
Efficient Solutions
to

the Replicated Log and Dictionary Problems*

G e n e T . J . W u u and A r t h u r J. B e r n s t e i n

D e p u r t m e m n t of C o m p u t e r Sc ience

S t a t e U n i v e r s i t y of New Y o r k a t S t o n y B r o o k

L o n g I s l and , N Y 11794

A b s t r a c t

We propose efficient algorithms to maintain a replicated
dictionary using a log in an unreliable network. A non-
serializable approach is used to achieve high concurrency.
The solutions are resilient to both node and
communication failures. Optimizations are developed for
networks which are not completely connected.

1 . I n t r o d u c t i o n

Using serializability as a consistency constraint on
data is suitable in most applications since knowledge of
the semantics of the data is not required. However, such
generality complicates the implementation and degrades
performance, especially when considering a replicated
database in an unreliable distributed system. Enforcing
serializability restricts concurrency [1] [2] [3], and adds
considerable communication overhead to support
synchronization in a distributed system [6] [4]. Commit

'Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under grant number
AFOSR 81-0197. The United States Government is authorized to
reproduce and distribute reprints for governmental purposes notwith-
standing any copyright notation thereon.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0-89791-143-1/84/008/0233 $00.75

protocols are necessary if serialized transactions are to be
made failure atomic, thus imposing additional cost [4] [5]
[10].

Concurrency and serializability are compatible only
when concurrent transactions access disjoint data areas or
are mostly read only. Unfortunately, in many applications
data objects are highly shared and reliability and fast
access are very important. Data replication is encouraged
for these purposes. Algorithms [6] [11] [4] have been
proposed to keep replicated copies up to date and
mutually consistent. However, performance is limited if
serializability is used as a consistency constraint.
Recently, research [11 [2] [3] has been focused on how to
increase concurrency if the semantics of the data is
known.

In this paper we use a replicated log to achieve
mutual consistency of replicated data in an unreliable
network. The log contains records of invocations of
operations which access a data object. Each node updates
its local copy of the data object by performing the
operations ~ontained in its local copy of the log. If the
semantics of the data are such that operations are
generally commutative, then the order in which operations
are performed does not effect the final state. Hence it is
not necessary to require serializability in order to
guarantee that the copies of the data object are mutually
consistent. In this paper, we propose efficient algorithms
to maintain a replicated dictionary in an unreliable
distributed system using a log. The dictionary problem
was first defined and solved by Fischer and Michael [1].
Allchin [8] improves the solution by reducing
communication requirements. The algorithms described
here reduce communication requirements further and have
performance advantages in failure situations.
Furthermore, they can be used to solve other similar
problems. Logs are generally useful in achieving
distributed synchronization [9], and in gathering

233

information about the state of the network.

The paper is organized as follows. The distributed
environment is described in section 2. The log and
dictionary problems are defined in section 3. Efficient
solutions to these problems are developed in section 4. In
section 5, the algorithm is compared with other
techniques. Optimizations are discussed in section 6.
Proofs are given in the appendix.

2. T h e Model of the Environment

An n node connected network is considered with
nodes N1, N 2 N n. A node id is an integer in [n], where
In] denotes the set {1,...,n}. Two kinds of operations are
supported -- the communication operations send and
receive, and non-communication operations, which vary
with the application. We assume a one-to-one
communication structure, but the results can easily be
extended to multicast communication. Operations may
be invoked at different nodes at any instant. The local
data at each node is stored in stable storage, which
survives node crashes. An event model [7] is used. An
event is a particular execution of an operation. Events are
locally atomic in the sense that, if a node crashes during
the execution of an operation, there will be no effect on
the local data. Since distinct events may invoke the same
operation with the same parameters, events are
distinguished by the time and place at which they occur.
We assume that there is a local clock at each node.
(Clocks are not necessarily synchronized.) Let e be an
event, time(e) and node(e) denote the time and the node,
respectively, at which e occurs, op(e) denotes the invoked
operation and its parameters. An execution of a
distributed system consists of a set, E, of events and a
partial ordering relation, ---% on E, denoted by <E,---~>.
The partial ordering relation is the smallest relation
satisfying the following two conditions:

(Cl)

(c2)

Events occurring at the same node are totally
ordered.

Let e 1 be a send event and e 2 the corresponding
receive event. Then e I ~ e 2.

Note that these two conditions do not imply that
messages arrive in the order in which they were sent. The
relation --* is called happened before, e I and e 2 are
said to be c o n c u r r e n t if e I -14 e 2 and e 2 -74 e 1.

