: lowest, highest ballot for which ! accepted commit
In EXTERNALIZE: lowest, highest ballot for which ! confirmed commit
Invariant: if ? ≠ #, then ? ≲ ℎ ≲ +.

@ Value to use in next ballot. If ℎ = #, then @ is the composite value (see
Section 6.1); otherwise, @ = ℎ.".

A Set of the latest ballot message seen from each node

Fig. 16. Ballot state maintained by each node ! for each slot

PREPARE ! # + > >′ ?.2 ℎ.2 9
This is a message from node ! about slot #. 9 specifies "(!). The other fields
reflect !’s state. Values ?." and ℎ." are elided as ?." = ℎ." = +." when ?.2 ≠ 0.
This concrete message encodes a host of conceptual statements, as follows:

— {abort +′ ∨ accept(abort +′) ∣ +′ ⋦ + } (a vote to prepare +)

— {accept(abort +′) ∣ +′ ⋦ > } (a vote to confirm > is prepared)

— {accept(abort +′) ∣ +′ ⋦ >′ } (a vote to confirm >′ is prepared)

— { commit +′ ∣ ?.2 ≠ 0 ∧ ? ≲ +′ ≲ ℎ } (a vote to commit ?,… ,ℎ if ? ≠ #)

CONFIRM ! # + >.2 ?.2 ℎ.2 9
Sent by ! to try to externalize +." for slot # after accepting a commit. Implies
>." = ?." = ℎ." = +." in !’s state. For convenience, we also say >′ = # (>′ is
irrelevant after accepting commit). 9 specifies "(!) as above. Encodes:

— Everything implied by PREPARE ! # ⟨∞, +."⟩ > # ?.2 ∞ 9

— {accept(commit +′) ∣ ? ≲ +′ ≲ ℎ } (a vote to confirm commit ?,… ,ℎ)

EXTERNALIZE ! # " ?.2 ℎ.2 9
After ! confirms commit ⟨?.2, "⟩ for slot # and externalizes value ", this mes-
sage helps other nodes externalize ". Implies ? = ⟨?.2, "⟩ and ℎ = ⟨ℎ.2, "⟩. For
convenience, we also say + = > = ℎ = ⟨∞, "⟩, and >′ = #. Encodes:

— Everything implied by CONFIRM ! # ⟨∞, "⟩ ∞ ?.2 ∞ 9

— Everything implied by CONFIRM ! # ⟨∞, "⟩ ∞ ?.2 ℎ.2 {{!}}

Fig. 17. Messages in SCP’s ballot protocol

24 D. Mazières

For convenience, when comparing state across nodes, we will identify fields belong-
ing to particular nodes with subscripts. If ! is a node, then we write +!, >!, >

′
!… to

denote the values of +, >, >′,… in node !’s state as described in Figure 16. Similarly, we
let !6 denote message 6’s sender, and +6, >6, >

′
6,… denote the corresponding values of

+, >, >′,… in !6’s state as implied by 6.
Each node initializes its ballot state for a slot by setting = ← PREPARE, @ ← ⊥,

+ ← ⟨0, @⟩, A ← ∅, and all other fields (>, >′, ?,ℎ) to the invalid ballot #. While @ =
⊥, a node can receive but not send ballot messages. Once @ ≠ ⊥, if +.2 = 0, a node
reinitializes + ← ⟨1, @⟩ to start sending messages. Nodes then repeatedly exchange
messages with peers, sending whichever ballot message is indicated by =. Upon adding
a newly received message 6 to A!, a node ! updates its state as follows:

(1) If = = PREPARE and 6 lets ! accept new ballots as prepared, update > and >′.
Afterwards, if either > ⋧ ℎ or >′ ⋧ ℎ, then set ? ← #.

(2) If = = PREPARE and 6 lets ! confirm new higher ballots prepared, then raise ℎ
to the highest such ballot and set @ ← ℎ.".

(3) If = = PREPARE, ? = #, + ≤ ℎ, and neither > ⋧ ℎ nor >′ ⋧ ℎ, then set ? to the lowest
ballot satisfying + ≤ ? ≲ ℎ.

(4) If = = PREPARE and ! accepts commit for one or more ballots, set ? to the lowest
such ballot, then set ℎ to the highest ballot such that ! accepts all { commit +′ ∣
? ≲ +′ ≲ ℎ }, and set = ← CONFIRM. Also set @ ← ℎ." after updating ℎ, and unless
ℎ ≲ +, set + ← ℎ.

