Flexible, Wide-Area Storage for
Distributed Systems with WheelFS

Jeremy Stribling,
Yair Sovran, Irene Zhang, Xavid Pretzer,
Jinyang Li, M. Frans Kaashoek, and Robert Morris

MIT CSAIL & New York University g

Yo

Wide-Area Storage: The Final Frontier

. ._ 'Lqﬁ. ;: =t .
AR S ~— i
l-‘: H .'I L L .‘ y .'..:.:':'l -

g PlanetLab :
 Apps store data on widely-spread resources

— Testbeds, Grids, data centers, etc.
— Yet there’s no universal storage layer

» What’s so hard about the wide-area?
— Failures and latency and bandwidth, oh my!

Apps Handle Wide-Area Differently

» CoralCDN prefers low delay to strong
consistency (Coral Sloppy DHT)

» Google stores email near consumer
(Gmail’s storage layer)

« Facebook forces writes to one data center
(Customized MySQL/Memcached)

—> Each app builds its own storage layer

Problem:
No Flexible Wide-Area Storage

» Apps need control of wide-area tradeoffs
— Fast timeouts vs. consistency
— Fast writes vs. durability
— Proximity vs. availability

» Need a common, familiar API: File system
— Easy to program, reuse existing apps

* No existing DFS allows such control

Solution: Semantic Cues

- Small set of app-specified controls

» Correspond to wide-area challenges:
— EventualConsistency: relax consistency
— RepLevel=N: control number of replicas
— Site=site: control data placement

- Allow apps to specity on per-file basis
— /fs/.EventualConsistency/file

Contribution: WheelFS

» Wide-area file system

* Apps embed cues directly in pathnames
» Many apps can reuse existing software
 Multi-platform prototype w/ several apps

WheelFS Design Overview

Distributed Application confiouration

[D ' —— (Pa;ir\-/:CF?SM)
'Q;HHEEHIH!E!IH‘?VH!E%f!F=\\

. J

FUSE

/’1,’ h\'\’ -\\\
1, "~\
WheelFS client nodes T ;
WheelFS !
WheelFS storage nodes client) Y

_ software }—upp

=N=N=N=N=N=F=F=Cy

Files and directories are
spread across storage nodes

y/
\

] ﬂ
\
\

~

WheelFS Default Operation

* Files have a primary and two replicas
— A file’s primary is its creator

» Clients can cache files
— Lease-based invalidation protocol

» Strict close-to-open consistency
— All operations serialized through the primary

Enforcing Close-to-Open Consistency

By default, failing to reach the
primary blocks the operation to
offer close-to-open consistency
in the face of partitions

(backup)

Eventually, the configuration
service decides to promote a
backup to be primary

Wide-Area Challenges

 Transient failures are common
— Fast timeouts vs. consistency

 High latency

— Fast writes vs. durability

« Low wide-area bandwidth
— Proximity vs. availability

Only applications can make these tradeoffs

Semantic Cues Gives Apps Control

+ Apps want to control consistency, data
placement ...

» How? Embed cues in path names

/wis/cachefsieaalobaiérbifooifostency/foo

-> Flexible and minimal interface change

Semantic Cue Details
» Cues can apply to directory subtrees

/wfs/cache/.EventualConsistency/a/b/foo

Cues apply recursively over
an entire subtree of files

- Multiple cues can be in effect at once
/wfs/cache/.EventualConsistency/.RepLevel=2/a/b/foo

Both cues apply to
the entire subtree

» Assume developer applies cues sensibly

A Few WheelFS Cues

Name Purpose
Durability RepLevel= How many replicgs of this file should be
(permanent) maintained
Large reads HotSpot This file will be read simultaneously by
(transient) many nodes, so use p2p caching
Hint about data || Site= Hint which group of nodes a file
placement (permanent) should be stored
Eventual- Control whether reads
Consistency Consistency must see fresh data, and whether writes
(trans/perm) must be serialized

Cues designed to match wide-area challenges

Eventual Consistency: Reads

- Read latest version of the file you can find quickly
* In a given time limit (.MaxTime=)

