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A b s t r a c t  

We propose efficient algorithms to maintain a replicated 
dictionary using a log in an unreliable network. A non- 
serializable approach is used to achieve high concurrency. 
The solutions are resilient to both node and 
communication failures. Optimizations are developed for 
networks which are not completely connected. 

1 .  I n t r o d u c t i o n  

Using serializability as a consistency constraint on 
data  is suitable in most applications since knowledge of 
the semantics of the data is not required. However, such 
generality complicates the implementation and degrades 
performance, especially when considering a replicated 
database in an unreliable distributed system. Enforcing 
serializability restricts concurrency [1] [2] [3], and adds 
considerable communication overhead to support 
synchronization in a distributed system [6] [4]. Commit 
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protocols are necessary if serialized transactions are to be 
made failure atomic, thus imposing additional cost [4] [5] 
[10]. 

Concurrency and serializability are compatible only 
when concurrent transactions access disjoint data areas or 
are mostly read only. Unfortunately, in many applications 
data objects are highly shared and reliability and fast 
access are very important. Data replication is encouraged 
for these purposes. Algorithms [6] [11] [4] have been 
proposed to keep replicated copies up to date and 
mutually consistent. However, performance is limited if 
serializability is used as a consistency constraint. 
Recently, research [11 [2] [3] has been focused on how to 
increase concurrency if the semantics of the data  is 
known. 

In this paper we use a replicated log to achieve 
mutual consistency of replicated data in an unreliable 
network. The log contains records of invocations of 
operations which access a data  object. Each node updates 
its local copy of the data  object by performing the 
operations ~ontained in its local copy of the log. If the 
semantics of the data  are such that  operations are 
generally commutative, then the order in which operations 
are performed does not effect the final state. Hence it is 
not necessary to require serializability in order to 
guarantee that  the copies of the data  object are mutually 
consistent. In this paper, we propose efficient algorithms 
to maintain a replicated dictionary in an unreliable 
distributed system using a log. The dictionary problem 
was first defined and solved by Fischer and Michael [1]. 
Allchin [8] improves the solution by reducing 
communication requirements. The algorithms described 
here reduce communication requirements further and have 
performance advantages in failure situations. 
Furthermore, they can be used to solve other similar 
problems. Logs are generally useful in achieving 
distributed synchronization [9], and in gathering 
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information about the state of the network. 

The paper is organized as follows. The distributed 
environment is described in section 2. The log and 
dictionary problems are defined in section 3. Efficient 
solutions to these problems are developed in section 4. In 
section 5, the algorithm is compared with other 
techniques. Optimizations are discussed in section 6. 
Proofs are given in the appendix. 

2. T h e  Model  of the Environment 

An n node connected network is considered with 
nodes N1, N 2 .. . . .  N n. A node id is an integer in [n], where 
In] denotes the set {1,...,n}. Two kinds of operations are 
supported -- the communication operations send and 
receive, and non-communication operations, which vary 
with the application. We assume a one-to-one 
communication structure, but the results can easily be 
extended to multicast communication. Operations may 
be invoked at different nodes at any instant. The local 
data at each node is stored in stable storage, which 
survives node crashes. An event model [7] is used. An 
event is a particular execution of an operation. Events are 
locally atomic in the sense that, if a node crashes during 
the execution of an operation, there will be no effect on 
the local data. Since distinct events may invoke the same 
operation with the same parameters, events are 
distinguished by the time and place at which they occur. 
We assume that there is a local clock at each node. 
(Clocks are not necessarily synchronized.) Let e be an 
event, time(e) and node(e) denote the time and the node, 
respectively, at which e occurs, op(e) denotes the invoked 
operation and its parameters. An execution of a 
distributed system consists of a set, E, of events and a 
partial ordering relation, ---% on E, denoted by <E,---~>. 
The partial ordering relation is the smallest relation 
satisfying the following two conditions: 

(Cl) 

(c2) 

Events occurring at the same node are totally 
ordered. 

Let e 1 be a send event and e 2 the corresponding 
receive event. Then e I ~ e 2. 

Note that these two conditions do not imply that 
messages arrive in the order in which they were sent. The 
relation --* is called happened before, e I and e 2 are 
said to be c o n c u r r e n t  if e I -14 e 2 and e 2 -74 e 1. 

The event model is useful in characterizing an 
unreliable distributed system in which a send event is not 
necessarily matched by a receive event. The unreliable 
behavior covered by this model includes lost messages, 
broken communication links, network partition, and failed 
nodes. We do not, however, allow messages in transit to 
be changed in arbitrary ways as in [12]. 