(5) If = = CONFIRM and the received message lets ! accept new ballots prepared,
raise > to the highest accepted prepared ballot such that > ∼ ?.

(6) If = = CONFIRM and ! accepts more commit messages or raises +, then let ℎ′ be
the highest ballot such that ! accepts all { commit +′ ∣ + ≲ +′ ≲ ℎ′ } (if any). If
there exists such an ℎ′ and ℎ′ > ℎ, then set ℎ ← ℎ′, and, if necessary, raise ? to
the lowest ballot such that ! accepts all { commit +′ ∣ ? ≲ +′ ≲ ℎ }.

(7) If = = CONFIRM and ! confirms commit ?′ for any ?′, set ? and ℎ to the lowest and
highest such ballots, set = ← EXTERNALIZE, externalize ?.", and terminate.

(8) If = ∈ {PREPARE, CONFIRM} and + < ℎ, then set + ← ℎ.

(9) If = ∈ {PREPARE, CONFIRM} and ∃0 ⊆ A! such that the set of senders { !6′ ∣
6′ ∈ 0 } is !-blocking and ∀6′ ∈ 0, +6′ .2 > +!.2, then set + ← ⟨2, @⟩, where 2 is
the lowest counter for which no such 0 exists. Repeat the previous steps after
updating +.

While ? = #, the above protocol implements federated voting to confirm + is prepared.
Once ? ≠ #, the protocol implements federated voting on commit ?′ for every ? ≲ ?′ ≲ ℎ.
For the CONFIRM phase, once a well-behaved node accepts commit ?, the node never
accepts, and hence never attempts to confirm, commit ?′ for any ?′ ≁ ?. Once a commit
is confirmed, the value of its ballot is safe to externalize assuming quorum intersection.

All messages sent by a particular node are totally ordered by ⟨=, +, >, >′,ℎ⟩, with =
the most significant and ℎ the least significant field. The values of these fields can be
determined from messages, as described in Figure 17. All PREPARE messages precede
all CONFIRM messages, which in turn precede the single EXTERNALIZE message for a
given slot. The ordering makes it possible to ensure A contains only the latest ballot
from each node without relying on timing to order the messages, since the network
may re-order messages.

The Stellar Consensus Protocol 25

A few details of the protocol merit explanation. The statements implied by PREPARE

of the form “abort +′ ∨ accept(abort +′)” do not specify whether ! is voting for or con-
firming abort +′. The distinction is unimportant for the definition of accept. Glossing
over the distinction allows ! to forget about old ballots it voted to commit (and hence
cannot vote to abort), so long as it accepted an abort message for them. Indeed, the
only time ! modifies ? when ? ≠ # is to set it back to # after accepting abort for every
ballot it is voting to commit in step 1 on the preceding page. Conversely, the only time
! modifies ? when ? = # is to set it to a value ? ≥ + in step 3. Because nodes never vote
abort ? for any ? ≥ +, no past abort votes can conflict with commit ?.

Theorem 11 requires that nodes rebroadcast what they have accepted. It follows
from the definition of prepare that the two highest incompatible ballots a node has
accepted as prepared subsume all ballots the node has accepted as prepared. Hence,
including > and >′ in every message ensures that nodes converge on ℎ—a confirmed
prepared ballot. Note further that the ballots a node accepts as prepared must be a
superset of the ballots the node confirms as prepared; hence, step 2 can never set ℎ
such that ℎ ≁ ? ≠ #, as step 1 will set ? ← # if the new ℎ is incompatible with the old ?.

At the time ! sends an EXTERNALIZE message, it has accepted { commit +′ ∣ +′ ≳ ? }.
More importantly, however, it has confirmed { commit +′ ∣ ? ≲ +′ ≲ ℎ }. ! can assert
its acceptance of confirmed statements without regard to "(!), because it has already
checked that one of its slices unanimously agrees; this explains the appearance of
{{!}} in place of 9 for the second implicit CONFIRM message in the description of
EXTERNALIZE. Eliminating 9 allows a single static EXTERNALIZE message to help
other nodes catch up arbitrarily far in the future, even if quorum slices have changed
significantly in the meantime.