The event model is useful in characterizing an
unreliable distributed system in which a send event is not
necessarily matched by a receive event. The unreliable
behavior covered by this model includes lost messages,
broken communication links, network partition, and failed
nodes. We do not, however, allow messages in transit to
be changed in arbitrary ways as in [12].

3. The Log Problem and its Applications

A common technique for synchronizing a distributed
system is .to construct a log of certain events which have
occurred in the network [9]. Each node maintains its own
view of the log and a distributed algorithm is employed to
keep the views up to date. The algorithm makes use of
communication operations and the log records non-
communication events.

3.1. The Log P r o b l e m

An event in the log is described by a record with the
structure:

t ype E v e n t ~
record

op :
time :
node:

end

OperationType;
TimeType;
NodeId;

The event record describing event e is denoted by eR, and
eR.op ---- op(e), eR.time ---~ time(e), and eR.node
node(e). Let L i denote the local copy of log L at N i. Let
e be an event. L(e) denotes the content of Lnode(e }
immediately after e completes. T h e log p r o b l e m is
defined to be the problem of finding an algorithm to
maintain the log such that, given an execution <E,---~>,
for every event e,

(P1) f --* e iff fR E L(e).

Nodes exchange messages containing appropriate portions
of the log in order to achieve (PI). Consider a network of
two nodes, N 1 and N 2. If N 1 only sends the records of

234

those events which have occurred at N 1 since it last sent a
message to N2, then (P1) will not be achieved since
message delivery is not guaranteed. A trivial solution to
this problem is therefore the following: at each non-
communicat ion event, e, occurring at Ni, N i inserts eR
into Li; at each send event N i includes L i in the message.
Note that since L i grows unboundedly, the solution uses
an excessive amount of communication bandwidth. We
will develop a more efficient solution in section 4.

3.2. T h e Dict ionary Problem

A dictionary is an abstraction of a data object such
as a file directory, a database dictionary, a resource
management table, a naming table, ..., etc. It consists of
a set of entries. A fully replicated dictionary V is
considered. V i denotes the local copy of V at N i. It
represents Ni's view of the dictionary. V(e) denotes the
content of Vnode(e) immediately after e completes. Two
non-communicat ion operations are provided in this
problem, insert(x), and delete(x), where x is a dictionary
entry. (A lookup operation is also allowed, bu t since it
does not change the structure of the solution we will
ignore it here.) Two restrictions are imposed :

(R1)

(R2)

delete(x) can be invoked at N i only if x E Vi
immediately prior to the execution of the
operation, and

for each dictionary entry x there is at most one
event, insert(x), in E.

We use c x to denote the unique event which inserts x.
Note that there may be more than one event which
deletes x concurrently. We call an event which deletes x
an x-delete event . (R2) is easily satisfied by tagging
each item to be inserted with <node(cx), t ime(cx)> , thus
forcing the uniqueness of each entry. The dict ionary
problem is defined to be the problem of finding an
algorithm for main ta in ing the dictionary such that, given
an execution <E,-- -~>, for every event, e,

(P2) x ~ V(e) iff c x --* e and there does not exist an
x-delete event, g, such that g --~ e.

An obvious solution to this problem using a log is as
follows. At each event, e, such that node(e) = i, N i
computes V(e) in the following way :

V(e):={XlCxREL(e)and (~ gREL(e))gR.op-~-delete(x)}.

The correctness of the solution can be seen from (P1). Its
inefficiency is discussed in the next section.

4. Ef f ic ien t S o l u t i o n s

Since a log has unbounded size, the above solutions
to the log and dictionary problems are not efficient for
three reasons.

(O1) The entire log is sent in each message, implying
excessive communicat ion costs.

(02) A new view of the dictionary is repeatedly
computed, implying excessive computational costs.

(03) The entire log is kept at each node, implying
excessive storage costs.

We will first develop a more efficient solution to the log
problem which overcomes (O1) and then use it as the
basis of a solution to the dictionary problem.

4.1. A N e w Solution to the Log Problem

In the trivial solution of section 3.1, once eR is
inserted into L i it will be included as part of each message
sent by N i. However, once N i knows that eR C Lj, it does
not have to include eR in subsequent messages to Nj. To
make such information available a data structure called a
2 - D i m e n s i o n a l T i m e T a b l e (2DTT) is used by each
node so that a node can tell how up to date other nodes
are about events occurring in the network.