3. The Log Problem and its Applications 

A common technique for synchronizing a distributed 
system is .to construct a log of certain events which have 
occurred in the network [9]. Each node maintains its own 
view of the log and a distributed algorithm is employed to 
keep the views up to date. The algorithm makes use of 
communication operations and the log records non- 
communication events. 

3.1. The Log P r o b l e m  

An event in the log is described by a record with the 
structure:  

t ype  E v e n t ~  
record 

op : 
time : 
node: 

end 

OperationType; 
TimeType; 
NodeId; 

The event record describing event e is denoted by eR, and 
eR.op ---- op(e), eR.time ---~ time(e), and eR.node 
node(e). Let L i denote the local copy of log L at N i. Let 
e be an event. L(e) denotes the content of Lnode(e } 
immediately after e completes. T h e  log p r o b l e m  is 
defined to be the problem of finding an algorithm to 
maintain the log such that, given an execution <E,---~>, 
for every event e, 

(P1) f --* e iff fR E L(e). 

Nodes exchange messages containing appropriate portions 
of the log in order to achieve (PI). Consider a network of 
two nodes, N 1 and N 2. If N 1 only sends the records of 
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those events which have occurred at N 1 since it last sent a 
message to N2, then (P1) will not be achieved since 
message delivery is not  guaranteed. A trivial solution to 
this problem is therefore the following: at each non- 
communicat ion event, e, occurring at Ni, N i inserts eR 
into Li; at each send event N i includes L i in the message. 
Note that  since L i grows unboundedly,  the solution uses 
an excessive amount  of communication bandwidth.  We 
will develop a more efficient solution in section 4. 

3.2. T h e  Dict ionary Problem 

A dictionary is an abstraction of a data  object such 
as a file directory, a database dictionary, a resource 
management  table, a naming table, ..., etc. It  consists of 
a set of entries. A fully replicated dictionary V is 
considered. V i denotes the local copy of V at N i. It 
represents Ni's view of the dictionary. V(e) denotes the 
content  of Vnode(e ) immediately after e completes. Two 
non-communicat ion operations are provided in this 
problem, insert(x), and delete(x), where x is a dictionary 
entry. (A lookup operation is also allowed, bu t  since it 
does not change the structure of the solution we will 
ignore it here.) Two restrictions are imposed : 

(R1) 

(R2) 

delete(x) can be invoked at N i only if x E Vi 
immediately prior to the execution of the 
operation, and 

for each dictionary entry x there is at most one 
event, insert(x), in E. 

We use c x to denote the unique event which inserts x. 
Note that  there may be more than one event which 
deletes x concurrently. We call an event which deletes x 
an x-delete event .  (R2) is easily satisfied by tagging 
each item to be inserted with <node(cx), t ime(cx)> , thus 
forcing the uniqueness of each entry. The dict ionary 
problem is defined to be the problem of finding an 
algorithm for main ta in ing  the dictionary such that,  given 
an execution <E,-- -~>,  for every event, e, 

(P2) x ~ V(e) iff c x --* e and there does not  exist an 
x-delete event, g, such that  g --~ e. 

An obvious solution to this problem using a log is as 
follows. At each event, e, such that  node(e) = i, N i 
computes V(e) in the following way : 

V(e):={XlCxREL(e)and ( ~  gREL(e))gR.op-~-delete(x)}. 

The correctness of the solution can be seen from (P1). Its 
inefficiency is discussed in the next  section. 

4. Ef f ic ien t  S o l u t i o n s  

Since a log has unbounded  size, the above solutions 
to the log and dictionary problems are not efficient for 
three reasons. 

(O1) The entire log is sent in each message, implying 
excessive communicat ion costs. 

(02) A new view of the dictionary is repeatedly 
computed, implying excessive computational  costs. 

(03) The entire log is kept at each node, implying 
excessive storage costs. 

We will first develop a more efficient solution to the log 
problem which overcomes (O1) and then use it as the 
basis of a solution to the dictionary problem. 

4.1. A N e w  Solution to  the Log Problem 

In the trivial solution of section 3.1, once eR is 
inserted into L i it will be included as part  of each message 
sent by N i. However, once N i knows that  eR C Lj, it does 
not have to include eR in subsequent messages to Nj. To 
make such information available a data  structure called a 
2 - D i m e n s i o n a l  T i m e  T a b l e  (2DTT) is used by each 
node so that  a node can tell how up to date other nodes 
are about events occurring in the network. 