Only one RPC is needed to exchange ballot messages. The argument is the sender’s
latest message and the return value is the receiver’s latest message. As with NOMI-
NATE, if 9 or the values " in ballots are cryptographic hashes, then a separate RPC is
needed to retrieve uncached hash preimages.

6.2.2. Timeouts and ballot updates. If all intact nodes start with the same ballot +, then
steps 1 to 9 on the previous page are sufficient to confirm commit + and externalize
value +.". Unfortunately, if the ballot protocol starts before the nomination protocol
has converged, nodes may start off with different values for @. If a ballot fails, or takes
long enough that it may fail because of unresponsive nodes, then nodes must time out
and try again with a higher ballot. For this reason, nodes employ a timer as follows:

(a) A node ! with =! ≠ EXTERNALIZE arms a timer whenever ∃0 ⊆ A! such that
the set of senders & = { !6 ∣ 6 ∈ 0 } is a quorum, ! ∈ & , and ∀6 ∈ 0, +6.2 ≥ +!.2.

(b) If the timer fires, ! updates its ballot by setting +! ← ⟨+!.2 + 1, @!⟩.

Different nodes may start ballots at different times. However, condition (a) delays
setting a timer at a node ! that has gotten ahead of a quorum. Conversely, step 9 on
the preceding page allows nodes that have fallen too far behind to catch up without
waiting for timers. Taken together, these rules ensure that given long enough timers,
intact nodes will spend time together on the same ballot; moreover, this time will grow
proportionally to the timer duration. To ensure timeouts are long enough without pre-
dicting latencies, an implementation can increase the timeout as a function of +.2.

6.3. Correctness

An SCP node cannot vote to confirm commit + until it has voted to confirm abort for all
lower-numbered incompatible ballots. Because a well-behaved node cannot accept (and
hence vote to confirm) contradictory statements, this means that for a given ⟨!,"⟩,
Theorem 5 ensures a set 0 of well-behaved nodes cannot externalize contradictory

26 D. Mazières

values so long as 0 enjoys quorum intersection despite !⧵0. This safety holds if ! and
" change only between slots, but what if they change mid-slot (for instance, in reaction
to node crashes)?

To reason about safety under reconfiguration, we join all old and new quorum slice
sets, reflecting the fact that nodes may make decisions based on a combination of mes-
sages from different configuration eras. To be very conservative, we might require
quorum intersection of the aggregation of the present configuration with every past
configuration. However, we can relax this slightly by separating nodes that have sent
illegal messages from those that have merely crashed.

THEOREM 13. Let ⟨!1,"1⟩,… , ⟨!B,"B⟩ be the set of configurations an FBAS has
experienced during agreement on a single slot. Let ! = !1 ∪ ⋯ ∪ !B and "(!) = { $ ∣
∃C such that ! ∈ !C ∧ $ ∈ "C(!) }. Let) ⊆ ! be a set such that) contains all ill-
behaved nodes that have sent illegal messages, though ! ⧵) may still contain crashed
(unresponsive) nodes. Suppose nodes !1 and !2 are well-behaved, !1 externalizes "1 for
the slot, and !2 externalizes "2. If ⟨!,"⟩) enjoys quorum intersection, then "1 = "2.

PROOF. For !1 to externalize "1, it must have ratified accept(commit ⟨21, "1⟩) in col-
laboration with a pseudo-quorum &1 ⊆ !. We say pseudo-quorum because &1 might
not be a quorum in ⟨!C ,"C⟩ for any particular C, as ratification may have involved
messages spanning multiple configurations. Nonetheless, for ratification to succeed
∀! ∈ &1,∃C,∃$ ∈ "C(!) such that $ ⊆ &1. It follows from the construction of " that
$ ∈ "(!). Hence &1 is a quorum in ⟨!,"⟩. By a similar argument a pseudo-quorum
&2 must have ratified accept(commit ⟨22, "2⟩), and &2 must be a quorum in ⟨!,"⟩. By
quorum intersection of ⟨!,"⟩), there must exist some ! ∈ ! ⧵) such that ! ∈ &1 ∩ &2.
By assumption, such a ! ∉) could not claim to accept incompatible ballots. Since !
confirmed accepting commit for ballots with both "1 and "2, it must be that "1 = "2.