4 .1 .1. T h e algori thm

N i mainta ins the following information:

1. A service called clock i.

t y p e T imeType ~-- integer;

Each reference to clock i returns an integer number
greater than that, returned by the last reference.
We do not require the clocks at different nodes to
be synchronized.

235

2. A 2-dimensional time table, T i.

v a r T i : a r r a y [1..n,1..n] o f TimeType;

The algorithm to be described operates on T i in
such a way that Ti[k,u] is a value originally
obtained from clock u (and passed to N i through a
sequence of messages) at the t ime a non-
communicat ion event occurred at N u. If Ti[k,u]
t then N i knows that N k has learned of all events
which have occurred at N u up to t. N k may, in
fact, be aware of events which have occurred at u
more recently than t, so that t merely serves as a
lower bound on k's information about u. Note
tha t Ti[i,i] is the value of clock i at the occurrence
of the most recent non-communicat ion event at N i
and Ti[i,u] is the value of clock u at the occurrence
of the most recent non-communicat ion event
which has occurred at N u of which N i is aware.

3. A copy of the log.

var L i : Se tOf Event;

We define the predicate hasrec to be

hasrec(Ti,eR,k) -~ Ti[k,eR.node] > eR.time.

The algorithm is designed to guarantee that if
hasrec(Ti,eR,k) is true at N i then N k has learned of e.
Due to the t ime lag in the exchange of information in the
network the converse does not necessarily hold. The
efficiency gains of the algorithm are based on the fact that
N i need not send eR to N k if hasrec(Ti,eR,k) is true. The
following is the algorithm executed at N i.

Initialization:
begin

L i :---- 0;
(VIE[n]) (VJE[n]) do T~[I,,l l : = 0

end ;

oper(p):
(* some non-comm.nica l ion operation *)
begin

Ti[i,i] :---- clocki:
Li :---- Li U { <"()per(p)",Ti[i , i] , i> };
perform the ,)perat ion oper(p)

end ;

send{m) to Nk:

begin
NP : - - {eRIeREL i and -~hasrec(Ti,eR,k)};
send the message < N P , T i > to N k

end ;

receive{m) from Nk:
begin

let m ---- < N P k , T k > ;
L i :~--- L i U NPk;
(VIE[n]) do Wi[i,I] : = max{Ti[i,I], Wk[k,I]};
(VIE[n]) (VJE[n]) do

Ti[I,J] : ~ max{Ti[i,J], Tk[I,J]}
end ;

(S1)

(s2)

If multicast communicat ion is possible, a node may
use a set, S, of nodes as the dest inat ion of a send
operation. Sta tement ($1) should then be modified as
follows :

NP : = {eRIeREL i and (_~kES)-~hasrec(Ti,eR,k)};

A correctness proof for the algorithm is g i v e n in the
appendix.

4.2. A n Efficient S o l u t i o n to the D i c t i o n a r y
P r o b l e m

In this section an algorithm is developed to overcome
deficiencies (02) and (03). A new view of the dictionary
does not have to he computed from the entire log nor does
the entire log have to be stored. Instead each node
separately mainta ins its view of the dictionary as well as a
partial log which records some events which have
happened in the network. At each receive event a node
extracts a set, NE, of events, of which it has not yet
learned, from NP. (Note tha t the node may have learned
of some of the events in NP.) The node then updates its
view using NE; the log is no longer needed for this
purpose. Suppose that (VjE[n]) Ti[j,eR.node] ~ eR.time.
Then since eR will never be sent by Ni, there is no reason
for N i to keep a copy of it. Hence, only a part ial log, P L ,
is kept at each node. The declarations and algorithm
executed at N i are as follows.

v a t
V i " S e t O f Dict ionaryEntry;
PL i : S e t O f Event ;

236

Init ial ization:
begin

V i : : - O;
PL i :~--- O;
(VIEIn]) (VJE[n]) d o Ti[I,J] : = 0

end ;

insert{x):
begin

Ti[i,i] : = clockl;
PLI :--~ PLi U { <" inser t (x)" ,Ti [i , i] , i> };
Vi :=ViU { x }

end ;

delete(x):
begin

Ti[i,i] : = clocki;
PLi : = PLi U { <"dele te(x)" ,Ti [i , i] , i> };
V i : = V i - { x }

end ;

send{m) to Nk:
begin

NP :---- {eR]eR E PL i and -~hasrec(Ti,eR,k)};
send the message < N P , T i > to N k

end ;

receive!m) from Nk:
begin

let m ~- < N P k , T k > ;
NE :---- {fRIfRENP k and -~hasrec(Ti,fR,i)};
V i : = {v[(vEV i or cvRENE) and