4 .1 .1.  T h e  algori thm 

N i mainta ins  the following information: 

1. A service called clock i. 

t y p e  T imeType  ~-- integer; 

Each reference to clock i returns an integer number  
greater than that, returned by the last reference. 
We do not require the clocks at different nodes to 
be synchronized. 

235  



2. A 2-dimensional time table, T i. 

v a r  T i :  a r r a y  [1..n,1..n] o f  TimeType;  

The algorithm to be described operates on T i in 
such a way that  Ti[k,u ] is a value originally 
obtained from clock u (and passed to N i through a 
sequence of messages) at the t ime a non- 
communicat ion event occurred at N u. If Ti[k,u ] 
t then N i knows that  N k has learned of all events 
which have occurred at N u up to t. N k may, in 
fact, be aware of events which have occurred at u 
more recently than t, so that  t merely serves as a 
lower bound on k's information about  u. Note 
tha t  Ti[i,i ] is the value of clock i at the occurrence 
of the most recent non-communicat ion event at N i 
and Ti[i,u ] is the value of clock u at the occurrence 
of the most recent non-communicat ion event 
which has occurred at N u of which N i is aware. 

3. A copy of the log. 

var  L i : Se tOf  Event;  

We define the predicate hasrec to be 

hasrec(Ti,eR,k ) -~ Ti[k,eR.node ] > eR.time. 

The algorithm is designed to guarantee that  if 
hasrec(Ti,eR,k ) is true at N i then N k has learned of e. 
Due to the t ime lag in the exchange of information in the 
network the converse does not  necessarily hold. The 
efficiency gains of the algorithm are based on the fact that  
N i need not send eR to N k if hasrec(Ti,eR,k ) is true. The 
following is the algorithm executed at N i. 

Initialization: 
begin 

L i :---- 0; 
(VIE[n]) (VJE[n]) do  T~[I,,l l : =  0 

end ; 

oper(p): 
(* some non-comm.nica l ion  operation *) 
begin 

Ti[i,i ] :---- clocki: 
Li :---- Li U { <"()per(p)",Ti[i , i] , i> }; 
perform the ,)perat ion oper(p) 

end ; 

send{m) to Nk: 

begin  
NP : - -  {eRIeREL i and -~hasrec(Ti,eR,k)}; 
send the message < N P , T i >  to N k 

end ; 

receive{m) from Nk: 
begin  

let m ---- < N P k , T k > ;  
L i :~--- L i U NPk; 
(VIE[n]) do  Wi[i,I ] : =  max{Ti[i,I], Wk[k,I]}; 
(VIE[n]) (VJE[n]) do 

Ti[I,J ] : ~  max{Ti[i,J], Tk[I,J]} 
end ; 

(S1) 

(s2) 

If multicast  communicat ion is possible, a node may 
use a set, S, of nodes as the dest inat ion of a send 
operation. Sta tement  ($1) should then be modified as 
follows : 

NP : =  {eRIeREL i and (_~kES)-~hasrec(Ti,eR,k)}; 

A correctness proof for the algorithm is g i v e n  in the 
appendix. 

4.2.  A n  Efficient S o l u t i o n  to  the  D i c t i o n a r y  
P r o b l e m  

In this section an algorithm is developed to overcome 
deficiencies (02) and (03). A new view of the dictionary 
does not  have to he computed from the entire log nor does 
the entire log have to be stored. Instead each node 
separately mainta ins  its view of the dictionary as well as a 
partial  log which records some events which have 
happened in the network. At  each receive event a node 
extracts a set, NE, of events, of which it has not  yet  
learned, from NP. (Note tha t  the node may have learned 
of some of the events in NP.) The node then updates its 
view using NE; the log is no longer needed for this 
purpose. Suppose that  (VjE[n]) Ti[j,eR.node ] ~ eR.time. 
Then since eR will never be sent by Ni, there is no reason 
for N i to keep a copy of it. Hence, only a part ial  log, P L ,  
is kept at each node. The declarations and algorithm 
executed at N i are as follows. 

v a t  
V i " S e t O f  Dict ionaryEntry;  
PL i : S e t O f  Event ;  
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Init ial ization: 
begin 