For liveness of a node !, we care about several things when an FBAS has undergone
a series of reconfigurations ⟨!1,"1⟩,… , ⟨!B,"B⟩ within a single slot. First, the safety
prerequisites of Theorem 13 must hold for ! and the set of nodes ! cares about, since
violating safety undermines liveness and Theorem 11 requires quorum intersection.
Second, the set of ill-behaved nodes in the latest state, ⟨!B,"B⟩, must not be !-blocking,
as this could deny ! a quorum and prevent it from ratifying statements. Finally, !’s
state must never have been poisoned by a !-blocking set falsely claiming to accept a
statement.

To summarize, then, if) is the set of nodes that have sent illegal messages, we
consider a node ! to be cumulatively intact when the following conditions hold:

(1) ! is intact in the latest configuration ⟨!B,"B⟩,
(2) The aggregation of the present and all past configurations has quorum intersec-

tion despite) (i.e., the prerequisite for Theorem 13 holds), and

(3)) is not !-blocking in ⟨!C ,"C⟩ for any 1 ≤ C ≤ B.

The next few theorems show that ill-behaved nodes cannot drive intact nodes into
dead-end states:

THEOREM 14. In an FBAS with quorum intersection, if no intact node is in the
EXTERNALIZE phase and an intact node with ballot ⟨2, "⟩ arms its timer as described
in Section 6.2.2, then, given sufficient communication, every intact node ! can set +! ≥ 2
before any timer fires.

PROOF. Let 0 = { ! ∣ +! ≥ 2 } be the set of nodes with counters at least 2. By as-
sumption, 0 contains an intact node. Furthermore, because that intact node armed its

The Stellar Consensus Protocol 27

timer, 0 must also encompass a quorum. Let 0+ be the intact subset of 0, and 0− be
the set of intact nodes not in 0. By Theorem 10, either 0− = ∅ (in which case the the-
orem is trivial), or 0+ is !-blocking for some ! ∈ 0. By step 9 on page 24, ! will adjust
its ballot so +!.2 ≥ 2. At this point, repeat the argument with ! ∈ 0 until such point as
0− = ∅.

THEOREM 15. Given long enough timeouts, if an intact node has reached the CON-
FIRM phase with +." = ", then eventually all intact nodes will terminate.

PROOF. If an intact node has reached the EXTERNALIZE phase, it has confirmed
commit ? for some ballot ?. By Theorem 11, all intact nodes will confirm commit ?,
after which they will terminate in step 7 on page 24.

Otherwise, an intact node in the CONFIRM phase has accepted commit ? where ? =
⟨2, "⟩. Beforehand, an intact node confirmed ? was prepared. By Theorem 11, all intact
nodes will eventually have ℎ ≥ ?. Moreover, by Theorem 8, no intact node ! can accept
abort ?, so no intact node can accept as prepared any ballot > such that > ⋧ ?. Hence,
after sufficient communication, every intact node will permanently have ℎ ≳ ?. The
intact node or nodes with the lowest + will, by Theorem 14, raise their ballots until
such point as all intact nodes with armed timers have the same ballot counter. Since
they also have identical @ = ℎ." = ", they will all have the same ballot. If they cannot
complete the protocol because one or more intact nodes have higher ballots, the nodes
with higher numbered ballots will not have timers set. Hence, the nodes with lower-
numbered ballots will after a timeout set set + ← ⟨+.2 + 1, "⟩ until eventually all intact
nodes are on the same ballot and can complete the protocol

THEOREM 16. Regardless of past ill-behavior, given long enough timeouts and peri-
ods in which ill-behaved nodes do not send new messages, intact nodes running SCP
will terminate.

PROOF. By Theorem 12, all intact nodes will eventually have identical sets 8 of
candidate values. Assume this point has passed and every intact node ! has the same
composite value @ = combine(8). If no intact node ever confirms any ballot + prepared
without +." = @, then after at most one timeout, all new ballots of intact nodes will
have value @ and, given a sufficient timeout, complete the protocol. By Theorem 15,
nodes will also complete if any intact node has progressed beyond the PREPARE phase.

The remaining case is that an intact node has ℎ ≠ # and all intact nodes have = =
PREPARE. By Theorem 14, when the intact node or nodes with the highest +.2 arm their
timers, if timers are long enough, other nodes will catch up. Moreover, by Theorem 11,
if timers are long enough, nodes will converge on the value of ℎ (the highest confirmed
prepared ballot) before the next timeout, at which point all intact nodes will raise + to
the same value and complete the protocol.