(~ dRENE)dR.op ---- delete(v)};
(VIE[n]) do Ti[i, |] : = max{Ti[i,I], Tk[k,I]};
(VIE[n]) (VJE[n]) do

Ti[I,J] : = max{Ti[I,J], Tk[I,J]};
PL i : = {eRIeRE(PLiUNE) and

(~ j E [n]) -~h asrec(Ti,ea, j) }
end ;

(s3)

(s4)

tIow does this a lgori thm behave when failures occur?
(1) If the communicat ion link between N i and N i breaks or
a message sent from N i to Nj is lost, Nj will still learn,
indirectly , of new events at N i using information passed
through other nodes. (2) If N k fails, then Ti[k,j] can never
become greater than Tk[k,j] at the t ime of failure. This
follows from the fact tha t Ti[k,j] increases monotonically
as a result of the application of the max function when a
message is received. A new (largest) t ime value makes its
initial appearance in Tj[j,j] when a non-communicat ion
event occurs at Ni, migrates to Tk[k,j] when N k receives a
message from Nj ($3), and then to Ti[k,j] when N k

communicates with N i ($4). Thus the record of any
event, e, occurring at N i such tha t eR. t ime > Tk[k,j]
cannot be deleted from any par t ia l log and will be
contained in messages received by N k when it recovers.
Note tha t we have assumed tha t the s ta te a t Nk,
consisting of Vk, PL k, and Tk, is maintained in s table
storage and hence not lost when a crash occurs. The
correctness of the a lgori thm is proven using an argument
similar to tha t shown in the appendix. A complete proof
is given in [13].

5. C o m p a r i s o n with Other W o r k

Fischer and Michael [1] establish an elegant
framework for the mul t ip le copy dict ionary problem.
However the solution requires a node to send its entire
copy of the dict ionary in each message. In some
applications, the average size of the dict ionary is large,
and therefore this solution is expensive.

In Allchin [8], each node, Ni, maintains a
synchronizat ion set, SSi, and a 1-Dimensional Time Table,
T i' (which is equivalent to row i in the 2DTT), in addit ion
to its view of the dict ionary. The elements of SS i are
records of insert and delete events, thus SS i corresponds to
a par t ia l log. A set, called the knownby set, is a par t of
each event record and contains node ids of nodes which
have learned of the event. When the knownby set
contains all node ids, the event record can be deleted from
the synchronizat ion set. It can be shown [13] tha t this
occurs under the same circumstances which cause an
event record to be deleted from the part ial log in the
algori thm described here. The difference between the
approaches is tha t with a 2DTT, N k does not send eR to
N i if N k knows tha t N i has learned of the event. Hence
only a subset of PL k is sent in a message. By contrast , in
[8], N k always sends SS k in its entirety. In other words,
N k sends event record eR to N i even though Ni's id is in
eR's knownby set. This is part icular ly t roublesome in the
case of network par t i t ion or failed nodes, since no event
record can collect all node ids in its knownby set and
therefore SS will grow unboundedly. This problem does
not arise in the 2DTT scheme.

A deficiency of the approach described here is t ha t
the 2DTT, of size O(n2), is sent as par t of each message.
By contrast , a 1-dimensional t ime table of size O(n) and a
collection of knownby sets of size O(mn) where m is the
size of SS i and is proport ional to the frequency with which
events occur, are sent in a message in [8]. Therefore, the

237

2DTT method is applicable when One or more of the
following conditions hold: events are frequent, the number
of nodes is not large, and failure is possible. In the next
section, strategies are presented to reduce the amount of
t iming information that must be sent.

6. On the Size o f the 2 D T T

The fact that the 2DTT has size O(n 2) implies
excessive storage and communicat ion overhead. In the
following, strategy 0 is the previously described algorithm
while strategies 1 - 3 are modifications which deal with
these problems.

Strategy 0 -- A node sends the complete 2DTT in each
message and stores the complete 2DTT.

Row k of T i is Ni's estimate of how up to date N k is
concerning events at other nodes. Upon receiving a
message from N i containing Ti, N i first updates its
own row (row i) of T i using row j of T i and then
updates other rows with corresponding rows of T i.

Strategy 1 -- Each node stores the complete 2DTT but
sends only its own row.