V i : : -  O; 
PL i :~--- O; 
(VIEIn]) (VJE[n]) d o  Ti[I,J ] : =  0 

end ; 

insert{x): 
begin 

Ti[i,i ] : =  clockl; 
PLI :--~ PLi U { <" inser t (x)" ,Ti [ i , i ] , i>  }; 
Vi :=ViU { x } 

end ; 

delete(x): 
begin 

Ti[i,i ] : =  clocki; 
PLi : =  PLi U { <"dele te(x)" ,Ti [ i , i ] , i>  }; 
V i : =  V i - { x } 

end ; 

send{m) to Nk: 
begin 

NP :---- {eR]eR E PL i and -~hasrec(Ti,eR,k)}; 
send the message < N P , T i >  to N k 

end ; 

receive!m) from Nk: 
begin 

let m ~- < N P k , T k >  ; 
NE :---- {fRIfRENP k and -~hasrec(Ti,fR,i)}; 
V i : =  {v[(vEV i or cvRENE ) and 

( ~  dRENE)dR.op  ---- delete(v)}; 
(VIE[n]) do  Ti[i, | ] : =  max{Ti[i,I], Tk[k,I]}; 
(VIE[n]) (VJE[n]) do 

Ti[I,J ] : =  max{Ti[I,J], Tk[I,J]}; 
PL i : =  {eRIeRE(PLiUNE ) and 

( ~ j  E [n]) -~h asrec(Ti,ea, j)  } 
end ; 

(s3) 

(s4)  

tIow does this a lgori thm behave when failures occur? 
(1) If the communicat ion link between N i and N i breaks or 
a message sent from N i to Nj is lost, Nj will still learn, 
indirectly , of new events at  N i using information passed 
through other nodes. (2) If N k fails, then Ti[k,j ] can never 
become greater  than Tk[k,j ] at  the t ime of failure. This 
follows from the fact tha t  Ti[k,j ] increases monotonically 
as a result of the application of the max function when a 
message is received. A new (largest) t ime value makes its 
initial appearance in Tj[j,j] when a non-communicat ion 
event occurs at  Ni, migrates to Tk[k,j ] when N k receives a 
message from Nj ($3), and then to Ti[k,j ] when N k 

communicates  with N i ($4). Thus the record of any 
event, e, occurring at  N i such tha t  eR. t ime > Tk[k,j ] 
cannot  be deleted from any par t ia l  log and will be 
contained in messages received by N k when it recovers. 
Note  tha t  we have assumed tha t  the s ta te  a t  Nk, 
consisting of Vk, PL k, and Tk, is maintained in s table  
storage and hence not lost when a crash occurs. The  
correctness of the a lgori thm is proven using an argument  
similar to tha t  shown in the appendix.  A complete proof 
is given in [13]. 

5. C o m p a r i s o n  with  Other  W o r k  

Fischer  and Michael [1] establish an elegant 
framework for the mul t ip le  copy dict ionary problem. 
However the solution requires a node to send its entire 
copy of the dict ionary in each message. In some 
applications,  the average size of the dict ionary is large, 
and therefore this solution is expensive. 

In Allchin [8], each node, Ni, maintains  a 
synchronizat ion set, SSi, and a 1-Dimensional Time Table,  
T i' (which is equivalent to row i in the 2DTT), in addit ion 
to its view of the dict ionary.  The  elements of SS i are 
records of insert  and delete events, thus SS i corresponds to 
a par t ia l  log. A set, called the knownby set, is a par t  of 
each event record and contains node ids of nodes which 
have learned of the event. When the knownby set 
contains all node ids, the event record can be deleted from 
the synchronizat ion set. It can be shown [13] tha t  this 
occurs under the same circumstances which cause an 
event record to be deleted from the part ial  log in the 
algori thm described here. The  difference between the 
approaches is tha t  with a 2DTT, N k does not send eR to 
N i if N k knows tha t  N i has learned of the event. Hence 
only a subset  of PL k is sent in a message. By contrast ,  in 
[8], N k always sends SS k in its entirety.  In other words, 
N k sends event record eR to N i even though Ni's id is in 
eR's knownby set. This is part icular ly t roublesome in the 
case of network par t i t ion or failed nodes, since no event 
record can collect all node ids in its knownby set and 
therefore SS will grow unboundedly. This problem does 
not arise in the 2DTT scheme. 

A deficiency of the approach described here is t ha t  
the 2DTT, of size O(n2), is sent as par t  of each message. 
By contrast ,  a 1-dimensional t ime table of size O(n) and a 
collection of knownby sets of size O(mn) where m is the 
size of SS i and is proport ional  to the frequency with which 
events occur, are sent in a message in [8]. Therefore, the 

237 



2DTT method is applicable when One or more of the 
following conditions hold: events are frequent, the number  
of nodes is not  large, and failure is possible. In the next 
section, strategies are presented to reduce the amount  of 
t iming information that  must  be sent. 