Theorem 16 assures us there are no dead-end states in SCP. However, a set of ill-
behaved nodes with very good timing could perpetually preempt an SCP system by
delaying messages so that some fraction of intact nodes update ℎ right before timers
fire and the remaining update it after, preventing intact nodes from converging on the
next ballot. Nodes can recover from such an attack by removing ill-behaved nodes from
their slices.

An alternative would be to add randomness to the protocol, for instance changing
step 2 on page 24 to update @ with probability 1∕2 (or even with probability propor-
tional to the fraction of the timer remaining). Such an approach would terminate with
probability 1, but in worse expected running time for the common case that most or all
nodes are well-behaved or fail-stop.

28 D. Mazières

7. LIMITATIONS

SCP can only guarantee safety when nodes choose adequate quorum slices. Section 3.2
discusses why we can reasonably expect them to do so. Nonetheless, when security
depends upon a user-configurable parameter, there is always the possibility people
will set it wrong.

Even when people set quorum slices correctly and SCP guarantees safety, safety
alone does not rule out other security issues that may arise in a federated system.
For example, in a financial market, widely trusted nodes could leverage their position
in the network to gain information with which to engage in front running or other
unethical activities.

Byzantine nodes may attempt to filter transactions on the input side of SCP while
otherwise producing the correct output. If well-behaved nodes accept all transactions,
the combine function takes the union of transactions, and there are intact nodes, then
such filtering will eventually fail to block victim transactions with probability 1, but
may nonetheless impose delays.

Though SCP’s safety is optimal, its performance and communication latency are not.
In the common case that nodes have not previously voted to commit ballots incompati-
ble with the current one, it is possible to reduce the number of communication rounds
by one. An earlier version of SCP did so, but the protocol description was more com-
plex. First, it required nodes to cache and retransmit signed messages previously sent
by failed nodes. Second, it was no longer possible to gloss over the distinction between
votes and confirmations of abort statements in PREPARE messages, so nodes had to
send around potentially unbounded lists of exceptions to their abort votes.

SCP can suffer perpetual preemption as discussed in Section 6.3. An open question is
whether, without randomness, a different protocol could guarantee termination assum-
ing bounded communication latency but tolerating Byzantine nodes that continuously
to inject bad messages at exactly the point where timeouts fire. Such a protocol is not
ruled out by the FLP impossibility result [Fischer et al. 1985]. However, the two main
techniques to guarantee termination assuming synchrony do not directly apply in the
FBA model: PBFT [Castro and Liskov 1999] chooses a leader in round-robin fashion,
which is not directly applicable when nodes do not agree on membership. (Possibly
something along the lines of priority in Section 6.1 could be adapted.) The Byzan-
tine Generals protocol [Lamport et al. 1982] relays messages so as to compensate for
ill-behaved nodes saying different things to different honest nodes, an approach that
cannot help when nodes depend on distinct ill-behaved nodes in their slices. Still an-
other possibility might be to leverage both randomness and synchrony to terminate
with probability 1, but in shorter expected time than Ben Or-style randomized proto-
cols [Ben-Or 1983] that make no synchrony assumptions.

Unfortunately, changing slices mid-slot to accommodate failed nodes is problematic
for liveness if a well-behaved node ! has ever experienced a wholly malicious and col-
luding !-blocking set. The good news is that Theorem 13 guarantees safety to any set
0 of well-behaved nodes enjoying quorum intersection despite ! ⧵ 0, even when 0 has
befouled members. The bad news is that updating " may be insufficient to unblock ! if
! was tricked into voting to confirm a bad commit message. In such a situation, ! needs
to disavow past votes, which it can do only by rejoining the system under a new node
name !′ ≠ !. There may exist a way to automate such recovery, such as having other
nodes recognize reincarnated nodes and automatically replace ! with !′ in slices.

The FBA model requires continuity of participants over time. Should all nodes si-
multaneously and permanently leave, restarting consensus would require central co-
ordination or human-level agreement. By contrast, a proof-of-work system such as
Bitcoin could undergo sudden complete turnover yet continue to operate with little hu-

The Stellar Consensus Protocol 29

man intervention. On the other hand, if nodes do return, an FBAS can recover from
an arbitrarily long outage, while a proof-of-work scheme would face the possibility of
an attacker working on a fork during the outage.