In this case Nj includes only the j th row of T i in each
message it sends and N i uses the received row to
update only the ith row and the j th row of T i. Other
rows of T i will be updated by direct messages from
corresponding nodes. Row i of T i therefore has the
same contents that it would have under Strategy 0,
since the way each node's own row is updated
remains the same. Entries in other rows, however,
may be less than they would be if Strategy 0 were
used since now N i updates a row other than row i
only when a message arrives from the corresponding
node. Consequently, a node may be forced to include
more event records in NP in each message it sends
under strategy I than it does under strategy 0. Thus
the savings made using strategy I in reducing the
communicat ion cost by sending less t iming
informatian is compensated for by the need to send
additional event records. The most advantageous
strategy will depend on the details of the situation.
The correctness of the algorithm as modified by this
strategy follows from the fact that the entries of Tj
are nfJt larger than they would be if strategy 0 were
used. Thus the set, NP, computed when N i sends a
message includes all event records that would be sent
if slrat(,gy 0 were used.

In the preceding analysis we have not taken into
consideration the fact tha t due to hardware or software
l imitations it may not be possible for a node to send a
message to every other node in the network. We will
represent the network by a undirected graph G in which
vertices represent nodes and an edge (i,j) indicates that N i
and N i can send messages to each other. N i and N i are
called n e i g h b o r s in this case. In the 2DTT technique, N i
uses row k to decide what portion of the log should be
included in a message it sends to N k. This suggests that a
node not store those rows of the 2DTT which do not
correspond to its neighbors.

Strategy 2 -- Each node stores only its own row and a row
for each of its neighbors; it sends only those rows which
correspond to neighbors of the target node.

Since the entire 2DTT is not retained, a node can no
longer determine when all nodes have learned of a
part icular event. Instead, a node discards an event
record from its log as soon as it knows that all its
neighbors have learned of the event. N i can
determine this for an event which has oceured at N k
(which need not be a neighbor) by examining Ti[j,k]
where j ranges over all neighbors. Because a node
discards event records more quickly than in previous
strategies, it keeps a smaller partial log. If a node
fails before it learns of e then its neighbors keep eR
in their partial logs unt i l it recovers. Non-
neighboring nodes discard eR.

With the concept of a neighborhood in a network, we
have reduced the number of rows of the 2DTT stored at a
node. However, all rows still have dimension n. The next
goal is to reduce the size of a row by deleting entries in
those columns which do not correspond to neighbors. A
maximum complete subgraph (i.e., a subgraph in which
each node is connected to every node in the subgraph) in
G is called an a rea . Two nodes may directly
communicate if and only if they are in the same area. A
node which is in more than one area is called a g a t e w a y .
Suppose N i and N i are in the same area, A, and event e
occurs at a node, Nk, not in A. In strategy 2, N i uses the
entry Ti[j,k] to determine whether N i has learned of e.
Thus, one cannot cut off columns which correspond to
non-neighbor nodes without modifying the algorithm.

In the following, we modify the log solution so that a
node stores only columns which correspond to it
neighbors. The intui t ion underlying strategy 3 can be
obtained from the example shown in Figure 1. A network
is divided into two areas, A 1 and A 2. Nodes mainta in
t iming information about other nodes in common areas.
Thus N 3 cannot call upon T3[i,1] in deciding whether it
should send a record, eR to a neighbor, Ni, where oR.node

238

1. To overcome this problem, a gateway in A s whose
first knowledge of e comes from a node not in A s declares
itself to be a representat ive of e in A 2. In Fig 1 N s is such
a gateway. N s functions as a proxy for N 1 in A s with the
effect that nodes in A s treat e as if it had occurred at N s.
Thus, in deciding whether to send eR to Ni, N 3 appeals to
Ta[i,2].

A1 As

Figure 1

Strategy 3 -- Each node stores only its neighbors' rows
and neighbors' columns; it sends only those rows to N k
which correspond to neighbors of N k.

Let A i contain n i nodes. A node maintains a sub-
t ime-table (STT) for each area in which it resides.
Thus in Figure 1, N s maintains sub-time-tables T2,1
and Ts, s (having dimension n l X n 1 and n2Xn 2
respectively) for areas A 1 and A s respectively while
N 1 maintains only T1,1. Both rows and columns of
Ti, j correspond to nodes in A i. Note that since areas
overlap, two STTs stored at a node may have rows
and columns corresponding to the same nodes
(further optimizations can be used to avoid this). If
N i sends a message to N i it includes all STTs Ti, k
such that N i is a member of A k.