6. On the  Size  o f  the  2 D T T  

The fact that  the 2DTT has size O(n 2) implies 
excessive storage and communicat ion overhead. In the 
following, strategy 0 is the previously described algorithm 
while strategies 1 - 3 are modifications which deal with 
these problems. 

Strategy 0 -- A node sends the complete 2DTT in each 
message and stores the complete 2DTT. 

Row k of T i is Ni's estimate of how up to date N k is 
concerning events at other nodes. Upon receiving a 
message from N i containing Ti, N i first updates its 
own row (row i) of T i using row j of T i and then 
updates other rows with corresponding rows of T i. 

Strategy 1 -- Each node stores the complete 2DTT but  
sends only its own row. 

In this case Nj includes only the j th  row of T i in each 
message it sends and N i uses the received row to 
update only the ith row and the j th  row of T i. Other 
rows of T i will be updated by direct messages from 
corresponding nodes. Row i of T i therefore has the 
same contents that  it would have under Strategy 0, 
since the way each node's own row is updated 
remains the same. Entries in other rows, however, 
may be less than they would be if Strategy 0 were 
used since now N i updates a row other than row i 
only when a message arrives from the corresponding 
node. Consequently, a node may be forced to include 
more event records in NP in each message it sends 
under strategy I than it does under  strategy 0. Thus 
the savings made using strategy I in reducing the 
communicat ion cost by sending less t iming 
informatian is compensated for by the need to send 
additional event records. The most advantageous 
strategy will depend on the details of the situation. 
The correctness of the algorithm as modified by this 
strategy follows from the fact that  the entries of Tj 
are nfJt larger than they would be if strategy 0 were 
used. Thus the set, NP, computed when N i sends a 
message includes all event records that would be sent 
if slrat(,gy 0 were used. 

In the preceding analysis we have not taken into 
consideration the fact tha t  due to hardware or software 
l imitations it may not  be possible for a node to send a 
message to every other node in the network. We will 
represent the network by a undirected graph G in which 
vertices represent nodes and an edge (i,j) indicates that  N i 
and N i can send messages to each other. N i and N i are 
called n e i g h b o r s  in this case. In the 2DTT technique, N i 
uses row k to decide what portion of the log should be 
included in a message it sends to N k. This suggests that  a 
node not store those rows of the 2DTT which do not 
correspond to its neighbors. 

Strategy 2 -- Each node stores only its own row and a row 
for each of its neighbors; it sends only those rows which 
correspond to neighbors of the target node. 

Since the entire 2DTT is not retained, a node can no 
longer determine when all nodes have learned of a 
part icular event. Instead, a node discards an event 
record from its log as soon as it knows that  all its 
neighbors have learned of the event. N i can 
determine this for an event which has oceured at N k 
(which need not be a neighbor) by examining Ti[j,k ] 
where j ranges over all neighbors. Because a node 
discards event records more quickly than in previous 
strategies, it keeps a smaller partial  log. If a node 
fails before it learns of e then its neighbors keep eR 
in their partial  logs unt i l  it recovers. Non- 
neighboring nodes discard eR. 

With  the concept of a neighborhood in a network, we 
have reduced the number  of rows of the 2DTT stored at a 
node. However, all rows still have dimension n. The next  
goal is to reduce the size of a row by deleting entries in 
those columns which do not  correspond to neighbors. A 
maximum complete subgraph (i.e., a subgraph in which 
each node is connected to every node in the subgraph) in 
G is called an a rea .  Two nodes may directly 
communicate if and only if they are in the same area. A 
node which is in more than one area is called a g a t e w a y .  
Suppose N i and N i are in the same area, A, and event e 
occurs at a node, Nk, not in A. In strategy 2, N i uses the 
entry Ti[j,k ] to determine whether N i has learned of e. 
Thus, one cannot cut off columns which correspond to 
non-neighbor nodes without modifying the algorithm. 