An intriguing possibility is to leverage SCP to mediate tussles [Clark et al. 2005] by
voting on changes to configuration parameters or upgrades to an application protocol.
One way to do this is to nominate special messages that update parameters. Candidate
values could then consist of both a set of values and a set of parameter updates. A big
limitation of this approach is that a set of malicious nodes large enough to deny the
system a quorum but not large enough to undermine safety could nonetheless trigger
arbitrary configuration changes (by lying and putting configuration changes in 7 that
were never ratified). It remains an open question how to vote on parameter changes in
a way that requires the consent of a full quorum but also never jeopardizes liveness.

8. SUMMARY

Byzantine agreement has long enabled distributed systems to achieve consensus with
efficiency, standard cryptographic security, and flexibility in designating trusted par-
ticipants. More recently, Bitcoin introduced the revolutionary notion of decentralized
consensus, leading to many new systems and research challenges. This paper intro-
duces federated Byzantine agreement (FBA), a model for achieving decentralized con-
sensus while preserving the traditional benefits of Byzantine agreement. The key dis-
tinction between FBA and prior Byzantine agreement systems is that FBA forms quo-
rums from participants’ individual trust decisions, allowing an organic growth model
similar to that of the Internet. The Stellar Consensus Protocol (SCP) is a construction
for FBA that achieves optimal safety against ill-behaved participants.

Acknowledgments

Jed McCaleb inspired this work and provided feedback, terminology suggestions, and
help thinking through numerous conjectures. Jessica Collier collaborated on writing
the paper. Stan Polu created the first implementation of SCP and provided invaluable
corrections, suggestions, simplifications, and feedback in the process. Jelle van den
Hooff provided the key idea to restructure the paper around quorum intersection and
federated voting, as well as other crucial suggestions for terminology, organization,
and presentation. Nicolas Barry found several bugs in the paper as he implemented
the protocol, as well as identifying necessary clarifications. Ken Birman, Bekki Bolt-
house, Joseph Bonneau, Mike Hamburg, Graydon Hoare, Joyce Kim, Tim Makarios,
Mark Moir, Robert Morris, Lucas Ryan, and Katherine Tom slogged through drafts
of the paper, identifying errors and sources of confusion as well as providing helpful
suggestions. Eva Gantz provided helpful motivation and references. Winnie Lim pro-
vided guidance on figures. The reddit community and Tahoe-LAFS group pointed out
a censorship weakness in an earlier version of SCP, leading to the improved nomina-
tion protocol. Finally, the author would like to thank the whole Stellar team for their
support, feedback, and encouragement.

Disclaimer

Professor Mazières’s contribution to this publication was as a paid consultant, and was
not part of his Stanford University duties or responsibilities.

REFERENCES

Eduardo A. Alchieri, Alysson Neves Bessani, Joni Silva Fraga, and Fabı́ola Greve. 2008. Byzantine
Consensus with Unknown Participants. In Proceedings of the 12th International Conference on
Principles of Distributed Systems. 22–40.

30 D. Mazières

James Aspnes. 2010. A Modular Approach to Shared-memory Consensus, with Applications to the
Probabilistic-write Model. In Proceedings of the 29th Symposium on Principles of Distributed
Computing. 460–467.

Rachel Banning-Lover. 2015. Boatfuls of cash: how do you get money into fragile states? (February 2015).
http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-
of-cash-how-do-you-get-money-into-fragile-states.

David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
2014. ARPKI: Attack Resilient Public-Key Infrastructure. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 382–393.

Michael Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract): Completely Asynchronous
Agreement Protocols. In Proceedings of the 2nd Symposium on Principles of Distributed Computing.
27–30.

Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and Edward W.
Felten. 2015. Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. In Proceedings
of the 36th IEEE Symposium on Security and Privacy.

Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols. Journal of the
ACM 32, 4 (Oct. 1985), 824–840.

Danny Bradbury. 2013. Feathercoin hit by massive attack. (June 2013).
http://www.coindesk.com/feathercoin-hit-by-massive-attack/.

Vitalik Buterin. 2014. Slasher: A Punitive Proof-of-Stake Algorithm. (January 2014).
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/.

Miguel Castro and Barbara Liskov. 1999. Practical byzantine fault tolerance. In Proceedings of the 3rd
Symposium on Operating Systems Design and Implementation. 173–186.

CGAP. 2008. Making Money Transfers Work for Microfinance Institutions. (March 2008).
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-
for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-
Transfers-Mar-2008.pdf.