A r e p r e s e n t a t i v e of event e in area A is a node in A
which first learns of e from a node which is not in A.
A representative must be a gateway; the reverse need
not be true. Note that there may be several
gateways in A which concurrently learn of e from
nodes not in A (see Figure 2), hence representative
nodes need not be unique. Because of this lack of
uniqueness the contents of an event record may vary
depending on its location. Therefore we use the
notat ion eR i to denote the event record describing e
at N i and eR i' to denote an event record describing e
sent by N i. Copies of eR can be recognized as
describing the same event since they all contain the
same unique tag, < t ime(e) ,node(e)> . Copies differ in
the set of representative tuples they contain. A
r e p r e s e n t a t i v e t u p l e in eR, < A p , r t i m e , r n o d e >
indicates that node mode, contained in area Ap, first
learned of e from a node not in Ap at t ime r t ime as
measured on rnode's clock. As a result it declared
itself to be a representative of e in Ap. eR i contains a
representat ive tuple for each area within which N i

resides. This is achieved as follows:

(1) If e occurs at N i then N i inserts in eR i a tuple
<Ai ,c lock l , i> for each area A i containing N i.
(2) If N i sends a message to N i it includes in eR i'
only those representat ive tuples for areas which
contain N i as well.
(3) On receiving eRi' , if N i does not have a record for
e, it creates eR i containing all representative tuples in
eR i' as well as additional tuples of the form
<Ak,c lock i , J~ for each area A k containing N i but
not N i. eRj is inserted in PL i in this case. If N i
already has a record for e it ignores eRi'.

Note that the effect of the first part of step 3 is that
N i has declared itself to be the representative of e in
A k since e was unknown prior to the message and N i
is not a member of A k. If Ti,u[j,rnode] > r t ime for
some area A u containing both N i and N i and for some
representat ive tuple < A u , r t i m e , r n o d e > in eR i then
N i does not send a record describing e in messages to

N i •

AI A2

Figure 2

Consider the simple example shown in Figure 2 in
which e occurs at N 1 in A 1 at t ime t 1 read on Nl ' s clock.
eR 1 has one representative tuple, < : A l , t l , l > . N 1 sends a
message containing eRl ' , where in this case eR 1' ~- eR1,
to N 2 and N 5. When N 2 receives the message, at t ime t 2
read on its own clock, it becomes a representative of e in
A s since eR 1' does not have a representative tuple for that
area and N s has not previously learned of e. N s will form
eR 2 by adding <A2,ts ,2;> to eRl ' , where t s is the current
reading of clock s and inserts the result into PL 2. When
N 5 receives the message, it will do a similar thing,
declaring itself to be the representative in A s. At a send
event to N 3, N 2 includes only the representative tuple for
A 2 in eR 2' in the message. At the t ime N 3 receives the
message, it knows it is not a representative and thus
inserts eR3, where eR 3 ~-- eRs' , in PL 3. Na will ignore
eR 5' on receiving any later messages from N 5. Thus, N 3
takes N 2 as the representative in A 2. A gateway is not

239

necessarily a representative. For example if N 4 learns of e
from N2, it discovers representative tuples for both A l and
A 2 and therefore does not declare itself to be a
representative.

In strategy 2, a node uses space O(kn) for the 2DTT,
where k is the number of its neighbors. Note that k
depends on the connectivity of the network and does not
necessarily grow with the total number of nodes. In many
cases it is a constant. In strategy 3 a node uses space
O(k 2) for each area to which it belongs. However strategy
3 uses extra space for representative tuples in each event
record. Hence strategy 3 is particularly applicable when
the network is large, nodes are connected to a small
number of other nodes, and events do not occur
frequently.

7. Discussion

Algorithms have been developed to mainta in a
replicated dictionary. The solution is suitable for such
applications as distr ibuted directories where entries
represent files. Two entries with the same symbolic name,
tha t are created by two concurrent insert events, actually
represent two different files. Furthermore, a file with a
symbolic name which was used by a previously deleted file
is different from its predecessor. The creation t ime and
creator id can distinguish these entries. However, there are
applications (e.g. an Access Control List), in which two
concurrent events may insert an identical element.
Furthermore, reinserting an element x after it has been
deleted is not uncommon. Thus multiple occurrences of c t
in E, are allowed and restriction (R2) should be removed.
An efficient solution to this problem can be obtained by
using a 2DTT and log. An algorithm and its correctness
proof are presented in [13].