Eventual Consistency: Writes

» Write to any replica of the file

Reconciling divergent replicas:
: : e . v3
Directories _ Files
- Merge replicas into single Choose one of the replicas to
directory by taking union of win S
entries rite
- Tradeoff: May lose some - Tradeoff: May lose some lle
unlinks writes
(No application involvement) ss
V3 | will merge divergent replicas

, (backup)
Create new version at backup

Example Use of Cues:

Cooperative Web Cache (CWC)

Blocks under failure with
default strong consistency

Apache Apache Apache Apache \
Caching (Caching Caching (Caching
Proxy Proxy Proxy Proxy url exists | he di
| | read $url from WheelF
D D else f i
__________________ >" T —---~ get page web server
O =TT e nwhearsS

~
-
____ < - -
L -
~o Pl e
~— o L

- -
S~ ="

One line change in Apache config file: /wfs/cache/$URL

Example Use of Cues: CWC

 Apache proxy handles potentially stale files well

— The freshness of cached web pages can be
determined from saved HT TP headers

Cache dir: /wfs/cache/.EventualConsistency/.MaxTime=200/.HotSpot

= NN

Read a cached file Write the file data Reads onl
cada Ch - anywhere even o eif 20y0 Tells WheelFS to
even when the when the ocK Tor read data from
corresponding

. ms; after that, .
primary cannot be corresponding the nearest client

fall back to
contacted

primary cannot be . cache it can find
contacted origin server

WheelFS Implementation

* Runs on Linux, MacQOS, and FreeBSD
» User-level file system using FUSE

« 20K+ lines of C++

« Unix ACL support, network coordinates
» Deployed on PlanetLab and Emulab

Applications Evaluation

Lines of
App Cues used code/configuration
written or changed
Cooperative .EventualConsistency, .MaxTime, ’
Web Cache .HotSpot
. . .EventualConsistency, .MaxTime,
All-Pairs-Pings .HotSpot, .WholeFile 13
.EventualConsistency, .Site,
Distributed Mail .RepLevel, .RepSites, 4
.KeepTogether
File distribution .WholeFile, .HotSpot N/A
Distributed .EventualConsistency (for objects), 10
make .Strict (for source), .MaxTime

Performance Questions

1. Does WheelFS scale better than a single-
server DFS?

2. Can WheelFS apps achieve performance
comparable to apps w/ specialized storage?

3. Do semantic cues improve application
performance?

WheelFS Out-scales NFS on PlanetLab

25

20

Median 15
1MB read

latency
(seconds) 10

5

0

Working set of files
exceeds NFS server’s
buffer cache

——\WheelFS
-=-NFS
P —
— PlanetLab
VS.
dedicated MIT server
0 50 100 150 200 250 300

Number of concurrent clients

Conclusion

» Storage must let apps control data behavior

 Small set of semantic cues to allow control

— Placement, Durability, Large reads and
Consistency

 WheelFS:

— Wide-area file system with semantic cues
— Allows quick prototyping of distributed apps

g http://pdos.csail.mit.edu/wheelfs

3
| 4

Thoughts

* [sit:
— really good?
— really trivial?
e Similarities to self-certifying pathnames?
— it’s all about the interface
— but this means only legacy apps benefit

PADS: Policy Architecture for
Distributed Storage Systems

Nalini Belaramani, Jiandan Zheng, Amol Nayate,
Robert Soulé, Mike Dahlin and Robert Grimm.

University of Texas at Austin, Amazon Inc.,
IBM T.J. Watson, New York University

Yes it is!

With PADS:
2 grad students + 4 months = 12 diverse systems

Partial Replication

® TierStore

SCS Pangaea

Coda o ¢ °

) °
Chain o Babat

Any Replication) bpolog
Consistency " FCS | Tierstore ce

LRl = - 100 LOC

®
Bave
TRIP* E

Blocking

Where is s Consistency Durability

information : .
data stored? requirements?| [requirements?

propagated?

[
|
|
|
|
|
|
|
|
\

Outline

 PADS approach

* Policy
— Routing
— Blocking

e Evaluation

Routing

Data flows among nodes

When and where to send an update?
Who to contact on a local read miss?