David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. 2005. Tussle in Cyberspace:
Defining Tomorrow’s Internet. IEEE/ACM Transactions on Networking 13, 3 (June 2005), 462–475.

crazyearner. 2013. TERRACOIN ATTACK OVER 1.2TH ATTACK CONFIRMD [sic]. (July 2013).
https://bitcointalk.org/index.php?topic=261986.0.

Kourosh Davarpanah, Dan Kaufman, and Ophelie Pubellier. 2015. NeuCoin: the First Secure,
Cost-efficient and Decentralized Cryptocurrency. (March 2015).
http://www.neucoin.org/en/whitepaper/download.

Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden. 2015. The Global Findex
Database 2014 Measuring Financial Inclusion Around the World. Policy Research Working Paper 7255.
World Bank. http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/
04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf.

John R. Douceur. 2002. The Sybil Attack. In Revised Papers from the First International Workshop on
Peer-to-Peer Systems. 251–260.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial
Synchrony. Journal of the ACM 35, 2 (April 1988), 288–323.

Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk Mail. In Proceedings of
the 12th Annual International Cryptology Conference on Advances in Cryptology. 139–147.

Ittay Eyal and Emin Gün Sirer. 2013. Majority is not Enough: Bitcoin Mining is Vulnerable. (November
2013). http://arxiv.org/abs/1311.0243.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM 32, 2 (April 1985), 374–382.

Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-spending fast payments in bitcoin.
In Proceedings of the 2012 ACM conference on Computer and communications security. 906–917.

Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and Virgil Gligor. 2013.
Accountable Key Infrastructure (AKI): A Proposal for a Public-key Validation Infrastructure. In
Proceedings of the 22nd International Conference on World Wide Web. 679–690.

Sunny King and Scott Nadal. 2012. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. (August
2012). http://peercoin.net/assets/paper/peercoin-paper.pdf.

Jae Kwon. 2014. Tendermint: Consensus without Mining. (2014).
http://tendermint.com/docs/tendermint.pdf.

Leslie Lamport. 1998. The Part-Time Parliament. 16, 2 (May 1998), 133–169.

http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.theguardian.com/global-development-professionals-network/2015/feb/19/boatfuls-of-cash-how-do-you-get-money-into-fragile-states
http://www.coindesk.com/feathercoin-hit-by-massive-attack/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
http://www.cgap.org/sites/default/files/CGAP-Technical-Guide-Making-Money-Transfers-Work-for-Microfinance-Institutions-A-Technical-Guide-to-Developing-and-Delivering-Money-Transfers-Mar-2008.pdf
https://bitcointalk.org/index.php?topic=261986.0
http://www.neucoin.org/en/whitepaper/download
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/04/15/090224b082dca3aa/1_0/Rendered/PDF/The0Global0Fin0ion0around0the0world.pdf
http://arxiv.org/abs/1311.0243
http://peercoin.net/assets/paper/peercoin-paper.pdf
http://tendermint.com/docs/tendermint.pdf

The Stellar Consensus Protocol 31

Leslie Lamport. 2011a. Brief Announcement: Leaderless Byzantine Paxos. In Proceedings of the 25th
International Conference on Distributed Computing. 141–142.

Leslie Lamport. 2011b. Byzantizing Paxos by Refinement. In Proceedings of the 25th International
Conference on Distributed Computing. 211–224.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM
Transactions on Programing Languages and Systems 4, 3 (July 1982), 382–401.

Adam Langley. 2015. Maintaining digital certificate security. (March 2015). http:
//googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html.

Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency. RFC 6962. Internet
Engineering Task Force (IETF). http://tools.ietf.org/html/rfc6962.

Jinyuan Li and David Mazières. 2007. Beyond One-third Faulty Replicas in Byzantine Fault Tolerant
Systems. In Proceedings of the 4th Symposium on Networked Systems Design and Implementation.
131–144.

Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Michael J. Freedman, and Edward W. Felten. 2014.
CONIKS: A Privacy-Preserving Consistent Key Service for Secure End-to-End Communication.
Cryptology ePrint Archive, Report 2014/1004. (December 2014). http://eprint.iacr.org/2014/1004.

Microsoft. 2013. Fraudulent Digital Certificates Could Allow Spoofing. Microsoft Security Advisory
2798897. (January 2013). https://technet.microsoft.com/en-us/library/security/2798897.aspx.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
http://bitcoin.org/bitcoin.pdf.