The log solution can be used in other applications as
well. For example:

(1)

(2)

Replicated numeric data with add-to and
subtract-from operations. Since these two
operations are commutat ive, copies of the data
will reach the same final state.

Detection of failures. Consider the case that N i
sends a request to a neighboring node N k and does
not receive a reply. To distinguish node failure
from communicat ion failure, a log is used to
collect records of communicat ion events occurring
in the network. If Ni's log shows that none of
Nk'S neighbors have received messages from N k for

some time, then it may assume N k has failed.
Otherwise N i knows that a communicat ion failure
has occurred. An algorithm is presented in [13].

Efficient algorithms have been proposed in this paper
to mainta in replicated da ta whose semantics do not
require serializability as a consistency criterion. The
efficiency gains which can be achieved when serializability
is dropped make it worthwhile to search for other
applications having similar properties.

Appendix

The following correctness proof is exhibited with respect
to a given execution <E,- - -~>. For convenience we will
use the following notat ion and definitions.

(N1) e -% e ' i f f e - - * e ' a n d e ~ e'.

(N2) e A.~ e' iff e -+-* e' and if node(e) = node(e') then
there is no event f at node(e) such that e - ~ f --~
e', or else op(e) ~-~ send(m) and op(e') =
receive(m) for the same message m.

If e A.~ e' then e(e') is called the i m m e d i a t e
predecessor (successor) of e'(e). Only a receive event has
more than one immediate predecessor, it has two (except
if it is the first event at a node); only a send event may
have more than one immediate successor. Assuming only
unicast communicat ion it may have two.

(N3) Let e be a receive event. Pe denotes the immediate
predecessor of e at node(e), qe denotes the send
event which supplies the message to e.

(N4) T(e) is the value of Tnod¢~e) immediately after e
completes.

L e m m a 1.1: Let e, f E E. If fR E L(e) then f --* e.
P r o o f : We can construct a sequence of immediate
predecessors, h 1 ~--~ ... A_~ hm where h m = e, such that (V
i) 1 < i < m, fR E L(hi) and for every immediate
predecessor p of hi, fR (~ L(p). Since only the non-
communicat ion event, f, can insert fR in L under these
circumstances, h 1 ~--- f and f --+ e.

Lemma 1.2: Let e, f E E. If f---* e, then V I , J E [n],
T(f)[I,J] < T(e)[I,J].
P r o o f : This lemma follows by induct ion on ---*. It is
true for any event which has no immedia.te predecessor.
Suppose the result is true for all immediate predecessor(s)

240

~f e. The algorithms for the various operations either
leave T i unchanged (send), increase Ti[i,i] (oper) or apply
the max function on T i and T k (receive). Therefore the
lemma holds for e.

L e m m a 1.3 : Let e E E. If T(e)[node(e),k] > 0 then there
exists an event, f, at N k such that T(f)[k,k]
T(e)[node(e),k] and f --~ e.
P r o o f : The lemma follows by induction on --*. It is true
for any event, e, which has no immediate predecessor
since if T(e)[node(e),k] > 0 then node(e) : k and e : f.
Suppose this result holds for all immediate predecessors of
e. The result is obviously true if node(e) ~ k. If node(e)

k, the value of T(e)[node(e),k] is taken from
T(e')[node(e'),k], where e' _1+ e. Hence the result holds by
the inductive hypothesis.

L e m m a 1.4: Let e, f E E where f is a non-
communicat ion event. If T(e)[node(e),node(f)] >__ time(f)
then f --~ e.
P r o o f : By lemma 1.3, there exists an event e' at node(f)
such that T(e')[node(f),node(f)] ---- T(e)[node(e),node(f)]
a n d e ' ~ e. By C1 either f - -+ e ' o r e ' - - % f. I f e ' ~ f,
then T(e')[node(f),node(f)] < T(f)[node(f),node(f)] (since
the clock is invoked at f) and we have the following
contradiction: time(f) < T(e)[node(e),node(f)] ----
T(e')[node(f),node(f)] < T(f)[node(f),node(f)] ~- time(f).
Therefore we conclude f -- , e.

L e m m a 1.5: Let e, f E E. If hasrec(Tnod~(~),fR,k) is true
at e then there exists an event, g, at N k such that f --~ g
---~ e .