In the following, we modify the log solution so that  a 
node stores only columns which correspond to it 
neighbors. The intui t ion underlying strategy 3 can be 
obtained from the example shown in Figure 1. A network 
is divided into two areas, A 1 and A 2. Nodes mainta in  
t iming information about other nodes in common areas. 
Thus N 3 cannot call upon T3[i,1 ] in deciding whether it 
should send a record, eR to a neighbor, Ni, where oR.node 
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1. To overcome this problem, a gateway in A s whose 
first knowledge of e comes from a node not in A s declares 
itself to be a representat ive of e in A 2. In Fig  1 N s is such 
a gateway. N s functions as a proxy for N 1 in A s with the 
effect that  nodes in A s treat  e as if it had occurred at N s. 
Thus, in deciding whether to send eR to Ni, N 3 appeals to 
Ta[i,2]. 

A1 As 

Figure 1 

Strategy 3 -- Each node stores only its neighbors'  rows 
and neighbors'  columns; it sends only those rows to N k 
which correspond to neighbors of N k. 

Let  A i contain n i nodes. A node maintains a sub- 
t ime-table (STT) for each area in which it resides. 
Thus in Figure  1, N s maintains sub-time-tables T2,1 
and Ts, s (having dimension n l X n  1 and n2Xn 2 
respectively) for areas A 1 and A s respectively while 
N 1 maintains only T1,1. Both rows and columns of 
Ti, j correspond to nodes in A i. Note that  since areas 
overlap, two STTs stored at a node may have rows 
and columns corresponding to the same nodes 
(further optimizations can be used to avoid this). If 
N i sends a message to N i it includes all STTs  Ti, k 
such that  N i is a member  of A k. 

A r e p r e s e n t a t i v e  of event e in area A is a node in A 
which first learns of e from a node which is not  in A. 
A representative must be a gateway; the reverse need 
not be true. Note that  there may be several 
gateways in A which concurrently learn of e from 
nodes not in A (see Figure 2), hence representative 
nodes need not be unique. Because of this lack of 
uniqueness the contents of an event  record may vary 
depending on its location. Therefore we use the 
notat ion eR i to denote the event record describing e 
at N i and eR i' to denote an event  record describing e 
sent by N i. Copies of eR can be recognized as 
describing the same event since they all contain the 
same unique tag, < t ime(e) ,node(e )> .  Copies differ in 
the set of representative tuples they contain. A 
r e p r e s e n t a t i v e  t u p l e  in eR, < A p , r t i m e , r n o d e >  
indicates that  node mode,  contained in area Ap, first 
learned of e from a node not in Ap at t ime r t ime as 
measured on rnode's clock. As a result it declared 
itself to be a representative of e in Ap. eR i contains a 
representat ive tuple for each area within which N i 

resides. This is achieved as follows: 

(1) If e occurs at N i then N i inserts in eR i a tuple 
<Ai ,c lock l , i>  for each area A i containing N i. 
(2) If N i sends a message to N i it includes in eR i' 
only those representat ive tuples for areas which 
contain N i as well. 
(3) On receiving eRi' , if N i does not have a record for 
e, it creates eR i containing all representative tuples in 
eR i' as well as additional tuples of the form 
<Ak,c lock i , J~  for each area A k containing N i but  
not N i. eRj is inserted in PL i in this case. If N i 
already has a record for e it ignores eRi'. 

Note that  the effect of the first part  of step 3 is that  
N i has declared itself to be the representative of e in 
A k since e was unknown prior to the message and N i 
is not  a member  of A k. If Ti,u[j,rnode ] > r t ime for 
some area A u containing both N i and N i and for some 
representat ive tuple < A u , r t i m e , r n o d e >  in eR i then 
N i does not send a record describing e in messages to 

N i • 

AI A2 

Figure  2 

Consider the simple example shown in Figure 2 in 
which e occurs at N 1 in A 1 at t ime t 1 read on Nl ' s  clock. 
eR 1 has one representative tuple, < : A l , t l , l > .  N 1 sends a 
message containing eRl ' ,  where in this case eR 1' ~- eR1, 
to N 2 and N 5. When N 2 receives the message, at t ime t 2 
read on its own clock, it becomes a representative of e in 
A s since eR 1' does not  have a representative tuple for that  
area and N s has not previously learned of e. N s will form 
eR 2 by adding <A2,ts ,2;> to eRl '  , where t s is the current 
reading of clock s and inserts the result into PL 2. When 
N 5 receives the message, it will do a similar thing, 
declaring itself to be the representative in A s. At  a send 
event to N 3, N 2 includes only the representative tuple for 
A 2 in eR 2' in the message. At  the t ime N 3 receives the 
message, it knows it is not a representative and thus 
inserts eR3, where eR 3 ~-- eRs'  , in PL 3. Na will ignore 
eR 5' on receiving any later messages from N 5. Thus,  N 3 
takes N 2 as the representative in A 2. A gateway is not 

239  



necessarily a representative. For example if N 4 learns of e 
from N2, it discovers representative tuples for both A l and 
A 2 and therefore does not declare itself to be a 
representative. 