National Institute of Standards and Technology. 2012. Secure Hash Standard (SHS). Federal Information
Processing Standards Publication 180-4.
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

William B. Norton. 2010. The Art of Peering: The Peering Playbook. (August 2010).
http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html.

Karl J. O’Dwyer and David Malone. 2014. Bitcoin Mining and its Energy Footprint. In Irish Signals and
Systems Conference. Limerick, Ireland, 280–285.

Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Primary Copy Method to
Support Highly-Available Distributed Systems. In Proceedings of the 7th Symposium on Principles of
Distributed Computing. 8–17.

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014
USENIX Annual Technical Conference. 305–319.

Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching Agreement in the Presence of Faults.
Journal of the ACM 27, 2 (April 1980), 228–234.

Claire Provost. 2013. Why do Africans pay the most to send money home? (January 2013).
http://www.theguardian.com/global-development/2013/jan/30/africans-pay-most-send-money.

David Schwartz, Noah Youngs, and Arthur Britto. 2014. The Ripple Protocol Consensus Algorithm. (2014).
https://ripple.com/files/ripple_consensus_whitepaper.pdf.

Dale Skeen and Michael Stonebraker. 1983. A Formal Model of Crash Recovery in a Distributed System.
IEEE Transactions on Software Engineering 9, 3 (May 1983), 219–228.

Robbert van Renesse, Nicolas Schiper, and Fred B. Schneider. 2014. Vive la Différence: Paxos vs.
Viewstamped Replication vs. Zab. IEEE Transactions on Dependable and Secure Computing
(September 2014).

http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://tools.ietf.org/html/rfc6962
http://eprint.iacr.org/2014/1004
https://technet.microsoft.com/en-us/library/security/2798897.aspx
http://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html
http://www.theguardian.com/global-development/2013/jan/30/africans-pay-most-send-money
https://ripple.com/files/ripple_consensus_whitepaper.pdf
Pete Keleher

32 D. Mazières

A. GLOSSARY OF NOTATION

Notation Name Definition

iff An abbreviation of “if and only if”

(∶ D →) function Function (maps each element of set D to a result in set).

((") application The result of calculating function (on argument "

*̄ complement An overbar connotes the opposite, i.e., *̄ is the opposite of *.

⟨*1,… , *2⟩ tuple A structure (compound value) with field values *1,… , *2

D ∧) logical and Both D and) are true.

D ∨) logical or At least one, possibly both, of D and) are true.

∃E,F(E) there exists There is at least one value E for which condition F(E) is true.

∀E,F(E) for all F(E) is true of every value E.

{*, +,…} set A set containing the listed elements (*, +,…)

{ E ∣ F(E) } set-builder The set of all elements E for which F(E) is true

∅ empty set The set containing no elements

|0| cardinality The number of elements in set 0

E ∈ 0 element of Element E is a member of set 0.

D ⊆) subset Every member of set D is also a member of set).

D ⫋) strict subset D ⊆) and D ≠).

2D powerset The set of sets containing every possible combination of members of D,
i.e., 2D = {) ∣) ⊆ D }

D ∪) union The set containing all elements that are members of D or members of
), i.e., D ∪) = { E ∣ E ∈ D ∨ E ∈) }

D ∩) intersection The set containing all elements that are members of both D and), i.e.,
D ∩) = { E ∣ E ∈ D ∧ E ∈) }

D ⧵) set difference The set containing every element of D that is not a member of), i.e.,
D ⧵) = { E ∣ E ∈ D ∧ E ∉) }

̸ not Negates a symbol’s meaning. E.g., E ∉ D means E ∈ D is false, while
∄E,F(E) means no E exists such that F(E) is true.

	Introduction
	Related work
	Federated Byzantine agreement systems
	Quorum slices
	Examples and discussion
	Safety and liveness

	Optimal resilience
	Quorum intersection
	Dispensable sets (DSets)

	Federated voting
	Voting with open membership
	Blocking sets
	Accepting statements
	Accepting is not enough
	Safety
	Liveness
	Comparison to centralized voting

	Statement confirmation
	Liveness and neutralization

	SCP: A federated Byzantine agreement protocol
	Nomination protocol
	Concrete nomination protocol

	Ballot protocol
	Concrete ballot protocol
	Timeouts and ballot updates

	Correctness

	Limitations
	Summary
	Glossary of notation