P r o o f : Since, by lemma 1.2, each entry of the 2DTT is
monotone over ---*, we can construct a sequence of
immediate predecessors h I -1-, ... A+ hm where h m ~ e,
such that (V i) 1 _< i < m, T(hi)[k,node(f)] ----
T(e)[k,node(f)] and for every immedia te predecessor, p, of
hi, T(p)[k,node(f)l < T(hl)[k,node(f)]. In order to
increase an entry in ~he kth row of Tnode(h~), h I must
satisfy the following. (1) h I is a receive event - In this case
($2) can increase the entry only if node(hi) ~-- k. (2) h I is
a non-communication event - In this case the entry is
increased by a clock invocation and node(hi) ---- node(f) ----
k. Therefore in both cases node(hi) ~-- k. Since
T(hl)[nod(.(h0.no(le(f)] > time(f), f --~ h I by lemma 1.4.
Therefore f --~ h I ~ e and node(hi) ----- k.

T h e o r e m 1 : Let e, f be 2 events in an execution
< E , - - , > where f is a non-communication event, fR E
I,(e) iff f --~ e.

Proof:
(=:*) F r o m lemma 1.1.
(¢:=) This is proven by induction on --~.
Basis, If e has no immedia te predecessor then f --~ e and
the result follows from the oper algorithm.
Induction.
Case 1. e -~ f. F rom the oper algorithm, fR E L(e).
Case 2. e ~ f. 2 cases are considered.

Case 2.1. e is a send event or a non-communicat ion
event, e has a unique immediate predecessor, g, and f
--* g. Then fR E L(g) by the inductive hypothesis
and L(g) C L(e) in this case.
Case 2.2. e is a receive event. Ei ther f --~ Pe or f - *
qe, or both. If f --* pc, then the result follows using
the argument of case 2.1. The final case to consider
is tha t f --~ qe and f - f ' Pc' By hypothesis, fR E
L(qe). Le t < N P , T > be the message sent from qe to
e. Assume fR (~ NP. F r o m the send algorithm,
hasrec(Tnode(qo),fR,node(e)) is true at qe" By lemma
1.5, there exists an event, h, at node(e) such that f ---*
h - - * qe. F rom (C1), either h --% e or e ~ h. The
former cannot be t rue since f ~ h ~ e contradicts
the assumption that f -/-* Pc" If e --~ h, we have qe A-~
e --* h --* q~, which is also a contradiction. Hence fR
E NP. Therefore fR C L(e).

Reference

[1]

[2]

[3]

M.J. Fischer and A. Michael, "Sacrificing
Serializability to At ta in High Availabil i ty of Data
in an Unreliable Network", ACM SIGA'CT-
SIGMOD Symposium on Principle of Database
Systems, 1982, pp. 70-75.

H. Garcia-Molina, "Using Semantic Knowledge for
Transact ion Processing in a Distributed
Database", ACM Transaction on Database
Systems, June 1983, Vol. 8, No. 2, pp. 186-213.

L. Sha, E. Jensen, R. Rashid and J. Northeut t ,
"Distr ibuted Co-operating Processes and
Transactions", ACM SIGCOMM, March 1983, pp.
188-196.

241

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

P.A. Bernstein and N. Goodman, "Concurrency
Control in Distributed Database systems",
Computing Surveys, Vol. 13, No. 2, June 1981, pp.
185-221.

D. Dolev and R. Strong, "Distributed Commit
with Bounded Waiting", IEEE Symposium on
Reliability in Distributed Software and Database
Systems, 1982.

R.H. Thomas, "A Majority Consensus Approach
to the Concurrency Control Problem for Multiple
Copy Databases", ACM TODS, June 1979, pp
180-209.

L. Lamport, "Time, Clocks, and the Ordering of
events in a Distributed System", Communication
of the ACM, July 1978, pp 558-565.

J.E. Allchin, "An Architecture for Reliable
Decentralized Systems", Ph.D. Thesis. Georgia
Institute of Tech., Technical Report GIT-ICS-
83/22.
F.B. Schneider, "Synchronization in distributed
programs", ACM TOPLAS, April 1982, pp 1-24.

B.W. Lampson, "Atomic Transact.ions", In
Distributed Systems Architecture and
Implementation, Lecture Notes in Computer
Science, vol. 105, Springer-Verlag, 1981.

D.K. Gifford, "Weighted Voting for Replicated
Data", ACM SIGOPS Symposium, I979, pp 150-
159.

L. Lamport, R. Shostak, and M. Pease, "The
Byzantine Generals Problem", ACM TOPLAS,
April 1982, pp 382-401.

G.T. Wuu and A.J. Bernstein, "Efficient Solutions
to the Replicated Log and Dictionary Problems",
Technical Report 84/077, May 1984.

242