In strategy 2, a node uses space O(kn) for the 2DTT, 
where k is the number  of its neighbors. Note that  k 
depends on the connectivity of the network and does not  
necessarily grow with the total  number  of nodes. In many 
cases it is a constant.  In strategy 3 a node uses space 
O(k 2) for each area to which it belongs. However strategy 
3 uses extra  space for representative tuples in each event 
record. Hence strategy 3 is particularly applicable when 
the network is large, nodes are connected to a small 
number  of other nodes, and events do not  occur 
frequently. 

7. Discussion 

Algorithms have been developed to mainta in  a 
replicated dictionary. The solution is suitable for such 
applications as distr ibuted directories where entries 
represent files. Two entries with the same symbolic name, 
tha t  are created by two concurrent  insert events, actually 
represent two different files. Furthermore,  a file with a 
symbolic name which was used by a previously deleted file 
is different from its predecessor. The  creation t ime and 
creator id can distinguish these entries. However, there are 
applications (e.g. an Access Control List), in which two 
concurrent events may insert an identical element. 
Furthermore,  reinserting an element x after it has been 
deleted is not uncommon.  Thus  multiple occurrences of c t 
in E, are allowed and restriction (R2) should be removed. 
An efficient solution to this problem can be obtained by 
using a 2DTT and log. An algorithm and its correctness 
proof are presented in [13]. 

The log solution can be used in other applications as 
well. For  example: 

(1) 

(2) 

Replicated numeric data  with add-to and 
subtract-from operations. Since these two 
operations are commutat ive,  copies of the data  
will reach the same final state. 

Detection of failures. Consider the case that  N i 
sends a request to a neighboring node N k and does 
not receive a reply. To distinguish node failure 
from communicat ion failure, a log is used to 
collect records of communicat ion events occurring 
in the network. If Ni's log shows that  none of 
Nk'S neighbors have received messages from N k for 

some time, then it may assume N k has failed. 
Otherwise N i knows that  a communicat ion failure 
has occurred. An algorithm is presented in [13]. 

Efficient algorithms have been proposed in this paper 
to mainta in  replicated da ta  whose semantics do not 
require serializability as a consistency criterion. The 
efficiency gains which can be achieved when serializability 
is dropped make it worthwhile to search for other 
applications having similar properties. 

Appendix 

The following correctness proof is exhibited with respect 
to a given execution <E,- - -~>.  For convenience we will 
use the following notat ion and definitions. 

(N1) e -% e ' i f f e - - * e ' a n d e ~  e'. 

(N2) e A.~ e' iff e -+-* e' and if node(e) = node(e') then 
there is no event f at node(e) such that  e - ~  f --~ 
e', or else op(e) ~-~ send(m) and op(e') = 
receive(m) for the same message m. 

If e A.~ e' then e(e') is called the i m m e d i a t e  
predecessor (successor) of e'(e). Only a receive event has 
more than one immediate  predecessor, it has two (except 
if it is the first event at a node); only a send event may 
have more than one immediate  successor. Assuming only 
unicast communicat ion it may have two. 

(N3) Let e be a receive event. Pe denotes the immediate  
predecessor of e at node(e), qe denotes the send 
event which supplies the message to e. 

(N4) T(e) is the value of Tnod¢~e ) immediately after e 
completes. 

L e m m a  1.1: Let e, f E E. If fR E L(e) then f --* e. 
P r o o f  : We can construct a sequence of immediate  
predecessors, h 1 ~--~ ... A_~ hm where h m = e, such that  (V 
i) 1 < i < m, fR E L(hi) and for every immediate  
predecessor p of hi, fR (~ L(p). Since only the non- 
communicat ion event, f, can insert fR in L under these 
circumstances, h 1 ~--- f and f --+ e. 

Lemma 1.2: Let e, f E E. If f---* e, then V I ,  J E [n], 
T(f)[I,J] < T(e)[I,J]. 
P r o o f  : This lemma follows by induct ion on ---*. It  is 
true for any event which has no immedia.te predecessor. 
Suppose the result is true for all immediate predecessor(s) 
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~f e. The  algorithms for the  various operations either 
leave T i unchanged (send), increase Ti[i,i ] (oper) or apply 
the max function on T i and T k (receive). Therefore the 
lemma holds for e. 