Chain Replication

TierStore

Subscription

Primitive for update flow

Options:
Data set of interest (e.g. /voll/*)
Notifications (invalidations) in causal order or
updates (bodies)
Logical start time

O > (O

Source Node Destination Node

Routing Actions

Routing Actions

Add Inval Sub

srcld, destld, objS, [startTime],

LOG|CP|CP+Body
Add Body Sub srcld, destld, objS, [startTime]
Remove Inval Sub | srcld, destld, objS
Remove Body Sub | srcld, destld, objS
Send Body srcld, destld, objld, off, len, writerld, time
Assign Seq objld, off, len, writerld, time
B Action <policy defined >

Events

Operation block
write
Delete

Inval arrived
Send body succ
Send body failed

Subscription start
Subscription caught-

up
Subscription end

Event-driven API

To set up routing

Routing
Policy

Actions

Add inval sub
Add body sub

_ Remove inval sub
Blocking Remove body sub

POhCy Send body

Assign seq

mi

PADS

B_action

Triggers from Routing API

Local Read/Write Triggers

Operation block | obj, off, len,
blocking_point, failed_predicates

Write obj, off, len, writerld, time

Delete obj, writerld, time

Message Arrival Triggers

Inval arrives srcld, oby, off, len, writerld, time

Send body success | srcld, obj, off, len, writerld, time

Send body failed srcld, destld, obj, off, len, writerld, time

Connection Triggers

Subscription start srcld, destld, objS, Inval|Body

Subscription caught-up | srcld, destld, objS, Inval

Subscription end srcld, destld, objS, Reason, Inval[Body

Domain-specific language

To specify routing

* R/Overlog
— Routing language based on Overlog[*]
— declarative rules fired by events

* Policy written as rules

— invoke actions when events received

[*] “Implementing Declarative Overlays”. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe,
lon Stoica. SOSP 2005.

Blocking policy

Is it safe to access local data?

/ \

Consistency Durability
What version of data Whether updates

can be accessed? have propagated to
safe locations?

Block until semantics guaranteed

How to specify blocking policy?

Where to block? PADS provides

e At data access points * 4 built-in conditions
(local bookkeeping)

What to specify? * 1 extensible condition

* List of conditions

Read Write
Is valid

Is causal

Update = () Is sequenced

Max staleness

Blocking Predicates

Predefined Conditions on Local Consistency State

is Valid Block until node has received the body corre-
sponding to the highest received invalidation
for the target object

isComplete Block until object’s consistency state reflects
all updates before the node’s current logical
time

isSequenced Block until object’s total order is established

maxStaleness Block until all writes up to

nodes, count, t (operationStartTime-t) from count nodes in

nodes have been received.

User Defined Conditions on Local or Distributed State

B_Action Block until an event with fields matching
event-spec event-spec 1s received from routing policy

Blocking policy examples

Consistency:

 Read only causal data
Read at block: Is_causal

Durability:

e Block write until update reaches server
write after block : R_Msg (ackFromServer)

Is PADS a better way to build
distributed storage systems?

* General enough?
* Easy to use?
e Easy to adapt

e Overheads?

General enough?

SCS

FCS

Coda

TRIP

Pangaea

Topology

Client/
Server

Client/
Server

Client/
Server

Client/
Server

Ad-Hoc

Replication

Partial

Partial

Partial

Full

Partial

Demand
caching

v

v

v

v

Cooperative
caching

v

Prefetching

v

v

Consistency

Rl E
zable

Causal

Callbacks

Leases

Disconnected
operation

Inval v. update
progagation

Easy to use?

System

Routing Rules

Blocking Conditions

P-Bayou

9

3

P-Bayou*

9

P-Chain Rep

75

P-Coda

31

P-Coda*

44

P-FCS

43

P-Pangaea

75

P-TierStore

14

P-TierStore*

29

P-TRIP

6

P-TRIP*

6

W W kP (=[O0 U W

Thoughts

e Kind of “PRACTI: The Next Generation”

Real question:
* How expressive is it?
* Did they

— start w/ the 12 systems and define the API
— or the reverse?