L e m m a  1.3 : Let  e E E. If T(e)[node(e),k] > 0 then there 
exists an event, f, at N k such that  T(f)[k,k] 
T(e)[node(e),k] and f --~ e. 
P r o o f  : The  lemma follows by induction on --*. It is true 
for any event,  e, which has no immediate  predecessor 
since if T(e)[node(e),k] > 0 then node(e) : k and e : f. 
Suppose this result holds for all immediate  predecessors of 
e. The  result is obviously true if node(e) ~ k. If node(e) 

k, the value of T(e)[node(e),k] is taken from 
T(e')[node(e'),k], where e' _1+ e. Hence the result holds by 
the inductive hypothesis. 

L e m m a  1.4: Let  e, f E E where f is a non- 
communicat ion event. If T(e)[node(e),node(f)] >__ time(f) 
then f --~ e. 
P r o o f  : By lemma 1.3, there exists an event  e' at  node(f) 
such that  T(e')[node(f),node(f)] ---- T(e)[node(e),node(f)] 
a n d e '  ~ e. By C1 either f - -+  e ' o r e ' - - %  f. I f e ' ~  f, 
then T(e')[node(f),node(f)] < T(f)[node(f),node(f)] (since 
the clock is invoked at f) and we have the following 
contradiction: time(f) < T(e)[node(e),node(f)] ---- 
T(e')[node(f),node(f)] < T(f)[node(f),node(f)] ~- time(f). 
Therefore we conclude f -- ,  e. 

L e m m a  1.5: Let  e, f E E. If hasrec(Tnod~(~),fR,k) is true 
at e then there exists an event, g, at  N k such that  f --~ g 
---~ e .  

P r o o f  : Since, by lemma 1.2, each entry of the 2DTT is 
monotone over ---*, we can construct  a sequence of 
immediate  predecessors h I -1-, ... A+ hm where h m ~ e, 
such that  (V i) 1 _< i < m, T(hi)[k,node(f)] ---- 
T(e)[k,node(f)] and for every immedia te  predecessor, p, of 
hi, T(p)[k,node(f)l < T(hl)[k,node(f)]. In order to 
increase an entry in ~he kth row of Tnode(h~), h I must  
satisfy the following. (1) h I is a receive event  - In this case 
($2) can increase the entry only if node(hi) ~-- k. (2) h I is 
a non-communication event  - In this case the entry is 
increased by a clock invocation and node(hi) ---- node(f) ---- 
k. Therefore in both cases node(hi) ~-- k. Since 
T(hl)[nod(.(h0.no(le(f)] > time(f), f --~ h I by lemma 1.4. 
Therefore f --~ h I ~ e and node(hi) ----- k. 

T h e o r e m  1 : Let  e, f be 2 events in an execution 
< E , - - , >  where f is a non-communication event, fR E 
I,(e) iff f --~ e. 

Proof:  
(=:*) F r o m  lemma 1.1. 
(¢:=) This  is proven by induction on --~. 
Basis, If e has no immedia te  predecessor then f --~ e and 
the result follows from the oper algorithm. 
Induction.  
Case 1. e -~ f. F rom the oper algorithm, fR E L(e). 
Case 2. e ~ f. 2 cases are considered. 

Case 2.1. e is a send event or a non-communicat ion 
event, e has a unique immediate  predecessor, g, and f 
--* g. Then fR E L(g) by the inductive hypothesis 
and L(g) C L(e) in this case. 
Case 2.2. e is a receive event. Ei ther  f --~ Pe or f - *  
qe, or both. If f --* pc, then the result follows using 
the argument  of case 2.1. The  final case to consider 
is tha t  f --~ qe and f - f '  Pc' By hypothesis, fR E 
L(qe). Le t  < N P , T >  be the message sent from qe to 
e. Assume fR (~ NP. F r o m  the send algorithm, 
hasrec(Tnode(qo),fR,node(e)) is true at qe" By lemma 
1.5, there exists an event, h, at node(e) such that  f ---* 
h - - *  qe. F rom (C1), either h --% e or e ~ h. The  
former cannot be t rue since f ~ h ~ e contradicts 
the assumption that  f -/-* Pc" If e --~ h, we have qe A-~ 
e --* h --* q~, which is also a contradiction. Hence fR 
E NP. Therefore fR C L(e). 
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